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 A B S T R A C T

This paper presents a novel stacking sequence design framework for composite laminates, extending the 
recently established Double-Double (DD) laminate theory developed by Stephen Tsai. By introducing and 
evaluating n-Double (n-D) layouts, ranging from single-angle (D) sequences to multi-directional designs such 
as DD, DDD, and DDDD; this study expands the design space for laminated composite structures, enabling 
improved trade-offs between buckling resistance and failure strength. A genetic algorithm (GA) is used to 
optimise the stacking sequences of 48- and 64-layer graphite/epoxy laminates under biaxial and uniaxial 
compressive loading across a range of geometric aspect ratios. Results show that while GA-based free-angle 
designs yield the highest buckling loads, structured DDDD configurations achieve similar or superior failure 
performance and maintain a high level of robustness across geometric variations. The DDDD designs also 
approximate GA-level buckling performance, with significantly improved regularity and manufacturability. 
These findings highlight the benefit of generalising Tsai’s DD theory towards n-D layouts, providing a 
systematic, practical, and high-performing approach to laminate optimisation.
1. Introduction

In recent years, several works have emerged around the use of 
general stacking sequences that are not restricted by traditional as-
sumptions such as symmetry, balance, or the 10% rule (i.e., each fibre 
orientation used in the laminate must account for at least 10% of 
the total number of plies). Among these, the polar method and the 
multi-scale multi-level optimisation strategies have proven particularly 
powerful [1,2]. This formalism allows the identification of optimal 
stacking sequences without enforcing unnecessary constraints, thereby 
enabling superior mechanical performance [3–6].

While these advanced methods explore the full potential of
anisotropic tailoring, traditional quasi-isotropic (quad) laminates, char-
acterised by balanced and symmetric stacking and often referred to as 
‘‘black metal’’ designs, remain prevalent in aeronautical and aerospace 
applications. These configurations have historically played a central 
role in composite structural design, but their inherent limitations have 
constrained the broader adoption of composites in high-performance 
applications. One challenge lies in the combinatorial complexity of 
stacking sequence permutations, which grows rapidly with ply count 
and complicates optimal design identification [7]. Additionally, quad 
laminates can exhibit shear coupling in their flexural stiffness com-
ponents, adding difficulty in structural analysis and optimisation [8]. 
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These limitations motivate the exploration of structured yet more 
flexible stacking approaches, such as the proposed n-D framework.

Another major limitation of quad laminates is the challenge of 
achieving homogenisation while maintaining practical thickness con-
straints. Homogenisation in composite laminates often requires a sub-
stantial number of plies, sometimes reaching up to 120, which results 
in increased structural thickness. This characteristic is particularly 
problematic in applications where minimal gauge thickness is essential, 
such as lightweight aerospace structures. Furthermore, the requirement 
for mid-plane symmetry further constrains laminate design and re-
sults in manufacturing inefficiencies. The difficulty in producing thin, 
lightweight composite laminates with uniform mechanical properties 
has limited the potential advantages of composites over conventional 
materials [9].

Additionally, limitations in tapering and ply dropping further re-
strict the effectiveness of quad laminates in practical applications. 
Achieving weight reduction in composite structures often requires the 
selective removal of plies, but this process is problematic in quad 
laminates. When plies are dropped to create a taper, the laminate 
properties are altered, leading to potential reductions in structural 
performance. Furthermore, ply dropping in quad laminates can intro-
duce manufacturing defects, such as resin-rich areas or voids, which 
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compromise mechanical integrity. These challenges make it difficult 
to efficiently design composite structures that balance both strength 
and weight optimisation [10]. Additionally, in contrast to Quasi-Trivial 
(QT) stacks [3], which provide exact solutions to membrane/bending 
uncoupling and homogeneity conditions regardless of ply angle values,
DD configurations only approximate these properties and typically 
require a higher number of plies to do so. Moreover, DD stacks are 
generally orthotropic in membrane behaviour but remain anisotropic in 
bending, potentially limiting their stiffness tailoring capability. Recent 
advances [2] have further shown that general ply-drop propagation 
rules, based on the concept of search propagation direction, can be 
formulated independently of the stacking sequence type. These devel-
opments position DD stacks as a practical yet constrained subset within 
the broader laminate design landscape.

To address these limitations, Double–Double laminates have been 
proposed by Stephen Tsai [11] as an alternative approach in the design 
and manufacturing of composites, offering several key advantages over 
traditional quad laminates. The DD laminate concept simplifies design 
by utilising a consistent four-ply building block, significantly reducing 
the complexity associated with stacking sequences. This simplification 
enables more efficient laminate design while maintaining desirable 
mechanical properties. Additionally, DD laminates can achieve ho-
mogenisation with fewer plies allowing for thinner, lightweight struc-
tures that meet performance requirements. Unlike quad laminates, DD
laminates enable more effective tapering without altering laminate 
properties, facilitating weight reduction without introducing structural 
deficiencies. By overcoming the key drawbacks of quad laminates,
DD laminates present a promising approach for optimising composite 
structures, particularly in aerospace and high-performance engineering 
applications.

The DD laminate stacking sequence replaces traditional
quasi-isotropic quad laminates (e.g., [0∕45∕−45∕90]𝑆 ) with a new form: 
(±𝜃,±𝜙) repeating angles. This approach aims to increase efficiency by 
reducing ply discontinuities, stress concentrations, and ply drop-offs. 
The main benefits of DD layouts are:

• Simplified stacking sequence: The DD layup uses two pairs of 
angle-plies, which simplifies the design and manufacturing pro-
cesses. This configuration reduces the number of plies required, 
thereby decreasing the overall weight of the composite struc-
ture [9];

• Improved manufacturability: The DD method facilitates through-
the-thickness homogenisation using thinner sub-laminates. This 
allows for profile optimisation through thickness tapering, mak-
ing the manufacturing process more efficient and less prone to 
errors [11];

• Damage resistance and tolerance: Studies comparing DD lami-
nates with traditional quad laminates have shown that DD lami-
nates exhibit comparable damage resistance and tolerance. This 
is evident from the similar magnitudes of delaminated areas 
observed in both types of laminates after impact and compression 
after impact (CAI) tests [12];

• Weight reduction: The DD design has been shown to significantly 
reduce composite structure weight. For instance, an optimised
DD design for a composite stiffened panel in the aviation field 
achieved a mass reduction of up to 26.48%, contributing to 
improved fuel efficiency and operational performance [13]; and

• Enhanced structural performance: The DD laminates offer im-
proved structural performance by mitigating the warpage of non-
symmetric laminates. This is achieved through layup homogeni-
sation, which ensures the structural integrity of the composite 
material [11].

To better understand this new type of stacking sequence and its 
progress so far, a complete, yet non-extensive, state-of-the-art review 
is presented next.
2 
1.1. The state-of-the-art

Table  1 summarises key journal publications addressing DD lami-
nates, focusing on their optimisation methodologies, applications, and 
main findings. The table highlights how DD laminates have been pre-
dominantly developed through stiffness homogenisation approaches, 
with some recent efforts exploring their buckling and damage tolerance 
behaviour under specific loading cases.

1.2. Motivation and gap

As outlined in the state-of-the-art review (Section 1.1), the Double-
Double (DD) laminate design theory has demonstrated clear advantages 
over traditional quasi-isotropic (Quad) laminates, including enhanced 
structural efficiency, reduced weight, and improved manufacturability 
through homogenised stiffness design. However, the DD concept re-
mains constrained by its four-ply repeated substructure, potentially lim-
iting its applicability in fully exploiting the design space of multi-angle 
fibre-reinforced laminates for advanced structural applications.

To unlock further gains in buckling resistance, failure strength, and 
directional stiffness tailoring, this study explores the generalisation of 
the DD concept towards n-Double (n-D) laminates. These configurations 
extend the design space from single-angle D to DDDD layouts with up 
to four unique ply angles, enabling multi-directional tailoring. Such an 
approach is especially promising for critical loading cases, including 
uniaxial and biaxial compression, commonly encountered in aerospace, 
automotive, and high-performance engineering structures.

Despite the potential benefits, several research gaps remain unad-
dressed:

• Existing DD laminates primarily focus on stiffness matching with 
reference designs and may not be optimal for performance under 
uniaxial or biaxial loading conditions;

• The exploration of stacking sequences beyond four angles (e.g.,
DDD and DDDD) has not yet been systematically investigated for 
structural performance enhancement;

• Current design methods rely on trial and error-based stiffness 
matching, whereas the use of genetic algorithms (GA) offers a 
more robust and global approach to stacking sequence optimisa-
tion; and

• Additional design constraints, such as manufacturability, layup 
symmetry, and gradual thickness transitions, need to be inte-
grated into optimisation frameworks to ensure practical feasibil-
ity.

Addressing these gaps through a systematic optimisation and evalu-
ation framework will pave the way for novel, high-performance lam-
inate architectures with tailored responses and increased robustness 
across a broad range of operating conditions.

1.3. Aim of this study

This work aims to develop a comprehensive optimisation framework 
for n-D laminates by generalising Tsai’s Double-Double (DD) theory 
to include both lower- and higher-order stacking sequences, from D
to novel DDDD layouts. Two complementary strategies are employed: 
stiffness matching and heuristic optimisation via a GA. The objective 
is to maximise structural performance by improving buckling and 
failure load factors of laminated plates subjected to uniaxial and biaxial 
compressive loads. Additionally, five aspect ratios (𝑎∕𝑏, the ratio of lon-
gitudinal to lateral dimensions) are investigated to capture geometric 
effects.

The proposed methodology consists of three key steps:

1. Stiffness matching: Extending the homogenisation-based design 
approach to generate n-D layups with equivalent in-plane stiff-
ness to reference laminates under biaxial and uniaxial compres-
sive loading;
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Table 1
The current state-of-the-art on DD laminates.
 Ref. Loading Approach Main results  
 [9] Internal pressure, bending and 

buckling
Trial-and-error DD can be up to 50% lighter than Quad laminates  

 [14] Uncertain loads GA 8.5% mass savings compared to Quad laminates while balancing laminates about 
principal loading axes reduces mass by 20%

 

 [15] Bending, torsion, and thermal FEA & optimisation 
(GA)

DD laminates warp less than Quad/D; both D and DD show superior thermal 
behaviour enabling up to 70% mass reduction

 

 [16] Uniaxial compression and 
shear

FEA & optimisation & 
analytical

The DD method speeds homogenisation, cuts costs, and reduces weight beyond Quad 
laminates

 

 [17] Uniaxial compression Nonlinear FEA and GA 
optimisation

The manufacturing process significantly impacts the axial load-carrying capacity and 
transition load of unsymmetric laminates

 

 [18] Multiple loads Topology optimisation Structures designed with several failure criteria - Tsai–Wu criterion reached the 
lowest failure index

 

 [19] Uniaxial compression Analytical, 
experimental

Layup homogenisation reduces warpage by 97.5% with eight repetitions of 
asymmetric cross-ply sub-laminates

 

 [20] Open-hole tension and 
compression & Low-Velocity 
Impact (LVI)

Machine learning (ML), 
analytical & FEA

Gaussian Processes perform well with small datasets and Artificial Neural Networks 
excel with larger datasets. The models accurately capture the statistical distribution 
of notched strength

 

 [21] Compression loads Experimental and 
optimisation (GA)

DD designs enhance buckling, remove bending–twisting coupling, and optimise 
stiffness in compression members

 

 [22] Multiple loads Machine learning Ridge regression is the most effective model, achieving 99% accuracy and being 
1000 times faster than FE simulations

 

 [23] LVI & compression Experiments DD laminates show superior impact resistance and energy absorption, with 
mechanical properties close to Quad

 

 [24] Bending and torsion FE and analytical 
models

The lightest DD laminate is found for a given buckling load, avoiding extensive 
evaluations of Quad laminates

 

 [25] Multiple loads Topology optimisation Optimised configurations obtained by DD and Quad are similar  
 [26] Tension and compression Experimental, FEA & 

optimisation
DD design demonstrates superior energy absorption compared to Quad configurations 

 [27] Various loads Numerical and 
experimental

DD laminates exceed Quad in damage onset and stress distribution, with up to 
25.8% higher performance

 

 [24] Bending, tensile, and shear Analytical Validation confirms that 𝜉𝐴1 and 𝜉𝐴2 equal 𝜉𝐷1 and 𝜉𝐷2, while 𝜉𝐴3 and 𝜉𝐴4 are zero  
 [28] Compression Compliance Beam 

Method
DD layup increases maximum load by 13% and shear fracture energy by 38%. Also, 
DD laminates delay crack propagation

 

 [29] Varying damage initiation 
loads

Analytical The first DD optimum solution for the ‘horse-shoe’ use case achieves a 7.8% weight 
reduction

 

 [30] Various loading conditions Deep transfer ML Transfer learning enhances the generalisation of ML models for both known and new 
design parameters

 

 [31] Mode-I fracture toughness Modified beam theory 
(MBT) method

Enhanced crack mitigation with DD layups  

 [32] Multiple loading conditions Optimisation, FE 
simulations

The redesign process achieved up to 29% mass reductions while maintaining 
mechanical performance

 

 [33] Multiple loading conditions ‘‘DD Automated Design 
Tool’’, GA

DD laminates enabled a 64.6% weight reduction compared to Quad laminates  

 [13] LVI Experimental and 
numerical

The DD design cut mass by up to 71% in frames and 13% in the fuselage while 
preserving crashworthiness

 

 [12] Compression Analytical The DD laminate exhibited higher uniaxial compressive strength and stiffness with 
increases of 24% and 11%, respectively

 

 [34] Bending and torsion Semi-analytical and 
experimental

Steady-state R-curves with DD laminates  

 [35] Compression Analytical The DD formulation simplifies design, cuts computation, reduces weight, and boosts 
early design maturity

 

 [36] LVI & CAI Optimisation and FEA The angle optimisation design of DD laminates is crucial for performance 
improvement and weight reduction

 

 [37] Compression FEA The [67.5◦∕ − 22.5◦∕22.5◦∕ − 67.5◦
]

8𝑇  laminate shared the [𝐴∗] matrix, showing CAI 
behaviour similar to Quad

 

 [38] Fatigue Experimental DD laminates showed smaller damage in static/dynamic tests, with better 
homogenisation and weight reduction

 

 [39] Shear Analytical, 
optimisation, FEA

Simplified laminate design and manufacturing processes. Layup homogenisation 
effectively mitigated warpage in asymmetric layups

 

 [40] Uniaxial compression and 
shear

FEA DD laminates offer improved performance over Quad laminates in specific loading 
scenarios

 

 [41] Buckling FEA, optimisation Spacing constraints yield smoother thickness transitions with slight performance loss  
3 
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2. Heuristic optimisation: Implementing a GA to explore the op-
timum stacking sequences that maximise buckling resistance 
and delay failure onset for each 𝑎∕𝑏 case and stacking layout 
constraint; and

3. Structural performance evaluation: Comparing the optimised n-
D laminates to conventional Quad designs through numerical 
simulations to assess improvements in load-bearing capacity, 
robustness, and design flexibility.

The paper is organised as follows. Section 1 provides the intro-
duction, a comprehensive state-of-the-art review (Section 1.1), the 
motivation and research gap (Section 1.2), and the aim of the study 
in Section 1.3. Section 2 outlines the proposed generalised formulation 
in Section 2.1, followed by the implementation of the linear buckling 
analysis in Section 2.2 and the optimisation problem and characteristics 
(Section 2.3). Section 3 presents the numerical results, including the 
Direct Stiffness Matching approach (Section 3.1), convergence analysis 
of the optimisation process (Section 3.2), buckling optimisation results 
(Section 3.3), and an analysis of the optimum stacking sequences 
(Section 3.4). Section 4 discusses the key findings, with emphasis on 
stiffness matching and design generalisation (Section 4.1), the buckling 
and failure behaviour under uniaxial and biaxial compression for the 
48-ply laminate (Section 4.2), the limitations observed in the 64-ply 
laminate (Section 4.3), the broader implications for structural laminate 
design (Section 4.4), the polar plots in Section 4.5, and the overall 
limitations of this study are listed in Section 4.6. Finally, Section 5 
summarises the main conclusions of the study.

2. Methodology

2.1. Generalised n-Double laminates

Double–double (DD) laminates, characterised by a two-angle stack-
ing sequence of the form [±𝜙, ; ±𝜓], can be extended to an n-D laminate 
defined by [±𝜙1, ; ±𝜙2,… ,±𝜙𝑛]. In this generalised family, each 𝜙𝑘
(with 𝑘 = 1,… , 𝑛) is a distinct ply orientation (typically 0◦ ≤ 𝜙𝑘 ≤
90◦ due to symmetry), and each appears as a balanced ±𝜙𝑘 pair. By 
increasing 𝑛, a broader design space of stiffness properties can be 
achieved, approaching quasi-isotropic behaviour as 𝑛 grows. Higher 
values of 𝑛 (e.g., 𝑛 = 3 or 4) introduce additional ply angles for fine-
tuning stiffness anisotropy but at the cost of more complex stacking 
sequences.

Assuming a symmetric and balanced n-D laminate (hence neglecting 
elastic coupling, with [𝐵] = 𝟎), the in-plane extensional stiffness matrix 
[𝐴] can be expressed in terms of the lamina invariants and the ply 
angles 𝜙𝑘. We adopt the trace-normalised invariant framework of Tsai 
and Melo [8,42], which defines an orientation-invariant scalar ‘‘trace’’ 
of the reduced stiffness: 𝑇 𝑟 = 𝑄11 +𝑄22 +2𝑄66; for a single ply stiffness 
matrix [𝑄] in plane stress. Using this invariant 𝑇 𝑟 as a normalising fac-
tor, one defines a dimensionless stiffness matrix [𝑄∗] = [𝑄]∕𝑇 𝑟, which 
is invariant to overall material stiffness scale. The transformed stiffness 
of a ply at orientation 𝜃 can then be written as a linear combination 
of trace-normalised invariants 𝑈∗

𝑖  multiplied by simple trigonometric 
functions of 𝜃. In particular, the in-plane stiffness components take the 
form [42]:
𝑄̄∗

11(𝜃) = 𝑈∗
1 + 𝑈∗

2 cos 2𝜃 + 𝑈∗
3 cos 4𝜃 (1)

𝑄̄∗
22(𝜃) = 𝑈∗

1 − 𝑈∗
2 cos 2𝜃 + 𝑈∗

3 cos 4𝜃 (2)

𝑄̄∗
12(𝜃) = 𝑈∗

4 − 𝑈∗
5 cos 4𝜃 (3)

and similarly for 𝑄̄∗
66(𝜃). Here, the 𝑄̄∗

𝑖𝑗 are dimensionless rotated stiff-
ness coefficients in the laminate coordinate system, and 𝑈∗

𝑖  are invari-
ant material parameters that are dependent on the 𝑄𝑖𝑗 values of the 
plies, but not on 𝜃. For example, one of these invariants is given by 
𝑈1 =

3
8 (𝑄11 +𝑄22) +

1
4𝑄12 +

1
2𝑄66, which when normalised by the trace 

yields 𝑈∗. The set {𝑈∗, 𝑈∗, 𝑈∗, 𝑈∗, 𝑈∗}, often named Tsai’s invariants, 
1 1 2 3 4 5

4 
provides an invariant description of the in-plane ply stiffness properties. 
Using the relations in Eqs. (1) to (3), the extensional stiffness 𝐴𝑖𝑗 of an 
𝑛-double laminate can be obtained by summing the contributions of all 
plies. Thanks to the balanced ±𝜙𝑘 pairs, all terms involving sin 2𝜃 or 
sin 4𝜃 cancel out, and only even cosine terms remain. If each orientation 
𝜙𝑘 is represented with an equal fraction of plies (a common assumption 
in a homogenised laminate), the in-plane 𝐴-matrix components can be 
written in closed form. For instance, defining the average cosine factors

⟨cos 2𝜙⟩ = 1
𝑛

𝑛
∑

𝑘=1
cos 2𝜙𝑘 , ⟨cos 4𝜙⟩ = 1

𝑛

𝑛
∑

𝑘=1
cos 4𝜙𝑘 ,

the normalised in-plane stiffness terms become: 
𝐴11
ℎTr

= 𝑈∗
1 + 𝑈∗

2 ⟨cos 2𝜙⟩ + 𝑈∗
3 ⟨cos 4𝜙⟩ , (4)

where ℎ is the laminate thickness. Analogous expressions hold for 𝐴22, 
𝐴12, 𝐴66, and so forth. Eq. (4) is obtained by inserting the ±𝜙𝑘 ply 
contributions from Eqs. (1)–(3) into the definition 𝐴𝑖𝑗 =

∑

plies 𝑄̄
,
𝑖𝑗𝑇 𝑟, 𝛥𝑧

(summing over ply thickness). The anti-symmetry of the laminate en-
sures 𝐴16 = 𝐴26 = 0, and the in-plane stiffness is fully described 
by Eq. (4) (along with all 𝐴𝑖𝑗 , which can be written in a similar 
invariant form). Notably, the combination 𝑈∗

1  corresponds to the trace-
normalised isotropic part of the stiffness (it equals 18 (𝑄11+𝑄22+2𝑄12+
4𝑄66)∕𝑇 𝑟, i.e. the orientation-averaged stiffness), while 𝑈∗

2  and 𝑈∗
3

govern the orthotropic deviations (associated with cos 2𝜃 and cos 4𝜃
dependence). In a fully quasi-isotropic limit (infinitely many angles 
or a continuous distribution), ⟨cos 2𝜙⟩ → 0 and ⟨cos 4𝜙⟩ → 0, so that 
𝐴11 = 𝐴22 = ℎ𝑇 𝑟𝑈∗

1  and 𝐴12 = ℎ𝑇 𝑟𝑈∗
4 ; recovering an isotropic in-plane 

stiffness characterised essentially by a single modulus 𝑇 𝑟, 𝑈∗
1 , which 

is often referred to as ‘‘Tsai’s modulus’’. The formulas above, derived 
for arbitrary 𝑛, reduce directly to the known DD case for 𝑛 = 2 (with 
𝜙1 = 𝜙, 𝜙2 = 𝜓) and are consistent with published results for [±𝜙,±𝜓]
laminates.

An important design aspect of n-D laminates is the assumption of ho-
mogenisation: by repeating a basic [±𝜙1,… ,±𝜙𝑛] sub-laminate multiple 
times through the thickness, the effective properties of the laminate 
approach those of a homogeneous orthotropic plate. In the context of
DD laminates (𝑛 = 2), Tsai notes that using a 4-ply repeating block (two 
±𝜙 and two ±𝜓 plies) allows one to achieve a near-constant ‘‘master 
ply’’ stiffness with far fewer plies than a conventional 0/±45/90 layup. 
In fact, a homogenised DD laminate can retain roughly constant 𝐴𝑖𝑗
values even as plies are dropped, enabling tapering of thickness without 
abrupt in-plane stiffness changes. By contrast, a quad laminate requires 
a much thicker buildup (on the order of dozens of plies) before its 
properties stabilise. As 𝑛 increases, the size of the repeating block 
(containing 2𝑛 plies for a symmetric stack) also increases, which can 
slow down the convergence to homogenised behaviour. Thus, there is 
a trade-off: although an 𝑛-double laminate with large 𝑛 offers more flex-
ibility in tailoring stiffness (and can theoretically approximate isotropy 
as 𝑛→ ∞), it may require more plies/repeats to achieve the same level 
of homogenisation as a smaller 𝑛 design. In practice, n-D laminates for 
𝑛 > 2 have not seen widespread use; instead, the 𝑛 = 2 case strikes 
a desirable balance between design simplicity and performance. Still, 
the generalisation to arbitrary 𝑛 is conceptually useful and aligns with 
the classical laminate theory understanding that lamination parameters 
offer a compact representation of the in-plane and out-of-plane stiffness 
behaviour of a laminate, especially in the asymptotic limit of large ply 
counts.

Finally, by enforcing symmetry (mid-plane reflection) in an 𝑛-
double laminate, the coupling matrix [𝐵] is zero (as assumed above), 
simplifying analysis and design. With 𝐵 = 0, in-plane and bend-
ing responses are decoupled, and one can optimise the extensional 
stiffness [𝐴] independently of the flexural stiffness [𝐷]. Moreover, a ho-
mogenised symmetric laminate allows ply drops to be done in balanced 
singles (removing one ±𝜙𝑘 pair at a time) without inducing coupling, 
which is an advantage over traditional designs that require removing 
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plies in mirror-symmetric pairs. This simplification is critical in wing 
panel optimisation, as highlighted by Shrivastava et al. [15], who 
demonstrated improved weight efficiency using DD building blocks 
under multiple load cases. In summary, the n-D laminate concept 
generalises the DD philosophy to an arbitrary number of angle-ply 
pairs, retaining the benefits of invariant-based stiffness descriptions and 
manufacturability considerations. Its theoretical formulation (Eq. (4)) 
leverages trace-normalised invariants to homogenise and simplify the 
stiffness analysis, while the practical design guidance (e.g., choosing 
𝑛 = 2 in most cases) stems from the desire to minimise complexity and 
maximise the homogenisation benefit. (For further reference, see Tsai’s 
development of the DD family and invariant theory by Tsai & Melo [8], 
as well as recent studies extending DD concepts for advanced tailoring.)

In this study, we restrict the analysis to balanced and symmetric 
stacking sequences. While this limits the design space, the assumption is 
motivated by practical considerations in laminate design and manufac-
turing. Symmetry and balance help mitigate coupling between bending 
and extension, reduce residual stresses, and are widely adopted in the 
industry due to their certification history and simplified failure be-
haviour. However, it is acknowledged that these are sufficient, but not 
necessary, conditions for membrane/bending uncoupling. In particular, 
Quasi-Trivial (QT ) stacks [3] represent a broader class of laminates 
that fulfil uncoupling and homogeneity conditions without relying on 
symmetry. The current framework may be extended in future work to 
include such generalised layups, potentially improving the optimality 
of the designs.

It is also acknowledged that, despite being symmetric and balanced, 
the n-D stacking sequences adopted in this study are not necessarily or-
thotropic in bending. This limitation is inherent to the DD formulation 
and has been rigorously demonstrated in the context of more general 
stacking theories, such as QT  laminates and the polar method [3,5]. 
These frameworks enable a comprehensive representation of the in-
plane and bending stiffness matrices, potentially leading to designs that 
are fully orthotropic or uncoupled in both A and D matrices. While our 
study prioritises structured and manufacturable designs, future work 
will aim to remove the balance and symmetry constraints to explore 
these broader classes of laminates.

While the trace of the in-plane stiffness matrix (𝐴11 +𝐴22) provides 
a practical and intuitive indicator of in-plane stiffness, it is worth 
mentioning that it does not fully characterise the elastic symmetry 
of a 2D orthotropic or anisotropic laminate. In this regard, the polar 
method [1,4,6], offers a rigorous mathematical framework based on 
tensorial invariants. This method enables the classification of laminate 
stiffness according to symmetry classes (e.g., isotropic, orthotropic, 
monoclinic) and provides complete descriptors of the fourth-order in-
plane elasticity tensor. Unlike the DD framework, which focuses on 
structural regularity and manufacturability, the polar formalism is 
particularly well-suited for theoretical design, inverse problems, and 
multi-scale optimisation strategies.

The membrane/bending uncoupling condition, mathematically de-
fined as 𝐵 = 0, and the homogeneity condition, which requires the 
in-plane stiffness matrix 𝐴 and bending stiffness matrix 𝐷 to have 
identical tensorial symmetries (i.e., 𝐴∗ = 𝐷∗), are key requirements 
in many optimal laminate designs [3]. While these conditions can be 
exactly fulfilled in QT  laminates with relatively few plies, the same is 
not generally true for DD or n-D stacks, unless a large number of plies 
is used and orientations are carefully chosen.

For example, the QT  sequences
[𝛼∕𝛽∕𝛼∕𝛼∕𝛼∕𝛽∕𝛼] and [𝛼∕𝛽∕𝛽∕𝛼∕𝛽∕𝛼∕𝛼∕𝛽]

where 𝛼 and 𝛽 are fibre angles, achieve both 𝐵 = 0 and 𝐴∗ = 𝐷∗ for 
arbitrary values of 𝛼 and 𝛽 in the range [−90◦, 90◦]. In contrast, DD
designs impose stricter symmetry and angle repetition rules, making 
exact satisfaction of these conditions difficult in general. As such, while
DD and n-D layouts offer excellent manufacturability and performance 
trade-offs, they should not be seen as universally optimal solutions in 
5 
problems where lightweight design and elastic decoupling are critical. 
This highlights the importance of exploring more general stacking 
strategies, such as QT or polar-based designs, in future optimisation 
frameworks.

2.2. Linear buckling analysis

The description of the implemented formulation to calculate the 
critical linear buckling load is detailed in the Appendix.

2.3. The optimisation

The optimisation was conducted using a GA from the pymoo li-
brary [43]. The search space consisted of 𝑛var = 12 variables, corre-
sponding to a quarter of the 48-ply stacking sequence (the rest of the 
laminate is generated by enforcing symmetry and balance). The ply 
angle variables were restricted to integer values in the range 0◦−90◦, 
representing typical manufacturing constraints.

The GA was configured with the following parameters: a population 
size of 50, maximum number of generations 𝑁gen = 100, and a random 
seed fixed at 1 for reproducibility. Integer-based random sampling 
was used to initialise the population. The Simulated Binary Crossover 
(SBX) operator was applied with a crossover probability of 1.0 and 
distribution index 𝜂𝑐 = 3.0, followed by a polynomial mutation (PM) 
operator with mutation probability of 1.0 and mutation index 𝜂𝑚 = 3.0. 
Both operators were configured to handle integer variables using the 
built-in rounding repair mechanism in pymoo. Duplicate individuals 
were eliminated to promote population diversity.

No explicit constraint handling was required within the GA since 
laminate balance and symmetry were enforced programmatically when 
reconstructing the full stacking sequence. The objective function was 
based on the inverse of the minimum between buckling load factor or 
failure load factor, consistent with the weighted aggregation strategy 
introduced by Haftka [44].

The optimisation problem can be described as follows: 

min
𝜽∈[0◦ ,90◦]𝑛

𝑓 (𝜽) = 1
(1 − 𝑝) ⋅min

(

𝜆cb(𝝓), 𝜆cs(𝝓)
)

subject to 𝝓 = Sym (Bal (𝜽 ∪ (−𝜽)))
(5)

The optimisation problem addressed in this study is characterised by 
a highly nonlinear, multimodal, and derivative-free objective function 
that depends on both the buckling and failure response of the laminate. 
Although the ply orientation angles are defined within a continu-
ous range [0◦, 90◦], the implemented genetic algorithm (GA) employs 
integer-based encoding with a resolution of 1◦, while keeping balanced 
and symmetric stacking sequences. This representation enables the GA 
to efficiently explore the design space while naturally incorporating 
manufacturable angles, with buckling and failure constraints added 
through a penalty-based method.

It is acknowledged that metaheuristic algorithms such as GAs do 
not guarantee convergence to global or local optima. The solutions ob-
tained herein are considered near-optimal, representing
high-performance designs within the explored parameter space and 
algorithm settings.

3. Results and discussion

The benchmark study by Le Riche and Haftka [44] is considered, 
in which a symmetric laminated composite plate with 64 plies, simply 
supported along all four edges, is subjected to biaxial in-plane loading, 
as illustrated in Fig.  1. The stacking sequence is optimised to maximise 
the buckling load factor. In this case, the plate has dimensions 𝑎 =
508mm (20 in) and 𝑏 = 254mm (10 in), and is subjected to uniform 
in-plane loads of 𝑁𝑥 = 𝑁𝑦 = 0.17513N/m (1 lb/in).

The material properties of the graphite-epoxy laminate used in this 
case, as reported in [44], are: longitudinal modulus 𝐸 = 127.7 GPa, 
1
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Fig. 1. Geometry, loads, and boundary conditions of the study case.
transverse modulus 𝐸2 = 13.0 GPa, in-plane shear modulus 𝐺12 =
6.41 GPa, Poisson’s ratio 𝜈12 = 0.3, and ply thickness 𝑡ply = 0.127 mm. 
The ultimate strains are 𝜖ua1 = 0.008, 𝜖ua2 = 0.029, and 𝛾ua12 = 0.015.

To highlight the existence of multiple optima in laminate design, 
selected results from Le Riche and Haftka [44] are discussed. In their 
study, five different Quad stacking sequences for a symmetric 64-ply 
laminate, all evaluated using FE simulations, were shown to yield the 
same buckling load factor 𝜆 of 3973.01, despite having significantly 
different ply arrangements. This indicates that the buckling response 
is largely insensitive to the specific stacking sequence among these 
configurations. However, the corresponding failure load factors varied 
considerably, i.e., from 8935.74 to 14205.18, revealing that the failure 
response is more sensitive to the laminate architecture. The detailed 
stacking sequences and load factors are omitted here for brevity, as they 
are already reported in the original publication (see Table 2 in [44]).

3.1. Direct stiffness matching approach

As proposed by Shrivastava et al. [15], the selection of equivalent
DD laminates for Quad can be performed based on the best match 
of three terms of the thickness-normalised membrane stiffness matrix 
[𝐴∗] = (1∕ℎ) [𝐴]; based on the minimisation of the following error: 
 = |

|

|

(

𝐴∗
11
)

𝐷𝐷 −
(

𝐴∗
11
)

𝐿𝑄𝐿
|

|

|

+
|

|

|

(
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)
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(
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)
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|

+
|
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)
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(
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)

𝐿𝑄𝐿
|

|

|

(6)

Although DD laminates can closely approximate target stiffness val-
ues using coarse angle discretisations (e.g., 1◦ steps), and achieve even 
better matching with finer resolution, this does not directly correlate 
with improved buckling performance. In Table  2, a stiffness-matching 
exercise is performed using 48-ply quasi-isotropic reference laminates 
from Le Riche and Haftka [44]. These results refer exclusively to 
conventional quad laminates optimised using the stiffness matching 
approach described in Ref. [15], and are reported here to highlight an 
important limitation: matching the 𝐴 and 𝐷 matrices does not neces-
sarily predict buckling or failure loads accurately. This underscores the 
need for design frameworks, such as the proposed n-D approach, that 
consider the full coupling between geometry, stacking, and structural 
performance.
6 
3.2. Convergence analysis

Fig.  2 presents the convergence behaviour of the GA for both 
the 48-layer and 64-layer laminate optimisation problems, considering 
variations in population size and number of generations. For the 48-
layer case, subfigures (a) and (b) show that increasing the population 
size and the number of generations improves the convergence rate and 
the final buckling load factor, 𝜆, up to a certain point. Specifically, a 
population size of 40 or 50 and a minimum of 60 generations appear 
sufficient to consistently reach the maximum load factor, suggesting a 
good trade-off between computational cost and performance.

A similar trend is observed for the 64-layer laminate in subfigures 
(c) and (d). The GA shows sensitivity to the choice of population size 
in early generations but quickly stabilises with larger populations. No-
tably, beyond 25 individuals and 40 generations, the differences in final 
𝜆 become negligible, indicating convergence to a near-optimal layup. 
This behaviour demonstrates the robustness of the GA in handling high-
dimensional stacking sequence optimisation problems and highlights 
the importance of proper tuning of algorithm parameters for efficient 
search.

3.3. Buckling optimisation

Table  3 presents the buckling and failure load factors (𝜆) obtained 
for a 48-layer composite laminate subjected to biaxial and uniaxial 
compression, considering different stacking sequence configurations (n-
D layouts), aspect ratios (𝑎∕𝑏), and boundary conditions (BC). The 
stacking sequences include traditional single-angle (D), double-angle 
(DD), and more multi-angle layouts (DDD and DDDD), with GA repre-
senting a completely unrestricted and unconstrained design where the 
GA selects arbitrary ply angles.

For both biaxial and uniaxial loadings, a clear trend is observed: 
increasing the freedom of ply orientations (i.e., moving from D to
DDDD) generally improves both buckling and failure performance. This 
is especially evident in biaxial loading at low aspect ratios (𝑎∕𝑏 = 0.5), 
where the buckling load increases from 23364 (D) to 27484 (DDDD), 
and the failure load increases from 13750 to 12634. Interestingly, the 
best buckling performance is consistently achieved by the unrestricted 
GA layouts, though these do not always result in the best failure loads. 
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Table 2
Stiffness matching optimisation results: Optimised stacking sequences for buckling and failure loads allowing 𝑛-D layouts for a 
48–layer laminate. All results are in terms of load factor (𝜆).
 Layout Stacking sequence Stacking sequence Buckling Failure  
 (Quad) (Optimised) load factor load factor  (𝜀)  
 
D

[902∕±452∕902∕±45∕902∕±456]𝑠 [±54]24 9998.18 8876.36  (8.1 × 10−2)  
 [904∕±454∕902∕±45∕902∕±453]𝑠 [±57]24 9997.60 9675.74  (8.8 × 10−2)  
 [±452∕904∕±45∕902∕±455∕902∕±45]𝑠 [±57]24 9976.58 9675.74  (8.8 × 10−2)  
 
DD

[902∕±452∕902∕±45∕902∕±456]𝑠 [±40∕±66]12 9998.18 8749.30  (5.8 × 10−3)  
 [904∕±454∕902∕±45∕902∕±453]𝑠 [±41∕±72]12 9997.60 9533.58  (1.9 × 10−3)  
 [±452∕904∕±45∕902∕±455∕902∕±45]𝑠 [±41∕±72]12 9976.58 9533.58  (1.9 × 10−3)  
 
DDD

[902∕±452∕902∕±45∕902∕±456]𝑠 [±37∕±52∕±71]8 9998.18 8799.94  (1.4 × 10−3)  
 [904∕±454∕902∕±45∕902∕±453]𝑠 [±60∕±72∕±36]8 9997.60 9515.65  (4.2 × 10−16) 
 [±452∕904∕±45∕902∕±455∕902∕±45]𝑠 [±60∕±72∕±36]8 9976.58 9515.65  (2.5 × 10−16) 
 
DDDD

[902∕±452∕902∕±45∕902∕±456]𝑠 [±45∕±45∕±45∕902]6 9998.18 8786.63  (5.8 × 10−16) 
 [904∕±454∕902∕±45∕902∕±453]𝑠 [±64∕±82∕±41∕±42]6 9997.60 9515.48  (2.2 × 10−5)  
 [±452∕904∕±45∕902∕±455∕902∕±45]𝑠 [±64∕±82∕±41∕±42]6 9976.58 9515.48  (2.2 × 10−5)  
Note: 𝑎 = 20 in., 𝑏 = 5 in., 𝑁𝑥 = 1.0 lb/in, 𝑁𝑦 = 0.5 lb/in. The error 𝜀 quantifies the difference between the stiffness-matched and target designs.
Fig. 2. Convergence analysis for the 48-layer laminate varying the (a) population size and (b) number of generations, and for the 64-layer laminate varying the 
(c) population size and (d) number of generations.
This highlights the trade-off between structural stiffness and failure 
strength that must be managed in laminate design.

Comparing the two boundary conditions reveals that uniaxial com-
pression leads to higher buckling and failure loads across all configu-
rations and stacking types. For instance, at 𝑎∕𝑏 = 0.5, the GA layout 
under uniaxial compression yields a buckling load of 36395 compared 
to 25728 under biaxial loading—a relative increase of about 41%. This 
is consistent with the structural mechanics of plate buckling, where 
7 
uniaxial loading permits higher critical loads due to less distributed 
compression.

The aspect ratio has a pronounced effect on both buckling and 
failure responses. In general, increasing the aspect ratio from 𝑎∕𝑏 = 0.5
to 4.0 leads to a reduction in both buckling and failure loads for most 
configurations. However, the effect is more severe in configurations 
with limited design freedom (D and DD). In contrast, the DDDD and GA 
configurations exhibit more stable performance across the range of 𝑎∕𝑏
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Table 3
Buckling and failure loads allowing n-D layouts for a 48-layer laminate. All results are in terms of load factor (𝜆).
 BC n-D a/b ratio
 0.5 1.0 2.0 3.0 4.0  
 Buckling/Failure Buckling/Failure Buckling/Failure Buckling/Failure Buckling/Failure 
 

Biaxial

Free 25,728/18,537 12,464/17,850 10,615/10,633 10,484/10,489 10,453/10,549  
 D 23,364/13,750 10,247/9252 7467/14,101 7285/12,092 5562/11,795  
 DD 23,893/15,424 10,829/14,713 8903/13,442 9341/12,424 8571/10,995  
 DDD 24,907/10,804 11,663/11,084 9098/10,531 8792/11,041 7717/11,279  
 DDDD 27,484/12,634 11,724/10,019 9102/10,151 9079/11,995 9291/11,931  
 

Uniaxial

Free 36,395/23,679 16,881/16,880 16,863/16,865 16,679/16,693 16,724/16,727  
 D 25,898/13,978 15,851/10,193 15,444/8588 16,170/8634 14,780/12,440  
 DD 32,912/13,648 17,204/9553 16,180/11,342 15,487/10,298 16,105/10,211  
 DDD 33,052/14,493 17,082/12,205 16,965/9371 17,530/9027 16,934/8804  
 DDDD 30,801/10,797 17,339/8903 17,736/9015 16,793/10,830 16,693/10,258  
ratios, demonstrating the robustness of highly flexible stacking designs 
to changes in geometry.

Although GA consistently provides the highest buckling loads, its 
failure loads are sometimes lower than those achieved with more struc-
tured DDDD layouts. For example, under uniaxial loading at 𝑎∕𝑏 = 2.0, 
GA achieves a failure load of 16865, while DDDD achieves 9015. How-
ever, the DDDD configuration achieves similar buckling performance 
(17 736 vs. 16865) with a better failure-to-buckling ratio
(𝜆failure∕𝜆buckling), indicating a more balanced design. Thus, while GA 
offers maximum flexibility, structured multi-angle configurations like
DDDD offer superior trade-offs for design scenarios where failure must 
be avoided.

The DD stacking concept proposed by Tsai is clearly extended 
and outperformed by the more generalised DDD and DDDD stacking 
patterns. This is evident in both loading scenarios and across all aspect 
ratios. For instance, at 𝑎∕𝑏 = 1.0 under uniaxial loading, the DD con-
figuration yields a buckling load of 17204, while the DDDD achieves 
17339. Although the improvement is marginal here, the trend becomes 
more significant at higher aspect ratios and in biaxial loading scenarios.

Overall, these results highlight the value of enabling richer stacking 
sequence layouts in laminate design. Not only do DDD and DDDD
configurations outperform the traditional D and DD designs in terms 
of buckling and failure loads, but they also offer robustness across 
geometrical and loading variations, thus advancing the current state 
of the art in stacking sequence optimisation.

Table  4 summarises the buckling and failure load factors (𝜆) ob-
tained for 64-layer composite laminates subjected to both biaxial and 
uniaxial compressive boundary conditions (BC), for a range of 𝑎∕𝑏
aspect ratios. Compared to the 48-layer case (Table  3), these thicker 
laminates demonstrate notably higher structural performance across all 
stacking configurations, which is expected due to increased flexural 
stiffness. However, the DDD layout is no longer feasible for 64-ply 
laminates due to ply count constraints, and the comparison is therefore 
limited to D, DD, DDDD, and GA (free-angle) stacking sequences.

The comparative performance of D, DD, DDDD, and free-angled-
constrained stacking sequences must be interpreted carefully. While 
free-angled-constrained layups offer more flexibility, they involve a 
larger number of design variables, increasing the risk of convergence 
to sub-optimal regions due to the multimodal nature of the prob-
lem. In contrast, n-D configurations with fewer angles may benefit 
from design regularity, better fibre alignment, and more efficient load 
transfer, especially under compressive loads. Although the free-angled-
constrained solutions are not guaranteed to be globally optimal (due 
to the stochastic nature of the GA algorithm), they represent high-
performing candidates obtained through extensive search. The superior 
performance of some structured stacks, despite their restricted design 
space, highlights the trade-off between freedom and robustness in 
stacking sequence design.

As in the 48-layer case, increasing the design freedom through more 
general stacking sequences (from D to DDDD) consistently improves 
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performance across most load cases. For instance, under biaxial loading 
at 𝑎∕𝑏 = 0.5, the buckling load improves from 41870 (D) to 43516 (DD) 
and then slightly decreases to 42170 (DDDD). However, the failure 
load consistently increases from 16516 (D) to 17699 (DDDD), showing 
that more complex layups can better manage interlaminar stresses and 
delay failure. Interestingly, the GA layout, which is free from angular 
constraints, does not always outperform structured configurations. For 
example, under biaxial compression at 𝑎∕𝑏 = 1.0, DDDD achieves a 
higher failure load (17 867) than GA (18 537), but GA underperforms 
in buckling (19 168 vs. 19079 for DDDD). This suggests that, for 64-ply 
laminates, structured multi-angle sequences may offer a better balance 
of stiffness and strength than unconstrained optimisation.

Uniaxial compression again results in significantly higher buckling 
and failure loads compared to biaxial compression for all layouts. 
For example, under uniaxial loading at 𝑎∕𝑏 = 0.5, the GA config-
uration yields a buckling load of 82629, which is more than twice 
the corresponding value under biaxial loading (37 698). This trend is 
consistent across all 𝑎∕𝑏 ratios and highlights the less demanding nature 
of uniaxial stability requirements in terms of load distribution.

As in the 48-ply case, increasing the 𝑎∕𝑏 ratio generally reduces 
the buckling and failure loads. This trend is more pronounced in the
D and DD layouts than in DDDD and GA. For instance, under biaxial 
loading using DD, buckling loads drop from 43516 (𝑎∕𝑏 = 0.5) to 7226 
(𝑎∕𝑏 = 4.0) — a reduction of over 80%. In contrast, DDDD exhibits a 
more gradual drop (from 42170 to 11440). The robustness of DDDD
and GA configurations to changes in aspect ratio is advantageous in 
applications with geometrical variability or manufacturing tolerance 
considerations.

Although the GA layout often gives the highest buckling loads 
(e.g., 82629 under uniaxial loading at 𝑎∕𝑏 = 0.5), the DDDD configu-
ration proves competitive, particularly in maintaining superior failure 
load performance with reduced design complexity. For example, under 
uniaxial compression at 𝑎∕𝑏 = 3.0, DDDD achieves 35065 in buckling 
and 16225 in failure load, compared to GA’s 28164 and 28164. 
This result supports the use of structured multi-angle designs over 
unconstrained solutions when balancing manufacturability, robustness, 
and performance.

The 64-layer results reinforce the findings from the 48-layer case but 
also demonstrate that the relative benefits of added stacking freedom 
saturate or slightly diminish as ply count increases. Structured layouts 
like DD and DDDD offer significant performance gains over traditional 
D laminates, and in many cases rival or exceed the performance of 
GA-derived designs, particularly for failure criteria. Moreover, the ex-
clusion of DDD in the 64-ply case emphasises the need for discrete 
stacking options compatible with manufacturing constraints and ply 
symmetry.

In summary, DDDD stacking layouts offer an effective balance be-
tween structural performance, design robustness, and manufacturabil-
ity for thick laminates, extending the benefits of Tsai’s DD theory and 
offering a viable alternative to fully free-angle optimisations.
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Table 4
Buckling and failure loads for n-D stacking configurations and free-angle-constrained designs in a 64-layer laminate under various 
aspect ratios. All results are in terms of load factor (𝜆).
 BC n-D a/b ratio
 0.5 1.0 2.0 3.0 4.0  
 Buckling/Failure Buckling/Failure Buckling/Failure Buckling/Failure Buckling/Failure 
 
Biaxial

GA 37,698/18,537 19,168/18,537 15,942/15,953 15,892/15,914 15,805/16,022  
 D 41,870/16,516 19,835/16,763 9468/15,512 8368/17,185 8321/18,284  
 DD 43,516/15,629 18,097/14,616 10,736/11,269 11,651/11,851 7226/12,562  
 DDDD 42,170/15,432 18,990/17,679 15,078/9817 11,879/16,269 11,410/15,302  
 
Uniaxial

GA 86,269/31,573 30,171/30,171 29,290/29,288 28,165/28,167 28,184/28,186  
 D 62,690/17,188 35,661/17,181 34,737/15,299 36,694/12,020 33,129/15,299  
 DD 64,191/15,460 35,636/16,924 34,359/14,942 36,717/13,802 35,797/13,880  
 DDDD 77,395/19,859 31,358/17,447 34,557/15,218 35,065/16,225 30,000/16,995  
3.4. Analysis of optimised n-d stacking sequences

The full stacking sequence for every optimisation case presented in 
Section 3.3 is detailed in Tables  5, 6, 7, 8. The results are interpreted 
by category, as follows:
Influence of layup complexity (D to DDDD): Across both ply counts, a 
clear progression is observed as the number of allowed ply orientations 
increases. D layouts produce uniform [±𝜃]𝑛 configurations, while DD,
DDD, and DDDD allow greater directional flexibility, significantly im-
proving structural tailoring. Notably, DDDD layouts yield diverse angle 
sets, especially at high 𝑎∕𝑏 ratios, while maintaining symmetry and 
manufacturability.

Biaxial compression: In the 48-ply case (Table  5), DDDD sequences 
range from [±18∕±18∕±18∕±18]6 at 𝑎∕𝑏 = 0.5 to [±34∕±39∕±33∕±33]6
at 𝑎∕𝑏 = 4.0. The 64-ply DDDD layups (Table  7) include wider angles 
(e.g., ±82∕±49∕±49∕±75) indicating enhanced orthotropy. GA solutions 
resemble these patterns, confirming that DDDD serves as a structured 
surrogate to unconstrained optimisation.
Uniaxial compression: Under uniaxial loading (Tables  6 and 8), opti-
mal sequences favour low-angle plies aligned with the load direction. 
For instance, [±0]24 is optimal for D layout at 𝑎∕𝑏 = 0.5. DDDD
still provides angular variation (e.g., ±34∕±37∕±37∕±35) to control 
out-of-plane deformation and shear.
Effect of removing n–D restrictions: When the n-D constraints are relaxed 
(last row in Tables  5, 6, 7, 8), GA and DDDD solutions show greater an-
gular variability, finely tuned to both stiffness and strength. However, 
this comes with decreased regularity, which may reduce robustness and 
complicate manufacturing. The structured DDDD designs offer nearly 
equivalent performance with improved practicality.

4. Discussion

This section presents a comprehensive analysis of the optimisation 
results obtained for 48- and 64-layer composite laminates under biax-
ial and uniaxial compressive loads. The effects of stacking sequence 
generalisation through n-D layouts (ranging from D to DDDD), loading 
condition, and aspect ratio (𝑎∕𝑏) are examined with respect to both 
buckling and failure load factors. The derived findings from Tables  3, 4 
are discussed next.

4.1. Stiffness matching and design generalisation

As presented in Table  2, stiffness matching was performed for 48-
layer laminates using reference stacking sequences from Le Riche and 
Haftka [44]. Although DD laminates are capable of closely matching 
the in-plane stiffness using angle steps as coarse as 1◦, the results 
reveal that stiffness matching alone does not correlate strongly with 
the buckling performance.
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Although the proposed n-D configurations demonstrate a structured 
pathway to approximate reference stiffnesses using a small number of 
orientation angles, these stiffness-matched designs do not consistently 
translate into optimal buckling performance. This mismatch highlights 
a key limitation of stiffness matching when applied to a constrained 
subset of stacking sequences. As rigorously discussed in [45], the 
laminate feasibility domain in lamination parameter space is inherently 
non-convex, and matching theoretical stiffness matrices becomes in-
creasingly difficult when the number of available orientation angles (n) 
is low. While the stiffness matching strategy remains a powerful tool in 
macroscopic laminate design, its accuracy and predictive capability are 
fundamentally limited unless the full diversity of stacking orientations 
is permitted. This supports the use of full buckling and failure eval-
uations in optimisation studies, particularly when the design space is 
intentionally reduced for manufacturability or robustness.

A visual representation of the optimisation results can be seen in 
Figs.  3, 4, 5, 6.

4.2. 48-Ply laminate: Buckling and failure under biaxial and uniaxial loads

Figs.  3 and 4 illustrate the optimisation outcomes for 48-ply lam-
inates. Under biaxial loading (Fig.  3(a,b)), the buckling performance 
consistently improves from D to DDDD layouts across all aspect ratios. 
The DDDD configuration closely approximates the results of the uncon-
strained GA solution, especially at lower aspect ratios (𝑎∕𝑏 = 0.5–1.0), 
where buckling loads exceed 25 kN.

Similarly, for failure load (Fig.  3(c,d)), DDDD and GA solutions 
exhibit superior performance. At higher aspect ratios (𝑎∕𝑏 > 2.0), DDDD
matches or outperforms GA in terms of failure load, suggesting its 
robustness and effectiveness as a manufacturable alternative.

Under uniaxial loading (Fig.  4(c,d)), overall load capacities increase, 
with buckling loads reaching  35 kN and failure loads over 20 kN.
DDDD again performs competitively with GA, particularly in strength 
optimisation, offering near-optimal solutions with increased structural 
regularity and manufacturability.

4.3. 64-Ply laminate: Performance trends and limitations of DDD

Table  4 and Figs.  5–6 present the optimisation results for 64-layer 
laminates. Due to ply count limitations, the DDD layout was excluded 
in this case. Under biaxial compression, DDDD and GA deliver the 
highest buckling loads, approaching 38 kN. The failure loads reveal 
a similar trend: while GA achieves maximum buckling, DDDD offers 
higher or comparable failure load factors across most 𝑎∕𝑏 ratios. This 
indicates that DDDD designs balance stiffness and strength better than 
unconstrained solutions, which may overfit to buckling alone.

For uniaxial loading, peak buckling loads approach 85 kN for GA 
solutions, with DDDD trailing closely behind. However, DDDD outper-
forms all structured layouts in failure resistance and, at times, even 
surpasses the GA design. This again demonstrates the DDDD ability of 
the layout to offer balanced optimisation across objectives.
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Table 5
Optimised stacking sequences for biaxial compression load allowing n–D layouts for a 48–layer laminate with 
different a/b ratios.
 n-D a/b ratio Angles  
 

D

2.5/5 [±17]12𝑠𝑦𝑚  
 5/5 [±45]12𝑠𝑦𝑚  
 10/5 [±52]12𝑠𝑦𝑚  
 15/5 [±53]12𝑠𝑦𝑚  
 20/5 [±53]12𝑠𝑦𝑚  
 

DD

2.5/5 [±17∕±17]6𝑠𝑦𝑚  
 5/5 [±45∕±45]6𝑠𝑦𝑚  
 10/5 [±88∕±43]6𝑠𝑦𝑚  
 15/5 [±73∕±43]6𝑠𝑦𝑚  
 20/5 [±77∕±43]6𝑠𝑦𝑚  
 

DDD

2.5/5 [±17∕±17∕±17]4𝑠𝑦𝑚  
 5/5 [±45∕±45∕±45]4𝑠𝑦𝑚  
 10/5 [±56∕±90∕±39]4𝑠𝑦𝑚  
 15/5 [±56∕±84∕±39]4𝑠𝑦𝑚  
 20/5 [±56∕±90∕±39]4𝑠𝑦𝑚  
 

DDDD

2.5/5 [±18∕±18∕±18∕±18]3𝑠𝑦𝑚  
 5/5 [±45∕±45∕±45∕±45]3𝑠𝑦𝑚  
 10/5 [±43∕±43∕±87∕±89]3𝑠𝑦𝑚  
 15/5 [±77∕±74∕±42∕±44]3𝑠𝑦𝑚  
 20/5 [±34∕±39∕±33∕±33]3𝑠𝑦𝑚  
 

GA with free angles

2.5/5 [±7∕±38∕±8∕±3∕±15∕±1∕±61∕±54∕±49∕±21∕±67∕±42]𝑠𝑦𝑚  
 5/5 [±45∕±45∕±45∕±45∕±45∕±45∕±45∕±45∕±45∕±44∕±44∕±46]𝑠𝑦𝑚 
 10/5 [±69∕±63∕±63∕±64∕±76∕±56∕±58∕±57∕±17∕±21∕±15∕±16]𝑠𝑦𝑚 
 15/5 [±62∕±62∕±62∕±59∕±63∕±69∕±61∕±59∕±23∕±8∕±4∕±5]𝑠𝑦𝑚  
 20/5 [±64∕±64∕±61∕±65∕±60∕±76∕±55∕±79∕±8∕±16∕±16∕±4]𝑠𝑦𝑚  
Table 6
Optimised stacking sequences for uniaxial compression load (𝑛𝑦𝑦 = 0) allowing n–D layouts for a 48–layer laminate 
with different a/b ratios. Note that for cases with identical fibre angles (e.g., all 0◦), differences in performance 
arise from the grouping and spatial distribution of plies across n-D directional blocks, not from fibre orientation 
alone.
 n-D a/b ratio Angles  
 

D

2.5/5 [±0]12𝑠𝑦𝑚  
 5/5 [±36]12𝑠𝑦𝑚  
 10/5 [±36]12𝑠𝑦𝑚  
 15/5 [±36]12𝑠𝑦𝑚  
 20/5 [±36]12𝑠𝑦𝑚  
 

DD

2.5/5 [±0∕±0]6𝑠𝑦𝑚  
 5/5 [±37∕±34]6𝑠𝑦𝑚  
 10/5 [±36∕±36]6𝑠𝑦𝑚  
 15/5 [±36∕±36]6𝑠𝑦𝑚  
 20/5 [±36∕±36]6𝑠𝑦𝑚  
 

DDD

2.5/5 [±0∕±0∕±0]4𝑠𝑦𝑚  
 5/5 [±36∕±36∕±36]4𝑠𝑦𝑚  
 10/5 [±36∕±36∕±36]4𝑠𝑦𝑚  
 15/5 [±36∕±36∕±36]4𝑠𝑦𝑚  
 20/5 [±35∕±37∕±35]4𝑠𝑦𝑚  
 

DDDD

2.5/5 [±0∕±0∕±0∕±0]3𝑠𝑦𝑚  
 5/5 [±36∕±36∕±36∕±36]3𝑠𝑦𝑚  
 10/5 [±36∕±35∕±36∕±36]3𝑠𝑦𝑚  
 15/5 [±38∕±33∕±34∕±35]3𝑠𝑦𝑚  
 20/5 [±34∕±37∕±37∕±35]3𝑠𝑦𝑚  
 

GA with free angles

2.5/5 [±1∕±1∕±0∕±0∕±1∕±0∕±0∕±31∕±0∕±0∕±6∕±0]𝑠𝑦𝑚  
 5/5 [±43∕±41∕±43∕±38∕±18∕±11∕±10∕±8∕±7∕±7∕±7∕±7]𝑠𝑦𝑚 
 10/5 [±44∕±43∕±32∕±39∕±25∕±25∕±9∕±6∕±6∕±6∕±6∕±6]𝑠𝑦𝑚  
 15/5 [±45∕±42∕±47∕±6∕±18∕±31∕±9∕±3∕±1∕±1∕±1∕±1]𝑠𝑦𝑚  
 20/5 [±46∕±49∕±44∕±45∕±9∕±15∕±4∕±4∕±1∕±0∕±0∕±0]𝑠𝑦𝑚  
10 
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Table 7
Optimised stacking sequences for biaxial compression load allowing n–D layouts for a 64–layer laminate with different a/b
ratios.
 n-D a/b ratio Angles  
 

D

2.5/5 [±30]16𝑠𝑦𝑚  
 5/5 [±34]16𝑠𝑦𝑚  
 10/5 [±61]16𝑠𝑦𝑚  
 15/5 [±58]16𝑠𝑦𝑚  
 20/5 [±59]16𝑠𝑦𝑚  
 

DD

2.5/5 [±30∕±30]8𝑠𝑦𝑚  
 5/5 [±34∕±34]8𝑠𝑦𝑚  
 10/5 [±50∕±68]8𝑠𝑦𝑚  
 15/5 [±49∕±76]8𝑠𝑦𝑚  
 20/5 [±75∕±50]8𝑠𝑦𝑚  
 

DDDD

2.5/5 [±1∕±89∕±73∕±17]4𝑠𝑦𝑚  
 5/5 [±10∕±46∕±61∕±56]4𝑠𝑦𝑚  
 10/5 [±57∕±62∕±50∕±61]4𝑠𝑦𝑚  
 15/5 [±88∕±71∕±48∕±48]4𝑠𝑦𝑚  
 20/5 [±82∕±49∕±49∕±75]4𝑠𝑦𝑚  
 

GA with free angles

2.5/5 [±61∕±25∕±68∕±77∕±89∕±40∕±83∕±35∕±28∕±3∕±59∕±28∕±2∕±16∕±33∕±73]𝑠𝑦𝑚  
 5/5 [±55∕±26∕±48∕±35∕±21∕±79∕±40∕±16∕±66∕±71∕±1∕±87∕±11∕±82∕±42∕±43]𝑠𝑦𝑚 
 10/5 [±86∕±69∕±73∕±90∕±82∕±88∕±63∕±79∕±57∕±42∕±36∕±17∕±2∕±4∕±2∕±1]𝑠𝑦𝑚  
 15/5 [±72∕±74∕±75∕±77∕±81∕±72∕±64∕±56∕±62∕±54∕±29∕±17∕±15∕±4∕±0∕±0]𝑠𝑦𝑚  
 20/5 [±87∕±83∕±72∕±69∕±78∕±69∕±65∕±59∕±56∕±30∕±26∕±22∕±18∕±8∕±6∕±6]𝑠𝑦𝑚  
Table 8
Optimised stacking sequences for uniaxial compression load (𝑛𝑦𝑦 = 0) allowing n–D layouts for a 64–layer laminate 
with different a/b ratios.
 n-D a/b ratio Angles  
 

D

2.5/5 [±0]16𝑠𝑦𝑚  
 5/5 [±12]16𝑠𝑦𝑚  
 10/5 [±20]16𝑠𝑦𝑚  
 15/5 [±21]16𝑠𝑦𝑚  
 20/5 [±20]16𝑠𝑦𝑚  
 

DD

2.5/5 [±0∕±0]8𝑠𝑦𝑚  
 5/5 [±13∕±13]8𝑠𝑦𝑚  
 10/5 [±20∕±20]8𝑠𝑦𝑚  
 15/5 [±22∕±22]8𝑠𝑦𝑚  
 20/5 [±20∕±20]8𝑠𝑦𝑚  
 

DDDD

2.5/5 [±0∕±0∕±0∕±0]4𝑠𝑦𝑚  
 5/5 [±12∕±13∕±11∕±11]4𝑠𝑦𝑚  
 10/5 [±15∕±21∕±15∕±20]4𝑠𝑦𝑚  
 15/5 [±20∕±20∕±20∕±21]4𝑠𝑦𝑚  
 20/5 [±16∕±18∕±16∕±22]4𝑠𝑦𝑚  
 

GA with free angles

2.5/5 [±0∕±0∕±0∕±0∕±0∕±0∕±1∕±0∕±0∕±1∕±0∕±0∕±0∕±0∕±1∕±0]𝑠𝑦𝑚  
 5/5 [±10∕±18∕±25∕±8∕±2∕±1∕±2∕±7∕±11∕±1∕±0∕±0∕±0∕±0∕±0∕±0]𝑠𝑦𝑚  
 10/5 [±17∕±8∕±76∕±10∕±1∕±0∕±0∕±0∕±2∕±0∕±0∕±0∕±2∕±0∕±1∕±0]𝑠𝑦𝑚  
 15/5 [±19∕±39∕±2∕±88∕±0∕±1∕±1∕±0∕±1∕±1∕±0∕±0∕±58∕±0∕±1∕±1]𝑠𝑦𝑚  
 20/5 [±24∕±16∕±55∕±16∕±9∕±10∕±2∕±3∕±1∕±1∕±1∕±1∕±1∕±2∕±1∕±4]𝑠𝑦𝑚 
An interesting observation is seen for the 64-ply laminate with 
an aspect ratio of 𝑎∕𝑏 = 0.5, as shown in Table  6. Although the 
plies in all n-D configurations at 𝑎∕𝑏 = 0.5 are oriented at 0◦, the 
differences in performance arise from how the plies are grouped into 
directional blocks. For instance, DDDD uses four distinct blocks of [±0◦], 
each repeated three times, resulting in a different through-thickness 
architecture and laminate stiffness distribution compared to the single-
block layout in D. These differences affect buckling and failure loads 
despite the shared fibre angle.

4.4. Implications for laminate design

Across all studied cases, increasing the 𝑎∕𝑏 ratio leads to lower buck-
ling and failure loads, with this trend being more pronounced in simpler 
layouts such as D and DD. In contrast, DDDD and GA-optimised configu-
rations demonstrate greater resilience to geometric variations. Among 
them, the DDDD layout offers a compelling compromise: it preserves 
most of the structural benefits of the GA designs while maintaining 
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a high degree of regularity and manufacturability. These findings re-
inforce the extension of Tsai’s DD theory into a broader 𝑛-D stacking 
framework, capable of capturing advanced laminate behaviours while 
respecting practical design constraints.

4.5. Polar plot analysis of optimised stacking sequences

The polar plots in Figs.  7 and 8 illustrate how the optimal fibre 
angle distributions evolve as the design transitions from a restricted 
layout (D) to fully free-angle (GA) stacking. Each subplot corresponds 
to a specific aspect ratio (𝑎∕𝑏) and layout type. The angle diversity 
reflects the attempt of the laminate to balance stiffness and strength 
under given boundary and loading conditions.
Biaxial compression (48- and 64-layer laminates), Fig.  7 :. Under biaxial 
loading, D layouts are highly constrained, typically clustering around 
±45◦ due to the need for symmetric in-plane stiffness. DD layouts 
also tend to favour ±45◦ as the dominant angle, with slight variations 
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Fig. 3. Optimisation results for the 48-layer laminates under biaxial loading for buckling load factor (a) without angle restriction and (b) with n-D restriction; 
and for failure load factor (c) without angle restriction and (d) with n-D restriction.
(e.g., ±30◦ or ±60◦) emerging at higher 𝑎∕𝑏 ratios to adapt to directional 
buckling effects.

As the layout generalises to DDD and DDDD, broader angle sets 
appear, particularly in DDDD, where fibre angles span ±15◦ to ±60◦, 
enabling tailored stiffness for complex buckling modes. GA solutions 
show smooth, continuous distributions including intermediate angles 
like ±18◦, ±33◦, and ±57◦, optimised for precise modal control. DDDD
approximates GA performance closely, while preserving structural reg-
ularity.

Uniaxial compression (48- and 64-layer laminates), Fig.  8 :. In contrast to 
the biaxial case, uniaxial compression results reveal a strong alignment 
of plies along the load axis. D and DD layouts cluster tightly around 
±0◦–±30◦, maximising axial stiffness. DDDD layouts still favour low 
angles but introduce moderate diversity (e.g., ±10◦, ±20◦, ±35◦) to 
account for out-of-plane stability and strength.

GA solutions show slightly skewed but broad angular distributions, 
balancing load alignment and shear resistance. DDDD proves partic-
ularly effective, avoiding over-alignment while still targeting axial 
performance.

Based on the qualitative assessment of the fibre distributions pre-
sented in Table  9, overall, DDDD provides structured angular diversity 
with performance comparable to GA. For biaxial designs, it offers modal 
robustness and shear-tailored stiffness. For uniaxial designs, it prevents 
over-alignment and enhances failure resistance. These results advocate 
for generalised n-D strategies as practical alternatives to fully free-angle 
designs, balancing manufacturability and high structural performance.
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Table 9
Qualitative comparison of optimal fibre angle distributions under biaxial and 
uniaxial compression for different stacking layout strategies.
 Observation Biaxial Uniaxial  
 Low-angle dominance Weak (±45◦ typical) Strong (±0◦–±30◦) 
 Angular diversity increases with 
layout freedom

Yes Yes  

 DDDD mimics GA performance Yes Yes  
 Higher 𝑎∕𝑏 leads to more spread Strong Mild  
 GA is smooth, DDDD is grouped Yes Yes  

4.6. Limitations

The present work has the following limitations:

• The implemented finite element model is ready for use for linear 
buckling analysis;

• Geometric imperfections are not considered, although they can be 
considered not relevant for plates;

• As mentioned, the DDDD layout does not apply to the 64-ply 
laminate; and

• While a direct numerical comparison with prior DD laminate 
designs would be valuable, such benchmarks were not included 
here due to differing problem formulations, material systems, and 
load cases. The present study instead focuses on systematically 



J.H.S. Almeida Jr. et al. Composite Structures 373 (2025) 119586 
Fig. 4. Optimisation results for the 48-layer laminates under uniaxial loading for buckling load factor (a) without angle restriction and (b) with n-D restriction; 
and for failure load factor (c) without angle restriction and (d) with n-D restriction.
evaluating the influence of the number of directional blocks un-
der consistent modelling assumptions. Future work will consider 
direct benchmarking for specific industrial case studies.

• The reliance on parameter tuning in metaheuristic algorithms 
can be a limitation in terms of robustness and generalisabil-
ity. As such, parameter-free or self-adaptive strategies, such as 
the discrete Jaya algorithm (DJAYA) [46], represent promising 
alternatives for future investigations of n-D laminate optimisation.

• It must be noted that all optimal solutions presented herein are 
constrained to be symmetric and balanced. While this enhances 
manufacturability, it limits the potential to explore laminates 
that exhibit full orthotropy or isotropy in both membrane and 
bending behaviour. Such configurations may be better captured 
using unconstrained optimisation approaches such as the polar 
method or QT frameworks.

5. Conclusions

This study has presented a generalisation of Tsai’s Double-Double 
(DD) laminate theory by introducing the concept of n-Double (n-D stack-
ing layouts for composite laminates). A metaheuristic genetic algorithm 
was used to optimise the laminates for buckling and failure factors. By 
systematically evaluating the performance of D, DD, DDD, and DDDD
stacking configurations under both biaxial and uniaxial compressive 
loads, across a range of aspect ratios, several key conclusions can be 
drawn:
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• The proposed n-D approach significantly expands the compos-
ite design space by enabling greater directional tailoring while 
maintaining manufacturability through grouped ply orientations;

• DDDD configurations consistently outperform D and DD designs 
in both buckling and failure performance. In many cases, DDDD
achieves near-identical results to free-angle GA-based optimisa-
tions, especially in strength-dominated scenarios.

• Under biaxial compression, DDDD and GA layouts introduce 
broad fibre angle distributions, providing modal robustness and 
optimised shear-stiffness combinations. For uniaxial compression, 
both favour low-angle plies, but DDDD avoids over-alignment and 
offers improved failure tolerance.

• Polar plots reveal that DDDD designs provide a structured yet 
flexible alternative to GA layouts, balancing optimal performance 
with practical manufacturability by limiting angular scatter and 
maintaining directional consistency.

• The findings advocate for the adoption of n-D stacking strategies 
in real-world composite structure design, offering a strong trade-
off between performance, robustness, and production feasibility—
especially critical in aerospace and advanced structural applica-
tions.

While this study employed a scalarised single-objective formulation 
to balance buckling and failure performance, future work will explore 
the use of multi-objective genetic algorithms (e.g., NSGA-II or NSGA-
III) to generate Pareto fronts of optimal stacking sequences. This would 
enable a more comprehensive trade-off analysis and greater flexibility 
for application-specific laminate design.
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Fig. 5. Optimisation results for the 64-layer laminates under biaxial loading for buckling load factor (a) without angle restriction and (b) with n-D restriction; 
and for failure load factor (c) without angle restriction and (d) with n-D restriction.
The proposed n-D stacking design strategy offers a structured and 
manufacturable extension of the DD framework. However, the imposed 
constraints of symmetry and balance restrict the solution space and pre-
vent exploration of general anisotropic designs that may provide better 
membrane–bending decoupling or stiffness tailoring. Future work will 
aim to relax these constraints and integrate more general formalisms 
such as polar-based invariants and multiscale optimisation. Addition-
ally, although stiffness matching has been widely used as a surrogate for 
structural performance prediction, our results reinforce its limitations 
when only a small number of ply orientations are available. This does 
not undermine the theoretical foundation of lamination parameter-
based design; rather, it reflects the geometric and non-convex nature 
of the feasible domain. 

In conclusion, the generalised n-D design framework bridges the 
gap between conventional rule-based layups and unrestricted free-
angle designs, opening new avenues for laminate optimisation that are 
both high-performing and industry-ready. Future research will focus on 
extending the optimisation framework in three key directions. First, a 
comparative analysis will be undertaken to evaluate alternative opti-
misation strategies, including parameter-free algorithms (e.g., DJAYA), 
differential evolution (DE), covariance matrix adaptation (CMA-ES), 
and gradient-based methods with filtering, to assess their suitability 
for n-D laminate design. Second, the formulation will be expanded to 
explicitly consider the post-buckling regime, where directional stacking 
strategies could be tailored to enhance load redistribution and energy 
absorption. Finally, practical integration with manufacturing processes 
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will be pursued, including embedding constraints from automated fi-
bre placement (AFP) and exploring the feasibility of fabricating n-D
laminates through continuous fibre 3D printing technologies.
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Fig. 6. Optimisation results for the 64-layer laminates under uniaxial loading for buckling load factor (a) without angle restriction and (b) with n-D restriction; 
and for failure load factor (c) without angle restriction and (d) with n-D restriction.

Fig. 7. Polar plots for all optimised stacking sequences under biaxial compression.
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Fig. 8. Polar plots for all optimised stacking sequences under uniaxial compression.
Appendix. Linear buckling analysis calculation

Assuming equivalent single-layer theory [47,48], the total potential 
energy functional for one finite element 𝜙𝑒 can be expressed as: 

𝜙𝑒 =
1
2 ∫

𝑦4

𝑦=𝑦1
∫

𝑥2

𝑥=𝑥1
(𝑁𝑁𝑁𝜀𝜀𝜀 +𝑀𝑀𝑀𝜅𝜅𝜅) 𝑑𝑥𝑑𝑦 (7)

where the membrane forces are 𝑁𝑁𝑁 =
{

𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦
}⊤ and the dis-

tributed moments are 𝑀𝑀𝑀 =
{

𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦
}⊤. The integration limits 

𝑥1 ≤ 𝑥 ≤ 𝑥2 and 𝑦1 ≤ 𝑦 ≤ 𝑦4 define the domain of one rectangular 
finite element 𝛺𝑒. The membrane 𝜀𝜀𝜀 and rotational 𝜅𝜅𝜅 strains are assumed 
to follow von Kármán kinematics, also referred to in the literature as 
Donnell-type [49,50] or Kirchhoff–Love non-linear equations, given by: 

𝜀 =

⎧

⎪

⎨

⎪

⎩

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑢,𝑥 +
1
2𝑤,

2
𝑥

𝑣,𝑦 +
1
2𝑤,

2
𝑦

𝑢,𝑦 + 𝑣,𝑥 +𝑤,𝑥𝑤,𝑦

⎫

⎪

⎬

⎪

⎭

𝜅𝜅𝜅 =

⎧

⎪

⎨

⎪

⎩

𝜅𝑥𝑥
𝜅𝑦𝑦
𝜅𝑥𝑦

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

−𝑤,𝑥𝑥
−𝑤,𝑦𝑦
−2𝑤,𝑥𝑦

⎫

⎪

⎬

⎪

⎭

(8)

with (⋅),𝑥 = 𝜕(⋅)∕𝜕𝑥 used as a compact notation for partial derivatives. 
At the bifurcation point, the following state of equilibrium exists, 
considering all 𝑛𝑒 elements: 

𝛿𝜙 =
𝑛𝑒
∑

𝑒=1
𝛿𝜙𝑒 =

𝑛𝑒
∑

𝑒=1
∫𝛺𝑒

(

𝑁𝑁𝑁⊤𝛿𝜀𝜀𝜀 +𝑀𝑀𝑀⊤𝛿𝜅𝜅𝜅
)

𝑑𝛺𝑒 = 0 (9)

Expressing the displacements 𝑢, 𝑣,𝑤 within one element in terms of 
nodal coordinates 𝒖𝒆 leads to: 𝑢 = 𝑆𝑆𝑆𝑢𝒖𝒆, 𝑣 = 𝑆𝑆𝑆𝑣𝒖𝒆, 𝑤 = 𝑆𝑆𝑆𝑤𝒖𝒆; such that 
𝛿𝜀𝜀𝜀 and 𝛿𝜅𝜅𝜅 can be calculated as: 

𝛿𝜀𝜀𝜀 =

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥 +𝑤,𝑥𝑆𝑆𝑆
𝑤
,𝑥

𝑆𝑆𝑆𝑣,𝑦 +𝑤,𝑦𝑆𝑆𝑆
𝑤
,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥 +𝑤,𝑥𝑆𝑆𝑆

𝑤
,𝑦 +𝑤,𝑦𝑆𝑆𝑆

𝑤
,𝑥

⎤

⎥

⎥

⎥

⎦

𝛿𝒖𝒆

𝛿𝜅𝜅𝜅 =

⎡

⎢

⎢

⎢

−𝑆𝑆𝑆𝑤,𝑥𝑥
−𝑆𝑆𝑆𝑤,𝑦𝑦
−2𝑆𝑆𝑆𝑤

⎤

⎥

⎥

⎥

𝛿𝒖𝒆

(10)
⎣
,𝑥𝑦

⎦

16 
where the partial derivatives of 𝑆𝑆𝑆𝑢,𝑣,𝑤 are directly calculated from 
the shape functions of the BFSC element [51] in terms of the natural 
coordinates 𝜉, 𝜂, using the following Jacobian relations 𝜕𝜕𝑥 = 𝓁𝑥

2
𝜕
𝜕𝜉  and 

𝜕
𝜕𝑦 = 𝓁𝑦

2
𝜕
𝜕𝜂 .

The neutral equilibrium criterion also requires that 𝛿2𝜙𝑒 = 0 [52], 
such that, from Eq. (9): 

𝛿2𝜙 =
𝑛𝑒
∑

𝑒=1
𝛿2𝜙𝑒 =

𝑛𝑒
∑

𝑒=1

[

∫𝛺𝑒

(

𝛿𝑁𝑁𝑁⊤𝛿𝜀𝜀𝜀 + 𝛿𝑀𝑀𝑀⊤𝛿𝜅𝜅𝜅+
)

𝑑𝛺𝑒

+∫𝛺𝑒

(

𝑁𝑁𝑁⊤𝛿2𝜀𝜀𝜀 +𝑀𝑀𝑀⊤𝛿2𝜅𝜅𝜅+
)

𝑑𝛺𝑒

]

= 0

(11)

The first integral of Eq. (11) becomes the constitutive stiffness 
matrix of the element, calculated using the constitutive relations from 
classical laminated plate theory [48]:
𝛿𝑁𝑁𝑁 = 𝐴𝐴𝐴𝛿𝜀𝜀𝜀 +𝐵𝐵𝐵𝛿𝜅𝜅𝜅
𝛿𝑀𝑀𝑀 = 𝐵𝐵𝐵𝛿𝜀𝜀𝜀 +𝐷𝐷𝐷𝛿𝜅𝜅𝜅

Note that the geometric non-linearity appears in the constitutive 
stiffness matrix due to 𝑤,𝑥, 𝑤,𝑦, 𝑤,𝑥𝑦 in Eq. (10). Therefore, the linear 
constitutive stiffness matrix of a finite element 𝑲𝒆 is calculated by 
assuming 𝑤,𝑥, 𝑤,𝑦, 𝑤,𝑥𝑦 = 0, leading to a 40 × 40 matrix: 

𝑲𝒆 = ∬𝑥𝑦

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥
𝑆𝑆𝑆𝑣,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥

⎤

⎥

⎥

⎥

⎦

⊤

𝐴𝐴𝐴

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥
𝑆𝑆𝑆𝑣,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥
𝑆𝑆𝑆𝑣,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥

⎤

⎥

⎥

⎥

⎦

⊤

𝐵𝐵𝐵

⎡

⎢

⎢

⎢

⎣

−𝑆𝑆𝑆𝑤,𝑥𝑥
−𝑆𝑆𝑆𝑤,𝑦𝑦
−2𝑆𝑆𝑆𝑤,𝑥𝑦

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

−𝑆𝑆𝑆𝑤,𝑥𝑥
−𝑆𝑆𝑆𝑤,𝑦𝑦
−2𝑆𝑆𝑆𝑤,𝑥𝑦

⎤

⎥

⎥

⎥

⎦

⊤

𝐵𝐵𝐵

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥
𝑆𝑆𝑆𝑣,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

−𝑆𝑆𝑆𝑤,𝑥𝑥
−𝑆𝑆𝑆𝑤,𝑦𝑦
−2𝑆𝑆𝑆𝑤,𝑥𝑦

⎤

⎥

⎥

⎥

⎦

⊤

𝐷𝐷𝐷

⎡

⎢

⎢

⎢

⎣

−𝑆𝑆𝑆𝑤,𝑥𝑥
−𝑆𝑆𝑆𝑤,𝑦𝑦
−2𝑆𝑆𝑆𝑤,𝑥𝑦

⎤

⎥

⎥

⎥

⎦

𝑑𝑥𝑑𝑦

(12)

The second integral of Eq. (11) becomes the geometric stiffness 
matrix of the finite element 𝐾𝐾𝐾𝐺𝐺𝐺0𝑒0𝑒0𝑒

, capturing the geometrically nonlinear 
effects of a pre-buckling membrane stresses 𝑵 =

{

𝑁 ,𝑁 ,𝑁
}⊤
𝟎 0𝑥𝑥 0𝑦𝑦 0𝑥𝑦
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on the membrane stiffness. Noting that 𝛿2𝜅𝜅𝜅 = 000 [51,52], the equation 
for 𝐾𝐾𝐾𝐺𝐺𝐺0𝑒0𝑒0𝑒

 becomes: 

𝐾𝐺𝐺𝐺0𝑒0𝑒0𝑒
= ∬𝑥𝑦

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑤⊤,𝑥 𝑁0𝑥𝑥𝑆𝑆𝑆𝑤,𝑥
𝑆𝑆𝑆𝑤⊤,𝑦 𝑁0𝑦𝑦𝑆𝑆𝑆𝑤,𝑦

𝑆𝑆𝑆𝑤⊤,𝑦 𝑁0𝑥𝑦𝑆𝑆𝑆𝑤,𝑥 +𝑆𝑆𝑆
𝑤⊤
,𝑥 𝑁0𝑥𝑦𝑆𝑆𝑆𝑤,𝑦

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝑑𝑦 (13)

The contributions all 𝑛𝑒 finite element are added to build the global 
constitutive stiffness matrix 𝐾𝐾𝐾 and geometric stiffness matrix 𝐾𝐾𝐾𝐺𝐺𝐺000

 of 
the system: 

𝐾𝐾𝐾 =
𝑛𝑒
∑

𝑒=1
𝑲𝒆

𝐾𝐺𝐺𝐺000
=

𝑛𝑒
∑

𝑒=1
𝐾𝐾𝐾𝐺𝐺𝐺0𝑒0𝑒0𝑒

(14)

The pre-buckling stress field of one BFSC finite element
𝑁0𝑥𝑥, 𝑁0𝑦𝑦, 𝑁0𝑥𝑦 is calculated from the corresponding nodal displace-
ments 𝑢𝑢𝑢000𝑒𝑒𝑒  as: 

𝑵𝟎 =

⎧

⎪

⎨

⎪

⎩

𝑁0𝑥𝑥
𝑁0𝑦𝑦
𝑁0𝑥𝑦

⎫

⎪

⎬

⎪

⎭

= 𝐴𝐴𝐴

⎡

⎢

⎢

⎢

⎣

𝑆𝑆𝑆𝑢,𝑥
𝑆𝑆𝑆𝑣,𝑦

𝑆𝑆𝑆𝑢,𝑦 +𝑆𝑆𝑆
𝑣
,𝑥

⎤

⎥

⎥

⎥

⎦

𝑢𝑢𝑢000𝑒𝑒𝑒 (15)

where 𝑢𝑢𝑢000𝑒𝑒𝑒  is directly extracted from the full pre-buckling displacement 
vector 𝒖𝟎 that is obtained from a static analysis, derived from the 
equilibrium of Eq. (9): 
𝒖𝟎 = 𝐾𝐾𝐾−1𝒇 𝟎 (16)

with 𝒇 𝟎 representing any general pre-buckling force. When applying 
the neutral equilibrium criterion of Eq. (11), one assumes that at the 
bifurcation point there is a value of internal membrane stresses 𝑁𝑁𝑁 based 
on the known pre-buckling stress 𝑵𝟎 described by 𝑁𝑁𝑁 = 𝜆𝑵𝟎 that 
leads to the condition 𝛿2𝜙 = 0. Therefore, the linear buckling problem 
consists of finding the value of 𝜆 that leads to: 

𝛿𝑢𝑢𝑢⊤
(

𝐾𝐾𝐾 + 𝜆𝐾𝐾𝐾𝐺𝐺𝐺000

)

𝛿𝑢𝑢𝑢 = 0 (17)

which holds true for any variation 𝛿𝑢𝑢𝑢, such that the required condition 
for the equality of Eq. (17) is the linear buckling equation given by: 

det
(

𝐾𝐾𝐾 + 𝜆𝐾𝐾𝐾𝐺𝐺𝐺000

)

= 0 (18)

Data availability

All models, optimisation algorithms and datasets generated and 
analysed during this study are publicly available under an MIT license 
[53].
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