
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Privacy-oriented
Wearable Data
Acquisition for MMLA
Sensor & Modalities

BAP 2024 Q1/Q2
Micha Hoogendoorn
Lub Ras

Privacy-oriented
Wearable Data
Acquisition for

MMLA
Sensor & Modalities

by

Micha Hoogendoorn
Lub Ras

Project Duration: October, 2024 - December, 2024
Faculty: Electrical Engineering, Mathematics and Computer Science, Delft

Abstract

This project addresses the challenge of monitoring large, dynamic classrooms by proposing a privacy-
oriented multimodal data acquisition system tailored for MMLA. Traditional learning analytics rely on
unimodal data and fail to capture complex classroom interactions. In contrast, MMLA leverages mul-
tiple data sources to better understand learning behaviors. Current systems lack adaptability, user-
friendliness, and privacy considerations, impeding their integration into classrooms. The proposed
system comprises static and dynamic nodes, with dynamic nodes worn by individuals and static nodes
strategically placed in classrooms. Data features, selected on MMLA relevance, are transmitted wire-
lessly to the static node for storage and analysis. Privacy is prioritized by avoiding sensitive data
collection and adhering to GDPR guidelines. The design ensures adaptability, supporting additional
sensors and seamless integration into various educational settings. This foundational system enables
future research while addressing ethical and technical challenges in large-scale classrooms.

i

Preface

This thesis is part of the Bachelor Graduation Project at TU Delft, aiming to fulfill the requirements to
obtain the Bachelor of Science in Electrical Engineering. The project was proposed by Dr. Abdikivanani
and Dr. Dauwels, who have shown a growing interest in the field of Multimodal Learning Analytics
(MMLA). Its objective is to develop a data acquisition system that can serve as a foundation for future
research in MMLA. Given their expertise, the development of Machine Learning algorithms falls outside
the project’s scope. The ultimate goal is to improve learning outcomes in large, dynamic classrooms
like Tellegen Hall.

Due to the nature of the BAP-project for which this thesis is written, we recommend to also read the
thesis of the other sub group –our loyal fellow students– to improve contextual understanding of this
thesis.

We would like to extend our gratitude to Dr. Abdikivanani and Dr. Dauwels for their supervision through-
out the whole project, dedicating their time to offer support and guidance when needed.

We also wish to thank Mr. Lager for his exceptional effort in coordinating the project.

Micha Hoogendoorn
Lub Ras

Delft, January 2025

ii

Contents

Abstract i

Preface ii

1 Introduction 1
1.1 Multimodal Learning Analytics . 2
1.2 Challenges and concerns . 3
1.3 Available systems and tools . 3
1.4 Problem Definition . 5
1.5 Design . 5

1.5.1 Wireless Communication & Data Management (WCDM) 6
1.5.2 Sensors & Modalities . 6

1.6 Thesis overview . 7

2 Program of Requirements 8
2.1 Main Take-aways PoR . 8
2.2 General PoR . 8

2.2.1 Mandatory Requirements . 8
2.2.2 Trade-off Requirements . 9
2.2.3 Boundary Conditions . 9

2.3 Sensors & Modalities PoR . 9
2.3.1 Mandatory Requirements . 9
2.3.2 Trade-off Requirements . 9
2.3.3 Boundary Conditions . 10

3 Design 11
3.1 Introduction . 11
3.2 Micro controller . 11
3.3 Sensor selection . 12

3.3.1 Voice recording . 12
3.3.2 Motion tracking . 13
3.3.3 Proximity mapping . 13

3.4 Sensor implementation . 14
3.4.1 6-axis sensor . 14
3.4.2 I2S Microphone . 15
3.4.3 Bluetooth® Antenna . 16

3.5 Design choices . 16

4 Feature Extraction and Data Packaging 17
4.1 Introduction . 17
4.2 Micro controller . 17
4.3 6-axis sensor . 17

4.3.1 Feature extraction . 17
4.3.2 Data packaging . 19

4.4 Microphone . 19
4.4.1 Feature extraction . 19
4.4.2 Data packaging . 21

4.5 Bluetooth® antenna . 22
4.5.1 Feature extraction . 22
4.5.2 Data packaging . 22

4.6 Final data package . 23

iii

Contents iv

5 System Integration 24
5.1 Introduction . 24
5.2 Design integration . 24
5.3 Prototype building . 25
5.4 Merging of both sub products . 26

5.4.1 On-body testing . 26

6 Discussion & Future Work 29

7 Conclusion 30

A Component testing 31
A.1 The micro controller (ESP32-DEV-38P) . 31
A.2 6-axis accelerometer (MPU6050) . 31

A.2.1 Accelerometer testing . 32
A.2.2 Gyroscope testing . 32

A.3 Microphone testing (INMP441) . 33
A.4 Bluetooth® functionality testing (Antenna of the ESP32) 33

B Prototype testing 34
B.1 Microphone . 34

B.1.1 Volume . 34
B.1.2 Frequency . 36
B.1.3 Zero Crossings . 38

B.2 6-axis Accelerometer . 39
B.3 Proximity . 42

C Code for feature extracting and tests 43
C.1 Microphone . 43

C.1.1 Microphone functionality test code . 43
C.1.2 Feature testing code for microphone . 44

C.2 6-axis accelerometer . 47
C.3 Bluetooth® antenna . 50

C.3.1 Test for functionality of Bluetooth® antenna . 50
C.3.2 BLE® feature test . 51

C.4 Final data package . 52

1
Introduction

Teachers often encounter difficulties in monitoring large, dynamic classrooms, particularly when stu-
dents are mobile or when the number of students increases. The limited vision makes it difficult to
maintain a broad overview of students and their behaviour, which is essential for providing person-
alised, targeted support. This issue mainly occurs in spaces such as Tellegen Hall at TU Delft (Figure
1.1), as well as in other educational settings that involve practical tasks.

Figure 1.1: Overview of Tellegen Hall [1]

Despite the increase in educational tools, current technology has not yet been able to solve this problem.
Interactive tools such as Kahoot! may improve engagement and learning experience, but they are too
simplistic to automatically monitor students and accurately model their behaviour, as it is not their
intended purpose.

Recent advancements in machine learning (ML) and sensing technologies have generated significant
interest in their application within Multimodal Learning Analytics (MMLA). This domain involves the anal-
ysis of data collected from sensors using ML algorithms to monitor, understand and improve learning.

The field of MMLA introduces a new dimension to the educational setting by automating data collection
and using ML for analysis. This approach proactively assists educators in identifying challenges, allow-
ing for quicker and more accurate intervention. The goal is to enhance learning outcomes by identifying
students who may require additional support, promoting higher level of engagement, and enhancing
the overall educational experience.

1

1.1. Multimodal Learning Analytics 2

These advancements present great potential, but they also raise important ethical and privacy con-
cerns, related to the collection and use of sensitive data like video, audio, and physiological signals.
Addressing these concerns is crucial for ensuring that the technology is both effective and responsible.

Therefore, a privacy-oriented multimodal data acquisition system will be designed, tailored for
large, dynamic learning environments. The system will adhere to the ethical guidelines set by the
Human Research Ethics Committee (HREC) at TU Delft, which is responsible for safeguarding partici-
pants’ rights and privacy. This includes minimising the sensitivity of the collected data, in compliance
with GDPR regulations.

The system does not currently employ Machine Learning. Instead, it functions as a foundational re-
search product, designated to be adaptable for future modifications, allowing for adjustments or the
integration of additional features to support research and development in this area.

This chapter provides an overview of the project, beginning with a brief introduction to the field of MMLA
(section 1.1). It addresses the current challenges and concerns in the field (section 1.2), followed by
an analysis of existing systems (section 1.3), highlighting their shortcomings. This leads to the problem
definition (section 1.4), followed by our proposed design as a solution to the problem(section 1.5). The
final section (section 1.6) outlines the structure of the report.

1.1. Multimodal Learning Analytics
Learning analytics is an emerging field focused on understanding and improving education through
analysing and visualising data. Traditional learning analytics tools have primarily concentrated on col-
lecting data as a series of actions performed by an individual student, such as clicks or keystrokes on
a computer [2]. This approach simplifies the presentation of data in charts or graphs, thereby assisting
teachers in refining the learning process. These tools are usually integrated into existing digital sys-
tems, such as a computer. However, they are limited due to their reliance on unimodal data-data from
a single source, such as video, audio, motion, or physiological signals [3]. As a result, these systems
fail to capture the broader context and deeper interactions in classroom settings.

Conversely, Multimodal Learning Analytics (MMLA) addresses the shortcoming of traditional methods
by integrating various complementary data sources. This integration provides a more robust foundation
for identifying specific learning indicators and offers a thorough understanding of learning dynamics.

An example of MMLA in practice is the Automatic Presentation Feedback System (RAP), which illus-
trates how MMLA can improve oral presentation skills. In this scenario, participants present to a virtual
audience while a camera, microphone, and slide-tracking software capture their performance. By ex-
tracting and analysing certain features, such as posture, vocal tone and slide text size, the system
provides real-time feedback [4]. Similarly, another study [5] used motion sensors and video recordings
to examine the impact of classroom surroundings on student collaboration. Features including par-
ticipation levels, head movements, and interpersonal distances were extracted to analyse how table
shapes affected group dynamics.

(a) Setup of the RAP system [4] (b) Experimental setup of student collaboration study [5]

Figure 1.2: Examples of MMLA systems

1.2. Challenges and concerns 3

To achieve its goal, an MMLA system needs to establish the learning indicator and its resulting be-
haviours. While indicators, such as student collaboration, are not measurable, related behaviours, such
as speaking turns or eye contact are, which can be captured through data [6] Once these behaviours
and their data traces are identified, the next step is to select modalities measure these behaviours ef-
fectively. For instance, audio can measure total speech duration [7], while video can capture gestures
[8]. Selecting the right modalities ensures the collection accurate and meaningful data.

1.2. Challenges and concerns
Despite recent growth in MMLA research and advancements in sensing technologies and computa-
tional methods, MMLA has yet to reach its full potential in classroom settings. Two main challenges
contribute to this gap.

• Firstly, teachers often lack experience with modern data collection and visualisation techniques,
hindering their ability to use these tools in teaching [9],

• Secondly, existing MMLA systems may not align with teachers’ instructional needs, as the educa-
tional field lacks an understanding on how to support teachers interpret and apply MMLA insights
effectively [9]. As a result, systems are often designed without considering teachers’ levels of
technical knowledge, making them difficult to use for educators without technical training.

At present, not many MMLA systems effectively overcome these challenges by being both user-friendly
and seamlessly integrable into classrooms without requiring technical expertise.

There is also added concern about the validity of results, as individuals change their behaviour when
monitored. More obtrusive systems make natural behaviour less likely. Minimising obtrusiveness is
desirable to obtain natural learning behaviour. However, the term ”unobtrusive” is interpreted in various
ways across the literature, resulting in five distinct definitions [10]:

1. Interaction without main attention: Causes minimal disturbance to the user’s routine.
2. Interaction using hard-to-notice hardware placement or design: Placing the hardware in subtle

locations.
3. Interaction based on non-distracting data collection: Hardwaremight be visible, but data collection

is non-distracting.
4. Interaction that is socially accepted: Designed to be socially comfortable and non-disruptive to

others.
5. Interaction naturally integrated with the task: Does not alter original, natural interactions or expe-

riences.

There is no universally accepted definition, leaving designers to prioritise aspects of unobtrusiveness.
Restricting hardware design may limit the data collection. For example, subtle hardware placement
might impede capturing full facial and body data. Balancing unobtrusiveness with effective data-gathering
is necessary.

Last but not least, privacy concerns pose a significant challenge in MMLA research, particularly with
data sensitivity and storage [11]. Researchers need ethics committees’ approvals such as the HREC at
TU Delft, to address potential risks and, comply with data protection laws such as GDPR. Despite this,
there has been limited research on privacy and ethical considerations in MMLA [12], and few systematic
frameworks exist to mitigate these risks [13].

While it may be challenging to create a universal approach to ethical concerns, existing MMLA sys-
tems have limited measures to minimise data sensitivity or prioritise anonymisation. This gap indicates
a need for systems that explicitly address these privacy risks, which could simplify the process of ob-
taining ethical approval and support broader adoption in educational settings.

1.3. Available systems and tools
At present, there are several systems and research initiatives in the field of MMLA, thoughmany of them
are still in the research or prototype phase rather than being commercially available. These systems
are still undergoing trials in various educational settings to assess their effectiveness. However, none of

1.3. Available systems and tools 4

them fully address the issues highlighted in the previous section. By evaluating their design objectives
and limitations, especially those encountered during data acquisition, we can gain useful insights. Since
adaptability is an important requirement of the project, it will also be taken into account. The systems
under consideration are as follows:

1. CoTrack - system or software that involves tracking or monitoring multiple entities and their in-
teractions simultaneously through audio, video, and written logs. It features a graphical user
interface for easy navigation. However, it lacks privacy considerations of the students during
data collection [14];

2. EZ-MMLA toolkit – is a web-based application that uses video and audio recordings to gener-
ate data within the browser without transmitting sensitive information over the network. Data is
collected and stored securely. While it has some privacy considerations, the collected data is
sensitive. Additionally, integrating the toolkit into large, dynamic classrooms is complicated due
to its reliance on computers for functionality[15];

3. Classroom prototype - system that provides a teacher with a heat map using localisation, proxim-
ity, and motion sensors. This allows the teacher to have an image of their interactions and shift
attention to students who have not been visited recently. Even though privacy is not a primary
concern, the collected data is less sensitive and excludes elements like video or audio. How-
ever, the system is not adaptable for broader research applications and operates similarly to an
embedded system, dedicated to a single task [16];

4. Empatica E3 - a wearable data acquisition wristband that integrates 4 sensors (PPG, EDA, motion
and temperature) to obtain valuable information regarding the individual’s health. This device is
lightweight and compact, making it minimally intrusive. However, the collected data is highly sen-
sitive and may not be suitable for learning applications. Additionally, while learning applications
might require different sensors, the system does not permit modifications [17].

(a) CoTrack [14] (b) The EZ-MMLA toolkit [15]

(c) The classroom prototype with heat map [16] (d) Empatica E3 [17]

Figure 1.3: Available tools and systems

The assessment of current MMLA systems highlights a need for a more efficient solution that addresses
privacy concerns, adaptability, and integrability in large, dynamic classroom settings. Existing tools
often rely heavily on static components like computers, collect sensitive data that may not comply with
GDPR guidelines , or lack adaptability for diverse research purposes. The proposed system should
address these limitations to ensure that the same data acquisition platform can evolve to meet various
research needs while maintaining reliability and robustness.

1.4. Problem Definition 5

1.4. Problem Definition
MMLA aims to improve teacher visibility in large, dynamic classrooms. An adaptable data acquisition
system is needed that stores data for future use in MMLA applications. The system should be adaptable
to allow for later adjustments such as the addition of extra sensors and users. Additionally, it should not
limit itself to measuring specific learning indicators, but instead utilise sensors that can capture various
data traces.

Furthermore, addressing the challenges and concerns associated with MMLA requires developing a
system that focuses on privacy and integrates easily into large, dynamic classrooms. A privacy-oriented
approach relates to mitigating privacy risks, mainly regarding anonymisation and collection of sensitive
data. This aligns closely with HREC guidelines. For effective integration, the system should not solely
rely on static components.

Therefore, the problem definition can be stated as follows:

How can a privacy-oriented data acquisition system for MMLA be designed that is adaptable
and integrates easily into large, dynamic classrooms?

The system is not intended to provide a standardised framework but rather to offer an adaptable solution
that researchers can adjust and build upon. It does not guarantee HREC approval, nor does it claim
that the specific selection of sensors is universally suitable for all types of learning indicators. Such
decisions should be made by educators and future researchers.

The main objective of the system is to provide reliable and robust data acquisition, with the capability
to store data for future analysis. By focusing on privacy considerations, adaptability and integrability,
the system can assist researchers in achieving their goals in large, dynamic classrooms, regardless of
what those may be. As unobtrusiveness is an added concern, it will be defined here as ”data collection
that occurs in a non-distracting way”, allowing some flexibility in data collection methods.

Considering the system’s adaptability, it is essential to provide clear performance specifications, such
as data output rate, the total amount of data it can handle and the student support capacity. This will
ensure that researchers are aware of its limitations and can tailor the system to meet their specific
needs.

1.5. Design
The proposed design addresses all requirements outlined in section 1.4, with its structure illustrated in
Figure 1.4. To effectively monitor students in large, dynamic classrooms, students and teachers will be
equipped with small, wearable devices containing sensors that record data. These wearable devices
are referred to as the system’s dynamic nodes. Since these devices handle all the data collection, it
reduces the need for significant classroom modifications.

In large classrooms with many participants, all data will converge at a central point, known as the
root node. The root node, which remains in a fixed location, communicates directly with a server to
anonymously store the data for future analysis. Dynamic nodes transmit their data wirelessly to the
root node when within range. To handle scenarios where direct communication is not possible, the
classroom will also include relay devices called static nodes. These static nodes forward data from the
dynamic nodes to the root node and record data to capture additional interactions. The placement of
static and root nodes should be strategic provide wide network coverage and can be adjusted to the
teacher’s needs.

This communication and storage infrastructure forms the system’s backbone, facilitating reliable data
transmission and robust collection. The system must support the addition or removal of nodes without
impacting its overall functionality, and maintaining ease of setup. The system requires a minimum
configuration of 2 static and 2 dynamic nodes for demonstration purposes. A Graphical User Interface
(GUI) will be developed to display system status information, including active nodes and incoming
messages.

1.5. Design 6

Figure 1.4: Black box diagram of the system

Each node in the system is essentially a microcontroller equipped with various sensors, capable of wire-
less communication and initial processing of sensor data. Once processed, the data is packaged into
packets for transmission. Figure 3 illustrates this design in more detail. The selection of sensors should
be in line with GDPR guidelines, avoiding collection of sensitive data. This includes pre-processed au-
dio (where no identifiable information is stored), as well as non-intrusive sensors like proximity and mo-
tion sensors. A more detailed review of the sensor selection strategy will follow later. The static nodes
only use proximity sensors, since they are not attached to talking individuals. To ensure adaptability, the
system and data packages should accommodate the integration of additional sensors through allowing
for a high data throughput.

Figure 1.5: More detailed block diagram of system

The system is divided into twomainmodules: WirelessCommunication&DataManagement (WCDM)
and Sensors & Modalities (SM), each managed by a dedicated subgroup.

1.5.1. Wireless Communication & Data Management (WCDM)
The WCDM subgroup focuses on the communication between the nodes and the management of the
data that is being transferred. The communication will be done wirelessly to keep the system unobtru-
sive. The subgroup must find suitable wireless technology that meets the requirements. At server level,
the incoming data should be processed, stored, and monitored to allow for simple data extraction.

1.5.2. Sensors & Modalities
The SM subgroup is responsible for selecting sensors and modalities that can capture learning indica-
tors. This selection must consider the privacy of the participants as it should not include sensitive data.
The implementation of sensors and modalities should be kept as unobtrusive as possible. This will be
a challenge for the dynamic nodes. The subgroup is also responsible for processing the sensor data
and packaging it into data packets suitable for transmission.

1.6. Thesis overview 7

1.6. Thesis overview
This report addresses the wireless communication and data management aspects of the project.

Chapter 1 provides an introduction to the project, including some background information, a state-of-
the-art analysis, the problem definition and proposed solution.

The subsequent chapter outlines the specific requirements that the system must meet.

Chapter 3 details the design choices made during the project. Chapter 4 addresses the tangible imple-
mentation of these design choices, supported by testing results of various design elements. Chapter 5
covers the overall implementation of the system and the results that validate its performance.

The discussion segment presents the significance of the findings and future work. The conclusion
summarises the key points of the project.

2
Program of Requirements

The specific requirements are set to develop a data acquisition system contributing to MMLA purposes
according to the problem definition stated in Chapter 1.

The main takeaways and Program of Requirements (henceforth ’PoR’) have labels to describe the
different requirements. TA is for take-aways, MR is for mandatory requirements, TR for trade-off re-
quirements, BC for boundary conditions.

2.1. Main Take-aways PoR
• TA1 The end-goal of the system is to do data acquisition and storage for MMLA purposes.
• TA2 The system should collect data in a non-distractive way.
• TA3 The system should store data ready to be further analysed.
• TA4 The system should be easily integrable for users in dynamic classroom settings.
• TA5 The system should implement a privacy-sensitive sensor selection strategy that minimises
data sensitivity while obtaining useful data.

• TA6 The cost should be minimized when designing a data acquisition and storage system.
• TA7 The system should be designed as a foundational research product, intended to serve as
basis for further research.

2.2. General PoR
To be able to accomplish the needs of this product a few requirements should be adhered to. Both
hard, mandatory and soft, trade-off requirements are listed below. Notice how the TA-codes recorded
at the end of the line are referring to the corresponding take-aways in section 2.1.

2.2.1. Mandatory Requirements
The product must

• MR1 Extract data features from multiple sensors on the nodes. [TA1]
• MR2 Communicate the data features wirelessly between the nodes. [TA2]
• MR3 Receive and store the data features in the database. [TA1, TA3]
• MR4 Enable the extraction of the data in the database for use in MMLA. [TA1, TA7]
• MR5 Be extendible in terms of sensors and nodes. [TA7]
• MR6 Not have name-related user ID’s. [TA5]
• MR7 Cost less than €500. [TA7]
• MR8 Operate shortly after being powered on, with no manual configuration required. [TA4]

8

2.3. Sensors & Modalities PoR 9

• MR9 Should not require human intervention after setup. [TA4]
• MR10 Not collect sensitive data defined by the GDPR guidelines. [TA5]

2.2.2. Trade-off Requirements
Also, the product should preferably

• TR1 Have little visibility when collecting data [TA2]
• TR2 Be light and small. [TA2, TA6]
• TR3 Be scalable in range. [TA7]
• TR4 Be usable for individuals without extensive technical knowledge. [TA4]
• TR5 Cost as low as possible. [TA6]
• TR6 Have low power consumption. [TA2, TA6, TA7]
• TR7 Take less than 20 minutes to setup. [TA4]
• TR8 Collect data in a non-distractive way. [TA2]

2.2.3. Boundary Conditions
Looking at main take-away #1 (section 2.1); the focus of this project is to do data acquisition and storage
for MMLA purposes. This entails the following:

• BC1 The system will be tested using 2 static and 2 dynamic nodes. [TA1]
• BC2 Analysing data and reasoning using Machine Learning is out of scope. [TA3]
• BC3 Data security will be out of scope. [TA5]

2.3. Sensors & Modalities PoR
For the sensors and modalities of the project, there are some requirements in addition to the general
PoR, these are listed below, labeled with an extra S to distinguish from the general PoR. The choices
for some ”random” specific requirements will be further clarified in the upcoming chapters.

2.3.1. Mandatory Requirements
The sub-product must

• SMR1 Be connected to the whole system setup. [TA1]
• SMR2 Output at least 4 sensor features that contribute to MMLA. [TA1]
• SMR3 Read and process data from the microphone and 6-axis accelerometer simultaneously.
[TA1]

• SMR4 Broadcast Bluetooth® for proximity purposes to nearby nodes.
• SMR5 Measure at least once a second (1 Hz polling rate).
• SMR6 Have a data measurement window of at least 100 milliseconds long.
• SMR7 Combine the microphone and 6-axis accelerometer data streams into one output data
package stream.

• SMR8 Have data packages of at most 200 Bytes.
• SMR9 Communicate wirelessly with the data management (WCDM) module. [TA2]
• SMR10 Be extendable in terms of value-adding sensors. [TA1, TA3]
• SMR11 Have an internal powering system. [TA2]

2.3.2. Trade-off Requirements
Also, the sub-product should preferably

• STR1 Be easily set up by non-experts. [TA4, MR8, MR9]
• STR2 Be scalable in configuration for larger group setups. [TA7, MR5]

2.3. Sensors & Modalities PoR 10

• STR3 Be light weight and small sized to be minimally invasive to wear. [TA2, TR1, TR2]
• STR4 Have low costs to allow many sensor modules. [TA6, TR5]
• STR5 Make only costs that are adding to the mandatory requirements. [TA6, TR5]
• STR6 Have a rapid and solid system start-up procedure. [TA4, TR7]
• STR7 Be power efficient when in an inactive state. [TA6, TR6]

2.3.3. Boundary Conditions
• SBC1 The outputted sensor data will not be further analysed by this system. [TA3]
• SBC2 The sub-product will be tested based on 2 students/users. [TA1, BC1]

3
Design

3.1. Introduction
Considering the overarching project structure, the main target of the Sensors & Modalities (SM) sub-
group is to design and implement a wearable (dynamic node) to measure useful data. To acquire the
useful data, different sensors will be used and their important features will be extracted. These features,
relevant for MMLA, need to be packaged and sent wirelessly to the data server. In order to reach these
targets, the electronic components have to be chosen based on the PoR (chapter 2).

3.2. Micro controller
All of the subgroup’s requirements can not be fulfilled without using some sort of micro processor to do
feature extraction, data packaging, and package transmission. A micro controller is needed to control
the signal transfer between input and output. Hence, a micro controller unit (MCU) is selected based
on the PoR of chapter 2 and is preferably chosen in cooperation with the WCDM subgroup to allow
integration flexibility; adhering to requirement SMR1 (subsection 2.3.1).

STM32 ”The STM32 family of 32-bit micro controllers based on the Arm Cortex®-M processor is de-
signed to offer new degrees of freedom to MCU users. It offers products combining very high perfor-
mance, real-time capabilities, digital signal processing, low-power / low-voltage operation, and connec-
tivity, while maintaining full integration and ease of development” [18].

ArduinoNano 33 IoT The Arduino Nano is a small sized controller that is working with I2S protocol. This
model can feature either a Wi-Fi® module or Bluetooth® Low Energy (BLE) and several environment
sensors, dependent on the considered extension version. The Arduino Nano 33 IoT model specifically
[19] is very small and light weight (5 gram), but is equipped with a relatively slow processor (48 MHz).

Raspberry Pi The Raspberry Pi model 3 to 5 [20] is also considered as a MCU. Since this unit can be
classified as a full-fledged computer system, it is too powerful for the task. As a result, simple tasks are
executed less efficiently and much power is unnecessary consumed. Even though the unit is already
relatively large, it needs module extensions to do wireless communication. This makes the Raspberry
Pi inapt for pre-processing acquired data on a wearable.

ESP32 The ESP32 [21] has a relative powerful chip (up to 240 MHz), so analysis can be done on the
processor itself. It supports both BLE and WiFi connectivity; for which it even has its own ESP-NOW
protocol to allow for easy implementation. In addition, location tracking –elaborated more in section
3.3.3– can be implemented without the need for extra parts, contrary to the other MCU options. Low
power consumption (3.3V) and the compact character (10 gram) of the module are also advantageous.
Compared to other micro controllers (see Figure 3.1), ESP32 scores the highest and is most suited to
use for a prototype.

11

3.3. Sensor selection 12

Figure 3.1: Comparison table of considered MCUs

3.3. Sensor selection
A privacy-sensitive sensor selection strategy has been used to minimize data sensitivity while obtaining
useful data; as intentionally planned in the main project takeaways (TA5; section 2.1).

3.3.1. Voice recording
Based on research [22] emotions and mood can be monitored well using speech analysis. Although
the combination of ”both audio and visual modalities contribute to express emotions” [22, p. 53], raw
video data is not privacy oriented and will therefore not be utilized.

The research of Viswanathan and Vanlehn [23] shows that the degree of collaboration, cooperation
and asymmetric contribution can be measured with accuracies between 85% and 96%. For example,
trans-activity (i.e., the extent to which learners build on each other’s reasoning) is a property of joint
problem solving; this cooperation-related characteristic can be monitored by speech recording.

Earlier work of Zhou et al. [24] has shown that collaboration quality and creative fluency can be mea-
sured by means of speech analysis. They underline the importance of examining the relationship
between social behavior and reaching the full potential of collaborative designing and -learning. ”Con-
sidering that researchers have identified strong associations between interaction patterns and collab-
orative engineering design outcomes ..., there is a critical need to examine the relationships between
social interaction processes and collaborative design outcomes in different spatial and material con-
texts” [24, p. 2]. In fact, conducting analysis on speech time series data has often been used in context
of social interaction research [25] [26].

Concluding from the research presented above, monitoring learning behavior using speech has a high
data density. This means that a lot of information can be drawn from only a handful of data. Sound
characteristics like pitch, spectral energy distribution, noise levels, speech duration, jitter and shimmer
are some examples of helpful indicators for measuring learning behavior of the user. Feature selection
and extraction will be discussed in section 3.4.2.

In the search after a competent microphone, several options have been considered and compared (see
Figure 3.2):

1. Analog microphone, which leaves the incoming analog sound signal–that has a continuously
and smoothly varying amplitude or frequency–unmodified.

2. Inter-IC Sound (I2S) microphone, a digital microphone using a protocol to enable a serial bus in-
terface specially designed for communicating digital audio data between integrated circuits (IC’s).

3. Pulse density modulation (PDM) microphone, a digital microphone which has a simple PDM
interface that generates digital audio signals; directly correlated with the original analog versions.

An I2S microphone seems to be best for the wearable. Although PDM is much more resilient to electri-
cally noisy environments, I2S has a high signal to noise ratio (SNR) to provide relative noise free audio
at the output. Because of internal processing, a digital signal is send out, so there is no need for analog
to digital conversion afterwards, as is required for an analog microphone. While PDM signals require
further processing by an external digital signal processor (DSP) or micro-controller, the I2S protocol
provides immediate analysis of the digital audio signal by the micro-controller. Therefore, the data rate
of the audio signal is already at an acceptable level when it arrives at the DSP. This eliminates the need

3.3. Sensor selection 13

for additional components within the design for processing or conditioning the captured audio data. Al
together, I2S is likely to be the best way to reach the project target in relation to price-sensitive prod-
ucts that are wholly self-contained and where energy efficient battery-powered operation and compact
integration are a prerequisite (TA2, TA6, TR6; section 2.1 & 2.2.2).

Figure 3.2: Comparison table of considered voice recording means

3.3.2. Motion tracking
Monitoring a student’s posture and linear motion has been found insightful for measuring the extent of
boredom and engagement in group learning cases [27], as engagement is closely related to common
purpose, which manifests itself in the interaction of students ”through repeated patterns and repetition
of posture and through proxemics, the physical closeness and synchronic, aligned postural shifts” [28,
p. 91].

Tracking posture helps map the user’s learning behavior since good posture increases learning perfor-
mance [29] [30] [31]. Research also shows that motion and posture monitoring supports the validation
of speech measurements, since both verbal and non-verbal communication are correlated in case of
consistent social learning behavior [32]. In order to draw correct and consistent conclusions with MMLA,
both speech and motion needs to be measured simultaneously.

Several motion tracking options have been considered and compared:

1. 3-axis Accelerometer, measuring total acceleration, including the static acceleration from gravity
that would be present even when a student is not moving.

2. 3-axis Gyroscope, measuring instantaneous angular velocity on each axis. Due to noise, it en-
sures high quality signals in the short term. However, since angular position has to be integrated
off of the gyroscope, it will build up error over time.

3. 6-axis Sensor, combining both the 3-axis accelerometer and gyroscope to allow for more accu-
rate and context related measurements.

While the accelerometer can measure approximate posture and tilt–enabling step counting and activity
tracking–these features are not enough to track the orientation of the sensor, which can be used to
measure user orientation specifically. Due to angular velocity measurements, the gyroscope can add
metrics to the feature list such as momentum to allow for rotation tracking and gesture recognition. It
also gives a reference point for the accelerometer, allowing to measure the yaw rotation. The sensors
complement each other well and provide additional information. Although this will infer an overall higher
power consumption, it will not have significant impact on the costs. Also, the 6-axis sensor will not
introduce any significant complexity for implementation. This leaves the 6-axis sensor to be the best
match.

3.3.3. Proximity mapping
Measuring the distance between students and their relative proximity to educational equipment, such
as a lab-desk with an oscilloscope on top, is found to be a good quantitative indicator of social aspects
of teamwork. Hoegl et al. state that ”team member proximity is positively associated to all three more
socially oriented aspects of the teamwork quality construct, i.e., mutual support, work norms of high
effort, and cohesion” [33, p. 1160]. Moreover, ”team members in proximity are more likely to develop
a stronger sense of group identity ... leading to increased effort on the common task” [33, p. 1157].

3.4. Sensor implementation 14

Reason enough to monitor and analyze proximity for MMLA objectives, making it a product requirement
(SMR4, section 2.3.1).

Implementing this into this project’s related terms: proximity has to be measured between dynamic
nodes reciprocally and between dynamic- and static nodes. To implement this metric, several means
have been considered and compared (see Figure 3.3):

1. Bluetooth® (BT) antenna, uses detection on signal strength to measure distance from received
signals. Key parameters like Advertising Time, Advertising Interval, Scan Interval and Scan Win-
dow are determining how quickly a specific BT device can detect other BT devices in the vicinity.

2. Capacitive sensor, emitting an oscillating electric field between target and sensor that changes
with distance .

3. Frequency Modulated Continuous Wave (FMCW) radar sensor, a panoramic localization and
mapping tool, designed to measure distance and speed of objects within range. This is ideal for
mapping proximity of high-speed moving objects or individuals [34].

4. Inductive sensor, emitting an oscillating electromagnetic field that is draining electric energy
when a metal target approaches.

5. Pyroelectric infrared (IR) sensor, designed to sense heat exchange, considering only radiation
in a certain domain, specific to human body thermal radiation waves (0.75 - 15 μm).

6. Ultrasonic (US) sensor, designed to emit US bursts to a target and receive the reflected wave.
Traveling time is the key parameter to measure the distance.

Elimination of these six options is done considering the requirements in chapter 2. In a dynamic class-
room, there will be many obstacles to be accounted for while mapping proximity (e.g. tables, lab
equipment, walls, or individuals). Now, for the US- and the IR sensor, the target to which the distance
has to be measured has to be in a direct line of sight of the sensor, introducing errors and non-complete
measurements. Therefore, these two options are not found competent to do the job. This character-
istic applies on capacitive- and inductive sensors too. In addition, inductive- and capacitive sensors
can only measure distance within a short range. Due to this, it was deemed to be insufficient. Mak-
ing these two options a mismatch. In case of the inductive sensor, an additional disadvantage is that
only metallic objects can be observed, limiting the scalability and non-invasive character of the product.
Meanwhile, two potential proximity sensing means are left considering: FMCW radar and Bluetooth®
antenna. Both of these technologies do have a wide range of measuring distance. These allow for
minimally invasive sensing too, since (radar) antennas can be placed out of sight. Although the FMCW
radar can be placed centrally–not requiring extra equipment while scaling the local deployment of the
product–its significant higher market retail price is the most outstanding property that is differentiating
itself from the Bluetooth® antenna application; making the latter option the best match for proximity
mapping, with a total score of 8/10 (see Figure 3.3).

Figure 3.3: Comparison table with considered means of proximity mapping

3.4. Sensor implementation
3.4.1. 6-axis sensor
Sensor characteristics
The best 6-axis sensor on the market, that is both affordable and qualitative reliable, is the MPU-6050.
To allow for direct sensor data readouts by the Integrated Development Environment (IDE) for program-
ming purposes, this sensor model features three 16-bit analog-to-digital converters (ADCs) for digitizing

3.4. Sensor implementation 15

the gyroscope outputs and three 16-bit ADCs for digitizing the accelerometer outputs. Communication
with all registers of the device is performed using the I2C protocol at 400 kHz.

For precision tracking of both fast and slow motions, the parts feature a user-programmable gyroscope
full-scale range of ±250, ±500, ±1000, and ±2000°/sec (dps) and a user-programmable accelerometer
full-scale range of ±2g, ±4g, ±8g, and ±16g. Where ’g’ stands for gravitational acceleration, related to
Earth’s gravitational force. For example, an object at rest on Earth’s surface is subject to 1g, equaling
the conventional value of gravitational acceleration on Earth, about 9.81 m/s2.

For power supply flexibility, the MPU-6050 operates from VDD power supply voltage range of 2.375V-
3.46V, as stated in the datasheet [35]. This means that direct powering from the micro controller 3V3
output is possible. Integrating with time, this allows for relative low power consumption; helping to meet
requirement STR7 (section 2.3.2).

Feature selection
A 6-axis sensor was chosen to be able to monitor learning behavior by measuring the movements and
body orientation of the user. Raw data that can be directly extracted from the sensor’s registers entails
a) orientation of the sensor and b) angular velocity. Multiple features can be drawn from these metrics,
contributing to monitor user’s movements;

• Momentum
• Pitch-, Roll-, and Yaw angle
• Approximate posture & tilt

This short list indicates the possibilities to uncover someone’s level of activeness asmovement behavior
can be translated into someone’s level of engagement in learning. Whether it is learning individually
or within a group. However, only the Pitch-, Roll-, and Yaw angle (degrees) are calculated, packaged
and transmitted. Based on these angles, the tilt of the device, and thus the approximate posture of the
user wearing the device can be determined [31]. Leaving the data unprocessed allows for compact
data packages that can be analyzed more efficiently afterwards (MR4, SMR8; section 2.2.1,2.3.1).

3.4.2. I2S Microphone
Sensor characteristics
The sensor model INMP411 found to be a good fit for a I2S Microphone. It is a fully integrated, high
performance, high SPL (i.e. Maximum sound pressure level without distortion), low noise, low power,
analog output bottom-ported, omnidirectional MEMS microphone. ”The INMP411 consists of a MEMS
microphone element and an impedance converter amplifier for audio signal processing. The INMP411
sensitivity specification makes it an excellent choice for both near field and far field applications” [36,
p. 1]. However, this means unwanted noise distortion because of far field recording, introducing a
challenge that has to be dealt with during the design process. This will be touched upon in section
5.4.1. The low current consumption of the INMP411 enables long battery life, ideal for the portability
nature of the dynamic nodes (TR2, SMR11; section 2.2.2,2.3.1).

The datasheet also indicates that ”the INMP411 has a linear response up to 131 dB SPL. It offers high
SNR and extended wideband frequency response resulting in natural sound with high intelligibility” [36,
p. 1]. These statements will be checked by testing (see chapter 4.4) to guarantee the quality and
usability of the product, stated in requirement MR4 (section 2.2.1).

Feature selection
A microphone was chosen in order to gain insights into learning behavior by analyzing speech data. In
the previous section (3.3), the INMP441 I2SMicrophone has been selected to do recordings that can be
allow for further feature extraction. Raw audio is coming into the micro controller. However, to prevent
data trace-backs to individual users, some specific features need to be extracted before storage and
further analysis. Therefore, no voice recording will be done in the strict sense of the word ’recording’.
In other words, complete conversations of the users will not be stored.
This means that features, helpful for MMLA purposes, need to be extracted. Due to limited time to
implement all the features, only the most usable ones will be extracted and sent (SMR2, section 2.3.1).

3.5. Design choices 16

According to The Multimodal Learning Analytics Handbook [2], the top five speech features used in
OPAFs –Multimodal systems for Oral Presentation Automated Feedback– are:

1) Filled pauses, 2) Volume, 3) Pitch, 4) Cadence, and 5) Empty pauses.
With filled pauses, ”the use of sounds or words that are spoken to fill up gaps in speech utterances (e.g.
“ahm”, “uhm”)” [2, p. 63] are meant. Since the audio recording should be privacy oriented, this feature
will not be extracted. Volume and Pitch are easily implementable features. Cadence; the velocity of
speech, does not add more value to MMLA compared to empty pauses (moments of silence employed
by the person speaking) since the rate of speech is personality specific and does not change that much
over time. Empty pauses, however, are more valuable for MMLA and can be extracted by looking at
noise levels and zero crossings [37]. To conclude this comparison, the following three features are
selected to be extracted from raw audio data and subsequently sent to be stored and analyzed:

• Volume level of strongest frequency (dB)
• Pitch of strongest frequency (Hz)
• Zero crossings

3.4.3. Bluetooth® Antenna
Proximity mapping by use of Bluetooth® antenna requires one antenna per user such that mutual
distance can be measured. Since every user is eventually equipped with a wearable that is controlled
by a wireless communicative MCU, an on-board BLE antenna is automatically implemented. Hence,
there is no need for extra modules since the ESP32 module covers BLE broadcasting, featuring an
average typical adjacent channel transmission power of -56.7 dBm, according to the datasheet of the
ESP32-WROOM-32 [21]. This feature of BLE beacon contributes to power efficient use while in an
inactive state (STR7, section 2.3.2).

3.5. Design choices
To enable flawless measuring of motion, speech and proximity of the user, while keeping power con-
sumption rates moderate, a compromise for transmitted signal power has been chosen. This means
that data requests will be made by the server every second: a polling rate of 1 Hz. While the sensors
are read out continuously, the features are extracted only once a second. In practice, this translates
to a refreshment rate of incoming motion, speech and proximity data once a second (SMR5, section
2.3.1).

According to the requirements (SMR6, section 2.3.1), the measurement window has to be at least 100
ms long. This minimum window size is chosen to ensure the optimization of the sensor readings while
maintaining data quality. To measure the microphone features, 1/8th of a second (125 ms) is used.
1 second (1000 ms) is used for reading out features of the 6-axis sensor and broadcasting BLE for
proximity mapping.

Dependent on the use case, the load of connected devices can be extended tremendously (MR5, STR2;
section 2.2.1, 2.3.2). To allow for many separate dynamic nodes in parallel, the size of the transmitted
data packages should be limited. When sending out only required MMLA data, the package size should
not exceed 200 Bytes. This restriction would help the other sub group with scaling to a high number of
connected dynamic nodes. The total size of the data package –including motion, speech and proximity
features– should end up way smaller than 200 Bytes. This would help the scalability as there would be
plenty of room to add multiple extra sensors, as is a mandatory requirement (SMR10; section 2.3.1);
at least 5 sensors for MMLA purposes can be appended.

4
Feature Extraction and Data

Packaging

4.1. Introduction
In this chapter the chosen features from section 3.4 will be extracted from the data of the sensors. After
the extraction of the features they will be packed into a unified structure ready to be send wirelessly.
For this to deliver correct data first the sensors have to be tested to be working correctly. This can be
read in Appendix A. All components will be gone through with their respective chosen features.

4.2. Micro controller
The ’beating heart’ of the dynamic node is the micro controller. It needs to work properly to ensure
that all data is read and analyzed correctly. To verify whether the micro controller functions correctly,
a few main functionalities of the micro controller –which are needed in order to extract the data and
eventually send this in packages– are tested. These functionalities are:

• Reading inputs from pins (check if a pin has high voltage (3.3V).
• Setting a pin to high voltage (3.3V).
• Receiving data through serial connection.
• Being able to send and receive through Bluetooth®.

If all of these functionalities work correctly, the sensors can be read out and their data can be send wire-
lessly; hereby meeting requirements SMR3 and SMR9 (section 2.3.1). The testing of the functionalities
of these points can be found in appendix A.1

4.3. 6-axis sensor
The first component that will be tested and validated is the MPU6050, a 6-axis sensor. Before different
features can be extracted, this sensor itself must be tested to be found operational. Before the sensor
can be used, the sensor working needs to be verified. This verification is done in appendix A.2.

4.3.1. Feature extraction
As decided upon in section 3.4.1, three features are extracted and send: The Pitch-, Roll-, and Yaw
angle. These need to be tested to validate the working of the sensor. These three angles are related to
the three coordinate axes –X, Y, and Z– which are fixed on the sensor (see Figure 4.1). The Roll angle
is rotating around the X-axis and is thus pointing in the YZ-plane (see Figure 4.2). The Pitch angle
is rotating around the Y-axis and is thus pointing in the XZ-plane. The Yaw angle is rotating around
the Z-axis and is pointing in the XY-plane. Two of these angles could be calculated by using a polar
coordinate system if there is a consistent known vector. This can be seen in [38]. The two important

17

4.3. 6-axis sensor 18

formulas are

Pitch = arctan

 ax√
a2y + a2z


Roll = arctan

(
−ay
az

)
These calculations for roll and pitch do have a downside. When moving they will not be as accurate
as when stationary since the calculation are done based on stationary accelerometer data. These
inaccuracies however should not be that big unless accelerating at high speeds. And the inaccuracies
should never take that long as acceleration is usually only done in shorter bursts. Now only a way
to measure the yaw is needed, and it was decided to do this by integrating the rotation speed. since
integrating over time gives location. this will turn into the following formula

yaw(t) = θ0 +

∫ t

0

Gz(t) dt

Here θ0 stands for the starting angle of the yaw and Gz stand for the rotation speed in z-axis. This can
be simplified if yaw is measured in discrete increments of time. This will result in

yaw(t) = yaw(t− 1) +Gz(t) ∗ dt

Here yaw(t − 1) is the previous yaw angle and dt is just a discrete time interval. With this formula
the yaw can go above 360 so this has to be accounted for. To keep it consistent with pitch and roll
the yaw will be set from −180◦ to +180◦. The three features can now be calculated, allowing it to be
tested. The code that was used to test them can be found in appendix C.2. To test the angles, the
roll, pitch and yaw are measured for when each (x,y and z) axis is measured to have an angle of 90◦.
The measurements according to the MPU6050 are then written down. So either the roll, pitch or yaw
angles should be ±90◦ in a perfect test. The results of the test are shown in the following Table 4.1.

Rotation used measured Roll (◦) measured Pitch(◦) measured Yaw(◦)
Roll angle +90◦ 91.3 0.5 2.0
Roll angle -90◦ -89.3 3 0.2
Pitch angle +90◦ -2.3 89.1 0.5
Pitch angle +90◦ 0.4 -89.8 -1.9
Yaw angle +90◦ 1.8 3 88.4
Yaw angle -90◦ 0.4 2.66 -87.88

Table 4.1: measurements of roll, pitch and yaw in different orientations

The results are not exact 90◦. But this can be explained by not angling the sensor exactly 90◦. The
biggest difference is 2.12◦. This is still fairly accurate. The roll, pitch and yaw are working within
acceptable ranges.

Figure 4.1: Coordinate system of the MPU6050; 6-axis sensor Figure 4.2: Orientation of Roll-,
Pitch-, and Yaw angles

4.4. Microphone 19

4.3.2. Data packaging
The roll, pitch and yaw are all three stored as a normal float. A float has a total size of 4 bytes. This will
make the 3 features together a size of 12 bytes. It is possible to decrease the number of bytes however.
This is because the floats are only ever within -180.00 to 180.00 degrees with a precision of 2 digits
after decimal. It could even be stored as a int16 where last 2 digits are the 2 decimals. This would give
the range of -327.68 to 327.67. Doing this would bring down the total byte size of the packet to 6 bytes
since a int16 is only 2 bytes. Due to agreements with the other subgroup of the packets size this was
not implemented as a 12 byte packets was already expect.

4.4. Microphone
The second component of which some features will be extracted is the microphone. But before this the
functionality of the microphone needs to be certain and thus tested. This is done in appendix A.3

4.4.1. Feature extraction
As can be read earlier, three features from audio have been decided to be measured and extracted
from the audio data.

• Volume; measured in dB
• Pitch or strongest frequency; measured in Hz
• Zero crossings.

The following subsections will be more in depth into how the different features are tested and validated.

Volume
The first metric that will be tested for and measured is volume. To measure the volume a measure-
ment window needs to be chosen. To get the volume in this measurement window multiple paths can
be taken. for example doing a root mean square measurement or make use of an Fourier transform
[39], this will change the data from time domain to frequency domain. From the frequency domain you
can get the average volume by getting the average magnitude of the frequencies. Since frequency
detection will be needed later for the pitch detection, a Fourier transform will already need to be done.
Because of this it was decided to use this second method to obtain the volume. So to get the volume
first a measurement window is chosen for the Fourier transform. This measurement window needs
to be big to be more precise and give an average over a longer period. But not too big as to eat up
too much of the resources of the ESP32 as it needs to do other tasks as well. So the measurement
window is a trade off that must be made. To limit the calculations needed for the Fourier transform. It
was decided to make use of a Fast Fourier Transform (FFT) [39]. This reduces the complexity of the
calculations fromO(n2) toO(n log n). It was decided on a measurement window of 2048 samples. This
gives no zero padding to the FFT, since it is a power of 2, and thus no redundant calculations need to
be performed. This equates to a measurement time of 0.128 seconds.

samples per measurement

sample rate (Hz)
=

2048

16000
= 0.128s

This means the average volume over a period of 0.128 seconds will be measured. Asmentioned before,
to get the Volume from a FFT, the average amplitude of all the frequencies needs to be rated. This can
be done by summing up all the magnitudes of each frequency (|fn|) and dividing this by the amount of
samples (N).

∑N/2
n=0 |fn|
N/2

= volume

The dividing by two happens because a FFT will mirror at the halfway point and thus the second half
of the samples is redundant. The full code for testing for volume can be found in appendix C.1.2. The
following code snippet is just how the volume calculation is done

4.4. Microphone 20

1 // Calculate average dB
2 double totalVolume = 0.0;
3 int volumeCount = 0;
4 for (uint16_t i = 1; i < (samples / 2); i++) {
5 totalVolume += vReal[i];
6 volumeCount++;
7 }
8 double averageLinearVolume = totalVolume / volumeCount;
9 double localAverageDb = 20.0 * log10(averageLinearVolume);

The amplitude of the frequencies obtained from the FFT corresponds to the volume because it repre-
sents the strength of the audio signal at each frequency. These magnitudes are unitless and indicate
the relative intensity of the signal. While they provide a measure of the signal’s power, the values
are only relative to the microphone’s sensitivity and do not correspond to absolute physical units like
pressure or sound level unless calibrated. So in the end it will only give a relative volume for INMP441
microphones.

To put this all into practice and see if it works, a small test was conducted. The microphone was con-
nected to the ESP32 and volume measurement started. the test starts with no sounds and from there
slowly increase the volume from a constant audio source, for this a laptop was used. So the graph
starts with the level of the noise and increases from there as the audio source volume increases. The
laptop output audio will go from 0% to 100% in increments of 10%. The results can be seen in the
Table 4.2.

Volume 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
dB 34 40 44 55 61 64 67 69 71 72 73

Table 4.2: Audio volume VS dB-level

This was only a test to see if the volume metric can measure relative volume and it seems to do this
well as the volume increases so does the decibel rate. Since the distribution of the output audio of the
laptop is not known, the accuracy can not be obtained. More tests will be seen later.

Pitch
Second metric that will be tested and measured is pitch. This means the frequency with the highest
magnitude. The already obtained FFT (section 4.4.1) can be used to extract the pitch. To do this, all
frequencies must be passed by to check which frequency has the highest amplitude. How this is done
can be seen in the following code snippet. The full code for testing of pitch can be seen in appendix
C.1.2

1 for (uint16_t i = 1; i < (samples / 2); i++) { // Only positive frequencies
2 double frequency = (i * SAMPLE_RATE) / samples;
3 double magnitude = vReal[i];
4

5 // Filter: Only consider frequencies between 20 Hz and 4000 Hz
6 if (frequency >= 20 && frequency <= 4000) {
7 if (magnitude > maxMagnitude) {
8 maxMagnitude = magnitude;
9 peakFrequencyLocal = frequency;

10 }
11 }
12 }

Like for the volume, only the first half of the samples is tested since the second half is just a mirror
from first half. A filter is put in place to only get frequencies from the human speech range since human
speech frequencies is the most important for the wearable. Now a quick test can be done to see if it can
measure the frequency well. This test will be done by a tone generator from a laptop. A few different
frequencies are tested.

As can be seen in Table 4.3, the measured frequency is always close to the generated frequency
but often has a slight difference. This slight difference can be explained by our sample size and the

4.4. Microphone 21

generated frequency (Hz) 116 192 244 441 805 1318 2489 3971
measured frequency (Hz) 117 195 242 437 805 1318 2492 3968

Table 4.3: Detected frequency accuracy

limitations of a FFT. This is because a FFT has a frequency resolution based on the sample. This can
be easily calculated by the following formula.

∆f =
fs
N

If the chosen values are put in this formula a resolution frequency of ∆f = 1600/2048 = 7.8125Hz is
attained. Since it it will go to the closest frequency, which can be either just above or under the actual
frequency, this can be divided by 2. This results in a maximum difference of≈ ±4Hz. This corresponds
with the test where the biggest difference turned out to be 4Hz.

Zero Crossings
Final feature that needs to be extracted from the audio data is zero crossings. This can be done very
easily by checking how often the audio data switches from positive to negative and vice versa. The
following code snippet shows how this is done on the ESP32. Full code can be found in appendix
C.1.2.

1 // Zero-crossing count
2 zeroCrossings = 0;
3 for (uint16_t i = 1; i < samples; i++) {
4 if ((vReal[i - 1] > 0 && vReal[i] < 0) || (vReal[i - 1] < 0 && vReal[i] > 0)) {
5 zeroCrossings++;
6 }
7 }

Now a test is needed to see if it works. Since zero crossings can be highly variable due to background
noise and even electrical noise on the signal it is hard to come up with a definite test. The test that was
decided upon was to to test a very loud sound with a set zero crossings that will overpower all other
sources. This can be done by generating a known frequency and just making it very loud. A frequency
of 350Hz was decided upon. This frequency should have f ∗ t = frequency ∗measurement time =
350 ∗ 0.128 ≈ 45. It will probably not bring it this low but it should bring it down in comparison to white
noise, which should have more zero crossings. The results of this test can be seen in Table 4.4.

average Zero crossings
White noise 730
350 Hz 620

Table 4.4: Zero crossing test

A drop in zero crossings can be observed. This drop however does seem small, this could have many
causes like the effect of electrical noise or just background noise is too big. To see if this metric will be
effective, it has to be tested. This will be done in chapter 5.

4.4.2. Data packaging
The 3 different features of the microphone are tested. Now they need to be packaged together to be
ready to send to the server. This needs to be done in a consistent and small package size. The current
size of the features are listed in Table 4.5.

Volume and frequency are stored as doubles. But the precision of volume is not that important. This
can be changed to an integer without much loss of accuracy. Since the volume will never be higher
than the maximum for a uint16 (65535), it can be stored as a uint16. The same goes for frequency,

4.5. Bluetooth® antenna 22

Feature Data type Data size
Volume dB double 8 bytes
Frequency double 8 bytes
Zero crossings uint16 2 bytes

Table 4.5: Initial data sizes

so frequency can be stored as a uint16 as well. This does not cause any loss in accuracy since the
resolution of the FFT itself is already bigger than 1 Hz. This means all three features can be stored as
a uint16. The volume could be stored as a uint8, but the choice was made to keep it consistent with
the other 2 features. This results in the following struct of microphone data seen in Table 4.6.

Feature Data type Data size
Volume dB uint16 2 bytes
Frequency uint16 2 bytes
Zero crossings uint16 2 bytes

Table 4.6: Final data sizes

This saves a total of 12 bytes overall. This will be the data send to the server.

4.5. Bluetooth® antenna
The ESP32 micro controller is equipped with a Bluetooth® antenna that is found apt for proximity mea-
suring (see section 3.3.3). To guarantee proper working and reliable data outcomes, this antenna needs
to be tested and validated. This is done in appendix A.4

4.5.1. Feature extraction
Only sensing one possible other device is not that useful. To make it useful, all nearby ESP32’s should
be sensed. This, however, can already be done by the code that was used for testing the compo-
nent. This is because it is searching continuously for Bluetooth® signals. This means, however, that it
searches for all Bluetooth® signals. Since only the signals of other nodes are of interest, a simple filter
is put in place. This filter will check if the received Bluetooth® device starts with a certain name. So
this way, it will only send rssi data of named nodes. The full code for the feature extraction and testing
can be seen in appendix C.3.2, this will include a part that will be explained in section 4.5.2. To do the
final testing of the feature extraction, the code is uploaded on 5 ESP32s which were placed in close
proximity. The results can be seen in the following Table 4.7. This concludes that multiple nodes can
be measured at once; meeting requirement SMR4 (section 2.3.1)

ESP32 ID Rssi in dBm
Dynamic_Node003 -63
Dynamic_Node002 -65
Dynamic_Node004 -70
Dynamic_Node005 -72

Table 4.7: Proximity test

4.5.2. Data packaging
Now the collected rssi data has to be packaged and send to the server. To do this it was decided to
keep the amount of possible received devices limited to 10. This was decided to not inflate the data too
much by sending too much proximity data. For the rssi data to be useful it needs to be send together
with the node ID for that rssi. To do this two arrays are created one with node ID’s and one with the
rssi values. This needs to be done in a data efficient way. The nodes have consistent ID’s starting
with either ”Dynamic” or ”Static” followed by a ID number. To limit the size of the ID only the ID number
will be used, the rest of the ID will be truncated. The ID is in the form of a string, so after truncating it

4.6. Final data package 23

is needed to be turned into an int to save the ID number more efficiently. if a uint8 is used for this ID
number, a maximum of 255 nodes can be saved. If it is done like this the information of wether a static
or dynamic node is will be lost. This is why it was decided to limit all device ID numbers starting with 2
for Static devices, and ID numbers starting with 0 or 1 for Dynamic devices. The following code snippet
shows how the ID is turned into a ID number

1 if(name.startsWith("Dynamic") || name.startsWith("Static")){
2 // Get the last 3 characters of the name (the digits)
3 int lastThreeDigits = (name[length - 3] - '0') * 100 + (name[length - 2] - '0') *

10 + (name[length - 1] - '0');
4

5 bledata.deviceNames[i] = static_cast<uint8_t>(lastThreeDigits);

This way the device ID’s can be saved as a uint8 which is only a single byte. Now the rssi still has
to be send. Since the rssi will have values from at maximum around -30 and at minimum -120 dBm
[21]. This could be send through a int8, but to be consistent with the data it was decided to take the
absolute of the rssi instead and save it as a uint8 like the ID numbers. So in the end the data from the
Bluetooth® antenna will be saved as 2 arrays of a lenght 10 with uint8 values, which gives a total size
of 20 bytes.

4.6. Final data package
All the required features from 3.4 can be extracted. Now these need to be stored in a consistent format
to meet requirement SMR7 (section 2.3.1). To do this, a new struct is created which contains the 3
previous structs. The following figure 4.3 shows how the final data package struct is created in code;
resulting in a final package size of 38, which is way smaller than 200 Bytes as required (SMR8, section
2.3.1).

Figure 4.3: Final data package creation

Now that all the extracted feature data is packaged, it is ready to be sent to the server. The code to
combine the codes and get the final package can be seen in appendix C.4. This will be done through
the use of Wi-Fi® communication; documented by the other sub group.

5
System Integration

5.1. Introduction
In this chapter, the integration of the SM sub product will be discussed. Also the integration into the
whole system is elaborated; the merging of the WCDM- and SM sub product into a fully functional
product: A ”Privacy-oriented Wearable Data Acquisition Product for MMLA”; as was required (SMR1,
section 2.3.1)

5.2. Design integration
All the sensors and components, as discussed in chapter 3 (Design), are combined, allowing to con-
struct a setup that is able to independently send its acquired data packages to the WCDM sub product
via a wireless communication protocol (SMR9, section 2.3.1). The total setup of the dynamic node
can be seen in Figure 5.1; showing its ability to process both motion- and audio data from the user,
and combine this with proximity rates of nearby user devices. These data points are continuously and
separately measured, but regularly and simultaneously released by use of data packages for further
processing.

Figure 5.1: Block diagram of the dynamic node

24

5.3. Prototype building 25

5.3. Prototype building
Assembling a working prototype that can be worn on the chest by the user needs careful component
placement. The costs of the total arsenal of components needed for building the prototype stayed
within the agreed budget (under €200,-) as stated in the PoR (MR7, STR5; section 2.2.1, 2.3.2). After
buying all the parts needed for building, the total design was soldered together unto a blue PCB; step
by step.

1. Female headers; to easily disconnect both ESP32 controllers and develop the system.
2. ESP32-DEV-38P; main microcontroller for processing and communication.
3. ESP32-DEV-16P; for BT broadcasting, via ESP32-DEV-38P.
4. MPU6050; for 6-axis sensor readouts, via ESP32-DEV-38P.
5. INMP441; for audio recording, via ESP32-DEV-38P.
6. TP4056; charge circuit for 3.7V Li-Po battery cell.
7. Switch; for easily toggling between ’battery mode’ & ’uploading mode’.

All above mentioned components were wired together and then checked to be properly connected.

Since both wireless communication can not be done simultaneously on the same processing
chip, a ESP32-DEV-16P is implemented to allow for broadcasting BLE® whilst at the same time trans-
mitting data via WiFi on the ’main’ ESP32-DEV-38P controller. This additional ESP32 will act as a
Bluetooth® module and will only communicate the received Bluetooth® signals. Since this is a ESP32
board too, the testing in section 4.5 is still relevant.

A powering circuit–3.7V Li-Po battery cell + TP4056 charge circuit–makes the dynamic node
internally-powered and wearable; hereby meeting SMR11 (section 2.3.1).

A switch is used to prevent overloading the circuit with 5V or more. ’Battery mode’ allows the dy-
namic node to be powered internally and function substantive, without direct linkage with the computer.
’Uploading mode’ is used when data features are readout through USB-linking with the computer, or
when new code is being uploaded to the microprocessor.

A schematic of the fully integrated sub product can be seen in Figure 5.2.

Figure 5.2: Wiring diagram of the dynamic node

5.4. Merging of both sub products 26

5.4. Merging of both sub products
Now that the prototype is assembled, it can be integrated into the whole system and tested. To achieve
successful data storage, the acquired data features need to be send first to a static node, and eventually
to the server. This means that the dynamic node prototype has to be connected to the system of static
nodes. When considering the WCDM sub product as a blackbox model (see Figure 5.3), the data
features that are send in package form by the SM sub product are entering the blackbox at the input.
At the output, the data features are stored at the server and can be displayed directly by the graphical
user interface (GUI). Therefore, correct data feature transmission can be tested by reading out real-time
measurements at the end of the blackbox model.

Figure 5.3: Blackbox model of the integrated system

5.4.1. On-body testing
Multiple tests have been done to see if the feature extracting, data packaging and sending this to the
server, works. To do this, the dynamaic node is wore on the chest and the incoming data send to the
server. All following tests have been read out from the gui made by the other sub group.

Proximity readouts
Mutual distance between two devices is measured by noting the incoming dBm signal. Three tests
have been done in three different environments. The data has been read out from the GUI. The dBm
data is an average over a longer time. As can be seen in table 5.1 the proximity data is send and

Distance (m) 0.5 1.0 2.0 5.0 10.0
Proximity (dBm)

Tellegen hall -75 -81 -93 - -
Classroom -72 -78 -82 -90 -94

Room in house -71 -75 -78 -85 -

Table 5.1: Proximity readouts

received. It can also be noted that each session and location gives different results. This means that
results should only be compared in comparison to different results in the same session. This test was
done with only measuring 1 dynamic node. The performed test on larger scale, for a maximum of 10
dynamic nodes, can be found in appendix B.3.

Microphone readouts from GUI
Microphone tests have been carried out in different circumstances. Figures 5.4, 5.5 and 5.6 show
combined snippets of the time series response when reading out the INMP441 at the GUI in three
different cases:

• Silence; No conversations, only environmental noise.
• Talking; Close conversations, with environmental noise.
• Inactive; Background conversations, with environmental noise.

As is to be expected, sound amplitude differs a lot between silence and conversations of the users
nearby (see Figure 5.4. A surprising result is that ambient conversations are easily separated from
direct conversations. This facilitates future analysis by Machine Learning.

During silence, tilting forwards just a little bit can already introduce noise in high frequencies. It is not
proven, but the red peak in Figure 5.5 is most likely due to scratching sounds from clothing or peeping

5.4. Merging of both sub products 27

Figure 5.4: Amplitude (dB) measured during a) silence, b) close conversation, and c) background conversations

of a tilted chair. Little distortions like these are impacting the frequency spectrum and will eventually
influence the ’communication status’ of the speech recorded user. More filtering and analysis should
be done in order to guarantee reliable audio measurements.

Figure 5.5: Highest pitch measured during a) silence, b) close conversation, and c) background conversations

Figure 5.6 shows the number of zero crossings per second during a 20 second period. No specific
content-related conclusion can be made as the number of zero crossing is on average similar, regard-
less of the situation. The outlier can be attributed to a connection failure. When suddenly no audio is
detected, or when the device is turned off, the measurements show deviant values.

More testing for the microphone can be seen in appendix B.1. It can be concluded from these tests
that the microphone features are sent successfully and that the features are received by the server as
intended; meeting MR1, MR2 and MR3 (section 2.2.1).

Accelerometer readouts from GUI
The last features that need to be tested and be able to be read out from the GUI are from the accelerom-
eter. The data is sent to the server and read out from the GUI in Figure 5.7. Tests with the prototype
and the quality of the accelerometer data can be seen in appendix B.2.

This concludes that the prototype can extract all selected motion features and that these are sent to

5.4. Merging of both sub products 28

Figure 5.6: Number of zero crossings measured during a) silence, b) close conversation, and c) background conversations

Figure 5.7: Accelerometer data read out from the GUI

the server and can be read from the GUI; for direct and convenient monitoring by the product user.
Requirements MR1, MR2 and MR3 are met successfully (section 2.2.1).

6
Discussion & Future Work

The development of wearable technology with privacy concerns for Multimodal Learning Analytics
(MMLA) data collecting in dynamic classroom environments can be advanced by this study. By empha-
sizing scalability, unobtrusiveness, and GDPR compliance, the system establishes a basis for further
study in educational environments. There are, nevertheless, a number of areas that could use improve-
ment and additional research.

Difficulties in Feature Selection
Early in the project, the features that was thought to be useful from intuition and research for MMLA
were chosen. However zero crossings, for instance, might not be the most instructive feature in this
situation. Additional audio metrics can be added; for example a better defined metric for speech time
or spectral energy distribution. These might offer more information. For motion tracking, Pitch-, Roll-,
and Yaw angles have been selected. Based on literature [40], some more technical features have been
considered: Mean Absolute Value & Root Mean Square, Standard Deviation & Variance, Maximum &
Minimum, Simple Squared Integral, Wavelet Entropy, Skewness & Kurtosis, Static- & Dynamic Accel-
eration Change, and Log Energy Entropy. Extracting these features might support future research by
magnifying the significance of the extracted data. Future study could concentrate on finding features
that are both technically possible to assess and extremely useful for MMLA.

Limitations of Wearable Design
Although the current prototype works, which was a rough prototype on a breakout board, it could be
made even smaller and less noticeable to make it less intrusive. First of all by using a special made
PCB. The total volume of the wearable could also be decreased by using a smaller micro controller
and more compact sensor integration. It would also save power and space if a specialized Bluetooth®
module were used in place of the second ESP32 micro controller. In order to prevent problems like
component damage during soldering, which presented difficulties during this project, cautious assembly
techniques should also be stressed.

Prospects & Applications for the Future
As a first step, this experiment shows that wearable technology may be used to collect data in educa-
tional contexts while maintaining privacy. The system’s scalability makes it simple to add more sensors
and functionalities; at least five extra. Future iterations could investigate use cases that loosen these
restrictions, even if this prototype places a higher priority on privacy and unobtrusiveness. Although
there are more privacy concerns, incorporating physiological sensors or permitting full audio recordings
may yield richer datasets for research.

In conclusion, this project’s effort demonstrates how wearable technology can be used to advance
MMLA research. Future versions can fully realize the potential of such systems by resolving existing
constraints and investigating novel approaches, allowing for a deeper understanding of educational
results and collaborative learning.

29

7
Conclusion

In the end, the project achieved the goal; designing a wearable with different sensors that can extract
multiple features. These features got efficiently data packaged and can be sent wirelessly to a central
server where they were stored. The sensors and data extraction worked reliably over long periods
of time. By having focused on being unobtrusive and privacy oriented, the wearable should be easy
to use for future applications. All 11 mandatory requirements for the sub-product are met. Whereas
not all trade-off requirements can be confirmed to be met due to the immeasurable nature of these
preferences, all of them have been taken into account while designing. Most of them are met with high
enough satisfactory.

The key results from the project are:

• Data collection from different sensors.
• Design of easily expandable wearable.
• Extraction of different features from the sensor data streams.
• Having private oriented extracted features to help with GDPR compliance.
• Efficient packaging of the features which can be sent wirelessly.

Even though the initial requirements are met with satisfactory, this project offers opportunities for future
research. Because of the expandability, a lot more can be done. This would include adding more
sensors, modalities and features. Lastly, together with the other sub group, this product could have a
lot more significance when combining it with machine learning driven analyzing methods. The acquired
data could be used to teach machine learning and eventually do real time monitoring. This real time
monitoring could help students who are sometimes struggling with working in groups or on projects. So
in the end, there is still a lot that can be done. This project offers support with innovating in the field of
Multimodal Learning Analytics.

30

A
Component testing

This appendix will go on about how the components have been verified to be working as intended.

A.1. The micro controller (ESP32-DEV-38P)
The functionalities of the micro controller that will be tested can be read in section 4.2. The first four
functionalities can easily be tested by means of a simple program. This program sets one of the pins
high, this pin will be connected to another pin. That other pin will be readout if it is high and if it is
through the serial monitor a message will be send. The following code was used to verify the workings.

1 #define OUTPUT_PIN 5 // Replace with the pin number you want to set HIGH
2 #define INPUT_PIN 18 // Replace with the pin number you want to read
3

4 void setup() {
5 Serial.begin(115200); // Initialize serial communication
6 pinMode(OUTPUT_PIN, OUTPUT); // Set OUTPUT_PIN as an output
7 pinMode(INPUT_PIN, INPUT); // Set INPUT_PIN as an input
8 digitalWrite(OUTPUT_PIN, HIGH); // Set OUTPUT_PIN HIGH
9 }

10

11 void loop() {
12 if (digitalRead(INPUT_PIN) == HIGH) { // Check if INPUT_PIN is HIGH
13 Serial.println("pin is high");
14 }
15 delay(1000); // 1 sec pause
16 }

This was programmed unto the ESP32. Once the chosen pins were connected, the serial monitor
reads out the ESP32. So the first four points are tested to be working successfully. Testing the wireless
capabilities is a bit more involved. The testing of the Bluetooth® part can be seen in appendix A.4. The
Wi-Fi® functionalities will be tested by the other sub group since they will be using this.

A.2. 6-axis accelerometer (MPU6050)
The 6-axis sensor is capable of measuring acceleration (m/s2) in all 3 directions (X, Y, Z). Also, the
gyroscope allows to do direct readouts from the internal register of the angular rotation (◦/s) around
all three axes. So to test the component, the acceleration and rotation of every axis has to be tested.
To do this a MPU6050 was connected to an ESP32 (see Figure A.1). Some code was made to read
out all data from the MPU6050. Before the tests can be done, a calibration is recommended, since the
MPU6050 does not know what the zero values should be. A calibration is done by doing a lot stationary
measurements, averaging it and equaling the output to zero. There is, however, gravity. This means
the z-axis should be set to the gravity which is around -9.81. This code which includes calibration can
be found in appendix C.2 and will be used for the following tests

31

A.2. 6-axis accelerometer (MPU6050) 32

Figure A.1: Testing configuration of the 6-axis sensor

A.2.1. Accelerometer testing
First the functionality of the accelerometer part will be tested. This will be done by moving and accel-
erating the accelerometer in different directions, and visually verifying the results. The directions that
will be tested are each axis.

Acceleration direction X-acceleration
(m/s2)

Y-acceleration
(m/s2)

Z-acceleration
(m/s2)

stationary 0± 0.01 0± 0.01 −9.81± 0.01
moving x-axis 0± 10 0± 1 0± 1
moving y-axis 0± 1 0± 10 0± 1
moving z-axis 0± 1 0± 1 −9.81± 10

Table A.1: Acceleration testing results

As can be seen from the table A.1, the accelerometer seems to have very slight inaccuracies when in
stationary position. This should not give a big problem. The inaccuracies when moving can mostly be
explained by that sensor is not moved perfectly in the axis direction and thus the other axis get a slight
movement too. The accelerometer seems to be functioning.

A.2.2. Gyroscope testing
The same tests will be done for the gyroscope but instead of moving it in the axis direction. It will instead
rotate around the axis. The results of the gyroscope testing are in the following table A.2.

rotation direction range of angular velocity
around x-axis in rad/s

range of angular velocity
around y-axis in rad/s

range of angular velocity
around z-axis in rad/s

stationary 0 0 0
rotating around x-axis 0± 3 0± 0.2 0± 0.2
rotating around y-axis 0± 0.2 0± 3 0± 0.2
rotating around z-axis 0± 0.2 0± 0.2 0± 3

Table A.2: rotating testing results

Following the results, the gyroscope seems to be functioning well in stationary position. When rotating
there seems to be inaccuracies in the other axis but these can easily be explained like the accelerometer
that the rotation direction was not perfect. So the gyroscope is functioning as well.

A.3. Microphone testing (INMP441) 33

A.3. Microphone testing (INMP441)
To find out if the microphone is working there needs to be an input stream of data, and also this data
needs to be actual comprehensible audio. So to test for this, the microphone will be connected to
the ESP32 in the following configuration, this configuration will be used for all microphone tests (see
Figure A.2). To first test the output stream of the microphone, and if this output stream corresponds
to comprehensible audio that should have been recorded, a simple test was made. First, the output
stream of the microphone will be output through the serial connection, the ESP32 will be programmed
to do this. Second, a simple python script will read the serial connection and make a short ’.wav’ file
that can be listened to on a computer. Both of these programs can be seen in appendix C.1.1. The
used sample rate for this test is 8 kHz. This gives a Nyquist frequency of 4kHz. This means that not the
whole hearing range of humans, 20-20 kHz, can be recorded. However, a frequency band of 0-4 kHz
is normal for recording speech and should be sufficient [41]. The recorded audio from the microphone
corresponded to what was recorded. The quality of the recorded audio was similar to using a phone
microphone, although a bit worse. This quality is sufficient since no actual raw audio will be recorded;
only some features will be extracted. The following sections will test and validate the extraction of
features from the microphone.

Figure A.2: Testing configuration of the microphone

A.4. Bluetooth® functionality testing (Antenna of the ESP32)
The working of the Bluetooth® antenna has to be tested. To do this, two ESP32’s are used. Both
ESP32’s are both advertising and trying to receive advertised signals. This way, they should see each
other. When they receive each others their signal they will output the received signal strength indicator
(rssi) of the signal. This can be used for approximate proximity. The code that was used to test this
function can be seen in appendix C.3.1. The following image shows the serial monitor after testing

Figure A.3: Result of Bluetooth® testing

This concludes that the Bluetooth® antenna is working and can be used for the proximitymeasurement.

B
Prototype testing

This appendix will show some more tests done for the quality of the extracted features from the proto-
type.

B.1. Microphone
Here the extra tests for the quality of the microphone features will be shown.

B.1.1. Volume
Some volume measurements were conducted to test the quality of the volume feature. Also it was
tested if a speaker at certain distances would be able to be picked up. For this first test 3 different noise
levels were taken. And a speaker (phone output) was tested at different background noise levels (no
(n), medium (m), and high (h)) and distances. The results can be seen in table B.1

Distance (m) 0.3 0.3 .3 1 1 1 3 3 3
background noise level (n) (m) (h) (n) (m) (h) (n) (m) (h)
Measured Volume (dB)

0% volume (noise) 30 40 43 30 40 43 30 40 43
75% volume 53 55 55 48 50 51 41 43 45
100% volume 64 65 65 56 57 58 50 51 53

Table B.1: Volume tests

From this table B.1 it can be seen that up to three meter a specific person can be measured when
talking, however it gets really close and probably will not be consistent. Up to 1 meter however the
difference in volume is still significant. Even the difference betweeen 1m and 30 cm is quite high. This
can mean if the person wearing the dynamic node or is being talked to can be distinguished. This will
be tested upon as well.

Measuring over time
Here three scenarios will be tested and the volume will be graphed over time, with timestamps of what
happened. The three scenarios are:

• Lots of moving around, no background noise
• Moving around with background noise
• Lots of noise and moving

These were tested to see if moving, and thus the dynamic node moving, would have significant impact
of the measured volume. In the figures with noise some speaking is done as well, both by the person
wearing the dynamic node and towards the person wearing the dynamic node. All the tests were done
over a period of 50 seconds.

34

B.1. Microphone 35

Moving but no noise
In figure B.1 the results for only moving around with the dynamic node. It does show some peaks but
these peaks are never even higher then 40 dB which is tested to be generated by background noise
already. So moving does not add significant noise.

Figure B.1: Moving but no background noise

Moving, some background noise and some talking
In figure B.2 the results can be seen when there is moving and background noise. The peak at the
beginning and the second peak just over halfway mark are done by someone talking to the person
wearing the dynamic node. The last 2 peaks are made by talking by the person wearing the dynamic
node. The difference can be seen in amplitude of dB. And the talking can easily be picked out from the
background noise

Figure B.2: Moving with some background noise and talking

Moving, some background noise and some talking
In figure B.3 the results can be seen when there is moving and high background noise. In this figure 5
peaks can be seen. the three highest that span multiple seconds are the person wearing the dynamic
node talking. the peak around 25 seconds is someone very close by talking Lastly the peak at around
30 seconds mark is someone a bit further talking. It can be concluded that even in high background
noise it can be picked out if people close by are talking and especially if the wearer is talking.

B.1. Microphone 36

Figure B.3: Moving with high background noise and talking

B.1.2. Frequency
Some measurements were conducted using a frequency tone generator to test the spectral frequency
response of the INMP441 microphone, placed at a distance of 10cm from the tone generator that was
generally playing with a volume level of 100%. The microphone is programmed to filter and detect
only frequencies in the range of speech (20 to 4000 Hz). As can be seen in Table B.2, frequencies
outside this range are filtered, leaving only the background noise (∼ 30Hz) to be detected as highest
pitch present. The detected frequency has an overall accuracy of at most 4 Hz (see Figure B.5). This
accuracy is due to the chosen sampling rate 4.4.1. Generated frequencies between 403 and 410 Hz
are detected as 406 Hz (see Figure B.6). In the end, the detected frequencies are divided into bins with
a bin size of around 7.8 Hz. Although this means relative less accuracy, it will still guarantee quality
and also contribute to a more compact data package.

Frequency response in range of speech
Also, the amplitude response can be seen in Figure B.4. The exact peak SPL numbers are not deter-
mined. However, as can be seen in the graph, the response seemingly promises sensitivity reliability
over the full frequency range, used for further analysis. As is standing out after testing, higher frequen-
cies have greater amplification rates, which is indicated by the datasheet of the INMP441 [36]. This
means that the sensitivity of the microphone is higher as frequency increases. Thus, high pitches in
speech will be more strongly present; making the data presumably slightly less accurate for users with
a low speaking pitch.

Figure B.4: Measured amplitude (dB) over a generated frequency spectrum

B.1. Microphone 37

Freq. generated (Hz) Freq. detected (Hz) Deviation (Hz) Amplitude (dB) Volume (%)
250 250 0 52 100
275 273 2 55 100
300 296 4 55 100
350 351 1 58 100
400 398 2 59 100
402 398 4 58 100
403 406 3 58 100
410 406 4 59 100
411 414 3 59 100
450 453 3 59 100
500 500 0 56 100
600 601 1 59 100
700 703 3 59 100
800 796 4 59 100
1000 1000 0 61 100
2000 2000 0 72 100
3050 3046 4 74 100
4000 4000 0 50 50
5000 23 4977 39 50
5000 31 4969 42 100

Table B.2: Frequency accuracy and amplitude testing with the INMP441

Figure B.5: Accuracy of detected frequency (Hz)

B.1. Microphone 38

Figure B.6: Bin size of detected frequency (Hz)

B.1.3. Zero Crossings
To test the Zero Crossings feature, 3 test recordings of 50 seconds have been done. These were:

• No speech, seen in figure B.7
• Only speech, seen in figure B.8
• Switching from speech to no speech, seen in figure B.9

These were chosen because this feature is meant to give an idea if sound is speech or not 3.4.2. It
does seem speech is way more volatile with the zero crossings, but a human can not really put an end
conclusion to this. Machine learning would be needed to actually see if it makes a difference or not.

Figure B.7: No speech

B.2. 6-axis Accelerometer 39

Figure B.8: Only speech

Figure B.9: Mixed. 0-10: speech, 10-20: no speech, 20-30: speech, 30-40: no speech, 40-50: speech

B.2. 6-axis Accelerometer
In this section more on body tests for the 6-axis accelerometer will be shown. First four tests were
done to see if different circumstances can be seen and measured by the accelerometer. These tests
were done over a period of 50 seconds (but not always starting at 0 seconds). The person wearing
the dynamic node will be called subject to keep it short. The subject was also monitored and some
stuff was written down to see if it could be seen in the graph. The notes are called observations. The
conducted tests were

• Just doing work on computer. Seen in figure B.10. Observations: At 30 seconds mark subject
looked left. At 50 seconds mark subject looked right. At 60 seconds mark subject leaned forward.

• Being restless and moving on chair. Seen in figure B.11. Observations. The fluctuations of the
yaw are the subject turning in their chair. Readjustments of the subjects sitting position were
performed at the 13, 20 and 30 seconds mark.

• While having a conversation with a group. Seen in figure B.12. Observations: The peaks and
changes of the yaw correspond to when the subject faced towards a different person. the peaks
and dips of roll and pitch are moments the subject adjusts their posture.

• While moving to different places. Seen in figure B.13. Observations: The big changes in the yaw
are when the subject is changing moving direction. The subject started with lower speed and
acceleration of movement and increased this later. This corresponds to lower fluctuations in the
beginning of the graph and the higher fluctuations later in the graph.

The results show that different actions result in very different graphs. This could lead to identifying
different actions by machine learning.

B.2. 6-axis Accelerometer 40

For another test of the accelerometer a very long time measurement was done. This was done to
check if there would be significant drifting of any feature over a lenghty period of time. The start of the
measurement can be seen in figure B.14, and the end of more than 30 minute of active measurements
in figure B.15. From these it can be seen that the pitch and roll do not really have any drifting. This
is what was expected with how these are calculated from earth’s gravity as written in 3.4.1. The yaw
however does have a drift from ±5◦ to ±35◦ this is a drift of ±30 degrees. This drift was accumulated
over a total of more than 30 minutes. So a drift of 1◦ per minute. This is not that significant since
mostly big changes in orientation are important to measure and small drifts over longer periods do not
influence these moments by a significant margin.

Figure B.10: Stationary, working on computer

Figure B.11: Lounging and moving around on chair restlessly

B.2. 6-axis Accelerometer 41

Figure B.12: In conversation with a group of people

Figure B.13: While on the move

Figure B.14: Start of a long measurement

B.3. Proximity 42

Figure B.15: End of a long measurement

B.3. Proximity
Since there was only an availability of at maximum 6 ESP32’s. Testing with a total of 10 nodes was
impossible. But to test if the dynamic node was able to see 10 different Bluetooth® devise and sent this
information. The filtering of devices was turned off, this mean it would measure all Bluetooth® devices
in the vicinity. The results of this can be seen in Figure B.3.

ID Rssi in -dBm
48 50
1 51
48 79
227 86
48 90
48 95
48 96
48 104
48 105
48 105

Table B.3: rssi of 10 Bluetooth® devices

From this it can be noted that the Bluetooth® sensor works even with the max of 10 Bluetooth® devices.
All the 48 ID’s and the 227 are because of how truncating the ID works with devices that don’t have a
name or a different name then static or dynamic. no name gives 48 A random name gives a random
ID.

C
Code for feature extracting and tests

This appendix will contain all of the code used for testing the sensors & modalities and for extracting
the features.

C.1. Microphone
C.1.1. Microphone functionality test code
The following code will send the microphone data through serial communication

1 #include <Arduino.h>
2 #include <driver/i2s.h>
3

4 // I2S configuration
5 #define I2S_WS_PIN 22 // Word Select (L/R Select)
6 #define I2S_SD_PIN 21 // Data In
7 #define I2S_SCK_PIN 26 // Serial Clock
8 #define I2S_PORT I2S_NUM_0 // is unused
9

10 // Sampling settings
11 #define SAMPLE_RATE 16000 // 16 kHz sample rate
12 #define SAMPLE_BUFFER_SIZE 1024 // Buffer size for each read
13

14 // Set up I2S
15 void setupI2S() {
16 i2s_config_t i2s_config = {
17 .mode = i2s_mode_t(I2S_MODE_MASTER | I2S_MODE_RX),
18 .sample_rate = SAMPLE_RATE,
19 .bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT ,
20 .channel_format = I2S_CHANNEL_FMT_ONLY_LEFT ,
21 .communication_format = I2S_COMM_FORMAT_I2S_MSB ,
22 .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1 ,
23 .dma_buf_count = 4,
24 .dma_buf_len = SAMPLE_BUFFER_SIZE,
25 .use_apll = false,
26 .tx_desc_auto_clear = false,
27 .fixed_mclk = 0
28 };
29

30 // config the I2s With used pins on esp32
31 i2s_pin_config_t pin_config = {
32 .bck_io_num = I2S_SCK_PIN,
33 .ws_io_num = I2S_WS_PIN,
34 .data_out_num = I2S_PIN_NO_CHANGE,
35 .data_in_num = I2S_SD_PIN
36 };
37

38 // Install and start I2S driver
39 i2s_driver_install(I2S_PORT, &i2s_config, 0, NULL);
40 i2s_set_pin(I2S_PORT, &pin_config);

43

C.1. Microphone 44

41 i2s_set_clk(I2S_PORT, SAMPLE_RATE, I2S_BITS_PER_SAMPLE_16BIT , I2S_CHANNEL_MONO);
42 }
43

44 void setup() {
45 Serial.begin(1000000); // Initialize serial communication baud rate needs to be high

enough for the full bit rate of the audio
46 setupI2S(); // Initialize I2S microphone
47 Serial.println("Streaming␣audio␣data..."); // Optional, for debugging
48 }
49

50 // read the microphone and outpat the data to serial monitor
51 void loop() {
52 int16_t sampleBuffer[SAMPLE_BUFFER_SIZE];
53 size_t bytesRead;
54

55 // Read audio data from I2S
56 i2s_read(I2S_PORT, sampleBuffer, SAMPLE_BUFFER_SIZE * sizeof(int16_t), &bytesRead,

portMAX_DELAY);
57

58 // Send raw audio data directly over Serial
59 Serial.write((uint8_t*)sampleBuffer, bytesRead);
60 }

The following python code will read the serial communication and record 5 seconds of audio
1 import serial
2 import wave
3 import time
4

5 # Configure the serial port with a higher baud rate
6 ser = serial.Serial('COM3', 1000000) # Replace 'COM3' with your actual port
7

8 # Audio parameters
9 sample_rate = 16000 # Ensure this matches the sample rate used in the ESP32 code

10 channels = 1
11 sample_width = 2 # 16-bit samples (2 bytes)
12

13 # File to save audio data
14 output_filename = 'recorded_audio_5s.wav'
15

16 # Duration of recording in seconds
17 record_duration = 5
18

19 print("Recording␣audio␣for␣5␣seconds...")
20 start_time = time.time()
21

22 try:
23 with wave.open(output_filename, 'wb') as wav_file:
24 wav_file.setnchannels(channels)
25 wav_file.setsampwidth(sample_width)
26 wav_file.setframerate(sample_rate)
27

28 # Record for the specified duration
29 while time.time() - start_time < record_duration:
30 if ser.in_waiting > 0: # Check if data is available to read
31 data = ser.read(1024) # Adjust the size as needed
32 wav_file.writeframes(data)
33

34 except Exception as e:
35 print(f"An␣error␣occurred:␣{e}")
36 finally:
37 ser.close()
38 print(f"Audio␣saved␣to␣{output_filename}")

C.1.2. Feature testing code for microphone
1 #include <Arduino.h>
2 #include <driver/i2s.h>
3 #include <arduinoFFT.h>
4

C.1. Microphone 45

5 // Pins for I2S microphone
6 #define I2S_NUM I2S_NUM_0
7 #define I2S_WS 25 // Word select (L/R clock) pin
8 #define I2S_SD 33 // Data input pin
9 #define I2S_SCK 26 // Bit clock pin

10

11 // FFT parameters
12 const uint16_t samples = 2048; // Number of samples for FFT (must be a power of 2)
13 double vReal[samples];
14 double vImag[samples];
15 const double SAMPLE_RATE = 16000.0;
16

17 //creating function to do FFT
18 ArduinoFFT FFT = ArduinoFFT(vReal, vImag, samples, SAMPLE_RATE);
19

20 // Variables for storing results
21 double averageDb = 0.0;
22 double peakFrequency = 0.0; // To store peak frequency
23 int zeroCrossings = 0; // To store the count of zero-crossings
24 bool dataReady = false; // Flag to signal new data is available
25

26 // Struct to hold microphone data
27 struct MicrophoneData {
28 uint16_t avgDb;
29 uint16_t peakFrequency;
30 uint16_t zeroCrossingsCount;
31 };
32

33 // Mutex to protect shared data
34 portMUX_TYPE dataMutex = portMUX_INITIALIZER_UNLOCKED;
35

36 // Task handle
37 TaskHandle_t microphoneTaskHandle;
38

39 //setup microphone
40 void setupMicrophone() {
41 // Configure I2S
42 i2s_config_t i2s_config = {
43 .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX),
44 .sample_rate = SAMPLE_RATE,
45 .bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT ,
46 .channel_format = I2S_CHANNEL_FMT_ONLY_LEFT ,
47 .communication_format = I2S_COMM_FORMAT_I2S_MSB ,
48 .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1 ,
49 .dma_buf_count = 8,
50 .dma_buf_len = 1024,
51 .use_apll = false,
52 .tx_desc_auto_clear = false,
53 .fixed_mclk = 0
54 };
55

56 i2s_pin_config_t pin_config = {
57 .bck_io_num = I2S_SCK,
58 .ws_io_num = I2S_WS,
59 .data_out_num = I2S_PIN_NO_CHANGE,
60 .data_in_num = I2S_SD
61 };
62

63 i2s_driver_install(I2S_NUM, &i2s_config, 0, NULL);
64 i2s_set_pin(I2S_NUM, &pin_config);
65 i2s_start(I2S_NUM);
66

67 // Start microphone processing task
68 xTaskCreatePinnedToCore(
69 microphoneTask, // Task function
70 "Microphone␣Task", // Task name
71 8192, // Stack size
72 NULL, // Parameter
73 1, // Priority
74 µphoneTaskHandle , // Task handle
75 0 // Core

C.1. Microphone 46

76);
77 }
78

79 // Microphone processing task
80 void microphoneTask(void *param) {
81 while (true) {
82 int16_t sampleBuffer[samples];
83 size_t bytesRead;
84

85 // Read data from I2S
86 i2s_read(I2S_NUM, sampleBuffer, samples * sizeof(int16_t), &bytesRead, portMAX_DELAY)

;
87

88 // Prepare data for FFT
89 for (uint16_t i = 0; i < samples; i++) {
90 vReal[i] = (double)sampleBuffer[i]; // Copy real part
91 vImag[i] = 0.0; // Imaginary part set to 0
92 }
93

94 // Perform FFT
95 FFT.windowing(FFT_WIN_TYP_HAMMING , FFT_FORWARD);
96 FFT.compute(FFT_FORWARD);
97 FFT.complexToMagnitude();
98

99 // Find the peak frequency in the range of interest (20Hz to 4000Hz)
100 double peakFrequencyLocal = 0.0;
101 double maxMagnitude = 0.0;
102

103 for (uint16_t i = 1; i < (samples / 2); i++) { // Only positive frequencies
104 double frequency = (i * SAMPLE_RATE) / samples;
105 double magnitude = vReal[i];
106

107 // Filter: Only consider frequencies between 20 Hz and 4000 Hz
108 if (frequency >= 20 && frequency <= 4000) {
109 if (magnitude > maxMagnitude) {
110 maxMagnitude = magnitude;
111 peakFrequencyLocal = frequency;
112 }
113 }
114 }
115

116 // Zero-crossing count
117 zeroCrossings = 0;
118 for (uint16_t i = 1; i < samples; i++) {
119 if ((vReal[i - 1] > 0 && vReal[i] < 0) || (vReal[i - 1] < 0 && vReal[i] > 0)) {
120 zeroCrossings++;
121 }
122 }
123

124 // Calculate average dB
125 double totalVolume = 0.0;
126 int volumeCount = 0;
127 for (uint16_t i = 1; i < (samples / 2); i++) {
128 totalVolume += vReal[i];
129 volumeCount++;
130 }
131 double averageLinearVolume = totalVolume / volumeCount;
132 double localAverageDb = 20.0 * log10(averageLinearVolume);
133

134 // Update shared data with mutex
135 portENTER_CRITICAL(&dataMutex);
136 averageDb = localAverageDb;
137 peakFrequency = peakFrequencyLocal; // Store the peak frequency
138 dataReady = true; // Signal new data is ready
139 portEXIT_CRITICAL(&dataMutex);
140

141 vTaskDelay(200 / portTICK_PERIOD_MS); // Process every second
142 }
143 }
144

145 // Function to get microphone data

C.2. 6-axis accelerometer 47

146 bool getMicrophoneData(double &avgDb, double &peakestFrequency, int &zeroCrossingsCount) {
147 bool ready = false;
148

149 // Access shared data with mutex
150 portENTER_CRITICAL(&dataMutex);
151 if (dataReady) {
152 avgDb = averageDb;
153

154 // The peak frequency should already be calculated in your microphone task.
155 peakestFrequency = peakFrequency; // `peakFrequency` holds the peak frequency
156

157 zeroCrossingsCount = zeroCrossings; // Get the zero-crossing count
158

159 dataReady = false; // Reset flag
160 ready = true;
161 }
162 portEXIT_CRITICAL(&dataMutex);
163

164 return ready;
165 }
166

167 //start up of the esp and microphone
168 void setup() {
169 Serial.begin(115200);
170

171 // Initialize microphone
172 setupMicrophone();
173

174 }
175

176 void loop() {
177 static unsigned long lastRunTime = 0; // Store the last time the loop ran
178

179 //run only when new microphonedata available
180 if (millis() - lastRunTime >= 400) {
181 lastRunTime = millis(); // Update the last run time
182

183 // Fetch microphone data
184 MicrophoneData microphonedata;
185

186 //initialise features
187 double avgDb;
188 double peakestFrequency;
189 int zeroCrossingsCount;
190

191 if (getMicrophoneData(avgDb, peakestFrequency, zeroCrossingsCount)) {
192

193 //put microphone data in microphone struct
194 microphonedata.avgDb = static_cast<uint16_t>(avgDb);
195 microphonedata.peakFrequency = static_cast<uint16_t>(peakestFrequency);
196 microphonedata.zeroCrossingsCount = static_cast<uint16_t>(zeroCrossingsCount);
197

198 } else {
199 Serial.println("Microphone␣data␣not␣ready.");
200 }
201 // Print MicrophoneData
202 Serial.print(microphonedata.avgDb); Serial.print(",␣");
203 Serial.print(microphonedata.peakFrequency); Serial.print(",␣");
204 Serial.println(microphonedata.zeroCrossingsCount);
205

206 }
207

208 }

C.2. 6-axis accelerometer
1 #include <Wire.h>
2 #include <Adafruit_MPU6050.h>
3 #include <Adafruit_Sensor.h>
4

C.2. 6-axis accelerometer 48

5 Adafruit_MPU6050 mpu;
6

7 // Calibration offsets
8

9 // Variables to store the accelerometer offsets
10 float accelOffsetX = 0.0;
11 float accelOffsetY = 0.0;
12 float accelOffsetZ = 0.0;
13

14 // Variables to store the gyroscope offsets
15 float gyroOffsetX = 0.0;
16 float gyroOffsetY = 0.0;
17 float gyroOffsetZ = 0.0;
18

19 // Constants for gravitational acceleration
20 const float GRAVITY = 9.81; // m/s^2
21

22 // measuring difference in time
23 int timestamp = 0;
24 int diff = 0;
25 int counter = 0;
26

27 // roll pitch yaw
28 float roll = 0, pitch = 0, yaw = 0;
29

30 //calculating offsets to calibrate sensor
31 void calibrateAccelerometer() {
32 float gyroX = 0, gyroY = 0, gyroZ = 0;
33 float accelX = 0, accelY = 0, accelZ = 0;
34 int sampleCount = 200; // Number of samples for averaging
35

36 Serial.println("Calibrating␣sensor,␣keep␣the␣sensor␣still...");
37

38 // Collect sampleCount readings of sensor data
39 for (int i = 0; i < sampleCount; i++) {
40 sensors_event_t a, g, temp;
41 mpu.getEvent(&a, &g, &temp);
42

43 // Sum up accelerometer readings
44 accelX += a.acceleration.x;
45 accelY += a.acceleration.y;
46 accelZ += a.acceleration.z;
47

48 // Sum up gyroscope readings
49 gyroX += g.gyro.x;
50 gyroY += g.gyro.y;
51 gyroZ += g.gyro.z;
52

53 delay(50); // Small delay between readings
54 }
55

56 // Calculate the average offset for accelerometer and gyroscope
57 accelOffsetX = accelX / sampleCount;
58 accelOffsetY = accelY / sampleCount;
59 accelOffsetZ = (accelZ / sampleCount) - GRAVITY;
60

61 // Gyroscope calibration is already covered in the previous example
62 gyroOffsetX = gyroX / sampleCount;
63 gyroOffsetY = gyroY / sampleCount;
64 gyroOffsetZ = gyroZ / sampleCount;
65

66 Serial.println("Calibration␣complete!");
67 }
68

69 //setup the accelerometer
70 void setup() {
71 Serial.begin(115200);
72 while (!Serial) {
73 delay(10); // Wait for Serial to initialize
74 }
75

C.2. 6-axis accelerometer 49

76 // Initialize I2C communication
77 if (!mpu.begin()) {
78 Serial.println("Failed␣to␣find␣MPU6050␣chip");
79 while (1) {
80 delay(10);
81 }
82 }
83

84 Serial.println("MPU6050␣Found!");
85

86 // Set accelerometer and gyroscope ranges
87 mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
88 mpu.setGyroRange(MPU6050_RANGE_500_DEG);
89 mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);
90

91 delay(100);
92

93 calibrateAccelerometer();
94

95 delay(100);
96

97 timestamp = millis();
98

99

100 }
101

102

103

104 void loop() {
105 // Read accelerometer and gyroscope data
106 sensors_event_t a, g, temp;
107 mpu.getEvent(&a, &g, &temp);
108

109 // Calculate roll and pitch
110 roll = atan2((a.acceleration.y - accelOffsetY), (a.acceleration.z - accelOffsetZ)) * 180 /

PI;
111 pitch = atan2(-(a.acceleration.x - accelOffsetX), sqrt((a.acceleration.y - accelOffsetY) *

(a.acceleration.y - accelOffsetY) + (a.acceleration.z - accelOffsetZ) * (a.acceleration
.z - accelOffsetZ))) * 180 / PI;

112

113 diff = millis() - timestamp;
114 counter = counter + diff;
115 timestamp = millis();
116 if(abs(diff*(g.gyro.z - gyroOffsetZ)) > 0.4){
117

118 yaw = yaw + diff*(g.gyro.z - gyroOffsetZ)/1000 * 180 / PI;
119

120 //keep yaw in range of -180 to 180
121 if(yaw > 180){
122 yaw = yaw - 360;
123 }
124 if(yaw < -180){
125 yaw = yaw + 360;
126 }
127 }
128

129 //print roll pitch yaw (counter is used to not print all the time)
130 if(counter > 500){
131 Serial.print("roll:␣");
132 Serial.print(roll);
133 Serial.print("pitch:␣");
134 Serial.print(pitch);
135 Serial.print("␣yaw:␣");
136 Serial.print(yaw);
137 Serial.println("␣degrees");
138

139 //reset counter
140 counter = 0;
141

142 // // Print accelerometer values
143 Serial.print("Accelerometer␣X:␣");

C.3. Bluetooth® antenna 50

144 Serial.print(a.acceleration.x - accelOffsetX);
145 Serial.print("␣m/s^2,␣Y:␣");
146 Serial.print(a.acceleration.y - accelOffsetY);
147 Serial.print("␣m/s^2,␣Z:␣");
148 Serial.print(a.acceleration.z - accelOffsetZ);
149 Serial.println("␣m/s^2");
150

151 // Print gyroscope values
152 Serial.print("Gyroscope␣X:␣");
153 Serial.print(g.gyro.x - gyroOffsetX);
154 Serial.print("␣rad/s,␣Y:␣");
155 Serial.print(g.gyro.y - gyroOffsetY);
156 Serial.print("␣rad/s,␣Z:␣");
157 Serial.print(g.gyro.z - gyroOffsetZ);
158 Serial.println("␣rad/s");
159 }
160

161 delay(20); // Adjust delay as needed
162 }

C.3. Bluetooth® antenna
C.3.1. Test for functionality of Bluetooth® antenna

1 #include <NimBLEDevice.h>
2 #include <Arduino.h>
3

4 BLEScan *pBLEScan;
5

6 String targetName = "ESP32_Device1"; // Name to search for
7

8 //make callback so it finds rssi and name when signal is received
9 class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks {

10 void onResult(BLEAdvertisedDevice *advertisedDevice) {
11 int rssi = advertisedDevice->getRSSI();
12 String deviceName = advertisedDevice->haveName() ? advertisedDevice->getName().c_str() :

"";
13 if (targetName == deviceName){
14 Serial.print("ESP32␣found,␣rssi␣=␣");
15 Serial.print(advertisedDevice->getRSSI());
16 Serial.println("␣dBm");
17 }
18

19 }
20 };
21

22 //continuously scan for devices
23 void bleScanTask(void *pv) {
24 pBLEScan = BLEDevice::getScan();
25 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
26 pBLEScan->setActiveScan(true); // Active scan for more detailed results
27

28 while (true) {
29 pBLEScan->start(1);
30

31 pBLEScan->clearResults(); // Free up memory
32 }
33 }
34

35 // Initialize BLE and start the scanner task
36 void init_ble() {
37 const char *customName = "ESP32_Device2"; // Replace with your desired device name
38 BLEDevice::init(customName); // Initialize the BLE device with the custom name
39

40 // Start advertising with the set name
41 BLEAdvertising *pAdvertising = BLEDevice::getAdvertising();
42 pAdvertising->start();
43

44 xTaskCreate(
45 bleScanTask, // Function to run

C.3. Bluetooth® antenna 51

46 "bleScanTask", // Name of the task
47 3000, // Stack size
48 NULL, // Task input parameter
49 1, // Priority
50 NULL // Task handle
51);
52 }
53

54 void setup() {
55 Serial.begin(115200);
56 // Initialize BLE functionality (and start proximity sensing)
57 Serial.println("Looking␣for␣Devices␣started");
58 init_ble();
59 }
60

61 void loop(){
62

63 }

C.3.2. BLE® feature test
1 #include <Wire.h>
2 #include "NimBLEDevice.h"
3

4 #define I2C_SLAVE_ADDR 0x08 // Address of the slave ESP32
5

6 BLEScan *pBLEScan;
7

8 // Structure to hold device name and RSSI
9 struct DeviceRSSI {

10 uint8_t deviceName; // Using int to store the last 3 digits of the device name (as before)
11 uint8_t rssi;
12 };
13

14 // Array to store the top 10 strongest RSSI values
15 DeviceRSSI topDevices[10]; // To store the 10 strongest devices
16

17 // Helper function to check if a string starts with a prefix
18 bool startsWith(const String &str, const String &prefix) {
19 return str.indexOf(prefix) == 0; // Returns true if `prefix` is found at the start of `str`
20 }
21

22 class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks {
23 void onResult(BLEAdvertisedDevice *advertisedDevice) {
24 int rssi = advertisedDevice->getRSSI();
25 String deviceName = advertisedDevice->haveName() ? advertisedDevice->getName().c_str() :

"";
26

27 if (deviceName.startsWith("Dynamic") || deviceName.startsWith("Static")) {
28 int length = deviceName.length();
29 // Get the last 3 characters of the name (the digits)
30 int lastThreeDigits = (deviceName[length - 3] - '0') * 100 + (deviceName[length - 2] -

'0') * 10 + (deviceName[length - 1] - '0');
31

32 // Insert the device into the list based on RSSI
33 for (int i = 0; i < 10; i++) {
34 if (abs(rssi) < topDevices[i].rssi) {
35 // Shift down the other entries to make room for the new device
36 for (int j = 9; j > i; j--) {
37 topDevices[j] = topDevices[j - 1];
38 }
39 // Insert the new device
40 topDevices[i].rssi = static_cast<uint8_t>(abs(rssi));
41 topDevices[i].deviceName = static_cast<uint8_t>(lastThreeDigits);
42 break;
43 }
44 }
45 }
46 }
47 };

C.4. Final data package 52

48

49 void bleScanTask(void *pv) {
50 pBLEScan = BLEDevice::getScan();
51 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
52 pBLEScan->setActiveScan(true); // Active scan for more detailed results
53

54 while (true) {
55 // Start scanning for 2 seconds
56 pBLEScan->start(1);
57

58 Serial.println("--------------------------------");
59

60 for (int i = 0; i < 10; i++){
61 Serial.print("|");
62 Serial.print(topDevices[i].deviceName);
63 Serial.print("|");
64 Serial.print(topDevices[i].rssi);
65 Serial.println("|");
66 Serial.println("------------");
67 }
68

69 Serial.println("--------------------------------");
70

71 // Reset the list of top 10 devices
72 for (int i = 0; i < 10; i++) {
73 topDevices[i].rssi = 255; // Initialize RSSI to a very low value
74 topDevices[i].deviceName = 0; // Clear the device name
75 }
76

77 pBLEScan->clearResults(); // Free up memory
78 //delay(1000); // Delay between scans
79 }
80 }
81

82 void init_ble() {
83 const char *customName = "Dynamic_Node_019"; // Replace with your desired device name
84 BLEDevice::init(customName); // Initialize the BLE device with the custom

name
85

86 // Start advertising with the set name
87 BLEAdvertising *pAdvertising = BLEDevice::getAdvertising();
88 pAdvertising->start();
89

90 xTaskCreate(
91 bleScanTask, // Function to run
92 "bleScanTask", // Name of the task
93 3000, // Stack size
94 NULL, // Task input parameter
95 1, // Priority
96 NULL // Task handle
97);
98 }
99

100 void setup() {
101 // Initialize serial for output
102 Serial.begin(115200);
103 // Initialize BLE
104 init_ble();
105 }
106

107 void loop() {
108 // Main loop can be left empty as BLE scanning and I2C handling are done in tasks
109 }

C.4. Final data package
The following code combines the three previous feature extraction codes. Small adjustments must be
made to those for this to work. their setup and main loop must be deleted as this code will do that for
them. all 4 codes should be included in the same map.

C.4. Final data package 53

1 #include <Arduino.h>
2

3 // Struct to hold microphone features
4 struct MicrophoneData {
5 uint16_t avgDb;
6 uint16_t peakFrequency;
7 uint16_t zeroCrossingsCount;
8 };
9

10 // Struct to hold accelerometer features
11 struct AccelerometerData {
12 float roll;
13 float pitch;
14 float yaw;
15 };
16

17 // Struct to hold BLE features
18 struct BLEData {
19 uint8_t deviceNames[10];
20 uint8_t rssiValues[10];
21 };
22

23 // Struct to hold all output features
24 struct OutputData {
25 MicrophoneData microphoneData;
26 AccelerometerData accelerometerData;
27 BLEData bleData;
28 };
29

30 // starting everything
31 void setup() {
32 Serial.begin(115200);
33

34 // Initialize accelerometer and microphone (and start microphone)
35 setupAccelerometer();
36 setupMicrophone();
37

38 // Calibrate accelerometer
39 calibrateAccelerometer();
40

41 // Start the accelerometer task
42 startAccelerometerTask(); // Start the accelerometer task from accelerometer.ino
43

44 // Initialize BLE functionality (and start proximity sensing)
45 init_ble();
46 }
47

48 void loop() {
49 static unsigned long lastRunTime = 0; // Store the last time the loop ran
50

51 // Check if 1000ms (1 second) has passed since the last execution
52 if (millis() - lastRunTime >= 1000) {
53 lastRunTime = millis(); // Update the last run time
54

55 // Fetch microphone data (including zero-crossings)
56 MicrophoneData microphonedata;
57

58 double avgDb;
59 double peakestFrequency;
60 int zeroCrossingsCount;
61 if (getMicrophoneData(avgDb, peakestFrequency, zeroCrossingsCount)) {
62

63 //put microphone data in microphone struct
64 microphonedata.avgDb = static_cast<uint16_t>(avgDb);
65 microphonedata.peakFrequency = static_cast<uint16_t>(peakestFrequency);
66 microphonedata.zeroCrossingsCount = static_cast<uint16_t>(zeroCrossingsCount);
67

68 } else {
69 Serial.println("Microphone␣data␣not␣ready.");
70 }
71

C.4. Final data package 54

72 // Fetch accelerometer data
73 float roll, pitch, yaw;
74 getAccelerometerData(roll, pitch, yaw);
75

76 // put accelerometer data in acceleerometer struct
77 AccelerometerData accelerometerdata;
78 accelerometerdata.roll = roll;
79 accelerometerdata.pitch = pitch;
80 accelerometerdata.yaw = yaw;
81

82 // Print timestamp
83 Serial.println("-----------------------");
84 Serial.printf("Timestamp:␣%lu␣ms\n", millis());
85 // Serial.println("-----------------------");
86

87 // Create arrays to store device names and RSSI values
88 String deviceNames[10];
89 int rssiValues[10];
90

91 // Get the top 10 devices and their RSSI values
92 getTopDevices(deviceNames, rssiValues);
93

94 BLEData bledata;
95

96 // encode and put ble data in blestruct
97 for(int i = 0; i < 10; i++){
98 String name = deviceNames[i];
99 int length = name.length();

100

101 if(name.startsWith("Dynamic") || name.startsWith("Static")){
102 // Get the last 3 characters of the name (the digits)
103 int lastThreeDigits = (name[length - 3] - '0') * 100 + (name[length - 2] - '0') *

10 + (name[length - 1] - '0');
104

105 bledata.deviceNames[i] = static_cast<uint8_t>(lastThreeDigits);
106 bledata.rssiValues[i] = static_cast<uint8_t>(abs(rssiValues[i]));
107 }
108 else{
109 bledata.deviceNames[i] = static_cast<uint8_t >(0);
110 bledata.rssiValues[i] = static_cast<uint8_t >(0);
111 }
112

113 }
114

115 //make final output data struct
116 OutputData data;
117 data.microphoneData = microphonedata;
118 data.accelerometerData = accelerometerdata;
119 data.bleData = bledata;
120

121 // Print MicrophoneData
122 Serial.print(data.microphoneData.avgDb); Serial.print(",␣");
123 Serial.print(data.microphoneData.peakFrequency); Serial.print(",␣");
124 Serial.println(data.microphoneData.zeroCrossingsCount);
125

126 // Print AccelerometerData
127 Serial.print(data.accelerometerData.roll, 2); Serial.print(",␣");
128 Serial.print(data.accelerometerData.pitch, 2); Serial.print(",␣");
129 Serial.println(data.accelerometerData.yaw, 2);
130

131 // Print BLEData
132 Serial.print("[");
133 for (int i = 0; i < 10; ++i) {
134 Serial.print(data.bleData.deviceNames[i]);
135 if (i < 9) Serial.print(",␣");
136 }
137 Serial.print("],␣[");
138 for (int i = 0; i < 10; ++i) {
139 Serial.print(data.bleData.rssiValues[i]);
140 if (i < 9) Serial.print(",␣");
141 }

C.4. Final data package 55

142 Serial.println("]");
143 Serial.println("-----------------------");
144

145 }
146

147 }

Bibliography

[1] [Online]. Available: https://microelectronics.tudelft.nl/eee/tellegen_hall/.
[2] M. Giannakos, D. Spikol, D. Di Mitri, K. Sharma, X. Ochoa, and R. Hammad, “Introduction to

multimodal learning analytics,” in The Multimodal Learning Analytics Handbook, M. Giannakos,
D. Spikol, D. Di Mitri, K. Sharma, X. Ochoa, and R. Hammad, Eds. Cham: Springer International
Publishing, 2022, pp. 3–28, ISBN: 978-3-031-08076-0. DOI: 10.1007/978-3-031-08076-0_1.
[Online]. Available: https://doi.org/10.1007/978-3-031-08076-0_1.

[3] H. Ouhaichi, D. Spikol, and B. Vogel, “Rethinking mmla: Design considerations for multimodal
learning analytics systems,” in Proceedings of the Tenth ACM Conference on Learning @ Scale,
ser. L@S ’23, Copenhagen, Denmark: Association for Computing Machinery, 2023, pp. 354–359,
ISBN: 9798400700255. DOI: 10.1145/3573051.3596186. [Online]. Available: https://doi.org/
10.1145/3573051.3596186.

[4] X. Ochoa and F. Dominguez, “Controlled evaluation of a multimodal system to improve oral pre-
sentation skills in a real learning setting,” British Journal of Educational Technology, vol. 51, no. 5,
pp. 1615–1630, 2020, ISSN: 0007-1013. DOI: 10.1111/bjet.12987. [Online]. Available: https:
//berajournals.onlinelibrary.wiley.com/doi/10.1111/bjet.12987.

[5] M. Vujovic, D. Hernández-Leo, S. Tassani, and D. Spikol, “Round or rectangular tables for col-
laborative problem solving? a multimodal learning analytics study,” British Journal of Educational
Technology, vol. 51, no. 5, pp. 1597–1614, 2020, © 2020 British Educational Research Associa-
tion. DOI: 10.1111/bjet.12988.

[6] X. Ochoa, “Multimodal learning analytics – rationale, process, examples, and direction,” in Hand-
book of Learning Analytics, C. Lang, G. Siemens, A. F. Wise, D. Gašević, and A. Merceron, Eds.,
2nd, Vancouver, BC: SoLAR, 2022, pp. 54–65. DOI: 10.18608/hla22.

[7] K. Sharma and M. Giannakos, “Multimodal data capabilities for learning: What can multimodal
data tell us about learning?” British Journal of Educational Technology, vol. 51, no. 5, pp. 1450–
1484, 2020. DOI: 10.1111/bjet.13013.

[8] M. Worsley and P. Blikstein, “A multimodal analysis of making,” International Journal of Artificial
Intelligence in Education, vol. 28, pp. 385–419, 2018. DOI: 10 . 1007 / s40593 - 017 - 0160 - 1.
[Online]. Available: https://doi.org/10.1007/s40593-017-0160-1.

[9] R. Hammad, M. Bahja, and M. A. Kuhail, “Bridging the gap between informal learning pedagogy
and multimodal learning analytics,” in The Multimodal Learning Analytics Handbook, M. Gian-
nakos, D. Spikol, D. Di Mitri, K. Sharma, X. Ochoa, and R. Hammad, Eds. Cham: Springer In-
ternational Publishing, 2022, ISBN: 978-3-031-08076-0. DOI: 10.1007/978-3-031-08076-0_7.
[Online]. Available: https://doi.org/10.1007/978-3-031-08076-0_7.

[10] P. K. Tiffany C.K. Kwok and M. Raubal, “Unobtrusive interaction: A systematic literature review
and expert survey,” Human–Computer Interaction, vol. 39, 2024. DOI: 10.1080/07370024.2022.
2162404. eprint: https://doi.org/10.1080/07370024.2022.2162404. [Online]. Available:
https://doi.org/10.1080/07370024.2022.2162404.

[11] H. Alwahaby and M. Cukurova, “Chapter 2 - navigating the ethical landscape of multimodal learn-
ing analytics: A guiding framework,” in Ethics in Online AI-based Systems, ser. Intelligent Data-
Centric Systems, S. Caballé, J. Casas-Roma, and J. Conesa, Eds., Academic Press, 2024, ISBN:
978-0-443-18851-0. DOI: https://doi.org/10.1016/B978-0-443-18851-0.00014-7. [Online].
Available: https://www.sciencedirect.com/science/article/pii/B9780443188510000147.

56

https://microelectronics.tudelft.nl/eee/tellegen_hall/
https://doi.org/10.1007/978-3-031-08076-0_1
https://doi.org/10.1007/978-3-031-08076-0_1
https://doi.org/10.1145/3573051.3596186
https://doi.org/10.1145/3573051.3596186
https://doi.org/10.1145/3573051.3596186
https://doi.org/10.1111/bjet.12987
https://berajournals.onlinelibrary.wiley.com/doi/10.1111/bjet.12987
https://berajournals.onlinelibrary.wiley.com/doi/10.1111/bjet.12987
https://doi.org/10.1111/bjet.12988
https://doi.org/10.18608/hla22
https://doi.org/10.1111/bjet.13013
https://doi.org/10.1007/s40593-017-0160-1
https://doi.org/10.1007/s40593-017-0160-1
https://doi.org/10.1007/978-3-031-08076-0_7
https://doi.org/10.1007/978-3-031-08076-0_7
https://doi.org/10.1080/07370024.2022.2162404
https://doi.org/10.1080/07370024.2022.2162404
https://doi.org/10.1080/07370024.2022.2162404
https://doi.org/10.1080/07370024.2022.2162404
https://doi.org/https://doi.org/10.1016/B978-0-443-18851-0.00014-7
https://www.sciencedirect.com/science/article/pii/B9780443188510000147

Bibliography 57

[12] H. Alwahaby, M. Cukurova, Z. Papamitsiou, and M. Giannakos, “The evidence of impact and
ethical considerations of multimodal learning analytics: A systematic literature review,” in The
Multimodal Learning Analytics Handbook, M. Giannakos, D. Spikol, D. Di Mitri, K. Sharma, X.
Ochoa, and R. Hammad, Eds. Cham: Springer International Publishing, 2022, ISBN: 978-3-031-
08076-0. DOI: 10.1007/978-3-031-08076-0_12. [Online]. Available: https://doi.org/10.
1007/978-3-031-08076-0_12.

[13] M. Cukurova, M. Giannakos, and R. Martinez-Maldonado, “The promise and challenges of mul-
timodal learning analytics,” British Journal of Educational Technology, vol. 51, no. 5, 2020. DOI:
https://doi.org/10.1111/bjet.13015. eprint: https://bera-journals.onlinelibrary.
wiley.com/doi/pdf/10.1111/bjet.13015. [Online]. Available: https://bera- journals.
onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13015.

[14] P. Chejara, R. Kasepalu, L. Prieto, M. J. Rodríguez-Triana, and A. Ruiz-Calleja, “Bringing collabo-
rative analytics usingmultimodal data tomasses: Evaluation and design guidelines for developing
a mmla system for research and teaching practices in cscl,” in Proceedings of the 14th Learning
Analytics and Knowledge Conference, ser. LAK ’24, Kyoto, Japan: Association for Computing
Machinery, 2024, ISBN: 9798400716188. DOI: 10.1145/3636555.3636877. [Online]. Available:
https://doi.org/10.1145/3636555.3636877.

[15] J. Hassan, J. Leong, and B. Schneider, “Multimodal data collection made easy: The ez-mmla
toolkit: A data collection website that provides educators and researchers with easy access
to multimodal data streams.,” in LAK21: 11th International Learning Analytics and Knowledge
Conference, ser. LAK21, Irvine, CA, USA: Association for Computing Machinery, 2021, ISBN:
9781450389358. DOI: 10.1145/3448139.3448201. [Online]. Available: https://doi.org/10.
1145/3448139.3448201.

[16] R. Martinez-Maldonado, V. Echeverria, O. C. Santos, A. D. P. D. Santos, and K. Yacef, “Physical
learning analytics: A multimodal perspective,” in Proceedings of the 8th International Conference
on Learning Analytics and Knowledge, ser. LAK ’18, Sydney, New SouthWales, Australia: Associ-
ation for Computing Machinery, 2018, ISBN: 9781450364003. DOI: 10.1145/3170358.3170379.
[Online]. Available: https://doi.org/10.1145/3170358.3170379.

[17] M. Garbarino, M. Lai, D. Bender, R.W. Picard, and S. Tognetti, “Empatica e3 - a wearable wireless
multi-sensor device for real-time computerized biofeedback and data acquisition,” in Empatica,
Inc. and Massachusetts Institute of Technology, Cambridge, MA, USA and Milan, Italy, 2020.

[18] STMicroelectronics, St.com, https://www.st.com/en/microcontrollers-microprocessors/
stm32-32-bit-arm-cortex-mcus.html, [Accessed 10-12-2024].

[19] Arduino, “Arduino® Nano 33 IoT Product Reference Manual,” Tech. Rep., Dec. 2024. [Online].
Available: https://docs.arduino.cc/resources/datasheets/ABX00027-datasheet.pdf.

[20] R. P. Ltd, Raspberry Pi 5, https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-
product-brief.pdf, [Accessed 10-12-2024], Aug. 2024.

[21] Espressif,Espressif.com, https://www.espressif.com/sites/default/files/documentation/
esp32-wroom-32_datasheet_en.pdf, [Accessed 10-12-2024].

[22] S. Haq and P. Jackson, “Speaker-dependent audio-visual emotion recognition,” Sep. 2009. [On-
line]. Available: https://www.isca-archive.org/avsp_2009/haq09_avsp.pdf.

[23] S. A. Viswanathan and K. Vanlehn, “High Accuracy Detection of Collaboration From Log Data and
Superficial Speech Features,” Proceedings, pp. 335–342, Jan. 2017. DOI: 10.22318/cscl2017.
46. [Online]. Available: https://asu.pure.elsevier.com/en/publications/high-accuracy-
detection-of-collaboration-from-log-data-and-superf.

[24] N. Zhou, L. Kisselburgh, S. Chandrasegaran, S. K. Badam, N. Elmqvist, and K. Ramani, “Using
social interaction trace data and context to predict collaboration quality and creative fluency in
collaborative design learning environments,” International Journal of Human-Computer Studies,
vol. 136, p. 102 378, Nov. 2019. DOI: 10 . 1016 / j . ijhcs . 2019 . 102378. [Online]. Available:
https://doi.org/10.1016/j.ijhcs.2019.102378.

[25] A. R. McGarva and R. M. Warner, “Attraction and social coordination: Mutual entrainment of
vocal activity rhythms,” Journal of Psycholinguistic Research, vol. 32, pp. 335–354, 2003. [Online].
Available: https://api.semanticscholar.org/CorpusID:6408212.

https://doi.org/10.1007/978-3-031-08076-0_12
https://doi.org/10.1007/978-3-031-08076-0_12
https://doi.org/10.1007/978-3-031-08076-0_12
https://doi.org/https://doi.org/10.1111/bjet.13015
https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13015
https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13015
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13015
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13015
https://doi.org/10.1145/3636555.3636877
https://doi.org/10.1145/3636555.3636877
https://doi.org/10.1145/3448139.3448201
https://doi.org/10.1145/3448139.3448201
https://doi.org/10.1145/3448139.3448201
https://doi.org/10.1145/3170358.3170379
https://doi.org/10.1145/3170358.3170379
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://docs.arduino.cc/resources/datasheets/ABX00027-datasheet.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.isca-archive.org/avsp_2009/haq09_avsp.pdf
https://doi.org/10.22318/cscl2017.46
https://doi.org/10.22318/cscl2017.46
https://asu.pure.elsevier.com/en/publications/high-accuracy-detection-of-collaboration-from-log-data-and-superf
https://asu.pure.elsevier.com/en/publications/high-accuracy-detection-of-collaboration-from-log-data-and-superf
https://doi.org/10.1016/j.ijhcs.2019.102378
https://doi.org/10.1016/j.ijhcs.2019.102378
https://api.semanticscholar.org/CorpusID:6408212

Bibliography 58

[26] R. M. Warner, “Cyclicity of vocal activity increases during conversation: Support for a nonlinear
systems model of dyadic social interaction,” Systems Research and Behavioral Science, vol. 37,
no. 2, pp. 128–138, Apr. 1992. DOI: 10.1002/bs.3830370204. [Online]. Available: https://doi.
org/10.1002/bs.3830370204.

[27] S. S. D’Mello, P. Chipman, A. Graesser, and U. Merced, “Posture as a predictor of learner’s
affective engagement,” Proceedings of the Annual Meeting of the Cognitive Science Society,
vol. 29, p. 29, 2007. [Online]. Available: https://escholarship.org/content/qt7hs9v2hr/
qt7hs9v2hr.pdf.

[28] R. Taylor, “The multimodal texture of engagement: Prosodic language, gaze and posture in en-
gaged, creative classroom interaction,” Thinking Skills and Creativity, vol. 20, pp. 83–96, Apr.
2016. DOI: 10.1016/j.tsc.2016.04.001. [Online]. Available: https://doi.org/10.1016/j.
tsc.2016.04.001.

[29] J. E. Sasaki, K. S. Da Silva, B. G. G. Da Costa, and D. John, Measurement of physical activity
using accelerometers. Jan. 2016, pp. 33–60. DOI: 10.1016/b978-0-12-802075-3.00002-4.
[Online]. Available: https://doi.org/10.1016/b978-0-12-802075-3.00002-4.

[30] K. R. Doane, “Good posture and school achievement,” The Clearing House A Journal of Edu-
cational Strategies Issues and Ideas, vol. 31, no. 6, pp. 329–331, Feb. 1957. DOI: 10.1080/
00098655.1957.11475591. [Online]. Available: https://doi.org/10.1080/00098655.1957.
11475591.

[31] R. Sacchetti, T. Teixeira, B. Barbosa, et al., “Human body posture detection in context: the case
of teaching and learning environments,” Tech. Rep., May 2018. [Online]. Available: https://
personales.upv.es/thinkmind/dl/conferences/signal/signal_2018/signal_2018_5_20_
68004.pdf.

[32] H. Wojtaszek, A. Wojcik-Czerniawska, M. Mastalerz, and P. Stepien, “The role of consistency in
verbal and nonverbal communication: enhancing trust and team effectiveness in management,”
EUROPEAN RESEARCH STUDIES JOURNAL, vol. XXVIΙ, no. Issue 3, pp. 621–636, Jul. 2024.
DOI: 10.35808/ersj/3456. [Online]. Available: https://doi.org/10.35808/ersj/3456.

[33] M. Hoegl and L. Proserpio, “Team member proximity and teamwork in innovative projects,” Re-
search Policy, vol. 33, no. 8, pp. 1153–1165, Sep. 2004. DOI: 10.1016/j.respol.2004.06.005.
[Online]. Available: https://doi.org/10.1016/j.respol.2004.06.005.

[34] D. Vivet, P. Checchin, and R. Chapuis, “Localization and mapping using only a rotating FMCW
radar sensor,” Sensors, vol. 13, no. 4, pp. 4527–4552, Apr. 2013. DOI: 10.3390/s130404527.
[Online]. Available: https://www.mdpi.com/1424-8220/13/4/4527.

[35] I. Inc., MPU-6000 and MPU-6050 product specification, Aug. 2013. [Online]. Available: https:
//invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf.

[36] I. Inc., Inmp411, https://invensense.tdk.com/wp-content/uploads/2015/02/INMP411.pdf,
[Accessed 10-12-2024].

[37] L. R. Rabiner and M. R. Sambur, “An Algorithm for Determining the Endpoints of Isolated Utter-
ances,” Bell System Technical Journal, vol. 54, no. 2, pp. 297–315, Feb. 1975. DOI: 10.1002/
j.1538- 7305.1975.tb02840.x. [Online]. Available: https://doi.org/10.1002/j.1538-
7305.1975.tb02840.x.

[38] C. Fisher, Using An Accelerometer for Inclination Sensing, May 2011. [Online]. Available: https:
//www.digikey.com/en/articles/using-an-accelerometer-for-inclination-sensing.

[39] A. Anand, A brief study of discrete and fast fourier transforms. [Online]. Available: https://math.
uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Anand.pdf.

[40] A. Leone, G. Rescio, A. Caroppo, P. Siciliano, and A. Manni, “Human postures recognition by
accelerometer sensor and ML architecture integrated in embedded platforms: benchmarking and
performance evaluation,” Sensors, vol. 23, no. 2, p. 1039, Jan. 2023. DOI: 10.3390/s23021039.
[Online]. Available: https://www.mdpi.com/1424-8220/23/2/1039.

https://doi.org/10.1002/bs.3830370204
https://doi.org/10.1002/bs.3830370204
https://doi.org/10.1002/bs.3830370204
https://escholarship.org/content/qt7hs9v2hr/qt7hs9v2hr.pdf
https://escholarship.org/content/qt7hs9v2hr/qt7hs9v2hr.pdf
https://doi.org/10.1016/j.tsc.2016.04.001
https://doi.org/10.1016/j.tsc.2016.04.001
https://doi.org/10.1016/j.tsc.2016.04.001
https://doi.org/10.1016/b978-0-12-802075-3.00002-4
https://doi.org/10.1016/b978-0-12-802075-3.00002-4
https://doi.org/10.1080/00098655.1957.11475591
https://doi.org/10.1080/00098655.1957.11475591
https://doi.org/10.1080/00098655.1957.11475591
https://doi.org/10.1080/00098655.1957.11475591
https://personales.upv.es/thinkmind/dl/conferences/signal/signal_2018/signal_2018_5_20_68004.pdf
https://personales.upv.es/thinkmind/dl/conferences/signal/signal_2018/signal_2018_5_20_68004.pdf
https://personales.upv.es/thinkmind/dl/conferences/signal/signal_2018/signal_2018_5_20_68004.pdf
https://doi.org/10.35808/ersj/3456
https://doi.org/10.35808/ersj/3456
https://doi.org/10.1016/j.respol.2004.06.005
https://doi.org/10.1016/j.respol.2004.06.005
https://doi.org/10.3390/s130404527
https://www.mdpi.com/1424-8220/13/4/4527
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP411.pdf
https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
https://www.digikey.com/en/articles/using-an-accelerometer-for-inclination-sensing
https://www.digikey.com/en/articles/using-an-accelerometer-for-inclination-sensing
https://math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Anand.pdf
https://math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Anand.pdf
https://doi.org/10.3390/s23021039
https://www.mdpi.com/1424-8220/23/2/1039

Bibliography 59

[41] R. Cox, S. De Campos Neto, C. Lamblin, and M. Sherif, “ITU-T coders for wideband, superwide-
band, and fullband speech communication [Series Editorial,” IEEE Communications Magazine,
vol. 47, no. 10, pp. 106–109, Oct. 2009. DOI: 10.1109/mcom.2009.5273816. [Online]. Available:
https://doi.org/10.1109/mcom.2009.5273816.

https://doi.org/10.1109/mcom.2009.5273816
https://doi.org/10.1109/mcom.2009.5273816

	Abstract
	Preface
	Introduction
	Multimodal Learning Analytics
	Challenges and concerns
	Available systems and tools
	Problem Definition
	Design
	Wireless Communication & Data Management (WCDM)
	Sensors & Modalities

	Thesis overview

	Program of Requirements
	Main Take-aways PoR
	General PoR
	Mandatory Requirements
	Trade-off Requirements
	Boundary Conditions

	Sensors & Modalities PoR
	Mandatory Requirements
	Trade-off Requirements
	Boundary Conditions

	Design
	Introduction
	Micro controller
	Sensor selection
	Voice recording
	Motion tracking
	Proximity mapping

	Sensor implementation
	6-axis sensor
	I2S Microphone
	Bluetooth® Antenna

	Design choices

	Feature Extraction and Data Packaging
	Introduction
	Micro controller
	6-axis sensor
	Feature extraction
	Data packaging

	Microphone
	Feature extraction
	Data packaging

	Bluetooth® antenna
	Feature extraction
	Data packaging

	Final data package

	System Integration
	Introduction
	Design integration
	Prototype building
	Merging of both sub products
	On-body testing

	Discussion & Future Work
	Conclusion
	Component testing
	The micro controller (ESP32-DEV-38P)
	6-axis accelerometer (MPU6050)
	Accelerometer testing
	Gyroscope testing

	Microphone testing (INMP441)
	Bluetooth® functionality testing (Antenna of the ESP32)

	Prototype testing
	Microphone
	Volume
	Frequency
	Zero Crossings

	6-axis Accelerometer
	Proximity

	Code for feature extracting and tests
	Microphone
	Microphone functionality test code
	Feature testing code for microphone

	6-axis accelerometer
	Bluetooth® antenna
	Test for functionality of Bluetooth® antenna
	BLE® feature test

	Final data package

