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Homer, the odyssey 800BC

TELL ME, O MUSE, of that ingenious hero who travelled far and wide after he had
sacked the famous town of Troy. Many cities did he visit, and many were the nations
with whose manners and customs he was acquainted; moreover he suffered much by sea
while trying to save his own life and bring his men safely home; but do what he might
he could not save his men, for they perished through their own sheer folly in eating the
cattle of the Sun-god Hyperion; so the god prevented them from ever reaching home.
Tell me, too, about all these things, O daughter of Jove, from whatsoever source you
may know them.

Translation by: Samuel Butler, 1900

To Martina Fantini, my muse
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Preface
This is the MSc. thesis report for the master programme Mechanical Engineering, Vari-
ant Solid and Fluid mechanics, specialization Engineering Dynamics at the TU Delft.
Part of the project was carried out at Goodyear Innovation Centre in Colmar Berg, Lux-
embourg. The aim of this thesis is to apply a modified Reynolds equation to model the
hydroplaning phenomenon, with sufficient accuracy and with short computational time
so it can be used as a design tool.

For the realization of this thesis I would like to thank my supervisors, Ron van Os-
tayen and Daniel Rixen from the TU Delft and Vincent Decouvreur and Didier Quorin
from Goodyear for their feedback and inspiration.
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Summary
Hydroplaning occurs when a layer of water builds between the rubber tires of the vehicle
and the road surface, leading to the loss of traction and thus preventing the vehicle
from responding to control inputs such as steering, braking or accelerating. Current
hydroplaning analysis requires combining visco-elastic tire models and intricate fluid
dynamics models, which require tremendous computational effort. It is of interest to
model hydroplaning fast, such that the modelling can be used in the tire design process.

To obtain a fast modelling process the Reynolds equations is used, which is a simplifi-
cation from the Navier-Stokes equations as a result of the thin film conditions, resulting
in dominant behavior of the viscous terms. The current study investigates the direct
application of the Reynolds equation, adds an inertia correction, both to the inlet condi-
tion and to the full film area. The unknown wetted length of the inlet is solved by the
introduction of a fill rate model based on cavitation.

Tire modelling is done with an elastic half space as well as with hyperelastic models
made in a finite element program, ABAQUS.

In this case fluid structure interaction is very important due to the strong coupling be-
tween the incompressible fluid and the highly elastic structure. The models developed
start with a classical staggering for the elastic half space model. This can be diverg-
ing or at best slowly converging, therefore an interface quasi Newton method recently
published is applied which takes into account the response of the structure in previous
iterations. Finally a coupling between the fluid code in Matlab and the structural model
in ABAQUS is outlined to benchmark the potential of the method.

Some first results obtained using the methods presented in this research indicate that
the use of a modified Reynolds equation in modelling of hydroplaning shows promise,
both in accuracy and in computational effort.
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Introduction
This is a report on the application of lubrication theory for hydroplaning prediction. The
hydroplaning phenomenon, described in section I together with the different modeling
approaches, occurs when a layer of water builds between the rubber tires of the vehi-
cle and the road surface, leading to the loss of traction and thus preventing the vehicle
from responding to control inputs such as steering, braking or accelerating. Current
hydroplaning modelling techniques are generally slow and therefore expensive to run.
It is of interest to model hydroplaning fast, say in the order of a couple of hours, such
that the modelling can be used in the tire design process, where comparison of multiple
designs is desirable.

Section II outlines the fluid dynamics, in this case the lubrication theory. The lubrica-
tion theory consists of the Reynolds equation developed by Osborne Reynolds in 1888.
The main aspect of this theory is the thin film assumption which results in the dominant
behavior of the viscous terms in the Navier-Stokes equations, therefore the inertia terms
are neglected, resulting in a constant pressure over the film thickness. The current study
investigates the direct application of the Reynolds equation, adds an inertia correction,
both to the inlet condition as well as in the full film area. The inertia correction to the
inlet is furthermore corrected by an energy correction and a momentum correction. The
unknown wetted length of the inlet is solved by the introduction of a fill rate model. The
different models are solved with a finite element model developed in Matlab.

Section III describes the structural mechanics, the different tire models that are applied.
First an elastic half space model is described, developed in Matlab, then several hyper-
elastic models are outlined, which are made in a finite element program, Abaqus. Two
basic different geometries have been implemented, a so-called Grosch wheel which is a
small scale solid wheel and a more realistic full scale tire model with three grooves and
a cavity.

Section IV describes the Fluid-Structure Interaction models that have been used. In this
case fluid structure interaction is very important due to the strong coupling between the
incompressible fluid and the highly elastic structure. The models developed start with
a classical staggering in Matlab for the elastic half space model. This can be diverging
or at best slowly converging, therefore an interface quasi Newton method is explained
which takes into account the response of the structure in previous iterations. Finally
a coupling between the fluid code in Matlab and the structural model in ABAQUS is
described to lead to section V where the results are presented and discussed.
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1. Hydroplaning

1. Hydroplaning

Hydroplaning (Greek: ‘υδρω - water) or sometimes also called aquaplaning (Latin: aqua
- water) is the phenomenon of the loss of traction of a rubber tire due to presence of a
water layer between the tire and the road surface. The loss of traction makes the vehicle
insensitive to control inputs such as steering, braking and accelerating. It is therefore of
interest to model hydroplaning to be able to develop tires that perform well under wet
conditions and for a modelling approach to be useful in the design process it is also of
interest that the model performs fast, typically in the order of several hours.

Several observations with regard to hydroplaning have been made and in general three
different kinds of hydroplaning are distinguished, i.e. viscous hydroplaning, dynamic
hydroplaning and inverted rubber hydroplaning, which will be explained in the next
sections. After listing the observations made with regard to hydroplaning the current
modelling techniques are reviewed.

1.1. Definition of hydroplaning speed

Tire hydroplaning speed is defined by the speed at which the hydrodynamic lift acting
on the tire is equal to the weight of the vehicle supported by that tire.

Fv,s = Fv

Where Fv indicates the weight of the vehicle and Fv,s indicates the lift force generated
by the fluid at hydroplaning speed.

1.2. Observations

First observations of aquaplaning were made in the late 50’s as a result of military
airplanes overrunning a wet runway and large airplanes experiencing reduced tire to
surface friction during wheel spin-up in a landing procedure. This led to a treadmill
study in 1957 [1]. In this study a pneumatic tire under free rolling conditions on a belt
covered with water was observed to spin-down to a complete stop at a certain belt speed.
This is one of eight manifestations that were observed, others are detachment of the
tire footprint, hydrodynamic ground pressure, suppression of tire bow wave, scouring
action of escaping fluid in tire-ground footprint, loss in braking traction and loss of tire
directional stability [2]. The next sections give a summary of the observations made by
Horn and Dreher.

1.2.1. Detachment of tire footprint

The first explanation given of hydroplaning assumes that if ground speed increases a
wedge of fluid progressively penetrates the footprint and hydrodynamic pressure is de-
veloped between tire and ground. The resultant hydrodynamic lift causes the footprint
to detach from the surface. This is illustrated in figure 1.1 and 1.2, that were obtained
during a hydroplaning study at the NASA Langley landing loads track.
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1.2. Observations

Figure 1.1: Footprint detachment, partial hydroplaning. 5.60-13 tire on a glass runway, vertical
load 2225 N, tire pressure 1,38 bar , water depth 12,70 mm [2]

Figure 1.2: Footprint detachment, full hydroplaning. 5.60-13 tire on a glass runway, vertical
load 2225 N, tire pressure 1,38 bar, water depth 12,70 mm [2]

From these pictures can be noted that the portion of the footprint that is last to detach
from the surface, as ground speed increases, is the portion under the sidewall of the
tire, an effect which is not observed in aircraft tires. This indicates that higher contact
pressure exists under the sidewall compared to the rest of the footprint.

1.2.2. Hydrodynamic ground pressure

Measurements of the hydrodynamic pressure on the wetted surface remains a chal-
lenge but successful measurements have been done of the hydrodynamic pressure acting
on the ground surface under the tire. These measurements were done using a flush-
diaphragm-type pressure gage installed below the surface at the centerline of the tire. A
flush diaphragm pressure gage is a gage where the diaphragm is placed flush to the sur-
face therefore eliminating any cavity that could collect fluid from the process. Typical
pressure profiles are shown in figure 1.3 and figure 1.4.

13



1. Hydroplaning

Figure 1.3: Hydrodynamic ground pressure lb
in2 , Vertical load per tire approximately 24919 N,

tire pressure 3.44 bar, water depth 12,70 mm [2]

Figure 1.4: Hydrodynamic ground pressure lb
in2 , Vertical load per tire approximately 24919 N,

tire pressure 3,44 bar, water depth 12,70 mm [2]

From this data some interesting observations can be made:

• The ground hydrodynamic pressure develops ahead of the initial tire ground con-
tact point, due to the tire bow wave.

• The peak ground hydrodynamic pressure is larger than the tire inflation pressure,
in case of the 85 knot ground speed.

• Negligible hydrodynamic ground pressure is developed in the rear of the footprint.

The second point indicates that either local inward buckling or deformation of the tire
occurs under this high hydrodynamic pressure. The exact reason for point 3 is explained
by Horne and Dreher as inertia of the tire preventing the tire inflation pressure from
restoring the tire to its undeflected radius.
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1.2. Observations

1.2.3. Spin-down of unbraked wheel

As a tire enters the hydroplaning condition spin-down of the unbraked, free rolling
wheel is observed meaning that the wheel slows down or comes to a complete stop.
Two effects are accounted to this observation:

• With increasing speed the hydrodynamic pressure build-up causes footprint de-
tachment and therefore reduces tire spin-up moment towards zero.

• Next to that the center of pressure and thus resulting lift shifts increasingly for-
ward with increasing speed. See figure 1.3 and figure 1.4.

1.2.4. Suppression of tire bow wave

For all speeds below the hydroplaning speed a bow wave in front of the tire is observed.
With increasing ground speed the angle of the bow wave with respect to the road reduces
progressively until the full hydroplaning speed is reached the bow wave completely
disappears. See figure 1.5.

Bow wave, water 
splashing in front 

of the wheel Landing gear

Bow wave 
suppressed

Wheels

Figure 1.5: Four wheel bogie in partial and full hydroplaning, tire pressure 5,17 bar, vertical
load 99229 N, water depth 50 mm. [2]

1.2.5. Scouring action of escaping fluid in tire-ground footprint region

Locked wheels during braking on a dry pavement results in large amounts of molten
tread rubber to be deposited on the pavement. Under full hydroplaning conditions this is
not observed, on the contrary, escaping fluids under the hydrodynamic pressure result in
white streaks formed by the tires on the pavement. This can be seen as a cleaning effect
of the pavement. Observations of this effect have also been made at speeds below full
hydroplaning speed, attributed to the viscous effect als resulting in high hydrodynamic
pressures.
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1. Hydroplaning

1.2.6. Peaking of fluid displacement drag

Figure 1.6 shows that fluid drag is reduced at speeds above the full hydroplaning speed.
This can be accounted for by the tires lifted of the road and therefore are displacing less
fluid from the leading edge.

Figure 1.6: Fluid drag at partial and full hydroplaning speed. Vertical load 99229 N, water depth
25,4 mm. [2]

1.2.7. Loss in braking traction

Braking of tires on wet surfaces already experiences a reduced friction coefficient as
can been seen in figure 1.7 [3].

Figure 1.7: 880 jet transport aircraft on a concrete runway, tire pressure 10,34 bar, weight
667460 N, rib tread [2]
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1.3. Significant parameters to hydroplaning

When conditions are sufficient to induce full hydroplaning, a catastrophic loss in
friction is observed, see figure 1.8, with friction coefficients approaching those of free
rolling.

Figure 1.8: [2]

1.2.8. Loss of directional stability

In accordance with the reduction of friction in the longitudinal direction under braking
one can also expect to experience reduced friction in lateral direction. A study by the
Federal Aviation Agency [3],[4] done with speeds above the predicted hydroplaning
speed with a side wind present resulting in the plane to yaw and drift laterally.

1.3. Significant parameters to hydroplaning
From the observations done by Horne and Dreher the following parameters have been
deemed significant to contribute to the hydroplaning phenomenon:

• Fluid parameters

– Depth of fluid

– Density of fluid

• Tire parameters

– Inflation pressure
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1. Hydroplaning

– Tire tread design

• Vehicle parameters

– Vehicle weight

• Surface parameters

– Pavement crown

– Surface texture

– Pavement grooves

– Pavement unevenness

It is interesting to note that Horne and Dreher did not deem the fluid viscosity as a
relevant parameter, although, especially after a long dry period, the rainfall mixes with
the oil, dust, rubber debris and other contaminations on the road surface resulting in
a mixture with a higher viscosity than pure water and therefore very good lubrication
properties increasing the risk of hydroplaning.

18



2. Modelling of hydroplaning

2. Modelling of hydroplaning

With the different parameters and observations clear it is possible to attempt to model the
hydroplaning phenomenon. To model the phenomena involved in hydroplaning, three
different kinds of hydroplaning are commonly distinguished [5]; viscous hydroplaning,
dynamic hydroplaning and inverted rubber hydroplaning. Several modeling approaches
have been applied to the problem, of which an overview is given.

2.1. Hydroplaning distinctions

In literature commonly the following distinctions are made:

• Viscous hydroplaning
Viscous hydroplaning is a classification made by Moore [6] where the phenomena
are attributed to lubrication on the asperities of the road. The driving force in the
lubrication is the local slip that occurs in a tire during braking or acceleration.

• Dynamic hydroplaning
Dynamic hydroplaning is commonly referred to as due to thick layers of water
forming a penetrating wedge in the leading edge of the tire resulting in partial or
full hydroplaning

• Inverted rubber hydroplaning
Inverted rubber hydroplaning is attributed to the phenomenon where due to locked
wheels the rubber melts and forms a lubricating film that causes a hydroplaning
effect. Although very interesting it is beyond the scope of this research and further
investigation of it is left for future research.

Apart from reverted rubber hydroplaning the distinction between viscous and dy-
namic hydroplaning is not well defined, the next section will show different modelling
approaches of which models based on dynamic hydroplaning generally overestimate the
hydroplaning speed and attribute this to viscous effects without any calculation. At the
same time the viscous hydroplaning models are also overestimating the hydroplaning
speeds and this is attributed to inertia effects, again without further calculation. The
challenge is to model hydroplaning using lubrication theory in combination with con-
tact and at the same time taking into account inertia effects either in the full film or in
the inlet.

2.2. Modelling approaches

The modelling approaches to hydroplaning can be divided into many different cate-
gories. Here an overview is given of some interesting approaches: models coupling a
FEM model to a FVM model, models using only a CFD code, models based on lubrica-
tion theory.
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2. Modelling of hydroplaning

FEM coupled to FVM Several authors published on the coupled method, for exam-
ple Nakajima [7], who implemented the explicit code from MSC.Dytran. This couples
a Lagrangian tire model with an Eulerian fluid model through coupling elements. The
analysis is done with a water layer of 10 mm so inertia effects are deemed dominant.
The model focuses on tread design. The results are that the lift force is proportional to
the square of the velocity.

Another model is proposed by Cho et. al. [8] where the viscosity is neglected. The
model is also using a 10 mm water layer, a P205/60R15 tire with the non-symmetric
tread pattern. The tire is inflated at 2 bar and has a vertical load of 4.2 kN. The resulting
lift force is seen in the next figure:

924 J.R. Cho et al. / European Journal of Mechanics A/Solids 25 (2006) 914–926

(a) (b)

(c) (d)

Fig. 9. Hydroplaning of the patterned model (60 km/h). (a) Tire rolling motion, (b) water volume fraction at 80 ms, (c) at 100 ms, (d) at 130 ms.

(a) (b)

Fig. 10. Rainwater flow behind the tire (60 km/h). (a) Three-grooved model, (b) full patterned model.

(a) (b)

Fig. 11. Hydrodynamic force. (a) Time history (60 km/h), (b) velocity dependence.

Figure 2.1: Lift force [8]

Cho et.al. also conclude a lift force proportional to the square of the velocity.
Other authors on numerical models in hydroplaning are for example Zmindak [1997]

[9]

CFD models Ong and Fwa [10] made a Fluent model with the geometry of Browne
[11] . Their results match the experiments of Browne and the formula proposed by
Nasa. Main limitation of only using a CFD code is off course the fact that a deformed
tire shape has to be assumed, where in the case of hydroplaning it is the fluid structure
interaction that is interesting due to the strong coupling because of the incompressible
fluid and the highly elastic structure.
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2.2. Modelling approaches

Lubrication theory: D.F. Moore Moore [6] applied the lubrication theory on the
hydroplaning phenomenon, based on the longitudinal slip occurring during braking and
acceleration over a sinusoidal asperity on the road surface. See figure:

A theory of viscous hydroplaning 799 

T H E  C O N T A C T  A R E A  

When a pneumatic tyre rolls on a wet surface, true contact between the tyre. tread 

elements and the road surface is established only at  the rear of the nominal  contact 

length. This is because the forward par t  of the region of "contact" exhibits a squeeze-film 

between the tyre band and the road surface, as the former at tempts to displace the fluid, s, s 

As the speed of rolling is increased, the percentage of nomln~l or total contact area 

occupied by the actual contact region rearward decreases, becoming zero at  the hydro- 

planing speed corresponding t~ the given operating conditions. The actual contact zone 

is characterized by longitudinal slipping between tyre and surface in the manner  outlined 

in  Fig. 1 for the cases of (a) a braked and (b) an accelerating or driven wheel. 4 

'* DIRECTION OF MOTION 

BAND VELOCITY 

OF TYRE w" 

+ OIRECTIONIOF SLIP VELOCITY 

(,OR e - -  - -  

I J iSLIP VELOCITY, Uo'~l 

I ~ I CONTACT I 
I ¢d~ b ~ - -  LENGTH - ~ l  

A- BRAKING .~F/RF..f,, ~r.~2:,. 

cOR 

¢OR 

4,0N;-I, - -  
I 

~ b  I 
I DIRECTION OF SLIP 

L- I CONTACT 
LENGTH 

B - DRIVING 

ffPRELATIVE TO TYRE CENTRE)  

Fie.  1. Band velocity for a rolling pneumatic tyro when braked or 

driven, showing longitudinal slip velocity at rear of contact length. 

I t  has been discovered s, 3 that  an opt imum selection of road surface texture alone 

can minimize the length of the squeeze-film zone, thereby maximizing for a given total  

contact length the rearward fraction of the latter available for the development of tractive 
forces. The mecbaniam of traction under dry conditions involves a complex interlocking 

between road surface texture and dynamic rubber properties. On a wetted surface, 

however, elastohydrodynamic effects a t tempt  to entra in  fluid across the individual 

asperities of the road texture, thereby destroying intimate tread-to-surface contact and 

rapidly promoting the onset of the hydroplaning phenomenon. The following elementary 

theory of skidding is presented to indicate the importance of these effects for the case of 

Figure 2.2: Longitudinal slip [6]

The assumed asperity of the road has the following shape:
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2. Modelling of hydroplaning

800 DESMO!~D F. MOORE 

a rolling tyre which is accelerating on a two-dimensional, wetted, sinusoidal surface, aml 

it will be shown that  the important  factor in maximizing friction is the provision of an 

adequate micro-roughness at the tips of the individual asperities of the road surface. 

T H E  M E C H A N I S M  OF R O L L I N G  

I t  is observed from Fig. 1 that  the longitudinal slip velocity between the tyre band and 

the road surface increases non-linearly in both cases towards the rear of the contact length. 

This variation can be conveniently described by a relationship of the form 

U0 = CI x" 

where n is an integer of magnitude 2 or 3, and x is measured from the start  of the slip 

zone (in this case the centre of contact) with a sense which is positive for increasing 

U 0 values. We note that  the directions of slip velocity and forward tyre motion are 

coincident for the case of a braked rolling wheel, bu t  opposed for an accelerating wheel. 

The latter condition will be considered analytically in the following paragraphs, although 

the method is equally applicable to the free or braked modes of rolling. 

Let it be assumed that  wR, and taR denote respectively the forward speed of the tyre 

as a whole and its band velocity (outside the contact area) relative to the wheel centre. 

I t  is seen from Fig. 1B for the case of an accelerating wheel that  the velocity of tyre-tread 

elements decreases as they approach the region of contact. Within the forward part  of 

the contact length, the band velocity relative to the tyre centre is in fact equal and 

opposite to the wheel forward speed t a r  s (so that  in this region the absolute velocity of the 

band is zero). As the tread elements approach the rear of the contact length, however, 

they at tempt  to restore to the velocity value t a r  corresponding to the undeformed band, 

thereby introducing the longitudinal slip velocity U 0 depicted in Fig. 1. 

I t  is characteristic of rolling behaviour that  the band velocity exhibits an overshoot 

at  the end of the contact length. This appears as a discontinuity in tyre curvature, as the 

tread elements leaving the contact patch rearward experience the instantaneous change 

from rectilinear motion to rotation. 

B A S I C  E Q U A T I O N S  

Consider now the interaction between a sinusoidal asperity of the road surface and the 

tread rubber in the rear of the contact patch. The sliding speed U 0 is assumed to be 

i • i / / / / i  
,i,l,l.xso i.o,i), w / ////// 

," '//II 

. , , / / , o  > ' 2  I / / 1 1 /  
/ ,  / ,  / / /  

.. °, ~ .  

FIG, 2. The three characteristic regions for the case of rubber sliding on 

a smooth, sinusoidal asperity covered with a thin water-film. 

sufficiently low to permit the a~umpt ion  that  the rubber drapes symmetrically about the 

asperity (see Fig. 2) while flowing over it. Because of the presence of a thin film of liquid Figure 2.3: Sinusoidal asperity [6]

The resulting pressure profile is:
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a n d  u p o n  s u b s t i t u t i o n  of  t h e  usua l  va lues  of Uo, F a n d  h 0 i n to  t h i s  equa t ion ,  i t  is f o u n d  t h a t  

p*  = 63 lb f / in  I ab so lu t e  
t hus ,  (10C) 

Hw, = p * 2 a ' L  = 2(0.0732) (63) = 4.61 l b f  

where  a '  is o b t a i n e d  n u m e r i c a l l y  f r o m  e q u a t i o n  (7). P u t t i n g  p*  = 63 lb f / in  9 abso lu t e  in  

e q u a t i o n s  (5) a n d  (16) a n d  o the rwise  us ing  t he  p a r a m e t e r  va lues  in  (11), t h e  new  va lues  

of  H~I a n d  Hw, a re  o b t a i n e d  as fol lows: 

f r o m  wh ich  i t  is seen  t h a t  
Hw, = 2.06 l b f  Hw, = 0.15 lb f  

~ , H  m = ( H w I + H w , + H w , )  = ( 2 . 0 6 + 4 . 6 1 + 0 . 1 5 )  = 6.82 lb f  
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s = 0 .067  

p .  1 .45 x lo .7 

lb. s e c / i n  2 

Clearly,  t h e  s u m m a t i o n  of  these  load  c o m p o n e n t s  is less t h a n  t h e  app l ied  load W = 7 lbf,  

a n d  a n o t h e r  v a l u e  of  t h e  r a t i o  h*' /h  o is se lec ted  a n d  t he  i t e r a t i o n  r e p e a t e d  u n t i l  t h e  fol lowing 

r e l a t i o ns h ip  is va l i d  

W = ~Hw~, i =  1 , 2 , 3  (17) 

The  v a l u e  of  h*' /h  o w h i c h  is c o m p a t i b l e  w i t h  t h i s  i d e n t i t y  is f o u n d  to  be  0.253 in  t h e  

e x a m p l e  chosen,  so t h a t  t h e  new  a n d  cor rec t  va lues  of  t he  p a r a m e t e r s  h* ' ,  a a n d  p*  are  

h* '  = 0.90 ! 10 -4 in.  

a n d  
p*  = 65"7 lb f / in  2 abso lu t e  

a = -- 13.72 in -1 

Figure 2.4: Pressure distribution [6]

These values in SI units are shown in table 2.2:
The fractional slip is indicated with s and is defined as:

s =
ωdriving − ωrolling

ωrolling

(2.1)
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2.3. experimental results

Load W 7 lb/in 1.23 N/mm
Velocity U0 60 in/sec 1.52400 m/s

Radius of asperity R 0.1 in 2,54 mm
Viscosity µ 1.45 e-7 lbsec/in2 1e-3 Pa s

Table 1: Conversion table

One can see that the order of magnitude of the pressure is around 70 psi or 482 kPa.

Lubrication theory: Do, Marsac and Mosset Do, Marsace and Mosset [12]
present a model based on the Stribeck curve, determining the resultant friction on
wet pavement, depending on the speed. The new model called “modified exponential
model” requires 4 constants. Based on existing data from VERT and HERMES Euro-
pean projects, it is possible to relate three of them to measurable parameters such as road
surface macro- and microtexture, wheel slip, tire tread depth and water layer thickness.
Further analyses are needed for the fourth parameter, which describes a viscous effect
of friction.

Lubrication theory: Andren & Jolkin Another attempt to apply the Reynolds
equation to the hydroplaning phenomenon was done by Adren and Jolkin [13], a re-
search for the Swedish government. This research applies the Reynolds equation in a
finite difference scheme and models the tire in two different ways, first as a solid, linear
elastic half space and second as a P.I.A.R.C test tire in the finite element programme,
ABAQUS. The results show that the hydroplaning speed is only reached at 1600 m/s.
One major limitation of the research is the Green function approach, assuming local
linearity with which the tire model has been condensed to a influence matrix rather than
having an full FSI model. Since the leading edge has a steeply diverging shape the
estimation for the central film thickness is of huge influence on the results from the
Reynolds equation. Next to that the deformation of the tire is critical in the leading
edge as the formation of a pocket is of huge influence on the Reynolds equation and is
perhaps not accurately represented by the Green function approach.

2.3. experimental results

Horne & Dreher [2] were among the earliest to document tests on the hydroplaning
phenomenon and their observations have been described in section I.

Browne, Cheng and Kistler [11] made an theoretical model based on inertia, viscosity
and possible turbulence and did experimental verification of the models. The models
include two different inlet conditions, a pressure equal to zero or a pressure equal to the
stagnation pressure. The experimental setup consists of two aluminium plates, milled
to a convex shape which is assumed for the tire. The results are in agreement with the
work of Horne & Joyner [2]

Ervin and Balderas [14] did a hydroplaning study for lightly loaded truck tires for
the University of Michigan Transportation Research Institute, comparing the influence
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3. Summary

of velocity, rib and lug tires, tire configuration as seen on trucks, inflation pressure,
treadwear and swapping of the tires.

2.4. Further literature
Several different modelling and testing approaches have been applied to the hydroplan-
ing phenomenon of which a few have been highlighted, the interested reader can find
even more, similar modelling approaches in for example: Padovan [2007] [15], Hays
and Browne [1974] [16], Meyer and Walter [17], Claeys [2001] [18], Zmindak [1997]
[9]. In general, pavement design for hydroplaning is a good starting point to search for
literature as from this side the largest amount of publications have been done, usually
driven by government, road or transportation institutes.

3. Summary
This section has shown the early observations regarding hydroplaning, which is defined
as the phenomenon of the loss of traction of a rubber tire due to presence of a water layer
between the tire and the road surface. The loss of traction makes the vehicle insensitive
to control inputs such as steering, braking and accelerating. The main observations re-
garding hydroplaning are the spin-down of the tire to a complete stop at a certain speed,
detachment of the tire footprint, hydrodynamic ground pressure increase, suppression
of tire bow wave, scouring action of escaping fluid in tire-ground footprint all resulting
in loss in braking traction and loss of tire directional stability.

To model hydroplaning the distinction is made between dynamic, viscous and in-
verted rubber hydroplaning. The distinction between viscous and dynamic hydroplan-
ing is not well defined, models based on dynamic hydroplaning generally overestimate
the hydroplaning speed and attribute this to viscous effects without any calculation. At
the same time the viscous hydroplaning models are also overestimating the hydroplan-
ing speeds and this is attributed to inertia effects, again without further calculation.
The challenge is to model hydroplaning using lubrication theory in combination with
contact and at the same time taking into account inertia effects either in the full film
or in the inlet. These are therefore the main topics for the next section that describes
the fluid models applied. Furthermore, several other modelling approaches have been
listed, from analytical to a full CFD model. The general limitation of these modelling
approaches is the computational time and it is therefore interesting to investigate the
(modified) lubrication theory as an approach to model hydroplaning. If computational
time can be reduced to several hours the modelling approach becomes interesting as a
design tool.
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3.1. Overview section II - IV

3.1. Overview section II - IV
Now that the overview of hydroplaning is clear the three major aspects of modelling
hydroplaning, i.e. the fluid, the solid and the solid fluid interaction, are described. It
starts with zooming in on the fluid modelling (section II), then the tire modelling is
dealt with (section III) and finally the fluid structure interaction is described (section
IV). The fluid modelling starts with the derivation of the Navier Stokes equation from
which the Reynolds equation is derived under the thin film assumption. For this equa-
tion the inertia effects in the fluid film and in the inlet are investigated. Then cavitation
is taken into account resulting in a fill rate model where also starved lubrication can
be modelled. The tire modelling starts with a linear elastic model developed in Matlab
and then a hyperelastic model developed in ABAQUS. The fluid structure interaction
starts with classical staggering and then an interface method is introduced to speed up
the convergence of the model.
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• Section II: Fluid dynamics: Lubrication theory

– Navier Stokes

– Reynolds

∗ Inertia in the fluid film

∗ Inertia in the inlet

∗ Fill rate

• Section III: Solid Mechanics: Tire modelling

– Linear elastic half space model

– Hyper elastic finite element model

• Section IV: Fluid Structure Interaction

– Classical staggering

– Interface Quasi Newton method

– Coupling ABAQUS to Matlab
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Fluid dynamics: Lubrication theory



4. Navier Stokes equations

This section describes the modeling of a fluid using lubrication theory, to begin with
the momentum balance for a fluid, the Navier Stokes equations for an incompressible
Newtonian fluid is derived and from there theory of lubrication developed by Osborne
Reynolds is derived. In this derivation the thin film assumption is explained and im-
plemented resulting in neglecting the inertia terms in the Navier Stokes equations. To
verify this an inertia correction is set-up for the fluid film. Next to that the inertia ef-
fects in the inlet are investigated, an approximation is made by assuming a stagnation
pressure and an iterative energy and momentum correction is made to this approxima-
tion. Finally a cavitation model is extended to function as a fill rate model such that the
location of the inlet, which is a priori unknown, can be determined.

4. Navier Stokes equations

The Navier Stokes equations are applicable to the fluid modelling of the hydroplaning
problem.
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• Section II: Fluid dynamics: Lubrication theory

– Navier Stokes

– Reynolds

∗ Inertia in the fluid film

∗ Inertia in the inlet

∗ Fill rate

• Section III: Solid Mechanics: Tire modelling

– Linear elastic half space model

– Hyper elastic finite element model

• Section IV: Fluid Structure Interaction

– Classical staggering

– Interface Quasi Newton method

– Coupling ABAQUS to Matlab

The complete derivation of the Navier Stokes equations can be found in appendix A,
a summary of the assumptions and the resulting equation is given here. Starting with
four assumptions:

Assumption 1. Continuum, The fluid is a continuous substance

Assumption 2. Differentiable, The fluid parameters are, at least weakly, differentiable
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4. Navier Stokes equations

Assumption 3. Newtonian fluid

• The stress tensor is a linear function of the strain rates.

• The fluid is isotropic.

• For a fluid at rest, the deviatoric stress must be zero (so that hydrostatic pressure
results)

Assumption 4. Incompressibility

Dρ

Dt
= 0 (4.1)

Where ρ indicates the density and t the time. With this the conservation of momen-
tum becomes:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (4.2)

Where v indicates the velocity vector, p the pressure, mu the viscosity and f the body
forces such as gravity.

And conservation of mass:

∇ · v = 0 (4.3)
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5. Reynolds equation

5. Reynolds equation
In this section the Reynolds equation is explained which is used in the area where the
thin film assumption, which will be explained later, holds. See figure
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Figure 5.1:
O. Reynolds

In 1886 Osborne Reynolds wrote his famous work "On the theory of lu-
brication and its application to Mr. B. Towers experiments, including an
experimental determination of the viscosity of olive oil [19]" The experi-
ment of Beauchamp Towers [20] investigated the influence of lubrication
on friction at high sliding velocities. Towers found that friction varied
strongly with load and velocity, contrary to Coulomb’s formulation, where
friction is independent of the sliding velocity.
Inspired by this work Reynolds developed a partial differential equation
to describe the the pressure distribution in a thin film between two mov-
ing surfaces. Reynolds starts with the expressing the conservation of momentum using
the expression for the stress in a viscous fluid as described by Stokes [21]. To see how
Stokes arrives at his expression start with the Navier-Stokes equations for an incom-
pressible Newtonian fluid:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (5.1)

Furthermore the following approach is taken:

Assumption 5. Thin film approach: the characteristic height, h0 is much smaller than
the characteristic length, l0 and characteristic width b0.

Which results in, according to Osborne Reynolds formulation: “The fluid film is thin
therefore the flow is free of eddies (laminar flow) and the forces arising from weight
and inertia are small compared to the viscous stresses. The inertia terms in the Navier
Stokes equations are ignored.” [19]. The thin film assumption and its consequences is
most clear when a dimensional analysis is applied to the Navier Stokes equations. Start
with the first term of the Navier Stokes equations:

30



5. Reynolds equation

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(5.2)

Now define the following dimensionless quantities, indicated with an overbar:

x̄ = x
l0
, ȳ = y

b0
, z̄ = z

h0

ū = u
u0
, v̄ = v

v0
, w̄ = w

w0

t̄ = tu0

l0
, p̄ =

h2
0p

µu0l0

(5.3)

Where l0 the characteristic length in x-direction, b0 the characteristic length in y-
direction and h0 the characteristic length in z-direction, i.e. the film thickness. In the
same manner u0, v0 and w0 are the characteristic velocities in x, y, and z-direction.
Substitute to obtain:

ρu0l0
µ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+
l0
b0

v0

u0

v̄
∂ū

∂ȳ
+
l0
h0

w0

u0

w̄
∂ū

∂z̄

)
=

−
(
l0
h0

)2
∂p̄

∂x̄
+
∂2ū

∂x̄2
+

(
l0
b0

)2
∂2ū

∂ȳ2
+

(
l0
h0

)2
∂2ū

∂z̄2

(5.4)

Here one recognizes the inverse of the Reynolds number as seen often in fluid me-
chanics:

Re =
ρu0l0
µ

(5.5)

However as already seen in 5.4 the term ∂2ū
∂z̄2

is dominant due to the thin film assump-
tion and a modified Reynolds number is introduced for x, y and z-direction:

Rex =
ρu0h

2
0

µl0
,Rey =

ρv0h
2
0

µb0

,Rez =
ρw0h0

µ
(5.6)

It is now clear that under a thin film assumption h0 � l0 and h0 � b0 and with the
squeeze velocity small the inertia terms can be neglected and that the ∂2ū

∂z̄2
viscosity term

is dominant. The resulting equation is:

∂p̄

∂x̄
= µ

∂2ū

∂z̄2
(5.7)

The same reasoning can be used in y and z direction. For y direction this is trivial but
for z direction we see the following:

ρ
µ

(
u0

w0

h2
0

l0
∂w̄
∂t̄

+ u0

w0

h2
0

l0
ū∂w̄
∂x̄

+ v0
w0

h2
0

b0
v̄ ∂w̄
∂ȳ

+ h0
∂w̄
∂z̄

)
=

−u0l0
h0

∂p̄
∂z̄

+
(
h0

l0

)2
∂w̄
∂x̄

+
(
h0

b0

)2
∂w̄
∂ȳ

+ ∂w̄
∂z̄

(5.8)

From this it is clear that:

∂p

∂z
= 0 (5.9)
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5. Reynolds equation

In other words, the pressure does not vary over the height of the film. In the further
equations the terms are no longer dimensionless. Finally the assumption that is used,
which is not strictly necessary but makes further calculations simpler:

Assumption 6. Constant viscosity in time

To end up with the following equations:

∂p

∂x
= µ

∂2u

∂2z
∂p

∂y
= µ

∂2v

∂2z
∂p

∂z
= 0

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z

(5.10)

It is interesting to note that several authors, see for example [22], that start with the
thin film assumption and derive the Reynolds equation from there. Looking at equation
A.26 one can immediately drop the terms involving velocity gradients in x and y direc-
tion and also cancel the terms with w to directly obtain equation 5.10 without having to
introduce the assumption of incompressibility as Reynolds does.

To solve these equations boundary conditions are necessary, these are determined
with the assumption:

Assumption 7. No slip condition

To have the following boundary conditions, assuming ∂h
∂x

and ∂h
∂y

are small:

u (z = 0) = U1

v (z = 0) = V1

u (z = h) = U2

v (z = h) = V2

w (z = h) =
dh

dt
w (z = 0) = 0

(5.11)

Two integrations of equation 5.10 results in:

∂p

∂x

1

2
z2 = µu+ C1z + C2

∂p

∂y

1

2
z2 = µv + C3z + C4

(5.12)

Apply boundary conditions:
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5. Reynolds equation

u (x, z) =
1

2µ

∂p

∂x

(
z2 − hz

)
+
U2 − U1

h
z + U1

v (x, z) =
1

2µ

∂p

∂y

(
z2 − hz

)
+
V2 − V1

h
z + V1

(5.13)

Substitute in equation 4.3 to obtain:

∂w

∂z
= − 1

2µ

[
∂

∂x

{
∂p

∂x

(
z2 − hz

)}
+

∂

∂y

{
∂p

∂y

(
z2 − hz

)}]
− ∂

∂x

[
U2 − U1

h
z + U1

]
− ∂

∂y

[
V2 − V1

h
z + V1

] (5.14)

Apply integration from z = 0 to z = h to obtain the 2D Reynolds equation

∂

∂x

(
h3

12µ

∂p

∂x

)
+

∂

∂y

(
h3

12µ

∂p

∂y

)
=
U1 + U2

2

∂h

∂x
+
V1 + V2

2

∂h

∂y
+

h

2

∂

∂x
(U1 + U2) +

h

2

∂

∂y
(V1 + V2) +

∂h

∂t

(5.15)

The right hand side terms are often described as the wedge effect ∂h
∂x

, the stretch
effect ∂U

∂x
and the squeeze effect ∂h

∂t
.

The wedge effect describes the sliding motion of a fluid in a converging or diverging
channel, the stretch effect captures the phenomenon of the change of length of the sur-
face as is the case with rubber and elastomer components. Finally the squeeze effect is
due to vertical motion of the surfaces. Introducing the vector U the surface velocities
are written as:

U =

[
U1 + U2

V1 + V2

]
(5.16)

The Reynolds equation is sometimes also written as:

∇
(
− h3

12µ
∇p+

1

2
Uh

)
+
∂h

∂t
= 0 (5.17)

This form shows the conservation of mass and is also the basis for the derivation of
the cavitation algorithm which will be described later.
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5. Reynolds equation

5.1. Inertia correction
The inertia effects in the fluid film are studied in this section, see figure:
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There is no general approach to include inertia effects in the Reynolds equation, in
this section inertia effects are studied in two separate cases, first in squeeze and then in
sliding. In sliding two different methods are shown in 1D which are then combined and
expanded to a 2D model.

5.1.1. Squeeze of a circular disc

The inertia correction is often seen in squeeze problem where the Reynolds equation
is applied. First an example of a circular disc in squeeze is given to show the method
and the potential of the inertia correction. The circular disc on a flat surface has the
following geometry:

V

h

r
R

Figure 5.2: Circular disc on flat

Apply the Navier-Stokes equations for an incompressible Newtonian fluid in cylin-
drical coordinates:
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5.1. Inertia correction

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z
− u2

θ

r

)
= −∂p

∂r
+

µ

[
1

r

∂

∂r

(
1

r

∂ur
∂r

)
+

1

r2

∂2ur
∂θ2

+
∂2ur
∂z2

− ur
r2
− 2

r2

∂uθ
∂θ

]
+ ρgr

ρ

(
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z
− uruθ

r

)
= −1

r

∂p

∂θ
+

µ

[
1

r

∂

∂r

(
1

r

∂uθ
∂r

)
+

1

r2

∂2uθ
∂θ2

+
∂2uθ
∂z2

+
2

r2

∂ur
∂θ
− uθ
r2

]
+ ρgθ

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
= −∂p

∂z
+

µ

[
1

r

∂

∂r

(
1

r

∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
+ ρgz

(5.18)

With the continuity equation:

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 (5.19)

In case of axi-symmetric flow and the disc not rotating this can be reduced to:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+

µ

[
1

r

∂

∂r

(
1

r

∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

]
+ ρgr

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+

µ

[
1

r

∂

∂r

(
1

r

∂uz
∂r

)
+
∂2uz
∂z2

]
+ ρgz

(5.20)

With the continuity equation:

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0 (5.21)

Again, with assumption 5 the squeeze film thickness is much smaller than the radius
of the squeeze surface thus:

h� r

∂p

∂z
� ∂p

∂r

(5.22)

Then, the Navier-Stokes equations can be reduced to:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

[
∂2ur
∂z2

]
(5.23)

In line with the thin film assumption, if Re∗ � 1, where:
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5. Reynolds equation

Re∗ =
ρUl

µ

(
h

l

)2

(5.24)

The inertia of the flow can be neglected, reducing to the simple equation:

∂p

∂r
= µ

[
∂2ur
∂z2

]
(5.25)

To solve this differential equation apply assumption 7, resulting in boundary condi-
tions:

ur (z = 0) = 0

ur (z = h) = 0
(5.26)

Integrate twice to obtain:

ur =
1

2µ

∂p

∂r

(
z2 − hz

)
(5.27)

Substitute the velocity profile in the continuity equation:

1

r

∂

∂r

(
r

1

2µ

∂p

∂r

(
z2 − hz

))
+
∂uz
∂z

= 0 (5.28)

Integrate with respect to z with boundary conditions, with for convenience:

dh

dt
= ḣ (5.29)

uz (z = 0) = 0

uz (z = h) = ḣ
(5.30)

To obtain:

h∫
0

{
1

r

∂

∂r

(
r

1

2µ

∂p

∂r

(
z2 − hz

))
+
∂uz
∂z

}
dz = 0

h∫
0

∂

∂r

(
r

1

2µ

∂p

∂r

(
z2 − hz

))
dz = r

h∫
0

∂uz
∂z

dz

∂

∂r

(
r

1

2µ

∂p

∂r

(
z3

3
− hz2

2

))∣∣∣∣h
0

= rḣ

(5.31)

Such that the Reynolds equation in pure squeeze in cylindrical coordinates becomes:

∂

∂r

(
rh3∂p

∂r

)
= 12µrḣ (5.32)

The boundary conditions on the pressure are:

p (r = R) = 0 (5.33)
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5.1. Inertia correction

And from axial symmetry:

∂p

∂r
(r = 0) = 0 (5.34)

Resulting in:

p = −3µḣ

h3

(
R2 − r2

)
(5.35)

Now take for the circular disc the following geometry and operating conditions:

• R = 25 mm

• ḣ = -7.84428 km
h

• h0 = 3 mm

• the fluid is water

– ρ = 1 · 103 kg
m3

– µ = 1 · 10−3Pas

The resulting lift force is:
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Figure 5.3: Squeeze of a circular disc, pure viscous solution

A solution of a circular disc with the same conditions as in as listed is done with a
several CFD codes (ABAQUS CEL, FlowVision) as well as an analytical solution. The
resulting lift forces are:
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5. Reynolds equation

Hydro-lift vs Sinkage
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Figure 5.4: Circular disc

One can see the resulting lift force is much higher than seen before, due to the inertia
effects dominating in this problem. This can be dealt with by correcting the Reynolds
equations for the inertia, first take the obtained velocity profile in radial direction 5.27:

ur =
1

2µ

∂p

∂r

(
z2 − hz

)
(5.36)

Substitute in the continuity equation 5.21 and take the following boundary conditions:

uz (z = 0) = 0

uz (z = h) =
dh

dt

(5.37)

To obtain for vertical direction:

uz = − ḣ

h3

(
2z3 − 3hz2

)
(5.38)

Now, while retaining the thin film assumption but taking into account inertia recall
equation 5.23:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

[
∂2u∗r

∂z2

]
(5.39)

Where u∗r the velocity profile is with the inertia correction included. Notice that this
is a fixed point iteration procedure and convergence is not guaranteed. Now, with:
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5.1. Inertia correction

ur =
3rḣ

h3

(
z2 − hz

)
uz = − ḣ

h3

(
2z3 − 3hz2

) (5.40)

One can obtain:

∂ur
∂t

=
3r

h3

(
z2 − hz

)
ḧ+

3rḣ2

h4

(
−3z2 + 2zh

)
∂ur
∂r

=
3ḣ

h3

(
z2 − hz

)
∂ur
∂z

=
3rḣ

h3
(2z − h)

(5.41)

And:

ur
∂ur
∂r

=
3rḣ

h3

(
z2 − hz

) 3ḣ

h3

(
z2 − hz

)
=

9rḣ2

h6

(
z4 − 2hz3 + h2z2

)
uz
∂ur
∂z

= − ḣ

h3

(
2z3 − 3hz2

) 3rḣ

h3
(2z − h) =

−3rḣ2

h6

(
4z4 − 8hz3 + 3h2z2

) (5.42)

Substitute in the inertia terms:

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

=

3r

h3

(
z2 − hz

)
ḧ+

3rḣ2

h4

(
−3z2 + 2zh

)
+

9rḣ2

h6

(
z4 − 2hz3 + h2z2

)
+
−3rḣ2

h6

(
4z4 − 8hz3 + 3h2z2

)
=

3r

h3

(
z2 − hz

)
ḧ+ rḣ2

[
−9z2

h4
+

6z

h3
+

9z4

h6
− 18z3

h5
+

9z2

h4
− 12z4

h6
+

24z3

h5
− 9z2

h4

]
=

3r

h3

(
z2 − hz

)
ḧ+ rḣ2

[
−3z4

h6
+

6z3

h5
− 9z2

h4
+

6z

h3

]
(5.43)

So that equation 5.23 becomes:

ρ

{
3r

h3

(
z2 − hz

)
ḧ+ rḣ2

[
−3z4

h6
+

6z3

h5
− 9z2

h4
+

6z

h3

]}
= −∂p

∂r
+ µ

∂2u∗r
∂z2

(5.44)

So the velocity u∗r can be obtained from:

∂2u∗r
∂z2

=
1

µ

{
∂p

∂r
+ ρ

{
3r

h3

(
z2 − hz

)
ḧ+ rḣ2

[
−3z4

h6
+

6z3

h5
− 9z2

h4
+

6z

h3

]}}
(5.45)

Or:
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5. Reynolds equation

∂u∗r
∂z

=
1

µ

∂p

∂r
z +

ρ

µ

{
3r

h3

(
z3

3
− hz2

2

)
ḧ+

rḣ2

[
−3z5

5h6
+

6z4

4h5
− 9z3

3h4
+

6z2

2h3

]
+ C1

(5.46)

Or:

u∗r =
1

2µ

∂p

∂r
z2 +

ρ

µ

{
3r

h3

(
z4

12
− hz3

6

)
ḧ+

rḣ2

[
− 3z6

30h6
+

6z5

20h5
− 9z4

12h4
+

6z3

6h3

]
+ C1z + C2

(5.47)

Integrate twice with the same boundary conditions as before to obtain the velocity:

u∗r (z = 0) = 0

C2 = 0

u∗r (z = h) = 0

C1h = − 1

2µ

∂p

∂r
h2 − ρ

µ

{
3r

(
h

12
− h

6

)
ḧ+ rḣ2

[
− 3

30
+

6

20
− 9

12
+

6

6

]}
C1 = − 1

2µ

∂p

∂r
h− ρ

µ

{
−1

4
rḧ+

9

20h
rḣ2

}
(5.48)

So the velocity is:

u∗r =

1

2µ

∂p

∂r

(
z2 − hz

)
+

ρ

µ

{
3r

h3

(
z4

12
− hz3

6
+
h3z

12

)
ḧ+ rḣ2

[
− 3z6

30h6
+

6z5

20h5
− 9z4

12h4
+

6z3

6h3
− 9z

20h

]}
(5.49)

Combine the continuity:

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0 (5.50)

Integrate with respect to z knowing that:

uz (z = 0) = 0

uz (z = h) = ḣ
(5.51)

To obtain:

h∫
0

∂

∂r
(rur) dz = rḣ (5.52)
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5.1. Inertia correction

Where the left hand term can be expanded to:

h∫
0

∂

∂r

r
 1

2µ
∂p

∂r

(
z2 − hz

)
+
ρ

µ


3r
h3

(
z4

12
− hz3

6
+
h3z

12

)
ḧ+

rḣ2

[
− 3z6

30h6
+

6z5

20h5
− 9z4

12h4
+

6z3

6h3
− 9z

20h

]


dz

∂

∂r

r
 1

2µ
∂p

∂r

(
z3

3
− hz2

2

)
+
ρ

µ


3r
h3

(
z5

60
− hz4

24
+
h3z2

24

)
ḧ+

rḣ2

[
− 3z7

210h6
+

6z6

120h5
− 9z5

60h4
+

6z4

24h3
− 9z2

40h

]



h

0
(5.53)

So the continuity becomes:

∂

∂r

(
r

[
1

12µ

∂p

∂r
h3 +

ρ

µ

{
rh2ḧ

20
− 5rhḣ2

56

}])
= rḣ (5.54)

Or:

r

[
1

12µ

∂p

∂r
h3 +

ρ

µ

{
rh2ḧ

20
− 5rhḣ2

56

}]
=
r2ḣ

2
(5.55)

And for the pressure gradient one can see that:

∂p

∂r
=

6µrḣ

h3
− ρ

{
12rḧ

20h
− 60rḣ2

56h2

}
(5.56)

So the pressure is given by:

p =
3µr2ḣ

h3
− ρ

{
6r2ḧ

20h
− 30r2ḣ2

56h2

}
+ C1r + C2 (5.57)

With the boundary conditions:

∂p

∂r
(r = 0) = 0

p (r = R) = 0
(5.58)

To obtain the pressure:

p =

(
3µḣ

h3
+ ρ

{
3ḧ

10h
− 15ḣ2

28h2

})(
R2 − r2

)
(5.59)

The presence of inertia effects are clear. Integration of the pressure over the area
yields the resulting force:

F =

(
3µḣ

h3
+ ρ

{
3ḧ

10h
− 15ḣ2

28h2

})
2π
R4

4
(5.60)
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5. Reynolds equation

Compare the results of the corrected model with the Reynolds equation and the
FlowVision simulation:

0 0.5 1 1.5 2 2.5 3

x 10
!3

0

0.5

1

1.5

2

2.5
x 10

5 Hydrodynamic load

sinkage [m]

L
o
a
d
 [
N

]

 

 

FlowVision

Viscous

Viscous + inertia

Figure 5.5: Comparison of FlowVision, Reynolds and corrected Reynolds

Clearly already a single update of the pressure profile yields a more accurate solution
and can be a good strategy when inertia has substantial influence.

5.1.2. sliding or rolling problems

In the previous section we have seen a pure squeeze problem where inertia was playing
an important role and how it was taken into account by an iterative method. However in
rolling and sliding problems inertia effects can also be taken into account. To take the
inertial effects into account generally 2 approaches are used: the iterative method and
the average method. Examples are found in Pinkus and Sternlicht [23] for 1D. This is
expanded to a 2D approach where a combination of iterative and averaged is used.

1D iterative method The iterative method for sliding or rolling in 1D is similar to
what has been done for squeeze, start with the regular solution of the Reynolds equation:

0 = −∂pv
∂x

+ µ
∂2uv
∂z2

(5.61)
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5.1. Inertia correction

Where pv and uv are the solutions of the pure viscous equations. From continuity it’s
easily possible to determine wv since for 1D problems this is reduced to:

∂u

∂x
+
∂w

∂z
= 0 (5.62)

Now re-insert the viscous solution in the Navier Stokes equations including the inertia
terms:

ρ

(
uv
∂uv
∂x

+ wv
∂uv
∂z

)
= −∂pc

∂x
+ µ

∂2uc
∂z2

(5.63)

Where pc and uc are the solutions of the inertia corrected equations, which can be
explicitly evaluated for given boundary conditions.

1D averaged method The average method, again in 1D, assumes that due to the
thin film the inertia cannot vary a lot across the film thickness so the Reynolds equation
can be written as:

ρ

1

h

h∫
0

(
u
∂u

∂x
+ w

∂u

∂z

)
dz

 = −∂p
∂x

+ µ
∂2u

∂z2
(5.64)

The left hand side of equation 5.64 after integration is a function of x alone and the
expression can be integrated with respect to z as before. Such that the velocity profile
becomes:

u =
1

2
f (x) z2 + C1 (x) z + C2 (x) (5.65)

From continuity in 1D 5.62:

w = −
∫
∂u

∂x
dz (5.66)

or:

w = −
[

1

6

df (x)

dx
z3 +

dC1 (x)

dx

z2

2
+
dC2 (x)

dx
z

]
+ C3 (x) (5.67)

For example, take as boundary conditions:

u (z = 0) = 0
w (z = 0) = 0
u (z = h) = U
w (z = h) = W

(5.68)

Using the first three conditions one can obtain:

u = 1
2
f (x) (z2 − hz) + Uz

h

w = −
{

1
6
df(x)
dx

z3 + d
dx

[
U
h
− 1

2
f (x)h

]
z2

2

} (5.69)

The last boundary conditions allows one to solve for f(x):
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5. Reynolds equation

f (x) =
12

h3

∫
Wdx+

6

h3

∫
h2d

(
U

h

)
+
C4

h3
(5.70)

To end up with dp
dx

:

dp

dx
= µf (x) + ρ

[
−1

6
U dU

dx
− 1

5
hf (x)W + 1

6
U2

h
dh
dx
− 1

60
f (x) dU

dx
h2

+ 1
10
f (x)Uhdh

dx
+ 1

120
f 2 (x)h3 dh

dx

]
(5.71)

Which can be evaluated if U, W and h are known. As trivial as this is in 1D, in 2D a
more complicated approach is needed, which is explained in the next section.

2D inertia correction In the case of the 2D Reynolds equation there is not a direct
substitution possible via the continuity equation to directly determine the pressure with
an inertia correction, it is however possible to apply both methods simultaneously, i.e. to
iterate and to average, to obtain a correction on the pressure and velocity profile. While
retaining the thin film assumption the set of equations to solve starts with the Reynolds
equation as seen before:

0 = −∂p
∂x

+ µ
∂2u

∂x2

0 = −∂p
∂y

+ µ
∂2v

∂y2

∂p

∂z
= 0

(5.72)

The pressure profile can now be determined, as well as the velocity profile 5.13, and
the new velocity profile can be obtained from:

ρ

1

h

h∫
0

Du

Dt
dz

 = −∂p
∂x

+ µ
∂2u∗

∂x2

ρ

1

h

h∫
0

Dv

Dt
dz

 = −∂p
∂y

+ µ
∂2v∗

∂y2

∂p

∂z
= 0

(5.73)

The new velocity profiles then take the following form:

u∗ =
1

2µ

ρ
1

h

h∫
0

Du

Dt
dz

+
∂p

∂x

(z2 − hz
)

+
U2 − U1

h
z + U1

v∗ =
1

2µ

ρ
1

h

h∫
0

Dv

Dt
dz

+
∂p

∂y

(z2 − hz
)

+
V2 − V1

h
z + V1

(5.74)
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5.1. Inertia correction

The volume flow is given by:

qx =

h∫
0

u∗dz

qy =

h∫
0

v∗dz

(5.75)

From continuity one can obtain the Reynolds equation in 2D with an inertia correc-
tion:

∂qx
∂x

+
∂qy
∂y

+
∂h

∂t
= 0 (5.76)

The updated Reynolds equation can be written as:

∂

∂x

(
h3

12µ

∂p

∂x

)
+

∂

∂y

(
h3

12µ

∂p

∂y

)
= − ∂

∂x

 ρh2

12µ

h∫
0

Du

Dt
dz

− ∂

∂y

 ρh2

12µ

h∫
0

Dv

Dt
dz


+
U1 + U2

2

∂h

∂x
+ +

V1 + V2

2

∂h

∂y
+
h

2

∂

∂x
(U1 + U2) +

h

2

∂

∂y
(V1 + V2) +

∂h

∂t
(5.77)

Next step is to evaluate the integrals:

h∫
0

Du

Dt
dz =

h∫
0

{
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

}
dz (5.78)

In steady state the time derivatives drop out, evaluating the other terms one by one,
using the velocity profile from 5.13:

h∫
0

u
∂u

∂x
dz =

∂p
∂x

∂2p
∂x2h

5

120µ2
+

(
∂p
∂x

)2 ∂h
∂x
h4

48µ2
−

∂2p
∂x2 (3U1 + U2)h3

24µ
−

∂p
∂x

∂h
∂x

(3U1 + U2)h2

8µ
− ∂h

∂x

(
5

6
U2

1 +
7

6
U1U2 +

1

3
U2

2

) (5.79)

And:

h∫
0

v
∂u

∂y
dz =

∂p
∂y

∂2p
∂y2
h5

120µ2
+

∂p
∂y

∂p
∂x

∂h
∂y
h4

48µ2
−

∂2p
∂y∂x

(3V1 + V2)h3

24µ
+

∂p
∂y

∂h
∂y

(V1 + V2)h2

24µ
−

∂p
∂x

∂h
∂y

(5V1 + 2V2)h2

12µ
+

∂h

∂y

(
−5

6
V1U1 −

5

6
V1U2 −

1

3
V2U1 −

1

2
V2U2

)
(5.80)
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5. Reynolds equation

And:

h∫
0

w
∂u

∂z
dz = [w · u]h0 −

h∫
0

∂w

∂z
udz =

−
h∫

0

[
−∂u
∂x
− ∂v

∂y

]
udz =

h∫
0

u
∂u

∂x
dz +

h∫
0

u
∂v

∂y
dz

(5.81)

Where the first term matches with what we have seen before and the second term can
be developed into:

h∫
0

u
∂v

∂y
dz =

∂p
∂x

∂2p
∂y2
h5

120µ2
+

∂p
∂x

∂p
∂y

∂h
∂y
h4

48µ2
−

∂2p
∂y2

(3U1 + U2)h3

24µ
+

∂p
∂x

∂h
∂y

(V1 + V2)h2

24µ

−
∂p
∂y

∂h
∂y

(5U1 + 2U2)

12µ
+
∂h

∂y

(
−5

6
U1V1 −

5

6
U1V2 −

1

3
U2V1 −

1

3
U2V2

)
(5.82)

In a similar manner for the update of velocity v:

h∫
0

Dv

Dt
dz =

h∫
0

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
dz (5.83)

In steady state the time derivatives drop out, evaluating the other terms one by one:

h∫
0

u
∂v

∂x
dz =

∂p
∂x

∂2p
∂y∂x

h5

120µ2
+

∂p
∂x

∂p
∂y

∂h
∂x
h4

48µ2
−

∂2p
∂y∂x

(3U1 + U2)h3

24µ
+

∂p
∂x

∂h
∂x

(V1 + V2)h2

24µ
−

∂p
∂y

∂h
∂x

(5U1 + 2U2)h2

24µ
+
∂h

∂x

(
−5

6
U1V1 −

5

6
U1V2 −

1

3
U2V1 −

1

3
U2V2

)
(5.84)

And:

h∫
0

v
∂v

∂y
dz =

∂p
∂y

∂2p
∂y2
h5

120µ2
+

(
∂p
∂y

)2
∂h
∂y
h4

48µ2
−

∂2p
∂y2

(3V1 + V2)h3

24µ
+

∂p
∂y

∂h
∂y

(3V1 + V2)h2

8µ
− ∂h

∂y

(
5

6
V 2

1 +
7

6
V1V2 +

1

2
V 2

2

) (5.85)

And:

h∫
0

w
∂v

∂z
dz = [w · v]h0 −

h∫
0

∂w

∂z
vdz = −

h∫
0

(
−∂u
∂x
− ∂v

∂y

)
vdz (5.86)
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5.1. Inertia correction

Where the first term matches with what we have seen before and the second term can
be developed into:

h∫
0

(
∂u

∂x

)
vdz =

∂p
∂y

∂2p
∂x2h

5

120µ2
+

∂p
∂y

∂p
∂x

∂h
∂x
h4

48µ2
−

∂2p
∂x2 (3V1 + V2)h3

24µ
+

∂p
∂y

∂h
∂x

(U1 + U2)h2

24µ
−

∂p
∂x

∂h
∂x

(5V1 + 2V2)h2

24µ
+
∂h

∂x

(
−5

6
V1U1 −

5

6
V1U2 −

1

3
V2U1 −

1

3
V2U2

)
(5.87)

So now an inertia correction is possible in 2D sliding or rolling problems. The scheme
is as follows:

• Solve the Reynolds equation 5.72

• Determine the velocity profile 5.74

• Add the average inertia terms to the Reynolds equation 5.77

• Solve the modified Reynolds equation 5.77

As seen before the inertia effects are not present in the Reynolds equation, it is how-
ever possible to include them in an iterative method in squeeze. In a 1D sliding or rolling
situation an iterative and averaged method is a possibility to incorporate inertia effects.
In 2D rolling or sliding it is less trivial but a novel method using an iteration and an
averaging step has been introduced and inertia effects can be taken into account. The
next step is to look at the effects in the inlet which will be examined in the next section.
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5. Reynolds equation

5.2. Inlet condition

In case of a wheel rolling on a surface, with the effects of a bow wave occurring an
inlet condition have to be taken into account. See figure for what is seen as the inlet,
indicated with the yellow circle:
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Here three different models have been developed, a simple stagnation pressure at the
inlet, a stagnation pressure with an iterative momentum correction and a stagnation
pressure with an energy correction. These models will be described in the subsequent
sections.

5.2.1. Inlet condition with stagnation pressure

The inlet condition with stagnation pressure is simply putting the pressure at the inlet
equal to the dynamic pressure for the Bernoulli equation:

p =
1

2
ρv2 (5.88)

The point of application of the inlet pressure is a priori unknown as the wetted length
of the tire is unknown. As a first assumption the point of application is chosen at the
contact between tire and the water layer thickness. It is to be expected that this approx-
imation of the inlet condition gives an overestimation of the pressure as it is assumed
that the fluid velocity is zero where in fact there is fluid the flowing in the direction of
the footprint, to the sides and possibly upwards as a bow wave. Therefore subsequent
methods have been developed to deal with the fact that this approximation is adding
energy and/or momentum.

5.2.2. Inlet condition with energy correction

An iterative scheme using the Bernoulli equation and the energy equation is used to
determine the inlet pressure. Next to that, as before, the point of application of the inlet
pressure is a priori unknown as the wetted length of the tire is unknown. As a first
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5.2. Inlet condition

assumption the point of application is chosen at the contact between tire and the water
layer thickness.

The scheme to determine the inlet pressure profile is:

• Solve Bernoulli for first approximation of pressure

• Determine velocity profile from given inlet pressure

• Update the pressure

Which in practice goes as follows, starting with Bernoulli:

p+
1

2
ρv2 + gz = constant (5.89)

Next, neglect the gravity as the water layer is very thin and assume the pressure in the
far flow to be zero. So the inlet pressure becomes:

p =
1

2
ρv2 (5.90)

Where the velocity is equal to the vehicle velocity. Next, solve the Reynolds equation
to determine the pressure distribution in the leading edge of the wheel and consequently
the velocity profile. The velocity profile is given by:

u =
1

2η

∂p

∂x

(
z2 − hz

)
+
U2 − U1

h
z + U1 (5.91)

Next the energy equation comes into play, start with the first law of thermodynamics:

dQ

dt
− dW

dt
=
dE

dt
(5.92)

Where W is work done by the system, Q is heat added to the system and E denotes
the energy. Next, apply Reynolds’ transport theorem to write for a fixed control volume
Ω:

DE

Dt
=

∂

∂t

∫
Ω

eρdV

+

∫
dΩ

eρ (V · n)dA (5.93)

The energy per unit mass (e) consists of: internal energy, kinetic energy, potential
energy and other energy sources such as chemical energy, electrostatic or magnetic field
effects. For this application the other sources are neglected. The internal, kinetic and
potential energy are the written as:

e = û+
1

2
v2 + gz (5.94)

The work terms can be written as: shaft work (Ẇs), viscous work (Ẇv) and pressure
work Ẇp).Thepressureworkoccursonlyonthecontrolsurfaceandisequaltothepressureonasurfaceelementmultipliedwiththenormalvelocitycomponentintothecontrolvolume :

Ẇp =

∫
dΩ

p (V · n)dA (5.95)
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5. Reynolds equation

The work done by the viscous stresses at the control surface is the inner product of
the stresses and the velocity.

Ẇη = −
∫
dΩ

τ ·VdA (5.96)

To summarize the work done is given by:

Ẇ = Ẇs +

∫
∂Ω

p (V · n)dA−
∫
∂Ω

(τ ·V)dA (5.97)

So the total energy equation becomes:

Q̇−Ẇs−Ẇv =
∂

∂t

∫
Ω

[
û+

1

2
v2 + gz

]
ρdV

+

∫
∂Ω

[
û+

1

2
v2 + gz +

p

ρ

]
ρ (V · n) dA

(5.98)

In the present case of the Grosch wheel the heat transfer is neglected and there is no
shaft work. The current simulation is steady state so the time derivative terms are zero.
In the last boundary integral the effect due to gravity is neglected and the internal energy
drops out of the equation.

For the work of the viscous stresses there are several cases; When the control surface
is a fixed wall where the no-slip condition applies the work done by the viscous stresses
is zero. At an inlet or outlet the flow is approximately perpendicular to the inlet or outlet
and the viscous work comes only from the normal stresses which are extremely small
in this case and will therefore be neglected.

The resulting equation to update the inlet pressure is then given by:

∫
∂Ω

p (V · n) dA+

∫
∂Ω

1

2
v2ρ (V · n) dA = 0 (5.99)

Applying this to the following control volume:
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5.2. Inlet condition

0, 0, 0p v A 1, 1, 1p v A

Ω

∂Ω

ω

U

Figure 5.6: Control volume for inlet condition

With the uniform velocity on the inlet of the control volume and the parabolic pressure
profile on the outlet, this gives the update:

p1

∫
A1

v1dA− p0v0A0 +
1

2
ρ

∫
A1

v3
1dA−

∫
A0

v3
0dA

 = 0 (5.100)

Where v0 is the uniform velocity at the inlet of the control volume, p0 is the pressure
in the far field, equal to zero, v1 is given by:

v1 =
1

2µ

∂p

∂x

(
z2 − hz

)
+
U1 + U2

h
z + U1 (5.101)

The pressure update is then found by:

p1 =

1
2
ρ

[
v3

0A−
∫
A1

v3
1dA

]
∫
A1

v1dA
(5.102)

Which can be evaluated to:

51



5. Reynolds equation

p1 =
−3

140

 140v3
0 + C3

1h
6 − 7C2

1C2h
5 +

(
21C1C

2
2 − 14C2

1C3

)
h4

+70C1C2C3h
3 − 35C2

2h
3 +

(
70C1C

2
3 − 140C2

2C3

)
h2

−210C2C
2
3h− 140C3

3


C1 =

1

2µ

∂p

∂x

C2 =
U2 − U1

h
C3 = U1

(5.103)

To determine the pressure at the inlet the following iteration scheme is used:

• Assume stagnation at the inlet: v0
1 = 0 (the upper index indicates the iterate)

• Determine initial inlet pressure, p0
1 = 1

2
ρv2

• Solve the pressure profile using Reynolds equation

• Determine the velocity profile

• Determine the new inlet pressure, p1
1 from 5.103

• Iterate equation 5.103 until pi+1
1 − pi1 < ε

Where ε indicates the convergence criterion. In applying this scheme divergence
sometimes occurs and a scheme using successive under-relaxation is a possible solution.

5.2.3. Inlet condition with momentum correction

To determine the inlet pressure the Bernoulli equation is used with the following as-
sumptions:

• The far field velocity profile is uniform

• The velocity profile in the inlet is according to the Reynolds equation, thus a
combination of Poisseuille and Couette flow.

The point of application of the inlet pressure is chosen to be at the point where the
water layer first contacts the wheel.

Next, the Bernoulli equation is applied along the streamlines of the flow with an
averaging of the velocity profile along the height of the flow in the inlet:

p0 +
1

2
ρv2

0 = p1 +
1

h

h∫
0

1

2
ρv2

1dz (5.104)

Where:
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5.2. Inlet condition

• p0 is the far field pressure

• p1 is the inlet pressure

• v0 is the far field uniform velocity

• v1 is the velocity profile in the inlet, given by the Reynolds equation, i.e.:

–
v1 =

√
u2 + v2

–
u =

1

2η

∂p

∂x

(
z2 − hz

)
+
U2 − U1

h
z + U1

–
v =

1

2η

∂p

∂y

(
z2 − hz

)
+
V2 − V1

h
z + V1

The integration over the height yields the following inlet pressure:

p1 = p0+
1

2
ρv2

0−
1

2
ρ


1
5

(C2
1 + C2

4)h4+
1
2

((−C4h+ C5)C4 + (−C1h+ C2)C1)h3+
1
3

(
2C6C4 + (−C4h+ C5)2 + 2C3C1 + (−C1h+ C2)2)h2+

(C6 (−C4h+ C5) + C3 (−C1h+ C2))h
1
2

(C2
3 + C2

6)


(5.105)

Where:

C1 = 1
2η

∂p
∂x

C2 = U2−U1

h

C3 = U1

C4 = 1
2η

∂p
∂y

C5 = V2−V1

h

C6 = V1

(5.106)

To determine the inlet pressure the following iteration scheme is used:

• Assume stagnation at the inlet: v0
1 = 0 (the upper index indicates the iterate)

• Determine initial inlet pressure, p0
1 = 1

2
ρv2

• Determine the pressure and velocity profile at the inlet according to the Reynolds
equation, v1

1

• Determine the new inlet pressure, p1
1 from 5.105

• Iterate equation 5.105 until pi+1
1 − pi1 < ε
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5. Reynolds equation

Where ε indicates the convergence criterion. In applying this scheme divergence
sometimes occurs and a scheme using successive under-relaxation is a possible solution.

It is now possible to take the effects at the inlet into account, by a rather crude approx-
imation assuming stagnation of the fluid at the inlet. This can be corrected by iteration
of either an energy scheme or a momentum scheme as outlined. With these methods
the effect of inertia is most likely overestimated but for a design tool this is deemed
appropriate.

The different models have been implemented in Matlab in a finite element model,
found in appendix B.
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5.3. Fill rate model

5.3. Fill rate model
Since the previously outlined models assumed fully flooded conditions an extension is
needed to deal with starved lubrication where not the entire wheel is flooded with water,
as is usually the case of a tire rolling on a wet road. A cavitation model is applied
that allows the calculation of the position of the inlet which in essence is a reformation
boundary. A reformation boundary is a boundary where the transition from cavitated to
full film occurs. See figure:
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The model adapted here has been developed from a cavitation model [24] and intro-
duces the new variable, the film fraction: f . In the full film area the film fraction is
equal to one such that the Reynolds equation as before appears. Assume the Reynolds
equation takes the following form:

∇ ·
(
−h3

12µ
f∇p+ Ūhf

)
= 0 (5.107)

Apply a variable transformation, introducing a new variable ξ, where in the full film
area:

p = ξ (5.108)

And in the cavitated area, the film fraction is given by:

f = 1 + cfξ (5.109)

Where cf is to be determined from continuity on the reformation boundary. Write the
expressions using a boolean operator between parentheses:

p = (ξ ≥ 0) ξ (5.110)

f = 1 + (ξ < 0) cfξ (5.111)

The Reynolds equation becomes:

∇ ·
(
−h3

12µ
(ξ ≥ 0) (1 + (ξ < 0) cfξ)∇ξ + Ūh (1 + (ξ < 0) cfξ)

)
= 0 (5.112)
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5. Reynolds equation

Since for the boolean operator one knows that: (ξ ≥ 0) (ξ < 0) = 0:

∇ ·
(
−h3

12µ
(ξ ≥ 0)∇ξ + Ūh (1 + (ξ < 0) cfξ)

)
= 0 (5.113)

Now it is clear that this equation holds for both the full film and cavitated area, as-
suming that the fluid flow through the cavitated area is equal to Ū . To determine cf
apply mass conservation on the reformation boundary:

Ūh (1 + cfξ) = − h3

12µ

∂ξ

∂x
+ Ūh (5.114)

Discretize this equation using a finite difference, assuming that the reformation bound-
ary is somewhere between point i (cavitated: ξi ≤ 0) and i + 1 (full film: ξi+1 ≥ 0):

Ūhcfξi = − h3

12µ

ξi+1 − ξi
∆x

(5.115)

Where ∆x indicates the mesh size of the discretization. To obtain for cf :

cf =
h2

12µŪ

(
1− ξi+1

ξi

)
∆x

(5.116)

Which can be witten as:

cf =
h2

12µŪ

1 + ε

∆x
(5.117)

Using ε = − ξi+1

ξi
. According to numerical simulations [24] the optimal value for ε is

1 such that one obtains:

cf =
h2

6µŪ∆x
(5.118)

Knowing cf the model can be implemented in a finite element code, however also
the boundary conditions change as in this case the boundary condition is not given by a
pressure but by variable ξ, the boundary condition can be determined from the fill rate:

f =
h0

h
= 1 +

h2

6µŪ∆x
ξ (5.119)

Where h0 is the fluid film thickness far in front of the wheel, such that the value for ξ
on the boundary becomes:

ξ =

(
h0

h
− 1

)
h2

6µ∆xŪ
(5.120)

As mentioned the equation can be implemented in a finite element model, however, in
the cavitated area one is now confronted with the transport dominated terms. Commonly
this results in wiggles in the solution due to the convective terms. These can be stabilized
by adding anisotropic artificial diffusion in the direction of the fluid velocity vector Ū
is added to the diffusion part of general Reynolds equation:
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6. Summary

∇
(
−h3

12µ

(
(ξ ≥ 0) + αadαcf (ξ ≤ 0)

[
Ux

U
0

0 Uy

U

]))
∇ξ+

Uh (1 + (ξ ≤ 0) cfξ) = 0

(5.121)

This directional anisotropic diffusion is mathematically not correctly implemented.
Better would be to start with diffusion in the convection direction, and then rotate it to
the global coordinate system. However, this formulation gives more stable numerical
results. This equation can be implemented in a finite element model using αad = 1 and
αcf = 1 for linear elements and αad = 0.5 for quadratic elements. Alternatively stream
upwinding could be used. In order to further improve the solution, in the cavitated areas
a small artificial diffusion may be added perpendicular to the flow direction U:

∇
(
−h3

12µ

(
(ξ ≥ 0) + (ξ ≤ 0) (D + αadαcf (1−D))

[
Ux

U
0

0 Uy

U

]))
∇ξ+

Uh (1 + (ξ ≤ 0) cfξ) = 0

(5.122)

With the fill rate model the Reynolds equation can be solved for non fully flooded
conditions.

6. Summary
Section II has shown the application possibilities of the Reynolds equation under the
thin film assumption and its limitations, mainly the inertia effects. This inertia effects
appears in two different ways, first of all in the fluid film and can be included in an iter-
ative or averaged method. For 2D a novel approach has been introduced combining the
average and iterative method. Secondly inertia plays an important role in the inlet and
can be taken into account by assuming a velocity profile and calculating the according
pressure. A, rather crude, first approximation is done assuming the fluid is stagnating
at the inlet. To this approximation two corrections are set-up, one based on energy and
one based on momentum. Finally a fill rate model has been introduced that is based
on a cavitation algorithm and allows the calculation of the position of the inlet and the
according fluid film height.

With the fluid modelling described the next section will dive into the tire modelling.
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7. Tire construction

In the previous section the fluid modelling has been explained, this section will de-
velop several tire models. To start with an overview of the tire components and construc-
tion is given and the most common materials are listed. Then a linear elastic model is
explained after which a hyper elastic model is described. Two basic geometries will be
used, a simple Grosch wheel which is a small scale solid wheel and a full scale realistic
tire model, with three grooves and a cavity.

7. Tire construction
The following description of tire construction is taken from wikipedia [Nov 2009], it
gives a good simple overview of how a tire is built up.

The tire is an assembly of numerous components that are built up on a drum and then
cured in a press under heat and pressure. Heat facilitates a polymerization reaction that
crosslinks rubber monomers to create long elastic molecules. These polymers create
the elastic quality that permits the tire to be compressed in the area where the tire con-
tacts the road surface and spring back to its original shape under high-frequency cycles.
Typical components used in tire assembly are listed below.

Figure 7.1:

The tire is build up from different functions of which the different sections are:

Inner liner The inner liner is an extruded halobutyl rubber sheet compounded with
additives that result in low air permeability. The inner liner assures that the tire will hold
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7. Tire construction

high-pressure air inside, without the air gradually diffusing through the rubber structure.

Body ply The body ply is a calendered sheet consisting of one layer of rubber, one
layer of reinforcing fabric, and a second layer of rubber. The earliest textile used was
cotton; later materials include rayon, nylon, polyester, and Kevlar. Passenger tires typ-
ically have one or two body plies. Body plies give the tire structure strength. Truck
tires, off-road tires, and aircraft tires have progressively more plies. The fabric cords
are highly flexible but relatively inelastic.

Sidewall Sidewalls are non-reinforced extruded profiles with additives to give the
sides of the tire good abrasion resistance and environmental resistance. Additives used
in sidewall compounds include antioxidants and antiozonants. Sidewall extrusions are
nonsymmetrical and provide a thick rubber area to enable molding of raised letters and
sidewall ornamentation.

Beads Beads are bands of high tensile-strength steel wire encased in a rubber com-
pound. Bead wire is coated with special alloys of bronze or brass. Coatings protect the
steel from corrosion. Copper in the alloy and sulfur in the rubber cross-link to produce
copper sulfide, which improves bonding of the bead to the rubber. Beads are inflexi-
ble and inelastic, and provide the mechanical strength to fit the tire to the wheel. Bead
rubber includes additives to maximize strength and toughness.

Apex or Filler The apex or filler is a triangular extruded profile that mates against
the bead. The apex provides a cushion between the rigid bead and the flexible inner
liner and body ply assembly.

Chafer Chafers are strips of protective fabric laid over the outer carcass plies in the
bead area of the tire. Their purpose is to protect the carcass plies from damage when
mounting or dismounting and to reduce the effects of wear and chafing between the
wheel and the tire bead.

Belts Belts are calendered sheets consisting of a layer of rubber, a layer of closely-
spaced steel cords, and a second layer of rubber. The steel cords are oriented radially in
radial tire construction, and at opposing angles in bias tire construction. Belts give the
tire strength and dent resistance while allowing it to remain flexible. Passenger tires are
usually made with two or three belts.

Tread The tread is a thick extruded profile that surrounds the tire carcass. Tread com-
pounds include additives to impart wear resistance and traction in addition to environ-
mental resistance. Tread compound development is an exercise in compromise, as hard
compounds have long wear characteristics but poor traction whereas soft compounds
have good traction but poor wear characteristics.
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7. Tire construction

Breaker The breaker of a Bias tire is rubber-coated layers of cord between the tread
and carcass, binding the two together. The breaker prevents cuts in the tread from
reaching the carcass and helps absorb shocks.

As seen in the different sections the number of materials used is very large, a short
overview:

• Natural rubber, or polyisoprene is the basic elastomer used in tire making

• Styrene-butadiene co-polymer (SBR) is a synthetic rubber which is often substi-
tuted in part for natural rubber based on the comparative raw materials cost

• Polybutadiene is used in combination with other rubbers because of its low heat-
buildup properties

• Halobutyl rubber is used for the tubeless inner liner compounds, because of its low
air permeability. The halogen atoms provide a bond with the carcass compounds
which are mainly natural rubber. Bromobutyl is superior to chlorobutyl, but is
more expensive

• Carbon Black, forms a high percentage of the rubber compound. This gives rein-
forcement and abrasion resistance

• Silica, used together with carbon black in high performance tires, as a low heat
build up reinforcement

• Sulphur crosslinks the rubber molecules in the vulcanization process

• Vulcanizing Accelerators are complex organic compounds that speed up the vul-
canization

• Activators assist the vulcanization. The main one is zinc oxide

• Antioxidants and antiozonants prevent sidewall cracking due to the action of sun-
light and ozone

• Textile fabric reinforces the carcass of the tire

To capture the character of a tire in a computationally simple model several models
have been made, which will be outlined in the next sections. First a solid tire model
is explained, of which the deformation is calculated with an linear elastic half-space
model. Then a finite element model of the solid tire model is explained using two
different hyper-elastic materials. Then a cavity is added to the model and finally a more
realistic finite element model of a tire is explained.
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8. Linear elastic solid tire model

8. Linear elastic solid tire model
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A solid tire model is build by using an analytical expression for the deformation in
the contact patch. To determine the deformation in the contact area an elastic half space
approximation is done [25] which allows an explicit expression for the influence matrix.

Half-space approximation The half space approximation consists of points on one
side of a plane, called the bounding plane. This theory is applicable when the contact
area is small compared to the typical dimensions of the elastic body, such that in the
majority of the body, outside the contact area, the deformations are small.

Elastic body

Half space−

1ε 

half spaceε ε −≈

Figure 8.1: Half-space approximation

Influence matrix Exact expression for the influence matrix in the half-space area
are determined by Boussinesq [26] and Cerruti. The deformation is then defined by:

w (x, y) =
2

πE ′

∞∫
−∞

∞∫
−∞

p (x′, y′)√
(x− x′)2 + (y − y′)2

dx′dy′ (8.1)

Where E ′ indicates the resultant modulus of elasticity, which will be defined later,
w(x, y) indicates the deformation at point (x, y) and p(x′, y′) indicates the pressure at
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8. Linear elastic solid tire model

point (x′, y′). This influence matrix can also be used to determine the discrete elas-
tic deformation, which is then given by an discrete influence matrix which relates the
deformation in one node to the pressure in a different node.
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Figure 8.2: Discrete influence matrix

The deformation in node (i, j) as a result of pressure in point (k, l) is given by:

w (xi, yj) = wi,j ≈
2

πE ′

nx∑
k=1

ny∑
l=1

Dijklpkl (8.2)

Where the influence coefficients are found from:

Dijkl =

∫ ∫
elem

1√
(xi − x′)2 + (yj − y′)2

dx′dy′ (8.3)

An analytical solution for this integral is given by Love [27]:

Dijkl = xp ln

(
yp +

√
x2
p + y2

p

ym +
√
x2
p + y2

m

)
+ ym ln

(
xm +

√
x2
m + y2

m

xp +
√
x2
p + y2

m

)

+xm ln

(
ym +

√
x2
m + y2

m

yp +
√
x2
m + y2

p

)
+ yp ln

(
xp +

√
x2
p + y2

p

xm +
√
x2
m + y2

p

) (8.4)

With:
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xp = xi − xk +
hx
2
, xm = xi − xk −

hx
2

yp = yj − yl +
hy
2
, ym = yj − yl −

hy
2

(8.5)

Where hx and hy indicate the mesh size in x and y direction. The resultant modulus
(E ′) for the two materials in contact, assuming the road infinitely stiff, is given by:

E ′ =
2E

1− ν2
(8.6)

With this matrix the deformation can be calculated for a given pressure profile. The
E modulus used in this tire model is of natural rubber: 2.05 MPa and a poisson ratio
of 0.5. The geometry of a Grosch wheel is used, which will be explained in the next
section. The iteration scheme to determine the static footprint is the following:

• Inititalize vertical tire deflection: td, 8.3, I

• While ||contact force - external load|| < tolerance

– Determine penetration of the nodes in contact, w(i, j),8.3, II

– Determine contact pressure, pc(k, l), using the inverse of the influence ma-
trix to place the nodes on the road surface, 8.3, III

– Determine contact force: Fc =
n∑
i=1

pc · dx · dy, where dx and dy indicate the

mesh size in x and y direction, 8.3, IV

– Determine residual, i.e. the difference between the contact force, Fc and the
external load, Lex, 8.3, V

– Update tire deflection, 8.3, I
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Figure 8.3: Iteration scheme linear elastic half-space

The linear elastic half space model is now ready for the fluid structure interaction,
which will be described in section IV. Next the hyper elastic models that are used in
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ABAQUS are described.

67



9. Hyper elastic solid tire model

9. Hyper elastic solid tire model
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To more realistically represent the behavior of a tire a hyper elastic model is used, with
a Grosch wheel, which is a small scale representation of an actual wheel for simulation
purposes. The geometry of the wheel is given by the following parameters:

• radius = 40 mm

• width = 20 mm

• groove width = 4 mm

• groove depth = 4 mm

The wheel is modelled with a finite element model in Abaqus Explicit, version 6.8.2
and newer, see figure:

R=40mm

20 mm

4 mm

4 mm

Figure 9.1: Grosch wheel
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Step: mount_inflate_deflect
Increment         0: Step Time = 0.0

Grosch wheel coupled to Matlab engine, using Reynolds equation
ODB: gw2.odb    Abaqus/Explicit Version 6.8−5    Thu Sep 03 13:08:15 CEST 2009

X

YZ

Figure 9.2: Grosch wheel: FEM model

The model is built up using 3D quadrilateral elements, consisting of 8 nodes. Two
material models have been used, both neo-Hookean, with the following hyperelastic
parameters:

• model 1:

– Bulk modulus: 200 MPa

– Shear modulus: 2 MPa

• model 2:

– Bulk modulus: 200 MPa

– Shear modulus: 1 MPa

In a linear elastic model this would result in a factor of stiffness difference. A Grosch
wheel model with a cavity of 10 mm wide and 10 mm high was also tested as well as
a Grosch wheel without a groove. These different models have been tested to compare
the problems with the tire model, which will be listed in the next section. No difference
appears between the different models and in the final results only the model with a bulk
modulus of 200 MPa and a shear modulus of 2 MPa on the Grosch wheel with groove
has been used.
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9. Hyper elastic solid tire model

9.1. Problems with the tire model
In dry rolling the model remains oscillating, see the movement of the rim node of the
wheel:
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Figure 9.3: Vertical displacement of the wheel

Also the resultant reaction force is oscillating quite a bit:
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Figure 9.4: Reaction force
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9.1. Problems with the tire model

Eigen modes The loading conditions of 100 N and 214 N normal load and the
rolling speeds of 5, 10, 15, 50, 60 and 70 km/h could be inducing an eigenmode so a
modal analysis of the wheel is made. The first few modes are listed:

Table 2: Eigenvalue output

mode no. frequency (cycles/time)
1 0.0000
2 2.08779E-04
3 361.38
4 361.38
5 367.94
6 367.94
7 375.02
8 448.33
9 448.33

10 448.84
11 563.34
12 586.39
13 586.39
14 656.40
15 656.40
16 750.13
17 750.13
18 754.68
19 824.30
20 824.30

The corresponding eigen shapes are found in the appendix D. The mesh on the Grosch
wheel has been made with 90 and with 120 sectors, the "mesh frequency" would then
be between 500 and 9300 Hz so there are eigenmodes present in this frequency range
are induced by these operating conditions, however more likely is an inaccuracy of the
contact penalty method.

Contact Penalty Method Another explanation for the oscillations could be the in-
accuracy of contact algorithm. The contact algorithm that ABAQUS uses is the penalty
method, in essence it adds an extra spring stiffness and based on the penetration of the
contact surface the contact force is updated. The penalty scale factor was changed in
8 different simulations with scale factores: 0.1, 0.5, 1, 2, 10 and the model with and
without cavity. The oscillations were unaffected. It seems that the penalty method is the
largest cause of the inaccurate contact behavior. Further investigation of how ABAQUS
deals with contact is necessary.

Energy level Another problem occurring with the Grosch wheel model as well as
with the tire model which will be described in the next section is that the amount of
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9. Hyper elastic solid tire model

kinetic energy increases throughout the simulation and becomes more than the total
energy.
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Figure 9.5: Energy level

Upon a restart of the model however the energy level is lower again. This effect is yet
unclear and no explanation is found.
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10. Real tire model
Finally a tire model, in this thesis also called BMW Coarse model, is made with the
following cross section:

X

YZ

Figure 10.1: BMW Coarse

Which after revolving in 360 sectors looks like:

Z
T

R

X

Y
Z

Figure 10.2: BMW Coarse revolved

The tire has a diameter of 315 mm and an inflation pressure of 2.2 bar. The model is
build up from 14 different materials:
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10. Real tire model

Compound Type E ν K G
Breaker 1& 2 Hyper elastic - - 200 8,76

Apex Hyper elastic - - 200 15,6
Ply Hyper elastic - - 200 1,26

Liner Hyper elastic - - 200 0,96
Gstg Hyper elastic - - 200 0,86

Chafer Hyper elastic - - 200 2,76
Sidewall Hyper elastic - - 200 1,10
Miniskirt Hyper elastic - - 200 1,10

Tread Hyper elastic - - 200 2,6
Bead Elastic 40.000 0,3 - -
Begs Hyper elastic - - 200 6,08

Overlay Hyper elastic - - 200 5,48
Minibase Hyper elastic - - 200 2,18

−150 −100 −50 0 50 100 150
180

200

220

240

260

280

300

320

 

 
Breaker 1
Apex
Ply
Liner
GSTG
Chafer
Sidewall
Miniskirt
Tread
Bead
Breaker 2
Begs
Overlay
Minibase

Figure 10.3: BMW Coarse
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Figure 10.4: BMW Coarse

The tire model contains some additional compounds to what is described before:

Minibase A thin rubber layer between tread and reinforcement package with inter-
mediate stiffness softer than breaker package but stiffer than tread.

Begs The Breaker Ending Gum Strip, sometimes called GumStrip or Breaker Wedge:
prevents crack growth in breaker ending region.

Gstg This is usually called ToeGuard

Miniskirt links the tread to the sidewall and is there to prevent the sidewall to enter
into contact with the road. It has similar properties than the tread compound, and is not
part of the tread only for manufacturing reason.

The 2D cross-section is revolved in Abaqus standard, after which a static footprint is
determined, with a normal load of 400 kg. From the undeformed radius and the deflec-
tion under static loading the dynamic radius is estimated. With this dynamic radius the
initial rotational velocity is predicted and an Abaqus Explicit run is done, having the
tire in dry rolling at 90 km/h. Then the model is ready for a restart with a coupling to
the fluid code. The problem with the oscillations, as described before, is dealt with by
shifting the road in the fluid code. As a result there are more nodes which will be in
contact and the contact patch becomes flat instead of with local spikes which will result
in pressure spikes in the Reynolds solution. The model can now be implemented in an
fluid structure interaction model, which is explained in Section IV.
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11. Summary

11. Summary
In this section an overview of the tire construction is given and the most important
materials used are listed. Furthermore 2 different tire models have been developed, a
linear elastic one and a hyper elastic one. Two basic different geometries have been
implemented, a so-called Grosch wheel which is a small scale solid wheel and a more
realistic full scale tire model with three grooves and a cavity. There is a problem with the
tire model oscillating which has a huge effect for the Reynolds equation, this is solved
by shifting the road in the fluid model, i.e. more nodes are assumed to be in contact but
this will result in an even contact patch.

With the knowledge of the tire model and the previously developed fluid models a
fluid structure coupling can be set up which will be explained in the next section.
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With the fluid and the structural modelling explained it’s time to examine the fluid
structure interaction. Fluid Structure interaction is very important in this case due to
the strong coupling between the very elastic tire and the incompressible fluid.

Fluid structure interaction can be solved in different ways, monolithic or partitioned.
The monolithic approach solves the structural and the fluid equations at once, the parti-
tioned approach uses separate solvers for the fluid and the structure and requires some
coupling scheme. Although the monolithic approach could offer more stability it re-
quires extensive coding of the problem whereas the partitioned approach offers the pos-
sibility of using existing, well developed and possibly more efficient codes for the fluid
and the structure.

For tire modelling a wide variety of finite element models already exist so the parti-
tioned approach is very appealing, if it can be implemented efficiently. In this thesis,
to simulate the hydroplaning phenomenon a coupling is made between the (averaged)
Reynolds equation and the tire model. It is solved in an iterative manner to determine
equilibrium between the fluid pressure and the tire deformation. The output of the model
is the percentage of load carried by the tire and the percentage of load carried by the
fluid.

In the first section a coupling is made in Matlab between the linear elastic model
and the Reynolds equation using classical staggering. However from the iterations it is
possible to condense information about the response of the structure and the fluid, this
is done in the interface quasi newton method. The second section explains the coupling
that was set-up between ABAQUS and Matlab.

78



12.1. Linear elastic half space model

12.1. Linear elastic half space model

The iteration scheme, for the linear elastic model is as follows, starting from the dry
deformed configuration, see also figure 12.1:

• While the pressure is not converged, i.e ∆p < tolerance:

• Determine hydrodynamic pressure (phd) with Reynolds equation, figure 12.1, I

• Determine hydrodynamic lift force: Fhd =
n∑
i=1

phd · dx · dy, where dx and dy

indicate the mesh size in x and y direction.

• Determine deformation, whd due to hydrodynamic pressure phd using the influ-
ence matrix, figure 12.1, II

• While the residual, i.e. the difference between the total lift force, (Fc + Fhd) and
the external load, Lex is larger than the tolerance:

– Determine penetration of the nodes in contact, wc, , figure 12.1, III

– Determine contact pressure: pc using the inverse of the influence matrix, ,
figure 12.1, IV

– Determine contact force: Fc =
n∑
i=1

pc · dx · dy, figure 12.1, V

– Determine residual: residual = Lex − (Fc + Fhd), figure 12.1, V

– Update tire deflection and re-determine penetration of nodes in contact, fig-
ure 12.1, III, until equilibrium is reached

• Update the pressure with the new configuration: phd, figure 12.1, I

• Determine pressure residual: ∆p
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phd
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Figure 12.1: Iteration scheme linear elastic half-space

This iteration scheme can be made more efficient by taking into account information
of the deformation in previous iterations. This is explained in the next section.
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When using the partitioned approach, in essence the fluid structure interaction prob-
lem can be reduced to its boundary, where the position, velocity and acceleration of the
boundary is of interest to the fluid and the pressure on the boundary for the structural
solver. This, generally non-linear, interface problem can be solved with a Newton-
Raphson iteration method, while the structure and the fluid are solved with separate
solvers. Some different approaches have been implemented, for example by Gerbeau
[28], using an approximation of the Jacobian from a linear, reduced physics model.
Another example is van Brummelen [29] who uses a matrix free Krylov solver for the
linear system within each Newton-Raphson iteration combined with the approximation
of the Jacobian vector product based on a linear combination of the previous residual
vectors.

A new scheme, developed by Degroote, Bathe and Vierendeels [30] introduces a new
partitioned interface quasi Newton technique. It uses an approximation of the inverse of
the Jacobian that appears in the Newton linearization such that no linear system within
every Newton-Raphson has to be solved. They named it the IQN-ILS method, the Inter-
face Quasi Newton method with Inverse Jacobian approximation from a Least Squares
model.

Governing equations The fluid domain is indicated as: Ωf and the structural do-
main as: Ωs, and the boundaries as: Γf and Γs. In the next equations the interface is
indicated with an underline.

In equilibrium the following conditions should hold:

ds = df (12.1)

and:

ns · τf = ns · τs (12.2)

with d is the displacement, τ the stress and n the outward normal vector on the
boundary of Ω. First reformulate the problem as an equation in the discrete position of
the interface:
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12. Fluid structure interaction

R (ds) = 0 (12.3)

Where R is the residual operator, which is defined for the FSI problem as:

R (ds) = Fs ◦ Ff (ds)− ds (12.4)

Where ds is the position of the boundary, Ff (ds) is the result of the fluid code with
the boundary as input, in this case the pressure. Fs◦Ff (ds) is the result of the structural
solver with the result of the fluid code as input, so the outcome is the new position of
the boundary, and the difference with the previous boundary gives the residual.

This equation is to be solved using a Newton-Raphson iteration:

∂Rk

∂ds
∆dks = −Rk (12.5)

dk+1
s = dks + ∆dks (12.6)

The Jacobian matrix has to be known if a direct solver is used or one needs to be
able to calculate the product of the Jacobian matrix with a vector if the system is solved
iteratively. However this would require knowledge of the Jacobians of the solvers of
the fluid and the structural code whereas this is usually not the case in the partitioned
method. De Groote et al. developed a method to approximate the inverse of the Jaco-
bian, by a special choice of the inputs and outputs, such that it is not necessary to have
the solution of the linear system in every Newton-Raphson iteration.

First the interface position is extrapolated from the previous time steps (where the
left superscript indicates the time step), no superscript means the current time step,
n+1. Flow and structural equation must be solved to determine an initial residual. To
construct an approximate Jacobian two residual vectors are needed, so one iteration with
a fixed relaxation factor is used. Attention must be paid to the relaxation factor to avoid
divergence.

With at least two residual vectors, difference between the previous values (superscript
i) and the last value (superscript k) can be calculated for the residual:

∆Ri = Ri −Rk (12.7)

And for the difference in boundary position:

∆d̃is = d̃is − d̃ks (12.8)

with i = 0, ..., k − 1, these vectors are then stored in a matrix:

V k =
[
∆Rk−1...∆R0

]
,∆Ri = Ri −Rk (12.9)

W k =
[
∆d̃k−1

s ...∆d̃0
s

]
,∆d̃is = d̃is − d̃ks (12.10)

the number of columns of the matrices is stored in variable q, if this variable would
exceed the number of degrees of freedom of the boundary, indicated with p, the number
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of columns is limited to p by discarding the rightmost columns. The desired value of R
is the zero vector, and the difference between this and the current value is denoted as:

∆R = 0−Rk (12.11)

Approximate this as a linear combination of the known differences, ∆Ri,

∆R ≈
k−1∑
i=0

αki ∆Ri = V kαk (12.12)

With q ≤ p the problem can be solved in the least squares sense, by making a QR de-
composition of V k, which gives an orthogonal matrix Q and an upper triangular matrix
R:

V k = QkRk (12.13)

Then the coefficient α can simply be determined from the triangular system:

Rkαk = QkT

∆R (12.14)

The ∆d̃s that corresponds to the ∆R is then calculated as a linear combination of the
previous ∆d̃is:

∆d̃s ≈
k−1∑
i=0

αki ∆d̃is = W kαk (12.15)

Since R (ds) = d̃s (ds)− ds and since αk is a function of ∆R this results in:

R (ds) = d̃s (ds)− ds (12.16)

Such that the difference in the residual becomes:

∆R (ds) = ∆d̃s (ds)−∆ds (12.17)

Rewrite:

∆ds = ∆d̃s (ds)−∆R (ds) (12.18)

Recall equation 12.15 to obtain:

∆ds = W kαk −∆R (12.19)

Recall equation 12.11 to write this to:

∆ds = W kαk + Rk (12.20)

The inverse of the Jacobian is not determined explicitly but the product of the approx-
imation for the inverse and a vector, recalling equation 12.4:

∆ds =

(
∂R̂k

∂ds

)−1 (
−Rk

)
= W kαk + Rk (12.21)
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So, to summarize, the resulting algorithm starts with an initialization. In this ini-
tialization previous iterations are needed, indicated with the left superscript, n, n-1 and
n-2.

d0
s =

5

2
(nds)− 2

(
n−1ds

)
+

1

2

(
n−2ds

)
(12.22)

Then an initial boundary update can be determined by evaluating the result of the
fluid code, implement this in the structural code to have the new boundary location d̃0

s .

d̃0
s = Fs ◦ Ff

(
d0
s

)
(12.23)

Then the initial residual is known R0:

R0 = d̃0
s − d0

s (12.24)

The initial update is done d1
s using a relaxation factor, ω and the iteration counter (k)

is started.

d1
s = d0

s + ωR0

k = 1
(12.25)

Then, while not converged the following is executed, as was described before. Start
with calculating the position of the new boundary:

d̃ks = Fs ◦ Ff
(
dks
)

(12.26)

Determine the residual

Rk = d̃ks − dks (12.27)

Construct the matrices, and perform a QR decomposition on V .

V k =
[
∆Rk−1...∆R0

]
,∆Ri = Ri −Rk

W k =
[
∆d̃k−1

s ...∆d̃0
s

]
,∆d̃is = d̃is − d̃ks

V k = QkRk

(12.28)

Notice that to construct the matrix V the ∆ residuals are constructed from the previ-
ous residuals, see figure as an example for the first steps:
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Figure 12.2: Construction of residuals

Determine α using back substitution from:
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12.1. Linear elastic half space model

Rkαk = QkT (−Rk
)

(12.29)

Determine the prediction of the boundary and update the iteration counter:

∆ds = W kαk + Rk

dk+1
s = dks + ∆ds
k = k + 1

(12.30)

The updates boundary is now once more input for the fluid code, from which the result
is input for the structural code as in equation 12.26 and the iteration continues. With
the interface method it is now possible to take into account the results from previous
iterations to speed up convergence.
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To couple the Abaqus simulation to the Matlab model there are several options: co-
simulation, running the Matlab engine from a user subroutine, programming a user
element, and a staggered approach running Abaqus and Matlab sequentially.

Staggered approach The staggered approach was implemented using a file to ex-
change the information between the programs but this resulted in the wall time of the
computation going up with a factor 20 - 30 depending on the model, giving simulation
times of over 50 hours for a simple Grosch wheel and therefore the method was deemed
inappropriate.

co-simulation Although co-simulation is a very good approach it requires a spe-
cial contract with Simulia for access to the protocol and the entire model needs to be
written in C and is therefore deemed inappropriate for the method development under
investigation.

user element Abaqus user elements can be:

• finite elements in the usual sense of representing a geometric part of the model

• feedback links, supplying forces at some points as functions of values of displace-
ment, velocity, etc at other points in the model

• used to solve equations in terms of nonstandard degrees of freedom

• linear or non-linear

The second point seems to be an option to implement the Reynolds equation, however
requires significant coding in Fortran, has limitations when dealing with contact and
is applied linking predetermined nodes which results in a problem for the current FSI
model, as due to the rotating wheel it is not possible to link predetermined nodes.

86



13.1. Coupling Abaqus to the Matlab engine

As a result the chosen approach is running the Matlab engine from the user subrou-
tine, the next sections describe the subroutines and the Matlab engine and its combina-
tion.

13.1. Coupling Abaqus to the Matlab engine

This chapter describes the coupling of the Matlab engine to Abaqus via the user subrou-
tines, an overview of the possible user subroutines is found in appendix E

13.2. Abaqus subroutines

Only two subroutines, VDLOAD and VUFIELD, are exemplified here in detail for the
specific application to coupling Abaqus/Explicit to Matlab. The VDLOAD subroutine
is suited to define a fluid pressure on the surface of a tire, it passes on the following
information to the subroutine:

Variable explanation
nblock number of points to be processed NOTE: the num-

ber of points processed is determined by Abaqus
and is limited to a maximum of 136 at a time

ndim number of coordinate directions
stepTime value of time since step began
totalTime value of the total time
amplitude current amplitude value
curCoords current coordinates for each point NOTE: this point

will be the middle of the surface for which the load
is to be specified

velocity current velocity
dirCos current orientation of the face
jltyp identifier for load type

sname surface name

The value the subroutine expects to have returned is simply the surface load or body
load depending on the specified load, either a DSLOAD or a DLOAD. As mentioned in
the table the variable "nblock" is limited to 136, without specifying the node number.
To avoid this limitation the user subroutine VUFIELD is used, which passes on the fol-
lowing:
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13. Coupling Abaqus tire model to Reynolds model

Variable explanation
nblock number of points to be processed, user specified

NOTE: in parallel computing on multiple domains
the number remains limited to the number of
nodes within the domain on one cpu

nfield number of field variables to be updated
kfield field variable number
kstep current step number
kinc increment number for step kstep

jnodeuid user defined node numbers
time stores current analysis time, time increment, time pe-

riod of current step and the total analysis time up to
this point

coords current coordinates, the coordinates are this time of
the nodes Although abaqus claims the current co-
ordinates are passed this does not always seem to
be the case!

U, V, A the displacements, rotations, temperature and pres-
sure and their time derivatives

From user subroutine VUFIELD it is now possible to determine the geometry of the
tire, compute the pressure and use VDLOAD to return the pressure to ABAQUS. The
variables can be passed on through the different subroutines using a COMMON block
in the Fortran code. Next step is to calculate the pressure, this could be done by coding
in Fortran, however for method development purposes the ease and flexibility of Matlab
is chosen, but this requires a coupling between Matlab and Abaqus, for this purpose the
Matlab engine is used which will be explained in the next section. The implemented
subroutines have the following flowchart:
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User subroutine VUFIELD The user subroutine VUFIELD executes the following
scheme:

Check if fluid 
pressure is to be 

updated

Check if the Matlab 
R14sp3 Engine is 

running

Place the geometry 
and velocities in the 
Matlab workspace

Execute the 
Reynolds code in the 
Matlab engine, storing 
the output in a .mat file

Check if the domain 
is the contact domain

Start 
Matlab 
engine

no

no

yes

yes

yes

no

Figure 13.1: VUFIELD subroutine

The built in check if the pressure is to be updated indicates that sub-cycling is used.
This is done due to the small time step of ABAQUS Explicit which is based on the
eigenfrequency of the smallest element in the structural model and during this time
step changes of the structural model are of small influence on the fluid. Furthermore
a check routine for the start of the Matlab engine is built in which is a critical step in
getting the system running as two subroutines a the same time call the Matlab engine.
Finally the pressure output is stored in a .mat file which is clearly very negative for
the computational time but currently no solution is found for exchanging information
between Matlab engines running on different CPUs.
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13. Coupling Abaqus tire model to Reynolds model

User subroutine DSLOAD The user subroutine DSLOAD executes the following
scheme:

Check if the Matlab 
R14sp3 Engine is 

running

Read the .mat file

Extract from the 
Matlab workspace: 

x, y, p

Start 
Matlab 
engine

Determine the 
application amplitude, 

according to time

Find the surrounding 
nodes

Apply 
linear 

increment

Interpolate using a bi-
linear interpolation

Determine if fluid 
pressure has been 

updated

p = 0

If requested node 
outside domain, place 
on edge & warn user

no

yes

yes

no

t<t_app

t>t_ramp

t_app<t<t_ramp

Figure 13.2: DSLOAD subroutine

In this flowchart the x,y and p that are extracted from the Matlab workspace are the
coordinates and the pressures at these coordinates.

bi-linear interpolation Since the DSLOAD routine requests the pressure at the mid-
dle of the surface element, an interpolation is needed. In this case a bi-linear interpo-
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13.2. Abaqus subroutines

lation is applied. The scheme is used to find the unknown value in point P (x, y) from
the data in points Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1) and Q22 = (x2, y2).
Intermediate point areR1 = (x, y1) andR2 = (x, y2). The scheme is as follows, starting
in x-direction:

f (R1) ≈ x2 − x
x2 − x1

f (Q11) +
x− x1

x2 − x1

f (Q21) , R1 = (x, y1)

f (R2) ≈ x2 − x
x2 − x1

f (Q12) +
x− x1

x2 − x1

f (Q22) , R1 = (x, y2)
(13.1)

Next, in y-direction:

f (P ) ≈ y2 − y
y2 − y1

f (R1) +
y − y1

y2 − y1

f (R2) (13.2)

Combine to end up with:

f (x, y) ≈ f (Q11)

dx · dy
(x2 − x) (y2 − y) +

f (Q21)

dx · dy
(x− x1) (y2 − y) +

f (Q12)

dx · dy
(x2 − x) (y − y1) +

f (Q22)

dx · dy
(x− x1) (y − y1)

(13.3)

Where dx and dy indicate the mesh size in x and y direction.

linear increment The linear increment on the amplitude of the pressure is applied
to avoid the wheel to start bouncing immediately after the pressure is applied. This was
also implemented in the benchmark models and adopted here for comparison.

13.2.1. Matlab engine

The MATLAB engine library is a set of routines that allows you to call MATLAB from
your own programs, thereby employing MATLAB as a computation engine. MATLAB
engine programs are C or Fortran programs that communicate with a separate MATLAB
process via pipes, on UNIX, and through a Component Object Model (COM) interface,
on Windows. There is a library of functions provided with MATLAB that allows you
to start and end the MATLAB process, send data to and from MATLAB, and send
commands to be processed in MATLAB [31]. The details on how to get the Matlab
engine running are found in appendix F

13.2.2. Matlab engine from Abaqus subroutine

Now that the background of the Matlab engine and the Abaqus subroutine is somewhat
clear the next step is to combine both at the same time. Details are found in appendix
G. The important part is the compatibility of the compilers which have been used to
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13. Coupling Abaqus tire model to Reynolds model

compile the programs themselves. Abaqus 6.8 and 6.9 require a a Matlab version com-
piled with a GCC compiler version 3.3.0 to be compatible, and in fact the following
compatible versions of Matlab and Abaqus have been tested:

Compatibility
Matlab version Abaqus version

6.8-1 6.8-2 6.8-5 6.9-1
R14SP2 ok ok ok ok
R14SP3 ok ok ok ok
2006b - - - -
2007a - - - -
2008a - - - -
2009a - - - -
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13.2. Abaqus subroutines

13.2.3. Domain decomposition and the Matlab engine

Since the structural calculation in ABAQUS/Explicit is rather computational intensive a
domain decomposition is desirable to reduce wall time for the computation. One of the
limitations of ABAQUS in the domain decomposition algorithm is that it is not able to
decompose a contact domain, if a contact pair is used, which will therefore always be in
one domain. Since this contact domain for the wheel is between the road and the outer
surface of the tire, this can be used to determine the fluid pressure using the Matlab
engine. The only requirement is to have the subroutine determine if the domain for
which the calculation is to be done is the domain that includes the contact. From each
domain the subroutine will start a separate Matlab engine. This is clarified in the next
figure, the ABAQUS model is decomposed on multiple domains, i.e. on multiple CPUs
which can communicate with each other. Each domain runs the subroutine VDLOAD to
apply the pressure on the wheel, the pressure is extracted from the stored .mat file. Only
the contact domain will run the VUFIELD subroutine as this will be the only domain
from which it is possible to reconstruct the wheel geometry for the fluid model. This
routine stores the pressure profile in a .mat file.

 Abaqus model

Domain 1 Domain 2: 
contact Domain x

VUFIELD DSLOAD DSLOADDSLOAD

Matlab engine 
1

Matlab engine 
x

Matlab engine 
2

.mat file

Figure 13.3: Domain decomposition

This way to pass on the information from the domain where the fluid pressure is
calculated to the other domains so the VDLOAD routine can apply the surface load is
probably the slowest option but the author is up to now unaware how to have multiple
matlab engines, running on multiple machine communicating with each other.

Details on how to start the Matlab engine on multiple domains is given in appendix
H
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13. Coupling Abaqus tire model to Reynolds model

13.2.4. Mesh mapping

The ABAQUS tire model is a full 3D model, and therefore a 3D mesh. The Reynolds
model is a 2D mesh with only the film height and the velocities of the boundaries as
input. It is therefore necessary to map the 3D mesh onto a 2D mesh, which is not a
trivial thing to do.

Z

T

R

X

Y

Z

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

!1

!0.5

0

0.5

1

Figure 13.4: Mesh mapping of a 3D mesh onto a 2D mesh

To transfer the mesh from the structure to the fluid several options are possible:

• Direct Delaunay [32] triangulation on the grid points, resulting in a non-equidistant
grid

• Using Matlab’s griddata [33] algorithm, resulting in an equidistant grid

• Using a smoothing function, such as gridfit [34], to deal with discontinuities
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13.2. Abaqus subroutines

Direct Delaunay triangulation The most simple and straightforward mesh map-
ping is a direct Delaunay triangulation on the nodes, however this also means that the
fluid mesh will be as coarse as the structural mesh which may not be sufficient. Further-
more the nodes must form a convex hull for the algorithm to function adequately. Bad
scaling of the nodes, i.e. large variations in length scale over the length and width of the
mesh can result in a mesh with nodes hopping. See figure, where the 2D reynolds mesh
is plotted with the height at the nodes, resulting in the 3D image:

Figure 13.5: Delaunay triangulation failed due to bad scaling, the grooves are not visible

In this figure one cannot see the grooves that are present in the BMW Coarse model
10.2 and the failure of the algorithm is clear. To have the grooves represented two
methods are applied, first of all the griddata algorithm and second of all the smooth
approximation by the gridfit algorithm, explained in the next sections.
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13. Coupling Abaqus tire model to Reynolds model

Matlab’s Griddata algorithm To deal with the possibility of needing a more re-
fined mesh on the fluid side the griddata algorithm from Matlab is very well suited, the
requirement of the convex hull remains but refinement is possible. Next to that the scal-
ing also remains an issue, as griddata uses the Delaunay triangulation first before the
refinement is made.

Figure 13.6: Griddata mesh mapping succesfully represents the three grooves and allows mesh
refinement on the fluid side
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A smooth approximation A solution to deal with the bad scaling is a mesh map-
ping algorithm where some sort of smoothing is applied. In this work the gridfit function
has been used, developed by John D’Errico, available at the Mathworks website [34].
Gridfit solves all of the mentioned problems, although it is not an interpolant. It builds a
surface over a complete lattice, extrapolating smoothly into the corners. You have con-
trol of the amount of smoothing done, as well as interpolation methods, which solver to
use, etc. The algorithm will introduce some extra CPU time in the mesh mapping, de-
pending on the mesh size of course. Furthermore since it is not an interpolant the actual
geometry is lost and the approximation might not be sufficiently close to the original
geometry.

Figure 13.7: Gridfit smooth approximation

To summarize, mesh mapping of a 3D geometry to a 2D mesh is not trivial, either
the geometry is represented less accurate, as with the gridfit algorithm, or a refinement
on the structural side is necessary which inevitably results in an increase of computa-
tional time. For the current simulations the griddata algortihm is chosen as it allows
accurate representation of the geometry and the additional computational time is taken
for granted for now.

13.3. Summary

Fluid structure interaction is very important in the case of modelling hydroplaning as
there is a strong coupling between the incompressible fluid and the highly elastic tire.
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13. Coupling Abaqus tire model to Reynolds model

Besides classical staggering an interface method has been described that speeds up con-
vergence as it takes into account the behavior of the structre in previous iterations. Next
to that a coupling of the Abaqus finite element model to the Reynolds model in Matlab
is described, using user subroutines in Fortran. Domain parallelization is possible if
the contact is described with the Abaqus contact pair method. However, mesh mapping
is an issue and is currently resolved by a structural refinement such that the griddata
algorithm can successfully be implemented.
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14. Results

14. Results

The previous sections have outlined the fluid modelling with different corrections within
the fluid film, with different inlet conditions, and a fill rate model. Next to that the struc-
tural modelling, i.e. the tire models used, has been outlined for a linear elastic model and
several hyper-elastic finite element models. To couple these models a classical stagger-
ing has been implemented and an interface model is described to speed up convergence.
In this section the results are presented, where the comparison between the different
models is made with the lift force. Next to that, for the BMW Coarse tire model a
comparison is made of the resulting footprint.

14.1. Grosch wheel, Linear Elastic half space

The deformable Grosch wheel with groove has also been simulated with the ABAQUS
CEL method and with an ABAQUS to FlowVision coupling I.1 , results of these simu-
lations have also been incorporated in the comparison as the benchmark. The operating
conditions are 214 N normal load, 50, 60 and 70 km/h. The material properties for the
tire are: E = 2,05 MPa, ν = 0,5 and for the fluid: ρ = 1 · 103 kg

m3 and µ = 1 · 10−3Pas.
The water layer thickness is 5 mm.

Table 3: Lift forces in Newton, 50 km/h, 214 N, 5 mm water layer

hhhhhhhhhhhhhhhhhhBoundary condition
Model

Reynolds Re + Inertia Fill rate CEL FlowVision

p = 0 3,14 3,14 3,05 33 16,36
p = 1

2
ρv2 25,56 25,56 - - -

p = 1
2
ρv2 + energy 3,14 3,14 - - -

p = 1
2
ρv2 + momentum 3,14 3,14 - - -

Table 4: Lift forces in Newton, 60 km/h, 214 N, 5 mm water layer

hhhhhhhhhhhhhhhhhhBoundary condition
Model

Reynolds Re + Inertia Fill rate CEL FlowVision

p = 0 3,77 3,77 3,55 48 33,93
p = 1

2
ρv2 36,09 36,09 - - -

p = 1
2
ρv2 + energy 3,77 3,77 - - -

p = 1
2
ρv2 + momentum 3,77 3,77 - - -

One can see that both the energy correction on the inlet pressure and the momentum
correction on the inlet pressure convergence to the same value as the Reynolds model
without the stagnation pressure at the inlet.
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14.2. Grosch wheel, Hyperelastic, Coupled Matlab with Abaqus

Table 5: Lift forces in Newton, 70 km/h, 214 N, 5 mm water layer

hhhhhhhhhhhhhhhhhhBoundary condition
Model

Reynolds Re + Inertia Fill rate CEL FlowVision

p = 0 4,39 4,39 4,12 64 46,66
p = 1

2
ρv2 48,45 48,45 - - -

p = 1
2
ρv2 + energy 4,39 4,39 - - -

p = 1
2
ρv2 + momentum 4,39 4,39 - - -

The inertia correction has an effect that is smaller than 1% and therefore the thin film
assumption, for the Reynolds equation, seems correct.

Also the inlet pressure from the Bernoulli equation seems to be a necessary condition
and is therefore implemented in the next models where the Reynolds model is coupled
to the ABAQUS model through the user subroutines.

Finally the interface quasi Newton method is compared, this results in the same values
but converges faster, it uses half the amount of iterations needed compared to the other
staggered scheme.

14.2. Grosch wheel, Hyperelastic, Coupled Matlab with
Abaqus

For the Grosch wheel coupled to the Matlab engine only the wheel without the groove
gave stable results, the wheel with cavity was only used to test the stability of dry rolling
and the wheel with the groove gave unstable results due to the mesh mapping issues. The
two different compounds that have been used resulted in no difference for the lift force.

The Grosch wheel without groove, using hyperelastic material with a bulk modulus
of 200 MPa and a shear modulus of 2 MPa , solved with ABAQUS and coupled to the
Matlab engine gave the following results, using a stagnation pressure at the inlet:

Table 6: Lift forces in Newton, 50 km/h, 214 N, 5 mm water layer

hhhhhhhhhhhhhhhhhhBoundary condition
Model

Reynolds Re + Inertia Fill rate CEL FlowVision

p = 0 - - - - 16,36
p = 1

2
ρv2 30,80 - - - -

p = 1
2
ρv2 + energy - - - - -

p = 1
2
ρv2 + momentum - - - - -

The results need to be interpreted with care, the lift force has been averaged over a
period of rolling of 1 second, in which the lift force is oscillating due to the oscillations
of the wheel which were already present in the dry rolling. One observes that for the 50
km/h case the lift force for the hyper elastic model is higher than for the linear elastic
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half space, due to the larger deformation a larger full film area is present underneath the
wheel.

14.3. Real tire

For the real tire model the following results were obtained, with a normal load of 3924
N (400 kg), rolling at 90 km/h with a water layer of 3 mm.

Table 7: Lift forces in Newton, 90 km/h, 3924 N, 3 mm water layer

hhhhhhhhhhhhhhhhhhBoundary condition
Model

Reynolds Re + Inertia Fill rate CEL FlowVision

p = 0 200 - - - 2000
p = 1

2
ρv2 2200 - - - -

p = 1
2
ρv2 + energy - - - - -

p = 1
2
ρv2 + momentum - - - - -

Next to the lift force also the footprint shape is compared, in this figure the ABAQUS
data has been post-processed. The identification block is self explanatory, as well as
the parameters block, the conditions block gives the operating conditions and the di-
mensions/ratio block gives the following factors, which are used to compare different
tires:

• ISL: inside shoulder length

• OSL: outside shoulder length

• CL: centerline length

• AFPL: average footprint length

• FSF: footprint shape factor

• CSF: camber sensitivity factor

• CL/SH: centerline length / shoulder length

• N/G: nett area / gross area

The middle left figure indicates the footprint, the middle right gives the contact pres-
sure, the colors match with the pressure sections 1 to 5 as seen in the middle left figure.
The bottom figure gives the contact pressure profiles in the sections A to E. Finally the
bottom right table gives the weighted average pressure in the different sections of the
footprint.
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1 2 3 4 5

A

B

C

D

E

 1  2  3  4  5 Av.

 A 

 B 

 C 

 D 

 E 

Av.

Weighted Average Pressures, Bar

  1.62

  0.67

  0.00

  0.63

  1.78

  1.61

  3.24

  1.09

  0.00

  1.03

  3.17

  2.88

  3.55

  1.07

  0.62

  1.13

  3.40

  2.59

  2.84

  1.95

  1.96

  1.87

  2.66

  2.26

  1.24

  1.81

  1.86

  1.43

  0.98

  1.62

  2.78

  1.57

  1.74

  1.51

  2.73

  2.25

  0

   3.7        Bar

  0    4.4        Bar

ISL

 CL

OSL

Lateral

Circumf

..

(.) center of pressure (.) zero              

  0     0.20   0.81   1.43   2.04   2.66   3.27   3.89   4.50
Bar       

DIMENSIONS/RATIO
ISL      :   70.50    mm           
OSL      :   72.75    mm           
CL       :   61.50    mm           
WIDTH    :  168.00    mm           
GROSSAREA:  109.76  cm^2           
NETAREA  :   78.74  cm^2           

AFPL  :   66.56  mm                
FSF   :    0.86                    
CSF   :    1.03                    
SSI   :  -41.62   %                
CL/SH :    0.63                    
N/G   :    0.72                    

PARAMETERS
SURF             :     0.5625      mm^2      
RECT             :      1.000                
PMIN / PMAT      :0.200/0.200       Bar      
SHOULD. WIDTH    :       0.80                
C.PRESS LAT/CIRC : -2.0/-17.9        mm      
CONTOURING RADIUS:       82.9        mm      
Radius computed by default (APDR: 5.0%)      

Footprint Contact Pressure Postprocessing - V 571M    :      ABAQUS        
File name :                                             reynolds691        
Comment : FSI Footprint @ 90 km/h, Reynolds                                

IDENTIFICATION
TIRE SIZE      :    205/55R16      
RIM            :         *         
ABAQUS         :    6.9.1          
OPERATOR       :    WAPSTRA Henk-Ja
DATE           :    OCT 26 2009    
STEP / INC     :        1 /89848   

CONDITIONS
LOAD           :    3923           
INFLATION      :       2.20 Bar    
NB OF SECTORS  :    360            
NB OF NODES    :    356400         
NB OF ELEMENTS :    332640         
DEG OF FREEDOM :    2              

Figure 14.1: Reynolds footprint
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1 2 3 4 5

A

B

C

D

E

 1  2  3  4  5 Av.

 A 

 B 

 C 

 D 

 E 

Av.

Weighted Average Pressures, Bar

  1.24

  0.00

  0.00

  0.00

  1.28

  1.26

  2.85

  1.16

  1.14

  1.01

  2.57

  1.91

  3.47

  2.47

  2.64

  2.29

  3.33

  2.90

  2.39

  2.71

  3.03

  2.59

  2.17

  2.57

  1.07

  1.37

  1.56

  1.28

  0.81

  1.27

  2.35

  1.98

  2.13

  1.85

  2.28

  2.15

  0

   3.7        Bar

  0    4.7        Bar

ISL

 CL

OSL

Lateral

Circumf

..

(.) center of pressure (.) zero              

  0     0.20   0.88   1.56   2.23   2.91   3.59   4.27   4.94
Bar       

DIMENSIONS/RATIO
ISL      :   71.25    mm           
OSL      :   76.50    mm           
CL       :   58.50    mm           
WIDTH    :  168.00    mm           
GROSSAREA:  108.43  cm^2           
NETAREA  :   91.78  cm^2           

AFPL  :   66.19  mm                
FSF   :    0.79                    
CSF   :    1.07                    
SSI   :  -25.77   %                
CL/SH :    0.92                    
N/G   :    0.85                    

PARAMETERS
SURF             :     0.5625      mm^2      
RECT             :      1.000                
PMIN / PMAT      :0.200/0.200       Bar      
SHOULD. WIDTH    :       0.80                
C.PRESS LAT/CIRC : -2.7/-25.7        mm      
CONTOURING RADIUS:       48.8        mm      
Radius computed by default (APDR: 5.0%)      

Footprint Contact Pressure Postprocessing - V 571M    :      ABAQUS        
File name :                                                  fsi_FV        
Comment : FSI Footprint @ 90 km/h, FV                                      

IDENTIFICATION
TIRE SIZE      :    205/55R16      
RIM            :         *         
ABAQUS         :    6.9.1          
OPERATOR       :    WAPSTRA Henk-Ja
DATE           :    OCT 26 2009    
STEP / INC     :        1 /*****   

CONDITIONS
LOAD           :    3923           
INFLATION      :       2.20 Bar    
NB OF SECTORS  :    360            
NB OF NODES    :    356400         
NB OF ELEMENTS :    332640         
DEG OF FREEDOM :    2              

Figure 14.2: FlowVision footprint

These results were obtained after adding to the Matlab code a shift of the road of 1
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mm upward to filter the nodes in contact. This was due to the inaccuracy of the con-
tact algorithm resulting in nodes lifted in the footprint and therefore very high pressure
peaks within the footprint. One can see that the Reynolds equation with stagnation
pressure at the inlet gives an overestimation of the lift force compared to the FlowVi-
sion result, which is to be expected as the stagnation over the entire tire width gives an
overestimation of the pressure.

Computational time As stated in the introduction the computational time has to be
reduced to be able to use the hydroplaning model as a useful tool in tire design. The
current models have a CPU time which ranges from 24 to 48 hours on 16 CUPs. The
models implemented here are currently just as slow, mainly due to the implementation
of the subroutines. A lot of computational time is lost in the file exchange via the
.mat file between the Matlab engines. The potential for gain in computational time is
clearly present as the fluid modelling is reduces from a 3D model to a 2D model with
only one variable, the pressure. The computational time of the fluid code in Matlab
is several seconds, the rest of the time is lost in communication with ABAQUS and
the file exchange. More efficient ways to implement the Reynolds model need to be
investigated.

14.4. Summary
The developed models have been run with different operating conditions, the results
show that the assumptions for the Reynolds equation are valid in the footprint region but
an inlet condition is needed. The stagnation pressure, 1

2
ρv2, gives an over-estimation of

the the lift force, the introduced iterative energy and momentum correction converge to
zero inlet pressure. The Abaqus tire model gives higher lift forces than the linear elastic
model due to the higher deformations in the footprint area.
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15. Conclusions & Recommendations

15.1. Fluid modelling

The results obtained are not conclusive but the Reynolds modelling has potential to
offer a fast modelling approach for hydroplaning. Since only one variable needs to be
solved, the potential for gain in computational time is present. Unfortunately the present
analysis has not shown this, due to the slow coupling between Abaqus and Matlab.

The thin film assumption is valid but more work needs to be done on the inlet condi-
tion. As can be seen from the results the stagnation pressure results in an overestimation
of the pressure profile. A different way to take the inertia effect into account could be
the "bulk flow" approximation [35] which is also based on the thin film assumption but
includes the inertia terms.

Further improvements that can be made to the fluid model is to include the inlet
condition in the fill rate model, as well as taking into account texture effects.

When textures appear in the surfaces fluid flow patterns occur that the Reynolds equa-
tion does not accurately describe anymore, mainly due to convective inertia in the tex-
tures. One solution would be to solve the full Navier-Stokes equations but this comes
with considerable computational cost. To be able to deal with textures in a lubricating
film and at the same time take advantage of the computational speed of the Reynolds
equation a texture averaged Reynolds equation has been proposed [36]. In this model a
distinction is made between the macro and micro level of the fluid flow, at a micro level
the fluid flow in the texture is modelled using Navier-Stokes equations. The outcome
at micro level are averaged to flow factors which are taken into account on macro level
in the Reynolds equation. It is interesting to note that the convective inertia effects can,
depending on the scale of the texture, result in either an increase or a reduction of load
carrying capacity.

Another option to take textures into account in the Reynolds model would be an
Arbitrary Lagrangian Eulerian (ALE) approach which would result in a moving mesh
and the patterns can be explicitly defined.

15.2. Structural modelling

The tire model of Abaqus is causing the most problems in the current simulations, the
contact algoritm is not accurate enough to have a stable rolling wheel or an accurate
footprint for the Reynolds equation. The obtained footprint could be different if an
accurate representation of the geometry is passed to the fluid code.

On the other hand the use of the influence matrix can be extended to a more realistic
tyre model with a linear elastic model, but also to a hyper-elastic model, by using a
linearization around an average indentation, and even to a visco-hyper-elastic model
by assuming constant speed and only small deviations of the deformation due to the
water layer. This eliminates the need for an Abaqus Matlab coupling and has the most
potential for gain in computational time.
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15.3. Fluid structure interaction
The coupling scheme could work much faster if the interface quasi Newton method
can be implemented in the coupling to the ABAQUS model, but this would require to
possibility to interact within a time step. Recommended is to develop an own finite
element code to be able to do this. This would also eliminate the necessity to re-mesh
every time as the connectivity matrix would be known for the different nodes. If the
current coupling is continued then improvements can be made in the mesh mapping
algorithm such that the structural model can remain coarser and therefore faster. Other
improvements are the elimination of the file exchange to transfer the information along
the different Matlab engines.

15.4. Summary
To summarize, the first result are promising for modelling hydroplaning using modified
Reynolds equation but more efficient implementation is needed to reduce the current
computational times of up to 48 hours on 16 CPUs. The potential is clear as the fluid
modelling is reduced from a 3D model to a 2D model with only one variable, the pres-
sure. The structural modelling needs to be more accurate in the footprint. The fluid
structure interaction model can converge faster if the interface quasi Newton method is
implemented further.
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A. Navier Stokes Equations

A. Navier Stokes Equations
Derivation of the Navier-Stokes equations, a special case of the continuity equation, be-
ginning with:

Assumption 8. Continuum, The fluid is a continuous substance

And:

Assumption 9. Differentiable, The fluid parameters are, at least weakly, differentiable

Next apply the Reynolds transport theorem which states that the changes of a certain
property L defined over a control volume Ω must be equal to what is transported through
the boundaries plus what is created or lost by a source or sink within the control volume.

d

dt

∫
Ω

LdV = −
∫
∂Ω

Lv · ndA−
∫
Ω

QdV (A.1)

Where Ω represents the control volume, ∂Ω the boundary of the control volume, v
the velocity and Q represents the source or sink.

Apply the divergence theorem to the surface integral to change it into a volume inte-
gral:

d

dt

∫
Ω

LdV = −
∫
Ω

∇ · (Lv) dV −
∫
Ω

QdV (A.2)

Apply Leibniz’s rule to the first term:∫
Ω

d

dt
LdV = −

∫
Ω

∇ · (Lv) dV −
∫
Ω

QdV (A.3)

Combine all terms in one integral:∫
Ω

(
d

dt
L+∇ · (Lv) +Q

)
dV = 0 (A.4)

Since this equation must apply to any arbitrary control volume, the integrand must be
zero:

d

dt
L+∇ · (Lv) +Q = 0 (A.5)

First apply this theorem to the conservation of mass, where the property is density, ρ,
and there are no sources or sinks:

∂ρ

∂t
+∇ · (ρv) = 0 (A.6)

Now, apply this continuity relation to the conservation of momentum, the most gen-
eral form of the Navier-Stokes equations, where ρv is momentum:
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A. Navier Stokes Equations

d

dt
ρv +∇ · (ρvv) +Q = 0 (A.7)

vv is a dyad, a tensor product resulting in a tensor of which the divergence is again
a vector. The sink / source term is in this case represented by b acting on the fluid
element. Expand the derivatives:

∂ρ

∂t
v + ρ

∂v

∂t
+∇ (ρv) · v + ρv∇ · v = b

∂ρ

∂t
v + ρ

∂v

∂t
+∇ (ρ) v · v + ρ∇ (v) · v + vρ∇ · v = b

v
∂ρ

∂t
+ ρ

∂v

∂t
+ vv · ∇ρ+ ρv · ∇v + ρv∇v = b

(A.8)

The derivative of a vector results in a tensor, the covariant derivative. Rearrange:

v

(
∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v

)
+ ρ

(
∂v

∂t
+ v · ∇v

)
= b (A.9)

Observe that:

v · ∇ρ+ ρ∇ · v = ∇ · (ρv) (A.10)

To end up with:

v

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂v

∂t
+ v · ∇v

)
= b (A.11)

Here, one should recognize A.6 so the equation can be simplified to:

ρ

(
∂v

∂t
+ v · ∇v

)
= b (A.12)

Next step is to define the sources/sinks of momentum. In general the distinction is
made between body forces and surface forces, where body forces are due to external
fields such as gravity, magnetism, electric potential, which act on the entire mass within
the element. The surface forces are due to the stresses on the sides of the control surface,
observe the following element volume:
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A. Navier Stokes Equations

x

y

z

xxσ

xyσ

xzσ

yyσ

yxσ
yzσ

zzσ
zxσ

zyσ

Figure A.1: Control volume with surface forces

The net force on the control volume is due to the gradient of these stresses, see figure
where this has been demonstrated for forces in the x-direction:

x

y

z dx

dy

dz

xxdydzσ xx
xx dx dydz

x
σ

σ
∂ + ∂ 

yx
yx dy dxdz

x
σ

σ
∂ 

+ ∂ 

yxdxdzσ

zxdxdyσ

zx
zx dz dxdy

z
σ

σ
∂ + ∂ 

Figure A.2: Control volume with net forces

To end up with the Cauchy momentum equation:

ρ
Dv

Dt
= ∇ · σij + f (A.13)
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A. Navier Stokes Equations

Where the stress tensor is defined as:

σij =

 σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (A.14)

The stresses are generally written as the sum of the hydrostatic pressure plus the
viscous stresses:

σij = −

 p 0 0
0 p 0
0 0 p

+

 σxx + p τxy τxz
τyx σyy + p τyz
τzx τzy σzz + p

 (A.15)

Also described as:

ρ
Dv

Dt
= −∇p+∇ ·T + f (A.16)

Where p is the hydrostatic pressure and T as the deviatoric stress. Now, the following
assumptions are made:

Assumption 10. Newtonian fluid

• The stress tensor is a linear function of the strain rates.

• The fluid is isotropic.

• For a fluid at rest,∇ ·T must be zero (so that hydrostatic pressure results)

The stress tensor being a linear function of the velocity gradients is expressed using
a fourth order tensor coefficient [37]:

Tij = Aijkl
∂uk
∂xl

(A.17)

This coefficient depends on the state of the fluid and is necessarily symmetrical in
indices i and j, now write the velocity gradient as the sum of its symmetrical part (the
rate of strain tensor, ekl) and its anti-symmetrical part (the vorticity, ω):

∂uk
∂xl

= ekl −
1

2
εklmωm (A.18)

Where εklm indicates the permutation tensor. Now, with the assumption that the fluid
is isotropic, the tensor A is an isotropic tensor, having a form where all directional
dependence is absent. The basic isotropic tensor is the Kronecker delta tensor and all
even order tensors that are isotropic can be written as the sum of products of delta
tensors:

Aijkl = µδikδjl + µ′δilδjk + µ′′δijδkl (A.19)

Where µ, µ′ and µ′′ are scalars. Since Aijkl is symmetrical in i and j:
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A. Navier Stokes Equations

µ′ = µ′′ (A.20)

As a result of this the tensor is also symmetric in k and l and therefore the term
containing ω drops out:

Tij = 2µeij + µ′′∆δij (A.21)

Where ∆ is the rates of expansion ekk = ∇ · v. Since we have also assumed that Tij
gives zero contribution to the mean normal stress:

Tij = (2µ+ 3µ′′) ∆ = 0 (A.22)

For all values of ∆, resulting in:

(2µ+ 3µ′′) = 0 (A.23)

Choosing µ as the only independent variable the deviatoric stress tensor becomes:

Tij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ∇ · v (A.24)

Where µ is the first viscosity, or simply viscosity, of the fluid and is the second
viscosity, related to the bulk viscosity and becomes zero for an incompressible flow.

2
(
∂ui

∂xj
+

∂uj

∂xi

)
Which results in the following form of the Navier Stokes equations for a Newtonian

fluid:

ρ
Dui
Dt

= ρfi −
∂p

∂xi
+

∂

∂xi

{
2µ

(
eij −

1

3
∆δij

)}
(A.25)

Expanding to obtain:

ρ
Du

Dt
= −∂p

∂x
+

∂

∂x

(
2µ
∂u

∂x
+ λ∇ · v

)
+

∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂u

∂z
+
∂w

∂x

))
+ ρgx

ρ
Dv

Dt
= −∂p

∂y
+

∂

∂x

(
µ

(
∂v

∂x
+
∂u

∂y

))
+

∂

∂y

(
2µ
∂v

∂y
+ λ∇ · v

)
+

∂

∂z

(
µ

(
∂v

∂z
+
∂w

∂y

))
+ ρgy

ρ
Dw

Dt
= −∂p

∂z
+

∂

∂x

(
µ

(
∂w

∂x
+
∂u

∂z

))
+

∂

∂y

(
µ

(
∂w

∂y
+
∂v

∂z

))
+

∂

∂z

(
2µ
∂w

∂z
+ λ∇ · v

)
+ ρgz

(A.26)
Now, assume:

Assumption 11. Incompressibility

Dρ

Dt
= 0 (A.27)

Combine with the continuity equation A.6, which results in:
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B. Numerical models to solve the Reynolds equation

ρ (∇ · v) = 0 (A.28)

Now, examine the terms associated with the viscosity in x direction in A.26:

∂

∂x

(
2µ
∂u

∂x
+ λ∇ · v

)
+

∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂u

∂z
+
∂w

∂x

))
= 2µ

∂2u

∂x2
+ µ

∂2u

∂y2
+ µ

∂2v

∂y ∂x
+ µ

∂2u

∂z2
+ µ

∂2w

∂z ∂x

= µ
∂2u

∂x2
+ µ

∂2u

∂y2
+ µ

∂2u

∂z2
+ µ

∂2u

∂x2
+ µ

∂2v

∂y ∂x
+ µ

∂2w

∂z ∂x

= µ∇2u+ µ
∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
(A.29)

One clearly observes the last term between brackets as equal to zero due to the incom-
pressibility condition applied to the mass conservation expression. The term associated
with viscosity in x-direction therefore reduces to:

µ∇2u (A.30)

Such that the conservation of momentum becomes:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (A.31)

B. Numerical models to solve the Reynolds
equation

B.1. Finite difference model

To solve the Reynolds equation a numerical approach is used, first of all a grid is created,
with mesh size dx and dy in respectively x and y direction. A vertical node numbering
is used on the nodes, see figure:
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B.1. Finite difference model
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Figure B.1: Mesh with vertical node numbering

Such that the conversion formula for the double index to the single index for the node
numbers simply is:

α = (i− 1) (ny − 2) + j (B.1)

Where ny is the number of nodes in y-direction.
The governing equations are discretized according to a central difference scheme.

The central difference scheme is derived as follows. Assume f a function which satisfies
f ∈ C3 [a, b] and x−h, x, x+h ∈ [a, b] Then write the second degree Taylor polynomial:

f (x+ h) = f (x) + f ′ (x)h+
f (2) (x)h2

2!
+
f (3) (c1)h3

3!
(B.2)

And:

f (x− h) = f (x)− f ′ (x)h+
f (2) (x)h2

2!
− f (3) (c2)h3

3!
(B.3)

Subtract these equations to obtain:

f (x+ h)− f (x− h) = 2f ′ (x)h+
f (3) (c1)h3 + f (3) (c2)h3

3!
(B.4)

Since f (3) (x) is continuous the intermediate value theorem can be used to find a value
c such that:

f (3) (c1) + f (3) (c2)

2
= f (3) (c) (B.5)

Substitute and rearrange to obtain:
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B. Numerical models to solve the Reynolds equation

f ′ (x) =
f (x+ h)− f (x− h)

2h
− f (3) (c)h2

3!
(B.6)

So the truncation error is of order h2. Apply this to the left hand side of equation 5.15
to obtain:

∂

∂x

(
h3 ∂p

∂x

)
=
h3
j,i+ 1

2

∂p
j,i+1

2

∂x
− h3

j,i− 1
2

∂p
j,i− 1

2

∂x

dx
+O

(
h2
)

=
h3
j,i+ 1

2

(pj,i+1−pj,i

dx

)
− h3

j,i− 1
2

(pj,i−pj,i−1

dx

)
dx

+O
(
h2
)

=

(
h3

j,i+h
3
j,i+1

2

) (pj,i+1−pj,i

dx

)
−
(
h3

j,i+h
3
j,i−1

2

) (pj,i−pj,i−1

dx

)
dx

+O
(
h2
)

=

(
h3
j,i + h3

j,i+1

)
(pj,i+1 − pj,i)−

(
h3
j,i + h3

j,i−1

)
(pj,i − pj,i−1)

2dx2
+O

(
h2
)

(B.7)

Next apple the central difference to the wedge term:

6η (U1 + U2)
∂h

∂x
= 6η

(
U1
j,i + U2

j,i

) hj,i+1 − hj,i−1

dx
(B.8)

The stretch term:

6ηh
∂ (U1 + U2)

∂x
= 6ηhj,i

(
U1
j,i+1 + U2

j,i−1

)
−
(
U1
j,i+1 + U2

j,i−1

)
2dx

(B.9)

The squeeze term is simply:

12η
∂h

∂t
= 12ηwj,i (B.10)

In Matlab this is implemented and for a vertically numbered grid as shown in figure
B.1 one ends up with a matrix of the following shape for the internal elements:
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B.1. Finite difference model

M =



A B 0 0 D 0 0 0 0 0
C A B 0 0 D 0 0 0 0
0 C A B 0 0 D 0 0 0
0 0 C A B 0 0 D 0 0
E 0 0 C A B 0 0 D 0
0 E 0 0 C A B 0 0 D
0 0 E 0 0 C A B 0 0
0 0 0 E 0 0 C A B 0
0 0 0 0 E 0 0 C A B
0 0 0 0 0 E 0 0 C A


A = −

h3
j,i−1 + 2h3

j,i + h3
j,i+1

2dx2
−
h3
j−1,i + 2h3

j,i + h3
j+1,i

2dy2

B =
h3
j,i + h3

j+1,i

2dy2

C =
h3
j,i + h3

j−1,i

2dy2

D =
h3
j,i + h3

j,i+1

2dx2

E =
h3
j,i + h3

j,i−1

2dx2

(B.11)

Which is a matrix that can be neatly stored using the sparse command. In addition
one has to take into account the boundary conditions so matrix M has to be adapted by
removing the elements referring to the boundary elements and placing them on the right
hand side of the equation. The right hand side is simply built up from the wedge, stretch
and squeeze terms.
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B. Numerical models to solve the Reynolds equation

B.2. Finite Element model

Next to finite difference a finite element model is built, this is more versatile and is the
first step towards the fill rate model which is to be implemented later. Start with the
Reynolds equation, multiply with a test function and integrate over the domain:

Start with Reynolds:

∂

∂x

(
h3

12µ

∂p

∂x

)
+
∂

∂y

(
h3

12µ

∂p

∂y

)
=
U1 + U2

2

∂h

∂x
+
V1 + V2

2

∂h

∂y
+
h

2

∂ (U1 + U2)

∂x
+
h

2

∂ (V1 + V2)

∂y
+
∂h

∂t
(B.12)

Or:

∇ ·
(
h3

12
∇p
)

= ∇
(
hŪ
)

+
∂h

∂t
(B.13)

Multiply with test function, η, and integrate over the domain:∫
Ω

∇ ·
(
h3

12
∇p
)
ηdΩ =

∫
Ω

[
∇
(
hŪ
)

+
∂h

∂t

]
ηdΩ (B.14)

Integration by parts:

−
∫
Ω

h3

12
∇p · ∇ηdΩ+

∫
Ω

∇ ·
(
h3

12
η∇p

)
= −

∫
Ω

(
hŪ
)
∇ηdΩ+

∫
Ω

∇ ·
(
hŪη

)
dΩ+

∫
Ω

∂h

∂t
ηdΩ

(B.15)
Apply divergence theorem to the integral:

−
∫
Ω

h3

12
∇p · ∇ηdΩ+

∫
∂Ω

(
h3

12
η∇p

)
·n∂Ω = −

∫
Ω

(
hŪ
)
∇ηdΩ+

∫
∂Ω

(
hŪη

)
· ndΩ+

∫
Ω

∂h

∂t
ηdΩ

(B.16)
With the natural boundary condition the boundary integral vanishes. Now apply

Galerkin’s method, approximating the solution with a finite linear combination of basis
functions:

pn (x) =
N∑
j=1

ajϕj (x) (B.17)

Since the test function is in the same space as p it is natural to demand that the test
function is a linear combination of N basis functions:

η =
N∑
j=1

biϕi (x) (B.18)

Also the driving terms are expressed in their nodal values:
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B.2. Finite Element model

Ū (x) =
N∑
j=1

ujϕj

∂h
∂t

(x) =
N∑
j=1

∂h
∂t j
ϕj

(B.19)

to end up with N linear equations:

N∑
j=1

−aj
∫
Ω

h3

12µ
∇ϕj · ∇ϕidΩ =

∫
Ω

fϕjdΩ (B.20)

The element matrix and the element vector then become.

Ke = −
∫
Ω

h3

12µ

(
∂ϕi
∂x

∂ϕj
dx

+
∂ϕi
∂y

∂ϕj
dy

)
dΩ (B.21)

KUx =
∫
Ω

h∂ϕi

∂x
ϕjdΩ

KUx =
∫
Ω

h∂ϕi

∂y
ϕjdΩ

K ∂h
∂t

=
∫
Ω

ϕiϕjdΩ

F = [KUx ] Ūx + [KUx ] Ūx +
[
K ∂h

∂t

]
∂h
∂t

(B.22)

Next step is to define the shape functions for the elements. The chosen elements are
the simplest for a 2D model, the linear triangle. The element look like:

For the linear triangular element the shape functions are:

ϕ1 = a1
0 + a1

1x
1 + a1

2y
1

ϕ2 = a2
0 + a2

1x
2 + a2

2y
2 (B.23)

The area of the element is defined as:

∆ = (x2 − x1) (y3 − y2)− (y2 − y1) (x3 − x2) (B.24)

And the coefficients can then be defined as:

ai1 = 1
∆

 y2 − y3

y3 − y1

y1 − y2


ai2 = 1

∆

 x3 − x2

x1 − x3

x2 − x1

 (B.25)

The element matrix and vector can be determined by using the Newton-Cotes inte-
gration rule:

Ke
p (k, l) = a

|∆|
72µ

(
h3 (x1) + h3 (x2) + h3 (x3)

) (
ak1a

l
1 + ak2a

l
2

)
(B.26)

Ke
Ux

(k, l) = −|∆|
6
h (xl) a

k
1 (B.27)
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B. Numerical models to solve the Reynolds equation

Ke
Ux

(k, l) = −|∆|
6
h (xl) a

k
2 (B.28)

For the element generation the Delaunay algorithm is used in Matlab, this uses the
Qhull algorithm to return a set of triangles such that no data points are inside the circle
that circumscribes the triangle.
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C. Benchmark problems Reynolds

C. Benchmark problems Reynolds

C.1. Numerical Model Validation
To determine the correct implementation several analytical solutions of the Reynolds
equations are compared to the numerical results. The following analytical solutions are
tested for the wedge terms in he Reynolds equation: converging wedge, Rayleigh step
bearing, Rayleigh step with zero film thickness and a tapered land pad. The squeeze
terms are validated using a band on flat and a solution from a full 3D code.

C.1.1. Analytical solutions, purely driven by wedge terms

Converging wedge The converging wedge is defined by the following geometry,
with the bottom surface moving horizontally with velocity U so fluid at the botom is
moved with velocity U and the fluid velocity at the top of the wedge is zero.

1h
0h

BxU

Figure C.1: Converging wedge

Let us define the Couette film thickness hc which is the film thickness at the point
where the pressure gradient is zero and the pressure reaches its maximum. At this point
there is a pure Couette flow with a film thickness hc, the flow is then given by:

qc =
1

2
Uhc (C.1)

Use equation 5.15 and take only terms in x-direction, drop the stretch and squeeze
effect to obtain:

dp

dx
= 6ηU

h− hc
h3

(C.2)

Integrate to obtain:

p (x) = 6ηU

∫
h− hc
h3

dx+ C2 (C.3)
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C. Benchmark problems Reynolds

The boundary conditions to solve this problem are:

p (x = 0) = 0

p (x = B) = 0
(C.4)

Substitute:

0 = 6ηU

B∫
0

h− hc
h3

dx

hc =

B∫
0

1
h2dx

B∫
0

1
h3dx

(C.5)

With the given height profile:

h (x) = h1 −
h1 − h0

B
x (C.6)

Evaluate to obtain:

hc
h0

=
2n

n− 1
, n =

h1

h0

(C.7)

Substitute and evaluate:

p (x) = 6ηU

x∫
0

h− hc
h3

dx (C.8)

p (x̄) =
ηUB

h2
0

· 6 (n− 1) (1− x̄) x̄

(n+ 1) (n− x̄n+ x̄)2 , x̄ =
x

B
(C.9)

The output of the numerical model compared to the analytical solution, for the nu-
merical model the following parameters are used:

• B = 50mm

• L = 1m

• h0 = 1mm

• h1 = 2mm

• η == 1 · 10−3

• U = 1
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C.1. Numerical Model Validation

Since the analytical solution is 1D, a plate is simulated with a length of 1m, to mimic
the infinite length, and the pressure profiles are compared in the middle of the plate. is:
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Figure C.2: Converging wedge

Showing very good accordance of the model with the analytical solution.

Tapered land pad Next test problem is a tapered land pad, with the following ge-
ometry:

1h
0h

B

xU 1B

Figure C.3: Tapered land pad

Calculating the pressure distribution of the tapered land pad is similar to that of the
wedge, where the difference if a boundary condition p (x = B1) = p1 and a linear
pressure drop from p1 to the end of the land pad where p (x = B) = 0. Equating the
flow in both sections gives:
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−h3

12η

dp

dx
+
Uh

2
=
−h3

0

12η

−p1

B −B1

+
Uh0

2
(C.10)

Rearrange:

dp

dx
=

(
h0

h

)3
p1

B1 −B
+ 6ηU

h− h0

h3
(C.11)

Integrate:

p (x) =

x∫
0

(
h0

h

)3
p1

B1 −B
+ 6ηU

h− h0

h3
dx (C.12)

h (x) as shown in figure C.3 and the definition for p1 the equation can be rewritten to:

p1 =

B1∫
0

(
h0

h

)3
p1

B1 −B
+ 6ηU

h− h0

h3
dx (C.13)

Which gives:

p1 =
6ηUB

h3
0

B̄
(
B̄ − 1

)
(n− 1)

−2n2 + 2n2B̄ − nB̄ − B̄
, B̄ =

B1

B
, n =

h1

h0

(C.14)

Substitute to obtain the resulting pressure profile. The comparison of the analytical
solution with the numerical model is, with the following parameters:

• B = 50m

• L = 1000m

• h0 = 1m

• h1 = 2m

• η == 1 · 10−6

• U = 1000
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Figure C.4: Tapered land pad

Again, good accordance with the numerical model and the analytical solution.

Rayleigh step bearing The next test problem is a Rayleigh step bearing which is
given by:

1h
0h

B

xU 1B

Figure C.5: Rayleigh step

For the parallel sections the pressure distribution is given by:

p (x) = 6ηU
h− hc
h3

x+ C2 (C.15)

Showing a linear relation between pressure and distance, for the step bearing a linear
increase is expected to B1 and a linear decrease from B1 to B, the maximum pressure
is then found by equating the flow on both sides:
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−h3
1

12η

pmax

B1

+
Uh1

2
=
−h3

0

12η

pmax

B −B1

+
Uh0

2
(C.16)

Giving for the maximum pressure:

pmax =
ηUB

h2
0

6B̄
(
B̄ − 1

)
(n− 1)

−n3 + n3B̄ − B̄
, B̄ =

B1

B
, n =

h1

h0

(C.17)

And the entire pressure profile is determined. The numerical model uses the following
parameters:

• B = 50m

• L = 1000m

• h0 = 1m

• h1 = 2m

• η = 1 · 10−6

• U = 1000

The results are:
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Figure C.6: Rayleigh step

Again, good accordance between the solutions, the only difference is around the pres-
sure peak as the analytical model makes a direct step from h1 to h0 whereas the numer-
ical model needs on step of distance dx to change the height from h1 to h0.

C.1.2. Analytical solutions, purely driven by squeeze terms

The squeeze terms are validated using a band on flat and a circular disc on flat.
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C.1. Numerical Model Validation

Band on flat A band on flat describes a band being squeezed towards a surface, as
shown in figure C.7.

B
x

V

h

Figure C.7: Band on flat

Using the Reynolds equation with only the squeeze terms:

∂

∂x

(
h3

12η

∂p

∂x

)
=
dh

dt
(C.18)

Integrate:

h3

12η

∂p

∂x
=
dh

dt
x+ C1 (C.19)

With boundary condition ∂p
∂x

(x = 0) = 0, C1 becomes zero. Apply a second integra-
tion:

p (x) =
12η dh

dt

h3

1

2
x2 + C2 (C.20)

With boundary condition p
(
x = −B

2

)
= 0 the resulting pressure profile is:

p (x) = −
6η dh

dt

h3

(
x2 −

(
B

2

)2
)

(C.21)

The numerical model uses the following parameters:

• B = 50mm

• L = 1m

• h0 = 5.1mm

• η == 1 · 10−3
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C. Benchmark problems Reynolds

• dh
dt

= −1mm
s

The results are:

-0.02 -0.01 0 0.01 0.02
0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

X [m]

Pa
numerical
analytical

Figure C.8: Band on flat, numerical versus analytical

The results match quite well, again a L of 1m has been chosen to apply a 2D model
and compare the pressure in the middle with the analytical solution.

Circular disc The circular disc on flat has the following geometry:

V

h

r
R

Figure C.9: Circular disc on flat

Apply the Navier-Stokes equations for an incompressible Newtonian fluid in cylin-
drical coordinates:
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(C.22)

With the continuity equation:

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 (C.23)

In case of axi-symmetric flow this can be reduced to:
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(C.24)

With the continuity equation:

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0 (C.25)

Again, with assumption 5 the squeeze film thickness is much smaller than the radius
of the squeeze surface thus:

h� r

∂p

∂z
� ∂p

∂r

(C.26)

Then, the Navier-Stokes equations can be reduced to:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

[
∂2ur
∂z2

]
(C.27)

In line with the thin film assumption, the inertia of the flow can be neglected, reducing
to the simple equation:
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C. Benchmark problems Reynolds

∂p

∂r
= µ

[
∂2ur
∂z2

]
(C.28)

To solve this differential equation apply assumption 7, resulting in boundary condi-
tions:

ur (z = 0) = 0

ur (z = h) = 0
(C.29)

Integrate twice to obtain:

ur =
1

2µ

∂p

∂r

(
z2 − hz

)
(C.30)

Substitute the velocity profile in the continuity equation:

1

r

∂

∂r

(
r

1

2µ

∂p

∂r

(
z2 − hz

))
+
∂uz
∂z

= 0 (C.31)

Integrate with respect to z with boundary conditions:

uz (z = 0) = 0

uz (z = h) =
dh

dt

(C.32)

To obtain:
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(
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3
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2

))h
0

= r
dh

dt

∂

∂r

(
rh3∂p

∂r

)
= 12µr

dh

dt

(C.33)

The boundary conditions on the pressure are:

p (r = R) = 0

∂p

∂r
(r = 0) = 0

(C.34)

Resulting in:

p = −
3µdh

dt

h3

(
R2 − r2

)
(C.35)

The comparison with the numerical model is in this case not straightforward as the
code works with rectangular grids, however a square with the same surface area should
yield similar results. The parameters for the numerical model are:
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C.1. Numerical Model Validation

• r = 25mm

• B =
√
π · r2

• L = B

• h0 = 0.2mm

• η = 1 · 10−3

• dh
dt

= −7.84428km
h

With the following results:
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Figure C.10: Circular disc on flat, numerical and analytical

One can observe that the square plate gives a slightly lower pressure, but the order of
magnitude is more or less the same.

Vertical tread block The next validation model is a vertical tread block of 50mm
by 50mm with a V-shaped groove, at an inclination of 5 degrees. The groove is 5 mm
deep and 2 mm wide. See figure:

133



C. Benchmark problems Reynolds

-30
-20

-10
0

10
20

30

-30

-20

-10

0

10

20

30

-50

0

50

Figure C.11: Vertical tread block

The block is placed on a surface covered with 13.5 mm of water and is given a velocity
of 7.8 km/h. The output of the CEL model is:

Figure C.12: Vertical tread block, CEL result in blue and FlowVision result in red

The output from the Reynolds model is:
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C.1. Numerical Model Validation

Figure C.13: Vertical tread block, CEL versus Reynolds equation result

One can see that the difference in both models ranges from 1500 to 500 over the
sinkage domain. To explore further differences look at the pressure profile at different
heights, the top image gives the Reynolds solution and the bottom image the solution
obtained with FlowVision. Note the results from FlowVision are inMPa and the results
from the Reynolds model are in Pa:
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Figure C.14: Vertical tread block, h = 0.54mm
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C.1. Numerical Model Validation

Figure C.15: Vertical tread block, h = 0.45mm
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Figure C.16: Vertical tread block, h = 0.40mm
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Figure C.17: Vertical tread block, h = 0.30mm
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Figure C.18: Vertical tread block, h = 0.18mm
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Figure C.19: Vertical tread block, h = 0.09mm
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C. Benchmark problems Reynolds

Figure C.20: Vertical tread block, h = 0mm

One can see the profiles do not only differ in order of magnitude but at lower film
thicknesses the Reynolds profile gets a higher peak and gradient whereas the FlowVision
model results in a more dispersed pressure profile.
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C.1. Numerical Model Validation

C.1.3. CFD benchmark Grosch wheel

In addition to the half space model simulations with Fluent version 6.3.26 have been
made using a multiphase laminar 3D model. The multiphase model was volume of fluid
with an explicit scheme using Courant number of 0.25. The mesh has been generated
with Gambit 2.3.16 using tetrahedral and hybrid elements of the TGrid type with interval
size 1. The operating velocity is 50 km/h. The wheel is placed 0.1 mm above the road
surface as Fluent is unable to deal with contact as in that case the volume of the elements
goes to zero. Operating conditions include gravity. The solver used in Fluent uses the
following settings:

• Pressure-Velocity coupling: SIMPLE, the standard Fluent algorithm

• Discretization:

– Pressure: PRESTO! (Pressure Staggering Option)

– Momentum: First order upwind

– Volume fraction: Geo reconstruct

• Under relaxation factors

– Pressure: 0.3

– Density: 1

– Body forces: 1

– Momentum: 0.7

The solver is implicit pressure based, unsteady first order implicit in time with an
absolute velocity formulation and the gradients calculated with Green-Gauss cell based.
The time steps are chosen variable to let Fluent determine the faster scheme.

Although Fluent repeatedly reports convergence, some indications of unrealistic re-
sults are present. See the next figures:
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Figure C.21: Volume fraction air

Figure C.22: Pressure on road surface

One can see that the water builds up unrealistically high in front of the wheel and that
negative pressures occur which have no physical meaning. Therefore the results of Flu-
ent are quite doubtful also because the (non-negative) pressure values are considerably
lower than expected. Further work on this needs to be done.
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The resulting pressure profiles of Fluent have been compared with the Matlab results
with a stagnation pressure at the inlet:

The stagnation pressure at the inlet seems a reasonable approach. Comparing Fluent
and Matlab:

Figure C.23: Pressure distribution comparing Matlab and Fluent
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Figure C.24: Pressure distribution comparing Matlab and Fluent

Table 8: default

Speed Reynolds Reynolds + stagnation inlet Fluent
50 km/h 3,14 25,56 23,14

Discussion and recommendations

• Matlab model

– The Reynolds equation is limited to viscous and 2D flow and cannot deal
with discontinuities and so the effect of the groove is not handled very ade-
quate

– also the inlet stagnation pressure is not taken into account in the Reynolds
equation although imposing it as a boundary condition seems to give a rea-
sonable approximation

– The computational time of the Matlab model is a few seconds compared
to approximately 40 hours for the Fluent model so the loss in accuracy is
negligible compared to the computational gains

– the thin film approximation which is underlying the Reynolds equation is a
little challenging with this thick water layer, as the Fluent simulation shows
some variation over the film height.
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D. Eigenmodes Grosch wheel

• Fluent model

– The used grid could use some refinements, on the current machine this was
not possible due to memory limitations

– Some special attention should be given to the elements just below the wheel,
more elements are needed to accurately take (possible) viscous effects into
account

– a higher order upwind scheme has been run with the same results

– the Fluent simulations shows the stagnation point in the leading edge of the
wheel as seen in the experiments

– the stagnation pressure is dominant for the pressure field in the leading edge,
in case of a deformable wheel a longer wedge shaped inlet will be formed
and the viscous effects will be much more important but are not seen in this
simulation due to the large height gradient

– the "choice" for the tetrahedral / hybrid elements was made as this was the
only one that I could get working without having a grid with negative vol-
umes. I would recommend to further detail the flow regime to the bottom
5 mm and with that drastically reduce the size of the model and be able to
improve the mesh around the leading edge. a grid refinement was not suc-
cessful due to memory limitations but the size seems reasonable for most of
the flow field as the solution is smooth except for the area at the edges of the
groove where a refinement seems necessary.

D. Eigenmodes Grosch wheel

The eigenshapes of the Grosch wheel without groove are, leaving out the first 2 rigid
body modes:
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Figure D.2: Mode 4
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Figure D.4: Mode 6
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Figure D.5: Mode 7

U, Magnitude

+0.000e+00
+8.338e−02
+1.668e−01
+2.501e−01
+3.335e−01
+4.169e−01
+5.003e−01
+5.837e−01
+6.670e−01
+7.504e−01
+8.338e−01
+9.172e−01
+1.001e+00
+1.104e+00

Step: Step−1
Mode         8: Value =  7.93518E+06 Freq =   448.33     (cycles/time)
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +7.999e+00

Grosch wheel modal analysis
ODB: eigen1254998844.96261.odb    Abaqus/Standard Version 6.8−1    Thu Oct 08 12:45:01 CEST 2009

Scale Factor: +1.00

X

Y

Z

Figure D.6: Mode 8
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Figure D.7: Mode 9
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Figure D.8: Mode 10
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E. ABAQUS user subroutines
Abaqus/Explicit offers the user the capability of defining custom loads, interactions etc
via user subroutines written in Fortran. The following user subroutines are possible in
Abaqus/Explicit 6.8.2:

Subroutine function
VDISP specify prescribed translational and rotational bound-

ary conditions
VDLOAD specify non-uniform distributed loads
VFABRIC define fabric material behavior

VFRIC define frictional behavior for contacting surfaces
VUAMP specify amplitudes

VUANISOHYPER_INV define anisotropic hyperelastic material behavior, in-
variant formulation

VUANISOHYPES_STRAIN define anisotropic hyperelastic material behavior
based on Green strain

VUEL user defined element
VUFIELD specify predefined field variables
VUHARD define yield surface size and hardening parameters for

isotropic plasticity or combined hardening models
VUINTER define interaction between contact surfaces
VUMAT define material behavior

VUSDFLD redefine field variables at a material point
VUTRS define a reduced time shift function for a viscoelastic

material
For more information on the subroutines the reader is referred to the Abaqus/Explicit
user manual.

F. Matlab engine
To call the Matlab engine is highly platform specific, here an outline will be given for
running the Matlab engine on a 64-bit Unix architecture, on one single machine. The
latter is a choice of the author but it is possible in Unix to start the Matlab engine on
other machines on the network, possibly with another architecture. A first prerequisite
to run the Matlab engine on a Unix machine is to have C shell installed at /bin/csh. Next,
the following third party libraries must be installed:

• matlabroot/bin/glnxa64/libeng.so

• matlabroot/bin/glnxa64/libmx.so

The libeng library requires additional third-party library files. MATLAB uses these
libraries to support Unicode character encoding and data compression in MAT-files.
These library files must reside in the same directory as libmx. You can determine what
most of these libraries are using the platform-specific command: ldd -d libeng.so. Fur-
thermore the Unicode file is necessary, which can be found in: /matlabroot/bin/glnxa64/icudt32l.dat.
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Next step is compiling the routine, standard compiler supported by Matlab is g95 ver-
sion 0.90, with the options that can be found in /matlabroot/bin/engopts.sh. Most im-
portant for the Fortran subroutine is the C preprocessor as the file starts with a C header.
From engops.sh one can see with library directories need to be included for linking and
for compiling. The relevant section from engopts.sh:
#
# engopts.sh Shell script for configuring engine standalone applications.
# These options were tested with the specified compiler.
#
# usage: Do not call this file directly; it is sourced by the
# mbuild shell script. Modify only if you don’t like the
# defaults after running mbuild. No spaces are allowed
# around the ’=’ in the variable assignment.
#
# Note: For the version of system compiler supported with this release,
# refer to Technical Note 1601 at:
# http://www.mathworks.com/support/tech-notes/1600/1601.html
#
#
# SELECTION_TAGs occur in template option files and are used by MATLAB
# tools, such as mex and mbuild, to determine the purpose of the contents
# of an option file. These tags are only interpreted when preceded by ’#’
# and followed by ’:’.
#
#SELECTION_TAG_SA_OPT: Template Options file for building standalone engine
applications
#
# Copyright 1984-2006 The MathWorks, Inc.
# $Revision: 1.30.4.10 $ $Date: 2007/06/07 14:12:23 $
#—————————————————————————-
#
if [ "$TMW_ROOT" = "" ]; then
TMW_ROOT="$MATLAB"
fi
MFLAGS="-I$TMW_ROOT/extern/include"
MLIBS="-L$TMW_ROOT/bin/$Arch -leng -lmx"
MCXXFLAGS="-I$TMW_ROOT/extern/include/cpp $MFLAGS"
MCXXLIBS="$MLIBS"
LDEXTENSION=”
case "$Arch" in
Undetermined)
#—————————————————————————-
# Change this line if you need to specify the location of the MATLAB
# root directory. The mex script needs to know where to find utility
# routines so that it can determine the architecture; therefore, this
# assignment needs to be done while the architecture is still
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# undetermined.
#—————————————————————————-

#—————————————————————————-
;;
glnxa64)
#—————————————————————————-
RPATH="-Wl,-rpath-link,$TMW_ROOT/bin/$Arch"
CC=’gcc’
CFLAGS=’-ansi -D_GNU_SOURCE -fexceptions’
CFLAGS="$CFLAGS $MFLAGS"
CLIBS="$RPATH $MLIBS -lm -lstdc++"
COPTIMFLAGS=’-O -DNDEBUG’
CDEBUGFLAGS=’-g’
#
CXX=’g++’
CXXFLAGS=’-ansi -D_GNU_SOURCE’
CXXFLAGS="$CXXFLAGS $MCXXFLAGS -DGLNXA64 -DGCC"
CXXLIBS="$RPATH $MCXXLIBS -lm"
CXXOPTIMFLAGS=’-O -DNDEBUG’
CXXDEBUGFLAGS=’-g’
#
#
FC=’g95’
FFLAGS=’-fexceptions’
FFLAGS="$FFLAGS $MFLAGS"
FLIBS="$RPATH $MLIBS -lm"
FOPTIMFLAGS=’-O’
FDEBUGFLAGS=’-g’
#
LD="$COMPILER"
LDFLAGS=”
LDOPTIMFLAGS=’-O’
LDDEBUGFLAGS=’-g’
#
POSTLINK_CMDS=’:’

Not officially supported by Matlab but also working on a 64-bit Unix architecture are:

• Intel Fortran compiler 9.1

• G95, version 0.91

• gfortran

Now, before the application can be run the runtime library path needs to be set, in the
bash shell this is done in the following way:
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export LD_LIBRARY_PATH = matlabroot/bin/glnxa64: matlabroot/sys/os/glnxa64:LD_LIBRARY_PATH
And, which is not mentioned in the Matlab help, one should also update the path so

the engine can be run:
export PATH = matlabroot/bin/:PATH
Now the stand alone application can be run.

G. Matlab engine from ABAQUS subroutine

To couple the Matlab engine to the ABAQUS subroutine this first of all requires un-
derstanding of the ABAQUS make routine which is used by ABAQUS to compile the
subroutine and link the shared libraries. Next to that the version with which the shared
libraries of Matlab and Abaqus are compiled must be compatible.

The ABAQUS make routine uses the following syntax:
abaqus make job=job-name | library=source-file [user=source-file | object file] [directory=library-

dir] [object_type=fortran | c | cpp]
And it takes the flags for the compiler from the abaqus_v6.env file, the relevant sec-

tion for the compiler is:
#

# Linux (Opteron/EM64T) Settings:
#
# Compile and Link command for user subroutines.
# Compile_cpp and link_exe for Abaqus make utility.
#
import os, re, glob, driverUtils

# Always use the newest version
fortDefPath = ’/’
ccDefPath = ’/’

dirLst = glob.glob(’/opt/intel/fce/*’)
if dirLst:
dirLst.sort()
fortDefPath = dirLst[-1] + ’/bin’

dirLst = glob.glob(’/opt/intel/cce/*’)
if dirLst:
dirLst.sort()
ccDefPath = dirLst[-1] + ’/bin’

fortCompiler = "ifort"
cppCompiler = "icpc"

if os.path.exists(os.path.join(fortDefPath, fortCompiler)):
fortCmd = os.path.join(fortDefPath, fortCompiler)
else:
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fortCmd = fortCompiler

if os.path.exists(os.path.join(ccDefPath, cppCompiler)):
cppCmd = os.path.join(ccDefPath, cppCompiler)
else:
cppCmd = cppCompiler

# Avoid signal trapping by the Fortran RTE
os.environ["FOR_IGNORE_EXCEPTIONS"] = "T"
# Disable messages from the Fotran RTE
os.environ["FOR_DISABLE_DIAGNOSTIC_DISPLAY"] = "T"

# Turn off use of ACML on AMD Opteron architecture if ABQ_USE_ACML is
# uncommented and the variable is set to 0
# os.environ["ABQ_USE_ACML"] = "0"

# The following code can be used to set the gcc version information for the
# Intel compiler accoring to the version which is on the system. By default
# we set this information to teh gcc version setting with which Abaqus was
# compiled
verId = 330 # default
# Pattern to determine the gcc version on the systen
p = re.compile(r’ b[0-9][̇0-9]|[̇0-9] b’)
verStr = ’3.3.1’
#try:
# verStr = p.findall(os.popen(’gcc –version’).readlines()[0])[0]
# verId = eval(verStr[0]) * 100 + eval(verStr[2]) * 10
#except:
# verId = 330 # default

# Add the flag "-free" to the compile_fortran command below to use free-
# format FORTRAN 90 syntax.
compile_fortran = (fortCmd + " -cpp -c -fPIC -auto -extend_source -w90 -w95 " +
"-WB -I%I -I/apps/share/matlab/v142/x86_64/extern/include")

compile_cpp = (cppCmd +
" -c -cxxlib-gcc -gcc-version=%i -Kc++eh -fPIC "%verId +
"-Krtti -Kc++ -pc64 -restrict -DABQ_LINUX -DABQ_LNX86_64 " +
"-DFOR_TRAIL -DHAS_BOOL -DASSERT_ENABLED -D_BSD_TYPES " +
"-D_BSD_SOURCE -D_GNU_SOURCE -D_POSIX_SOURCE " +
"-D_XOPEN_SOURCE_EXTENDED -D_XOPEN_SOURCE -DHAVE_OPENGL " +
"-DHKS_OPEN_GL -DTYPENAME=typename -DGL_GLEXT_PROTOTYPES " +
"-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -we1011 -we120 "+
"-we117 -we556 -we144 -we268 -we1224 -we167 -we880 -O0 -I%I" )

link_sl = (fortCmd +
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" -cxxlib-gcc -gcc-version=%i -fPIC -threads -shared " %verId +
" %E -Wl,-soname,%U -o %U %F %A -L /apps/share/matlab/v142/x86_64/bin/glnxa64
%L %B " +
" -parallel -Wl,-Bdynamic " +
" -i-dynamic -leng -lmx -lm -lifport -lifcoremt ")

link_exe = (cppCmd + " -cxxlib-gcc -gcc-version=%i -fPIC " %verId +
"-Wl,-Bdynamic -i-dynamic -o %J %F %M %L %B %O -lpthread")

One can see that for the operation of the Matlab engine in the subroutine requires
the inclusion of the right include directories and libraries, which are platform spe-
cific. For the 64 bit Linux workstation the /"matlabroot"/x86_64/include and /"mat-
labroot"/x86_64/bin/glnxa64 are needed.

As mentioned before, it is of critical importance that the version with which the
Abaqus libraries and the Matlab libraries are made are compatible, again this is highly
platform specific. For Matlab this information can be found at:

http://www.mathworks.com/support/compilers/current_release/mlcompilers.html.
An example is, for release 2009a:

Architecture Compiler version
Windows (32-bit) Microsoft Visual C++ 2005 SP1 (8.0) Professional

Edition
Windows (64-bit) Microsoft Visual C++ 2005 SP1 (8.0) Professional

Edition
Linux (32-bit) GNU gcc/g++ version 4.2.3
Linux (64-bit) GNU gcc/g++ version 4.2.3
Solaris (64-bit) Sun Studio 12 cc/CC 5.9

Mac Apple Xcode 3.1 with gcc/g++ version 4.0.1 (Apple Com-
puter, Inc. build 5488)

Which clearly exemplifies the platform dependency. For Abaqus the information can
be found at:

http://www.simulia.com/support/v68/v68_sysRqmts.html.
For release 6.8 the compilers are:

Architecture Compiler version
Windows x86-32 Microsoft Visual C++ 2005 SP1
Windows x86-64 Microsoft Visual C++ 2005 SP1

Linux x86-32 Intel C++ 9.1
Linux x86-64 Intel C++ 9.1
Linux Itanium Intel C++ 9.1

HP UX HP aC++ A.06.12
AIX Power IBM xlC 9

This would make it seem like Windows is the only platform with matching libraries,
however as seen before the Abaqus make routine uses the gcc libraries to link the user
subroutines, actually in the abaqus_v6.env file one can see:
# The following code can be used to set the gcc version information for the
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# Intel compiler accoring to the version which is on the system. By default
# we set this information to teh gcc version setting with which Abaqus was
# compiled
verId = 330 # default

Therefore a Matlab version compiled with a GCC compiler version 3.3.0 should be
compatible, and in fact the following compatible versions of Matlab and Abaqus have
been tested.

Compatibility
Matlab version Abaqus version

6.8-1 6.8-2 6.8-5 6.9-1
R14SP2 ok ok ok ok
R14SP3 ok ok ok ok
2006b - - - -
2007a - - - -
2008a - - - -
2009a - - - -

H. Matlab engine and domain decomposition

For running the Matlab engine on the Goodyear cluster one is limited to Matlab R14SP3
as the older version SP2 is not running on these machines. Also, when using the LSF
submission script one will not be able to update the LD_LIBRARY_PATH, a simple
workaround is to copy the Matlab shared libraries to the directory in which the user
subroutine shared library will be compiled, found in the abaqus_v6.env file, specified
by usub_lib_dir. By default this is /’jobname’.shared_dir. Furthermore when using the
LSF submission script one has to copy the abaqus_v6.env file to the $HOME directory
as the script will not take the file from the working directory.

I. Benchmark problems FSI

To test an a benchmark slider has been made, using abaqus 6.8-5 the following geometry
was made:
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Step: mount_slide
Increment         0: Step Time = 0.0

Deformed Var: U   Deformation Scale Factor: +1.000e+00

SLIDER TEST − Matlab R14sp3 Engine − Reynolds equation
ODB: slider2.odb    Abaqus/Explicit Version 6.8−5    Fri Sep 04 11:05:52 CEST 2009

Scale Factor: +0.00
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Z

The Matlab engine calculated the following pressure field:
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One can verify analytically that this pressure profile is correct.
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I.1. Grosch wheel
The Grosch wheel has been modelled with Abaqus CEL and with FlowVision with the
following results.

Speed [km/h] CEL
50 33
60 48
70 64

With FlowVision the following results were obtained:

Figure I.1: Lift Force

The average values of the lift forces are:
Speed [km/h] FlowVision

50 16,36
60 33,93
70 46,66
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