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Abstract—Increased electrification of energy end-usage can
lead to network congestion during periods of high consumption.
Flexibility of loads, such as aggregate smart charging of Electric
Vehicles (EVs), is increasingly leveraged to manage grid con-
gestion through various market-based mechanisms. Under such
an arrangement, this paper quantifies the effect of lead time
on the aggregate flexibility of EV fleets. Simulations using real-
world charging transactions spanning over different categories
of charging stations are performed for two flexibility products
(redispatch and capacity limitations) when offered along with
different business-as-usual (BAU) schedules. Results show that
the variation of tradable flexibility depends mainly on the BAU
schedules, the duration of the requested flexibility, and its start
time. Further, the implication of these flexibility products on the
average energy costs and emissions is also studied for different
cases. Simulations show that bidirectional (V2G) charging out-
performs unidirectional smart charging in all cases.

Index Terms—Aggregation, congestion management, electric
vehicle, flexibility, lead time

I. INTRODUCTION

The widespread electrification of sectors such as heating,
transportation, and industries is increasingly straining elec-
tricity networks. Especially with the large-scale adoption of
Electric Vehicles (EVs), power networks face challenges in
safely accommodating their aggregate charging needs. This
has resulted in congestion, where parts of the network (such
as cables, transformers, etc.) risk overloading during high-
demand times. The resulting congestion in power networks
is already prominent in North America [1] and mainland
Europe, including the Netherlands [2]. It is only a matter of
time before these issues become prevalent worldwide. One
reason for the congestion is that the power networks were
originally not designed for such a degree of electrification,
and the simultaneity of high-power loads further exacerbates
it. As a result, the grid needs to be adapted and reinforced
to accommodate the growing loads. However, these need
substantial investments and a longer time, making the pursuit
of short-term alternatives increasingly critical [3].

Different short-term approaches, such as hard curtailments
on charging power during anticipated congestion or refusal of
new network connections until the congestion situation im-
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proves, are some solutions that network operators in countries
like the Netherlands and Germany adopt [4]. However, such
solutions manage congestion at the cost of end-user satisfac-
tion, which is diminished due to lower charging speed, cost of
charging, or restricted autonomy by these mandates. Mandate-
based (direct-control) solutions offer limited flexibility to end-
users and aggregators, potentially slowing the adoption of EVs.
To address this, Distribution System Operators (DSOs) and
policymakers increasingly favour incentive-based congestion
management, which encourages voluntary participation from
aggregators and end-users [5]. The voluntary participation
for EVs is possible without compromising on operational
constraints due to EV’s flexibility.

EVs inherently offer charging and storage (in the case of
Vehicle-to-grid (V2G) through discharging) flexibility. In other
words, the time required to fully charge an EV is typically
disproportionate to its average connection duration. Leverag-
ing this, smart charging (and V2G) offers significant potential
to mitigate (or exacerbate) network congestion. Influencing
individual charging profiles through time-of-use has been used
extensively in Europe, ranging from simple dynamic energy
prices to network tariffs or combinations of both [6], [7]. Price-
based approaches can help limit aggregate charging peaks;
however, if not carefully designed, they can create newer peaks
or penalize consumers unfairly [8].

Alternatively, leveraging aggregate flexibility to manage
congestion has proven highly efficient, as it can mitigate the
uncertainties associated with an individual EVs [9]. In addition
to direct control of aggregate EVs, market-based methods
are one of the most cost-effective and scalable solutions to
leverage this flexibility for congestion management. These
offer scalability, incentivize flexible energy usage, and promote
competition among participants [10].

Market-based congestion management services are currently
being developed in several territories as alternatives. Market-
based capacity management can typically be achieved through
reduction options, activation before anticipated congestion, or
direct trading. In the Netherlands, the energy regulatory body
has defined network congestion, assigned specific responsibil-
ities to stakeholders participating in congestion management
services and described the characteristics of market products
that can help alleviate congestion [11]. These include on-
demand capacity limitation contracts and location-based re-
dispatch, linked to intra-day markets [9].



Fig. 1. Schematic showcasing various market interactions alongside market
timeline for capacity limitation products.

However, barriers exist to exchanging congestion manage-
ment services by Charging Point Operators (CPOs) to the
DSOs. Besides technical challenges, such as bundling connec-
tions and communicating with numerous assets, it is unclear
how much flexibility a fleet of assets can reliably offer and how
it depends on the service type and the advance notice given for
activation. This paper investigates how lead times and length
of flexibility request windows influence the magnitude of two
congestion management products—redispatch and capacity
limitation—across different categories of Charging Stations
(CSs) and dispatch strategies. We further compare the capa-
bilities of V2G or bidirectional charging with unidirectional
charging (also called smart charging). The congestion man-
agement products in The Netherlands are used as a reference
for model development.

II. MECHANISM OF CONGESTION MANAGEMENT

Fig. 1 illustrates different market interactions with respect
to the time horizon for the redispatch and capacity limitation
products in the Netherlands. When delivering services using
EVs to relieve congested distribution grids, three stakeholders
(EV users, DSO and CPO) interact. For simplicity, the CPO
controls the charging of EVs and acts as the aggregator. The
DSO is responsible for forecasting the periods of congestion
along with its duration and magnitude. Based on these fore-
casts, it sends activation signals to the flexibility aggregators.
Based on the arrangements, activation can be done either a
day ahead (≥ 24 hours, or, more accurately, before clearing of
the day-ahead market) or within the intraday time frame, with
lead times ranging from as short as 1 hour up to the day-ahead
market time frame. We define lead time as the time available
to the aggregators for schedule adaption between activation
and delivery of the flexibility services. This paper considers a
range of 1 to 23 hours.

Until the aggregators are notified of activation, they sched-
ule their EVs according to Business as usual (BAU) schedules.
Once notified, the day-ahead schedules are adjusted to deliver
the specified product effectively. Based on these interactions,
the ability to trade a specific product depends on several factors
such as lead time, duration of flexibility request window,

charging strategy (unidirectional or V2G), lead time, BAU
scheduling strategy and the type vehicles in the fleet.

Shorter lead times provide more room to efficiently uti-
lize the network’s available capacity while maximizing the
CPO’s revenue based on BAU schedules. However, longer lead
times may reduce the attractiveness of congestion management
products for the DSO as the uncertainty surrounding the
occurrence of congestion increases. Conversely, shorter lead
times can critically hinder the aggregators’ ability to deliver
these products, increasing the chances of enforced measures
such as load curtailment, which could negatively impact end-
user experience. The duration for which a particular product is
requested also influences the magnitude of the product. As the
window length increases, the magnitude keeps on diminishing.

Assuming that an EV fleet has a certain energy demand to be
fulfilled within a specified time frame but with scope to adjust
the schedule; we consider the fleet to have potential flexibility.
This translates into feasible flexibility once all operational
and technical constraints are accounted for, including those
derived from day-ahead BAU charging schedules, and a model
representation is used. The aggregator aims to maximize its
revenue using congestion management products, for which it
must determine the tradable flexibility in flexibility markets
- which also depends on the product requirements and lead
times. Previous work [9] analysed the aggregate flexibility of
EV charging stations to deliver redispatch and offer aggregate
capacity limitations (without sacrificing the quality of service).
This was done for three distinct categories of CSs (residential,
commercial and shared) and two charging strategies (unidirec-
tional and V2G). This paper further investigates the impact of
the following factors:

• BAU schedules (cost minimised, Marginal Emission Fac-
tor (MEF) minimized and unoptimized)

• Lead time
• Duration of the requested flexibility window

III. MODELS AND METHODS

This section explains how different charging models are
simulated based on real charging transactions to quantify
the flexibility potential of EV fleets in delivering the two
congestion management products - redispatch and capacity
limitation.

We consider a set N of charging transactions indexed by
n, each requiring a total charge of ēn to be delivered between
their arrival time (tan) and departure time (tdn). Charging occurs
in discrete time intervals (∆t), during which the charging
power (pn,t) of each EV is constant. The charging power
pn,t is a continuous variable, constrained between a maximum
power (p̄n) and a minimum power (p

n
). For bidirectional

charging, p
n
= −p̄n; otherwise, p

n
= 0. T (indexed by t)

represents the set of time intervals over which the optimization
problem is solved. In contrast, Tf ⊆ T denotes the subset of
time intervals during which a specific congestion product is
requested.

Each charging transaction is required to fulfil the energy
volume derived from historical data, which may be less than



the battery capacity (because the EV was not empty at the
start of the session or not full at the end). For bi-directional
charging, the batteries’ state of charge (SOC) cannot drop
below their initial SOC, ensuring that EV owners never find
their vehicles with a lower SOC than at the start. Because
EVs are restricted from charging beyond their historical charge
volumes, resulting in a conservative estimate of feasible flex-
ibility. Data originally recorded in seconds is resampled to
15-minute intervals, with arrival and departure times rounded
to the nearest 15 minutes. Transactions that become infeasible
after rounding due to insufficient connection time are excluded
(less than 0.1% of transactions). The maximum connection
duration for an EV is capped at 24 hours (96 time steps).

A. BAU dispatch strategies

This paper considers three BAU dispatch strategies: cost
minimized, MEF minimized and unoptimized. The BAU op-
timized profile (p̃∗n,t) is calculated by solving the following
linear optimization problem.

Objective (1a) minimizes the total cost of charging based on
day-ahead prices (Πda

t , e/kWh), (1b) minimizes the marginal
emissions (Πmef

t , kgCO2/kwh) and (1c) makes sure all the
EVs are charged as fast as possible (unoptimized or ‘dumb’
charging). Further, all the EVs are constrained by (2)-(6),
which holds the above assumptions.

min
p

f(p); f(p) =



∑
t∈T

∑
n∈N

Πda
t pn,t∆t (1a)∑

t∈T

∑
n∈N

Πmef
t pn,t∆t (1b)∑

t∈T

∑
n∈N

en,t (1c)

subject to:

en,t = 0, t ≤ tan, n ∈ N (2)

en,t = en,t−1 + pn,t−1∆t, tan < t < tdn, n ∈ N (3)

en,t = en, t ≥ tdn, n ∈ N (4)

pn,t = 0, t < tan ∨ t ≥ tdn, n ∈ N (5)

p
n
≤ pn,t ≤ pn, tan ≤ t < tdn, n ∈ N (6)

As illustrated in Fig. 2, the daily peak consumption occurs
at different hours of the day for different BAU schedules.
Optimized profiles based on day-ahead prices and unoptimized
profiles exhibit higher peaks than unoptimized charging. The
magnitude of these peaks depends on the density of EV arrivals
at a given hour and the timing of lower electricity prices or
MEF, with the MEF-minimized profile showing a more diffuse
pattern. Hence, due to these distinct variations, it is important
to investigate the impact of different BAU schedules on the
delivery of congestion management products.

B. Flexibility products

This paper analyses two congestion management products
the aggregator must deliver during the requested flexibility
window Tf . The information about the delivery window (Tf ) is
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Fig. 2. Relationship between daily peak power usage and the hour of the
day across all days in the year 2023. Each point represents the peak power
recorded at a specific hour for a particular BAU schedule and CS category.

assumed to be known to the aggregator only l hours (lead time)
in advance. In our case study, we consider a single aggregator
who also serves as the CPO, responsible for scheduling the
EVs. The optimized profiles are obtained by solving a linear
programming problem described below.

1) Optimal downward redispatch : The optimal downward
redispatch strategy aims to maximize the downward deviation
between the aggregated power profile and the optimized BAU
profile (p̃∗n,t). We assume perfect knowledge of the arrival and
departure times of all EVs. The optimal downward redispatch
(cr) is calculated by maximizing (7), where the secondary
objective based on the desired BAU case is multiplied with
an auxiliary parameter (ϵ). Based on sensitivity analysis, the
value of ϵ was fixed to 1 ∗ 10−6.

max
cr,p,e

cr + ϵf(p) (7)

subject to:

constraints (2)-(6)∑
n∈N

pn,t ≤ p̃∗n,t − cr, ∀t ∈ Tf (8)

pn,t = p̃∗n,t, ∀t < min(Tf )− l/∆t, ∀n ∈ N (9)

2) Optimal capacity limitation: Optimal capacity limitation
strategies dispatch EVs to minimize the maximum aggregate
power during a given flexibility request window. Like the
optimal redispatch policy, this strategy also assumes perfect
knowledge of all EV arrival and departure times. The optimal
capacity limitation (cl) is also calculated using a linear opti-
mization problem, where it is assumed that cl ≥ 0. Similar to
the redispatch product, this can be solved for different BAU
profiles.

min
cl,p,e

cl + ϵ (f(p)) (10)
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Fig. 3. Distribution of flexibility (redispatch and capacity limitation) for unoptimized BAU schedule shown for different start of flexibility request windows
of 1 hour. For the purpose of illustration, only residential charging stations are shown.

subject to:

constraints (2)-(6)

cl ≥ 0 (11)∑
n∈N

pn,t ≤ cr , t ∈ Tf (12)

pn,t = p̃∗n,t ,∀n ∈ N t ≤ min(Tf )− l/∆t (13)

IV. RESULTS

A. Sampling of real EV transactions

The analysis considers over 350,000 real charging transac-
tions in the Netherlands during 2023. In the selected data, there
are 668 unique charging stations, with 313 in the residential
category, 254 in the commercial category, and 101 in the
shared category. The categorization of the CSs was done as
explained in [9]. The transactions are distributed among three
categories of CSs - residential(57.6 %), commercial (31 %),
shared (11.4 %). Each CS has two connectors that can be
connected to separate EVs.

In the analysis, each day of the year was taken as an
independent sample. All transactions with arrivals on the
sample date and the previous day are considered to simu-
late the sampled date. The optimization horizon spans one
day before and one day after the sample day, ensuring that
all transactions can be fully charged. In the analysis, day-
ahead energy prices for 2023 were used from the ENTSO-E
Transparency platform*. The MEF data was obtained from the
authors of [12].

B. Variation of flexibility window duration

With the increase in the length of the flexibility window, the
ability to minimise the power decreases due to the reduction
in charging flexibility for both the products, as illustrated in
Fig. 3 for residential CSs with an unoptimized BAU schedule.
The available redispatch flexibility increases with the arrival
density of EVs. However, the minimum required capacity

*https://newtransparency.entsoe.eu/

peaks (so the ability to constrain capacity drops) around
mid-day when short charging sessions dominate. The overall
magnitude of tradable flexibility sharply increases for V2G,
while still reducing gradually with increase in the flexibility
request duration.

C. Variation in lead time

Two different lead times - day-ahead activation and ac-
tivation 1 hour ahead of expected delivery are chosen as
two possible extreme cases, which also illustrate the trend
for in-between cases. Fig. 4-(a) illustrates the reduction in
the EV fleets’ ability to limit their consumption during the
requested flexibility windows of one hour for the two chosen
lead times. The results are compared across the three charging
station categories for different BAU schedules, considering
only unidirectional smart charging. Tradable flexibility signifi-
cantly decreases with shorter lead times for all BAU schedules,
except in the unoptimized case. This is because unoptimized
charging is a greedy strategy that is unaffected by the lead
time. Higher average reductions in tradable flexibility coincide
with lower average day-ahead and MEF prices. During such a
period, limiting power depends largely on schedule adaption
before the delivery. Hence, with shorter lead time, the EV
schedules are less able to adapt because they were originally
scheduled to charge during lower cost periods.

Fig. 4-(b) illustrates similar results, but for the redispatch
product. As a general trend, the magnitude of redispatch
capability depends on the density of EV arrivals and the timing
of lower energy/ emission costs. It further scales with the
maximum charging power, occupancy of CSs and the energy
needs, which are highly dependent on the charging station’s
category. Notably, the reduction in tradable flexibility as a
result of a reduction in lead time is the same as for the
capacity limitation product. This can be understood because
the reduction depends only on the ability to adjust schedules
between activation and delivery, which is the same irrespective
of the product.

https://newtransparency.entsoe.eu/


(a) Capacity limitation

(b) Redispatch down

Fig. 4. Impact of different lead times compared across different CS categories and BAU schedules. The difference between the average flexibility magnitude
for the two lead times has been plotted using the secondary axis. Flexible windows with different start times and a duration of 1 hour are chosen.

Using V2G, the EVs can more flexibly adapt their schedule
between activation and delivery. This is due to the possibility
of aggregate power reduction by discharging some EVs while
compensating for other EVs that must be charged. This trend
is clearly illustrated in Fig. 5, which plots the tradable re-
dispatch flexibility for different one-hour flexibility windows
across CS categories for the cost-minimized BAU schedule.
Similar trends are also observed for other BAU schedules.
The redispatch flexibility increases greatly with V2G. At the
same time, although its reduction due to a shorter notice
period increases more compared to the unidirectional case,
the overall magnitude is still higher than unidirectional smart
charging. Capacity limitation results are not shown because the
flexibility of V2G is such that a capacity reduction to 0kW is
feasible for nearly all scenarios.

D. Implication of lead time on average charging costs

When opting to adjust charging to deliver congestion man-
agement services, the aggregator’s energy costs can increase.
To illustrate the impact of the BAU scheduling strategy and
the impact of delivering services, Fig. 6 shows the average
cost of charging for 2023 and its change when flexibility is
provided in the form of the capacity limitation. The energy
costs are consistently lower for V2G compared to the unidi-
rectional charging when all other parameters are kept the same.
However, this does not consider the required investments in
hardware (EV, CS), extra wear and tear and control system
requirements. Further, we show the average cost increase when
the BAU schedules are updated to deliver flexibility services
for congestion management. For unidirectional charging, no
cost increase is observed. However, there is an increase in
costs under V2G charging depending on the BAU schedule
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- largely offsetting the cost gains made in the no-flexibility
scenario.

The code used to produce the plots and the models used for
the simulations are available in [13]. The simulations were
carried out on DelftBlue, the supercomputer cluster at TU
Delft [14].

V. CONCLUSION

In this paper, we investigated the effects of different lead
times and window lengths on the magnitude of tradable
flexibility for different products compared to three CS cate-
gories and BAU schedules. Shorter lead times reduce tradable
flexibility in all cases except in the case of an unoptimized
BAU schedule, where charging as soon as connected (a greedy
strategy) limits the charging adaptability. V2G enables more
flexible adaption of schedules, thereby reducing the effect of
lead times on the delivery of flexibility. Reduction trends are
also observed with the increased flexibility window duration,
which decreases with the adoption of V2G. The paper thus
highlights the usefulness of V2G when uncertainty regarding
lead times cannot be completely removed.

Further research can extend this analysis by relaxing de-
livery constraints or the requirements that vehicles are fully
charged, subject to suitable penalties. The actual impact of
peak reduction on thermal overloads may also be investigated
in more detail.

REFERENCES

[1] Y. Li and A. Jenn, “Impact of electric vehicle charging demand on power
distribution grid congestion,” Proceedings of the National Academy of
Sciences, vol. 121, no. 18, p. e2317599121, 2024.

[2] “Capaciteitskaart elektriciteitsnet,” https://capaciteitskaart.
netbeheernederland.nl/, accessed: 2025-01-18.

[3] M. Resch, J. Bühler, B. Schachler, and A. Sumper, “Techno-economic
assessment of flexibility options versus grid expansion in distribution
grids,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 3830–
3839, 2021.

[4] R. J. Hennig, L. J. de Vries, and S. H. Tindemans, “Risk vs. restric-
tion—an investigation of capacity-limitation based congestion manage-
ment in electric distribution grids,” Energy Policy, vol. 186, p. 113976,
2024.

[5] F. G. Venegas, M. Petit, and Y. Perez, “Active integration of electric
vehicles into distribution grids: Barriers and frameworks for flexibility
services,” Renewable and Sustainable Energy Reviews, vol. 145, p.
111060, 2021.

[6] N. Li, K. Bruninx, and S. Tindemans, “Residential demand-side flexibil-
ity provision under a multi-level segmented tariff,” in 2023 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT EUROPE). IEEE,
2023, pp. 1–5.

[7] F. Shen, Q. Wu, X. Jin, M. Zhang, S. Teimourzadeh, and O. B. Tor, “Co-
ordination of dynamic tariff and scheduled reprofiling product for day-
ahead congestion management of distribution networks,” International
Journal of Electrical Power & Energy Systems, vol. 135, p. 107612,
2022.

[8] N. K. Panda, N. Li, and S. H. Tindemans, “Aggregate peak ev charging
demand: The influence of segmented network tariffs,” in 2024 IEEE
Transportation Electrification Conference and Expo (ITEC). IEEE,
2024, pp. 1–6.

[9] N. K. Panda and S. H. Tindemans, “Quantifying the aggregate flexibility
of ev charging stations for dependable congestion management products:
A dutch case study,” arXiv preprint arXiv:2403.13367, 2024.

[10] R. J. Hennig, L. J. de Vries, and S. H. Tindemans, “Congestion
management in electricity distribution networks: Smart tariffs, local
markets and direct control,” Utilities Policy, vol. 85, p. 101660, 2023.

[11] Authority for Consumers and Markets (ACM), The Netherlands, “Decree
of the Netherlands Authority for Consumers and Markets of 24 May
2022 reference ACM/UIT/577139 amending the conditions as referred
to in Article 31 of the Electricity Act 1998 regarding rules regarding
transport scarcity and congestion management,” 2022. [Online]. Avail-
able: https://zoek.officielebekendmakingen.nl/stcrt-2022-14201.html#

[12] P. Alikhani, N. Brinkel, W. Schram, I. Lampropoulos, and W. G. van
Sark, “Marginal emission factors in power systems: The case of the
netherlands,” in 12th International Conference on Smart Cities and
Green ICT Systems, SMARTGREENS 2023. SCITEPRESS, 2023, pp.
50–57.

[13] N. K. Panda, “nkpanda97/leadtime-flexibility-tradeoff: Version 2025.1,”
Apr. 2025. [Online]. Available: https://doi.org/10.5281/zenodo.15236427

[14] Delft High Performance Computing Centre (DHPC), “DelftBlue
Supercomputer (Phase 2),” https://www.tudelft.nl/dhpc/ark:
/44463/DelftBluePhase2, 2024.

https://capaciteitskaart.netbeheernederland.nl/
https://capaciteitskaart.netbeheernederland.nl/
https://zoek.officielebekendmakingen.nl/stcrt-2022-14201.html#
https://doi.org/10.5281/zenodo.15236427
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

	Introduction
	Mechanism of congestion management 
	Models and Methods
	BAU dispatch strategies
	Flexibility products
	Optimal downward redispatch 
	Optimal capacity limitation


	Results
	Sampling of real EV transactions
	Variation of flexibility window duration
	Variation in lead time
	Implication of lead time on average charging costs

	Conclusion
	References

