
Delft Center for Systems and Control

Hybrid Semantic Mapping for
Autonomous Off-Road Driving

Roel Bos

M
as

te
ro

f S
cie

nc
e

Th
es

is





Hybrid Semantic Mapping for
Autonomous Off-Road Driving

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Roel Bos

March 2, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was supported by the Netherlands Organisation for Applied Scientific
Research (TNO). Their cooperation is hereby gratefully acknowledged.

Front cover images was adapted from: A.C. Turner [55].

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

Unmanned Ground Vehicle (UGV) navigation in unstructured off-road environments can
benefit from accurate traversability estimation. Often, experiments with UGVs use semantic
segmentation networks for visual scene understanding. Based on the pixel-wise classification of
a semantic segmentation network, the UGV can distinguish traversable from non-traversable
terrain. However, it is still an open challenge to design a model which is able to accurately
estimate traversability in a variety of environments. Variation in terrain characteristics and
different levels of structuredness requires a model with a high level of generalisability. Limited
generalisability will result in inaccurate traversability estimation, which in the worst-case
scenario can cause the UGV to crash.

In order to overcome limited generalisability, a hybrid semantic segmentation framework is
presented that can switch between different operation modes. The hybrid framework contains
multiple environment-specific segmenters. For each input frame, the hybrid framework selects
an environment-specific segmenter, based on a decision parameter. In this work, two hybrid
frameworks containing different decision parameters are designed. The first hybrid framework
contains multiple Bayesian segmenters, which quantifies prediction uncertainty in addition to
the pixel-wise classification. This uncertainty quantification is obtained by Monte Carlo sam-
pling to generate a posterior distribution of pixel class labels. The second hybrid framework
consists of multiple environment-specific segmenters and autoencoders. Every segmenter has
a corresponding autoencoder trained on the same environmental dataset. The output of the
environment-specific autoencoder is a reconstructed image of the input image. The error be-
tween the original input image and the reconstructed image is used as a decision parameter
for selecting the best performing segmenter.

We experimented with a hybrid segmentation framework and observed that it could out-
perform a single semantic segmentation network with a 2.6% Intersection over Union (IoU)
increase. The hybrid framework with the autoencoder approach resulted in a model selection
precision of 99.3% on all the test images. Therefore, we can conclude that UGV navigation
can benefit from a hybrid semantic segmentation framework.
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Chapter 1

Introduction

Autonomous vehicles and systems can significantly impact society. Said autonomous vehicles
and systems are being developed with the promise of preventing accidents, reducing energy
consumption, transporting the mobility-impaired, and reducing driving-related stress [12]. In
addition, autonomous vehicles and systems have the potential to play a crucial role in military
operations [59]. For example, an Unmanned Ground Vehicle (UGV) can be designed to aid
and complement soldiers [11]. UGVs can assist in tasks that exceed the limits of human
endurance [49].

Most importantly, UGVs can reduce casualties by increasing the combat effectiveness of
soldiers on the battlefield. Said UGVs can assist in repetitive tasks such as surveillance.
Another crucial benefit is that UGVs can replace soldiers in hazardous situations, i.e. target
acquisition, mine clearing, and disposal of unexploded ordnance [11].

A UGV can only assist in these military operations when it is able to safely navigate through
its environments. In contrast to commercial vehicles, UGV operation is not limited to struc-
tured environments. There already exist models that can accurately estimate traversability
in these structured urban environments [2, 44, 64, 65]. However, our navigation task exceeds
the boundaries of these structured urban environments. The UGV also has to safely navigate
through off-road and unstructured environments, which is known to be very complex [31, 56],
especially when operating at high speeds [37]. Off-road environments differ from urban envi-
ronments. They have more diverse obstacle classes, three-dimensional surfaces and no defined
road networks or driving rules. In particular, there are obstacle classes and surfaces where
the UGV can drive over, such as tall grass or bushes, but these must be distinguished from
obstacles and surfaces that the UGV must avoid, such as large boulders or water puddles [56].

Often, safe navigation of autonomous vehicles is obtained by self-contained but inter-connected
modules such as perception, localization, planning and control [45]. A modular approach of-
fers the advantage of well-defined sub-tasks and enables engineers to independently make
improvements across the whole stack [53]. In this research, we focus on the perception task
of the UGV, in which we try to estimate the traversability of the terrain. This task requires
cameras that obtain visual information of the UGV’s surroundings. The images captured
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by the camera can be processed by so-called deep semantic segmentation networks, which
generates a semantic segmentation mapping.

Semantic segmentation is a visual scene understanding problem formulated as a K-class classi-
fication task [63]. This deep learning approach relies on Convolutional Neural Network (CNN)
techniques that can extract information out of high dimensional data that contain spatial in-
formation [34]. A semantic segmentation network aims to pixel-wise classify an input image
into a predefined number of classes. The main benefit of semantic segmentation is situation
understanding. Therefore, it is used in a wide variety of applications such as autonomous
driving [4, 50], satellite images [35], medical imaging [20], and precision agriculture [30] as
a first step to achieve visual perception. The generalization of semantic segmentation net-
works relies on the size, annotation richness, scene complexity and variability captured in the
pixel-wise labelled training datasets.

Recent efforts in annotating data for autonomous driving have resulted in a variety of datasets
captured in urban, forest and off-road environments [9, 10, 39, 56]. These datasets differ in
class distribution, class characteristics and level of structuredness. Our semantic segmentation
model should thus be able to deal with heterogeneous classes in order to approach real-world
complexity. Therefore, the focus in this thesis is on a semantic segmentation model that can
deal with the different levels of structuredness and characteristics captured in these diverse
environment-specific segmentation datasets.

1-1 Research objective

In the presented context, the problem is formulated that the current semantic segmentation
networks for autonomous driving vehicles focus on traversability estimation for a specific
environment. However, during military operations, a UGV can cross varying environments
from structured urban environments to more complex unstructured off-road environments.
Therefore, the research question of this thesis is formulated as

How can a hybrid framework improve traversability estimation in unseen unstructured
off-road environments for unmanned ground vehicles?

To answer this question, we first need to define and assess methods for traversability estima-
tion. Hence, the first sub-question to the research question is formulated as

1. In what ways can unseen unstructured off-road environments be classified?

The hybrid semantic segmentation approach requires a decision parameter. For both the
hybrid frameworks, we quantify the uncertainty of a segmenter its prediction. During op-
eration. we compare the uncertainty of the segmenters for the current input frame. The
segmenter with the lowest corresponding uncertainty value is selected for traversability esti-
mation. These decision parameters are evaluated on a pixel-level and image level to see what
these values represent. Hence, the second sub-question to answer the research question is
formulated as

2. How can uncertainty of a semantic segmentation prediction be quantified?
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1-2 Thesis contribution

This research aims to compare the semantic segmentation performance of a hybrid semantic
segmentation framework with a single semantic segmentation network. We design two differ-
ent hybrid frameworks. Hybrid framework 1 contains multiple environment-specific semantic
segmentation network, which outputs in addition to the pixel-wise classification a measure of
model uncertainty. This model uncertainty is obtained by Monte Carlo sampling with dropout
at test time to generate a posterior distribution of pixel class labels. This uncertainty mea-
sure will perform as the decision parameter in hybrid framework 1, which selects the best
performing segmenter. Hybrid framework 2 uses the reconstruction error of an autoencoder
instead of the Bayesian uncertainty measure to select the best performing segmenter. Ideally,
we capture the environment-specific features of the training datasets in the autoencoder its
weights. This will result in environment-related differences in the reconstructed output im-
ages of the environment-specific autoencoders. Moreover, the datasets used in this research
are captured in an urban, a forest and an off-road environment. Hence, this study focuses
on the semantic segmentation performance of the different environmental segmenters in these
diverse environments. We offer insights into the best performing hybrid framework based on
semantic segmentation performance, model selection performance and uncertainty estimation.

1-3 Thesis outline

This thesis comprises six more chapters, which are structured as follows. Chapter 2 will de-
scribe the theory behind Artificial Neural Network (ANN) and CNN, such that the fundamen-
tals of semantic segmentation networks are understood. Furthermore, we describe Bayesian
Neural Network (BNN) and how to train these different neural networks. In Chapter 3, we
present Bayesian SegNet and describe autoencoder networks. Additionally, we introduce the
semantic segmentation datasets used in the experiments performed in this thesis. In Chapter
4, the designed hybrid frameworks 1 and 2 are explained together with the preprocessing step
of the images and evaluation metrics used. Answers to the research questions are obtained by
performing different experiments in Chapter 5. The results of these experiments are shown
to the reader. In Chapter 6, the thesis is concluded with a summary of the main finding.
Furthermore, recommendations for improving this research and future work are presented.
Lastly, additional results, neural network architectures and underlying data can be found in
the Appendices A, B and C.
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Chapter 2

Theory

In this chapter, the fundamentals of deep learning are explained. Some common architectures
as Artificial Neural Network (ANN), Convolutional Neural Network (CNN) and Bayesian
Neural Network (BNN) are discussed. We show the reader the different layers and activa-
tion functions for neural networks. Neural networks are trained using the backpropagation
algorithm which is explained in the last section of this chapter.

2-1 Artificial Neural Networks

An ANN (or a neural network) is inspired by the biological neural system. A neural net-
work consists of an input, a hidden, and an output layer. Every layer consists of multiple
perceptrons. A neural network is also known as a multilayer perceptron.

The neural network architecture determines the approximation properties of the function.
In a 1989 paper [13], mathematician George Cybenko proved the universal approximation
theorem: an ANN with one hidden layer can accurately approximate any continuous function
f as long as the number of perceptrons per layer is large enough.

Cybenkos Theorem Let σ be any continuous discriminatory function. Then finite sums of the
form:

G(x) =
N∑

j=1
αjσ(yT

j x + θj) (2-1)

are dense in C(In). In other words, given any f ∈ C(In) and ϵ > 0, there is a sum G(x), of
the above form, for which:

|G(x) − f(x)| < ϵ ∀x ∈ In (2-2)

Therefore given a desired function f(x), which is to be computed with certain accuracy ϵ > 0,
Cybenkos Theorem states than when using enough hidden neurons, there is always a network
with output G(x) which satisfies |G(x) − f(x)| < ϵ [13].
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2-1-1 Single perceptron

As described above, a neural network consists of multiple interconnected perceptrons. A
single perceptron is inspired by how a single neuron functions in our biological neural system.
The schematic overview of a single perceptron is shown in Figure 2-1.

Figure 2-1: Representation of a single perceptron with input xi, weights wi and activation
function σ and output y.

A neuron receives multiple inputs xi, which are transported over the model weights wi and are
eventually summed up (Σ). When this sum z reaches a certain threshold, the neuron is able
to produce an output. The output production rate of a neuron is modeled by an non-linear
activation function σ. The activation of a neuron is modeled as shown in Equation 2-3. This
equation models decision-making, by varying the weights and activation function the output
is affected.

yi = σ(Σi(wixi + w0)) (2-3)
yi represents the activation of a neuron, σ(z) is the non-linear activation function, wi is
the network weights, xi is the neuron input and w0 is the neuron bias. Popular activation
function in neural networks are modeled the sigmoid, hyperbolic tangent or Rectified Linear
Unit (ReLU) function, which are further described in Section 2-2-3.

2-1-2 Multilayer perceptron

A multilayer perceptron (neural network) is created by interconnecting multiple single per-
ceptrons in layers. The output of a single perceptron of a particular layer is the input of the
consecutive layer. These networks are called feedforward neural networks. A neural network
consists of an input layer, hidden layers, and an output layer as shown in Figure 2-2. The
amount of hidden layers scale with the depth and complexity of a neural network. In the first
layers of a neural network, relatively simple decisions are made. Layers placed deeper in the
network make more complex decisions based on the previous layers’ input. The term deep
in deep learning refers to a neural network containing multiple hidden layers, a deep neural
network.
These neural networks are designed to map input data x to output data y. This mapping is
learned from training data. The learning process consists of updating the weights wi from
Equation 2-3. The process of updating and adjusting the weights is called backpropagation,
which is described in Section 2-4.
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Figure 2-2: A neural network with an input layer, three hidden layers and an output layer. Image
adapted from: [8].

2-2 Convolutional Neural Networks

A CNN is a special type of neural network that is designed to extract information out of high
dimensional data that contains spatial information such as images. An advantage of a CNN
is that the number of parameters needed is invariant to the size of the input image [33]. The
spatial information of neighbouring pixels in the image is captured by so-called kernels in
a convolutional layer. The neurons in convolutional layer are arranged in three dimensions,
width w, height h and depth d. Depth refers to the depth of the input image, which is three
for Red-Green-Blue (RGB) images. Deeper in the network, the depth refers to the number
of feature maps of the convolutional layer. The neurons in a CNN are only connected to a
small region of neurons in the layer before. This strongly decreases the number of weights
compared to a regular ANN.

A CNN consist of convolutional layers, activation functions and pooling layers. A CNN
architecture that is designed for image classification is shown in Figure 2-3. This image
classification networks consist of a feature learning part and a classification part. Different
computer vision tasks can be solved by replacing the classification part with another end
network. Other applications that also contain a feature learning part are, for example, seg-
mentation and object detection networks. The different layers in the feature learning part are
further elaborated on in this section.
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Figure 2-3: CNN architecture for image classification. The input image is processed through the
convolutional neural network containing convolutional layers, non-linear activation functions and
pooling layers. After the feature learning part, the classification of the input image is performed.
This is obtained by a fully connected layer and the softmax function. The softmax function con-
verts the information of the feature learning part into a probability distribution over the predicted
output classes. Image adapted from: [38]

2-2-1 Convolutional layer

In a CNN the convolutional layer is the first and most fundamental layer. The parameters
of the convolutional layers are stored in kernels (or learnable filters), which have a small
receptive field and apply a convolution operation to the input [34]. The first convolutional
layer extracts simple features from the input images, such as edges and lines. The result of
this convolution is then passed on to the next layer.

Images exist out of pixels that contain a pixel value. RGB images can thus be represented
by matrices with size h × w × d, where h is the image height, w the width and d the colour
channels. Let K be a kernel with x rows, y columns and depth d. Then a kernel with size
(Kx × Ky × d) works on a receptive field (Kx × Ky) of the input image, where Kx < h and
Ky < w. The kernel slides over (convolves) the image, producing a feature map, which is
shown in Figure 2-4. Convolution is the sum of the element-wise multiplication of the kernel
and the image.

The size of the kernel is a parameter that can be set in the design phase of the CNN. Besides
this parameter, one also has to define the stride s of the convolution operation. The stride
represents the number of pixels the kernels shift over the image. The stride influences the
output size of the convolution operation. Larger strides number results in smaller output size.
The relation between the input image I and output size O after convolution with kernel K
and stride s is given in Equation 2-4.

Ox = Ix − Kx

s
+ 1

Oy = Iy − Ky

s
+ 1

(2-4)

Each convolutional layer contains a non-linear activation function, which in this case is the
ReLU non-linearity. This activation function performs an element-wise operation to every
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value in the activation map. ReLU and other non-linear activation functions are described in
Section 2-2-3. After the convolutional layer with the ReLU activation function, we observe a
pooling layer in Figure 2-3.

Figure 2-4: The convolutional layer operation. The input image matrix shown in light blue with
size h × w. The kernel K in dark blue with size Kx × Ky. The kernel slides over the input image
with stride s = 1. The values in the green matrix represent the activation map. Image adapted
from [17].

2-2-2 Pooling layer

The pooling layers in CNN architectures reduce the spatial size of the feature map [23] and
are also known as downsampling layers. Decreasing spatial size is crucial in achieving a more
efficient training process. Commonly used CNN pooling techniques are AveragePooling and
MaxPooling. AveragePooling takes the average score in the pooling window. MaxPooling
selects the maximum score of the pooling window, as can be seen in Figure 2-5.

Figure 2-5: The pooling layer operation. The values in light blue is the input image matrix.
The dark bleu matrix represents the receptive field. The output values are shown in green. On
the left side we show an example of AveragePooling and on the right side we show a MaxPooling
operation. Image adapted from [17].

2-2-3 Non-linear activation functions

As already mentioned in the previous sections, neural networks have non-linear activation
functions. Popular activation functions are the hyperbolic tangent and the sigmoid function,
given in Equation 2-5 and Equation 2-6 respectively.

σ(z) = tanh (z) ∈ (−1, 1) (2-5)

σ(z) = 1
1 + exp−z

∈ (0, 1) (2-6)

Another interesting activation function is the Rectified Linear Unit (ReLU). ReLU has as
advantage that it speeds up the convergence of the training process, as it does not contain
computational expensive exponentials. The ReLU activation function is given by:

σ(z) = max(0, z) ∈ [0, ∞) (2-7)
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2-2-4 Dropout layer

Overfitting is a problem that arises in neural networks during the training phase. The model’s
fit on the training data determines the generalizability capacity of the network. Overfitting
occurs when a model learns the training data including the noise to such a great extent that
it has failed to capture the underlying general information. This will result in a network with
bad generalizability performance on unseen data. CNNs are sensitive to overfitting since the
networks often have a large number of network weights and small-sized training datasets.

In order to overcome the problem of overfitting, dropout layers can be implemented during
the training phase. Dropout layers randomly set network weights to zero, which constrains
the network adaptation to the training data. Consequently, it prevents the weights from
being overfitted on the training data. A schematic overview of a neural network with and
without dropout layers is shown in Figure 2-6. The implementation of dropout layers will
eventually result in a decreased difference between training and validation data performance.
Dropout layers are only implemented during the training phase to prevent overfitting. Gal
and Ghahramani use dropout layers during inference to estimate the uncertainty of the model
its prediction [19].

Figure 2-6: A schematic overview of a neural network before and after applying dropout. Image
adapted from [52].

2-2-5 Deconvolutional layer

The image classification task shown in Figure 2-3 can be modified to an object detection or
a semantic segmentation task. For both these tasks the network needs to output an image.
In object detection, the aim is to locate a predefined object in the input image and encircle
it. Semantic segmentation is the pixel-wise labelling of an image into a predefined number of
classes.

This process is obtained by replacing the classification part with a deconvolution network. A
deconvolution network consists of deconvolutional and unpooling layers. These layers perform
the opposite operation of the pooling and convolutional layers, as shown in Figure 2-7. In the
pooling layer, the location of the maximum activation value can be stored in switch variables.
These values can be restored in the unpooling layer [42]. The output of an unpooling layer
is sparse, as it is an enlarged version of the input map. The deconvolutional layer produces
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a dense output map from the unpooling layer output. In Chapter 3 we further elaborate on
deconvolutional network in CNNs.

Figure 2-7: Schematic representation of pooling, unpooling, convolution and deconvolution
operations. Image adapted from [42].

2-2-6 Fully connected layer

The CNN architecture, as shown in Figure 2-3, ends with a classification part. In this clas-
sification part, the features obtained in the feature learning part are processed through a
flattening layer, fully connected layer and a softmax function. The network flattens the
three-dimensional output feature map to a one-dimensional array by a vectorisation. The
fully connected layer connects every input of the one-dimensional array to output values by
the learnable weights. To summarise, the network extracts the features using the convolu-
tional and pooling layers. Afterwards, the fully connected layer maps the extracted features to
model the final estimate, the probability for each class. The softmax function is a commonly
used output function for classification tasks, which predicts probabilities for each class. The
sum of the probabilities over all classes adds up to one. The class with the highest probability
is considered the neural network’s output. The softmax function is given by:

ŷi(xi, Θ) = σ(ak) = eak

ΣK
j=1eaj

p (ŷi = k | xi, Θ) = σ(ak)
(2-8)

here k ∈ K represents the number of classes, ak the input of the softmax function and Θ the
network parameters.

2-3 Bayesian Neural Networks

The above described neural networks operate as black boxes, making it hard to understand the
model’s reasoning. It lacks explainability [60]. The model might also generalise overconfident
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in situations it has not seen before [26, 41]. This property, in addition to the inability of a
neural network to output "I do not know", can cause dangerous situations, especially when
autonomous vehicles decisions rely on these models. Incorporating Bayesian statistics offers
a method to understand and quantify the uncertainty associated with the neural network’s
prediction. This section explains how uncertainty can be quantified in deep learning models.

Neural networks that model uncertainty are known as BNN. They offer a probabilistic in-
terpretation of deep learning models by inferring distributions over the network parameters
as shown in Figure 2-8. We define a BNN by placing a prior distribution over the network
parameters. The prior information is incorporated in the posterior distribution by using
Bayes rule. The goal is to obtain the predictive distribution, which contains the variance and
uncovers the uncertainty associated with the prediction.

For simplicity, we assume Θ represent the network parameters, X the input data and Y the
desired output which is captured in training dataset D. A neural network can be written
as a probabilistic model, p(yi|xi, Θ) for given input xi ∈ X and yi ∈ Y from the training
data. The likelihood, p(Y|X, Θ), is the distribution for the target values given inputs X and
Θ. Bayes rule is used to compute the posterior distribution p(Θ|X, Y) with the likelihood
p(Y|X, Θ) and prior for the network parameters p(Θ) by:

p(Θ|X, Y) = p(Θ)p(Y|X, Θ)
p(Y|X) (2-9)

The objective of a BNN is to include parameter uncertainty in the predicted output yi for
the unseen data xi:

p (yi | xi, D) =
∫

p (yi | xi, Θ) p (Θ | D) dΘ (2-10)

This calculates the predictive distribution by integrating over all possible model configurations
for Θ. This is similar to using an ensemble of an infinite number of neural networks, which
unfortunately is computationally impossible. To obtain the posterior distribution, we consider
variational methods. Variational methods can approximate the intractable distribution using
an approximating variational inferences technique to estimate the unknown distribution of
the weights in Equation 2-10.

Gal and Ghahramani [19] introduced a framework that uses dropout as approximate Bayesian
inference over the network weights. Their framework quantifies model uncertainty without
requiring any additional model parameters. This is achieved by Monte Carlo sampling with
dropout at test time.

2-3-1 Monte Carlo dropout

A popular way to estimate uncertainty is by inferring predictive distributions p(yi|xi, D)
with BNNs. We can obtain the variance from this predictive distribution and uncover the
uncertainty. Gall and Ghahramani designed a Monte Carlo dropout technique which provides
a scalable way to learn a predictive distribution. This is obtained by dropout layers, as
described in Section 2-2-4, at test time.

First, we define the Bayesian classification neural network. We want to find the network
parameters Θ of the function y = fΘ(x). Using the Bayesian approach, we define a prior

Roel Bos Master of Science Thesis



2-3 Bayesian Neural Networks 13

Figure 2-8: A standard neural network design where each weight is represented by a fixed value.
And a BNN with a probability distribution over the network weights. Image adapted from: [5]

distribution over the network parameters before observing any data points. We place a
standard matrix Gaussian prior distribution over the model parameters Θ = {Θ(l)}L

l=1:

Θ(l) ∼ N (0, I) (2-11)

The likelihood distribution for classification tasks is defined by the softmax likelihood as
defined in Equation 2-8. We want to obtain the predictive distribution:

p (ŷi = k | xi, D) =
∫

p (ŷi = k | xi, Θ) p (Θ | D) dΘ,

≈
∫

p (ŷi = k | xi, Θ) q∗
θ(Θ)dΘ.

(2-12)

The posterior distribution p (Θ | D) is intractable, therefore, we need to approximate the
distribution of these network parameters [16]. We can use variational inference to approximate
it [24]. This technique allows us to learn the distribution over the network parameters, qθ(Θ),
by minimising the Kullback-Leibner (KL) divergence between this approximating distribution
and the full posterior:

KL (qθ(Θ) || p(Θ|X, Y )) . (2-13)

We define the approximate variational distribution qθ(Θ(l)) for every layer l of the network
as:

Θ(l)
i = M

(l)
i · diag([z(l)

j ]K(l)
j=1 ),

z
(l)
j ∼ Bernoulli(p(l))

(2-14)

for the number of hidden layers, l = 1, ..., L with hidden units, j = 1, ..., K(l−1). Where z
(l)
j

are random Bernoulli distributed variables with probability p(l) for each layer l and hidden
unit j. The variational parameters vectors in θ = M (l), p(l), could be optimised for, such that
for θ∗ the distribution q∗

θ(Θ) is as close as possible to the true distribution.
Finally, we can estimate the predictive distribution in Equation 2-12 with a Monte Carlo
integration to sample from the posterior,

p (ŷi = k | xi, D) ≈
∫

p (ŷi = k | xi, Θ) q∗
θ(Θ)dΘ,

≈ 1
T

T∑
t=1

p
(
ŷi = k | xi, Θ̂t

)
, s.t.Θ̂t ∼ q∗

θ(Θ)
(2-15)
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Here T represent the total number of dropout samples, T times a stochastic forward pass
through the deep network. We illustrate the Monte Carlo dropout in Figure 2-9.

Figure 2-9: Schematic overview of Monte Carlo dropout. In each forward pass neurons are
switched off shown in grey, the prediction then relies on the neurons shown in black. The predictive
distribution is sampled from T thinned networks. Image adapted from: [1]

2-4 Backpropagation algorithm

The weights or kernel parameters of a neural network are adjusted and updated by the back-
propagation algorithm. This algorithm optimises the network weights for the given training
data. Backpropagation is an efficient method for computing the gradients required to perform
gradient-based optimisation of the weights in a neural network. The weight are optimized for
a defined loss function L, different loss function are defined in Section 2-4-1. This optimisa-
tion method requires the computation of the gradient of the loss function at each iteration.
Therefore, the loss function should be both continuous and differentiable.
A gradient descent algorithm updates the weights of a neural network. This gradient descent
algorithm is used by the backpropagation algorithm, which consists of several steps:

1. Initialisation: the neural network weights are initialised at small random values.

2. The forward pass: a data sample is given to the neural network, an output ŷ is returned,
and the value of the loss function is calculated.

3. The backward pass: the gradient of the loss function to all weight is calculated. This
is straightforward for the last layer, the hidden layer to the output layer. However, for
deeper layers, the chain-rule is needed to calculate the gradient:

∂L

∂wij
= ∂L

∂vj

∂vj

∂zj

∂zj

∂wij
(2-16)

4. Update: the weights are updated with a gradient descent step.

During training of neural networks, a mini-batch gradient descent algorithm is often proposed,
since calculating the gradient for all data takes too long. In literature, it is often referred to
as the stochastic gradient descent algorithm [23]. Stochastic gradient descent is a common
way to optimize the weights of a neural network.
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2-4-1 Loss function

The loss function is an essential aspect of training a neural network. This function measures
the error between the output ŷ of a neuron and the desired output value y. The two loss
functions considered in this thesis are the Mean Squared Error (MSE) and the cross-entropy
loss.
The MSE loss function is a simple quadratic loss function that calculates the average of the
squared difference between the predicted value ŷ and the ground truth value y. The function
is given:

L = 1
N

N∑
i=1

(yi − ŷi)2 (2-17)

The cross entropy cost function is commonly used in convolutional neural networks that are
designed to do a classification task. The function is calculated as the average cross-entropy
across all data samples and is defined by:

L = 1
N

N∑
i=1

[ŷi ln yi + (1 − ŷi) ln(1 − yi)] (2-18)

For N data points where yi is the truth value in classification task either 0 or 1 and ŷi is the
probability of the ith data point.

2-4-2 Stochastic gradient descent

The gradient descent method is a first-order iterative algorithm that uses the negative gradient
of the loss function to update the network parameters. This update rule tries to minimise a
loss function iteratively. The iteration process is built upon the following function:

wk+1 = wk − αk∇L (wk) (2-19)

where wk represents the iteration point at iteration step k, ∇L(wk) the gradient of the
differentiable loss function L, and αk the learning rate. The algorithms start from a predefined
initial point w0.
In standard gradient descent methods, the loss function is the sum of all the N data points
D = {xi, yi}N

i=1 used for training the neural network:

∇L (wk) = 1
N

N∑
i=1

∂L (wk, xi, yi)
∂wk

(2-20)

The larger the dataset D, the more time-consuming optimising the weights becomes. To
improve computation time, methods that apply an approximation of the gradient are often
used [7]. These so-called Stochastic gradient descent (SGD) methods use only one training
sample at each iteration instead of all the datapoints N in the data set. The gradient of the
data set is thus approximated by one single random selected sample. Instead of one single
datapoint, one can also consider a set of data points for the update rule. This is called mini-
batch stochastic gradient descent. This method has as advantage that it reduces the variance
of parameter updates. Larger mini-batches reduce the variance of SGD updates by taking the
average of the gradients in the mini-batch. To further improve training time one can apply
learning rate scheduling with the Momentum [47], RMSprop [15] or Adam [32] method.
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2-4-3 Learning rate scheduling in gradient descent optimisation

In deep learning approaches, several modifications to the update rule are available to improve
the training process of the neural network weights. These approaches try to determine the
best learning rate for optimisation. Below we describe three gradient descent optimisation
algorithms.

Momentum Momentum can be used in stochastic gradient descent. The momentum ap-
proach increases the step size when the algorithm goes in the same direction. This prevents
the algorithm from getting stuck at a non-optimal solution, such as a local minimum. Mo-
mentum accumulates a fraction β ∈ [0, 1) of the gradient in mk (an exponentially decaying
average of the gradients):

mk = βmk−1 − αk∇L (wk)
wk+1 = wk + mk

(2-21)

where mk is the sequence that keeps track of previous gradients and can accelerate the
algorithm when going in the same direction and reduce oscillations when the parameters are
changing. The sequence mk is usually initialized at zero.

RMSprop RMSprop (stands for Root Mean Square Propagation) stores an exponentially
decaying average of past squared gradients in vk and uses this value to calculate a different
learning rate for all the weights [48]. This results in a decrease of the step-size over time and
is larger when the gradients are large:

vk = γvk−1 + (1 − γ)∇L (wk) ⊙ ∇L (wk)

wk+1 = wk − αk√vk + ϵ
⊙ ∇L (wk) (2-22)

where ⊙ is the element-wise multiplication operator and ϵ a small number in the order of
10−6 that avoids division by zero. The fraction of the squared gradient that is added to vk is
denoted by γ ∈ [0, 1). A commonly used value for γ is 0.9, and vk is initialised at zero.

Adam Adam algorithms [32] combines the Momentum and RMSprop algorithms and is
nowadays the standard for training neural networks. Since the first moment mk (the mean)
in Equation 2-21 and the second moment vk (the variance) in Equation 2-22 are initialized
at zero, they seem to be biased towards zero [32]. The Adam algorithm counteracts by
calculating a bias-corrected first and second-order moment and using these to update the
weights:

mk = βmk−1 − (1 − β)∇L (wk)
vk = γvk−1 + (1 − γ)∇L (wk) ⊙ ∇L (wk)

m̂k = mk

1 − βk

v̂k = vk

1 − γk

wk+1 = wk − αk
m̂k√
v̂k + ϵ

(2-23)

where m̂k and v̂k are the bias corrected first and second-order moment, βk and γk are β and
γ to the power k. Values for all the parameters are proposed in [32]: β = 0.9, γ = 0.999, ϵ =
10−8, αk = 0.001, ∀k.
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Chapter 3

Related work

In this thesis, several projects have been used to create new insights. Some of the concepts are
reused and combined to develop and evaluate a novel method for semantic segmentation in
unstructured environments. This chapter briefly describes the most relevant articles associ-
ated with this thesis and describes the work of the articles from which most of the inspiration
has been acquired. We also introduce the semantic segmentation datasets that are used in
the experiments.

3-1 Encoder-decoder networks

Encoder-decoder networks are a type of Artificial Neural Network (ANN)s that can be em-
ployed in both supervised and unsupervised learning problems. Encoder-decoder networks
have been used in many fields, examples are natural language processing [25], image process-
ing [14], object detection [43], biometric recognition [62], anomaly detection [54] and data
analysis [36].

An encoder-decoder model learns to map data points from an input domain to an output
domain via a two-stage network. In the first stage, the encoder, with its encoding function z =
gφ(x), compresses the input data into a lower dimension called latent-space representation. In
this latent space representation the most important features of the input data are captured.
The type and number of layers determine the latent space size and thus the number of features.
The consecutive decoder network, with function y = fϑ(z) aims to reconstruct the output
from the latent space representation [2].

Examples of unsupervised tasks in encoder-decoder networks are file compression and image
reconstruction. Supervised encoder-decoder networks are able to classify the input data.
An example of a supervised encoder-decoder network is a semantic segmentation network.
This thesis focuses on both supervised and unsupervised encoder-decoder networks applied
to image-related tasks.
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3-1-1 Convolutional autoencoders

Convolutional autoencoders are a variant of Convolutional Neural Network (CNN)s that are
used in dimensionality reduction, image compression or image denoising tasks. The convolu-
tional autoencoder aims to generate a new set of images similar to the original input images.
The auto-encoder network does not need a labelled dataset since the input image must be
reconstructed. Auto-encoder models are, therefore, examples of unsupervised learning.

The convolutional filters capture the features of the training datasets in their network weights.
These features are then reconstructed in the output image of the network. During the autoen-
coder training phase, we try to minimize a loss function. For autoencoders, the loss function
can be the Mean Squared Error (MSE) or the binary cross-entropy loss. The loss function
depends on the type of input and output data the autoencoder has. For image-related tasks,
the most popular loss function for reconstruction is the MSE. The binary cross-entropy loss is
preferred as reconstruction loss when input and output values are either 0 or 1. These values
occur when performing classification tasks.

The reconstruction performance of an autoencoder is highly influenced by the latent space
size of the autoencoder. The latent space size is determined by the amount, type and size
of the layers in the autoencoder. The ratio between the input shape and the latent space
size determines the compression rate. An input shape of 360x480x3 is used for all our RGB
experiments, corresponding to 518 400 data points. If we divide this number by the amount
of data points in the latent space size, we obtain the compression rate of an autoencoder.

3-1-2 Semantic segmentation networks

Image segmentation is the process of dividing an image into multiple segments. Semantic
segmentation is the process of pixel-wise classifying each pixel of these segments to a particular
class. This task is solved by semantic segmentation networks, which is used in, for example,
road scene understanding applications [2]. Semantic segmentation networks use a similar
encoder-decoder network as a convolutional autoencoder. The output of both these networks
differ. The convolutional encoder reconstructs the original input image, while a semantic
segmentation network generates a pixel-wise annotated image. Most of the state of the art
semantic segmentation networks rely on an encoder-decoder architecture to create semantic
segmentation mappings [65, 64, 2, 44, 42].

Figure 3-1: The encoder-decoder architecture. The input image is compressed by the encoder
(z = gφ(x)) into a latent space representation. The decoder (y = fϑ(z)) then decodes it back
to the original input image size, with the pixels annotated. Image adapted from: [40].
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3-2 SegNet 19

In Figure 3-1 an overview of an encoder-decoder model is illustrated. These supervised
learning models are trained by minimizing the loss function L(y, ŷ), which measures the
difference between the ground-truth output y and the semantic segmentation prediction ŷ. A
semantic segmentation network is thus a form of supervised learning, where for example, the
network is trained to segment images into different classes, as can be seen in Figure 3-1.

In autonomous driving systems, segmentation models are required to run at real-time com-
putation. Real-time is considered to be around 25 frames per second. Figure 3-2, although
it is not up to date, shows the accuracy of the different models with its inference speed. The
accuracy and inference speed is calculated on the Cityscapes test dataset [10].

Figure 3-2: Inference speed and mean Intersection over Union (mIoU) performance of different
semantic segmentation networks on Cityscapes test dataset. The bleu marked networks are tested
with downsampled images. Image adapted from [64].

3-2 SegNet

This thesis uses the SegNet architecture as a semantic segmentation network. This network
consists of an encoder network, a corresponding decoder network, followed by a pixel-wise
classification layer [2]. The encoder network is identical to the 13 convolutional layers in the
VGG16 network [51]. Each encoder layer has a corresponding decoder layer, and hence the
decoder network has 13 layers. The decoder network maps the low-resolution feature maps to
full input resolution feature maps. The decoder output is fed to a multi-class softmax classifier
to independently produce class probabilities for each pixel. In Figure 3-3 the architecture of
SegNet is shown, where the input image is transformed by convolutional, pooling, upsampling
and softmax layers into a pixel-wise classified image.
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Convolutional Encoder-Decoder

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax
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Figure 3-3: An illustration of the SegNet architecture [2]. An RGB input image is fed to the
encoder, containing convolutional and pooling layers. A decoder upsamples its input using the
pooling indices from the corresponding encoder. It then performs convolution with a trainable filter
bank to densify the feature map. The soft-max classifier layer generates a per class probability.
The feature maps are transformed into a semantic segmentation mapping.

3-2-1 Architecture

Each encoder in the network performs convolution with a filter bank to produce a set of
feature maps. These are then batch normalized [27, 3]. Then an element-wise rectified-linear
non-linearity (ReLU) is applied. Following that, max-pooling with a 2 × 2 window and stride
2 (non-overlapping window) is performed, and the resulting output is sub-sampled by a factor
of 2. We store the max-pooling indices, i.e. the location of the maximum feature value in
each pooling window is memorized for each encoder feature map. In principle, this can be
done using 2 bits for each 2 × 2 pooling window and is thus much more efficient to store than
memorizing feature map(s) in float precision.

The appropriate decoder in the decoder network upsamples its input feature map using the
max-pooling indices from the corresponding encoder feature map. This step produces sparse
feature map(s). These feature maps are then convolved with a trainable decoder filter bank to
produce dense feature maps. A batch normalization step is then applied to each of these maps.
Note that the decoder corresponding to the first encoder (closest to the input image) produces
a multi-channel feature map, although its encoder inputs have three channels (RGB). This
is unlike the other decoders in the network, which produce feature maps with the same size
and channels as their encoder inputs. The high dimensional feature representation at the
output of the final decoder is fed to a trainable softmax classifier. This softmax function
classifies each pixel independently. The output of the softmax classifier is a K channel image
of probabilities where K is the number of classes. The softmax function is defined in Equation
2-8

3-2-2 Bayesian model uncertainty

A probabilistic variant of SegNet, which outputs in addition to the semantic segmentation map
a measure of model uncertainty, is proposed in [29]. At test-time dropout is used to obtain
this model uncertainty as described in Section 2-3-1. This is achieved with no additional
parameterisation.
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The Bayesian SegNet architecture with dropout layers is shown in Figure 3-4. We obtain the
probabilistic output from Monte Carlo samples of the model by these dropout layers during
test time. The number of Monte Carlo samples can be set to any value. The authors state
that the Monte Carlo sampling converges after 30 samples, no further significant improvement
of semantic segmentation performance is obtained beyond this point. We, therefore, fix the
number of Monte Carlo samples to 30.

These different Monte Carlo samples are used to obtain the final semantic segmentation and
model uncertainty. The mean softmax value of these samples is set as the final softmax
output.

s̄(z)i = 1
n

n∑
i=1

s(z)i (3-1)

where n represents the number of Monte Carlo samples. The class with the highest mean
probability at a pixel is set as final semantic segmentation prediction. The variance per class
vi between the softmax samples for a pixel is used as the uncertainty.

vi = 1
n

n∑
i=1

(si − s̄i)2 (3-2)

The pixel uncertainty measure above represents the uncertainty per class per pixel. We cal-
culate the overall pixel model uncertainty v̄ by taking the mean of the per-class pixel variance.

Convolutional Encoder-DecoderInput
Segmentation

Model Uncertainty

Stochastic Dropout
Samples

Conv + Batch Normalisation + ReLU
Dropout Pooling/Upsampling Softmax

mean

variance

RGB Image

Figure 3-4: An illustration of the Bayesian SegNet architecture [29]. An RGB input image is
fed to the encoder, containing convolutional, pooling and dropout layers. A decoder upsamples
its input using the pooling indices from the corresponding encoder. It then performs convolution
with a trainable filter bank to densify the feature map. The probabilistic output is obtained from
Monte Carlo samples of the model with dropout at test time. The mean of these softmax samples
represents the final semantic segmentation, and the variance represents the model uncertainty for
each class.

Bayesian SegNet improves semantic segmentation performance by 2-3% compared to the
original SegNet. Improvements are especially observed in smaller datasets where modelling
uncertainty is more effective. A disadvantage of the Bayesian variant is the additional infer-
ence time needed for measuring the model uncertainty. SegNet and Bayesian SegNet both
use the cross-entropy loss as the objective function for training the network. The networks
can be trained end-to-end using stochastic gradient descent.

Master of Science Thesis Roel Bos



22 Related work

3-3 Datasets

In order to define traversable areas in the RGB images one needs to train a semantic seg-
mentation network. Training these CNN requires labelled datasets. An overview of different
semantic segmentation autonomous driving datasets is given in Table 3-1.

Table 3-1: Overview of autonomous driving datasets. For every dataset the environment type,
number of annotated images, number of classes and image dimensions is given.

Name Environment #Annotations1 #Classes2 Dimension
DeepScene [56] Forest 366 6 880x480

CamVid [9] Urban 701 11 480x360

Yamaha-CMU
Off-Road [39] Off-road 783 8 1024x544

Cityscapes [10] Urban 3475 30 2048x1024
1Number of images annotated, 2Number of classes annotated

The semantic segmentation datasets differ based on the environment in which they are cap-
tured, the number of images and classes and the image dimension. We show a comparison of
dataset statistics in Figure 3-5, here we see the average RGB image of the different training
datasets. In the DeepScene average image, we observe that the road defined in this dataset
has a more yellow colour. In contrast, the urban datasets, CamVid and Cityscapes, have a
grey colour for traversable areas. We observe a more light grey colour for the traversable
pixels in the YCOR average training image. The datasets are described in more detail in the
following sections.

(a) DeepScene (b) CamVid (c) YCOR (d) Cityscapes

Figure 3-5: The average training image of the CamVid, DeepScene, YCOR and Cityscapes
training dataset.

3-3-1 DeepScene

DeepScene is a forest environment dataset containing 366 images with pixel-level ground
truth annotations, which were manually annotated [56]. The data is collected on three days
to obtain enough variability in lightning conditions. The original images are of the size
880x480 pixels. In this dataset, six classes are defined: sky, grass, trail, vegetation, tree and
obstacle. Examples of the input image with its corresponding ground-truth image can be seen
in Figure 3-6.
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3-3 Datasets 23

Figure 3-6: DeepScene forest dataset images [56]. The top row is the original input image,
with the ground truth shown in the second row. The legend contains the 5 classes defined in the
annotated images.

3-3-2 CamVid

CamVid is an urban road scene understanding dataset with 367 training images, 101 validation
images and 233 testing images of the day and dusk scenes [9]. The original image size is
480x360; therefore, no resizing of the images is needed. In this dataset, 11 different classes
are defined. Examples are roads, buildings, cars, pedestrians, signs, poles, sidewalks. Example
images with their labelled ground truth can be seen in Figure 3-7.

Figure 3-7: CamVid urban dataset images [9]. The top row is the original input image, with the
ground truth annotation shown in the second row. The legend contains the 12 label classes with
the corresponding colors.

3-3-3 YCOR

Yamaha-CMU Off-Road is an off-road dataset in which eight classes are defined. The dataset
consists of 563 training, 134 validation and 86 test images. The original image size is 1024x544
pixels. The images are first cropped to 592x444 pixels and then resized to 480x360 pixels.
Example images of this dataset can be found in Figure 3-8.
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Figure 3-8: Yamaha-CMU Off-Road images [39]. The first row contains the RGB input image,
with the ground truth shown in the second row. The legend shows the nine classes encountered
in the YCOR dataset.

3-3-4 Cityscapes

The Cityscapes dataset is recorded in different German cities. A total of 5000 images with its
ground truth segmentation is available for training, validating and testing the performance
of a semantic segmentation network. The original image size was 2048x1024. The images are
cropped to a dimension of 1000x750 pixels and then resized to 480x360 pixels. Samples from
this dataset are shown in Figure 3-9.

Figure 3-9: Examples images of the Cityscapes dataset [10]. The first row contains the RGB
input image, with the ground truth shown in the second row. The legend does not contain all
labels used in the dataset.
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Chapter 4

Methodology

The previous chapters provided descriptions of Bayesian SegNet and autoencoder networks.
This chapter describes how we apply these neural networks in a hybrid framework for traversabil-
ity estimation in unseen unstructured environments. Hybrid in this context stands for a
changing operation mode for changes in environment type. By designing environment-specific
models, an improvement of the overall semantic segmentation performance is expected.

We design two different hybrid frameworks, hybrid framework 1 consists of Bayesian SegNet.
Hybrid framework 2 contains SegNet and an additional autoencoder. The hybrid frameworks
both require a decision parameter for selecting the best performing model for the current input
image. In hybrid framework 1, the Bayesian uncertainty is used as a decision parameter. In
hybrid framework 2, either the pixel reconstruction error (RMSE) or the Structural Similarity
Index Measure (SSIM) will be implemented. Besides improving the model’s overall accuracy,
we try to measure uncertainty and detect situations it has not seen before. In the following
sections, both approaches will be further described.

This chapter starts with the data preprocessing step of the images. After that, an overview of
the hybrid frameworks with their different architectures are shown. The last section defines
different metrics for evaluating and comparing both approaches.

4-1 Preprocessing of images

The datasets described in Chapter 3 will be used for training, validating and testing the
semantic segmentation performance of the hybrid frameworks. The images of the datasets
have different widths and heights, which causes difficulties for the input of the neural networks.
The semantic segmentation networks are designed for an input image size of 480x360 (4:3
aspect ratio). Therefore, we crop and resize the images and labels of all datasets into this
dimension.

We measure the semantic segmentation performance of the hybrid frameworks by the Intersection
over Union (IoU) and the Pixel Accuracy (PA). These measures consider the number of classes
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defined in the datasets. The semantic segmentation performance of the segmenters can only
be compared if we rewrite the labels into similar classes for every environmental model. We
rewrite all the original label classes to traversable, non-traversable and sky. Example input
images with the original labels and the rewritten labels are shown in Figure 4-1.

DeepScene
Dataset

CamVid
Dataset

YCOR
Dataset

Cityscapes
Dataset

Figure 4-1: RGB images, original labels and rewritten labels examples of the DeepScene, CamVid,
YCOR and Cityscapes dataset. The legend contains the classes of the rewritten labels.

4-1-1 Class weights

Before training SegNet or Bayesian SegNet, some variables related to the dataset need to
be set. For semantic segmentation networks, the occurrence frequency and the pixel size of
the classes influence the network’s performance. During training, some classes occur more
often than others and which cause the model to prefer some label over another. Roads, for
example, tend to be both the biggest and most occurring object in the training images. On
the other hand, pedestrians are relatively small objects and are not always present in an
image. SegNet corrects this by introducing class weights in the cross-entropy loss function.
These class weights are calculated using median frequency balancing [18], shown in Equations
4-1, 4-2 and 4-3. Larger classes in the training set have a weight smaller than one, and the
weights of the smallest classes are the highest.

weight(c) = medianFrequency
frequency(c) (4-1)

where:
frequency(c) =

∑I
i=1 #pixelsOfClass(c)InImage(i)

#imagesContainingClass(c) × imageSize (4-2)

and:
medianFrequency =

∑N
c=1 frequency(c)

N
(4-3)
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The class weights of the different datasets are shown in Table 4-1. These class weights are
then passed into the cross-entropy loss function. The loss is summed up over all the pixels in
a mini-batch.

Table 4-1: Class weights for the classes traversable, non-traversable and sky in the different
datasets. The class weights are calculated using the median frequency balancing method.

Dataset DeepScene CamVid YCOR Cityscapes
Traversable 0.8826 1.0 0.9664 1.0
Non-traversable 1.0 0.7689 1.0 0.6655
Sky 1.6615 2.1398 3.1564 3.1686

4-2 Hybrid framework 1: Bayesian Uncertainty

In hybrid framework 1, we use the Bayesian uncertainty as a decision parameter Cθ. An
overview of the general hybrid framework is shown in Figure 4-2. This overview consists
of N environmental models. Every environmental model consist of a environment-specific
segmenter Sθ and a corresponding uncertainty measure Cθ. Hybrid framework 1 consists of
multiple Bayesian SegNets Sθ with its Bayesian uncertainty measure Cθ. Every model in this
hybrid framework will have the same RGB image as input from the camera installed on the
Unmanned Ground Vehicle (UGV). The different models will output different semantic seg-
mentation mappings. We hypothesise that when traversing, for example, a forest, a segmenter
specifically trained on forest environmental images will outperform a segmenter trained on
images from multiple environments.

Figure 4-2: Overview of the designed hybrid semantic segmentation framework with N envi-
ronmental models in parallel. Every environment-specific model consist of a segmenter Sθi and
uncertainty measure Cθi. We compare the uncertainty values of the different segmenters. The
segmenter S with the lowest uncertainty value is selected for traversability estimation. In this
example, the second environmental model has the lowest uncertainty value Cθ. Therefore, this
environment-specific segmenter is selected for traversability estimation.
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4-2-1 Bayesian pixel uncertainty (σ)

The N models will output different semantic segmentation mappings. One the environment-
specific segmenters Sθ has to be selected for traversability estimation during operation. In
hybrid framework 1, this will be based on the Bayesian uncertainty measure Cθ. Every
environmental model will present its model uncertainty as a 360x480x1 pixel image. The
pixels in this mapping contains a value vh,w between 0 and 0.5. The higher the value, the
more uncertain the model’s prediction and vice versa. For every N model, the Bayesian
uncertainty (σ) is measured by:

Bayesian pixel uncertainty (σ) =
360∑
h=1

480∑
w=1

v̄h,w

360 × 480 (4-4)

where v̄ represents the pixel model uncertainty as calculated in Equation 3-2, h the height of
the uncertainty mapping and w the width. Eventually, the segmenter (Sθ) with the lowest
uncertainty σ or Cθ will be used for estimating traversability:

Sσ = arg min
([

σ1, σ2, ..., σN−1, σN

])
(4-5)

here σ represent the uncertainty of the different environmental models for the current input
image.

4-3 Hybrid framework 2: Reconstruction error

In hybrid framework 2, we introduce another method to quantify uncertainty. In this ap-
proach, every segmenter Sθ has an additional autoencoder Cθ, which has to perform as the
decision parameter in this framework. The segmenter Sθ and autoencoder Cθ couple in an
environmental model are trained on the same training dataset. These CNNs differ in ar-
chitecture, which eventually result in different outputs. The semantic segmentation network
is trained to pixel-wise classify the input image. In contrast, the autoencoder is trained to
reconstruct the input image from a latent space representation.

The semantic segmentation network thus outputs a pixel-wise classification while the autoen-
coder produces a reconstructed RGB image. Hybrid framework 2 compares the reconstructed
output images of the autoencoders Cθ to select a segmenter Sθ for the current input frame.

The autoencoders of the environmental models output different reconstruction images since
they are trained on different environment-specific datasets. During the training stage, the
autoencoder tries to capture the most relevant features of the training dataset in its network
weights. For example, an autoencoder that is trained on forest related images will try to
capture features such as trees, bushes and leaves in its network weights, while the an autoen-
coder trained on urban images tries to learn the features as cars, buildings and pedestrians.
The training datasets thus determines the network weights, which will result in different
reconstructed output images.

These differences in network weights become visible when the decoder reconstructs the latent
space representation into a RGB image with same dimensions as our original input. During
the decoding phase the autoencoders try to incorporate these environment related features
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of the training dataset in the reconstruction. This will therefore result in different outputs of
the environment-specific autoencoders.
The differences in reconstructed images can be reflected in a reconstruction metric. This
reconstruction metric has to measure the difference between the original input image y and
the reconstructed image ŷ. Two commonly used options for measuring this difference are
the pixel reconstruction error (RMSE) or the SSIM [22, 57, 58]. One of these measures will
eventually be used for model selection in hybrid framework 2. A more detailed description
of the RMSE and SSIM are given in the following sections. After that, we describe the
considered autoencoder architectures used in this thesis.

4-3-1 Pixel reconstruction error (RMSE)

In the autoencoder approach, a reconstruction error is used to define the model uncertainty
of an environmental model. The output of the autoencoder is a reconstructed image, defined
by ŷ, of the size 360x480x3 pixel image. This image has the same dimension as the input
image y. The reconstruction error can be calculated as the RMSE between y and ŷ:

Pixel reconstruction error (RMSE) =
3∑

c=1

360∑
h=1

480∑
w=1

√
(yh,w,c − ŷh,w,c)2

360 × 480 (4-6)

where c represents the RGB color channels, h the height and w the width in pixels. This
measure will eventually result in a single value that represents the pixel reconstruction error
of the whole image. The pixel reconstruction error functions as the decision variable in hybrid
framework 2.

4-3-2 SSIM

The other method for calculating similarities between images is the SSIM [57]. SSIM is a
metric that measures the perceived change in structural information between two images
windows. Instead of measuring the differences between images on pixel value level, SSIM
tries to identify structural information in an image or a window of the image. This metric
compares two images based on three key features: luminance, contrast and structure. The
SSIM between the image windows of y and ŷ is given by the equation:

SSIM = (2µyµŷ + C1)(2σyŷ + C2)
(µ2

y + µ2
ŷ + C1)(σ2

y + σ2
ŷ + C2)

(4-7)

The image luminance features µy and µŷ are calculated by taking the average of all pixel
values in the image window. One can compare the luminance of two image windows using
the following formula 2µyµŷ+C1

µ2
y+µ2

ŷ+C1
. C1 is there to stabilize the division with weak denominators.

The function 2σyŷ+C2
σ2

y+σ2
ŷ+C2

is used to compare the contrast of two images. The contrast features
σy and σŷ are obtained by taking the standard deviation of all pixel values. Finally the
structural similarity is given by σyŷ+C3

σyσŷ+C3
, where σyŷ is the covariance of the pixels in both

images. The mean SSIM will be calculated for the whole image if the SSIM is calculated on
a window level. The outcome of the SSIM is a unitless number between -1 and 1, where 1
represents two identical images, and -1 no match at all.
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4-3-3 Autoencoder architectures

In this section, we design five different autoencoder architectures for hybrid framework 2.
The autoencoder architectures are presented in Table 4-2. They differ based on trainable
parameters, latent space size, compression rate, and the number of layers in the encoder
and decoder. The architecture names are defined by the number of data points captured in
the latent space size. For hybrid framework 2, we aim for an autoencoder architecture that
outputs a reconstructed image, which reflects on what the segmenter has seen before. This is,
as described above, measured by either the pixel reconstruction error (RMSE) or the SSIM.
The precision and recall metrics will determine which autoencoder architecture and decision
parameter perform the best in hybrid framework 2.

All the autoencoder have the same input and output dimension. Every encoder consists of
multiple convolutional layers followed by a non linear activation function and a MaxPooling
layer. The consecutive decoders have instead of a MaxPooling layer an UpSampling layer. The
non linear activation functions in the network are the ReLu function. The ReLU function
is used since it is known to be computational not expensive. Only the last layer in the
autoencoder contains a different activation function. We implement the sigmoid function
since we want the output values of the autoencoder to have a lower bound and upper bound.
This is for RGB images 0 and 255, we however have normalized these value such that the
input and output values range between 0 and 1. Therefore, we use the sigmoid function since
this non linear activation function maps its output values onto this range. The autoencoder
architectures in Table 4-2 grow in depth as the latent space size decreases. This is obtained
by implementing an extra stack of layers in the decoder and encoder. Every stack exists of a
convolutional layer, non-linear activation function and a MaxPooling or Upsampling layer.

The first three architectures, 345600, 86400 and 21600, differ an order of four in compression
rate. This difference is obtained by adding a (2,2) MaxPooling layer in the encoder and an
(2,2) UpSampling layer in the decoder. The fourth 3600 autoencoder architecture has a latent
space size six times smaller than the previous autoencoder. This is caused by a new kernel
size design of the MaxPooling and UpSampling layer.

We had to consider a new kernel size since adding an extra MaxPooling and UpSampling
layer with a (2,2) kernel size causes difficulties in calculating the pixel reconstruction error
or the SSIM. Implementing the (2,2) kernel would eventually result in a latent space size of
(22.5x60x8), which is rounded up to (23x60x8). The decoder network then passes this latent
space representation through its layer which results an output shape of (368x480x3). This
output image shape can not be pixel-wise compared with the original input image since the
height of the output image differs from the original input image. Therefore, we designed a
different kernel size for the MaxPooling and UpSampling. Autoencoder architecture 3600 and
600 therefore have an additional layer with kernel size (3x2) instead of (2x2).

4-4 Evaluation metrics

We describe two segmentation performance measures and two model selection metrics to
evaluate the hybrid framework performance. Besides the semantic segmentation and model
selection performance, we also consider the inference speed of the models.
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Table 4-2: Overview of the five autoencoder architectures designed for hybrid framework 2: re-
construction error. The architectures differ in number of trainable parameters, latent space sizing,
compression rate and the amount of layers. The code for the different autoencoder architectures
is displayed in Appendix B.

Architecture Trainable
parameters

Latent
space size

Com-
pression

Convolutional
layers

Maxpooling/
UpSampling
layers

345600 1419 180 x 240 x 8 1.5 3 x (8,3,3)
1 x (3,1,1) 2 x (2,2)

86400 2467 90 x 120 x 8 6
1 x (8,2,2)
4 x (8,3,3)
1 x (3,1,1)

4 x (2,2)

21600 3635 45 x 60 x 8 24
1 x (8,2,2)
6 x (8,3,3)
1 x (3,1,1)

6 x (2,2)

3600 4803 15 x 30 x 8 144
1 x (8,2,2)
8 x (8,3,3)
1 x (3,1,1)

6 x (2,2)
2 x (3,2)

600 5971 5 x 15 x 8 864
1 x (8,2,2)
10 x (8,3,3)
1 x (3,1,1)

6 x (2,2)
4 x (3,2)

4-4-1 Pixel Accuracy (PA)

Pixel accuracy measures the ratio between the properly classified pixels, divided by the total
number of pixels in the image.

PA =
∑K

i=0 pii∑K
i=0

∑K
j=0 pij

(4-8)

Where K represents the number of classes, pij the number of pixels of class i predicted as
belonging to class j. The above-described function is also known as the global accuracy of a
prediction. This pixel accuracy measure can also be transformed into a class average accuracy.
Here the ratio is computed per class and then averaged over the total number of classes.

4-4-2 Intersection over Union (IoU)

The Jaccard index or the IoU is another metric to assess the performance of a semantic
segmentation network [28]. IoU measures similarity between finite sample sets, and is defined
as the size of intersection divided by the size of union of the sample sets. For semantic
segmentation prediction this is defined as the area of intersection between the predicted
segmentation map and the ground truth, divided by the area of union between the predicted
segmentation map and the ground truth.

IoU = J(A, B) = |A ∩ B|
|A ∪ B|

(4-9)
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Where A denotes the ground truth, and B represents the predicted segmentation map. The
mean Intersection over Union (mIoU) is the average IoU over all classes. The mIoU is the
standard used in research to measure and compare the performance of segmentation models.

4-4-3 Model classification

The hybrid approach requires a classification in which the correct semantic segmentation has
to be selected for the current input frame. This selection will be based on the Bayesian
uncertainty measure or the reconstruction error measures described above. To compare the
model selection performance of the hybrid frameworks, we select two measures, precision and
recall. Precision is the fraction of relevant instances among the retrieved instances, while
recall is the fraction of relevant instances that were retrieved based on relevance.

Precision = TP

TP + FP
(4-10)

and
Recall = TP

TP + FN
(4-11)

We explain the recall and precision based on an experiment with images from the CamVid
and Deepscene test datasets and their corresponding models, CamVid and DeepScene. For
the CamVid precision and recall measures, True Positive (TP) represents the number of
CamVid test images where the CamVid model is selected. False Positive (FP) is the number
of DeepScene images where the CamVid model is selected, FP is also known as the Type
I error. False Negative (FN) is the number of CamVid images where the DeepScene model
is selected, FN is also known as the Type II error. True Negative (TN) is the number of
DeepScene images where the DeepScene model is selected.

4-4-4 Inference time

The UGV will drive at high speeds through the different environments. In Figure 3-2 different
semantic segmentation networks with their inference speed are shown. In this figure Frames
per second (FPS) for real-time is around 25 frames. However, for these obtained results,
other hardware is used. Eventually, the inference time of both the hybrid frameworks can be
compared to see which one is faster. The specifications of the hardware used in this thesis are:

Hardware specifications:
CPU: Intel Core i7-6800K, 6 cores @ 3.40GHz
GPU: GeForce GTX 1080, 8 GB
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Chapter 5

Experiments and Results

In this research, we conducted a set of experiments using two different hybrid semantic seg-
mentation frameworks. We described hybrid framework 1: Bayesian uncertainty (σ) and
hybrid framework 2: Reconstruction error (RMSE) in detail in Chapter 4.

In Section 5-1, we define the potential semantic segmentation performance of a hybrid frame-
work compared to a single deep semantic segmentation network. Then we assess the per-
formance of hybrid framework 1 based on the Bayesian uncertainty measure as a decision
parameter. The performance of the different approaches is measured by the Intersection over
Union (IoU) and Pixel Accuracy (PA) on the semantic segmentation test datasets.

In Section 5-2, we experiment with the different autoencoder architectures for hybrid frame-
work 2. We assess the influence of colour on the autoencoder reconstruction performance.
For hybrid framework 2, we have two candidate decision parameters, the pixel reconstruction
error (RMSE) and the Structural Similarity Index Measure (SSIM). We investigate which
decision parameter is better for this application. We measure the model selection performance
of the different decision parameters by the precision and recall evaluation metrics.

In the third experiment, both the hybrid frameworks process a sequence of images. The
sequential dataset enables us to measure the Bayesian uncertainty and reconstruction error
over time. By tracking these values over time, we can define the number of model switches
within this sequence of images for both the hybrid frameworks. Another important metric
for traversability estimation is the inference time. The inference time is a factor that limits
the maximum speed of the Unmanned Ground Vehicle (UGV) during operation. Therefore,
we also perform a comparison on inference time.

In the last section, we compare the semantic segmentation performance of the two hybrid
frameworks based on their decision parameters. First, we compare the model selection per-
formance and then we compare the performance on a pixel-wise uncertainty level. The pixel-
wise uncertainty comparison differs from the earlier experiments since we compare every pixel
individually instead of all the pixels of image.
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5-1 Hybrid semantic segmentation experiments

In this experiment, the potential of a hybrid framework containing N=4 Bayesian SegNets in
parallel is calculated. These semantic segmentation networks are trained on the DeepScene,
CamVid, YCOR and Cityscapes datasets. In addition to the hybrid framework, we train one
single deep semantic segmentation network on a combination of all these training datasets.
An overview of the different environmental segmenters and their datasets is given in Table
5-1.
The dataset split size is determined by the authors of the different datasets. Therefore, the
train, validation and test dataset sizes vary between the segmenters. Changing the split would
result in similar-looking frames ending up in both the train, validation and/or test dataset,
which eventually influences the semantic segmentation performance. We train the semantic
segmentation networks to classify pixels of the input image as traversable, non-traversable
or sky. In addition to the pixel-wise prediction, Bayesian SegNet outputs an uncertainty
mapping of its prediction.

Table 5-1: Overview of semantic segmenters with their corresponding dataset split and environ-
ment type. The dataset of the combined segmenter is a combination of all the datasets.

Segmenter Environment Train size Validation size Test size
DeepScene Forest 197 52 117
CamVid Urban 367 101 233
YCOR Off-road 563 134 86
Cityscapes Urban 2510 500 174
Combined All 3637 787 610

The five segmenters defined in Table 5-1 use the cross-entropy loss as the objective function.
The loss is summed up over all the pixels in a mini-batch. The variation in the number of
pixels in each class in the training set is compensated for by using median frequency balancing
[18]. The weights of these different classes are given in Table 4-1. Apart from the class weights
and datasets, segmenters are trained using identical hyperparameters. The segmenters make
use of the Adam optimizer with learning rate α = 0.001, exponential decay rate first moment
estimates β = 0.9, exponential decay rate for the second-moment estimates γ = 0.999, ϵ =
0.0001 and batch size = 3. We train the segmenters until convergence, when we observe no
further reduction in training loss.

5-1-1 Semantic segmentation

In this section, we compare the semantic segmentation performance of the five segmenters
defined in Table 5-1. The predictions differ based on what the segmenter has seen before,
which relates to the training dataset. We define the segmenters’ quantitative performance by
comparing the different accuracies of the N-predictions on the test datasets. The semantic
segmentation performance is measured by the PA and IoU as described in Section 4-4.
The semantic segmentation performance of the individual segmenters on the different test
datasets is shown in Figure 5-1. The DeepScene segmenter outperforms all the other seg-
menters on the DeepScene test dataset as shown in Figure 5-1a. It obtains the highest min-
imum 61.5%, median 92.1% and maximum 97.5% IoU scores. In Figure 5-1b, the CamVid
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test dataset is fed to the five segmenters. Here we see similar results. The CamVid seg-
menter obtains the highest minimum 60.4%, median 92.6% and maximum 98.2% IoU-scores.
The YCOR segmenter outperforms the other segmenter on the YCOR test dataset, with a
minimum 54.8%, median 83.6% and maximum 97.1% IoU-score as shown in Figure 5-1c. In
Figure 5-1d, we observe that the Cityscapes segmenter obtains a median IoU of 94.6% while
the combined segmenter achieves a median IoU score of 95.0%. The combined segmenter thus
performs better than the Cityscapes segmenter. However, in this comparison the IoU scores
are close, making it hard to state that one is better than the other.
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(a) DeepScene test dataset
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(b) CamVid test dataset

DeepScene CamVid YCOR Cityscapes Combined
Segmenter

0

20

40

60

80

100

In
te

rs
ec

ti
on

 o
ve

r 
U

ni
on

 [
%

]

(c) YCOR test dataset
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(d) Cityscapes test dataset

Figure 5-1: IoU performance of the segmenters on (a) the DeepScene test dataset, (b) the
CamVid test dataset, (c) YCOR test dataset and (d) the Cityscapes test dataset. The segmenters
differ based on their environmental training dataset. The combined segmenter is trained on
combination of all training datasets.

Based on the above-performed experiment, we conclude that a semantic segmentation network
trained for a specific environment achieves higher IoU and PA scores on the corresponding
test dataset than one that is trained for another environment. The environmental specific
segmenters thus better capture the features of the training dataset than the combined seg-
menter.
These results of this experiment also enable us to calculate the potential of a hybrid semantic
segmentation framework. The potential performance of a hybrid framework consists of the
performance of an environmental segmenter corresponding to a specific dataset. The potential
performance thus represents a merged performance of the DeepScene, CamVid, YCOR and
Cityscape segmenter on their corresponding test datasets. In practice, this means that the
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UGV selects the DeepScene segmenter when it is traversing a DeepScene related environment
and the YCOR segmenter when it travels a YCOR environment. In the following section we
compare the semantic segmentation performance of the combined segmenter, the potential of
hybrid framework and hybrid framework 1: Bayesian uncertainty on the 610 test images.

5-1-2 Bayesian uncertainty

In this experiment we use the uncertainty mappings generated by Bayesian SegNet as a deci-
sion parameter for hybrid framework 1. The IoU and PA of the hybrid framework potential,
the combined segmenter and the hybrid framework with Bayesian uncertainty is shown in
Figure 5-2.

The hybrid potential framework has a higher minimum, median and maximum IoU than the
combined segmenter. The median IoU and PA scores of the hybrid potential framework are
92.6% and 97.0%, respectively. In comparison, the combined segmenter has a median IoU and
PA score of 90.0% and 95.7%. An increase of 2.6% in IoU and 1.3% in PA can be obtained
by designing a hybrid framework. The data points in the hybrid potential framework are
thus denser represented at higher IoU and PA scores than the data points of the combined
segmenter. The minimum IoU scores also increase from 48.5% in the combined segmenter to
54.8% in the hybrid framework potential. The minimum PA scores increases from 62.0% to
63.8%.

We also observe that hybrid framework 1: Bayesian uncertainty (σ) does not achieve the
full potential of the hybrid framework. This is caused by false model selections, where the
wrong segmenter is selected for the current input frame based on the Bayesian uncertainty
measure. The median IoU score of the Bayesian uncertainty approach is 91.9%, which is 0.7%
lower than the potential hybrid framework performance. The Bayesian uncertainty approach,
however, has a higher median IoU score than the combined segmenter, 90.0%. The PA also
increases in the Bayesian approach. A median of 96.6% is obtained, while the combined
segmenter gains a median PA score of 95.7%. The minimum values of hybrid framework 1 are
for both the IoU and the PA lower than that of the combined segmenter, 26.3% and 38.5%,
respectively. The frames with the lowest semantic segmentation scores are the most critical
since for these frames, the UGV is more likely to crash than in frames with high semantic
segmentation performance.

Example input images of the DeepScene test datasets and output images of hybrid framework
1 are shown in Figure 5-3. Therefore, we expect the highest semantic segmentation perfor-
mance of the DeepScene segmenter. For the first input image, both the DeepScene segmenter
and the combined segmenter obtain high IoU-scores with 87.5% and 84.6%, respectively. The
other three segmenters, CamVid, YCOR and Cityscapes, have lower IoU scores ranging from
48.2% to 64.9%.

We observe this performance difference also in the predictions of the different segmenters.
In the first prediction and uncertainty mapping of the DeepScene segmenter, the segmenter
is most uncertain on the left edge between the traversable and non-traversable area. The
prediction differs from the ground truth annotation in this area, the pixels are falsely classified.
For the CamVid, YCOR and Cityscapes segmenter, we obtain higher uncertainty scores which
correspond to less confidence about their prediction.
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(a) Intersection over Union (IoU)
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(b) Pixel Accuracy (PA)
Figure 5-2: Semantic segmentation performance of different segmenters, measured by (a) IoU
and (b) PA. The hybrid framework potential represents the optimal performance, for every image
in the test dataset the correct model is selected. Hybrid framework 1: Bayesian uncertainty
represents the performance when the Bayesian uncertainty measure is implemented as decision
parameter.

In the second example, the DeepScene and combined segmenter again produce the best seg-
mentation predictions with respectively an IoU score of 81.5% and 81.6%. For this input
image, the CamVid segmenter only classifies a small number of pixels as traversable, which
results in an IoU score of 46.3%. The prediction of the CamVid segmenter produces the lowest
uncertainty value σcamvid = 0.003, this will cause a false model selection. In the next section,
we will further elaborate on model selection performance.

5-1-3 Model selection

In the previous subsection, the potential of a hybrid semantic segmentation framework is
shown. A decision parameter is designed to select the best semantic segmentation prediction
for the current input image for this hybrid framework. In hybrid framework 1, Bayesian
uncertainty mapping is used to select the corresponding segmentation. If we choose the pre-
diction with the lowest Bayesian uncertainty value, a median IoU score of 91.9% is obtained.
In contrast, the potential median IoU score is 92.6% as shown in Figure 5-2.

The performance decrease occurs due to false model selection based on the Bayesian uncer-
tainty value (σ). The segmenter (Sσ) corresponding to the lowest Bayesian uncertainty (σ)
value is selected. In Figure 5-3, we show an example of a correct and false model selection.
The first row contains an input image of the DeepScene test dataset. For this input image
the DeepScene segmenter has the lowest Bayesian uncertainty pixel value σdeepscene = 0.006.
While the other environmental specific segmenters have σcamvid = 0.012, σycor = 0.013 and
σcityscapes = 0.011. For this input frame the prediction of the DeepScene segmenter is selected
for traversability estimation resulting in an IoU of 87.5%.

A false model selection is shown in the second example of Figure 5-3. In this example the
CamVid segmenter has the lowest Bayesian uncertainty pixel value σcamvid = 0.003. While the
other environmental segmenters have an uncertainty value of σdeepscene = 0.01, σycor = 0.011
and σcityscapes = 0.04, which are all higher. This results in a false model selection, the CamVid
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Input = 0.006 = 0.012 = 0.013 = 0.011 = 0.004

Ground Truth IoU = 87.5% IoU = 48.2% IoU = 64.9% IoU = 53.3% IoU = 84.6%

Input = 0.01 = 0.003 = 0.011 = 0.04 = 0.004

Ground Truth IoU = 81.5% IoU = 46.3% IoU = 72.5% IoU = 57.0% IoU = 81.6%

Input = 0.003 = 0.004 = 0.008 = 0.005 = 0.001
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Figure 5-3: Hybrid framework 1: Bayesian uncertainty (σ) semantic segmentation input and
outputs. The first column contains input images with ground truth annotations from the Deep-
Scene test dataset. The other columns contain the segmentation and uncertainty mapping of the
DeepScene, CamVid, YCOR, Cityscapes and combined segmenter. The combined segmenter is
not part of the hybrid framework but is visualised for comparison purposes only. The Bayesian
uncertainty pixel values (σ) and IoU scores are printed above the uncertainty mapping and pre-
diction, respectively.

segmenter is selected while the DeepScene segmenter is the preferred one. This false model
selection eventually results in a decrease to an IoU score of 46.3%.

The total number of false model selections of hybrid framework 1: Bayesian uncertainty on all
the 610 test images is shown in Table 5-2. We measure the recall and precision, resulting in an
average of 76.4% and 81.9%, respectively. On the Cityscapes dataset, the highest recall score
of 98.9% is obtained. From all the Cityscapes test images, only two instances were wrongly
classified. At those two images, the YCOR segmenter had a lower Bayesian uncertainty value
(σ) than the Cityscapes segmenter. We observe from the precision scores that images where
the DeepScene segmenter had the lowest Bayesian uncertainty value (σ) did not result in false
model selections.

5-1-4 Conclusion

From the results shown in Figure 5-2 we conclude that a hybrid semantic segmentation frame-
work can potentially outperform a single segmenter that is trained on a combination of multi-
ple environment-specific datasets. Both the minimum and median IoU and PA scores increase
with the design of a hybrid semantic segmentation framework. The hybrid framework po-
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Table 5-2: Model selection performance of Hybrid framework 1: Bayesian uncertainty on 610
images of the test datasets. Perfect model selection would be if all the values are on the diagonal.
Off-diagonal values represent the number of false model selections. A precision of 100% is obtained
by the DeepScene model, however the other models are not able to achieve this performance.

Test dataset
DeepScene CamVid YCOR Cityscapes Precision

Se
gm

en
te

r DeepScene 91 0 0 0 100%
CamVid 23 114 4 0 80.9%
YCOR 0 6 69 2 89.6%
Cityscapes 3 113 13 172 57.1%
Recall 77.8% 48.9% 80.2% 98.9%

tential has a more dense distribution of data points at higher performance scores. However,
using the Bayesian uncertainty measure as a decision parameter will not fulfil the potential of
the hybrid approach. This is caused by false model selection for some input images of the test
datasets. These false classifications causes an IoU drop to scores lower than the combined
segmenter.

5-2 Autoencoder experiments

In this section, we experiment with hybrid framework 2: Reconstruction error (RMSE). This
approach uses SegNet for semantic segmentation predictions and an additional autoencoder to
select a segmenter. An overview of hybrid framework 2 is shown in Figure 4-2. For this hybrid
framework we need to implement one of the designed different autoencoder architectures as
defined in Table 4-2. Besides the different autoencoder architectures designs we also have
to decide which decision parameter to use in this framework. The two candidate decision
parameters are the pixel reconstruction error (RMSE) and the SSIM. We select the best
performing segmenter for a specific input image based on this decision parameter. For hybrid
framework 2, we thus have to select an autoencoder architecture and choose one of the decision
parameters.

Our autoencoder approach aims to capture relevant features from the training dataset into
the autoencoder its weights. The information captured in the weights represents what the
environmental segmenter has seen before. Suppose an image from the DeepScene test dataset
is fed to the autoencoders. In that case, we expect the best reconstruction of the DeepScene
autoencoder and less precise reconstructions of the other environmental autoencoders. We
assess the difference between the original input image and reconstructed image by the recon-
struction error (RMSE) or the SSIM. We aim for improving the model selection performance
obtained by hybrid framework 1.

For every architecture described in Table 4-2 we train four different environmental autoen-
coders on the DeepScene, CamVid, YCOR and Cityscapes training datasets. This thus results
in a total of 20 different autoencoders that differ based on their training dataset and autoen-
coder architecture. The autoencoders are trained using the Mean Squared Error (MSE) as
loss function. The weights are optimized using Adam with learning rate α = 0.001, exponen-
tial decay rate first moment estimates β = 0.9, exponential decay rate for the second-moment
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estimates γ = 0.999, ϵ = 1e − 07 and batch size = 3. We train the autoencoders until
convergence, when we observe no further reduction in training loss.

5-2-1 Image reconstruction performance

In this experiment, we assess two different decision parameters, the pixel reconstruction error
(RMSE) and the SSIM as described in Section 4-3. These decision parameters measure the
output image reconstruction quality of an autoencoder. An overview of the reconstruction
performance measured by the pixel reconstruction error (RMSE) is shown in Figure 5-4. The
mean RMSE of an environmental autoencoder is calculated for the different test datasets.

We observe in most plots the lowest pixel reconstruction error (RMSE), circled in orange,
on the diagonal. The environmental autoencoders with latent space size 345600 has one
lowest RMSE value off-diagonal. The Cityscapes autoencoder has the lowest mean pixel
reconstruction error for the CamVid test dataset. This, however, can be explained by the fact
that both the CamVid and Cityscapes autoencoder are trained on urban images. We also
observe that the RMSE values increase over the different latent space size plots. In Figure
5-4a with latent space size 345600 the mean RMSE range from 10.8 to 26.3. While in Figure
5-4e the mean RMSE ranges from 32.5 to 68.5. Autoencoders with a smaller latent space
representation thus result in less precise reconstruction performance.
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(c) Latent space: 21600
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(e) Latent space: 600

Figure 5-4: Autoencoder reconstruction performance measured by RMSE for the different latent
space size (a) 345600, (b) 86400, (c) 21600, (d) 3600 and (e) 600. The mean RMSE is calculated
on the different test datasets. The orange circles indicate lowest RMSE on a row level.
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In Figure 5-5 we replace the mean pixel reconstruction error (RMSE) by the mean SSIM. A
value close to 1 represents a high structural similarity. In this matrix, values circled in orange
represent the highest SSIM on a row level. We observe that not all the orange circles are on
the diagonal. Only Figure 5-5e with an autoencoder latent space size of 600 has 3 out of 4
highest values on diagonal.
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Figure 5-5: Autoencoder reconstruction performance measured by SSIM for the different latent
space size (a) 345600, (b) 86400, (c) 21600, (d) 3600 and (e) 600 on the different test datasets.
The orange circles indicate lowest RMSE value on a row level.

We observe that the RMSE approach has more orange circled values on the diagonal than the
SSIM approach. The relative differences in RMSE within a row are also more significant than
the SSIM. Therefore, we conclude that the pixel reconstruction error (RMSE) is a better
decision parameter for the hybrid semantic segmentation framework.
As an example, we show some reconstructed images of the different architectures and envi-
ronmental models of hybrid framework 2 in Figure 5-6. Every autoencoder architecture is
trained on four different training datasets. We observe that the reconstruction quality de-
creases by decreasing the latent space size. The environmental autoencoders with smaller
latent space sizes have difficulties reconstructing the colour and structural details. This can,
for example, be seen in the colour of the grass. Here the urban environmental autoencoders
have difficulties reconstructing grass’s colour in latent space sizes of 21600 and smaller. This
effect can have two different causes. It can either occur because these autoencoders have not
seen the colour of grass before or the autoncoders did not classify it as an essential feature.
These differences in structure and colour are also present in the output of the decision pa-
rameters. We observe a decrease in pixel reconstruction error (RMSE) as the latent space
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size of an autoencoder increases. This does not hold for the DeepScene autoencoder. The
DeepScene autoencoder with latent space size 345600 has a RMSE value of 11.0 while the
86400 autoencoder has a RMSE of 10.8. This difference is, however, not observable in Figure
5-4. Here the average RMSE value of the DeepScene autoencoders are 11.7 and 12.3 for
the 345600 and 84600 autoencoder respectively. This example in Figure 3-6 does thus not
correctly represent the averages obtained on the DeepScene test dataset.
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Figure 5-6: Reconstructed input images of different autoencoder architectures and models. Every
row contains another autoencoder architecture and every column contains another environmental
autoencoder. The pixel reconstruction error and SSIM are shown in the title of the plots.
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5-2-2 Model selection

In this section, we test the model selection performance of the different autoencoder archi-
tectures. We consult the DeepScene, CamVid, YCOR and Cityscapes test datasets for this
experiment. We measure the model selection performance by the precision and recall metrics
as described in Section 4-4.

In the previous section is shown that for this application the pixel reconstruction error (RMSE)
is a better measure for comparing images than the SSIM. Therefore, we select the RMSE
as decision parameter in hybrid framework 2. Based on this decision parameter a segmenter
will be selected for the semantic segmentation prediction. The correct environment-specific
segmenter is selected if the RMSE of the corresponding environment-specific autoencoder is
the lowest for an input image from a specific test dataset. If not, a false model selection is
obtained.

In the example image of the DeepScene test dataset can be seen how the RMSE value changes
over the different environmental autoencoder architectures shown in Figure 5-6. For this input
image, the DeepScene autoencoder in the second column always has the relative lowest pixel
reconstruction error value compared to other environmental autoencoders. In the first row,
with latent space size 345600, all the reconstructed images look similar to the input image,
resulting in relatively small differences in pixel reconstruction error. This relatively small
difference result in a relative higher change in false model selections. We need to determine
which autoencoder architecture results in the best model selection performance for all test
images to overcome this problem.

The model selection performance of the different autoencoder architectures on the test datasets
is shown in Figure 5-7. The results presented in this plot can be consulted in Appendix A.
We observe that both the precision and recall increase from architecture 600 to 3600 and from
3600 to 21600. The autoencoders architectures 600 obtain a recall of 84.2% and precision of
89.5%. The 3600 autoencoder architecture increases to 97.0% recall and precision score. The
21600 autoencoder architecture eventually result in the highest recall and precision scores
with a recall of 98.5% and a precision of 99.3%. Both the 86400 and 345600 autoencoders
result in lower recall 81.4% and 70.9% and a lower precision 87.8% and 85.9%, respectively.
These architectures thus result in more false model selections on the test datasets. The 21600
autoencoder architecture thus outperforms all the other autoencoder architectures on the test
datasets. It is better in reconstructing dataset related features in the output image. There-
fore, we select autoencoder architecture with a latent space of 21600 for hybrid framework
2.

The recall on individual test datasets and the precision of the individual autoencoders is
shown in Figure 5-7c and 5-7d, respectively. We observe that the 21600 architecture has a
recall of 94.2%, which corresponds to a total of 5 false classifications on the YCOR dataset.
These false classifications occur due to the Cityscapes autoencoder, the precision of the 21600
Cityscapes autoencoder is 97.2% as shown in 5-7d. The Cityscapes autoencoder causes most
of the false model selections over all the autoencoder architectures.

Three examples of the 21600 autoencoder architecture, in which the wrong model is selected,
are shown in Figure 5-8. These false classifications occur due to better reconstruction perfor-
mance of the Cityscapes autoencoder. It can be seen that the RMSE between the different
autoencoders are close. For the first image, the YCOR autoencoder has an RMSE of 22.3
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while the Cityscapes RMSE was 21.6. For the second and third examples, an even smaller
difference of 0.1 in RMSE is obtained.
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Figure 5-7: Model selection performance of hybrid framework 2 Reconstruction error (RMSE),
measured by (a) recall and (b) precision. The x-axes contain different autoencoder architectures.
The architecture with latent space size 21600 obtains the highest recall and precision score, 98.5%
and 99.3% respectively. The underlying recall and precision are shown in (c) and (d).
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Figure 5-8: Three examples of false model selection based on pixel reconstruction error (RMSE)
of the 21600 autoencoder architecture. The Cityscapes autoencoder produces the lowest pixel
reconstruction error while YCOR test images are processed by hybrid framework 2.
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5-2-3 Grayscale autoencoder

The reconstructed images in Figure 5-6 show that colour is an aspect that potentially influ-
ences the pixel reconstruction error. To assess the influence of color we perform an experiment
with grayscale images and variations on the RGB input images. The previous experiments
all use images with dimension 360 × 480 × 3. We convert these images to grayscale images to
obtain the following image dimensions 360 × 480 × 1. The luminosity method [46] is designed
to transform RGB images into grayscale images. This weighted equation is the standard in
MATLAB’s function "rgb2gray", and is frequently used in computer vision [6]. This method
is designed to match the human brightness perception by using a weighted combination of
the RGB channels. The weights correspond to color its wavelength. The lumosity method is
as follows:

Grayscale = 299
1000 · R + 587

1000 · G + 114
1000 · B (5-1)

Here R, G and B represent the RGB values of the original images.

The model selection performance of the grayscale autoencoder and variations of the RGB
input order channel is shown in Figure 5-9. The 21600 autoencoder architecture with pixel
reconstruction error as a decision parameter is used in this experiment. First, we train the
autoencoders on the converted grayscale images as described above. This results in a decrease
of model selection performance to a recall of 42.3% and precision of 57.8% as shown in Figure
5-9a.

In addition to the grayscale experiment, we perform an average training image experiment.
In this experiment, we measure the RMSE between the input image and the average training
image as shown in Figure 3-5. The image of the test datasets are somehow related to the
training dataset. They are captured in the same or a similar environment. In this experiment
we try to find out if we can select the correct environment-specific segmenter with this simple
approach. By measuring the RMSE between the average training image and the current input
frame we obtain a decision variable for every environmental model. If we select the segmenter
with the lowest RMSE we might can obtain correct model selection. This simple approach
results in a recall of 77.2% and precision of 83.2% on the test datasets. The experiments with
the RGB autoencoder obtained a recall and precision score of 98.5% and 99.3%, respectively.
Based on the difference between those experiments, we conclude that the autoencoder can
learn features from the training dataset.

We perform a third experiment where we assess the influence of the colour channels on the
model selection performance. In this experiment, variations of the RGB test images are fed to
hybrid framework 2. The RGB order of the images from the test datasets are transformed into
BRG, BGR, GBR, GRB and RBG. The model selection performance, shown in Figure 5-9b,
of all these variations, decreased with respect to the original RGB input frames. Interestingly,
the difference between the input channels that are entirely shuffled, BRG and GBR, and the
ones that still have one input channel in its original position, BGR, GRB and RBG. The
model selection performance of the autoencoders on BRG and GBR images is the lowest. In
these images, no original information of the RGB image is retained. While if one of the RGB
channels stays in place, a higher model selection performance is obtained.
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Figure 5-9: A comparison of different color input modalities is performed based on recall and
precision. In (a), three different approaches are shown. The first two are autoencoders with latent
space size 21600, one that is designed for RGB images and one that is designed for grayscale
images. The third approach is the average training image approach. Here we select the model that
has the lowest pixel reconstruction error (RMSE) between the input image and average training
image. In (b) the RGB autoencoder is used. The order channels of the input frames are changed.
By changing the order of channels the different precision and recall scores are obtained.

5-2-4 Conclusion

From the experiments with the different autoencoder architectures and decision parame-
ters can be concluded that the autoencoder architecture with the pixel reconstruction error
(RMSE) and a latent space size of 21600 performs the best for model selection. A recall and
precision of respectively 98.5% and 99.3% are obtained with this autoencoder architecture.

The pixel reconstruction error (RMSE) as a decision parameter results in better model se-
lection performance than the SSIM. We conclude that structural differences between the
reconstructions of the different environmental autoencoders are less present than colour dif-
ferences on a pixel level.

The autoencoder architectures with a latent space size smaller and equal to 21600 have
difficulties reproducing specific colour compositions. Autoencoders with bigger latent space
sizes do not have difficulties in the reconstructed images’ colours. There is little difference
between the environmental models. To assess the influence of colour on model selection
performance, we performed an additional experiment with models trained on grayscale images
using the 21600 autoencoder architecture. This resulted in a decrease of the recall and
precision score to 42.3% and 57.8%, respectively. We thus conclude that colour significantly
influences the model selection performance of the reconstruction error approach.

The average training image approach results in recall and precision scores of 77.2% and
83.2%, respectively. The 21600 colour autoencoder approach also outperforms this simple
model selection approach. This substantiates that the autoencoder does indeed learn features
from the training dataset and can reconstruct those in the decoding phase of the autoencoder.
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5-3 Sequential data experiments

The images processed by our hybrid semantic segmentation framework will contain sequential
information. Input frame i is likely to have similar features as input frame i−1. We, therefore,
perform experiments with sequential data to compare the two decision measures, the Bayesian
uncertainty (σ) and the reconstruction error (RMSE). In this experiment, we measure the
model selection performance of the systems over time.

5-3-1 Sequence of KITTY City images

We visualise the decision parameter output values of the hybrid frameworks over a sequence
of 432 images from the KITTI City dataset [21] in Figure 5-10. This sequence of images is
captured in an urban environment, example images from this dataset are shown in Figure
5-5d. We, therefore, expect that either the CamVid or Cityscapes segmenters is preferred by
the decision parameters during this experiment.

In Figure 5-10a, we observe a non-smooth trend in the Bayesian uncertainty plot. This occurs
due to the prediction uncertainty involved in the Bayesian uncertainty approach. Bayesian
SegNet quantifies uncertainty by approximating the predictive distribution, which is obtained
by random dropout layers. The randomness involved in this process cause the prediction
uncertainty, the non-smooth trend in this plot. The random parameter result in different
outputs for the same input image. The above described predictive uncertainty eventually
results in 110 model switches as shown in Figure 5-10c. In this plot we also tracks the number
of model selections over time for the environmental segmenters. Here we see that the Camvid
segmenter is consulted 183 times, the YCOR segmenter 101 times, the Cityscapes segmenter
167 times and the DeepScene segmenter 2 times. We aimed for zero occurrences of the YCOR
segmenter and DeepScene since this data sequence is captured in urban environments. Hybrid
framework 1: Bayesian uncertainty (σ) thus results in 103 times a false model selection.

In the output of hybrid framework 2: reconstruction error (RMSE) we observe a more smooth
trend as can be seen in Figure 5-10b. The RMSE scales with changes in the input frame, this
can be seen overtime but also by comparing the different autoencoders output values. The
different autoencoders share a trend which occurs due to the underlying input frame. Input
images with more edges and contrast result in relative higher RMSE. At 339 frames, the
CamVid autoencoder has the lowest reconstruction error. The YCOR is 52 times consulted,
and the Cityscapes segmenter 62 times. A total of 14 model switches occur, which is less
than the number of switches in the Bayesian uncertainty approach. A total of 62 false model
selections in hybrid framework 2 occurred due to the YCOR autoencoder.

The inference time of both approaches is also measured during this experiment. Hybrid
framework 1: Bayesian uncertainty (σ) can process 0.73 frames per second. While Hybrid
framework 2: pixel reconstruction error (RMSE) obtains an FPS of 30.7. Hybrid framework
2 is thus 42 times faster than the Bayesian approach. This difference is caused by the number
of dropout samples generated by Bayesian SegNet. In Hybrid framework 1, a total of 30
semantic segmentation predictions are generated to assess the model uncertainty, while for
hybrid framework 2, this is only 1.
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Figure 5-10: Sequential experiment based on (a) Bayesian uncertainty (σ) and (b) reconstruction
error (RMSE) approach on sequence of 432 KITTI images. The KITTI images are captured in an
urban environment. The vertical grey lines represent the frames at which the model switches to
another environmental segmenter. In hybrid framework 1 the system switches 110 times between
the different models (c). This is due to the inconsistent behaviour of the Bayesian uncertainty
value. In hybrid framework 2 a more smooth output is obtained resulting in 14 model switches
(d).

5-3-2 Sequence of DeepScene images

In this experiment, we process a sequence of 412 images from a sequential DeepScene dataset.
Samples from this sequence are shown in Figure C-2 in the appendix. The decision parameter
outputs of both the hybrid framework are shown in Figure 5-11. Hybrid framework 2 obtains
a total of 27 false model selections. These false model selections occur at the beginning of
the sequence, around frame 100 and at the end. Hybrid framework 1 switches a total of 23
times in this sequence. The DeepScene segmenter in the Bayesian uncertainty plot has a
quite smooth trend. However, predictive uncertainty still occurs but is less than the other
segmenters. Hybrid framework 2 in plot 5-11b has no false model selections. The DeepScene
autoencoder had the lowest RMSE for all image frames in this sequence.

The difference in the number of false model selections can be due to the Bayesian SegNet’s
method to measure the uncertainty of its prediction. For obtaining the Bayesian uncertainty,
dropout is used, this method uses a random parameter. The number of Monte Carlo samples
is set to be 30. This results in different uncertainty values for the same image frame. The
autoencoder approach does not incorporate any random variable. For that reason, it will
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Figure 5-11: Sequential experiment based on (a) Bayesian uncertainty σ and (b) reconstruction
error (RMSE) approach on sequence of 412 DeepScene images. Lowest Bayesian uncertainty
and pixel reconstruction error is expected for DeepScene the model. The vertical grey lines
represent the frames at which the model switches to another environmental segmenter. However,
in Bayesian uncertainty approach false model selection occur (c) while in the reconstruction error
approach the correct model is selected for every input frame (d).

always result in the same reconstruction error for a particular frame, and a value that scales
with changes in the input frame. Therefore, the reconstruction error of the current input
frame i relates more to the previous frame i − 1 than in the Bayesian case. In the DeepScene
sequence experiment, we also measure the inference time. This results in a similar FPS rate
as the KITTI sequential data experiment.

5-3-3 Conclusion

We conclude that using the autoencoder with its pixel reconstruction error as a decision
parameter for the hybrid system is better than the Bayesian uncertainty measure. It results
in 41 less false model selections and 96 less model switches in the KITTI sequence. In the
DeepScene sequence experiment the Bayesian approach resulted in 27 times a false model
selection while the RMSE approach did not result in any false model selection. In addition,
the pixel reconstruction error measure is more reliable than the Bayesian uncertainty measure
since no random parameter is involved. This approach results in more consistent behaviour
and better model selection performance and recall. Furthermore, the autoencoder approach
is 42 times computationally faster than the Bayesian approach.
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Unfortunately, no dataset with a sequence of images and corresponding ground truth anno-
tations is available. The training datasets in this thesis have annotated images but do not
contain sequential data. Therefore, we cannot measure the semantic segmentation perfor-
mance, IoU and PA, over time.

5-4 Bayesian uncertainty vs Reconstruction error

The previous experiments show how hybrid frameworks 1 and 2 perform on the test and
sequential datasets. This section compares both the hybrid frameworks based on model
selection performance and on a pixel-wise performance level.

5-4-1 Model selection decision parameter

We compare the model selection performance of the two approaches discussed above in Figure
5-12. Hybrid framework 1: Bayesian uncertainty (σ) has a recall and precision of 77.0% and
82.1%, respectively. These values were calculated in Section ?? and given in Table 5-2. The
other approach in this figure, hybrid framework 2: reconstruction error (RMSE), obtains a
recall and precision score of 98.5% and 99.3%, respectively.

In Figure 5-12b and 5-12c, the recall on the individual test datasets and precision of the
individual models is shown. In hybrid framework 1, the DeepScene segmenter has a model
selection precision of 100%. The Cityscapes segmenter obtained the lowest model selection
precision with 57.3%. We observe that in the underlying recall and precision plots of hybrid
framework 2, only false model selections occur for the YCOR test dataset. The recall of
YCOR is not 100% but 94.2%. These errors occur due to the Cityscapes autoencoder, which
results in a precision of 97.2%.

The reconstruction error approach results in the highest recall and precision scores compared
to the Bayesian approach as can be seen in the bar charts in 5-12. We thus conclude that
Hybrid framework 2 with the pixel reconstruction error (RMSE) as the decision parameter
outperforms the Bayesian uncertainty framework.

The correlation between the two designed decision parameters, mean Bayesian pixel uncer-
tainty (σ) and mean pixel reconstruction error (RMSE), and the mean IoU is shown in Fig-
ure 5-13. For every environmental model, DeepScene (5-13a, 5-13b), CamVid (5-13c, 5-13d),
YCOR (5-13e, 5-13f) and Cityscapes (5-13g, 5-13h), we plot the output value pairs of all the
test images.

In the left column, the output data points of Hybrid framework 1: Bayesian uncertainty (σ)
are plotted. We fit a line between the mean Bayesian pixel uncertainty and mean IoU data
points and plot the correlation coefficient r in the figures for all the segmenters. The cor-
relation coefficients of hybrid framework 1 are: rdeepscene = −0.821, rcamvid = −0.41, rycor =
−0.675, rcityscapes = −0.74, which indicates a negative correlation between the Bayesian uncer-
tainty value (σ) and the mean IoU. We observe outliers at lower Bayesian uncertainty values
in Figure 5-13c, which is reflected in the correlation coefficient of this segmenter. An example
of such a data point was shown in Figure 5-3, where a relative low Bayesian uncertainty value
of 0.003 is obtained with a corresponding IoU of 46.3%.
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Figure 5-12: Model selection performance comparison of Bayesian uncertainty and reconstruction
error approach. The precision and recall are calculated over a total of 610 test images from the
Camvid, DeepScene, YCOR and Cityscapes test datasets. The autoencoder approach with its
reconstruction error as decision parameter outperforms the two other approaches. The underlying
recall and precision of the hybrid frameworks are shown in (b) and (c) respectively.

The mean pixel reconstruction error (RMSE) and mean IoU pairs of hybrid framework 2 are
shown in the right column of Figure 5-13. Here we already observe less regularity in the
plots. The correlation coefficients of hybrid framework 2 are: rdeepscene = −0.124, rcamvid =
0.282, rycor = −0.036, rcityscapes = −0.009. These correlation coefficients range from negative
to positive. We, therefore, conclude that there is no clear correlation between the mean RMSE
and mean IoU. The autoencoder does not assess the model uncertainty of the prediction.
From the example shown in Figure 3-8 it can be seen that the RMSE values for the different
input images differ a lot. By implementing the RMSE as a decision parameter for model
selection, we can select the right model for the current input frame. However, the absolute
mean RMSE of an image does not represent any form of uncertainty.

5-4-2 Pixelwise performance

We investigate the relation between the two decision parameters, Bayesian uncertainty (σ)
and the reconstruction error (RMSE), and semantic segmentation performance on a pixel
level in Figure 5-14. We group all the predicted pixels of the 610 test images in percentile
ranges sorted by either the Bayesian uncertainty pixel value (σ) or the Pixel reconstruction
error (RMSE) shown in Figure 5-14a and 5-14b, respectively. Percentile range 90-100 thus
contains 10% of the pixels with the highest Bayesian uncertainty value or pixel reconstruction
error (RMSE). For every percentile range, we calculate the percentage of correctly classified
pixels.
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We observe accuracies higher than 95% in the lower Bayesian model uncertainty percentile
ranges. The trend over the different percentile ranges demonstrates that Bayesian model
uncertainty effectively measures pixel-wise confidence in prediction accuracy. We do not
observe the same trend in the pixel reconstruction error plot as in the Bayesian uncertainty
approach. We, however, observe a slight negative trend over the percentile ranges but cannot
conclude that low classification accuracy occurs for high pixel reconstruction errors.

5-4-3 Conclusion

We conclude that hybrid framework 2 outperforms hybrid framework 1 on model selection per-
formance. The pixel reconstruction error (RMSE) as a decision parameter with autoencoder
architecture 21600 results in almost perfect model selection performance. A model selection
precision of 99.3% is obtained on images of the test dataset and a recall of 98.5%. Hybrid
framework 1 with Bayesian uncertainty as a decision parameter has for both the precision
and recall lower scores on the test datasets.

Hybrid framework 2 is, however, not able to quantify uncertainty correlated to the models pre-
diction. No clear correlation between the RMSE and segmentation performance is observed.
Hybrid framework 1, on the other hand, shows a negative correlation between Bayesian uncer-
tainty and IoU. This is assessed on both an image level as a pixel level. We thus conclude that
the Bayesian uncertainty measure is an effective measure of semantic segmentation accuracy.
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(a) DeepScene segmenter
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(b) DeepScene autoencoder
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(c) CamVid segmenter
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(d) CamVid autoencoder
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(e) YCOR segmenter
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(f) YCOR autoencoder
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(g) Cityscapes segmenter
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(h) Cityscapes autoencoder

Figure 5-13: Performance of segmenters, measured by the IoU as a function of (a,c,e,g) mean
Bayesian pixel uncertainty (σ) and (b,d,f,h) mean pixel reconstruction error (RMSE) for 610
test images. In the left column we observe that for increasing Bayesian pixel uncertainty less
precise predictions are made. The Bayesian line fits and correlation coefficients show a negative
correlation for every segmenter. In the right column there is no relation between the mean IoU
and mean RMSE, the correlation coefficient r ranges from negative to positive values. Images
with high mean RMSE do not correspond to bad semantic segmentation performance.
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(a) Bayesian pixel uncertainty (σ)
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(b) Pixel reconstruction error (RMSE)

Figure 5-14: Pixel-wise classification accuracy as a function of (a) Bayesian pixel uncertainty
and (b) pixel reconstruction error. Every percentile range represents 10% of the pixels in the
test dataset, sorted by either the pixel Bayesian uncertainty (a) or the pixel reconstruction error
(b). Percentile range 90 − 100 contains 10% off the pixels with the highest Bayesian uncertainty
or pixel reconstruction error. The lines connecting the datapoints indicate the trend over the
percentile ranges.
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Chapter 6

Conclusion and Future work

This chapter discusses and concludes on the methodology and obtained results. First, in
Section 6-1, we will summarize the main findings of this study. In Section 6-2 we answer
the research questions and the two sub-questions. Lastly, we will propose future research
possibilities in Section 6-3.

6-1 Summary of results

In this thesis, it is investigated how the introduction of a hybrid semantic segmentation frame-
work can improve traversability estimation in unseen unstructured off-road environments for
an Unmanned Ground Vehicle (UGV). The motivation behind this research is that a UGV has
to be able to estimate traversability in a variety of environments including unstructured off-
road environments. Challenges arise when the UGV enters these unstructured environments,
where we encounter more diverse classes and less regularity than in urban environments.
Roads in urban environments are designed to be primarily straight and regularized. Traffic
signs and road surface markings indicate whether areas can be safely traversed, information
which is unfortunately not available in unstructured off-road environments.

The diverse structured and unstructured environments require an approach that can estimate
traversability for various situations. Therefore, we designed a hybrid semantic segmentation
framework. In the hybrid framework, four environment-specific semantic segmentation net-
works are present that can accurately estimate traversability for a variety of environments.
The semantic segmentation networks in the hybrid framework differ based on their train-
ing datasets. The datasets considered are the DeepScene, CamVid, YCOR and Cityscapes
datasets, respectively, a forest, urban, off-road, and urban dataset. We evaluated the semantic
segmentation performance of these segmenter by the Intersection over Union (IoU) and Pixel
Accuracy (PA) measure. In the first experiment, we compared the potential performance of
a hybrid framework with a single semantic segmentation network. The outcomes of these ex-
periments showed that a hybrid framework outperforms a single deep semantic segmentation
network with an increase in median IoU-score of 2.6% from 90.0% to 92.6%. The median
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PA scores increased with 1.3% from 95.7% in the combined model to 97.0% in the hybrid
potential framework. The full potential of a hybrid framework can only be reached if for
every input image the best performing segmenter is selected. This selection is based on a
decision parameter. In this thesis, we designed two hybrid frameworks with different decision
parameters.
Hybrid framework 1 uses a Bayesian uncertainty measure as a decision parameter. The
Bayesian semantic segmentation network approximates the predictive distribution by Monte
Carlo dropout. The predictive distribution contains the variance from which model uncer-
tainty can be estimated. The pixel-wise uncertainty is thus calculated by measuring the
variance between the sampled predictions. For every input we have to select one of the four
segmenters. We compare the Bayesian uncertainty mappings of the different segmenter. We
eventually select the segmenter with the lowest mean Bayesian pixel uncertainty value for
traversability estimation. This results in a median IoU score of 91.9%, which is 1.9% higher
than the combined segmenter. However, it did not level the full potential of a hybrid semantic
segmentation framework, which is 92.6%. The full potential of the hybrid framework can only
be obtained if for every image of the test datasets the best performing segmenter is selected.
In hybrid framework 1 this is not obtained due to false model selection based on the Bayesian
uncertainty value. The model selection performance is evaluated by the precision and recall
metrics. The Bayesian uncertainty measure as decision parameter results in a recall of 77.0%
and a precision of 82.1%.
Hybrid framework 2 uses in addition to the environment-specific segmenter an autoencoder to
obtain a reconstruction error. We measure the pixel reconstruction error between the input
image and the reconstructed output image of the environment-specific autoencoder. This
pixel reconstruction error (RMSE) functions as the decision parameter in this hybrid frame-
work. The segmenter and the autoencoder are both trained on the same training dataset.
The autoencoder encodes the image to a latent space representation. This latent space repre-
sentation captures a limited amount of data from the input image. The original input image
dimension is restored by a decoder from the latent space representation. This results in a
reconstructed image of the input image. The reconstructed images of the four autoencoders
differ based on what the autoencoder has seen before. The autoencoder weights are optimized
for different features in the different environment-specific training datasets. We select the se-
mantic segmentation prediction corresponding to the lowest pixel reconstruction error. We
performed model selection experiments with different autoencoder architectures. We found
that the autoencoder with a latent space size of 21600 datapoints results in the best model
selection performance. A recall of 98.5% and precision of 99.3% is obtained.
The obtained results from the different experiments substantiate the answers to the research
and sub-questions of this thesis. The two hybrid frameworks’ performance is evaluated using
the test datasets and an additional sequential dataset. The performance of the hybrid frame-
works is quantified by evaluation metrics for semantic segmentation, IoU and PA, and model
selection, precision and recall.

6-2 Conclusions

The implementation of a hybrid semantic segmentation framework for traversability estima-
tion has been researched in this thesis. The research question of this thesis is:
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How can a hybrid semantic segmentation framework improve traversability estimation in
unseen unstructured off-road environments for unmanned ground vehicles?

To answer this research question, the formulated sub-questions are first answered:

1. In what ways can unseen unstructured off-road environments be classified?
Literature has shown that deep semantic segmentation networks are a popular tool for
traversability estimation. These deep learning models are trained to pixel-wise clas-
sify images. The obtained semantic segmentation mappings are used for traversability
estimation through its environment.
The performance of the different environmental models in our hybrid framework can
only be compared if we have the same labels for all models. We, therefore, rewrite the
labels of the DeepScene, CamVid, YCOR and Cityscapes datasets into the three labels:
traversable and non-traversable and sky. Those three labels contain enough information
to safely navigate the UGV through its environment.
The experiments performed on the test datasets show an accurate performance of the
semantic segmentation networks. The combined segmenter, which is trained on a com-
bination of all training datasets, obtains a median IoU-score 90.0% and a PA of 95.7%.

2. How can uncertainty of a semantic segmentation prediction be quantified?

Quantifying uncertainty in computer vision applications is of great importance in au-
tonomous driving systems, such as a UGV. This is due to the fact that deep learning
models are often overly confident even when they are operating in unseen or unstruc-
tured environments. In these situations, the UGV might be incompetent, while the
underlying deep learning model itself may not be aware of this.
We designed two different approaches for uncertainty quantification. Hybrid framework
1: Bayesian SegNet, uses dropout layers to obtain the model’s prediction uncertainty
and hybrid framework 2: Reconstruction error, which uses an autoencoder to estimate
uncertainty by comparing the reconstructed image with the original input image.
This subquestion can be answered by the obtained results of the test datasets exper-
iments. We observed a negative correlation between the Bayesian pixel uncertainty
and IoU-score in hybrid framework 1. We are thus able to correctly estimate model
uncertainty by Monte Carlo sampling.
However, the hybrid framework with the autoencoder approach, was not able to cor-
rectly quantify model uncertainty. No clear correlation between the pixel reconstruction
error (RMSE) and IoU is observed. The absolute value of the pixel reconstruction error
did not contain any information regarding uncertainty. This can be due to the fact that
the pixel reconstruction error is not directly linked to the segmenter. It is trained on
the same datasets but does not contain a direct link to the prediction.

With the two sub-questions answered, the answer to the research question is substantiated.
There are multiple advantages of implementing a hybrid framework over a single deep semantic
segmentation network. The primary advantage is the increase in semantic segmentation
performance on IoU and PA. Both hybrid frameworks results in higher IoU scores compared

Master of Science Thesis Roel Bos



58 Conclusion and Future work

to a single semantic segmentation network. Hybrid framework 2 with its pixel reconstruction
error, outperforms hybrid framework 1 on model selection performance and therefore results
in better semantic segmentation performance.

We proved that an autoencoder approach as decision parameter for the hybrid framework is
able to select the segmenter corresponding to an environmental image. The autoencoder was
able to learn features from the training dataset and capture these in the network its weights.
This resulted in reconstructions that differ based on the environment it has been trained
on. This difference was reflected in the pixel reconstruction error (RMSE). However, the
autoencoders were not able to reconstruct the structural information of the training datasets
in their reconstruction. The Structural Similarity Index Measure (SSIM) metric and grayscale
autoencoder approach showed the autoencoders model selection performance mostly relied on
the color compositions captured in the datasets.

Furthermore, we observed in the sequential data experiments that the Bayesian uncertainty
approach results in a non-smooth uncertainty trend over-time. This trend occurs due to
the method in which the uncertainty is estimated. The Monte Carlo sampling method uses
dropout during approximation of the predictive distribution. In this method a random pa-
rameter is involved that affects the prediction and the uncertainty mapping. This randomness
influenced the model selection performances in the sequential data and the test dataset exper-
iments. This behaviour results in a lot of model switches in the sequential data experiments
and bad model selection performance on the test dataset experiments.

Another practical advantage of a hybrid framework, is that additional environmental seg-
menters can be added after the system is deployed. This has as advantage that we do not
need to retrain the whole model, which is very time-consuming.

To conclude, the designed hybrid semantic segmentation frameworks can outperform a single
deep semantic segmentation network. Both the designed approaches, however, have their
advantages and disadvantages. Hybrid framework 1 with the Bayesian pixel uncertainty
has proven to be able to correctly quantify prediction uncertainty. A disadvantage of this
framework is the bad model selection performance. Hybrid framework 2, on the other hand,
has accurate model selection performance but is not able to quantify prediction uncertainty.
Ideally, we want to have the best of both worlds. This, however, will result in an even more
complex framework. The designed hybrid semantic segmentation framework thus should be
further improved to resolve the disadvantages. As a start, we make some recommendations
for future research in the following section.

6-3 Future research

This thesis shows how a hybrid semantic segmentation framework can be designed for traversabil-
ity estimation in a variety of environments. It would have been interesting to investigate this
field further. Suggestions for future work on the continuation of this thesis and different
problems encountered in the construction of this thesis are:

1. Virtual world data: To overcome the problem of limited data, simulations in virtual
environments can be performed. Using virtual environments for data collection has as
advantage that ground truth annotations can be generated directly from the virtual
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data. This will result in the ability to collect a huge amount of data within different
environments using the same camera settings, such as camera type, height, resolution
and lighting conditions. More experiments can be performed with this approach, and
hopefully, structural information can be extracted from the different environmental
datasets.

2. Sequential data: With the virtual form of data collection, sequential information can
be incorporated into the model. This will enable us to combine the hybrid framework
with a recurrent neural network since image i will likely have similar features as image
i − 1. Long Short-Term Memory (LSTM) are a type of recurrent neural networks which
captures sequential information over time. The sequential annotated data will also
enable comparison based on semantic segmentation performance since we then have the
ground truth annotation of the sequence.

3. Number of classes: We rewrote all the labels of the original datasets into traversable,
non-traversable and sky. This was for performance evaluation and comparison of the
environment-specific segmentation networks. It would be interesting to define more
classes in the segmentation networks in future research. The hybrid framework with
the autoencoder can have different classes defined in the in parallel placed environmen-
tal segmenters since the decision parameter does not rely on semantic segmentation
prediction.

4. Autoencoder architectures: In this research, we experimented with five different
autoencoder architectures, consisting of convolutional, MaxPooling and UpSampling
layers. In future research, we are interested in incorporating other neural network
layers, such as average pooling layers and dilated convolutional layers [61]. Different
autoencoder architectures are might be able to quantify uncertainty or detect situations
it has not seen before.

5. Depth information: For the pixel-wise annotated predictions, we used RGB images
as the input to the deep semantic segmentation networks. In addition to the RGB
values, we can incorporate depth information. This requires some relatively simple
modifications to the neural network design. Instead of the three channel RGB input
image we have an additional channel containing the depth information. We thus have to
adjust our network to an input shape with four channels, RGBD. Here the D represents
the depth information, which can be captured by stereovision or LiDAR cameras. This
can improve semantic segmentation performance as proved by [56].

6. Human-machine interaction: The implementation of a hybrid semantic segmen-
tation framework enables human operators to interact with the machine. A human
operator can assist the UGV in selecting the best predictions since there are multiple
predictions to choose from. Interaction with a human operator is necessary if the UGV
gets, for example, stuck, no traversable area is defined. The human operator can then
visually inspect the previous predictions of the different environmental segmenters and
select the best prediction.
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Chapter 7

Glossary

List of Acronyms

ANN Artificial Neural Network
BNN Bayesian Neural Network
CNN Convolutional Neural Network
FN False Negative
FP False Positive
FPS Frames per second
IoU Intersection over Union
LSTM Long Short-Term Memory
mIoU mean Intersection over Union
MSE Mean Squared Error
PA Pixel Accuracy
SGD Stochastic gradient descent
SSIM Structural Similarity Index Measure
TNO Netherlands Organisation for Applied Scientific Research
TN True Negative
TP True Positive
UGV Unmanned Ground Vehicle
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Appendix A

Supportive Tables

A-1 Semantic Segmentation Performance

Table A-1: Intersection over Union (IoU) of different segmenters on test datasets. Last row
contains the combined segmenter that is trained on a combination training images of the other
segmenters.

DeepScene test data CamVid test data YCOR test data Cityscapes test data
min mean max min mean max min mean max min mean max

DeepScene 61.50 90.81 97.50 55.84 76.59 93.45 20.00 41.17 79.27 32.69 61.81 91.17
CamVid 10.98 45.31 74.38 60.43 92.12 98.22 28.24 73.76 94.57 35.69 74.71 93.90
YCOR 48.92 70.96 90.13 50.28 82.18 96.34 54.80 82.51 97.05 58.28 85.54 97.90
Cityscapes 32.42 59.16 81.04 48.75 80.88 96.06 29.92 69.35 94.89 57.07 92.52 99.01
Combined 58.32 86.04 95.39 59.99 89.43 97.03 48.45 78.96 97.36 62.09 92.16 98.73

Table A-2: Semantic segmentation performance of the different approaches measured by the
IoU and Pixel Accuracy (PA) on the test dataset.

Intersection over union Pixel accuracy
min mean median max min mean median max

Hybrid framework
potential 54.80% 90.63% 92.57% 99.01% 63.75% 95.88% 97.02% 99.57%

Combined 48.45% 88.08% 89.99% 98.73% 62.00% 94.28% 95.66% 99.45
Hybrid framework 1:
Bayesian uncertainty 26.32% 88.30% 91.90% 99.01% 38.49% 93.81% 96.64% 99.57%
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A-2 Model Selection Performance

Table A-3: Model selection based on Bayesian uncertainty measure. The numbers in bold
represent correct model selections.

Test Dataset
DeepScene CamVid YCOR Cityscapes Precision

Model

DeepScene 91 0 0 0 100%
CamVid 23 114 4 0 80.9%
YCOR 0 6 69 2 89.6%
Cityscapes 3 113 13 171 57.1%
Recall 77.8% 48.9% 80.2% 98.9%

Table A-4: Model selection based on RMSE between average training image and input image.
The numbers in bold represent correct model selections.

Test Dataset
DeepScene CamVid YCOR Cityscapes Precision

Model

DeepScene 95 1 5 0 94.1%
CamVid 5 142 16 9 82.6%
YCOR 3 0 62 0 95.4%
Cityscapes 14 90 3 165 60.7%
Recall 81.2% 60.9% 72.1% 94.8%

Table A-5: Model selection based reconstruction error of autoencoder architecture 21600. The
numbers in bold represent correct model selections.

Test Dataset
DeepScene CamVid YCOR Cityscapes Precision

Model

DeepScene 117 0 0 0 100%
CamVid 0 233 0 0 100%
YCOR 0 0 81 0 100%
Cityscapes 0 0 5 174 97.2%
Recall 100% 100% 94.2% 100%

Roel Bos Master of Science Thesis



Appendix B

Autoencoder Architectures

Listing B.1: Autoencoder architecture with latent space size 600
1 def autoencoder_600 ( ) :
2 input_img=Input ( shape =(360 ,480 ,3) )
3 x=Conv2D ( 8 , ( 2 , 2 ) , activation=’relu’ , padding=’same’ ) ( input_img )
4 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
5 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
6 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
7 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
8 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
9 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )

10 x=MaxPooling2D ( ( 3 , 2 ) , padding=’same’ ) ( x )
11 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
12 x=MaxPooling2D ( ( 3 , 2 ) , padding=’same’ ) ( x )
13 encoded=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
14
15 direct_input=Input ( shape =(5 ,15 ,8) )
16 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( direct_input )
17 x=UpSampling2D ( ( 3 , 2 ) ) ( x )
18 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
19 x=UpSampling2D ( ( 3 , 2 ) ) ( x )
20 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
21 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
22 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
23 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
24 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
25 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
26 decoded=Conv2D ( 3 , ( 1 , 1 ) , activation=’sigmoid’ , padding=’same’ ) ( x )
27
28 encoder=Model ( input_img , encoded )
29 decoder=Model ( direct_input , decoded )
30 autoencoder=Model ( input_img , decoder ( encoded ) )
31 autoencoder . compile ( optimizer=’ADAM’ , loss=’mean_squared_error’ )
32 return autoencoder , encoder , decoder
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Listing B.2: Autoencoder architecture with latent space size 3600
1 def autoencoder_3600 ( ) :
2 input_img=Input ( shape =(360 ,480 ,3) )
3 x=Conv2D ( 8 , ( 2 , 2 ) , activation=’relu’ , padding=’same’ ) ( input_img )
4 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
5 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
6 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
7 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
8 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
9 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )

10 x=MaxPooling2D ( ( 3 , 2 ) , padding=’same’ ) ( x )
11 encoded=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
12
13 direct_input=Input ( shape =(15 ,30 ,8) )
14 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( direct_input )
15 x=UpSampling2D ( ( 3 , 2 ) ) ( x )
16 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
17 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
18 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
19 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
20 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
21 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
22 decoded=Conv2D ( 3 , ( 1 , 1 ) , activation=’sigmoid’ , padding=’same’ ) ( x )
23
24 encoder=Model ( input_img , encoded )
25 decoder=Model ( direct_input , decoded )
26 autoencoder=Model ( input_img , decoder ( encoded ) )
27
28 autoencoder . compile ( optimizer=’ADAM’ , loss=’mean_squared_error’ )
29 return autoencoder , encoder , decoder

Listing B.3: Autoencoder architecture with latent space size 21600
1 def autoencoder_21600 ( ) :
2 input_img=Input ( shape =(360 ,480 ,3) )
3 x=Conv2D ( 8 , ( 2 , 2 ) , activation=’relu’ , padding=’same’ ) ( input_img )
4 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
5 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
6 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
7 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
8 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
9 encoded=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )

10
11 direct_input=Input ( shape =(45 ,60 ,8) )
12 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( direct_input )
13 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
14 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
15 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
16 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
17 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
18 decoded=Conv2D ( 3 , ( 1 , 1 ) , activation=’sigmoid’ , padding=’same’ ) ( x )
19
20 encoder=Model ( input_img , encoded )
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21 decoder=Model ( direct_input , decoded )
22 autoencoder=Model ( input_img , decoder ( encoded ) )
23
24 autoencoder . compile ( optimizer=’ADAM’ , loss=’mean_squared_error’ )
25 return autoencoder , encoder , decoder

Listing B.4: Autoencoder architecture with latent space size 86400
1 def autoencoder_86400 ( ) :
2 input_img=Input ( shape =(360 ,480 ,3) )
3 x=Conv2D ( 8 , ( 2 , 2 ) , activation=’relu’ , padding=’same’ ) ( input_img )
4 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
5 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
6 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
7 encoded=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
8
9 direct_input=Input ( shape =(90 ,120 ,8) )

10 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( direct_input )
11 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
12 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
13 x=UpSampling2D ( ( 2 , 2 ) ) ( x )
14
15 decoded=Conv2D ( 3 , ( 1 , 1 ) , activation=’sigmoid’ , padding=’same’ ) ( x )
16
17 encoder=Model ( input_img , encoded )
18 decoder=Model ( direct_input , decoded )
19 autoencoder=Model ( input_img , decoder ( encoded ) )
20
21 autoencoder . compile ( optimizer=’ADAM’ , loss=’mean_squared_error’ )
22 return autoencoder , encoder , decoder

Listing B.5: Autoencoder architecture with latent space size 345600
1 def autoencoder_345600 ( ) :
2 input_img=Input ( shape =(360 ,480 ,3) )
3 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( input_img )
4 x=MaxPooling2D ( ( 2 , 2 ) , padding=’same’ ) ( x )
5 encoded=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( x )
6
7 direct_input=Input ( shape =(180 ,240 ,8) )
8 x=Conv2D ( 8 , ( 3 , 3 ) , activation=’relu’ , padding=’same’ ) ( direct_input )
9 x=UpSampling2D ( ( 2 , 2 ) ) ( x )

10 decoded=Conv2D ( 3 , ( 1 , 1 ) , activation=’sigmoid’ , padding=’same’ ) ( x )
11
12 encoder=Model ( input_img , encoded )
13 decoder=Model ( direct_input , decoded )
14 autoencoder=Model ( input_img , decoder ( encoded ) )
15
16 autoencoder . compile ( optimizer=’ADAM’ , loss=’mean_squared_error’ )
17 return autoencoder , encoder , decoder
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Appendix C

Sequential Data Experiments

C-1 KITTI City Sequence

Figure C-1: Every 20’th image from the KITTI City sequence dataset. Images adapted from:
[21].
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C-2 DeepScene Sequence

Figure C-2: Every 20’th image from the DeepScene sequence dataset. Images adapted from:
[56].
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