
Niels Doekemeijer
Camiel Steenstra

OTEC Tool

Orientation
Commissioned by Bluerise and TU Delft

Under supervision of
Paul Dinnissen
Claudia Hauff

May 7, 2013

Preface

This document is the second of three reports. This report describes the orien-
tating research performed for the OTEC Tool. Multiple web frameworks are
tested and the most suited one is chosen. This project, conducted as part of
the TU Delft Computer Science Bachelor program, is carried out at Bluerise.
Bluerise is a technology provider specialized in Ocean Thermal Energy.

More information about the project can be found in the first report, the
Project Plan.

We would like to thank Bluerise for giving us the opportunity to perform this
project. We would also like to thank our supervisors for guiding us; Paul Din-
nissen on behalf of Bluerise and Claudia Hauff on behalf of the TU Delft.

Delft, May 7, 2013

Niels Doekemeijer
Camiel Steenstra

i

Contents

1 Introduction 1

2 Functionalities 2

3 Selection 3

4 Comparison 6
4.1 Test Drive . 6
4.2 Performance . 10

5 Conclusion 12

A Framework Implementations 13

B Framework Quality 20

Bibliography 25

ii

1 Introduction

Web applications are a hot programming topic. New web applications emerge
every day and most of these applications require a wide variety of the same
functionalities. In order to speed up the implementation process, programmers
can use frameworks. These frameworks take care of common challenges and
try to reduce the number of redundant tasks. There are hundreds of frame-
works available; choosing the right one is not an easy task. Frameworks differ
in functionality, techniques, mindset, style and efficiency. Choosing the right
framework eases programming and helps with creating a secure, well perform-
ing web application.

In this report, different aspects of frameworks are researched in order to find
the best suitable framework for the Bluerise OTEC tool. Comparisons are
done on different levels, taking into account the popularity, the online commu-
nity/support, the documentation and usability. This form of research is loosely
based on the framework comparison process described by Raible 3.

Important functionalities for the ideal framework are described in chapter 2.
The most popular frameworks are determined in chapter 3 and an initial selec-
tion of frameworks will be made. The preselected frameworks will be compared
in chapter 4. Finally, the best framework will be recommended in chapter 5.

1

2 Functionalities

A framework can help with many different aspects of an application. A few
components present in most frameworks are briefly discussed. These compo-
nents take precedence according to the application requirements as discussed
in the Project Plan1.

Database access

When creating an application that contains elements that need permanent
storage, a storage system is required. In (large) web applications, the stor-
age system is usually a relational database. Accessing this database can be
troublesome and is prone to errors when user input is used. Object Relational
Mapping (ORM) provides an extra layer of abstraction between the devel-
oper and the database. A good ORM component makes it easy to access the
database securely.

Input validation

User input always needs to be validated before it is used. A good structured
way of handling validation and providing feedback to the user can save a lot of
time. A good framework thus provides an easy format for handling validation.

Design Patterns

There are multiple design patters for software to structure code. For exam-
ple, a widely used pattern for web development is the Model-View-Controller
(MVC) pattern. This pattern separates data (Model) from logic (Controller)
and visualization (View). The model stores a data object, while the controller
manipulates it. Views visualize this model data and invoke controller actions.
Separating these segments of code makes it easier to exchange a segment; e.g.
a view specialized for mobile phones.
In web development, this pattern can be simply summarized as follows: the
view is the actual web page in the browser (client), database/file interaction
(server) is done in the model and the controller performs actions and handles
page flow (server).
A good framework follows a suited design pattern and makes this pattern easy
to implement. In case of MVC, the framework can provide ORM for the model
and templates for the view. Templates ensure the separation of client and
server code and only handle the visualization of the data.

1Project Plan: the report describing the assignment and approach for the OTEC Tool.

2

3 Selection

The ideal framework for this project does not have to meet any special require-
ments. The needed features are common and tons of complying frameworks
can be found. However, it is difficult to automatically benchmark security
and code quality. Manually checking every framework is time consuming and
undesirable.

To address this issue, the team has decided to test only the most popular
frameworks. It is assumed that frequently used frameworks are mature and
production ready. When there are more developers working on a framework,
it is assumed to be better supported and maintained.

Using Ohloh1 and HotFrameworks2, a list of actively maintained and widely
used frameworks can be composed. To rank these frameworks (listed in Ta-
ble 3.1), a number of factors can be used. Popularity can be measured by
popularity of the programming language, popularity of the framework (web
traffic, number of users), number of contributers and the amount of documen-
tation. Using these factors, the frameworks will be ranked and six frameworks
will be selected for further testing.

Language Ranking

The first aspect on which frameworks differ is the platform on which they
run. As for frameworks, popularity says something about the maturity of a
programming language. The language ranking mark is based on the Tiobe
ranking ([6], measuring the number of engineers, courses and third party ven-
dors), the RedMonk ranking ([4], using GitHub3 and StackOverflow4) and the
Ubuntu Computer Language Benchmark [7].
The final language ranking is calculated by 103− Tiobe+RedMonk+Ubuntu

3 .

1Ohloh.net: Public directory of Free and Open Source Software. Every project is analyzed
regularly and statistics like Lines of Code, Active Contributors and Users are measured.[2]

2HotFrameworks.com: Relative ranking of web frameworks based on the number of GitHub
watchers, site traffic and inbound links. The most popular framework is graded 100.[1]

3GitHub.com: Project hosting. A lot of frameworks are hosted here.
4StackOverflow.com: A question and answer site for programmers.

3

Web Traffic

Web traffic for frameworks can be measured using HotFrameworks and Google
Trends5. This is a simple indication of popularity.
The final web traffic mark is calculated by HotFramework+Trends

2 .

Community

The size of the community is a more important aspect of popularity. The
number of users and the amount of documentation gives a good indication of
the size of a community. For the amount of users, Ohloh and GitHub can be
used as users can manually ’use’ or ’star’ a framework. As GitHub is bigger
than Ohloh, the GitHub number has a higher weight.
The number of users is estimated by Ohloh+3∗GitHub

4 .

The level of documentation is hard to measure. The number of questions and
answers is used to measure the amount of ’help’. This is done by counting the
number of questions for a certain framework on Stackoverflow.

Code per Contributor

To get a superficial idea of the quality of a framework and the degree of main-
tenance that is happening, the number of active contributors can be checked.
Because not all frameworks are equally big, the total lines of code is also taken
into account. Ohloh provides both of these statistics, so the code per con-
tributer can be calculated using LinesofCode

AciveContributors .

Ranking

To come to a final ranking, all frameworks are sorted from 0 to 18 for the five
factors (the best framework is ranked 0) and the final score is calculated using
100− 100 ∗ (0.25∗Language+0.25∗Traffic+0.25∗Users+Contributors+Help

52.25). Emphasis
is on the number of contributors and help. Only the initial values and final
score are displayed in Table 3.1, the sorted values are left out.

5Google.com/trends: Compare multiple search terms with the Google search engine. Results
are relative numbers between 0 and 100, with 100 being most found.

4

L
a
n

g
u

a
g
e

R
a
n

k
in

g

↑ W
e
b

T
ra

ffi
c

↑ U
se

rs

↑ C
o
d

e
p

e
r

C
o
n
tr

ib
u

to
r

↓ H
e
lp

↑ S
c
o
re

↑
Ruby on Rails Ruby 81 86 13918 206 112921 92,3
Django Python 85 59 4864 592 50431 85,6
CodeIgniter PHP 89 40 4224 1309 18660 76,1
Flask Python 85 48 4331 154 1761 69,9
Symfony PHP 89 46 4948 1684 9886 68,9
ASP.NET C# 88 100 1320 7780 167501 67
Laravel PHP 89 39 3049 149 1050 64,6
Sinatra Ruby 81 34 3630 520 2452 64,1
CakePHP PHP 89 50 3260 4414 13527 64,1
Zend Framework PHP 89 46 3046 6156 14810 59,8
Yii PHP 89 49 1995 3659 4767 58,4
Spring Java 98 43 1565 14557 27306 53,1
Grails Groovy 29 55 642 5840 6009 51,2
Kohana PHP 89 21 953 4280 1614 44
Google Web Toolkit Java 98 27 1304 10939 12757 44
Pylons Python 85 21 120 1746 739 37,3
Lift Scala 60 22 508 7441 854 28,2
Zope Python 85 28 592 8864 446 23
Vaadin Java 98 27 148 85185 903 22,5

Table 3.1: Framework comparison

↑ Higher is better | ↓ Lower is better

To limit the number of possible frameworks (as shown in Table 3.1), all scores
below 60 will be dropped. Also, as Bluerise is already working with PHP, em-
phasis will be on PHP frameworks. The second Python and Ruby frameworks,
Flask and Sinatra, will therefore not be tested. ASP.NET, running on C# and
only supported for Windows platforms, will also be skipped. This leaves six
frameworks to be tested more thoroughly.

5

4 Comparison

In this chapter, the frameworks selected in chapter 3 will be compared. For
each of these frameworks, the same web page will be implemented. After these
tests in section 4.1, the framework will be rated and a list of pros and cons is
given. Performance of the implementation will be tested in section 4.2.

4.1 Test Drive

To get an impression for each of the preselected frameworks, a simple test page
will be implemented for every framework. The test page will contain a simple
form in which users can submit a message. All the submitted messages will be
listed beneath the input form.

For this page to work, a couple of things have to be set up. First of all, the
framework has to be installed and a test environment has to be set up. After
that, the application has to be configured to use a database for storing the
messages. The page is responsible for handling user input and validating that
the input is not empty. By implementing this test for the selected frameworks,
insight is gained over how the frameworks operate.

All of the frameworks utilize the MVC design pattern. Input handling, database
interaction and page generation are covered in this test. Working with the
framework also gives the opportunity to evaluate file structure and code docu-
mentation. Performance and code quality is measured in in section 4.2. Actual
code for the implementations can be found in Appendix A.

Next, a brief list of pros and cons will be given for each framework. Every
framework will also be rated zero to five stars for syntax, features, documen-
tation and overall usability. These ratings are subjective and the result of the
developers’ first impression with the frameworks.

6

Ruby on Rails

Version: 3.2.13 (March 18 2013)
License: MIT
Platform: Ruby >= v1.8.7

Syntax HHHHI
Features HHHHI

Documentation HHHKI
Overall HHHHI

Pro Con

3 Very clean, readable syntax.

3 Clear documentation.

3 Console helpers and generators.

3 Database generation and migration
(don’t lose data with upgrades).

3 Framework and application files well
separated.

3 A lot of plugins (Gems) which can be
easily added and managed.

3 Used for web applications such as
Twitter, Github, Groupon, Hulu and
Soundcloud.

7 Difficult to set up for Windows; not
all Gems work.

7 Error reports not always clear. As a
lot is left to the framework, it is not
always clear where bugs originate.

7 Although syntax is readable, it is not
very strict and mistakes are easily
made.

CodeIgniter

Version: 2.1.3 (October 8, 2012)
License: BSD
Platform: PHP >= 5.1.6

Syntax HHIII
Features HHIII

Documentation HHKII
Overall HHIII

Pro Con

3 Explicit, low level API with a lot of
freedom.

3 Database migrations.

3 Very clear documentation.

3 Framework and application files well
separated.

7 Limited templating support. Tem-
plates are plain PHP by default.

7 Unclear error reporting for templates.

7 Low level database interaction. Mod-
els have to be manually implemented
with trivial methods.

7

Django

Version: 1.5.1 (March 28 2013)
License: BSD
Platform: Python >= v2.6.5

Syntax HHHHH
Features HHHHI

Documentation HHHHI
Overall HHHHK

Pro Con

3 Very clean, readable syntax.

3 Clear documentation.

3 Console helpers and generators.

3 Database generation.

3 Clean, readable templates.

3 Small and obvious file structure.

3 Out of the box administration system
for database management.

3 Out of the box geographic framework
to handle spatially enabled data.

3 Used for web applications such as Dis-
qus, Instagram, Pinterest and Rdio.

7 Difficult to set up with Apache and
MySQL.

Laravel

Version: 3.2.14 (March 21, 2013)
License: MIT
Platform: PHP >= v5.3

Syntax HHHII
Features HHHII

Documentation HHKII
Overall HHKII

Pro Con

3 Clean, readable syntax.

3 Console helpers and generators.

3 Database migrations.

3 Clean, adaptable templates.

3 Framework and application files well
separated.

7 Lack of books and tutorials, but API
documentation is available.

7 No out of the box support for model
validations. Validating models are a
common operation and having it done
automatically saves work and ensures
valid models.

8

Symfony

Version: 2.3.2 (March 24, 2013)
License: MIT
Platform: PHP >= v5.3.2

Syntax HIIII
Features HHHHI

Documentation HHKII
Overall HHKII

Pro Con

3 Console helpers and generators.

3 Database generation and migration.

3 Development toolbar. This page over-
lay offers insight in loading speed,
memory usage and SQL statements
that were executed.

3 Clean, readable templates (based on
Django template syntax).

3 Out of the box extensive authentica-
tion system.

3 Out of the box administration panel
that offers functionality such as user
mailing.

7 Counterintuitive syntax. Model
classes are overly expressive, error
prone and need manual implementa-
tion of trivial methods.

7 Separation of logic that should belong
in the same file (such as model valida-
tion).

7 Unclear file structure. Application
and framework code are mixed.

7 Generally unclear error messages. As
code logic is separated, it is not always
clear what is causing a failure.

7 Overly expressive code. Most lines of
code needed for the test application by
far.

CakePHP

Version: 2.3.4 (April 28 2013)
License: MIT
Platform: PHP >= v5.2.8

Syntax HHHHI
Features HHHII

Documentation HHHHH
Overall HHHHI

Pro Con

3 Clean, readable syntax.

3 Very clear documentation.

3 Console helpers and generators.

3 Database migrations.

3 Framework and application files well
separated.

7 Limited templating support, although
helpers are available. Templates are
plain PHP, but helpers can be used to
generate forms or include other tem-
plates.

9

4.2 Performance

Most frameworks perform different tasks in order to serve requested pages.
Because these tasks require some form of computation, a framework usually
causes time overhead. In this section, the relative speed of each framework is
illustrated using data from the TechEmpower web framework benchmark[5].
Another important feature of a framework is the quality of code. A quality
review is given for every PHP framework using a PHP inspection tool.

Figure 4.1: TechEmpower Framework comparison[5].

Web Frameworks Benchmark

The benchmark of frameworks focuses on two different tasks, querying a database
and serializing JSON. The results shown in Figure 4.1 depict the performance
of each framework, where a higher score is better. The results show that some
frameworks perform notably better. The difference in performance can also
be linked to the number of features each framework has to offer. For example,
CodeIgniter has a high score, but the number of features that CodeIgniter offers
is less than the other frameworks. Symfony provides much more functionality
out of the box, but does not perform well on these tests. The results of these
tests will be taken into account in the final decision, but the fact that not every
framework does the same amount of legwork should not be forgotten.

10

Code Quality

To be able to provide a solid base for secure web applications, a framework’s
code must adhere to high quality. Quality of code is hard to determine, but
several signs can be taken into account to get a picture of the overall health
of code. Most quality tools use their own signs. This makes it hard to com-
pare different programming languages. For this reason, only the four PHP
frameworks will be examined. The tool used to inspect code is PHP Depend1,
this tool produces two charts containing different information. For each PHP
framework, a small review based on the results is given. The actual results
with detailed explanations can be found in Appendix B.

CakePHP

The results indicate that CakePHP is fairly complex. This means it is harder
to maintain CakePHP framework code, which may indicate that it is hard to
maintain a high quality when the framework evolves.

CodeIgniter

The results show that CodeIgniter is reasonably complex, but dependencies
are high and unstable. Changes in certain packages could easily cause errors
in other depending packages. Maintaining CodeIgniter should be doable, but
the quality is not ideal.

Laravel

According to the results, Laravel’s quality is fairly high, although dependencies
are not ideal. There are some unstable packages that might cause problems
when changes are made. Maintaining Laravel should not cause too many prob-
lems.

Symfony

Symfony has high ratings on structure of code, but the score on a more global
level indicates many problems. There are a lot of dependent packages that are
not structured to assist in maintaining backward compatibility. According to
the tests, Symfony is not very stable and therefore hard to maintain.

1pdepend.org: PHP Depend is a tool for generating quality assessment charts on PHP soft-
ware.

11

5 Conclusion

Choosing the best framework is very hard, perhaps even impossible. Frame-
works offer a fast way to set up an application, but the framework that fits a
project best will always be a tailor made framework. Besides the framework
being of high quality, the quality of the application code also plays a big role
in security and maintainability.

This research has highlighted some of the features that are desired in a good
framework. It turns out that most of the big frameworks offer functionality,
but only few offer usability. Because usability is a subjective measure, the best
framework is also subjective. For the most suitable framework, developers can
try out several frameworks. That is what happened for the Bluerise OTEC
Tool.

After testing the frameworks, it became clear that Symfony is not a good
contestant for this project. Although it offers a lot of features, usability and
performance are severely lacking. CodeIgniter, having decent performance but
bad usability, is also not the framework of choice for this project.

The four remaining frameworks can be divided into PHP and non-PHP
frameworks. The non-PHP frameworks, Django and Ruby on Rails, generally
perform better, but require the extra step of changing programming languages.
Currently, Bluerise utilizes PHP as programming language for web develop-
ment, so picking a PHP framework would reduce installing and learning time.
However, picking a non-PHP framework might proof to be more rewarding in
the long run.

This research shows that Django would be the framework of choice. It offers a
good set of features, while maintaining a clean syntax and good performance.
When looking only at PHP frameworks, Laravel appears to be a good all-
round framework. It offers a decent set of features, good performance and a
maintainable code base, but its documentation is sub par. CakePHP stands out
in usability, syntax and documentation, but its code base is relatively complex
and harder to maintain. Overall, CakePHP would be the PHP framework of
choice.

12

A Framework Implementations

These are the implementations for the frameworks as described in chapter 4.

Ruby on Rails

Rails Model
class Message < ActiveRecord::Base

attr_accessible :message

validates :message, :presence => true, :allow_blank => false

end

Rails Controller
class MessagesController < ApplicationController

def index

@message = Message.new(params[:message])

@message = Message.new if params.has_key?(:message) && @message.save

@messages = Message.all

render :index

end

def create

index

end

end

Rails Template Main
<!DOCTYPE html>

<html>

<head>

<title>Bluerise</title>

<%= stylesheet_link_tag "application", :media => "all" %>

<%= csrf_meta_tags %>

</head>

<body>

<div id=’main’>

<div class=’border’ id=’header’>Rails Test</div>

<%= yield %>

</div>

</body>

</html>

Rails Template View
<%= form_for(@message) do |f| %>

<%= f.text_field :message %>

<%= f.submit "Save" %>

<% end %>

<div id=’messages’>

<% @messages.each do |message| %>

<div class="message">

<%= message.message %>

</div>

<% end %>

</div>

13

Django

Django Model
from django.db import models

class Message(models.Model):

message = models.CharField(max_length=255)

def __unicode__(self):

return self.message

Django Controller
from django.shortcuts import render

from messages.models import Message

Create your views here.

def index(request):

try:

message = request.GET[’message’]

m = Message(message=message)

m.save()

except:

pass

messages = Message.objects

context = {’messages’ : messages}

return render(request, ’messages/index.html’, context)

Django Template
{% load staticfiles %}

<!doctype html>

<html lang=en>

<head>

<meta charset=utf-8>

<link rel="stylesheet" type="text/css" href="{% static ’messages/style.css’ %}" />

<title>Messages</title>

</head>

<body>

<div id=’main’>

<div class=’border’ id=’header’>Django Test</div>

<form method="get">

<input type=’text’ name=’message’>

<input type=’submit’ value=’Save’>

</form>

<div id=’messages’>

{% for message in messages %}

<div class=’message’>

{{message.message}}

</div>

{% endfor %}

</div>

</div>

</body>

</div>

14

CodeIgniter

CodeIgniter Model
class Message_model extends CI_Model {

public function __construct()

{

$this->load->database();

}

public function get_messages()

{

$query = $this->db->get("messages");

return $query->result_array();

}

public function set_message()

{

$data = array(

"message" => $this->input->post(’message’),

);

return $this->db->insert("messages", $data);

}

}

CodeIgniter Controller
class Messages extends CI_Controller {

public function index()

{

$this->load->helper(’html’);

$this->load->helper(’form’);

$this->load->library(’form_validation’);

$this->load->model("message_model");

$this->form_validation->set_rules(’message’, ’Message’, ’required|min_length[1]|max_length[255]|xss_clean’);

if (!($this->form_validation->run() === FALSE))

{

$this->message_model->set_message();

}

$data["messages"] = $this->message_model->get_messages();

$this->load->view(’base’, $data);

}

}

CodeIgniter Template
<!DOCTYPE html>

<html lang=en>

<head>

<meta charset=utf-8>

<?php echo link_tag(’assets/css/style.css’); ?>

<title>Messages</title>

</head>

<body>

<div id=’main’>

<div class=’border’ id=’header’>CodeIgniter Test</div>

<?php echo form_open(’messages’); ?>

<input type=’text’ name=’message’>

<input type=’submit’ value=’Save’>

</form>

<div id=’messages’>

<?php foreach ($messages as $message): ?>

<div class=’message’><?php echo $message["message"]; ?> </div>

<?php endforeach ?>

</div>

</div>

</body>

</html>

15

Symfony

Symfony Model
namespace Bin3\TestBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**

* @ORM\Entity

* @ORM\Table(name="messages")

* Message

*/

class Message

{

/**

* @ORM\Id

* @ORM\Column(type="integer")

* @ORM\GeneratedValue(strategy="AUTO")

*/

private $id;

/**

* @var string

* @ORM\Column(type="string", length=200)

*/

private $message;

/**

* Get id

*

* @return integer

*/

public function getId()

{

return $this->id;

}

/**

* Set message

*

* @param string £message

* @return Message

*/

public function setMessage($message)

{

$this->message = $message;

return $this;

}

/**

* Get message

*

* @return string

*/

public function getMessage()

{

return $this->message;

}

}

16

Symfony Controller
namespace Bin3\TestBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use Symfony\Component\HttpFoundation\Request;

use Bin3\TestBundle\Entity\Message;

class TestController extends Controller

{

public function indexAction()

{

$request = Request::createFromGlobals();

if (strlen($request->query->get(’message’)) > 0) {

$message = new Message();

$message->setMessage($request->query->get(’message’));

$em = $this->getDoctrine()->getManager();

$em->persist($message);

$em->flush();

}

$repository = $this->getDoctrine()

->getRepository("Bin3TestBundle:Message");

$messages = $repository->findAll();

return $this->render(’Bin3TestBundle:Test:index.html.twig’, array("messages" => $messages));

}

}

Symfony Template Main
{# app/Resources/views/base.html.twig #}

<!DOCTYPE html>

<html lang=en>

<head>

<meta charset=utf-8>

<link rel=StyleSheet href="style.css" type="text/css" media=screen>

{% block stylesheets %}{% endblock %}

<title>{% block title %}Bla!{% endblock %}</title>

</head>

<body>

<div id=’main’>

{% block main %}{% endblock %}

</div>

</body>

</html>

Symfony Template View
{% extends ’::base.html.twig’ %}

{% block stylesheets %}

{{ parent() }}

<link rel=StyleSheet href="{{ asset(’bundles/test/css/style.css’) }}" type="text/css" media=screen>

{% endblock %}

{% block main %}

<div class=’border’ id=’header’>Symfony Test</div>

<form method="get">

<input type=’text’ name=’message’>

<input type=’submit’ value=’Save’>

</form>

<div id=’messages’>

{% for message in messages %}

<div class=’message’>

<p>{{ message.message }}</p>

</div>

{% endfor %}

</div>

{% endblock %}

17

Laravel

Laravel Model
class Message extends Eloquent

{

public static $rules = array(

’message’ => ’required|min:1’,

);

public static function validate($data)

{

$v = Validator::make($data, self::$rules);

return $v->passes();

}

}

Laravel Controller
class Messages_Controller extends Base_Controller

{

public $restful = true;

public function get_index() {

$messages = Message::all();

return View::make(’messages’)

->with(’messages’, $messages);

}

public function post_index() {

$new_message = array(

’message’ => Input::get(’message’)

);

if (Message::validate($new_message)) {

$message = new Message($new_message);

$message->save();

}

return $this->get_index();

}

}

Laravel Template Main
<!doctype html>

<html lang=en>

<head>

<meta charset=utf-8>

<title>@yield(’title’)</title>

@section(’head’)

<link rel=StyleSheet href="css/style.css" type="text/css" media=screen>

@yield_section

</head>

<body>

<div id=’main’>

<div class=’border’ id=’header’>Laravel test</div>

@yield(’main’)

</div>

</body>

</html>

Laravel Template View
@layout(’template’)

@section(’title’)

Messages

@endsection

@section(’main’)

{{ Form::open() }}

{{ Form::text(’message’) }}

{{ Form::submit(’Save’) }}

{{ Form::close() }}

<div id=’messages’>

@foreach ($messages as $message)

<div class=’message’>

{{ $message->message }}

</div>

@endforeach

</div>

@endsection

18

CakePHP

CakePHP Model
class Message extends AppModel {

public $validate = array(

’message’ => array(

’rule’ => ’notEmpty’

)

);

}

CakePHP Controller
class MessagesController extends AppController {

public $helpers = array(’Form’, ’Session’);

public function index() {

if ($this->request->is(’post’)) {

$this->Message->create();

if (!$this->Message->save($this->request->data)) {

$this->Session->setFlash(’Unable to add your message.’);

}

}

$this->set(’messages’, $this->Message->find(’all’));

}

}

CakePHP Template Main
<!doctype html>

<html lang=en>

<head>

<title><?php echo $title_for_layout?> </title>

<?php

echo $this->Html->css(’default’);

echo $this->fetch(’meta’);

echo $this->fetch(’css’);

echo $this->fetch(’script’);

?>

</head>

<body>

<div id=’main’>

<div class=’border’ id=’header’>CakePHP test</div>

<?php echo $this->fetch(’content’); ?>

</div>

</body>

</html>

CakePHP Template View
<?php

echo $this->Form->create(’Message’);

echo $this->Form->text(’message’);

echo $this->Form->end(’Save’);

?>

<div id=’messages’>

<?php foreach($messages as $message): ?>

<div class=’message’>

<?php echo h($message[’Message’][’message’]); ?>

</div>

<?php endforeach; ?>

</div>

19

B Framework Quality

These are the detailed results of the quality assessment of the frameworks as
done in section 4.2.

Overview Pyramid

The first chart generated by PHP Depend is the Overview Pyramid. This
pyramid shows different values that are present in the system. These values
contain: Number Of Packages (NOP), Number of Classes (NOC), Number Of
Methods (NOM), Lines of Code (LOC), Cyclomatic Complexity (CYCLO),
Distinct function calls (CALLS), Type references (FANOUT), Average Num-
ber of Derived Classes (ANDC) and Average Hierarchy Height (AHH). Some of
these values can be set against each other, giving interesting ratios. For exam-
ple, dividing the number of methods by the number of lines of code results in
the average number of lines per method. A high number indicates that meth-
ods are complicated while methods should just perform a simple task. Each
of these ratios are colored according to average results, green indicates a good
value.

Abstraction Instability Chart

The second chart generated by PHP Depend is the Abstraction Instability
Chart. This chart contains information about the packages within a system
and their dependencies. Two measurements are used for each package: insta-
bility and abstractness. Instability takes into account the ratio between other
packages being dependent on the subject package and the subject package being
dependent on other packages. In this ratio, 1.0 means that a package has no in-
coming dependencies but is itself dependent on other packages. The other end
of this ratio, 0.0, means that the package is not dependent on other packages
but other packages are dependent on this subject package. The second ratio is
abstractness, this indicates the ratio between abstract classes and implemented
classes. Abstract classes are classes that describe certain functionalities but do
not perform the functionality itself. By using abstractions, the implementation
can be decoupled from the initial idea for what a class should do. The main
philosophy in this chart is that packages that have a high number of incoming
dependencies should use more abstraction to ensure decoupled code. This way,
changes to the implementation of one package will be less likely to effect the
behavior of others.

20

CakePHP

The Overview Pyramid B.1 shows that CakePHP is fairly complex. This means
it is harder to maintain CakePHP framework code, which may indicate that
it is hard to keep high quality when the framework evolves. The Abstraction
Instability chart B.2 shows that CakePHP combines unstable code with a low
level of abstraction, which also indicates that the maintainability is not very
high.

Figure B.1: CakePHP Overview Pyramid, generated by PHP Depend

Figure B.2: CakePHP Complexity Chart, generated by PHP Depend

21

CodeIgniter

In the Overview Pyramid B.3 CodeIgniter scores reasonable, although methods
are somewhat complex and classes are too big. According to the Abstraction
Instability chart B.4, CodeIgniter uses no abstraction and fairly unstable pack-
ages. Changing these unstable packages could easily cause errors in the de-
pending packages. Maintaining CodeIgniter should be doable, but the quality
is not ideal.

Figure B.3: CodeIgniter Overview Pyramid, generated by PHP Depend

Figure B.4: CodeIgniter Complexity Chart, generated by PHP Depend

22

Laravel

According to the Pyramid Overview B.5, Laravel’s quality is fairly high. Most
of the indicators fall within the desired range, although the complexity of in-
heritance is a little too high. The Abstraction Instability charts B.6 shows that
packages are somewhat unstable, while little abstractions are used. Maintain-
ing Laravel should not cause too many problems.

Figure B.5: Laravel Overview Pyramid, generated by PHP Depend

Figure B.6: Laravel Complexity Chart, generated by PHP Depend

23

Symfony

The Pyramid Overview B.7 for Symfony indicates that the quality is compara-
ble to Laravel’s. However, the Complexity Chart B.8 indicates that Symfony
has a high number of packages and most of these packages do not fall within
the desired range. This means that Symfony is not very stable and therefore
hard to maintain.

Figure B.7: Symfony Overview Pyramid, generated by PHP Depend

Figure B.8: Symfony Complexity Chart, generated by PHP Depend

24

Bibliography

[1] HotFrameworks. Web framework popularity rankings, May 2013. URL
http://hotframeworks.com/rankings.

[2] Ohloh. Open source web frameworks sorted on number of users, May 2013.
URL https://www.ohloh.net/p?query=web+frameworks&sort=users.

[3] Matt Raible. Comparing jvm web frameworks, November 2010. URL http:

//www.slideshare.net/mraible/comparing-jvm-web-frameworks.

[4] RedMonk. Programming language rankings: January, 2013. URL http:

//redmonk.com/sogrady/category/programming-languages/.

[5] TechEmpower. Benchmark on different web frameworks (round 4),
May 2013. URL http://www.techempower.com/benchmarks/#section=

data-r4.

[6] TIOBE. Programming community index for april, 2013. URL http://

www.tiobe.com/tpci.htm.

[7] Ubuntu. The computer language benchmarks game, May 2013. URL http:

//benchmarksgame.alioth.debian.org/.

25

http://hotframeworks.com/rankings
https://www.ohloh.net/p?query=web+frameworks&sort=users
http://www.slideshare.net/mraible/comparing-jvm-web-frameworks
http://www.slideshare.net/mraible/comparing-jvm-web-frameworks
http://redmonk.com/sogrady/category/programming-languages/
http://redmonk.com/sogrady/category/programming-languages/
http://www.techempower.com/benchmarks/#section=data-r4
http://www.techempower.com/benchmarks/#section=data-r4
http://www.tiobe.com/tpci.htm
http://www.tiobe.com/tpci.htm
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

	Introduction
	Functionalities
	Selection
	Comparison
	Test Drive
	Performance

	Conclusion
	Framework Implementations
	Framework Quality
	Bibliography

