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ABSTRACT Ensuring safety remains one of the biggest challenges for the widespread adoption of automated
vehicles (AVs). Remote operation of AVs is a promising approach to address this, allowing remote operators
to intervene when AVs encounter edge cases. However, remote operators are out-of-the-loop from the
conventional driver in vehicle environment interaction, impacting their situation awareness and ability to
safely control or assist the vehicle. In the scenario of remote driving, this is more evident since multimodal
feedback is required to replicate the conventional driver-vehicle environment-interaction. In addition to
visual and auditory modalities, motion feedback has been proposed as a way to bridge the gap between
remote driving and in-vehicle driving. However, since motion feedback is cost-intensive, it might hinder
rapid upscaling of remote driving systems. Thus, this study evaluated whether motion feedback adds value
to driving performance and experience of the remote operator in low-velocity scenarios. Driving performance
and experience were assessed and compared using objective and subjective metrics in three conditions (in-
vehicle driving, and remote driving with and without motion feedback). The findings show that in remote
driving, motion feedback fails to provide significant improvements. When compared to in-vehicle driving,
remote driving performance and experience remain significantly worse. This suggests that motion feedback,
in its current form, is redundant in low-velocity scenarios and that a simplified Remote Driving Station
(RDS) may be sufficient in these scenarios. Future work should optimize simplified RDS designs, enhance
feedback and human-machine interfaces and explore different driving scenarios for safe and efficient remote
driving.

INDEX TERMS Teleoperation, remote driving, automated vehicles, motion feedback, driving performance,
driving experience.

I. INTRODUCTION

Higher levels of AVs will not be able to resolve all challenging
traffic situations on their own [1]. In particular, edge cases
(e.g., construction sites, malfunctioning traffic lights or bad
visibility conditions [2]) which are difficult for AVs to be
trained may persist, making it even more challenging for

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang

AVs to cope with. Hence, human fall back solutions are also
required to secure the smooth introduction of AVs, avoiding
issues during such edge cases. Remote operation of AVs,
where this paper focuses, is considered as a bridge from
Society of Automotive Engineers (SAE) level 4 to 5, which
could lead to faster and safer implementation [3]. However,
AV remote operation comes with a plethora of challenges,
not only from a technical but also from a Human Factors
perspective (for a comprehensive discussion see [4]).

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Remote operation of AVs consists of three parts: remote
monitoring, remote assistance and remote driving [3], [5],
[6], [7]. Remote monitoring refers to the observation of
the vehicle without directly controlling it. This means
that the remote operator cannot modify the motion or the
decision of the vehicle, only observe its status. Remote
assistance entails providing guidance or instructions to assist
the vehicle without executing the dynamic driving task.
Remote driving is the direct remote control, i.e., executing the
dynamic driving task in both lateral and longitudinal direction
using steering wheel and pedals. Similarities can be found
between remote driving and simulator driving, as both involve
operating a vehicle (real or simulated) without physically
being inside. Therefore, the drivers have to rely on the limited
or artificial feedback they are provided. In both scenarios,
drivers have to adapt to reduced sensory input and depend
on feedback cues to maintain control, situation awareness
and performance. This paper will explore the redundancy of
advanced RDS and their impact on remote operators’ driving
experience and performance.

Remote driving, however, presents its own challenges.
The two most significant challenges are latency for signal
transmission and the lack of situation awareness [1], [8],
[9], [10]. One of the primary sources of latency is the
network connection that is used for communication between
the vehicle and the RDS. Several studies were conducted to
decrease latency, for example by switching from 4G to 5G
mobile networks [11], [12], while different design alterna-
tives for the RDS have been also explored depending on their
purpose [13]. Missing information about the environment and
the absence of feedback from the vehicle in the RDS could
further hamper also situation awareness. Remote operators
are out-of-the-loop from the conventional driver-vehicle-
environment interaction, since they are placed in RDS outside
of the vehicle impacting their situation awareness and ability
to safely and effectively control the vehicle. Meanwhile,
remote driving has proven to increase occupants’ motion
sickness [14]. During remote control, visual, auditory and
motion feedback might be limited or do not exist, but
could be required to replicate the conventional driver-vehicle-
environment-interaction. However, it is unclear with current
research to what extent all the feedback is required, and in
which scenarios.

Five main challenges have been identified by using
real-life experiment data and interviewing experts [2]:
human cognition and perception (workload and presence),
lack of physical sensing (motion and steering feedback),
video and communication quality, impaired visibility, remote
interaction with humans, and lastly lack of sound (auditory
feedback). Most of these challenges are related to a source
of information that needs to be provided to the remote
operator who is out of the loop with the remotely operated
AV and the traffic environment surrounding it. This paper
will explore the importance of providing the remote operator
more feedback from the vehicle and the environment to
bring them more in the loop and decrease the gap from the
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conventional driver-vehicle-environment-interaction. There
is the expectation that this will increase the remote operators’
driving performance and experience, contributing to the safe
and effective remote control of the vehicle.

This paper will focus on evaluating whether motion
feedback, while potentially beneficial based on existing
simulator studies, is necessary in low-velocity scenarios
during real remote driving. The low-velocity scenarios are
explored since remote driving is slowly adopted for parking
lots, logistic hubs and areas with restricted access including
industrial zones. However, if motion feedback is critical this
will significantly rise the costs for the remote driving station,
hampering the wide and fast adoption of this technology
even in such simple use cases. Hence, this paper will prove
if motion feedback is redundant through one of the first,
to the authors’ knowledge, real remote driving human factors
experiment about motion feedback.

Il. RELATED LITERATURE

A. DRIVING PERFORMANCE AND EXPERIENCE

Remote operators’ driving performance and experience
optimally should be similar with the one of drivers’ during in-
vehicle driving. However, it might be significantly different
but still safe and effective to help the vehicle overcome
the edge cases. Hence, fully capturing driving performance
and experience is essential to understand the effectiveness
of remote driving and its performance compared to in-
vehicle driving. This section explores metrics and evaluations
methods needed for the assessment of driving performance
and experience. Driving performance metrics are essential
for comparing driving conditions and assessing performance
of the remote operator. Various metrics have been used
in literature to assess driving performance and experience.
Combining both types of metrics is essential to advance
remote driving technologies, ensuring safe, comfortable, and
effective control by remote operators.

As far as driving performance is concerned, mean velocity,
maximum velocity and velocity deviation are important
metrics that capture the stable vehicle behavior and can
be used to investigate the trade off between speed and
accuracy during task performance [8], [15], [16]. Smooth
longitudinal acceleration and deceleration (i.e., changes in
the velocity over time) ensure occupants’ comfort [17] and
vehicle stability. This is mostly captured by using metrics
such as root mean square (RMS) and maximum acceleration
and deceleration [8], [15]. For the longitudinal dynamics,
the throttle reverse rate (TRR) is also used capturing
the frequency of throttle pedal adjustments and indicating
velocity modulation [18]. The throttle position is mostly
used, but the longitudinal acceleration can replace it since
it also illustrates the velocity changes over time. Lateral
Control is usually quantified by metrics such as lateral
acceleration, lateral deviation, mean lane center position
difference (LCPD), and standard deviation LCPD [8], [19].
These are mostly focused on the position of the vehicle.
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Meanwhile, steering wheel metrics could also be employed,
such as steering wheel reversal rate (SRR, i.e., the frequency
of steering wheel adjustments), maximum steering angle,
mean steering wheel angle, and RMS of steering wheel
position. Steering wheel velocity indicates reaction speed to
hazards [8], [19], [20].

While driving performance focuses on objective metrics,
driving experience captures driver’s subjective perception.
The overall driving experience combines immersion and
presence, confidence and control, situational awareness and
workload. Immersion and telepresence capture the driver’s
subjective sense of being “in” the driving environment,
which is essential to create a realistic driving experience.
Immersion and telepresence can be assessed through a
questionnaire dedicated for remote driving by Georg et al.
[21]. Another important aspect for driving experience is
the feeling of confidence and control over the vehicle.
Confidence and control refer to the driver’s ability to trust
their skill and the vehicles responsiveness and its ease of
use [22]. Situation Awareness is a person’s understanding
of what is currently happening [23]. Translated to remote
driving, this means that the remote driver fully understands
the driving environment of the vehicle. Common methods
to measure situation awareness are Situation Awareness
Global Assessment Technique (SAGAT) [24] and Situation
Awareness Rating Technique (SART) [25]. The advantage
of the SART is that it can be conducted after a scenario
is completed, in contradiction with the SAGAT, where
the scenario is interrupted, thus potentially distorting the
measurement. Another crucial metric for driving experience
is workload. Workload of remote drivers reflects the mental
and physical effort that is required during remote driving.
A common method to measure workload is the NASA Task
Load Index (NASA-TLX) [26]. The NASA-TLX measures
perceived workload across six dimensions: mental demand,
physical demand, temporal demand, performance, effort and
frustration. This provides an overall assessment of the task
difficulty. Furthermore, there are questionnaires designed
to capture the overall driving performance with general
questions about elements mentioned above [27]. Finally,
a comprehensive questionnaire dedicated to remote driving
assesses aspects like presence, emotion, and motion sickness,
providing a broad view of the driver’s experience [28].

B. FEEDBACK
Feedback is a critical element influencing remote operators’
driving performance by maintaining their situation awareness
and bringing them more in the loop. The types of feedback
that are contributing to in-vehicle or simulator driving
performance and experience are the visual [12], [29], [30],
auditory [31], [32], [33], motion and steering [34], [35]
feedback. Inadequate feedback can lead to performance
issues [36]. In this work, we will focus on the motion and
vibrational feedback.

Based on existing driving simulator studies, motion
and vibrational feedback could enhance remote driver’s
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performance [28]. Motion feedback indicates the full trans-
mission of the vehicle motion to the remote operator, while
vibrational feedback provides targeted motion cues. Research
shows that dynamic seat adjustments, such as tilting based
on object proximity, improve control and awareness [37].
Motion feedback can also be optimized using motion-
cueing strategies, which are used in simulators to more
accurately recreate real-world sensory experiences [38].
Filter-based approaches like the classical, adaptive, optimal
filters, and model predictive control (MPC) are commonly
used in motion cueing [39]. These methods provide more
realistic motion replication within the simulator’s mechanical
constraints [40]. Meanwhile, they can also mitigate simu-
lator sickness, making the virtual driving experience more
comfortable [41]. Casqueiro et al. [42] demonstrated that
increasing motion intensity as objects get closer enhances
situation awareness. Siegler et al. [43] found that motion cues
prevent unrealistic deceleration rates, while Feenstra et al.
[44] showed that motion feedback improves vehicle control
by reducing the steering wheel reversal rate. These are
representative examples that illustrate the impact of motion
feedback to driving experience and performance in driving
simulators.

Despite the promising results of motion feedback in driving
simulator studies, its impact on remote driving performance
and experience has not been widely tested in remote driving
scenarios with real-life driving [3]. Meanwhile, for the
motion feedback to be utilized, a moving base simulator is
required increasing the RDS costs significantly. Therefore,
it is imperative to examine if motion feedback is redundant
for remote operators’ driving performance and experience
in different scenarios, before concluding and setting the
requirements for remote drivers required feedback. This
paper will explore this in low speed scenarios.

Ill. RESEARCH OBJECTIVES AND HYPOTHESES

The primary aim of this research is to investigate the
difference in driving performance and experience between
in-vehicle driving, remote driving with motion feedback
and remote driving without motion feedback during low-
velocity tasks, with the objective to assess whether motion
feedback is redundant in these scenarios. To achieve this,
two main research hypotheses are stated. The first hypothesis
corresponds to an analysis from a high-level perspective,
covering a complete planned route (H1). While the second
hypothesis corresponds to a more detailed analysis, examin-
ing the outcomes for specific driving tasks (lane following,
obstacle avoidance and braking) (H2).

« H1 (Effect of motion feedback): When motion feed-
back is provided to the remote driving station (RDS),
remote operators demonstrate driving performance and
experience closer to in-vehicle driving during low-
velocity driving scenarios compared to when there is no
motion feedback.

It separates into two sub-hypotheses:
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« H1.1 (Driving performance): Participants show driv-
ing performance closer to in-vehicle driving during
low-velocity driving scenarios when motion feedback is
provided compared to no motion feedback. This is indi-
cated by more stable velocity, smoother accelerations
and more controlled steering,

o H1.2 (Driving experience): Participants report driving
experience closer to in-vehicle driving during low-
velocity driving scenarios when motion feedback is
provided compared to when there is no motion feedback.
This is indicated by the overall driving experience,
immersion and telepresence, confidence and control,
situation awareness and workload.

The second research objective focuses on determining
whether motion feedback influences driving performance in
remote driving during specific driving tasks. The following
hypothesis is proposed:

« H2 (Task-specific performance): When motion feed-
back is provided, remote operators demonstrate driving
performance and experience during specific driving
tasks at low-velocity driving scenarios closer to
in-vehicle driving compared to when there is no motion
feedback. This is indicated by reduced deviation from
task-specific reference points and closer to in-vehicle
driving performance. The specific driving tasks are lane
following, obstacle avoidance, braking and bumps.

IV. METHODS AND MATERIALS

This experimental study investigates the driving performance
and experience during a series of driving sessions conducted
under three primary conditions: (a) In-vehicle driving:
Participants control the vehicle directly from inside the
vehicle as they would in any other vehicle. (b) Remote
driving condition with motion feedback: Participants
control the vehicle from a Remote Driving Station (RDS),
receiving motion feedback through a dynamic platform in
addition to the visual and auditory feedback. (¢) Remote
driving condition without motion feedback: Participants
operate the vehicle from the RDS without any motion
feedback, relying solely on visual and auditory feedback.
To mitigate bias resulting from learning effects, the order
of conditions is counterbalanced across participants. All
possible six sequences of conditions were performed almost
equally. The within-subjects design allows for a direct
comparison of each participant’s performance and experience
across different driving conditions. Ethical approval was
granted in the Ethics Application with number 4560 by the
Human Research Ethics Committee of Delft University of
Technology.

A. OVERVIEW EXPERIMENT

The experiment was conducted on a closed test track area.
The area is approximately 50m x 20m and is located
behind the TU Delft Faculty of Mechanical Engineering
at Delft, The Netherlands. The RDS is located inside the
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FIGURE 1. Sketch top view of track, with all tasks designed.

Department of Cognitive Robotics B34. Due to the size of the
test track, the maximum velocity it limited to 11 km/h during
remote driving. To make the conditions comparable, the
participants were instructed to adhere to this limitation also
during in-vehicle driving. The safety driver was monitoring
their velocity and suggested correction if they exceeded the
limit. However, during in-vehicle driving it was physically
possible to drive faster. A sketched top view of the track is
illustrated in Figure 1, as designed to accommodate different
tasks.

B. TASKS

The test track has been modified to accommodate different
tasks that the participants have to perform while driving
(Figurel). These include lane following, obstacle avoidance,
braking and driving over bumps. More specifically, before
the start of every condition, the participants were asked to
perform a training task. The training path started from braking
position and ended at the start, as illustrated with the blue line
in Figure 1. Afterwards, the safety driver took over and placed
the vehicle on the starting position. This was repeated for each
condition for them to get accommodated with the vehicle and
the RDS. Then, the participants drove five laps in the test
track. However, due to data loss of the fifth lap for some
participants, the fourth lap is analyzed for all participants
to ensure consistency. Every lap ends with a parking task
at the ““‘Start” point (Fig. 1), to ensure that each lap started
from the same position. The performance of the training is

VOLUME 13, 2025



E. Schippers et al.: Motion for No Motion: The Redundancy of Motion Feedback

IEEE Access

not recorded. Furthermore, the parking task was affected by
the need to reposition the vehicle by the safety driver due to
difficulties from the participants to align it properly. Hence,
these data were not explored.

The participants were instructed in the beginning to
balance velocity and precision with the following statement
during the briefing: “Your objective is to complete each
task as accurately and as quickly as possible. Please
focus on balancing velocity with precision, as your overall
performance will be evaluated based on both.” Additionally,
for each task, the participant was given a definition of
successful completion in the briefing prior to the experiment.
These are presented below together with the description of
each task. Lane following: From the starting position, at the
parking spot, the first task is lane-following. The lane is
marked with continuous red tape on the outer lanes and a
dashed line of red tape in the middle. The performance is
measured by analyzing the GNSS data, and calculating the
distance of the center of the vehicle with respect to the center
of the lane. Successful completion: “The center of the vehicle
is aligned with the center of the lane as much as possible
during the lane-following task”. Obstacle avoidance: The
second task is avoiding an obstacle, which consisted of
fences. The performance is measured by analyzing the GNSS
data. For the driven path within a specific range of GNSS
coordinates, the minimum distances of the vehicle center
from the fences are calculated. From these, the maximum
value is identified to determine the distance at which the
obstacle was passed. Successful completion: “The distance
between the side of the vehicle and the obstacle is more than
1.5m”. Braking: After the obstacle avoidance task, there is a
braking task before a stop sign, which was aligned also with
a green line. The performance is measured by calculating the
vehicle distance from the green line at the moment that the
velocity is zero within a specific range of GNSS coordinates.
Successful completion: “Stopping at the exact point before
the stopping sign and the green line”’. Bumps: The next
task is driving over the bumps while keeping the center of
the vehicle aligned on the red tapes which are located at
the middle of the bumps. The performance of the task is
measured by analyzing the IMU data. More specifically, the
vertical acceleration is used. Perfect alignment with the red
tape would mean that the vehicle passes over the bumps there
is no rotational motion in the vehicle. Successful completion:
“The center of the vehicle is aligned with the center of the
lane as much possible”.

C. APPARATUS

The Remote Driving Station (RDS) used for remotely driving
is illustrated in Figure 2, together with all the required
hardware setup. The left side of the figure depicts the vehicle,
which includes all components necessary for remote driving
(e.g., cameras, router, microphone and control system). The
right side of the figure shows the RDS, consisting of a motion
platform, steering wheel, pedals, monitors and a router. In the
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center of the figure, the signals are exchanged via dedicated
software, which will be later described.

The experimental vehicle employed in this study is
a 2009 Toyota Prius. This vehicle is equipped with multiple
sensors. Eight cameras are mounted onto the roof of the
vehicle, providing a 360-degree view of the surroundings.
In addition to the cameras, the vehicle is equipped with
multiple LiDAR and RADAR sensors and a Global Nav-
igation Satellite System (GNSS). The latter is used for
the localization of the vehicle. It also functions as an
Inertial Measurement Unit (IMU) that capture translational
accelerations and angular velocities. The data from the IMU
is sent to the motion platform to provide motion feedback.
Vehicle control is facilitated by through the Controller Area
Network (CAN) bus.

The RDS is comprised of several components: a motion
platform, three high-resolution monitors (curved 32 inch,
60Hz), a steering wheel, pedals, and a racing seat. Each
of these elements contributes to creating an immersive and
realistic driving experience.

At the heart of the RDS is a 6-degrees-of-freedom
(DoF) motion platform manufactured by Gforcefactory.! This
advanced motion platform allows for dynamic movements
that simulate real driving conditions. To facilitate direct
control of the vehicle, a Logitech G920 steering wheel and
pedals are implemented.” For a more realistic steering feel,
force feedback is implemented in the form of a spring and
auto centering. The steering wheel has a small motor which
can generate different types of feedback. This motor can be
activated using ff_effect from the force feedback framework
for Linux.? There are six types of options possible, one of
them being spring. The center position of the spring is set
manually as well as the maximum force to left and right
and the spring stiffness in both directions. Within the RDS,
auditory feedback is provided to the operator via noise-
canceling headphones. The headphones receive the sound
from the car captured by a RODE NT-USB Mini microphone*
which is located directly next to the driver.

A crucial software component is Autoware,’ an open-
source software stack on the Robot Operating System 2
(ROS2). Autoware provides a framework for automated
driving applications. The software stack includes all func-
tions that are necessary to drive a vehicle autonomously
from localization and object detection to route planning
and control. At the same time, it enables a quick switch
between automated driving and remote driving. The RDS
and the vehicle maintain connectivity through a 5G network,
using Hyperpath for low-latency communication. Hyperpath
creates a multi-connectivity peer-to-peer mesh VPN (Virtual

leorcefactory motion simulators | Edge 6D 6DoF Motion Simulation —
https://www.gforcefactory.com/edge-6d

2Logitech G920 Driving Force — https://www.logitechg.com/de-
de/products/driving/driving-force-racing-wheel.html

3https://wvvvv.kemel.org/doc/Documentation/input/ff.txt

4RODE Microphone-https://rode.com/de/microphones/usb/nt-usb-mini

5 Autoware —https://autoware.org/
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Remote Vehicle

Vehicle: Prius lll

Longitudinal & lateral
control: movebox

Camera: Lucid TRIO54S

Router: Teltonika
RUTXS0

Microphone:
RODE NT-USB Mini

FIGURE 2. Overview hardware setup.

Private Network) between the vehicle and the RDS.® The
protocol used is the User Datagram Protocol (UDP). For
the real-time streaming of the camera footage, WebRTC is
used [45]. The round-to-round latency was estimated around
100 - 400 ms. A video of the setup is available online.”

D. PARTICIPANTS

A total of 20 participants (6 female) was recruited for this
experiment (Age: M = 254, SD = 2.6). Participants
were recruited from university channels leading to a low
standard deviation (i.e., there was less age difference between
youngest and oldest). Also, participants were screened based
on Motion Sickness Susceptibility Questionnaire (MSSQ)
[46], and questions about their driving experience prior
to invitation. To avoid confounding effects of MS to
driving experience and performance, we excluded those very
susceptible (Category E) to motion sickness to secure reliable
data collections. This approach also aligns with assumption
that future remote drivers will be screened for motion
sickness susceptibility before hired. Participants were also
asked for their driving experience in years and the kilometers
they had driven in the last 12 months. The distribution of
driving kilometers is presented in Table 1. Most participants
have driven between 2000 and 5000 km within the last
12 months. The initial threshold to exclude people was less
than 2000 km. However, for recruitment reasons and to create
a more gendered-balanced distribution, some participants
with less than 2000 km in the last 12 months were also invited.

E. PROCEDURE

All participants were given a detailed description of the
experiment and a written version of the explanation. They
were asked to provide written informed consent before

6HyperPath — https://www.hyperpath.ie/
7https://WWW.youtube.com/watch?v:L-vfosthSw
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Auditory Feedback

Visual Feedback

Motion Feedback

Vehicle status

%’?50

Longitudinal control

L ——

Lateral control

Remote Driving Station

| Monitors: AOC curved
| 32 inch, 60Hz

T S 2
h

Logitech G920 steering
wheel & pedals

Motion platform:
EDGE 6D Gforcefactory (6DoF)

Router: tp-link
deco AX3000

TABLE 1. Driving distance last 12 months, distribution by gender.

Distance (km)  0-2000  2000-5000  5000-10000  10000-15000 15000+ Total

Female 2 2 1 0 1 6
Male 1 9 2 1 1 14
Total 3 11 3 1 2 20

participation. Prior to the trials, participants were briefed only
on the tasks they had to perform but not what the aim of
the study and the motivation was. This was explained in the
debriefing after the experiment. Participants received a 10-
euro voucher for compensation at the end of the experiment.
The total duration of the experiment was approximately
90 minutes.

Every time participants reached the ‘“Start” point or
the braking task, they were asked about their level of
MISC (MlIsery SCore). If a participant reached a MISC
of six or higher, the experiment would be immediately
stopped. No participant reached this limit. At the “Start”
point, the safety driver repositioned the vehicle, if needed,
to be properly aligned and provided again control to the
participants. After the completion of a condition, participants
filled in several questionnaires using a laptop outside of
the RDS. The set included an overall driving experience,
a confidence and control, an immersion and telepresence,
the Situation Awareness Rating Technique (SART) and the
NASA task load index (NASA-TLX) questionnaire. In the
condition where motion feedback was provided, a short
questionnaire about the motion feedback was also completed.
The modified questionnaires can be found in the A.

F. DEPENDENT VARIABLES

During the experiment, various metrics were recorded to
assess both the participants’ driving performance and experi-
ence under the different conditions. These measures provide
insights about the differences of in-vehicle and remote
driving under different configurations. For the analysis of
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the objective data, the data from the fourth lap is used.
According to literature, there is a significant deviation in the
driving performance and experience after a few laps, where
the participants adapt to the driving scenario and remote
setup/vehicle [18].

1) DRIVING PERFORMANCE
Objective performance data were continuously collected
from the vehicle to evaluate the driving performance. The
following performance metrics were recorded: Velocity: The
velocity of the vehicle was recorded through the embedded
sensors in the steer-by-wire control system, providing
insights into participants’ velocity behavior during different
tasks. The mean of the velocity is used as a metric to
represent the ‘““stable velocity” of H1.1. Longitudinal and
Lateral acceleration: The acceleration data were captured
using the Inertial Measurement Unit (IMU) from the GNSS.
The root mean square (RMS) of the accelerations is used to
assess the smoothness of driving maneuvers. Before analysis,
a Butterworth filter (cutoff = 2 Hz) and a moving average
(window = 20) are applied on the data to filter out the
noise from the IMU. This metric aligns with H1.1, reflecting
smoother accelerations as an indicator of more controlled
driving performance. Steering wheel position: The steering
input was measured in a range from —1 to 1, representing the
extreme steering positions. The RMS of the steering position
is used as a metric for assessing steering behavior. This metric
relates to H1.1, where more stable and controlled steering
behavior indicates improved driving performance.
Additional GNSS data was recorded to calculate metrics
that will assess the driving performance for each task:
More specifically, the GNSS data is used to calculate the
distance between the vehicle’s path and the closest reference
points. Depending on the task, either the mean, maximum or
minimum distance is used as a metric. This metric relates to
H2, showing whether motion feedback impacts performance
in task-specific performance by affecting deviations from
task-specific reference points. For the obstacle avoidance
task, the results should be interpreted as followed: ideal
passing distance is 2m (distance from fence to obstacle) +
approximately 1 m (GNSS is located in the center of the
vehicle, so half of vehicle width) + 1.5 m required passing
distance. This makes the optimal distance in the data set
approximately 4.5m, resulting in a distance of 1.5 m between
the obstacle and the vehicle. To assess the performance of
the “Bumps” task, the vertical acceleration is measured.
Where driving aligned with the middle of the bumps,
higher vertical accelerations results will appear. Otherwise,
rotational accelerations will appear as well, decreasing the
vertical accelerations. Before analysis, a Butterworth filter is
applied to filter out the noise from the IMU (cutoff = 5 Hz).

2) DRIVING EXPERIENCE

Subjective measurements were collected to evaluate the par-
ticipants’ overall driving experience, their feeling of immer-
sion and telepresence, confidence and control, workload and
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situation awareness. These metrics relate to H1.2, assessing
whether participants report a driving experience closer
to in-vehicle driving with motion feedback. All modified
questionnaires can be found in A.

Overall driving experience was measured using a ques-
tionnaire based on a questionnaire by Zhao et al. [28]. This
metric connects to H1.2, where higher scores indicate that
participants perceive a better overall driving experience. The
items were answered on a 5-point Likert scale, with poles
dependent on the item. Immersion was assessed using a
questionnaire on immersion and telepresence by Georg et al.
[21] This metric supports H1.2, where higher score represent
a higher feeling of immersion and telepresence. The items
were answered on a 7-point Likert scale (from 1 = “strongly
disagree” to 7 = ““strongly agree””). Confidence and control
was measured through a modified version of questionnaire
evaluating participants’ confidence while driving, vehicle
control, and ease of use [22]. This metric relates to H1.2,
indicating whether motion feedback increases participants’
confidence and control. The items were answered on a
7-point Likert scale (from 1 = “strongly disagree” to 7
= “strongly agree”). Workload was evaluated using the
NASA Task Load Index (NASA-TLX) [26]. The NASA-TLX
consists of different items assessing mental, physical and
temporal demand, performance, effort and frustration. The
workload is determined as an overall score over all the
items. This metric aligns with H1.2, where lower scores
indicate a lower workload, which reduces cognitive and
physical demands. Situation Awareness was measured by
the Situation Awareness Rating Technique (SART) [47],
with higher scores indicating better situation awareness. The
SART questionnaire consists of different items assessing
the variability and complexity of the scenario, the alertness,
familiarity and focus of the driver, and other. The overall
situation awareness is determined as an overall score
over all the items. The situation awareness is relevant to
H1.2, showing if different remote driving configurations
enhances remote drivers’ driving experience. An additional
questionnaire about the motion feedback was conducted after
each condition with motion feedback. All these questions
are answered on a 7-point Likert scale (from 1 = “strongly
disagree” to 7 = “strongly agree’). This questionnaire
contained the following three questions:

o The motion feedback helps to judge the state of the
vehicle.

o The driving experience is more realistic when there is
motion feedback.

o The motion feedback helps in perceiving the road
surface.

G. STATISTICAL ANALYSIS

The primary aim of this study was to investigate whether
motion feedback influences driving performance and the
remote operator’s experience, particularly in low-velocity
scenarios, to determine if simplified Remote Driving Systems
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FIGURE 3. GNSS data of one participant, lap 4 of all conditions, including
locations of tasks.

(RDS) are sufficient for such scenarios. To evaluate this, the
condition where motion feedback is provided is compared
with the conditions of in-vehicle driving and remote driv-
ing without motion feedback. Because of the non-normal
distributed nature of the data, for both the objective and
subjective data, a Wilcoxon signed rank test is performed to
quantify the significant differences. A Wilcoxon test is a non-
parametric pair-wise test that can be used to compare two
related groups. As the experiment is a with-in subject study,
the groups are related. All the analyses are conducted between
two conditions. Therefore, there are three types of analysis:
In-vehicle driving vs. remote driving with motion feedback
(In-vehicle vs. Motion), In-vehicle driving vs. remote driving
without motion feedback (In-vehicle vs. No motion) and
remote driving with motion feedback vs. remote driving
without motion feedback (Motion vs. No motion).

V. RESULTS

This section presents the findings of the statistical analysis.
The results are initially discussed from a high-level per-
spective, covering the completed planned route, i.e., the full
lap (H1). The focus then shifts to a more detailed analysis,
examining the outcomes for each driving task (H2). The
driven path, by only one participant for clarity in the figure,
together with the tasks designed as points, is illustrated in
Figure 3.

A. DRIVING PERFORMANCE (H1.1)

For the analysis of hypothesis HI.1, the objective data
from the fourth lap is used. As described in Section IV-G,
a Wilcoxon signed rank test is performed. The analysis has
been conducted between the experimental conditions. The
results of the Wilcoxon tests for the significant findings are
illustrated in Table 2.

181906

TABLE 2. Comparison of conditions per metric.

Comparison Velocity Steering pos.  Long. acc. Lat. acc.
In-vehicle vs. Motion W=00 W=31.0 W=00 W=00
’ p < 0.001 p=0.004 p <0.001 p<0.001

. . W=0.0 W=28.0 W=1.0 W=0.0
In-vehicle vs. NoMotion " 591 20003  p<0.001 p<0.001
Motion vs. No Motion W =100.0 W=101.0 w=77.0 W=62.0
o p =0.869 p=0.898 p=0312 p=0.114

TABLE 3. Mean and standard deviation of metrics measured for H1.1.

Condition Velocity Steering pos. Long. acc. Lat. acc.

M SD M SD M SD M SD

Motion 3858 0.756 0302 0.028 0.201 0.043 0296 0.063
Nomotion  3.884 0.678 0.303 0.018 0.207 0.044 0.312 0.060
In-vehicle  6.297 0.559 0286 0.009 0.274 0.046 0.529 0.078

Note. Velocity = mean velocity (km/h), Steering pos. = RMS steering
position (—), Long. acc. = RMS longitudinal acceleration (m/ s2), Lat.
acc. = RMS lateral acceleration (m/ 52).

The values measured for the dependent variables velocity,
steering position, longitudinal and lateral acceleration were
significantly higher (p < 0.004) in both conditions of remote
driving (motion/no motion feedback) compared with in-
vehicle driving. No significant difference was identified
between the remote driving conditions (motion/no motion
feedback) for any of the metrics stated above. The mean
values and standard deviation of the metrics are presented
in Table 3. Mean values in all the metrics are similar across
conditions with less than 4% differences between conditions.
At the same time, despite the lack of significant differences,
the standard deviations between no motion and motion
illustrate differences ranging from 10-35%. This is higher in
the steering position, which is four times more than the one
of the in-vehicle condition. To investigate the learning effect
over the conditions, an additional analysis is performed.
The effect of the order, in which the conditions were
performed, illustrates no significant difference between the
orders.

B. DRIVING EXPERIENCE (H1.2)
To assess the driving experience, participants responded to

multiple questionnaires after every condition. All items can
be found in A.

1) OVERALL DRIVING EXPERIENCE

The questionnaire about overall driving experience contains
seven items. In the remote driving condition with motion
feedback, participants scored their ability to sense the road
surface significantly higher (W = 66, p = 0.034)
compared to remote driving without motion feedback. For
the comparison between in-vehicle driving and both remote
driving conditions, all items were significantly higher for
in-vehicle driving (for all items: p < 0.03). The analysis per
item can be found in E. The results of these questionnaire
are shown per item in Figure 4. Figure 4 presents the
overall driving experience questionnaire per item in the
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form of boxplots. Item 4a (Overall assessment) reveals a
significantly higher median for in-vehicle driving compared
to the remote driving conditions. While the medians for both
remote conditions are comparable, the standard deviation for
the no-motion condition is notably larger, reflecting greater
variability among participants. Items 4b, 4d, and 4e exhibit
significantly higher medians for in-vehicle driving as well.
Although the medians for the two remote driving conditions
are similar, the motion condition shows a larger standard
deviation, suggesting larger variability. A similar trend in the
median is observed for Item 4f (Predictability of velocity).
For Item 4c (Attention), the median remains consistent
across all conditions. However, the standard deviation in
the motion condition exceeds the mean, while it remains
below the mean for in-vehicle driving. Lastly, Item 4g
(Road surface perception) highlights a significant increase
in the median for the motion condition compared to the no-
motion condition. The standard deviation, however, is larger
in the no-motion condition, indicating higher variability in
participant responses.

2) IMMERSION AND TELEPRESENCE

Participants reported significantly higher on all items in
in-vehicle driving compared to both remote driving scenarios
(for all items: p < 0.001). The analysis per item can be
found in E. Between the two remote driving conditions,
no significant differences have been found. Confidence
and control: The questionnaire on confidence and control
revealed significantly higher ratings for in-vehicle driving
compared to both remote driving conditions (for all items:
p < 0.001, E for individual analysis). NASA-TLX: For
the NASA-TLX, a final workload score was calculated for
each conditions (Table 4). Participants reported significantly
lower workload for in-vehicle driving compared to both
remote driving conditions Wyprion = 0.0, Wiomotion =
3.5, prorn < 0.001). No significant differences were found
between remote driving with and without motion feedback.
SART: The SART questionnaire provided a final situation
awareness score for each condition (Table 4). Participants
rated their situation awareness significantly higher in the
in-vehicle driving condition compared to both remote driving
conditions (Wyotion = 192, Whomotion = 196, pporn < 0.001).
Between both remote driving conditions, no significant
differences were found.

For the motion-feedback questionnaire, participants scored
the items on a 7-point Likert scale (minimum value: 1,
maximum value: 7). The mean and standard deviation
of the results are shown in Table 4 per item, together with
the mean and standard deviation for the NASA-TLX and
the SART. The SART scores reveal a notable difference
between the in-vehicle driving condition and the remote
driving conditions, with mean scores more than 30%
higher for in-vehicle driving. Standard deviations remain
consistent across conditions. For the NASA-TLX, the means
of both remote driving conditions (motion/no motion) are
approximately 70% (more than 80% for motion) higher
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TABLE 4. Scores from Questionnaires per Condition (SART, NASA-TLX, and
Motion Feedback Questionnaire).

Condition SART NASA-TLX MF_1 MF_2 MF_3
M SD M SD M SD M SD M SD

Motion 1659 6.19 608 18.11 49 156 5.6
Nomotion  16.30  6.11  55.15 13.42 - -
In-vehicle  24.23 642 3255 1246

Note. SART = Situation Awareness Rating Technique; NASA-TLX =
NASA Task Load Index; MF_1,2,3 = Motion Feedback Item 1,2, and
3; M = mean; SD = standard deviation. All items can be found in .

1.07 555 156

TABLE 5. Mean and standard deviation of metrics measured for H2.

Condition Lane follow Obstacle Braking Bumps
M SD M SD M SD M SD
Motion 1.674 0.612 4843 0510 5.143 0.692 0426 0.076

Nomotion 1.706  0.537 5.043 0.737 5231 0.706 0445 0.074
In-vehicle 1.538 0.502 4561 0470 4.624 0461 0567 0.074

Note. Lane follow: distance (m), Obstacle avoidance: distance (), Brak-
ing: distance (m), Bumps: vertical acceleration (m/ s2).

compared to in-vehicle driving. The standard deviations for
the NASA-TLX are the largest in the remote driving with
motion feedback, reflecting a greater variability in task load.

C. TASK-ORIENTATED PERFORMANCE (H2)

As described earlier in this paper, every task has been
assigned a definition of successful completion. To measure
the performance, the GNSS data is used to calculate the
distance. The raw GNSS data from one participant is
illustrated in Figure 3, as well as the locations of the tasks.
The shadowed area, is the area used to calculate the obstacle
avoidance as explained to Section IV-F. The evaluation of
the performance is done per task. The mean and standard
deviation of all tasks are shown in Table 5, while they are
also illustrated in Figure 5 as boxplots.

The mean values for the lane following, obstacle avoid-
ance and braking tasks show small differences across the
conditions, with less than a 10% variation in most metrics.
The vertical acceleration during the bumps shows a larger
difference (>20%), with the in-vehicle driving condition
showing a higher mean value compared to the motion and
no motion conditions.

The results of the statistical analysis are presented in
Table 6. The analysis of the lane-following task revealed
no significant difference in the average distance from the
center line between in-vehicle driving and both of the
remote driving conditions. In contrast, the obstacle avoidance
task, which was evaluated using the maximum distance
that the car deviated from the reference line, showed a
significantly smaller distance to the obstacle in in-vehicle
driving compared to both remote driving conditions. For the
braking task, significant differences in performance were
observed, with participants stopping at a greater distance
from the stopping line during both remote driving conditions
compared to in-vehicle driving. Finally, in the bumps task,
the vertical accelerations were significantly higher during
the in-vehicle driving condition. No statistically significant
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TABLE 6. Statistical analysis for task-orientated performance across
conditions.

Comparison Lane follow  Obstacle Braking Bumps

In-vehicle vs. Motion W=74.0 W=49.0 W=370 W=9.0
o p=0.261 p=0.036 p=0.009 p<0.001

In-vehicle vs. No Motion W=64.0 W=320  W=250 W=4.0
: p=0.132 p=0.005 p=0.002 p<0.001
. . . W=97.0 W=790 W=97.0 W=170.0
Motion vs. No Motion p=0.784 p=0349 p=0784 p=0202

Note. Tasks: lane follow, obstacle avoidance, braking and bumps.

differences were observed between the two remote driving
conditions in any of the tasks.

VI. DISCUSSION

This study aimed to assess how much motion feedback affects
remote driving performance and experience, and whether it is
redundant information during low-velocity tasks. The results
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are initially discussed from a high-level perspective, covering
the full lap (H1). The focus then shifts to a more detailed
analysis, examining the outcomes for each specific task (H2).

A. RESULTS ON H1.1 (DRIVING PERFORMANCE)

The results show that motion feedback had no significant
effect on performance metrics like mean velocity, RMS of
the steering position, and RMS of the longitudinal and lateral
accelerations, between the two remote driving conditions.
This indicates the redundancy of the motion feedback in
low speed scenarios. However, significant differences were
observed between in-vehicle and remote driving conditions
for all these metrics, indicating that remote driving per-
formance lags behind in-vehicle performance, regardless of
additional feedback or not. However, this did not cause any
safety concerns during the experiment. In remote driving,
the velocity was significantly lower compared to in-vehicle
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driving. This is consistent with findings in prior studies like
Zhao et al. [ 18] who observed similar behavior among remote
drivers. The study also showed a higher steering reversal
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rate in remote driving, which is also in line the with higher
RMS of the steering position found in our study. There is
a two-stage mechanism in adapting to a driving simulator,
where participants first made a mental effort to better control
their steering actions, before seeking to be more precise
and stable. This is aligned with research on adaptation of
perceptual-motor tasks [48], [49], [50].

For RMS of both the longitudinal and lateral acceler-
ations there is no significant difference between the two
remote driving conditions. However, the longitudinal and
lateral accelerations are significantly higher during in-vehicle
driving compared to remote driving. While lower RMS
longitudinal acceleration values may indicate a smoother and
more comfortable driving style, this difference is likely due
to the large difference in mean velocity. The limited space
and the requirement to brake at specific points could have
led to higher accelerations in the higher velocities during in-
vehicle condition. Higher velocities produce greater changes
in accelerations over time, resulting in higher RMS values
even if the underlying acceleration patterns are similar. Thus,
the increased accelerations observed in in-vehicle driving
can be explained by the higher mean velocity, rather than
reflecting any difference in driving performance.

These findings do not support the hypothesis (H1.1) that
motion feedback brings remote operator more in the loop
increasing their driving performance closer to in-vehicle
driving, as no significant findings were observed between the
two remote conditions. This suggests that motion feedback
is redundant information in low speed scenarios, meanwhile
this needs to be tested further for higher speed scenarios.
It could be possible that motion feedback is not enough
to bridge the gap in-vehicle and remote driving in other
scenarios. However, this has not been tested in real-life
driving, rather than some simulator studies indicated that
the combination of auditory and motion feedback improved
driving performance in simulator [28].

B. RESULTS ON H1.2 (DRIVING EXPERIENCE)

The analysis of subjective data contributes to our under-
standing of how driving experience is affected in different
remote driving conditions. Regarding the overall driving
performance, the results clearly indicate significant differ-
ence in all items when comparing in-vehicle driving to
both remote driving conditions. This highlights a critical
finding: the driving experience in remote driving is not on
par with that of in-vehicle driving, while the lack of motion
feedback in remote driving is not associated with worse
driving experience.

Regarding the immersion and telepresence, despite the
importance of vibrations on the feeling of presence [51], [52],
this was not captured between the motion and no motion
condition. Furthermore, all items were significantly lower
in both remote driving conditions compared to in-vehicle
driving. The longitudinal perception was rated significantly
higher than the lateral perception in both remote driving
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conditions, while no such difference was observed in in-
vehicle driving. This could be related probably with the visual
feedback and its transmission to the RDS during sustained
cornering. Hence, the focused improvement of the lateral
perception could play a crucial role in decreasing the gap
between remote and in-vehicle driving. Potential measures
to enhance lateral perception include improved motion
cueing for sustained lateral accelerations during cornering
or advanced visual feedback systems which can provide
smooth visual transmission during cornering. Regarding
confidence and control of the vehicle, the participants
reported higher confidence and control in in-vehicle driving
than in both remote driving conditions. Included items in this
questionnaire are: ““ I had good control over the vehicle”” and
“ I felt confident in my ability to drive the vehicle”. The
results of these items reported better control over the vehicle
and more confidence to drive it in in-vehicle driving. Realistic
feedback in the pedals and steering wheel could improve the
feeling of confidence and control and reduce the gap to in-
vehicle driving. However, Papaioannou et al. [14] illustrated
that confidence and control in remote driving was related
with perceived safety aspects, rather than steering wheel
characteristics (feedback support, communication, the level
of feedback forces, and returnability). Therefore, training of
the remote operators and their adaptation [53] to the system
interaction could increase their confidence and control.
Regarding workload, the results indicate an increase in
workload during both remote driving conditions compared
to in-vehicle driving. This could be related to multiple
explanations. One of these could be that there was a lack of
synchronization between different modalities. Some partici-
pants also reported this during the experiment. Additionally,
the detachment from the environment in remote driving con-
ditions can play a role. This detachment leads to a decoupling
of the perception from the actual environment, resulting in
a limited representation of the vehicles surroundings [54].
Meanwhile, significant cognitive resources are allocated to
transferring the previously acquired driving skills to a driving
simulator [55], such as the RDS, or mentally fill the gaps due
to delays. This increases the workload even further. Between
the two remote driving conditions, there is no significant
difference, which implies that the motion feedback did not
alter the workload, and the challenges are similar in both
cases. Regarding situation awareness, the results indicate
significant difference between in-vehicle driving and both
remote driving conditions. Higher situation awareness in
in-vehicle driving can be explained on the different levels of
situation awareness by Endsley (perception of the elements
in the environment, comprehension of the current situation
and projection of the future status) [56]. Firstly, at level of
perception of elements in the environment, during in-vehicle
driving, drivers have direct access to all the sensory infor-
mation of the environment. This is in contrast with remote
driving where the perception is limited by the representation
of the environment. Secondly, at the level of comprehension
or understanding of the situation, in in-vehicle driving it
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is easier and more intuitive to understand relationships
between elements in the environment. The adaptation to
driving simulators requires time and individuals differ widely
in the time they need to adapt [53]. In remote driving,
a delay or misaligned in information can make this more
difficult. Lastly, the deficits on the other two levels also
cause a reduction at the level of projection of future status,
making it more difficult for remote driver to predict the
evolvement of situations. Regarding the motion feedback,
the positive perception of it, indicates that drivers recognize
its potential benefits, even if these do not directly translate
into measurable performance improvements in the context
of this study. This confirms the findings from Li et al. [57],
who investigated the remote drivers’ perception, needs and
requirements when remotely operating a level 4 AV using
a teleoperation system in the real world. Findings of the
study show that remote drivers would like to have enhanced
physical feedback to overcome one of the biggest difficulties
while driving remotely.

In summary, while participants reported a positive attitude
towards driving experience with motion feedback, the overall
results do not support the hypothesis (H1.2). The findings
indicate that motion feedback might be redundant and does
not bring the remote driving experience closer to in-vehicle
driving, as significant gaps remain in driving performance,
overall driving experience, immersion, confidence, workload
and situation awareness between the two conditions.

C. RESULTS ON H2 (TASK-ORIENTATED PERFORMANCE)
The results show no significant differences between any of the
conditions for the lane-following task. Similar performance
compared to in-vehicle driving during lane-following could
suggest that the overall perception of the remote operator
is good with the guidance of the outer lanes. However, this
might also be due to the much lower velocities at which the
task is completed during remote driving.

An in-depth analysis of the raw GNSS data revealed a
pattern where most participants tended to position themselves
more to the right rather than staying in the center of the
lane, as requested during the task description. This behavior
may be explained by a tendency for drivers to control the
vehicle position based on the outer lanes. The presence of
road markings effects the lateral lane position, since drivers
tend to focus on the Tangent Point (TP), i.e., a point on
the inner side of the lane, where the driver’s gaze direction
becomes tangential with the lane edge [58], [59]. In their
effort to remain within their designated lane (on the driver’s
side, left), they often overcompensated, resulting in a shift
towards the right instead of keeping the vehicle in the center
of the lane.

Regarding the obstacle avoidance task, there is a significant
difference in performance between in-vehicle driving and
both remote driving conditions. As explained in the methods,
the optimal total passing distance would be approximately
4.5 m. The in-vehicle performance is significantly better,
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TABLE 7. Results of statistical analysis with Wilcoxon for the questionnaires about immersion and telepresence, confidence and control and overall

driving experience.

Question | Motion vs. Normal = No Motion vs. Normal = Motion vs. No Motion
w P | W p | W p

IMM_01 210 < 0.001 210 < 0.001 44 0.942
IMM_02 171 < 0.001 210 < 0.001 60.5 1
IMM_03 210 < 0.001 171 < 0.001 42.5 0.317
IMM_04 210 < 0.001 210 < 0.001 63 0.882
IMM_05 210 < 0.001 210 < 0.001 60 0.437
IMM_06 210 < 0.001 210 < 0.001 108 0.310
IMM_07 187 < 0.001 190 < 0.001 85.5 0.131
IMM_08 210 < 0.001 171 < 0.001 40 0.258
IMM_09 120 < 0.001 190 < 0.001 56 0.835
IMM_10 210 < 0.001 190 < 0.001 25 0.496
C&C_1 190 < 0.001 210 < 0.001 53.5 0.451
C&C_2 210 < 0.001 210 < 0.001 29 0.449
C&C_3 210 < 0.001 190 < 0.001 39.5 0.685
C&C_4 3 < 0.001 8.5 < 0.001 36.5 0.375
C&C_5 12 0.001 13.5 0.001 36 0.830
ODE_1 190 < 0.001 171 < 0.001 42 0.830
ODE_2 190 < 0.001 190 < 0.001 8 0.080
ODE_3 14 0.005 13 0.024 28 0.152
ODE_4 105 < 0.001 136 < 0.001 35 0.110
ODE_5 190 < 0.001 190 < 0.001 37 0.331
ODE_6 205.5 < 0.001 179.5 < 0.001 25 0.824
ODE_7 124 0.003 153 < 0.001 66 0.034

Note. IMM_X = Immersion and telepresence questionnaire, C&C_X = Confidence and control questionnaire, ODE_X = Overall driving experience

questionnaire. X represents the number of the item that can be found in .

showing less deviation from this reference line. However, the
more conservative strategy of keeping greater distances to the
obstacle in the remote driving conditions could be related
to two aspects. First, participants applied more caution and
took less risks with regards to passing the obstacle in remote
driving as they might have lacked confidence and a sense of
control. Second, the limited lateral perception, as illustrated
by the driving experience questionnaire, may have prompted
them to keep a greater distance to the obstacle. Thus, remote
driving can be considered inferior to in-vehicle driving
regarding the assessment of distances to objects in order to
avoid them. The braking task did show significant differences
in performance, with participants stopping further from the
designated stopping line during remote driving compared
to in-vehicle driving. This suggests that the remote drivers’
perception of longitudinal distance was compromised, likely
due to the camera view’s location and perspective. This
shows the importance of camera positioning and the need for
visual feedback that supports accurate depth perception when
designing remote driving systems.

The findings presented in this section do not confirm the
hypothesis (H2) that motion feedback significantly enhances
task-specific driving performance and decreases the gap to in-
vehicle driving, as no notable improvements were observed.

D. LIMITATIONS

This study faced limitations that may have affected the
findings. The first limitation is the latency in the system.
This is one of the biggest challenges in remote driving
and can cause a delay in the control of the vehicle. The
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main source of the latency is the connectivity between the
vehicle and the RDS. The lack of a stable connection also
causes inconsistencies in the video quality, which might have
affected the results by distorting the isolated impact of motion
feedback on the findings. In addition, the control system of
the vehicle adds an extra delay in case of erratic steering
behavior. Another limitation is the physical limitations of
the workspace of the motion platform, constraining its
ability to fully replicate real-world motions in all conditions,
specifically under longer continuous maneuvers in the same
direction. Meanwhile, these results were only explored
for low-velocity scenarios and there might be differences
in medium- and high-velocity scenarios with other road
users also involved. Hence, our findings might be system
and scenario specific, and further research is required to
generalize them to other scenarios, particularly those at
higher speeds, and different systems.

VII. CONCLUSION

This study evaluated the impact of motion feedback on
remote driving performance and experience compared to
in-vehicle driving performance and experience during low-
velocity scenarios. The aim of the study was to determine
whether additional motion feedback is redundant in such
scenarios, decrease the design costs for the RDS. The results
demonstrate that while remote driving performance and
experience are significantly worse than in-vehicle driving,
the inclusion of motion feedback does not lead to measur-
able improvements in either performance or experience in
remote driving. The findings suggest that motion feedback,
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in its current form, may not be necessary for low-velocity
scenarios. This supports that a simplified Remote Driving
Station (RDS) without motion feedback could suffice for
these scenarios, leading to significant decrease of the cost
for the remote driving station. This can allow the wider and
faster adoption of remote driving in low-velocity scenarios
(e.g., parking lots, logistics hubs, areas with restricted access
and industrial zones, etc.). Additionally the results also show
that there is still a big gap between remote driving and
in-vehicle driving. Remaining challenges include: reduced
situation awareness, impaired depth perception and increased
workload. This highlights the need for more comprehensive
research towards remote driving from both a technical and
human factors perspective.

APPENDIX
QUESTIONNAIRES
A. OVERALL DRIVING EXPERIENCE
1) What was your overall assessment of your driving
experience? (5-point: very bad - very good).
2) Did the driving feel realistic? (5-point: very unrealistic -
very realistic).
3) How much attention did you pay to your driving? (5-
point: no attention - full attention).
4) How present did you feel in the environment you drove
in? (3-point: not there - fully there).
5) How well did you sense the vehicle speed? (5-point: very
bad - very good).
6) How well did you predict the vehicle speed? (5-point:
very bad - very good).
7) How well did you sense and recognize the road surface?
(5-point: very bad - very good).

B. IMMERSION AND TELEPRESENCE
All items in this questionnaire were answered on a 7-point
Likert scale, from: 1 = ““strongly disagree” to 7 = ““strongly
agree”’.
1) My perception of the lateral distances was always good.
2) My perception of the longitudinal distances was always
good.
3) Ialways trusted the system.
4) The vehicle reacted immediately to my commands.
5) My interaction with the environment was always natural.
6) The interaction feels realistic.
7) T always had a good overview of the environment.
8) I was able to handle the system from the beginning very
well.
9) The control method was intuitive, and I could always
focus on the driving task.
10) I was always in full control over the vehicle.

C. CONFIDENCE AND CONTROL

All items in this questionnaire were answered on a 7-point
Likert scale, from: 1 = “strongly disagree’ to 7 = ““strongly
agree’.
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1) Thad good control over the vehicle.

2) I felt confident in my ability to drive the vehicle safely.

3) I was comfortable driving the vehicle.

4) Driving the for a long distance would make me tired.

5) I had to apply a lot of physical effort to get the vehicle
to go where I wanted.

D. MOTION FEEDBACK QUESTIONNAIRE
All items in this questionnaire were answered on a 7-point
Likert scale, from: 1 = ““strongly disagree” to 7 = ““strongly
agree”.
1) The motion feedback helps judge the state of the vehicle.
2) The driving experience is more realistic when there is
motion feedback.
3) The motion helps in perceiving the road surface.

E. STATISTICAL ANALYSIS OF SUBJECTIVE DATA
The complete results of our statistical analysis on the
subjective data are presented in Table 7.
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