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Abstract

Distributed formation control has received increasing attention in mul-
tiagent systems. Maintaining certain geometry in space is advanta-
geous in many applications such as space interferometry and under-
water sensing. At present, there is a variety of distributed solutions
for agents to converge to desired formations and track a series of pre-
scribed maneuvers. They typically rely on the relative kinematics e.g.,
relative positions of the neighboring agents as state observations for
the local controller. In harsh working environments, the acquisition
of the relative kinematics is challenged and observation losses might
occur, which can be detrimental to the optimality of formation.

In this work, observation losses in noisy environments are ad-
dressed under a distributed formation control framework. Three types
of solutions are proposed to enhance the robustness which is evalu-
ated through the improvements of tracking error, convergence speed,
and smoothness of trajectories in both random and permanent loss
settings. Firstly, a relative localization technique is proposed using
formation itself as a spatial constraint. Secondly, a dynamic model is
established for the agents entailed by a Kalman filter-based solution.
Finally, a fusion of the previous two types is inspired and it exhibits
superior performance than both aforementioned types individually.

This work not only provides means of relative localization without
additional sensor data but also shares insights into coping with ran-
dom or permanent graph changes for stress-based formation control
systems. This could potentially lead to the exploration of formation
control with subgraphs or energy-efficient sensing as future directions.
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Abstract

Distributed formation control has received increasing attention in multiagent systems.
Maintaining certain geometry in space is advantageous in many applications such as
space interferometry and underwater sensing. At present, there is a variety of dis-
tributed solutions for agents to converge to desired formations and track a series of
prescribed maneuvers. They typically rely on the relative kinematics e.g., relative po-
sitions of the neighboring agents as state observations for the local controller. In harsh
working environments, the acquisition of the relative kinematics is challenged and ob-
servation losses might occur, which can be detrimental to the optimality of formation.

In this work, observation losses in noisy environments are addressed under a dis-
tributed formation control framework. Three types of solutions are proposed to en-
hance the robustness which is evaluated through the improvements of tracking error,
convergence speed, and smoothness of trajectories in both random and permanent loss
settings. Firstly, a relative localization technique is proposed using formation itself as a
spatial constraint. Secondly, a dynamic model is established for the agents entailed by
a Kalman filter-based solution. Finally, a fusion of the previous two types is inspired
and it exhibits superior performance than both aforementioned types individually.

This work not only provides means of relative localization without additional sensor
data but also shares insights into coping with random or permanent graph changes for
stress-based formation control systems. This could potentially lead to the exploration
of formation control with subgraphs or energy-efficient sensing as future directions.
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Introduction 1
1.1 Distributed Autonomous Systems

Autonomous systems are receiving increasing attention with emerging technologies such
as self-driving vehicles, space rovers, self-piloting drones, etc. An autonomous system
is usually one that can accomplish a set of tasks prescribed by the human in complex
and changing environments, but without human inputs and interventions. The typical
workflow of such systems includes sensing and interpretation (decision making) fol-
lowed by actuation, which brings several communities together, e.g., signal processing,
control, machine learning, and robotics. Recently, as the need and complexity of tasks
rise rapidly, ideas of mobilizing multiple autonomous agents to cooperatively achieve
a collective goal have been extensively researched and implemented in the industry.
For instance, in energy management [1], sensing networks [2] in geology, reinforcement
learning [3], satellite interferometry [4], cooperative localization [5], etc. These systems
are often referred to as multiagent systems (MAS) where the autonomous agents can be
either physical such as robots or virtual such as computation nodes in distributed op-
timization [6]. Because of the pursuit of scalability, computation and power efficiency,
and robustness against single node failure, multiagent systems have a distributed na-
ture, which also fits the philosophy of distributed autonomous systems (DAS). Among
all the applications of MAS or DAS, some rely on a stable geometric pattern in space
from the agents, i.e., formation, which naturally leads to the problem of formation
control.

1.2 Formation Control

1.2.1 Applications of Formation Control

The application of formation control abounds with different types of agents. Depending
on the goal of maintaining formation, we categorize and list a few applications in the
following.
Spatial Sensing
Most of the applications of formation control are in line with sensing an unknown field
by placing mobile nodes in space. Unmanned aerial vehicles (UAVs) are typically the
choice as mobile platforms for their flexibility and coverage. For example, drone swarms
in formation are used for 3D scene reconstruction [7] and aerial filming [8]. In under-
water applications [9], autonomous underwater vehicles (AUVs) are often employed to
take hydrographical measurements in the ocean in formation. There is also a need for
formation control in space applications [10]. For instance, space-based interferometry
is used to detect and unveil the origins of the cosmos and is favored over ground-based
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setup due to its immunity to atmospheric disturbance and flexible reconfiguration [11].
Object Transport
Another major type of formation control application is cooperatively transporting ob-
jects. For instance, the possibility of drone delivery is being discussed and tested nowa-
days, and the deliveries with drone swarms in formation are also becoming a future
potential [12]. Other than drones, multiple robots could also carry and transport large
or heavy objects [13, 14], and recently the potential of transportation with autonomous
vessels is being explored [15].
Economic Travel
One of the benefits of traveling in formation is fuel efficiency. It has been discovered
that flying in the wake vortex field of an aircraft is aerodynamically efficient and thus
can reduce the fuel consumption [16]. As such, for a group of aircraft, formation flying
in a long-haul traveling is favored. Similar ideas are also realized for land transportation
e.g., truck platooning [17].

Other purposes of formation control include showcase and entertainment. For in-
stance, drone swarms can be used as a mobile display and the formation of the drones
is important and needs to be reconfigurable [18].

1.2.2 State-of-the-Art Controllers

The majority of research makes efforts to design controllers targeting different types of
agents based on different principles. There have been lots of surveys summarizing the
merits and challenges of state-of-art controllers [9, 19, 20, 21]. The strategies behind
controllers are versatile, e.g.,virtual structure [22, 23], potential field [24], leader-follower
[25], etc., and there are often more than one applied in controller designs. But based
on the variables that agents sense and control or how the formation is defined, the
controller can roughly be categorized as follows [21, 26].

• Position-constrained controller [23], where the formation is defined by the indi-
vidual positions of agents and capabilities of sensing absolute positions under a
global reference frame are required. The inter-agent interaction is not necessary
and the controller can track almost any formation.

• Displacement-constrained controller [27], where inter-agent relative positions are
actively and locally sensed with the same orientation. This requires some inter-
actions among agents and inter-agent communication might be needed. Since the
constraints are on the relative position, it can track formation with translation
changes.

• Distance-constrained controller [28], where inter-agent distances are maintained.
This allows the controller to track formation with rotation and translation changes
without compromising the inter-agent distances. More interactions among agents
are needed for this type of controller.

• Bearing-constrained controller [29], where inter-agent bearings are sensed and
maintained. Since bearings are invariant to scaling and translation, this type
of controller can track formation with different translations and scaling without
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changing the constraints on the bearings. However, the rigidity of formation can
not be guaranteed.

These controllers have been modified in trending research to be capable to track
more variations of formations regardless of the sensing variable. For instance, by intro-
ducing complex Laplacians, [30] can track scaling with relative position measurements
since complex Laplacians are invariant to translation, rotation, and scaling. A more
powerful tool that has been brought to the spotlight recently is the stress matrix which
can be considered as a generalized graph Laplacian. It is invariant to any affine trans-
formation. As such, stress-based controllers can track formations up to any affine
transformation once the stress is settled. For instance, [31] gives the graphical condi-
tions of stabilizable formations using stress matrices and provides means of calculation.
It is also able to achieve affine formations with relative position measurements. More-
over, [26] extends the scope of [31] and achieves affine formation maneuver control using
a leader-follower strategy. This thesis will be established in this formation maneuver
control framework and further address the problem of observation losses.

1.3 Observation Losses in Formation Control

In feedback control systems, the output states need to be observed using sensors. For
formation control systems, the states are usually positions, relative positions, distances,
or bearings as reviewed in Section 1.2.2. To understand the reason for observation
losses, it is necessary to review the principle and typical setups for the acquisitions of
the observations. In the case of affine formation control, they are relative positions.

1.3.1 Relative Localization Methods

Global navigation satellite systems (GNSS) such as Beidou and Galileo are usually the
go-to solution for positioning, and relative positions could be simply acquired up to
a translation. But GNSS is limited in some environments, and equipment for high-
precision localization can be expensive. As such, relative positioning is more suitable
for formation control of UAV or robot swarms. It mainly involves measuring the dis-
tance/bearing between agents and calculating the relative locations.

The algorithms of relative localization are generally based on radio frequency (RF)
or optical signal according to [32]. The RF-based positioning algorithms include the
following.

• Received signal strength (RSS) [33], where the signal attenuation can be mod-
eled and measured, and then the distance can be estimated. The typical sensors
used for this application are Bluetooth, Wi-Fi, and radio frequency identification
(RFID).

• Time of arrival (TOA) [34], where the propagation speed of electromagnetic waves
is known and the distance can be estimated by measuring the time of flight.
Typical sensors used for TOA include ultra-wideband (UWB).
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• Angle of arrival (AOA) [35], where the radio signals are received by an array of
antennas, and the incidence angle of the signal can be estimated by the small
phase differences of the received signal on each antenna. Bluetooth and Wi-Fi are
typically used in this case.

• Time difference of arrival (TDOA) [36], where synchronized anchors at known lo-
cations (fixed ground points) receive the same signal up to a small time difference,
based on which the position can be calculated. The sensors of this application
also include UWB.

The optical signal-based positioning algorithm includes simultaneous localization and
mapping (SLAM) which often uses LIDAR and cameras, and multi-camera target recog-
nition and localization algorithms with motion capture systems.

As such, according to the elements involved in relative localization, the causes of
observation losses can be as follows.

• Sensor-induced, which includes all kinds of sensor malfunctioning or calibration
issues. They can be either random or permanent losses depending on the nature
of the failure.

• Environment-induced, which includes interference of RF signals, communication
delays or packet losses, and intrusion in line-of-sight based localization. These
mostly cause random observation losses.

• System-induced, which includes scheduling issues of the sensors or computation
overload. These also usually cause random losses.

• Target-induced, in which there are no target objects to localize. The targets can
be offline due to e.g., maintenance and critical failure, and these issues usually
cause permanent observation losses.

1.3.2 Frameworks against Observation Losses

The problem of observation losses is eventually converted to state estimation. In con-
trol theory literature, observation losses are referred to as intermittent observations
and the arrival or availability of observation is usually modeled by a binary random
variable. A paradigm of linear-quadratic-Gaussian (LQG) control under intermittent
observations has been established, and Kalman filter-based state estimation solutions
are well-studied [37, 38, 39] and they can optimally give state estimates and make par-
tial observations full. For nonstandard LQG systems, there have also been solutions
like interactive multiple models (IMM) [40], Gaussian sum filter [41], and deep learning
filters [42] for state estimates.

Recently, with more interest focused on distributed sensor networks, distributed
frameworks with intermittent observations are also established. But most literature
still relies on the Kalman filter [43, 44] or variants of the Kalman filter [45]. How-
ever, the observation losses in formation control receive less attention. Since there are
different strategies used in formation control techniques, observations are not limited
to (relative) positions and are typically modeled as communication delays and packet
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losses. But they all cause the missing of key elements in the controller and can generally
be considered loss of observation. There have been a few strategies developed for the
observation losses for formation control systems. Learning the behavior of the subject
of observation is considered in e.g., [46] where iterative learning control (ILC) methods
are applied when the same task is repeatedly performed and the previous experience
can be of contribution, or [47] where a long short-term memory (LSTM) method is
used to predict the lost packets. Controllers with enhanced robustness to packet losses
are designed in e.g., [48] where model predictive control (MPC) is used, and [49] where
sliding mode control is implemented. However, most of the techniques work for under
30% random losses and the robust system designs for heavier random losses and even
permanent losses generally remain unexplored. As such, we identify that the limitations
in current research are mainly

• robust system design for affine formation control regime,

• coping mechanism for heavily lossy conditions, and

• solutions to permanent observation losses,

which serve as the objectives for this thesis.

1.4 Overview and Notation

This thesis is organized as follows as shown in Figure 1.1. Chapter 2 introduces the
building blocks of distributed affine formation control. Chapter 3 describes the dis-
tributed control laws to achieve formation maneuvering and establishes the simulation
setup on which the later chapters are built. Chapter 4 formulates the problem of obser-
vation losses and gives the first type of state estimator that uses formation itself as a
spatial constraint. Chapter 5 extends the results in Chapter 4 with noisy observations
and evaluates the performance statistically. Also, to address the noises, a smoothing
technique is introduced on top of this estimator. Chapter 6 establishes a framework for
the second type of state estimator and further proposes a fusion technique of both types
of estimators. Chapter 7 pools all the proposed techniques and evaluates them in both
random observation loss and permanent observation loss settings. The final chapter
evaluates all proposed methods and reaches some conclusions. The future work of this
thesis is also discussed in this chapter.

The notations used in this thesis are as follows.
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Figure 1.1: An overview of the structure of this thesis
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Table 1.1: Notations used in this thesis

Symbol Definition

a Scalar
a Column vector
A Matrix
A Set
Aij Entries of the i-th row and j-th column of matrix A
1N All-one vector of length N
0N All-zero vector of length N
IN Identity matrix of size N
Ni Set of neighboring nodes of node i

N (0, 1) Normal distribution with mean 0 and variance 1
RN Set of real vectors of length N

RN×M Set of real matrices of size N-by-M
⊗ Kronecker product
| · | Cardinality of a set
·̂ estimate

∥·∥2 Euclidean norm
∥·∥F Frobenius norm
E[·] Expectation operator
cov[·] Covariance operator
P[·] Probability of a random variable
tr(·) Trace of a matrix

rank(·) Rank of a matrix
Ā(·) Matrix augmentation operator

diag(a) Diagonal matrix with diagonal entries the elements of vector a
bdiag(Ai)i∈S block diagonal matrix with blocks Ai for all i in the set S
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Fundamentals of Affine
Formation Control 2
In this chapter, the most essential building blocks of affine formation control are estab-
lished. The notations on the graph theory are introduced first followed by the concepts
of configuration and formation. Then some affine transformation-related terminology is
defined with some visual explanations. After that, the concept of stress and its critical
role in affine formation control is explained. The effect of the leader-follower strategy
and its implications are emphasized due to its importance in dealing with observation
losses in later chapters. Finally, we define the metrics with which the main performance
of the methods developed throughout the thesis is evaluated.

2.1 Graph Theory

Consider the setup where N mobile agents are deployed in RD where N ≥ D+ 1. The
agents and their pairwise connections are typically represented by a graph G = (V , E),
where the vertex (node) set V = {1, ..., N} denotes the identities of agents and the edge
set E ⊆ V × V denotes the information flow between agents. If edge (i, j) ∈ E , the
information can flow from agent j to agent i. In this thesis, we assume an undirected
graph, (i, j) ∈ E ⇔ (j, i) ∈ E , meaning that the edges are bidirectional. The set of
neighbors of node i is defined as Ni = {j ∈ V : (i, j) ∈ E}, to which the cardinality
|Ni| denotes the number of neighbors of node i. The total number of undirected edges
is denoted by M

There is a variety of representations that can characterize a graph, e.g., adjacency
matrix, incidence matrix, degree matrix, etc. Here we define the incidence matrix
B ∈ RN×M as follows,

Bij =


1, if (i, j) ∈ E and i < j

−1, if (i, j) ∈ E and i > j

0, others

, (2.1)

which will be used in the calculation of the stress matrix. An example of a graph and
its incidence matrix is shown in Figure 2.1.

2.2 Configuration and Formation

We use zi ∈ RD to denote the position of agent i and the configuration of all agents
is define as z = [zT1 , ..., z

T
N ]

T ∈ RDN . Similarly, we define z∗ = [z∗1
T , ..., z∗N

T ]T ∈
RDN as the target configuration with z∗i ∈ RD being the target position of agent i.
Additionally, we define a generic configuration p = [pT

1 , ...,p
T
N ]

T ∈ RDN called nominal
configuration [26], which presents a general geometric pattern that agents are expected

9
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4 3

(a) (b)

Figure 2.1: An example of a graph and its incidence matrix. By convention, the columns in
the incidence matrix are grouped per agent in ascending order.

to maintain. The target configuration will be designed as a time-varying mapping of
the nominal configuration to denote formation maneuvers. A formation is formally
defined as the combination of the configuration of agents and the associated graph
(G, z). Correspondingly, target formation and nominal formation are defined as (G, z∗)
and (G,p), respectively.

2.3 Affine Image and Affine Transformation

It is mentioned in the previous section that the target and nominal configuration are
up to a time-varying mapping which, in this thesis, is considered to be an affine trans-
formation. The set that contains all affine transformations of the nominal configuration
is called an affine image.

Definition 2.1 (Affine image [31]). The affine image of the nominal configuration is
defined as

A(p) = {z ∈ RDN : z = (IN ⊗Θ)p+ 1N ⊗ t}, (2.2)

where Θ ∈ RD×D is a transformation matrix and t ∈ RD is a translation vector.

This leads to the formal definition of target configuration.

Definition 2.2 (Target configuration). The time-varying target configuration has the
form of

z∗(k) = (IN ⊗Θ(k))p+ 1N ⊗ t(k), (2.3)

where Θ(k) ∈ RD×D and t(k) ∈ RD are in discrete time k. Sometimes we acquiesce
that the nominal configuration is the initial target configuration p = z∗(0). Note that
the target configuration z∗(k) is in affine image A(p) for all k by definition.

As such, the desired position for any agent i is z∗i (k) = Θ(k)pi + t(k). This can
also be written in an equivalent but a more compact form

z∗i (k) = [Θ(k) | t(k)]
[
pi

1

]
= Θ̄(k)p̄i, (2.4)

where the translation vector t(k) is appended on the matrix Θ(k) and p̄i is an aug-
mented vector. In practice, the time-varying formation can be designed by utilizing

10



Table 2.1: Several special cases of affine transformation

Transformation Θ̄ DOF in R2 (R3) orientation distances angles parallelism

translation [I | t] 2 (3) ✓ ✓ ✓ ✓
Euclidean (rigid) [R | t] 3 (6) ✓ ✓ ✓

similarity [sR | t] 4 (7) ✓ ✓
affine [Θ | t] 6 (12) ✓

time-dependent functions for each parameter in Θ̄, through which the target velocities
and accelerations are also defined.

Geometrically, the affine transformation includes several basic geometric transfor-
mations such as scaling, rotation, shearing, translation, etc., and combinations of them.
A graphical illustration of these geometrical transformations can be found in Figure
2.2. There are also several common combinations of these basic transformations as spe-
cial cases of general affine transformation that are often adopted in practice for their
preserved properties [50]. Table 2.1 shows the structure of Θ̄, the degrees of freedom
(DOF), and the preserved property of these cases, in which I is an identity matrix, R
is a rotation matrix and s is a scalar.

1 2

4 3

(a) original

1 2

4 3

(b) scaling

1

24

3

(c) rotation

1 2

43

(d) shearing

Figure 2.2: Illustration of some basic geometric transformations that constitute affine trans-
formations.

2.4 Edge Weights and Stress Matrix

For a nominal formation (G,p), there exists a set of scalars {lij}(i,j)∈E , called equilibrium
stress, that satisfy ∑

j∈Ni

lij(pj − pi) = 0, i ∈ V . (2.5)

From a mechanical perspective, the equilibrium stress balances the forces applied to
each node by neighboring nodes and thus produces a stable formation [26]. (2.5) also
suggests that the equilibrium stress can only be determined up to scalar because if lij
satisfy (2.5), there exists a scalar ω such that ωlij also satisfy (2.5). Now we define a
stress matrix that structurally stores these coefficients.

Definition 2.3 (Stress matrix ). Under undirected graphs, a stress matrix L ∈ SN×N
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satisfies

Lij =


0, if i ̸= j and (i, j) ̸∈ E
−lij, if i ̸= j and (i, j) ∈ E∑

j∈Ni
lij, if i = j

, (2.6)

which has a similar structure to the graph Laplacian matrix and is sometimes referred
to as the generalized Laplacian matrix [51] in some literature since the values can also
be negative here.

There are several approaches to calculating the stress matrix and two common
methods are introduced in Appendix A. The property of the stress matrix is closely
related to the rigidity of formation. It has been stated in [26] that under undirected
graph G, formation (G,p) is universally rigid if and only if there exists a stress matrix
L ∈ SN

+ such that rank(L) = N − D − 1. This implies that not all formations have
a suitable stress matrix and the graph has to be carefully designed. Note that the
stress matrix is also invariant to affine transformations [26, 31], hence no additional
calculations are needed for time-varying target formations once the stress matrix is
determined using the nominal formation. This property is crucial for flexible time-
varying maneuvering with affine transformations.

2.5 Leader-Follower Strategy

The maneuverability is typically ensured by a technique called leader-follower strategy
in which a small set Vl of agents are set aside to be the leaders and the rest Vf = V \Vl

are the followers. Without the loss of generality, the first |Vl| agents are considered to
be leaders, and the rest |Vf | = N −|Vl| agents are followers. As such, the configuration
vector can also be split as z = [zTl , z

T
f ]

T , and so can the nominal configuration and
target configuration. The time-varying target formation is prescribed to the leaders
while the followers only need to follow the leaders and stay in formation without any
knowledge of target configurations. There are several key problems the leader-follower
strategy should address:

• The tracking of the followers if target positions are unknown.

• The requirement on the number and the spatial distribution of the leaders.

These questions will be answered in the following theorem but first, the term affine
localizability will be defined.

Definition 2.4 (Affine localizability [26]). The nominal formation (G,p) is affinely
localizable by the leaders if for any z = [zTl , z

T
f ]

T ∈ A(p), zf can be uniquely determined
by zl.

Affine localizability establishes a one-to-one relation between the positions of leaders
and followers if the configuration is in the affine image. Next, a theorem asserts the
conditions on the choice of leaders to achieve affine localizability. The theorem and its
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proof are given in [26], but we slightly change the narrative and provide the outline of
an alternative proof. If we define a matrix augmentation operator Ā(·) as

Ā(A) = [A | 1], (2.7)

where the all-one vector 1 is of appropriate size, the theorem can be stated as follows.

Theorem 2.1 (Choice of leaders). Given the nominal formation (G,p) and the nominal
configuration matrix P = [p1, ...,pN ]

T ∈ RN×D that satisfies Ā(P) full column rank,
then (G,p) is affinely localizable if and only if the subconfiguration matrix for leaders
Pl ∈ R|Vl|×D also satisfy Ā(Pl) full column rank.

Proof. For any z ∈ A(p), there exists Θ̄ = [Θ | t] such that the configuration matrix
Z = [z1, ..., zN ]

T ∈ RN×D can be written by stacking individual positions as

Z = Ā(P)Θ̄T = P̄Θ̄T , (2.8)

which admits a partition

Zl = Ā(Pl)Θ̄
T = P̄lΘ̄

T , (2.9)

Zf = Ā(Pf )Θ̄
T = P̄fΘ̄

T . (2.10)

(Sufficiency) If Ā(Pl) full column rank of D + 1, Θ̄T can be uniquely determined as

Θ̄T = (P̄T
l P̄l)

−1P̄T
l Zl, (2.11)

which can then be used to determine Zf using (2.10). Since zf is only up to a reshaping
of Zf , the nominal formation is affinely localizable.
(Necessity) If Ā(Pl) is not full column rank, then (2.9) is an underdetermined system
to which there are infinite number of solutions of Θ̄T . Hence, Zf cannot be uniquely
determined by (2.10), i.e., the nominal configuration is not localizable. ■

The implication of Theorem 2.1 is profound.

• For P̄l ∈ R|Vl|×(D+1) to be full column rank and have a left inverse, |Vl| ≥ D + 1,
i.e., the minimum number of leaders needed is D + 1. This can also be described
as {pi}i∈Vl

affinely span RD [26], implying the leaders cannot be collinear in R2

or coplanar in R3 in geometry. There must be at least 3 agents as leaders in R2

and 4 in R3, which is not a strong requirement given that the size of practical
networks can be very large. Some examples of the choice of leaders are given in
Figure 2.3.

• Theorem 2.1 ensures that once the leaders track the prescribed target formation,
the followers will also track the target formation without knowing the underlying
affine transformation. Therefore, the affine formation maneuver can be achieved
by controlling the small set of leaders either autonomously or manually.

• A generalized view of affine localizability is that given a small subset of all posi-
tions, the unknown positions can be affinely localized. This property can be used
as an estimator when some observations of positions are unavailable. Later in
Chapter 4, we will utilize this idea and further study the localization of relative
positions to combat missing observations for affine formation control.
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(a) (b) (c)

Figure 2.3: Some examples of the infeasible and feasible choices of leaders in R2. Colored
nodes represent leaders. (a) infeasible due to |Vl| < D + 1. (b) infeasible due to collinear
leaders in R2. (c) feasible.

2.6 Evaluation Metric

We adopt tracking error as the universal metric to evaluate the performance of forma-
tion control.

Definition 2.5 (Tracking error). The tracking error ei(k) ∈ RD for agent i at discrete
time k is defined as

ei(k) = zi(k)− z∗i (k). (2.12)

To show the overall performance of the system, a scalar version of the tracking error
is defined as

δ(k) =
1

D|Vf |
∑
i∈Vf

∥ei(k)∥2 , (2.13)

which is all norms of ei(k) averaged across all dimensions and all followers.

2.7 Summary

In this chapter, the most important concepts to understand affine formation control are
presented. A few key statements that are directly involved in the following chapters
are listed as follows.

• The stress matrix L which contains the equilibrium stress {lij}(i,j)∈E can be cal-
culated before control once the nominal formation is given.

• Leaders and followers shall take different control laws and only leaders are aware
of the target configurations z∗(k).

• The idea of affine localizability can be generalized to determining unknown loca-
tions of agents if only a subset of agents’ locations is given.

In the next chapter, controller designs for agents to track the time-varying target
formation are introduced.
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Distributed Formation
Maneuvering 3
Having the basics of affine formation control, we now introduce the distributed con-
troller designs for formation maneuvering in this chapter. First, the problem formula-
tion is laid out describing the goal of the controllers. Then the control laws for both
leaders and followers are introduced with sketches of proofs of convergences provided.
Then a technique aiming to reduce the overhead of convergence is presented followed
by simulations.

3.1 Problem Formulation

Recall that the position of agent i is denoted as zi. In this thesis, agents are assumed
to be governed by single-integrator dynamics żi = ui, which means the control input
ui is taken as the velocity information żi. In the discrete domain, this relation can be
translated into

zi(k + 1) = zi(k) + ∆tui(k) i ∈ V , (3.1)

which means the position of agent i at time k + 1 is the position at k plus the control
input ui(k) between time interval ∆t. The problem of distributed formation maneuver-
ing can generally be stated as follows. Given a affinely localizable nominal formation
(G,p) and prescribed time-varying target formations, design ui for all i ∈ V such that
ei(k) → 0 as k → ∞. Since the leader-follower strategy is adopted, this problem can
be decomposed into two parts.

• Assuming that the tracking error for the leaders are always zero, i.e., ei(k) = 0
for all k and i ∈ Vl , design ui for i ∈ Vf using only local measurements and
communications in the neighborhood to achieve ei(k) → 0 for i ∈ Vf as k → ∞
without revealing z∗i (k) to the followers for any i ∈ V .

• If the leaders are assumed to be autonomous, design ui for i ∈ Vl using local
measurements and communications in the neighborhood to achieve ei(k) → 0 for
i ∈ Vl as k → ∞.

3.2 Control laws for the followers

The distributed control law under single-integrator dynamics to track formations with
time-varying velocities is [26]

ui = − 1

γi

∑
j∈Ni

lij(zij − żj) i ∈ Vf , (3.2)
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where γi =
∑

j∈Ni
lij, and lij are equilibrium stress that constitute L. zij = zi − zj

is considered as relative position observed by agent i, and the velocity term żj may
be transmitted via a wireless communication network and acquired in different ways
depending on the sensing capability of the agents. Assuming zij can be locally measured
or calculated through wireless communication, control law (3.2) is fully distributed. The
next theorem states the convergence of this control law.

Theorem 3.1 (Convergence of control law (3.2) [26]). If ei(k) = 0 for all k and i ∈ Vl,
and the velocity ż∗l (k) is time-varying, then the tracking error ei(k) for i ∈ Vf converges
to zero globally and exponentially fast under control law (3.2).

The proof for this theorem is given in [26], hence we do not reiterate it here.
Theorem 3.1 claims if the leaders can always track their target positions, the fol-

lowers can converge to their respective target positions. In practice, the tracking errors
for the leaders are not zero, but if they are bounded and converging to zeros, then the
tracking errors for the followers are also bounded and converging to zero.

Control law (3.2) is essentially a linear combination of stress lij and observations
of relative positions and velocity information, which makes it very computationally
efficient. The diagram of this control system is shown in Figure 3.1. Note that this
control law is aimed at a general setup where the velocities for leaders are nonzero
and time-varying (dynamic formation). In special cases where the leaders are in static
formation, the control law (3.2) still applies but the velocity measurements are not
needed. As adopted in [31, 26, 51] the control law can be simplified to

ui = −
∑
j∈Ni

lijzij i ∈ Vf . (3.3)

dynamics

control law

environment

Figure 3.1: An overview of distributed affine formation control systems

16



3.3 Control laws for the leaders

Since the leaders only take up a small subset of all agents, the study of leaders is,
in most literature, omitted and they are simply assumed to perfectly track the target
formation. Since the target positions are known to leaders, there are comparably more
distributed solutions for the leaders. We introduce one simple controller design and
give the proof of convergence for completeness but the leaders will not be in the scope
of discussion for the rest of the thesis. Under single-integrator dynamics, the control
law for the leaders is

ui = −α(zi − z∗i ) + ż∗i i ∈ Vl, (3.4)

where α is the control gain that modulates the convergence speed, and ż∗i is the target
speed of the leaders. The following theorem asserts the convergence of control law (3.4).

Theorem 3.2 (Convergence of control law (3.4)). Given the target formation (G, z∗),
the tracking error ei(k) for all i ∈ Vl converges to zero exponentially fast.

Proof. For all i ∈ Vl, by definition ei = z−z∗. As such, by substituting żi with ui from
(3.4),

ėi = żi − ż∗i
= −α(zi − z∗i ) + ż∗i − ż∗i
= −αei, (3.5)

which is an ordinary differential equation to which the solution is an exponential func-
tion decaying to zero. ■

It can be seen that the control systems for the leaders are detached from the ones
for the followers, but leaders and followers are still interactive in terms of sensing and
communication. Note that the premise for Theorem 3.1 is that the tracking errors for
the leaders are strictly zero, which is not the case in practice for autonomous agents.
But the tracking error for the leaders converges to zeros adopting this control law, and
so will the tracking error for the followers.

3.4 Reconfiguration of Initial Positions

If the initial positions of agents are randomly drawn from a certain distribution, the
distances that need to be covered from the initial positions to the target positions might
not be the shortest possible, which can be regarded as an extra overhead introduced
by random initialization. Figure 3.2 shows two cases of mapping between initial and
target positions in which one clearly requires less distance to be covered. From an
application’s perspective, it is expensive to cover unnecessary distances in terms of fuel
and time for applications e.g., space systems. This overhead might also cause chaos
and increase the probability of collision e.g., a swarm of drones or robots in tight space.

In this section, we aim to reduce the overhead by remapping the agents and their
prospective identity in target formation such that the distances to be covered from the
initial locations to the target locations are minimized. Fortunately, this problem can
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be treated as a linear sum assignment problem (LSAP) which is a classical paradigm in
linear programming and combinatorial optimization [52]. Note that this reconfiguration
requires the agents to be homogeneous.

1

2

4

3

1

2

4

3

(a)

1

2

4

3

1

2

4

3

(b)

Figure 3.2: Two assignment cases with the same initialization. The dotted circles are the
target positions and the filled circles are random initial positions. (a) is clearly less optimal
than (b) in terms of the total distance to be covered to reach convergence and path crossing.

Define a cost matrix C ∈ RN×N

C =

∥z∗1(0)− z1(0)∥2 · · · ∥z∗1(0)− zN(0)∥2
...

. . .
...

∥z∗N(0)− z1(0)∥2 · · · ∥z∗N(0)− zN(0)∥2

 , (3.6)

where the elements are the pairwise Euclidean distances between the initial positions
and the target positions. LSAP gives the minimum sum of the cost of N entries that
are not mutually in the same row or column of C. It can be regarded as finding a
permutation matrix Cp ∈ RN×N to solve the linear program (LP) [53]

min
N∑

i,j=1

CijC
p
ij

s.t.
N∑
i=1

Cp
ij = 1 j = 1, ..., N

N∑
j=1

Cp
ij = 1 i = 1, ..., N

Cp ∈ {0, 1}

. (3.7)

As such, the reassigned configuration vector is

zp(0) = (Cp ⊗ ID)z(0), (3.8)

where z(0) is the initial configuration vector z(0) = [z1(0)
T , ..., zN(0)

T ]T ∈ RDN . Note
that LP (3.7) can be efficiently solved by classical algorithms e.g. the Munkres Algo-
rithm [54]. Section 3.5 will show the improvement of configuration reassignment, but it
will be assumed that the initial configurations are reassigned by default in algorithms
and simulations unless specified for the rest of the thesis.
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3.5 Simulations

We establish a simulation framework and some simulation parameters will be fixed for
the rest of the thesis. A hexagonal formation in R2 shown in Figure 3.3 is adopted
as nominal formation which is also used in [51]. The graph has N = 10 nodes and
M = 30 undirected edges. The initial positions of the agents are randomly drawn from
the normal distribution N (0D,P0) where we take P0 = 2ID. For this discrete-time
control system, we choose 1kHz as the control frequency meaning a ∆t = 1ms interval
between successive control inputs and a simulation duration of 60s (Kmax = 60000) in
which the formation maneuvers in R2 under affine transformations. The pseudocode
for distributed formation control is presented in Algorithm 3.1 Note that all algorithms
in this thesis will only show controls for the followers for simplicity and assume the
initial positions are reconfigured by (3.8).

leaders

followers

Figure 3.3: The nominal formation adopted in this thesis. The leaders are marked in orange
on the graph and the followers in cyan.

Algorithm 3.1 Distributed formation control

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: k = 0
5: while k ≤ Kmax do
6: for i ∈ Vf do

7: ui(k) = − 1

γi

∑
j∈Ni

lij(zij(k)− żj(k)) ▷ Control law (3.2)

8: zi(k + 1) = zi(k) + ∆tui(k)
9: end for

10: k = k + 1
11: end while

Using Algorithm 3.1, the true and reference (target) trajectories are presented in
Figure 3.4, where the agents start in random locations, then converge to the target
positions, and finally track the maneuvers in space. Figure 3.5 shows the individual
dynamics including position and velocity in both dimensions. It should be noted that
the units for the figures can be scaled based on applications.

As mentioned in the theory, reconfiguring the initial positions will result in less dis-
tance to be covered towards convergence. Figure 3.6 shows the comparison of two cases
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Figure 3.4: Trajectories of one experiment using Algorithm 3.1. The colored nodes denote the
true positions of agents, and the translucent (light gray) nodes represent the target positions
at other times.

Figure 3.5: The individual dynamics of agents across time, zxi and zyi are the positions on
both dimensions, and żxi and żyi are the velocities on both dimensions.

with random initialization. It can be observed that with reconfiguration the trajectories
are less chaotic at the beginning and there is no path crossing. Figure 3.7 shows the
improvements in the convergence time, where the curve with reconfiguration enabled
is lower at the beginning on average over 50 Monte Carlo experiments1. It is easy to
imagine that in very large networks with random initializations, the improvements can
be significant. It is worth mentioning that Figure 3.7 shows both normal and log scale.

1For the rest of this thesis, the convergence plot will show the mean of 50 experiments with random
initializations with the shaded area being the region of standard deviation unless specified.
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(a) (b)

Figure 3.6: Two experiments using Algorithm 3.1 for the first 5 seconds with LSAP reconfig-
uration of initial positions in (a) and without reconfiguration in (b).

w/ reconfiguration

w/o reconfiguration

Figure 3.7: Tracking error δ of two cases under normal and log scale. Solid lines are the mean
of 50 experiments and the shaded areas are the error standard deviation.

Since the log scale better presents the nuances, the convergence plots throughout the
thesis will be presented this way. As seen in the figure, the tracking error is ”bumpy”
under the log scale, which is caused by the discretization of a continuous-time system.
The time step ∆t limits the precision of control, which is also why a 1kHz frequency is
chosen for sufficient accuracy. But under the normal scale, the error curves are smooth.

3.6 Summary

This chapter presented the controller designs for distributed affine formation control
under single-integrator dynamics. The goal of tracking the time-varying target positions
is accomplished and verified with simulation. The main results can be summarized as

• Controller design for followers in general dynamic formation settings and conver-
gence statement.

• Controller design for leaders with convergence proof.
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• A reconfiguration of initial positions using an LSAP formulation which offers
improvements on the convergence and possibility of collision.

all of which are verified with simulations. The controllers in this chapter are running in
noise and failure-free environments. In the next chapter, the observation losses of the
relative positions which are critical inputs for the controllers are modeled and tackled.
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Relative Affine Localization 4
The previous chapters establish a paradigm of distributed formation control and set
up a performance baseline in an ideal environment. In practice, such an environment
is non-existent and the systems are always challenged with disturbances, resource al-
locations, power consumption limits, etc. From this chapter on, we aim to deal with a
specific type of challenge: observation losses. For various reasons reviewed in Chapter
1, observation losses are detrimental to the controllers presented in the previous chap-
ter. But fortunately, the affine formation itself can be considered as a spatial constraint
that makes it possible to restore the missing observations.

We first motivate the idea of affine localization from the concept of affine localiz-
ability introduced in Definition 2.4. Then the theory of affine localization is presented
followed by the extension to the relative domain. Next, the methods will be tailored
to deal with affine transformations with additional constraints. To raise awareness of
the convergence state, a distributed indicator function is designed and will be used in
later chapters.

4.1 Motivation and Problem Formulation

In Chapter 2, the concept of affine localizability establishes that the positions of the
followers can be localized by those of leaders if they satisfy certain conditions. The
rationale behind this is that the underlying affine transformation parameters, Θ and
t, can be uniquely determined by the positions of leaders. Since the formation is in
affine image A(p), the followers’ positions can be calculated by applying the same affine
transformation to the nominal configuration. As is discussed in Chapter 2, we could
generalize the concepts of ”leaders” and ”followers” to known and unknown (positions
of) agents. However, in affine formation control systems, relative positions zij are of
interest instead of the absolute ones. As such, a further adaptation of distributed
localization of unknown relative positions is needed, which is named relative affine lo-
calization (RAL). Note that RAL is different from the relative localization methods
introduced in Chapter 1 because it does not involve any sensors and conducts the es-
timation through known observations in the neighborhood. In this thesis, observations
refer to the relative positions zij or edge states that are needed by the controllers al-
though relative positions might be acquired by distance and bearing measurements in
practice.

The formulation of affine localization from a global perspective is straightforward.
The node set V of graph G = (V , E), like the leader-follower split, can be divided
into V = (Vk,Vm) where Vk contains the nodes whose positions are known, and Vm

contains the nodes whose positions are missing or unavailable. The goal is to restore
the positions zi for i ∈ Vm using those for i ∈ Vk. For relative affine localization, we

23



adopt a formulation in a distributed fashion. Locally, for each agent i ∈ Vf , we split the
set of neighbors into Ni = (N k

i ,Nm
i ) in which N k

i contains the neighbors w.r.t. whom
the relative position observations are known, and Nm

i contains the neighbors w.r.t.
whom the observations are missing or unavailable. Then

∣∣N k
i

∣∣ indicates the number of
available observations for agent i. The goal is then to retrieve zij for j ∈ Nm

i . Based
on the nature of observation losses, the split of the set of neighbors can be random
or permanent across time. For the introduction of solutions, we assume a random
split until Chapter 7 where a permanent split will also be evaluated. Algorithm 4.1
describes the steps of affine formation control in presence of missing observations of
relative positions. The results of the convergence are shown in Figure 4.1 where is it
shown that under random loss of observations the formation will not converge optimally.

no loss

Figure 4.1: Simulations using Algorithm 4.1 with different numbers of known observations
per agent

∣∣N k
i

∣∣. ”no loss” is the case where there are no observation losses and is simulated
with Algorithm 3.1

4.2 General Affine Localization

4.2.1 Localization with Absolute Measurements

We start with affine transformations established in (2.4), which is restated here

z∗i (k) = [Θ(k) | t(k)]
[
pi

1

]
= Θ̄(k)p̄i i ∈ V , (4.1)

where z∗i (k) is the target position at time k and pi is the nominal position. As is
defined, the time-varying target configurations are always in affine image A(p). If the
system has sufficiently converged using controller (3.2) and (3.4), zi(k) → z∗i (k) as
k → ∞ for all i ∈ V . Hence, the configuration z(k) = [zT1 (k), ..., z

T
N(k)]

T ∈ RDN can
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Algorithm 4.1 Distributed formation control with random observations losses

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: k = 0
5: while k ≤ Kmax do
6: for i ∈ Vf do
7: Define Ni = (N k

i ,Nm
i )

8: ui(k) = − 1

γi

∑
j∈N k

i

lij(zij(k)− żj(k)) ▷ Control law

9: zi(k + 1) = zi(k) + ∆tui(k)
10: end for
11: k = k + 1
12: end while

also be regarded to be in the affine image, which implies

zi(k) = [Θ(k) | t(k)]
[
pi

1

]
= Θ̄(k)p̄i (4.2)

for i ∈ V . Aggregating for all agents, (4.2) can be written in matrix form

Z(k) = [P | 1N ] Θ̄(k)T = P̄Θ̄(k)T , (4.3)

where Z(k) = [z1(k), ..., zN(k)]
T ∈ RN×D and P = [p1, ...,pN ]

T ∈ RN×D.
The following lemma formally states the necessary and sufficient conditions for affine

localization, which can be regarded as a direct corollary of Theorem 2.1. The proof is
omitted since it is essentially identical to the proof of Theorem 2.1.

Lemma 4.1 (Global affine localization). Assuming configuration z(k) ∈ RDN is in
affine imageA(p), zi(k) for i ∈ Vm can be uniquely determined if and only if |Vk| ≥ D+1
and {pi(k)}i∈Vk

affinely span RD.

Recollect that affine span is equivalent to full column rank for augmented configu-
ration matrix as introduced in the discussion of Theorem 2.1. To better describe and
distinguish the set of known positions, an observation (selection) matrixΦ(k) ∈ R|Vk|×N

is used such that the rows of Φ(k) is drawn from |Vk| rows of an identity matrix IN
satisfying 1T

|Vk|Φ(k)1N = |Vk|. Again, the observation matrix can be random or per-

manent depending on the setup. But it is assumed that the observation matrix Φ(k) is
always known. The selection effect can be visualized in Figure 4.2 where X(k) stacks
zi(k) for i ∈ Vk. And (4.3) can be adapted as

X(k) = Φ(k)P̄Θ̄(k)T = H(k)Θ̄(k)T , (4.4)

where H(k) ≜ Φ(k)P̄. As in the proof of Theorem 2.1, the parameter matrix Θ̄ can
be estimated from this linear equation with the formulation

min
Θ̄(k)

∥∥H(k)Θ̄(k)T −X(k)
∥∥2
F
, (4.5)
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=

Figure 4.2: The selection effect of the observation matrix, where Φ shall always be a wide
matrix.

to which an analytical solution is given by

Θ̄(k)T = (H(k)TH(k))−1H(k)TX(k). (4.6)

The set of {zi(k)}i∈Vm can then be estimated using (4.2). Note that this absolute
localization is global and can not be readily applied in relative formation control since
relative states zij(k) are needed, but it serves as a precursor to understanding the
relative localization.

4.2.2 Decentralized Localization with Relative Measurements

The goal of decentralized localization for distributed formation control, is not to re-
cover the absolute positions but to estimate relative positions in the neighborhood, i.e.,
{zij(k)}j∈Ni

for i ∈ Vf . The idea of relative affine localization, similar to absolute lo-
calization, is also a two-step estimation by first estimating transformation parameters.
The difference is that for relative localization, the minimum number of observations
required is reduced.

We first prepare some notations for the following theorem. Define relative nom-
inal positions as pij = pi − pj for all i ∈ Vf , and an local observation matrix

Φi(k) ∈ R|N k
i |×|Ni|. Similar to absolute localization, the known relative positions are

stored in Hi(k) ≜ Φi(k)Pi, where Pi ∈ R|Ni|×D stacks all the nominal positions in the
neighborhood {pij}j∈Ni

.

Theorem 4.1 (Relative affine localization). Assume configuration z(k) ∈ RDN is in
affine image A(p). For agent i ∈ Vf , given the split Ni = (N k

i ,Nm
i ), the missing

relative positions {zij(k)}j∈Nm
i

for can be locally and uniquely determined if and only
if Hi(k) full column rank.

Proof. If configuration z(k) ∈ RDN is in affine image A(p), then by definition it holds
that
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zij(k) = zi(k)− zj(k)

= Θ(k)pi + t(k)− (Θ(k)pj + t(k))

= Θ(k)pij (4.7)

for i ∈ Vf , j ∈ Ni. Then a local set of linear equations could be established as

Xi(k) = Φi(k)PiΘ(k)T = Hi(k)Θ(k)T , (4.8)

where Xi(k) stores zij(k) ∈ {zij(k)}j∈N k
i
.

(Sufficiency) If Hi(k) full column rank, then the global affine transformation matrix
Θ(k) can be locally and uniquely determined by

Θi(k)
T = (Hi(k)

THi(k))
−1Hi(k)

TXi(k), (4.9)

followed by the local determination of missing observation

zij(k) = Θi(k)pij j ∈ Nm
i . (4.10)

(Necessity) If Hi(k) is not full-column rank, then there exists no left inverse of Hi(k)
which indicates that unique and non-trivial local estimation for Θ(k) does not exist.
Then items in {zij(k)}j∈Nm

i
cannot be uniquely determined.

■

The rank condition implies that
∣∣N k

i

∣∣ ≥ D and geometry requirements on the obser-

vations. The split Ni = (N k
i ,Nm

i ) that fulfill these conditions are called geometrically
feasible for relative affine localization. Figure 4.3 gives some geometrically feasible and
infeasible known relative positions. There is another intuitive understanding of the
minimum number of positions or relative positions needed by Lemma 4.1 or Theorem
4.1, respectively. For general affine transformations, according to Table 2.1 the DOF
are 6 and 12 for R2 and R3, respectively. DOF is the same as the number of parameters
in Θ̄ which needs at least the same number of independent equations to solve. For
instance, 3 positions gives 6 equations in R2 which satisfy D+1 positions. For relative
localization, the translation vector t(k) need not be determined according to (4.7), so
fewer relative positions are needed to determine Θ.

However, for the circumstances RAL is not geometrically feasible, i.e., Hi(k) not
full column rank, the following approaches can be considered.

• If Φi(k) is locally designed, reconstruct such that it selects different relative posi-
tions or add more rows to it such that Hi(k) is full-rank.

• If Φi(k) is determined by the environment but the formation is restricted and
known to be a special case of affine transformation, e.g., rotation, then inversion-
free solutions in the next section can be adopted.

• If Φi(k) is determined by environment and none of the above is viable, one can
turn to the model-based methods introduced in Chapter 6.
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(a) (b) (c)

Figure 4.3: Some examples of infeasible and feasible available relative positions to enable RAL
in R2. Colored nodes represent agents of interest. (a) infeasible due to |N k

i | < D locally. (b)
infeasible due to collinear relative positions. (c) feasible.

In practice, the assumption that z(k) ∈ RDN is in affine image A(p) almost never
strictly holds, but we could still formulate the problem as

min
Θ(k)

∥∥Hi(k)Θ(k)T −Xi(k)
∥∥2
F
, (4.11)

and obtain estimates using an analytical solution

Θ̂i(k)
T = (Hi(k)

THi(k))
−1Hi(k)

TXi(k). (4.12)

Finally, the local RAL estimates of missing observations are

zralij (k) = Θ̂i(k)pij j ∈ Nm
i . (4.13)

For the known observations, we simply take them as they are, i.e.,

zralij (k) = zij(k) j ∈ N k
i , (4.14)

since there are no better estimates than the true observations.

4.3 Constrained Relative Affine Localization

The previous section gives a solution to estimating parameters of general affine transfor-
mations. In practice, special cases of affine transformation (see Table 2.1) are sometimes
demanded. For example, in [55], the formation requires a Euclidean (rigid) transform,
and in [56, 57], the formation can be maneuvered up to a similarity transform. Under
these circumstances, the degrees of freedom are reduced and the transformation pa-
rameters can be confined within a manifold. Although (4.12) is still applicable to these
cases, we could further confine the solution space by levying constraints on 4.11 and
relax the rank condition on Hi(k) in (4.12). In this section, we discuss the solution to
several cases including scaling only, Euclidean transform, and similarity transform.

4.3.1 Scaling Only

If the transformation only involves scaling, the transformation matrix Θ degenerates
to

Θ = diag(s1, ..., sD), (4.15)
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where sd, for d = 1, ..., D, are the scaling factors for each dimension. Then (4.11) could
be reformulated as

min
Θ(k)

∥Hi(k)Θ(k)−Xi(k)∥2F

s.t. Θ(k) diagonal,
(4.16)

which could be solved numerically or analytically. For the analytical solution, since
the diagonality of Θ(k) decouples the dimensions, (4.16) could be decomposed into D
parallel Least Squares problems, i.e.,∥∥sd(k)hd

i (k)− xd
i (k)

∥∥2
2

d = 1, ..., D, (4.17)

where hd
i (k) and xd

i (k) are the d-th column of Hi(k) and Xi(k), respectively. The
solution is given by

ŝd =
hd
i (k)

Txd
i (k)

hd
i (k)

Thd
i (k)

d = 1, ..., D. (4.18)

Then the local estimate of the transformation matrix is

Θ̂i(k) = diag(ŝ1, ..., ŝD). (4.19)

4.3.2 Euclidean Transform

Euclidean transform retains the rigidity of the formation, and the inter-agent Euclidean
distances are preserved. As such, translations, rotations, and reflections are considered
Euclidean transforms. Since translation is a nuisance in relative affine localization and
reflection is not suitable for continuous maneuvering of formation, we only consider a
rotation in this setup. This degenerates the parameters matrix Θ to a rotation matrix
whose columns are orthonormal. Then the constrained formulation can be written as

min
Θ(k)

∥∥Hi(k)Θ(k)T −Xi(k)
∥∥2
F

s.t. Θ(k)TΘ(k) = ID.
(4.20)

This formulation is recognized as the orthogonal Procrustes problem (OPP) [58] where
an orthonormal matrix is sought to approximate rotations between two body frames.
There are numerical and analytical solutions [59] available, and we adopt a singular
value decomposition (SVD) based solution from [60]. If Hi(k)

TXi(k) has singular value
decomposition (SVD)

Hi(k)
TXi(k) = UΣVT , (4.21)

then the rotation matrix is given by

Θ̂i(k) = UVT . (4.22)

4.3.3 Similarity Transform

In similarity transforms, all dimensions are uniformly scaled by a scalar s on top of a
rigid transform, i.e., Θ degenerates to sR. Hence, the constraints on Θ are relaxed

29



from orthonormality to orthogonality. Note that the classic OPP actually requires
det(Θ) = 1, so this problem can be seen as a generalization that is formulated as

min
s,R(k)

∥∥sHi(k)R(k)T −Xi(k)
∥∥2
F

s.t. R(k)TR(k) = ID.
(4.23)

Several numerical solutions are summarized by [61], but here a heuristic SVD-based
solution is also provided as an extension of (4.21) and (4.22). If Hi and Xi both have
economy-sized decomposition

Hi = UHΣHV
T
H (4.24)

Xi = UXΣXV
T
X , (4.25)

then the scaling factor is given by

ŝ =
1

D
tr(Σ−1

H ΣX), (4.26)

with R̂ given by the same equation as (4.22). The final estimate of transformation
parameters is

Θ̂i(k) = ŝR̂. (4.27)

The solution of (4.26) can be interpreted as the following: ΣH and ΣX represents the
energy on each (rotated) dimension before and after transformation, which reflects the
scale of the geometry. Σ−1

H ΣX divides the energy on each dimension and then these
values are averaged by the trace and the normalizer.

Algorithm 4.2 describes the steps of affine formation control using RAL for both
general and constrained cases. Several more details should be noted. The algorithm
requires specific types of affine transformation for constrained estimation. If this is
not known, the algorithm takes it as the default case and uses general estimation for
the transformation parameters. If |Nm

i | = 0 or
∣∣N k

i

∣∣ = |Ni| meaning there are no
observation losses, Algorithm 4.2 gives the same results as Algorithm 3.1.

Some results are shown in Figure 4.4, where the tracking errors of different numbers
of known observations

∣∣N k
i

∣∣ are simulated. Generally, with RAL applied, the system
is converging steadily compared to having no mechanism to combat observation losses
in Figure 4.1. However, the convergence is slowed by a different rate based on the
number of observations available compared to the reference where there are no missing
observations. This is because the more observations agents can locally access, the better
estimates RAL can produce to lead to a quick convergence. In the extreme case where
RAL is barely viable (

∣∣N k
i

∣∣ = 2), the formation is not converging unless the solution
space is confined and constrained RAL is activated. In general, it can be asserted that
RAL can deal with random observation losses at the cost of slower convergence.

4.4 Convergence Indicator

As discussed in the previous section, RAL generally requires sufficient convergence to
give satisfying estimates. However, Figure 3.7 already shows that for the first few time
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Algorithm 4.2 Distributed formation control using RAL

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Globally known nominal positions pi for i ∈ V
5: k = 0
6: while k ≤ Kmax do
7: for i ∈ Vf do
8: Define Ni = (N k

i ,Nm
i )

9: if Θ(k) is diagonal then ▷ Scaling only
10: Compute Θ̂i(k) based on (4.19)
11: else if Θ(k) is orthonormal then ▷ Rigid transform
12: Compute Θ̂i(k) based on (4.22)
13: else if Θ(k) is orthogonal then ▷ Similarity transform
14: Compute Θ̂i(k) based on (4.27)
15: else
16: Compute Θ̂i(k) based on (4.12) ▷ General affine transformation
17: end if
18: Reconstruct zralij (k) by (4.13) or (4.14)

19: ui(k) = − 1

γi

∑
j∈Ni

lij(z
ral
ij (k)− żj(k)) ▷ Control law

20: zi(k + 1) = zi(k) + ∆tui(k)
21: end for
22: k = k + 1
23: end while

instances, the system is not sufficiently converged. This leads to inaccurate estimates of
the transformation parameters and the missing relative positions which naturally raises
questions such as how to locally know the convergence state to assess the quality of
the estimates. A heuristic indicator would be the tracking error δf (k) defined in (2.13)
that compares the current positions and the target positions. But the major limitation
is that the target configuration z∗(k) is only exposed to the leaders, hence the majority
of agents in the formation cannot locally compute the tracking error.

In this section, a distributed indicator function is designed based on the consensus of
affine transformations. First, we present a lemma stating the property of the parameter
consensus in convergence.

Lemma 4.2 (Consensus of affine transformation). Given a formation (G, z(k)), a local
estimate of Θi(k) for agent i is identical to Θj(k) for j ∈ Ni if z(k) is in affine image
A(p) .

Proof. Assuming the global underlying affine transformation is characterized by Θ̄(k) =
[Θ(k) | t(k)]. If z(k) is in affine image A(p) then (4.8) share the same solution space
and Θi(k) = Θ(k) for all i ∈ V . Hence, Θi(k) = Θj(k) = Θ(k) for j ∈ Ni. ■

Lemma 4.2 implies that if the system has perfectly converged to the target formation,
then local estimates of the transformation parameters should be equal to the neighbor-
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cstr.

no loss

cstr.

Figure 4.4: The convergence simulations of δ using RAL. ”no loss” is the case where there are
no missing observations and is generated with Algorithm 3.1. ”cstr.” or the dotted lines are
using constrained RAL with the first 40 seconds being scaling only and 40-60 seconds being
a similarity transform.

ing agents. As such, if the local estimates do not reach a consensus with neighbors, then
the formation has not converged to the target formation. The converse statement of
Lemma 4.2 is not true becauseΘi(k) = Θj(k) does not necessarily meanΘi(k) = Θ(k).
However, in formation control systems, z(k) converges to z∗(k) as k → ∞, Θi(k) can
be considered Θ(k) with high confidence if Θi(k) = Θj(k) for all j ∈ Ni.

Inspired by Lemma 4.2, the local indicator function is designed as

fi(Θ̂i(k), {Θ̂j(k)}j∈Ni
) =

1

|Ni|
∑
j∈Ni

∥∥∥Θ̂i(k)− Θ̂j(k)
∥∥∥2
F

i ∈ Vf , (4.28)

where Θ̂i(k) are the local estimate of transformation matrix using RAL. Note that the

neighbors’ estimates Θ̂j(k) need to be transmitted through a wireless communication
network.

This function approximates the trend of the tracking error δf (k), which can be
seen from Figure 4.5, but the values are not necessarily the same. In the simulation,
all neighbors’ estimates Θ̂j(k) are delayed by ∆t in Figure 4.5 to reduce the demand
on fast communication. As a result, the indicator function can well approximate the
tracking error distributedly and will be employed in Chapter 6 to acquire the awareness
of the convergence state of the system.

4.5 Summary

In this chapter, a practical challenge of observation losses is modeled and tackled using
relative affine localization. In principle, the main contribution can be summarized as
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no loss

Figure 4.5: The mean values of the indicator function across the followers. The shaded areas
are the standard deviation across the followers of 1 simulation, which is a bit different from
the tracking error plots. The case of ”no loss” is when no observation losses occur but the
estimation of transformation parameters Θ(k) is still performed to calculate the function
value.

• Relative localization (RAL) under general affine transformations is established to
deal with observation losses.

• Constrained relative localization under special cases of affine transformations is
derived to relax the conditions of geometrical feasibility for general RAL and
improve the performance.

• A consensus-based convergence indicator is designed to locally evaluate the state
of convergence.

Although the convergence indicator is not yet applied in this chapter, it will be utilized
in later chapters. Although a prototype to deal with observation losses is proposed in
this chapter, the system is still not practical since no noise of any kind has been modeled.
In the next chapter, we will evaluate distributed formation control and relative affine
localization under observation noises and propose some variants of RAL to improve the
performance.
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Data Driven Filtering and
Smoothing 5
In Chapter 3 and 4, distributed formation control framework and ways using spatial
constraints to combat missing observations are introduced. However, the theories are
established in an idealized environment where there are no uncertainties of any kind.
To approximate the reality, we introduce observation noises in this chapter and evaluate
how the previous control framework and relative affine localization react. This leads to
the two goals of the filtering:

• (primary) Minimize the impact of observation losses by maintaining the same level
of tracking error as the normal case at the least cost of convergence speed.

• (secondary) Without compromising the primary goal, reduce the uncertainties
introduced by observation noise to have smoother trajectories.

First, the noise modeling is given followed by the analysis of the statistical properties
of the RAL as an estimator. Next, a tracking filter is performed in the time domain
on the parameter level to expedite the convergence of RAL. Finally, a smoothing filter
on the trajectory level is introduced to reduce the effect of noise. These filters use only
available observations and RAL estimates without any assumption on the kinematics
of agents or any other additional information, hence the name ”data-driven”.

5.1 Noise Modelling on Observations

In practice, the state observations are carried out by sensors onboard agents, which
will inevitably introduce measurement noise. As no particular sensors are assumed for
agents in this thesis, we simply model the observations as the true relative states zij(k)
plus additive Gaussian noise. That is

yij(k) = zij(k) + vij(k) i ∈ Vf , j ∈ Ni, (5.1)

where vij(k) ∼ N (0D,R) is the observation noise to the edge states and is often
correlated over the dimension depending on the exact acquisition procedure of relative
positions. It is assumed that observation noises are i.i.d. across all edges. Note that
we only model noises on the observations of relative positions. The velocity term żj in
control law (3.2) should generally be measured as well but we will not include its noise
modeling and transmission losses in this thesis.

With this noise modeling on the relative states, the level of accuracy of distributed
formation control is limited in addition to the time resolution ∆t. As such, the tracking
error can be assumed to have a decomposition

ei(k) = εi(k) + ni(k), (5.2)
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where εi(k) is the deterministic error related to control and ni(k) is the zero-mean
stochastic error related to observation noise. This is an important assumption that will
be depended on later in statistical analysis. The steps of affine formation control in
presence of observation noise are described in Algorithm 5.1.

Algorithm 5.1 Distributed affine formation control in observation noise

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Set noise covariance R
5: k = 0
6: while k ≤ Kmax do
7: for i ∈ Vf do
8: for j ∈ Ni do
9: Draw vij(k) ∼ N (0D,R)

10: yij(k) = zij(k) + vij(k) ▷ Noisy observation
11: end for

12: ui(k) = − 1

γi

∑
j∈Ni

lij(yij(k)− żj(k)) ▷ Control law

13: zi(k + 1) = zi(k) + ∆tui(k)
14: end for
15: k = k + 1
16: end while

5.2 Relative Affine Localization in Noise

Inevitably, the observation noise will negatively affect RAL and corrupt the estima-
tion. If considering RAL as a statistical estimator, then the bias and variance of such
estimator are worth investigating. Recall the local sensing model in the noiseless case
(4.8), which is restated here

Xi(k) = Hi(k)Θ(k)T , (5.3)

where Xi(k),Hi(k) ∈ R|N k
i |×D are the configuration matrix stacking all the available

relative states in the neighborhood and their corresponding nominal positions, respec-
tively. According to observation model (5.1), (5.4) can be adapted as

Yi(k) = Xi(k) +Vi(k) = Hi(k)Θ(k)T +Vi(k), (5.4)

where Vi(k) = [vi1, ...,vi|N k
i |]

T in which vij ∈ {vij}j∈N k
i
is the observation noise matrix

for known relative positions. As such, general relative affine localization can then be
adapted into

min
Θ(k)

∥∥Hi(k)Θ(k)T −Yi(k)
∥∥2
F
, (5.5)

to which a distributed solution is given by

Θ̂i(k)
T = (Hi(k)

THi(k))
−1Hi(k)

TYi(k), (5.6)

36



followed by
ẑralij (k) = Θ̂i(k)pij (5.7)

for i ∈ Vf , j ∈ Nm
i . Again, for the known observations j ∈ N k

i , the estimates are taken
as the observations

ẑralij (k) = yij(k). (5.8)

Next, the statistical properties will be investigated, namely the bias and the variance
of the estimator. From this point on, we only focus on the general affine localization
on which we build other methods for simplicity, and constrained RAL should have a
similar analysis. An overview of the systems in noisy cases is provided in Figure 5.1.

dynamics

control law

environment

RAL+

Figure 5.1: An overview of distributed affine formation control system with RAL implemented
under observation noise.

5.2.1 Asymptotic Unbiasedness of RAL

Recall that the premise of relative affine localization is that the configuration z(k) is
in affine image A(p). But in noisy environments, this is almost never achievable since
the estimation is always subject to uncertainties. However, we can assume that the
formation will converge to the point where the error related to observation noises is
dominant over the control error. In other words, the εi(k) is negligible compared to
ni(k) in (5.2) if the system has sufficiently converged. As such, based on the definition
of tracking error, we could write

zij(k) = z∗ij(k) + eij(k) = z∗ij(k) + nij(k), (5.9)

where eij(k) = ei(k)− ej(k) is the (relative) tracking error and nij(k) = ni(k)− nj(k)
is the zero-mean stochastic tracking error of the relative states.
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Theorem 5.1 (Unbiasedness of relative affine localization). The relative state estima-
tor given by (5.6) and (5.7) is unbiased given the observation model (5.1) if k → ∞.

Proof. Since there is no operation across time, we drop the time mark k in the notation
in this proof for conciseness and clarity. Starting from (5.6) and by incorporating (5.4),

Θ̂T
i = (HT

i Hi)
−1HT

i Yi

= (HT
i Hi)

−1HT
i (HiΘ

T
i +Vi)

= ΘT
i + (HT

i Hi)
−1HT

i Vi. (5.10)

Then by substituting Θ̂i in (5.7), we have

ẑralij = Θ̂ipij

= Θipij +VT
i Hi(H

T
i Hi)

−1pij

= z∗ij +VT
i qij, (5.11)

with qij ≜ Hi(H
T
i Hi)

−1pij. If k → ∞, we assume (5.9) comes into effect and the bias

E[ẑralij − zij] = E[z∗ij +VT
i qij − (z∗ij + nij)]

= E[VT
i qij − nij]

= 0. (5.12)

This is easy to show since

VT
i qij = [vi1,vi1, ...,vi|N k

i |]qij (5.13)

is essentially a linear combination of zero-mean noise terms vij (columns of the matrix
VT

i ), which is also zero-mean. It is also easy to show that nij is zero-mean because if
the observation yij is zero-mean and the controller (3.2) is linear to the observations,
then errors of positions are also zero-mean. ■

The property of unbiasedness is very important because it can typically lead to
instability and divergence for autonomous systems if the observations are always biased
and there are other means to correct it.

5.2.2 Variance of RAL

The variance of relative affine localization is straightforward. From (5.11), it is obvious
that the uncertainties come from the term containing the noise matrix Vi. As such,

cov[ẑralij ] = cov[z∗ij +VT
i qij]

= cov[VT
i qij]

= cov[qij(1)vi1 + · · ·+ qij(|N k
i |)vi|N k

i |], (5.14)
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which is the covariance of a linear combination of Gaussian variables. Applying the
property of Gaussian distribution and assuming the noises are i.i.d across edges,

cov[ẑralij ] = (q2ij(1) + · · ·+ q2ij(|N k
i |))R

= (qT
ijqij)R. (5.15)

The steps of relative affine localization with observation noise (parameter tracking
involved) are described in Algorithm 5.2 and the convergence is shown in Figure 5.3
together with the variants of RAL which will be introduced in the following sections.
As can be expected, the tracking errors are truncated and maintained at a certain
noise level post-convergence. Otherwise, similar conclusions to the noiseless case can
be drawn. When observation losses occur, the tracking error will be compromised and
the engagement of relative affine localization can make up for the performance decrease
at a cost of slower convergence.

Algorithm 5.2 Relative affine localization with observation noise (RAL)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Globally known nominal positions pi for i ∈ V
5: Set noise covariance R
6: k = 0
7: while k ≤ Kmax do
8: for i ∈ Vf do
9: Define Ni = (N k

i ,Nm
i )

10: for j ∈ Ni do
11: Draw vij(k) ∼ N (0D,R)
12: yij(k) = zij(k) + vij(k) ▷ Noisy observation
13: end for
14: Compute Θ̂i(k) based on (5.6)
15: Reconstruct ẑralij (k) based on (5.7) and (5.8)

16: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
ral
ij (k)− żj(k)) ▷ Control law

17: zi(k + 1) = zi(k) + ∆tui(k)
18: end for
19: k = k + 1
20: end while

5.3 Parameter Tracking in Time Domain

The key to relative affine localization is to estimate the transformation parametersΘ(k)
first. Algorithm 5.2 in the previous sections can be considered estimation with spatial
information without considering their temporal correlations. In fact, the parameters,
by design, are not abruptly changing but usually present smooth curves subject to some
underlying functions. This entails high correlations to the transformation parameters
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between successive time instances, which makes the exploration in the time domain
beneficial. In this section, we present a Least squares-based filter that tracks the
evolution of time-varying transformation parameters and presents better performances
in the RAL settings.

5.3.1 Data Model and Problem Formulation

For the convenience of derivation, we use a vectorized notation

θ = vec(Θ) (5.16)

to denote the transformation parameters. Assume that at time instance k, local esti-
mates of affine transformation parameters θ̂i(k) using RAL are acquired and presented
as

θ̂i(k) = θ(k) + ϵ(k), (5.17)

where θ(k) is the local ground truth (which is also the global ground truth), and ϵ(k)
is the error induced by insufficient convergence. The problem can now be stated as:
estimate the true affine transformation parameters given a collection of local estimates
across the time series, i.e., estimate θ(K − 1) given θral(k) for k = 0, ..., K − 1, where
K − 1 is the ”current” time instance.

5.3.2 Adaptive Tracking with Sequential Least Squares

We first assume that the system is static with θ(k) = θ, for k = 0, ..., K − 1. Without
any statistical modeling on the error ϵ(k), a Least squares approach is considered in
which we minimize the squared error

J(θ) =
K−1∑
k=0

∥∥∥θ̂i(k)− θ
∥∥∥2
2
. (5.18)

Differentiating with respect to θ and setting the result to zero yields

θ̂trk =
1

K

K−1∑
k=0

θ̂i(k), (5.19)

which is the sample mean estimator [62].

Now we extend this to the dynamic formation by using the sequential Least squares
approach to recursively update the estimation. The problem now becomes that having
estimated θ̂trk

i (K − 1), estimate θ̂trk
i (K) with new θ̂i(k) obtained from (5.6). The

solution is
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θ̂trk
i (K) =

1

K + 1

K∑
k=0

θ̂i(k)

=
1

K + 1
(
K−1∑
k=0

θ̂i(k) + θ̂i(K))

=
K

K + 1
θ̂trk
i (K − 1) +

1

K + 1
θ̂i(K) (5.20a)

= θ̂trk
i (K − 1) +

1

K + 1
(θ̂i(K)− θ̂trk

i (K − 1)), (5.20b)

where (5.20a) suggests that this filter is taking a weighted average between the past
estimate and the current input, and the weight for the current input is proportionally
decreasing as time progresses since the previous estimate is based on more samples. On
the other hand, (5.20b) indicates that the filter is adding a correction term on top of the

previous estimate. θ̂i(K)− θ̂trk
i (K − 1) can also be regarded as an error in predicting

θ̂trk
i (K) with the previous estimator. If the previous estimator is sufficiently accurate

and the system is time-invariant, the correction term will converge to zero. Otherwise,
the estimator will keep being updated which serves the purpose of adaptive filtering
in time-varying systems. As a generalization, we modify (5.20b) and give a update
equation

θ̂trk
i (k) = θ̂trk

i (k − 1) + µ(θ̂i(k)− θ̂trk
i (k − 1)), (5.21)

where µ is a small coefficient to set constant weights to the correction term for better
tracking of time-varying parameters. It should be noted that since only linear op-
erations are involved in (5.22), direct computation on the unvectorized version Θ is
possible,

Θ̂trk
i (k) = Θ̂trk

i (k − 1) + µ(Θ̂i(k)− Θ̂trk
i (k − 1)). (5.22)

Finally, the local RAL estimates of missing observations are again

ztrkij (k) = Θ̂trk
i (k)pij j ∈ Nm

i , (5.23)

and ztrkij (k) = yij(k) for j ∈ N k
i as before.

The choice of µ should be application dependent. For fast maneuvering systems
where there are lots of rotations and scaling involved and are traveling with high speed,
µ should be larger to capture the fast change of parameters. For slow maneuvering
systems where translation or low-speed maneuvers are dominant, µ could be smaller.
In the extreme case where the system is static, µ could be chosen as 1/(k + 1) as a
decaying weight and get optimal filtering in a Least squares sense.

Algorithm 5.3 describes the steps of performing this filter in RAL settings. To dis-
tinguish this alternation, this method is marked RAL-TRK for ”tracking”. Since the
algorithm employs previous estimates, the initial value for Θ̂trk

i (0) can be set as ID.
When the hyperparameter µ is taken as 0.1, the simulation result using this filter is
presented in Figure 5.3, where the RAL-TRK case exhibits clear improvements in the
convergence speed compared to the RAL case. A potential reason is the subtraction
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in (5.22) cancels out some bias between two successive estimates of the transformation
parameter and thus results in faster convergence. From another perspective, historical
information is taken into account when given an estimate, thus the robustness is en-
hanced. Although the speed of convergence is improved using the proposed method,
the trajectories are still noisy under the impact of observation noises, which will be
addressed in the following section.

Algorithm 5.3 Relative affine localization with parameter tracking (RAL-TRK)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Globally known nominal positions pi for i ∈ V
5: Set noise covariance R
6: Θ̂trk

i (0) = ID and set µ ▷ Initialize local parameters
7: k = 0
8: while k ≤ Kmax do
9: for i ∈ Vf do

10: Define Ni = (N k
i ,Nm

i )
11: for j ∈ Ni do
12: Draw vij(k) ∼ N (0D,R)
13: yij(k) = zij(k) + vij(k) ▷ Noisy observation
14: end for
15: Compute Θ̂i(k) based on (5.6)
16: Θ̂trk

i (k) = Θ̂trk
i (k − 1) + µ(Θ̂i(k)− Θ̂trk

i (k − 1)) ▷ Parameter tracking
17: Reconstruct ztrkij (k) based on (5.23)

18: ui(k) = − 1

γi

∑
j∈Ni

lij(z
trk
ij (k)− żj(k)) ▷ Control law

19: zi(k + 1) = zi(k) + ∆tui(k)
20: end for
21: k = k + 1
22: end while

5.4 Quadratic Smoothing

5.4.1 Motivation

As seen in the previous section, the tracking error is bounded by the observation noise
and it is fluctuating. This implies that the trajectories of agents are not smooth and
subject to unnecessary ”zig-zags” which is undesired in practice. A typical way to
reduce the mean and variance of the error is to introduce multiple parallel observations
of one relative state. If the observation noises of them are i.i.d., some estimators such
as the Maximum likelihood estimator (MLE) can be tailored to accomplish the task
[51]. However, in the setup of this thesis, it would be impractical to assume parallel
observations due to e.g. limited onboard resources that cause observation losses in
the first place. Fortunately, we could still rely on temporal information to reduce the
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variance. Note that RAL-TRK also uses temporal information but on the parameter
level Θ(k). Since it is a linear filter, the noise variance can not be reduced. In this
section, we introduce a nonlinear method using quadratic reconstruction and smoothing
(QS) [63]. In some literature, it is also called Whittaker-Eilers Smoother [64].

The smoothing will be performed on the trajectories with RAL-TRK employed.
Although the agents are moving in RD, we treat the trajectories of each dimension as
separate 1D signals. Note agents perform the smoothing on the (relative) trajectories
zij(k) for all k, which is the trajectory of neighbors observed by agent i.

5.4.2 Formulation

dynamics

environment

RAL

+

QS

control law

Figure 5.2: An overview of the RAL framework with quadratic smoothing implemented.

Now we lay the formulation of the smoother and an overview is shown in Figure
5.2. The observation model is still assumed to be (5.1), and since the smoothing is
done in time series, we define a window length Wl to limit the number of past samples
involved in the computation. We first define a reconstructed signal matrix for every
i ∈ Vf , j ∈ Ni as

Ẑqs
ij (k) =

ẑ
qs
ij (k −Wl + 1)T

...
ẑqsij (k)

T

 ∈ RWl×D, (5.24)

whose columns are denoted by ẑdij ∈ RWl for d = 1, ..., D. Correspondingly, a signal
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matrix containing past estimates and current observations is defined as

Ỹij(k) =


ẑqsij (k −Wl + 1)T

...
ẑqsij (k − 1)T

ỹij(k)
T

 ∈ RWl×D, (5.25)

where ỹij(k) is

ỹij(k) =

{
yij(k), if j ∈ N k

i

ẑtrkij (k), if j ∈ Nm
i

, (5.26)

in which we use ỹd
ij ∈ RWl to denote the d-th column of Ỹij(k) that can be regarded as

observation vector of the d-th dimension of the trajectory. (5.26) indicates that we use
the available observation as it is but uses RAL-TRK estimates as an observation for the
missing relative states. The structure of (5.25) suggests that the past smoothed signals
are reused in the current smoothing, which in some sense is also a recursive method.

Quadratic smoothing is essentially a regularized Least square fitting in which a
quadratic smoothing function serves to penalize the variations. Here we adopt the
first-order difference in the quadratic function

Jquad(ẑ
d
ij) =

∥∥Wẑdij
∥∥2
2
, (5.27)

where W ∈ RWl−1×Wl is a sparse bidiagonal matrix

W =


−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

 . (5.28)

As such, the cost function of quadratic smoothing is

Jqs(ẑ
d
ij) =

∥∥ẑdij − ỹd
ij

∥∥2
2
+ ν

∥∥Wẑdij
∥∥2
2
, (5.29)

where ν ≥ 0 parameterizes the trade-off of the Least square term and the regularization
term. Analytical solutions can be derived for this formulation as

ẑdij = (I+ νWTW)−1ỹd
ij d = 1, ..., D, (5.30)

with which we could aggregate D dimensions and filter altogether in the equivalent
form

Ẑqs
ij (k) = (I+ νWTW)−1Ỹij(k). (5.31)

Note that (5.31) is numerically efficient since I+νWTW is a sparse tridiagonal matrix
and solvers such as sparse Cholesky solver [65] or sparse LU-based solver [66] are avail-
able. Besides, if Wl and ν are decided to be fixed, the inversion could be calculated
at initialization. Hence a wider range of selection for the window length Wl is possible
without being too computationally expensive.
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There are a few comments regarding the formulation (5.29). As is suggested in the
equation, the Least squares term ensures that the reconstructed trajectory is as close
to the observation as possible. If ν = 0 or very small, there will be no smoothing
effect and the reconstructed trajectory should come out identical to the observation.
On the other hand, if ν is very large, the variation penalty is dominant in the cost,
and the resulting trajectory will be very smooth. However, this also jeopardizes the
unbiasedness of the estimates. From a statistics point of view, ν balances the bias and
the variance of the smoother. Existing literature such as [67] that studies the choice of
ν usually deals with static systems (e.g. images, point clouds, etc.) and is less sensitive
to the induced bias. As such, as of now, there is yet an optimal tuning method for
this formation control system and ν should be heuristically chosen based on specific
applications. Algorithm 5.4 shows the steps to perform quadratic smoothing (RAL-QS)
under relative affine localization and distributed formation control settings.

RAL-TRK

RAL-QS

no loss
no estimatorRAL

Figure 5.3: The simulation results of proposed RAL-based methods. The noise covariance
is chosen as σ2

vI with σv = 0.1. The number of known observations per agent is chosen as∣∣N k
i

∣∣ = 3. The references for each method are: RAL (Algorithm 5.2), RAL-TRK (Algorithm
5.3), and RAL-QS (Algorithm 5.4).

As the previous convergence simulations that use the setup introduced in Section
3.5, the simulation results of RAL-TRK are shown in Figure 5.3 and Figure 5.4 in
comparison with the previously proposed methods including RAL and RAL-TRK. It
is clear that with quadratic smoothing applied, the tracking error is not compromised
but the trajectories are smoothed. The hyperparameters chosen for this simulation are
Wl = 500 and ν = 100 although they are not necessarily optimal need to search for
better choices.

45



Algorithm 5.4 Relative affine localization with quadratic smoothing (RAL-QS)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Globally known nominal positions pi for i ∈ V
5: Set noise covariance R
6: Θ̂trk

i (0) = ID and set µ
7: Set Wl and ν
8: Construct W and calculate (I+ νWTW)−1

9: k = 0
10: while k ≤ Kmax do
11: for i ∈ Vf do
12: Define Ni = (N k

i ,Nm
i )

13: for j ∈ Ni do
14: Draw vij(k) ∼ N (0D,R)
15: yij(k) = zij(k) + vij(k) ▷ Noisy observation
16: end for
17: Compute Θ̂i(k) based on (5.6)
18: Θ̂trk

i (k) = Θ̂trk
i (k − 1) + µ(Θ̂i(k)− Θ̂trk

i (k − 1)) ▷ Parameter tracking
19: Reconstruct ztrkij (k) based on (5.23)

20: Construct Ỹij(k) based on (5.25)

21: Ẑqs
ij (k) = (I+ νWTW)−1Ỹij(k) ▷ Quadratic smoothing

22: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
qs
ij (k)− żj(k)) ▷ Control law

23: zi(k + 1) = zi(k) + ∆tui(k)
24: end for
25: k = k + 1
26: end while

(a) (b)

Figure 5.4: Two trajectories for the first 5 seconds with (a) using RAL-TRK and (b) RAL-
QS applied. Simulation parameters are

∣∣N k
i

∣∣ = 3, and to clearly show the smoothing effect,
σv = 1 is chosen for both figures.
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5.5 Summary

In this section, we put the system in a more realistic, namely noisy environment and
build filtering techniques on top of the relative affine localization framework from the
previous chapter. Some notable contributions can be highlighted as

• The influence of the observation noise is numerically shown with simulations.

• Theoretical investigation on the statistical property of relative affine localization
as an estimator.

• A Least squares-based parameter tracking technique is introduced with improve-
ments in the speed of convergence (RAL-TRK).

• A data-driven smoother/filter based on the principle of quadratic smoothing
(RAL-QS) is introduced showing less noisy trajectories.

So far we have established a framework to tackle random missing observations and
observation noise using the relative affine localization technique. However, RAL and
its related methods are limited by the geometrical feasibility and suffer from a slower
convergence speed. In the next chapter, an additional kinematics model will be estab-
lished for agents, and the fusion of the kinematics model, available observations, and
RAL estimates will be carried out using a Kalman filter framework.
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Model Based Prediction and
Filtering 6
The methods to tackle missing observations and smoothing in the previous chapters are
built upon relative affine localization which is fundamentally limited by its geometry
feasibility. We call it a RAL-denied situation if this constraint can not be satisfied. As
such, other sources of estimating the missing state observation in RAL denied situations
are needed and we turn to the relative kinematics model of these agents. In this chapter,
we perform simultaneous missing state estimation and smoothing in noisy environments
under a Kalman Filter framework. First, a general kinematics model for the agents is
established without any assumption about the agents’ true dynamics. A complete
state-space model can then be formed by incorporating the observation model in the
previous chapter. Next, a series of Kalman filters will be tailored to accommodate the
need for smoothing and state estimation. Finally, we present a RAL-KF fusion scheme
that exhibits superior performance.

6.1 Relative State-Space Model

In this section, we introduce a state-space model on agents to pave the way for the
Kalman filters. Since the relative positions are of interest for the distributed controllers,
the state-space model is built on the relative kinematics of the agents, hence is called the
relative state-space model. Here we adopt a constant acceleration model to approximate
the kinematics of agents since this model is very general with minimum assumptions
and is independent of the dynamics in the control framework. As such, it can be easily
adapted to other formation control frameworks. Some other motivations for this choice
are:

• A constant acceleration model is a generalization of the constant velocity model
which could capture finer details from the movement.

• If the true dynamics of agents are acceleration-varying which is usually the case,
the constant acceleration model is still able to approximate well if the time step
∆t is small.

As such, we define the extended (relative) state vector z′ij ∈ R3D as

z′ij(k) = vec([zij(k), żij(k), z̈ij(k)]
T ), (6.1)

where żij(k) and z̈ij(k) are the (relative) velocity and acceleration, respectively. An
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example of (6.1) when D = 2 is

z′ij(k) =


zxij(k)
żxij(k)
z̈xij(k)
zyij(k)
żyij(k)
z̈yij(k)

 , (6.2)

where x and y are the two dimensions.

6.1.1 Observation Model

Assuming that agents carry homogeneous sensors, the observation noise is also i.i.d. if
there is no cross-agent correlation. Same as the RAL settings, we assume again that
agents can access at most 1 observation of each edge state per control interval. Recall
the noise modeling on the observation in (5.1), which is restated here:

yij(k) = zij(k) + vij(k), (6.3)

where vij(k) ∼ N (0,R) is the observation noise. Then the observation equation for
the edge state-space model is

yij(k) = Gz′ij(k) + vij(k), (6.4)

where G ∈ RD×3D is the observation matrix and has the following structure

G = ID ⊗ [1 0 0], (6.5)

which is essentially selecting the (relative) positions as observation and implying that
other states are not observable.

6.1.2 State Transition Model

The state transition model can be then written as

z′ij(k + 1) = Fz′ij(k) +wij(k), (6.6)

where the state transition matrix F ∈ R3D×3D is

F = ID ⊗ Fd = ID ⊗

1 ∆t 1
2
∆t2

0 1 ∆t
0 0 1

 , (6.7)

and wij(k) ∼ N (0,Q) is the process noise.
The process noise wij(k) is added to approximate the inaccuracy of the state tran-

sition model caused by assuming constant acceleration. The covariance matrix Q that
characterizes this uncertainty can be represented by a block matrix e.g., for D = 2

Q =

[
Qx Qxy

Qyx Qy

]
. (6.8)
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Assuming the kinematics are uncorrelated across dimensions, Q will have a block diag-
onal structure, i.e., Q = bdiag{Qd}d=1,...,D. Given that the error of acceleration induces
errors in velocity and position, Qd should also be structured. Let Qd

a ∈ R3×3 denote the
covariance matrix of a small error in acceleration in dimension d which has a structure

Qd
a =

0 0 0
0 0 0
0 0 σ2

w

 = σ2
w

0 0 0
0 0 0
0 0 1

 , (6.9)

we can then project this error covariance to Qd by

Qd = FdQd
aF

dT = σ2
w

∆t4

4
∆t3

2
∆t2

2
∆t3

2
∆t2 ∆t

∆t2

2
∆t 1

 . (6.10)

Assuming identical noise covariance for each dimension, the final covariance matrix Q
has the structure

Q = ID ⊗Qd = σ2
w

(
ID ⊗

∆t4

4
∆t3

2
∆t2

2
∆t3

2
∆t2 ∆t

∆t2

2
∆t 1

), (6.11)

where σ2
w is the variance of acceleration and can be thus regarded as the process noise

variance.

6.2 Relative Kalman Filter

In the case where there are no missing observations, a relative Kalman filter (RKF)
can be derived based on the relative state-space model. Kalman filters under affine
formation control frameworks based on the relative kinematics are studied in [51]. The
major difference between this work and the Kalman filters in [51] is the state transition
model, where we take the general kinematics of an autonomous agent whereas [51] uses
the exact dynamics (3.1) by which the agents are governed for the formation control
framework. Using the exact dynamics is advantageous in predicting the states but it
is not generalizable to other systems and strong requirements for the communication
network is needed.

RKF initialization
Without any prior knowledge of the relative velocity and the acceleration, we simply
take zeros for their initial states. Since the spawn locations zi(0) for the agents are
random and subject to N (0D,P0), we can derive that

ẑrkfij (0|0) = E[zij(0)] = E[zi(0)− zj(0)] = 0D. (6.12)

As such, we set the initial state vector to be zero, that is

ẑ′ij(0|0) = 03D. (6.13)
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For the initial estimate covariance Σij(0|0), the values should be large for the (relative)
velocities and accelerations since no prior knowledge is given. But for the relative
positions, we can simply take 2P0 since zij(0) = zi(0) − zj(0). If taking the setup
introduced in Section 3.5 where P0 = 2ID and assume the same level of confidence for
(relative) velocities and accelerations, we take the initial estimate covariance as

Σij(0|0) = 4I3D (6.14)

This initialization is rather heuristic and can also be modeled in other ways but
the initialization has little impact on the convergence of the Kalman filter and the
formation.

RKF prediction stage
The prediction stage is where the system extrapolates the next states based on the
state transition model. The estimate covariance will also be predicted based on Q, the
confidence of this model. The prediction is conducted as follows

ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) (6.15a)

Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Q (6.15b)

for i ∈ Vf , j ∈ Ni. This estimate is given without any input from the observation,
and the final estimate will be calculated in the correction stage by taking a weighted
average between this estimate and the observations. This prediction is also important
in this context since if no observations are available, we can only count on this
prediction.

RKF correction stage
The correction stage is where the filter takes a weighted average of the prediction and
observation. The weight is calculated based on their confidence or uncertainty and it
is named the Kalman gain Kij(k). The correction steps are performed as

Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1 (6.16a)

ẑ′ij(k|k) = ẑ′ij(k|k − 1) +Kij(k)(yij(k)−Gẑ′ij(k|k − 1)) (6.16b)

Σij(k|k) = (I3D −Kij(k)G)Σij(k|k − 1) (6.16c)

for i ∈ Vf , j ∈ Ni. After the correction of relative states and covariances, we can
extract the position estimates for the controller (3.2) using

ẑrkfij (k) = Gẑ′ij(k|k). (6.17)

Note that only (6.16b) in the two alternating stages is observation dependent, hence
the other steps can be precalculated and wait for the arrival of observations.

The pseudocode to perform RKF in affine formation control is described in Algo-
rithm 6.1. The smoothing effect is shown in Figure 6.1 where the trajectories are less
noisy after filtering. The convergence of RKF is shown in Figure 6.2 in comparison
with the variant of RKF for observation losses in the next section.
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Algorithm 6.1 Distributed formation control with relative Kalman filter (RKF)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Set noise covariance R and Q
5: ẑ′ij(0|0) = 03D ▷ Initialize the state
6: Σij(0|0) = 4I3D ▷ Initialize the covariance
7: k = 0
8: while k ≤ Kmax do
9: for i ∈ Vf do

10: for j ∈ Ni do
11: ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) ▷ Prediction

12: Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Q
13: Draw vij(k) ∼ N (0D,R)
14: yij(k) = zij(k) + vij(k) ▷ Noisy observation
15: Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1

16: ẑ′ij(k|k) = ẑ′ij(k|k − 1) +Kij(k)(yij(k)−Gẑ′ij(k|k − 1)) ▷ Correction
17: Σij(k|k) = (I3D −Kij(k)G)Σij(k|k − 1)
18: ẑrkfij (k) = Gẑ′ij(k|k) ▷ Extract position estimate
19: end for

20: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
rkf
ij (k)− żj(k)) ▷ Control law

21: zi(k + 1) = zi(k) + ∆tui(k)
22: end for
23: k = k + 1
24: end while

(a) (b)

Figure 6.1: Two trajectories with no observation losses for the first 5 seconds with (a) no
RKF implemented and (b) RKF implemented. To clearly show the smoothing effect, σv = 1
is chosen for both figures.
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6.3 Relative Kalman Filter with Intermittent Observations

In the event of random observation losses, an estimate of the relative state has to be
computed. A binary random variable βij(k) is used to characterize the availability of
observations, i.e., βij(k) = 1 if yij(k) is available and βij(k) = 0 if yij(k) is missing. A
heuristic approach to approximate the missing observations by using previous estimates
is

ẑij(k) =

{
ẑij(k − 1), if βij(k) = 0

yij(k), if βij(k) = 1
. (6.18)

Intuitively, this approach should perform better than using zeros for the missing obser-
vations as described in Algorithm 4.1 if the majority of observations are available. This
approach is adopted in many distributed consensus algorithms in event of loss of data
or asynchronousness. As such, we take this approach as a comparison to our methods
using the Kalman filter.

With the dynamics modeled for the agents in (6.6), it is natural to turn to this model
when there are no observations. In the field of navigation, this is sometimes referred to
as dead reckoning [68, 69] which is a technique to infer the location of an object using
accurately measured velocity, heading, etc. However, this kind of method requires
precise modeling of the dynamics as well as up-to-date and accurate measurements to
provide good estimates. These conditions are not satisfied with the state-space model in
Section 6.1 since the dynamic model is an approximate model and the observations only
contain positions. As such, using (6.6) to predict relative positions for long periods is
infeasible and at least a certain amount of observations is needed to correct and update
the model.

A Kalman filter with intermittent observations is inspired [37, 38] based on the
above reasoning. The initialization and prediction stages for RKF with intermittent
observations (RKF-IO) are identical to those in Section 6.2, only the correction stage
is different in presentation and is shown as follows.

RKFIO correction stage

Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1 (6.19a)

ẑ′ij(k|k) = ẑ′ij(k|k − 1) + βij(k)Kij(k)(yij(k)−Gẑ′ij(k|k − 1)) (6.19b)

Σij(k|k) = (I3D − βij(k)Kij(k)G)Σij(k|k − 1) (6.19c)

with βij(k) being either 0 or 1 for i ∈ Vf , j ∈ Ni. It is obvious that the correction for
the state and the covariance prediction is identical to (6.16b) and (6.16c) if βij(k) = 1,
and the state and the covariance are taken as predicted if βij(k) = 0.

In the Kalman filter with intermittent observation literature e.g. [37], the focus was
on mathematically showing that there exists a critical value λc on the probability of
βij(k) = 1. If λ > λc the Kalman filter has a guaranteed convergence, and if otherwise,
the system diverges under some initial conditions. In this thesis, we omit the details
on the theoretical derivations of this critical value and use numerical simulations to
show the performance under the entire formation control framework. The steps to
perform RKF with intermittent observations are described in Algorithm 6.2, and some
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simulations are shown in Figure 6.2. The results show that when there are no missing
observations, RKF maintains the same level of tracking error as the reference case,
whereas RAL-TRK is also capable but at cost of slower convergence. When observation
losses occur, using no estimators and using the previous estimates both cause a large
compromise on the tracking error, but RKF-IO significantly reduces this compromise
and the tracking error is slightly higher than the reference. The higher error of RKF-IO
is due to the trade-off of observation losses, but with a kinematics model as a backup,
the system is more robust.

heuristic

no estimator

RAL-TRK

RKF-IO

RKF

no loss

Figure 6.2: Convergence simulations and comparisons of some proposed methods. The simu-
lation parameters for the Kalman filters are σv = 0.1, σw = 0.001 and the number of known
observations is again chosen as

∣∣N k
i

∣∣ = 3. For the ”no loss” and ”RKF” cases, there are no
missing observations. Some references to the presented methods are: heuristic (6.18), RAL-
TRK (Algorithm 5.3), RKF (Algorithm 6.1), and RKF-IO (Algorithm 6.2).

6.4 Relative Kalman Filter with Switching Observations

The previous approach using RKF with intermittent observations propagates the pre-
dicted states directly when no observation arrives. As seen in the simulation, the
tracking error is boosted compared to the full observation case and RAL. In this chap-
ter, we aim to minimize this compromise by fusing RAL estimates into the Kalman
filter framework. The way to accomplish this is to treat RAL estimates as alternative
observations in addition to the true ones and switch the observation model for the
relative Kalman filter.
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Algorithm 6.2 Relative Kalman filters with intermittent observations (RKF-IO)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Set noise covariance R and Q
5: ẑ′ij(0|0) = 03D ▷ Initialize the state
6: Σij(0|0) = 4I3D ▷ Initialize the covariance
7: k = 0
8: while k ≤ Kmax do
9: for i ∈ Vf do

10: Define Ni = (N k
i ,Nm

i )
11: for j ∈ Ni do
12: ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) ▷ Prediction

13: Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Q
14: Draw vij(k) ∼ N (0D,R)
15: yij(k) = zij(k) + vij(k) ▷ Noisy observation
16: if j ∈ N k

i then ▷ Correction only for available observation
17: Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1

18: ẑ′ij(k|k) = ẑ′ij(k|k − 1) +Kij(k)(yij(k)−Gẑ′ij(k|k − 1))
19: Σij(k|k) = (I3D −Kij(k)G)Σij(k|k − 1)
20: else
21: ẑ′ij(k|k) = ẑ′ij(k|k − 1)
22: Σij(k|k) = Σij(k|k − 1)
23: end if
24: ẑrkfij (k) = Gẑ′ij(k|k) ▷ Extract position estimate
25: end for

26: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
rkf
ij (k)− żj(k)) ▷ Control law

27: zi(k + 1) = zi(k) + ∆tui(k)
28: end for
29: k = k + 1
30: end while

6.4.1 Observation Models

Recollect in Theorem 5.1 from Chapter 5 that RAL gives unbiased estimates, so we
can model the RAL observation as

ẑralij (k) = zij(k) + ṽij(k), (6.20)

where ṽij(k) is the equivalent noise of RAL estimates and has zero mean. The covari-
ance of this noise, however, is tricky and trivial to find. With simple maneuver of (6.20)
and express it in terms of (5.11) and (5.9), we have

ṽij(k) = ẑralij (k)− zij(k)

= VT
i (k)qij(k)− nij(k), (6.21)
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in which the nij, due to dynamics of the system, is hard to accurately characterize
in terms of covariance. But it should resemble structure of the true observation noise
covariance which is vij(k) ∼ N (0,R). We here assume that the covariance for this
term is R which means that the uncertainty for the true relative positions with respect
to the target positions is the same level of observation noise. As such, we can express
the covariance of the equivalent noise ṽij(k) as

R̃ = cov[VT
i (k)qij(k)− nij(k)]

= (1 + qT
ijqij)R. (6.22)

Now we conclude the switching observation models as

ŷij(k) =

{
ẑralij (k),with R̃, if j ∈ Nm

i

yij(k),with R, if j ∈ N k
i

. (6.23)

The steps to perform relative Kalman filter with switching observations (RKF-SO)
are described in Algorithm 6.3 and an overview of such systems is shown in Figure 6.3.
The performance can be seen in Figure 6.4 in the next section in comparison with several
other filters, but the conclusion is that the compromise on the mean of the tracking
error with RKF-IO is reduced using RKF-SO. However, since RAL observations are
employed, the drawback of slow convergence is also inherited. This is going to be
addressed in the next section.

dynamics

environment

RAL

+
RKF

control law

Figure 6.3: An overview of the relative Kalman filter with switching observations

6.4.2 Improved Convergence with Convergence Indicator

As mentioned, RKF-SO takes advantage of RAL estimates but also absorbs their draw-
back. It is natural to motivate a strategy where we use RKF-IO at the beginning to
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Algorithm 6.3 Relative Kalman filter with switching observations (RKF-SO)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Set noise covariance R and Q
5: Θ̂trk

i (0) = ID and set µ
6: ẑ′ij(0|0) = 03D ▷ Initialize the state
7: Σij(0|0) = 4I3D ▷ Initialize the covariance
8: k = 0
9: while k ≤ Kmax do

10: for i ∈ Vf do
11: Define Ni = (N k

i ,Nm
i )

12: for j ∈ Ni do
13: Draw vij(k) ∼ N (0D,R)
14: yij(k) = zij(k) + vij(k) ▷ Noisy observation
15: ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) ▷ Prediction

16: Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Q
17: end for
18: Compute Θ̂i(k) based on (5.6)
19: Θ̂trk

i (k) = Θ̂trk
i (k − 1) + µ(Θ̂i(k)− Θ̂trk

i (k − 1))
20: Reconstruct ztrkij (k) based on (5.23)
21: Construct ŷij(k) based on (6.23)
22: for j ∈ Ni do ▷ Correction
23: Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1

24: ẑ′ij(k|k) = ẑ′ij(k|k − 1) +Kij(k)(ŷij(k)−Gẑ′ij(k|k − 1))
25: Σij(k|k) = (I3D −Kij(k)G)Σij(k|k − 1)
26: ẑrkfij (k) = Gẑ′ij(k|k) ▷ Extract position estimate
27: end for

28: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
rkf
ij (k)− żj(k)) ▷ Control law

29: zi(k + 1) = zi(k) + ∆tui(k)
30: end for
31: k = k + 1
32: end while

induce fast convergence and use RKF-SO post-convergence to have lower tracking error.
This can be achieved by modulating the covariance structure for RAL observations as
R̃mod(k) = αR̃. If α is very large, then the Kalman gain Kij(k) will be very small and
give small weight to the observations. In this way, the Kalman filter leans towards the
prediction and degenerates to a Kalman filter with intermittent observations.

In general, to achieve the fast convergence, we need to design function of time
R̃mod(k) = ξi(k, R̃). This is challenging because the agents need to be locally aware of
the convergence state of the entire formation.

Time thresholding
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This simplest way to design this ξi(k, R̃) is to choose a large value α (e.g., α = 1e5)

and pick a time threshold kc based on experience. The function of ξi(k, R̃) is then
expressed as

ξi(k, R̃) =

{
αR̃, for k < kc
R̃, for k ≥ kc

, i ∈ Vf . (6.24)

Although this method is easy enough, the choice of kc relies too much on experience
and is not generalizable to other formation designs. It is not robust to sudden
post-convergence disturbance either. For instance, if the system needs to reconverge
after a sudden disturbance, then the kc will not be of any help.

Error triggering
Fortunately, when we introduced a convergence indicator in Section 4.4 based on the
fact that the difference of local estimates of affine transformation parameters in the
neighborhood reflects the state of convergence. The curve of this indicator resembles
that of the tracking error although the values might be different. This property can be
explored for the design of ξi(k, R̃). If we use an error ϵi(k) to denote the function in

(4.28), then we can also set a fixed ϵc as a trigger threshold. Then the function ξi(k, R̃)
can be designed as

ξi(k, R̃) =

{
αR̃, for ϵi(k) ≥ ϵc
R̃, for ϵi(k) < ϵc

, i ∈ Vf , (6.25)

where α is still a large number (e.g., α = 1e5) and ϵi(k) = fi(Θ̂i(k), {Θ̂j(k)}j∈Ni
)

as defined in (4.28). The advantage of this method is clear that whenever the error

ϵi(k) is large implying an insufficiently converged formation, ξi(k, R̃) will keep using
the large value until the formation is converged. As such quick reconvergence will
be ensured in event of sudden disturbance. However, the drawback of this design is
also obvious. In noisy environments, the error ϵi is also noisy, and the choice of the
threshold ϵc to prevent unnecessary triggering and mistriggering is tricky.

Adaptive penalty
Finally, we present a design to adaptively penalize the noise covariance for RAL obser-
vations and no threshold needs to be decided. Function ξi(k, R̃) is designed as

ξi(k, R̃) = R̃+ ϵi(k)ID, (6.26)

for i ∈ Vf . As can be seen, an additional term is added to penalize R̃. When the
system is insufficiently converged, large ϵi(k) will make the penalty dominating and
when the system is converged, small ϵi(k) will result in negligible influence on the

structure of R̃. The advantage of this method is no thresholding or triggering is needed
based on experience. But one should beware of the values of ϵi(k) and make sure it
generates sufficient and negligible penalty at appropriate times. The procedures to
perform adaptive penalty in relative Kalman filter with switching observations (RKF-
SOAP) frameworks are described in Algorithm 6.4 and some simulations are shown
in Figure 6.4. It could be seen that using RKF-SOAP the convergence is accelerated
compared to the RKF-IO level with the error mean still lower than the RKF-IO case.
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RKF-SO

no estimator

RKF-SOAP

RKF-IO

RAL-TRK

no loss

Figure 6.4: Simulation result for RKF-SOAP with comparison to the previous methods. The
simulation parameters are σv = 0.1, σw = 0.001 and the number of available observation
per agent is chosen as

∣∣N k
i

∣∣ = 3. Some reference to the presented methods are: RAL-
TRK (Algorithm 5.3), RKF-IO (Algorithm 6.2), RKF-SO (Algorithm 6.3), and RKF-SOAP
(Algorithm 6.4).

6.5 Summary

In this chapter, a dynamic model is established to approximate the relative kinematics
of agents. Subsequently, a franchise of relative Kalman filters based on this model is
derived to battle missing observations. Some key conclusions can be summarized as
follows.

• In the full-observation case RKF could reduce the variance of the tracking error
resulting in a smoother trajectory.

• In event of observation losses, RKF-IO could significantly reduce the compromise
on the mean of the tracking error.

• With RAL treated as alternative observations, RKF-SO could further reduce the
mean of the error compared to RKF-IO, and an improved version of RKF-SOAP
could further accelerate the convergence.

In general, the model-based methods do not have geometry limits and could thus deal
with theoretically any amount of observation loss with a trade-off on the tracking error.
In the next chapter, all the methods introduced so far to deal with observation losses
will be pooled together and tested with more realistic scenarios.
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Algorithm 6.4 RKF with switching observations using adaptive penalty (RKF-SOAP)

1: Initialization
2: Calculate stress matrix L
3: Draw initial positions zi(0) ∼ N (0D,P0)
4: Set noise covariance R and Q
5: Θ̂trk

i (0) = ID and set µ
6: ẑ′ij(0|0) = 03D ▷ Initialize the state
7: Σij(0|0) = 4I3D ▷ Initialize the covariance
8: k = 0
9: while k ≤ Kmax do

10: for i ∈ Vf do
11: Define Ni = (N k

i ,Nm
i )

12: for j ∈ Ni do
13: Draw vij(k) ∼ N (0D,R)
14: yij(k) = zij(k) + vij(k) ▷ Noisy observation
15: ẑ′ij(k|k − 1) = Fẑ′ij(k − 1|k − 1) ▷ Prediction

16: Σij(k|k − 1) = FΣij(k − 1|k − 1)FT +Q
17: end for
18: Compute Θ̂i(k) based on (5.6)
19: Θ̂trk

i (k) = Θ̂trk
i (k − 1) + µ(Θ̂i(k)− Θ̂trk

i (k − 1))
20: Reconstruct ztrkij (k) based on (5.23)

21: R̃ = R̃+ ϵi(k)ID
22: Construct ŷij(k) based on (6.23)
23: for j ∈ Ni do ▷ Correction
24: Kij(k) = Σij(k|k − 1)GT (GΣij(k|k − 1)GT +R)−1

25: ẑ′ij(k|k) = ẑ′ij(k|k − 1) +Kij(k)(ŷij(k)−Gẑ′ij(k|k − 1))
26: Σij(k|k) = (I3D −Kij(k)G)Σij(k|k − 1)
27: ẑrkfij (k) = Gẑ′ij(k|k) ▷ Extract position estimate
28: end for

29: ui(k) = − 1

γi

∑
j∈Ni

lij(ẑ
rkf
ij (k)− żj(k)) ▷ Control law

30: zi(k + 1) = zi(k) + ∆tui(k)
31: end for
32: k = k + 1
33: end while
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Case Study 7
The previous chapters have brought to light three types of methods to battle observa-
tion losses, namely RAL-based methods (RAL, RAL-TRK, and RAL-QS), RKF-based
methods (RKF and RKF-IO), and RAL-RKF fusion (RKF-SO and RKF-SOAP). Since
the principles of these methods are different, they also exhibit different capabilities in
dealing with certain forms of observation losses. In this chapter, we pool these methods
and evaluate their advantages and disadvantages in two practical scenarios.

Here in Table 7.1 we list the methods to be evaluated and their hyperparameters
for simulation. Note that if one method incorporates the hyperparameters of another
method, the hyperparameters are chosen the same as the other method in this table.
The noise variance, as a global simulation parameter, is chosen as σv = 0.1.

Table 7.1: Methods to be evaluated and their hyperparameter choices

Methods Reference Hyperparameters Value

RAL-TRK Algorithm 5.3 µ: weight for the residual error 0.1

RAL-QS Algorithm 5.4
Wl: window length

ν: weight for the regularizer
500
100

RKF-IO Algorithm 6.2 σw: confidence for the dynamic model 0.001
RKF-SO Algorithm 6.3 - -

RKF-SOAP Algorithm 6.4 - -

7.1 Random Loss of Observations

The observation losses in the previous chapters are formulated by splitting the set of
neighbors Ni into N k

i and Nm
i , and randomly construct the N k

i with a fixed cardinality
for every iteration. In this way, it is easy to ensure the geometrical viability for RAL
and an equivalent percentage of observation losses can be also calculated. But this is
not truly random in a statistical manner.

In this section, we model the arrival of observations of each relative position as
a Bernoulli process across time. Again, we use the binary variable βij(k) to denote
the availability and we define the probability P[βij(k) = 1] = λ. Correspondingly,
P[βij(k) = 0] = 1 − λ. As such, for each relative position, there exists a sequence
βij = [βij(0), βij(2), ..., βij(Kmax − 1)] for i ∈ Vf , j ∈ Ni. Using this formulation, it is
inevitable that RAL is denied for some k as is explained in an example in Figure 7.1. It
can be expected that the chance of RAL being denied increases as λ decreases, which
is also one of the motivations to derive model-based filtering, i.e., the relative Kalman
filter family. Figure 7.2 simulates the probability of geometrically feasible situations for
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Figure 7.1: Examples of RAL-denied situations. As circled in red, for some agent i if there
are not at least 2 neighbors in R2 to whom the observations are available, RAL is denied.

RAL under the graph in Figure 3.3 as λ decreases with 100, 000 experiments. As can
be seen, the chance of RAL being available decreases slowly with high λ, and decreases
drastically as λ continues to decrease. This means under slightly lossy conditions, RAL
could work and so do the RAL-based methods, but under extremely lossy conditions,
RAL could barely work and provide little support to the related methods. As a com-
promise, we employ RAL estimates when available and use zeros values instead when
RAL is denied. The methods built on top of RAL are also treated this way.

Figure 7.2: Probability of satisfying geometric feasibility for RAL with different λ

To conveniently present the result with different values of λ, an average tracking
error across time is defined as

δ̄ =
1

Kmax

Kmax−1∑
k=0

δ(k). (7.1)

Figure 7.3 shows the result of average tracking with different methods. Generally, the
average tracking errors increase as λ decreases as a general trade-off of losing more
observations. However, different methods exhibit different resilience against the extent
of observation losses. In the case of no estimator, the error is boosted even with a
few observation losses. RAL-based methods, RAL-TRK and RAL-QS, show resilience
in slightly lossy conditions, e.g., when λ = 0.8. The RKF-based method shown in the
figure, namely RKF-IO, shows strong resilience in even very lossy conditions, e.g., when
λ = 0.2. The fusion methods, however, present vastly different performances. Due to
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RAL-QS

no estimator RAL-TRK

RKF-SO

RKF-IO

RKF-SOAP

Figure 7.3: Average tracking error of several methods under different Bernoulli probability λ.
The simulations are also averaged over 10 experiments.

the mixture of RAL observations, RKF-SO cannot perform decent correction in very
lossy environments and thus presents a high error when λ is small. RKF-SOAP, on
the other hand, tracks the convergence state by the convergence indicator and relies
more on the RAL observations when they are more reliable. As such, not only is it
resilient to very lossy conditions, but it also performs better than RKF-IO since RAL
gives extra observations. But one should also expect a heavier computation load of
RKF-IO as a trade-off.

There are several other perspectives to interpret the random loss of observations.
If we consider observation loss a passive situation, we can also find scenarios in which
observations are not taken actively. With the same requirement of control interval, the
frequency of sensing could be decreased for energy efficiency if acquiring observations is
expensive in some applications. Also, if the agents in the network are not synchronized,
it can be modeled this way as observation loss.

leaders followers

Figure 7.4: An example of out-of-service agent
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7.2 Out-of-Service Agents

In the previous scenario, observations are regarding the relative positions meaning
that the edges are temporarily unavailable in a graph. Another scenario that also
entails unavailable edges is the loss of nodes in a graph which results in permanent
observation losses. As claimed in Chapter 1, observations could be unavailable if the
objects to be observed are gone. In practice, agents could be offline or out-of-service
due to e.g., maintenance, scheduling, failure, etc. For expensive applications such as
space missions and deep ocean explorations, a single node failure should not affect the
rest of the system. As such, constant state estimation shall be performed regarding the
missing edges as if a substitute virtual node is still running with the system.

To simulate such a scenario, a sequence of formations is designed in Figure 7.4 in
which the first one is the complete graph, the second one loses one node, and the last
one loses one more. The duration for each case from left to right in Figure 7.4 in
simulation is [0, 10) seconds, [10, 35) seconds, and [35, 60] seconds. The results for our
proposed methods are shown in Figure 7.5. Two clear diverging curves are ”no estima-
tor” and RKF-IO. The behavior when no estimator is applied is different compared to
the random observation loss scenario where the system is suboptimally converging or
nonconverging but not diverging. This is because when edges are permanently lost, the
underlying graph and equilibrium stress are fundamentally changed. The formation is
not stabilizable under previous equilibrium stress. For the RKF-IO method, the sys-
tem is diverging because no observations at all are served as corrections for the Kalman
filter and the dynamic model is too outdated to give satisfactory estimates. It cannot
track even the slightest maneuver in the formation. However, since two out-of-service
nodes do not cause heavy edge losses, the RAL-based methods and the fusion type of
methods perform well and the system remains almost unaffected.

RAL-QS

RKF-IO RAL-TRK

RKF-SOAP

RKF-SO

no estimator

Figure 7.5: Convergence plot of the simulation. A complete view of the figure is shown on
the top right.
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Conclusions and Future Work 8
8.1 Conclusions

In this thesis, the problem of observation losses in the affine formation control and
maneuver is addressed with several state estimators proposed. These methods are
tested over random observation loss (ROL) scenario and out-of-service agents scenario
which is equivalent to permanent observation loss (POL). The qualitative conclusion is
summarized in Table 8.1.

Table 8.1: Comparison and evaluation of proposed methods (r.a.=robustness against)

Criteria RAL RAL-TRK RAL-QS RKF-IO RKF-SO RKF-SOAP

r.a. light ROL good good good good good good
r.a. heavy ROL bad bad bad good bad good

r.a. POL good good good bad good good
Smoothing effect ✓ ✓ ✓ ✓
Convergence speed low medium medium fast medium fast
Computation load low low medium medium high high

In response to the objectives proposed in Section 1.3.2, we summarize the contribu-
tion of this thesis as follows.

• Relative affine localization, a state estimator using affine formation as spatial
constraints, is put forward with necessary and sufficient conditions given on the
applicability. Variants of this estimator for convergence acceleration and trajec-
tory smoothing are also proposed. They can cope with light random observation
losses and permanent observation losses.

• Relative Kalman filter, as a model-based state estimator, is established as a frame-
work in which the Kalman filter with intermittent observations is proposed to
battle observation losses. This framework can deal with both light and heavy
random observation losses with smoothing capabilities.

• An RAL-RKF fusion technique is proposed to inherit the merits of the two types of
estimators and a modulation mechanism is applied to overcome the shortcoming.
As a result, the fusion methods can cope with all aforementioned observation loss
scenarios with comparably the best performance.
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8.2 Future Work

Although this thesis addresses the problem of observation loss for affine formation
control systems, there are still some loose ends and interesting future directions to be
discussed.

An important assumption when dealing with observation losses in this thesis is that
the agents are notified of which edges are missing. However, from a sensing perspective,
there is still a long way from e.g. sensor malfunctioning to asserting that the observation
is unavailable. As such, the detection and decision of observation losses from sensor
outputs should be addressed in the future as a premise of this thesis. But this has to
deal with specific sensors for relative localization and should be studied with certain
applications.

Although the theoretical results assure that RAL works only if the formation has
sufficiently converged, the numerical results show that RAL also works prior to con-
vergence at the cost of slower convergence speed. We also see that the system does
not converge if only a small number of observations are available (see

∣∣N k
i

∣∣ = 2 case in
Figure 4.4). As such, analysis of the convergence condition of RAL and the theoretical
potential bound on the number of available relative positions for convergence are still
to be explored.

In this thesis, we always compare the results of the proposed methods with the
no-loss case, which is considered to be a lower bound for observation losses. However,
more rigorous derivations of theoretical bounds in the event of observation losses can
be made. This will provide a clearer view of the proposed methods in terms of their
performance.

In data-driven filtering, there are lots of hyperparameters involved in the proposed
methods. We mostly give heuristic values for these hyperparameters and show the
numerical results. However, these values are not necessarily the optimal ones and a
systematic search for better choices can be done in the future.

In the model-based estimation and filtering, i.e., the relative Kalman filter family,
only relative positions zij are used as partial state observations since we would like the
state-space model to be generalizable to other controllers. However, for the particular
controller (3.2) adopted for this thesis, velocity information żj is available and could
be potentially used as observations as well. Since the quality of the dynamic model
influences the performance of the Kalman filter, more and better models could be used
to establish an IMM type of filter and potentially reach even lower tracking error than
the no-loss case.

It has been shown that RAL-related methods can deal with permanent observation
losses by substituting with virtual nodes and edges in the graph to remain the validity
of equilibrium stress. Conversely, for those graphs that do not satisfy the condition
(universal rigidity) to have a working stress matrix for affine formation control, it is
also an idea to add virtual nodes and edges for them to acquire a working stress matrix
to perform affine maneuvers.
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Stress Matrix A
The equilibrium stress, as mentioned in Chapter 2, ensures a stable formation and it
is used in control law (3.2). In this appendix, we summarize two common methods to
acquire the stress matrix in the existing literature.

Let P = [p1, ...,pN ]
T ∈ RN×D be the nominal configuration matrix and P =

[P | 1N ] = UΣVT be the augmented configuration matrix which then admits a sin-
gular value decomposition (SVD). The first D+1 columns of U are denoted as U1 and
the rest N − D − 1 columns are denoted as U2. We also specify bT

i ∈ RM , i ∈ V as
the rows of the incidence matrix defined in (2.1). An alternative definition of the stress
matrix L ∈ SN is

L = Bdiag(w)BT , (A.1)

where w ∈ RM is an edge-related weighting vector. As such, the stress matrix can also
be seen as a weighted graph Laplacian matrix. And to calculate the stress matrix, it
suffices to determine the vector w.

A.1 Method 1

An convex optimization based solution proposed in [31] is

max
w

λ

s.t. 0 < λ ≤ λ

L = Bdiag(w)BT

QLQT ≻ λIN−D−1

LP = 0

, (A.2)

where λ can be set to any positive value that guarantees a bounded result and Q can be
acquired through the nullspace of P. More details on the formulation and the reasoning
for this optimization problem can be found in [31]. This optimization problem can be
numerically solved by toolboxes such as CVXPY [70].

A.2 Method 2

Another solution features solving a feasibility problem of a linear matrix inequality
(LMI) [26]. Firstly, a matrix E is constructed as

E =

P
T
Bdiag(b1)

...

P
T
Bdiag(bn)

 ∈ RN(D+1)×M , (A.3)
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whose nullspace has q orthonormal basis r1, ..., rq ∈ RM . Then we define Mi =
UT

2Bdiag(ri)B
TU2 for i = 1, ..., q. As such, the edge weight vector can be calculated

as

w =

q∑
i=1

ciri, (A.4)

where the coefficients c1, ..., cq satisfy the LMI

q∑
i=1

ciMi ≻ 0. (A.5)

Generally, this feasibility problem can be numerically solved with toolboxes. However,
there are cases where the LMI can be simplified and can be solved very efficiently.
For instance, if E has only one-dimensional nullspace spanned by r1. c1 can be rapidly
determined to be either 1 or -1 depending on the definiteness ofM1. As such, the weight
vector w is either r1 or −r1. This situation usually occurs with simple formations where
there are small numbers of nodes and edges.
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