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Abstract

Automated negotiation agents are agents that interact in an environment for the set-
tlement of a mutual concern. An important factor influencing the performance of a
negotiation agent is how it takes the opponent into account. The main challenge in
this aspect, is that opponents typically hide private information to avoid exploitation.
In such a setting, an opponent model can help by estimating the opponent’s strategy
or preference profile. This work contains the first recent survey of opponent models
in automated negotiation. One of the main conclusions of this survey, is that currently
there is no fair method to evaluate and compare the quality of a set of opponent models.
Insight in the quality of an opponent model could lead to the development of a better
model. In this work we focus on a specific type of opponent models which model
the opponent’s preferences. Based on a detailed analysis of the factors influencing the
quality of this type of opponent model, we introduce and apply two fair measurement
methods to quantify the performance gain relative to not using an opponent model and
the accuracy of the model. Our contribution to the field of automated negotiation is
threefold; first, we provide a comprehensive survey of opponent models; second, we
introduce a method to isolate the components of a negotiation strategy; finally, we con-
struct and apply two fair evaluation methods to quantify the quality of a set of opponent
models which model the opponent’s preferences. Taken together, this work structures
the field of opponent models and provides insight in how to improve existing models.
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Chapter 1

Introduction

Negotiation is a process in which agents interact in an environment to arrange for the set-
tlement of a mutual concern. Various disciplines studied the topic of negotiation, including
economics [23, 26], electronic commerce [9, 21], artificial intelligence [8, 14, 16, 17, 18,
29], game theory [4, 8, 14, 18, 23, 25, 28], and social psychology [27].

Traditionally, negotiation is a necessary, but time-consuming and expensive activity.
This has lead to an interest to automate negotiation [3, 9, 14, 17], for example in the setting
of e-commerce [5, 15, 21]. This interest is fueled by the promise of computer agents being
able to negotiate on behalf of human negotiators, or even outperforming them [5, 12, 21, 24].

In an automated negotiation it is common that opponents are unwilling to share their
preferences and especially their negotiation strategy to avoid exploitation [7, 26, 30]. In
practice, restricted information about the opponent is one of the key limiting factors to
successful automated negotiations [22]. However, while automated agents often do not
explicitly share private information, this information is implicitly embedded in their actions.
Learning techniques can exploit this information to create a model of the opponent, which
can be used to enhance the effectiveness and efficiency of the negotiation process [11, 30].

A large number of opponent models exist in literature, and more are introduced each
year. In the survey of opponent modeling discussed in Chapter 2 we identify six categories
of opponent models. An important direction for future work for all six types of models
is a fair method to evaluate their quality. Insight in the quality of a model leads to an
understanding of its strengths and weaknesses, which could lead to the development of a
better model.

While various authors evaluated opponent models using different methods [6, 7, 13, 19,
30], to our knowledge there exists no work comparing the quality of a large set of opponent
models which estimate the opponent’s preferences. Therefore, the main aim of this work is
to introduce such a method.

A first step towards a fair measurement for quality, is to introduce a method to isolate
and switch the opponent model of an existing strategy for another model. In this case,
the performance of the same strategy with different opponent models can be compared.
Towards this end, in Chapter 3 we introduce a method to decompose negotiation strategies
in three components: the acceptance strategy, bidding strategy, and opponent model. Using
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Introduction

this framework, the components derived from multiple agents can be combined to create a
new negotiation strategy.

As a first application of the framework, we created a state of the art negotiation strategy
which participated in the International Automated Negotiating Agent Competition 2012
(ANAC 2012). The negotiation agent discussed in Chapter 4 finished third and additionally
had the highest performance on one of the two settings in which the agents were tested.

Finally, also based on the framework introduced in Chapter 3, in Chapter 5 we introduce
two measurement methods to fairly evaluate the performance and accuracy of an opponent
model. Note that designing such methods is not trivial, as the quality of an opponent model
depends on the negotiation setting, and each model is influenced differently. To be specific,
the setting should be taken into account to avoid a biased measurement. The application of
the methods results in an understanding of the quality of state of the art opponent models
and insight in how these models can be improved.

To summarize, in my thesis the following main research questions are addressed:

1. Which types of opponent models exist in literature; and for each type: what are the
main directions for future work?

2. Can existing agents be decomposed in a small set of components? Furthermore, is
it possible to design a framework in which components of different agents can be
combined to create a new negotiation strategy?

3. How to apply the framework discussed above to create a negotiation strategy improv-
ing the state of the art?

4. How to fairly evaluate the quality of an opponent model of the opponent’s preferences
acknowledging the influence of the negotiation setting on the quality of a model? In
particular, how do existing models compare in quality?

The remainder of this paper is organized as follows. Chapter 2 surveys existing liter-
ature on opponent models. In Chapter 3 a framework is introduced which can be used to
combine the components of different negotiation strategies to create a new strategy. Chap-
ter 4 discusses how this framework is used to develop a state of the art negotiation strategy
which competed in the ANAC 2012. In Chapter 5 we introduce two measurement methods
to evaluate the quality of an opponent model. In Chapter 6 we discuss lessons learned and
directions for future work. Chapter A discusses the components implemented to run all
experiments. Finally, Chapter B discusses the contribution of each author.
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Chapter 2

A Survey of Opponent Models in
Automated Bilateral Negotiation

While a large number of opponent models have been introduced in literature, there is no
recent survey on opponent modeling in automated negotiation. To be specific, the latest
survey most similar to our work was by Beam and Segev in 1997 [3]. In this chapter we
introduce a survey of the state of the art of opponent modeling. After finishing my thesis,
we plan to submit the survey to a journal.

One of the main conclusions of this survey, is that there are currently no benchmarks
to fairly evaluate the quality of an opponent model. Besides the advantage that using a
benchmark the best opponent model can be found, it also provides insight in how to create
better opponent models. Therefore, the remainder of this thesis discusses how to design a
fair measurement method for opponent models which estimate the opponent’s preferences.
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Chapter 3

Decoupling the Components of a
Negotiation Strategy

A negotiation strategy generally consists of multiple components including the opponent
model. To fairly compare the performance of two opponent models, it should be possible to
switch the model of a negotiation agent without changing any of the other components.

Towards this end, we constructed the BOA framework: a framework which allows to
combine the components of multiple strategies to create a new negotiation strategy. A com-
plete negotiation strategy in the BOA framework consists of a bidding strategy, an opponent
model, and an acceptance strategy. The paper was accepted by the ACAN 2012 workshop
on the AAMAS.
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ABSTRACT
Every year, automated negotiation agents are improving on various
domains. However, given a set of automated negotiation agents,
current methods allow to determine which strategy is best in terms
of utility, but not so much the reason of success. In order to study
the performance of the individual components of a negotiation strat-
egy, we introduce an architecture that distinguishes three compo-
nents which together constitute a negotiation strategy: the bidding
strategy, the opponent model, and the acceptance strategy.

Our contribution to the field of bilateral negotiation is twofold:
first, we show that existing state-of-the-art agents are compatible
with this architecture by re-implementing them in the new frame-
work; secondly, as an application of our architecture, we systemat-
ically explore the space of possible strategies by recombining dif-
ferent strategy components, resulting in negotiation strategies that
improve upon the current state-of-the-art in automated negotiation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
intelligent agents, multi-agent systems

General Terms
Algorithms, Bargaining, Experimentation, Negotiation

Keywords
Automated bilateral negotiation, BOA agent framework, decou-
pled, component-based, bidding strategy, opponent model, accep-
tance conditions, acceptance criteria

1. INTRODUCTION
Recently, many new automated negotiation agents have been de-

veloped. There is now a large body of negotiation strategies avail-
able, and with the emergence of the International Automated Ne-
gotiating Agents Competition (ANAC) [2, 4], new strategies are
generated on a yearly basis.

While methods exist to determine the best negotiation agent given
a set of agents [2, 4], we still do not know which type of agent is
most effective in general, and especially why. It is impossible to

exhaustively search the large (in fact, infinite) space of negotiation
strategies; therefore, there is a need for a systematic way of search-
ing this space for effective candidates.

Many of the sophisticated agent strategies that currently exist
are comprised of a fixed set of modules. Generally, a distinction
is made between three different modules: one module that decides
whether the opponent’s bid is acceptable; one that decides which
set of bids could be proposed next; and finally, one that tries to
guess the opponent’s preferences and takes this into account when
selecting an offer to send out. The negotiation strategy is a result
of the complex interaction between these components, of which
the individual performance may vary significantly. For instance,
an agent may contain a module that predicts the opponent’s prefer-
ences very well, but the agent may still perform badly utility-wise
because it concedes far too quickly.

This means that overall performance measures, such as average
utility obtained in a tournament, make it hard to pinpoint which
components of an agent work well. To date no efficient method
exists to identify to which of the components the success of a nego-
tiating agent can be attributed. Finding such a method would allow
to develop better negotiation strategies, resulting in better agree-
ments; the idea being that well-performing components together
will constitute a well-performing agent.

To tackle this problem, we propose to analyze three components
of the agent design separately. We show that most of the currently
existing negotiating agents can be fitted into the so-called BOA
framework by putting together three main components in a partic-
ular way; namely: the Bidding strategy, an Opponent model, and
an Acceptance strategy. We support this claim by re-implementing,
among others, the ANAC agents in our framework. Furthermore,
we show that the BOA agents are equivalent in behavior and per-
formance to their original counterparts.

The advantages of fitting agents into the BOA framework are
threefold: first, it allows to study the behavior and performance of
individual components; second, it allows to systematically explore
the space of possible negotiation strategies; third, the identification
of unique interacting components simplifies the creation of new
negotiation strategies.

Finally, we demonstrate the value of our framework by assem-
bling, using already existing components, new negotiating agents
that perform better than the current state-of-the-art. This shows that
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the BOA framework can yield better performing agents by combin-
ing better performing components.

The remainder of this paper is organized as follows. Section 2
discusses related work. In Section 3 the BOA agent framework is
introduced, and we outline a research agenda on how to employ
it. Section 4 provides evidence that many of the currently exist-
ing agents fit into the BOA framework, and discusses challenges
in decoupling existing negotiation strategies. In Section 4.2 we il-
lustrate how to test for equivalence of the original agent and its
decoupled version. Section 5 shows how the BOA framework al-
lows us to combine best practices in current agent design, leading
to new, more effective strategies. Finally, in Section 6 we discuss
lessons learned and provide directions for future work.

2. RELATED WORK
Since this paper introduces a framework based on a theory of

components, we have surveyed literature that investigates and eval-
uates such components. There are three categories of related work:
literature detailing the architecture of the negotiation strategy of an
agent; work that discusses and compares the performance of a com-
ponent of a negotiation strategy; and finally, literature that explores
and combines a set of negotiation strategies to find an optimal strat-
egy.

2.1 Achitecture of Negotiation Strategies
To our knowledge, there is little work in literature describing, at

a similar level of detail as our work, the generic components of a
negotiation strategy architecture. For example, Bartolini et al. [5]
and Dumas et al. [8] treat the negotiation strategy as a singular
component. There are however some notable exceptions.

Jonker et al. [16] present an agent architecture for multi attribute
negotiation, where each component represents a specific process
within the behavior of the agent, e.g.: attribute evaluation, bid util-
ity determination, utility planning, and attribute planning. In con-
trast to our work, Jonker et al. focus on tactics for finding a counter
offer and do not discuss acceptance conditions. However, there are
some similarities between the two architectures. For example, the
utility planning and attribute planning component correspond to the
bidding strategy component in our architecture.

Ashri et al. [1] introduce a general architecture for negotiation
agents, discussing components that resemble our architecture; how-
ever, the negotiation strategy is described from a BDI-agent per-
spective (in terms of motivation and mental attitudes). Components
such as a proposal evaluator and response generator resemble an
acceptance condition and bidding strategy respectively.

Hindriks et al. [13] introduce a generic architecture for negotia-
tion agents in combination with a negotiation system architecture.
Parts of the agent architecture correspond to the architecture pre-
sented in this paper; however, their focus is primarily on how the
agent framework can be integrated into a larger system architec-
ture. In addition, Hindriks et al. treat the acceptance condition and
bidding strategy as a singular component.

2.2 Components of Negotiation Strategy
Evaluation of the performance of components is important to

gain understanding of the performance of a negotiation strategy.
Regarding acceptance conditions, Baarslag et al. [3] analyze the

performance of a set of acceptance conditions. These acceptance
conditions depend on parameters such as time, utility of previous
or next bid, and utility thresholds.

The notion of opponent model as a component of a negotiation
strategy has been discussed by various authors, however to our
knowledge there is no work comparing the performance of vari-

ous state-of-the-art opponent models. Recently, Hindriks et al. [15]
introduced different quality measures for learning, based on the es-
timated preference profile and the actual preference profile, but this
has not been put to practice yet. Different types of models exist
in literature, including opponent models that estimate the reser-
vation value [24], the (partial) preference profile [14], the oppo-
nent’s acceptance of offers [20], and that predict the opponent’s
next move [7].

Our work focuses on opponent models which estimate the (par-
tial) preference profile, because most existing implementations fit
in this category; however, in principle, our framework can accom-
modate for modeling the opponent’s strategy as well. Our frame-
work also allows to determine and to compare the performance of
different opponent models by separating the implementation of the
opponent model from the rest of the negotiation agent.

Although we are not the first to identify the BOA components
in a negotiation strategy, our approach seems to be unique in the
sense that we vary these components of the strategies, thereby cre-
ating new negotiation strategies, and improving the state-of-the-art
in doing so.

2.3 Negotiation Strategy Space Exploration
There are at least four main types of baseline bidding strategies

to compare the performance of a bidding strategy against: time de-
pendent [10, 11], resource dependent [10], behavior dependent [10],
and zero intelligence strategies [12].

Faratin et al. [10] start by analyzing the performance of pure
negotiation tactics on single issue domains in a bilateral negotiation
setting. The decision function of the pure tactic is then treated as
a component around which the full strategy is built. While they
discuss how tactics can be linearly combined, the performance of
linearly combined tactics are not analyzed (in contrast to Matos et
al. [19]), as they note that the set of possible strategies is too large
to explore.

Matos et al. [19] use a set of baseline negotiation strategies with
varying parameters. The negotiation strategies are combined lin-
early and encoded as chromosomes after which they are utilized by
a genetic algorithm to analyze the effectiveness of the strategies.
The fitness of an agent is its score in a negotiation competition.
This approach is limited to acceptance criteria that specify a util-
ity interval of acceptable values, and hence does not take time into
account; furthermore, the agents do not employ explicit opponent
modeling.

Eymann [9] also uses genetic algorithms with more complex ne-
gotiating strategies, evolving six parameters that influence the bid-
ding strategy. The genetic algorithm uses the current negotiation
strategy of the agent and the opponent strategy with highest aver-
age income to create a new strategy, similar to other genetic algo-
rithm approaches (see Beam and Segev [6] for a discussion of the
application of genetic algorithms in automated negotiation). The
genetic algorithm approach mainly treats the negotiation strategy
optimization as a search problem in which the parameters of a small
set of strategies is varied using genetic algorithms. In our approach,
we analyze a more complex space of newly developed negotiation
strategies, as our pool of surveyed negotiation strategies consists of
strategies introduced in the ANAC competition [2, 4], as well as the
strategies discussed by Faratin et al. [10]. Furthermore, each strat-
egy consists of components that can have parameters themselves.
Our contribution is to define and implement a framework that al-
lows to easily vary all main components of a negotiating agent.
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3. THE BOA AGENT FRAMEWORK
In the last decade, many different negotiation strategies have

been introduced in the search for an effective, generic automated
negotiator (see related work Section 2). Current work often focuses
on optimizing the negotiation strategy as a whole. We propose to
direct our attention to a component-based approach, especially now
that we have access to a large repository of mutually comparable
negotiation strategies due to ANAC. This approach has several ad-
vantages:

1. Given measures for the effectiveness of the individual com-
ponents of a negotiation strategy, we are able to pinpoint
the most promising components, which gives insight into the
reasons for success of the strategy;

2. Focusing on the most effective components helps to system-
atically search the space of possible negotiation strategies by
recombining them into new strategies.

We make a distinction between two types of components in the
sections below: elements that are part of the agent’s environment,
and components that are part of the agent itself.

3.1 Negotiation Environment
We employ the same negotiation environment as in [2, 4, 18];

that is, we consider bilateral, real time automated negotiations,
where the interaction between the two negotiating parties is reg-
ulated by the alternating-offers protocol [21]. The agents negotiate
over a set of issues, as defined by the negotiation domain, which
holds the information of possible bids, constraints, and the discount
factor. The negotiation happens in real time, and the agents are re-
quired to reach an agreement (i.e., one of them has to accept) before
the deadline is reached. The timing of acceptance is particularly
important because the utility may be discounted, that is: the value
of an agreement may decrease over time.

In addition to the domain, both parties also have privately-known
preferences described by their preference profiles. While the do-
main is common knowledge, the preference profile of each player
is private information. This means that each player only has access
to its own utility function, and does not know the preferences of its
opponent. The player can attempt to learn this during the negotia-
tion encounter by analyzing the bidding history, using an opponent
modeling technique.

3.2 The BOA Agent
Based on a survey of literature and the implementations of cur-

rently existing negotiation agents, we identified three main compo-
nents of a general negotiation strategy: a bidding strategy, possibly
an opponent model, and an acceptance strategy (BOA). The ele-
ments of a BOA agent are visualized in Figure 1. In order to fit
an agent into the BOA framework, it should be possible to discern
these components in the agent design, with no dependencies be-
tween them. An exposition of the agents we considered is given
in the next section, which will further motivate the choices made
below.

1. Bidding strategy. A bidding strategy is a mapping which
maps a negotiation trace to a bid. The bidding strategy can
interact with the opponent model by consulting with it, pass-
ing one or multiple bids and see how they compare within
the estimated opponent’s utility space.
Input: opponent utility of bids, negotiation trace.
Output: provisional upcoming bid.

2. Opponent model. An opponent model is a learning tech-
nique that constructs a model of the opponent’s negotiation
profile. In our approach, the opponent model should be able
to estimate the opponent’s utility of a given bid.
Input: set of possible bids, negotiation trace.
Output: estimated opponent utility of a set of bids.

3. Acceptance strategy. The acceptance strategy determines
whether the bid that the opponent presents is acceptable.
Input: provisional upcoming bid, negotiation trace.
Output: send accept, or send out the upcoming bid.

The components interact in the following way (the full process is
visualized in Figure 1). When receiving an opponent bid, the BOA
agent first updates the bidding history and opponent model to make
sure the most up-to-date data is used, maximizing the information
known about the environment and opponent.

Given the opponent bid, the bidding strategy determines the counter
offer by first generating a set of bids with a similar preference
for the agent. The bidding strategy uses the opponent model (if
present) to select a bid from this set by taking the opponent’s utility
into account.

Finally, the acceptance strategy decides whether the opponent’s
action should be accepted. At first glance, it may seem counter-
intuitive to make this decision at the end of the agent’s deliberation
cycle. Clearly, deciding upon acceptance at the beginning would
have the advantage of not wasting resources on generating an offer
that might never be sent out.

However, generating an offer first allows us to employ accep-
tance conditions that depend on the utility of the counter bid that
is ready to be sent out. This method is widely used in existing
agents [3]. Such acceptance mechanisms can make a more in-
formed decision by postponing their decision on acceptance until
the last step; therefore, and given our aim to incorporate as many
agent designs as possible, we adopt this approach in our framework.

If the opponent’s bid is not accepted by the acceptance strategy,
then the bid generated by the bidding strategy is offered instead.

3.3 Employing the BOA framework
The component-based approach as outlined above enables us to

follow at least two approaches: first of all, it allows us to indepen-
dently analyze the components of every negotiation strategy that
fits in to our framework. For example, by re-implementing the
ANAC agents in the BOA framework, it becomes possible to com-
pare the accuracy of all ANAC opponent models, and to pinpoint
the best opponent model among them. Naturally, this helps to build
better agents in the future.

Secondly, we can proceed to mix different BOA components,
e.g.: replace the opponent model of the runner-up of ANAC by a
different opponent model and test whether this makes a difference
in placement. Such a procedure enables us to assess the reasons for
success of an agent, and makes it possible to systematically search
for an effective automated negotiator.

The first part of the approach gives insight in what components
are best in isolation; the second part gives us understanding of
their influence on the agent as a whole. At the same time, both
approaches raise some key theoretical questions, such as:

1. Can the BOA components be identified in all, or at least
most, current negotiating agents?

2. How do we measure the performance of the single compo-
nents? Can a single best component be identified, or does
this strongly depend on the other components?
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Figure 1: The BOA framework negotiation flow.

3. If the individual components perform better than others (with
respect to some performance measure), does combining them
in an agent also improve the agent’s performance?

In this work we do not aim to fully answer all of the above ques-
tions; instead, we outline a research agenda, and introduce the BOA
framework as a tool that can be used towards answering these ques-
tions.

Nonetheless, in the next section, we will provide empirical sup-
port for an affirmative answer to the first theoretical question: in-
deed, in many cases the components of the BOA framework can be
identified in current agents, and we will also provide reasons for
when this is not the case.

The answer to the second question depends on the component
under consideration: for an opponent model, it is straightforward
to measure its effectiveness: the closer the opponent model is to
the actual profile of the opponent, the better it is. The quality of
approximation can be measured in multiple ways [15], and should
be balanced against other measures that also influence its perfor-
mance. For instance, in a real time negotiation there is a trade-off
between the required computational resources and expected quality
of the opponent model.

The performance of the other two components of the BOA frame-
work is better measured in terms of utility obtained in negotiation
(as has been done for acceptance strategies in [3]), as there seems
no clear alternative method to define the effectiveness of the ac-
ceptance strategy or bidding strategy in isolation. In any case, the
BOA framework can be used as a research tool to help answer such
theoretical questions.

Regarding the third question: suppose we take the best perform-
ing bidding strategy, equip it with the most faithful opponent model,
and combine this with the most effective acceptance strategy; it
would seem reasonable to assume this combination results in an ef-
fective negotiator. We plan to elaborate on this conjecture in future
work (see also Section 6); however, Section 5 will already provide
a first step towards this goal by recombining components of the
ANAC 2011 agents to create more effective agents than the origi-
nal versions.

4. DECOUPLING EXISTING AGENTS
In this section we provide empirical evidence that many of the

currently existing agents can be decoupled by separating the com-
ponents of a set of state-of-the-art agents. This section serves three
goals: first, we discuss how existing agents can be decoupled in

a bidding strategy, acceptance strategy, and possibly an opponent
model; second, we argue that the BOA framework design is appro-
priate, as most agents will turn out to fit in our framework; third,
we discuss a method to determine if the sum of the components –
the BOA agent – is equal in behavior to the original agent.

4.1 Identifying the Components
In this section we identify the components of seventeen nego-

tiating agents, taken from the ANAC competitions of 2010 [4],
and 2011 [2], and of baseline strategies such as the time depen-
dent agents [10, 11], and zero intelligence strategies [12]. We have
selected these strategies as they are well-known and/or represent
the current state-of-the-art in automated negotiation, having been
implemented by various negotiation experts.

Since the agents were not designed with decoupling in mind,
all agents had to be re-implemented to be supported by the BOA
framework. Our decoupling methodology was to adapt an agent’s
algorithm to enable it to switch its components, without chang-
ing the agent’s functionality. A method call to specific function-
ality, such as code specifying when to accept, was replaced by a
more generic call to the acceptance mechanism, which can then be
swapped at will. The contract of the generic calls are defined by
the expected input and output of every component, as outlined in
Section 3.2.

The first step in decoupling an agent is to determine which com-
ponents can be identified. For example, in the ANAC 2010 agent
FSEGA [22], an acceptance condition, a bidding strategy, and an
opponent model can all be identified. The acceptance strategy com-
bines simple, utility–based criteria (called ACconst and ACprev in [3])
and can be easily decoupled in our framework. The opponent model
is a variant of the Bayesian opponent model [14, 24], which is used
to optimize the opponent utility of a bid. Since this usage is con-
sistent with our framework (i.e., the opponent model provides op-
ponent utility information), the model can be replaced by a generic
opponent model interface. The final step is to change the bidding
strategy to use the generic opponent model instead of specifically
its own model. Other agents can be decoupled using a similar pro-
cess.

Unfortunately, some agent implementations contained slight de-
pendencies between different components. These dependencies
needed to be resolved to separate the design into singular com-
ponents. For example, both the acceptance strategy and bidding
strategy of the ANAC 2011 agent The Negotiator1 rely on a shared
1Descriptions of all ANAC 2011 agents can be found in [2].
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target utility. In such cases, the agent can be decoupled by intro-
ducing Shared Agent State (SAS) classes. A SAS class avoids code
duplication, and therefore performance loss, by containing the code
that is shared between the components. One of the components
uses the SAS to calculate the values of the required parameters and
saves the results, while the other component simply asks for the
saved results instead of duplicating the calculation.

Table 1 provides an overview of all agents we re-implemented in
our framework, and more specifically, which components we were
able to decouple. In fact, we were able to decouple all ANAC2011
and ANAC2011 agents except for ValueModelAgent. While Val-
ueModelAgent can be theoretically decoupled, the strong coupling
between its components results in too computationally heavy com-
ponents when used separately.

As is evident from Table 1, the only possible obstacle in decou-
pling an agent is its usage of the opponent model. An agent’s oppo-
nent model can be employed in multiple ways. Some agents, such
as Nice Tit for Tat, attempt to estimate the Nash point on the Pareto
frontier. Other common applications include: ranking a set of bids
according to the opponent utility, reciprocating in opponent utility,
and extrapolating opponent utility. The generic opponent model in-
terface needs to sufficiently accommodate such requirements from
the bidding strategy to make interchangeability possible. For this
reason we require the opponent model interface to be able to pro-
duce the estimated opponent utility of an arbitrary negotiation out-
come.

With regard to the opponent model, there are three groups of
agents: first, there are agents such as FSEGA [22], which use an
opponent model that can be freely interchanged; second, there are
agents such as the ANAC 2010 winner Agent K [17], which do
not have an opponent model themselves, but can be extended to
use one. Such agents typically employ a bidding strategy that first
decides upon a specific target utility range, and then picks a random
bid within that range. These agents can easily be fitted with an
opponent model instead, by passing the utility range through the
opponent model before sending out the bid. Lastly, there are agents
that cannot use an opponent model in any meaningful way, such as
Random Walker [12], and there are agents such as Gahboninho and
BRAM Agent that use a frequency-based opponent model which
is not compatible with our framework, as their opponent models
do not yield enough information to compute the opponent utility of
bids. For this type of agent, we consider the opponent model part
of the bidding strategy.

When decoupling the agents, it becomes apparent that the bid-
ding strategy component varies greatly between different agents. In
contrast, there are only two main types of opponent models being
used: Bayesian models and frequency models. Bayesian models
are an implementation of a (scalable) model of the opponent pref-
erences that is updated using Bayesian learning [14, 24].

The main characteristic of frequency based models is that they
track the frequency of occurrence of issues and values in the oppo-
nent’s bids and use this information to estimate the opponent’s pref-
erences. In practice, Bayesian models are more computationally
intensive, whereas frequency models are relatively light-weight.

After comparing the different implementation variants in all agents,
we consider the Bayesian model of IAMhaggler 2010 and the fre-
quency model of HardHeaded representative of their type, as we
believe that both are the most accurate and computationally effi-
cient implementations.

Similar to the opponent models, most agents use variations and
combinations of a small set of acceptance conditions. Specifically,
many agents use simple thresholds for deciding when to accept
(called ACconst in [3]) and linear functions that depend on the util-

Agent B O A
Agent K X ∅ X
Agent K2 X ∅ X
Agent Smith X X X
BRAM Agent X – X
FSEGA X X X
Gahboninho X – X
HardHeaded X X X
IAMcrazyHaggler X ∅ X
IAMhaggler2010 X X X
IAMhaggler2011 X ∅ X
Nice Tit for Tat X X X
Nozomi X ∅ X
Offer Decreasing X – X
Random Walker X – X
TheNegotiator X ∅ X
Time dependent agent X ∅ X
Yushu X ∅ X

Table 1: Overview of components identified in every agent. X:
original has component that can be decoupled. ∅: original has
no component, but it can be added. – : no support for such a
component.

ity of the bid under consideration (ACnext(α,β ) [3]).

4.2 Testing Equivalence of BOA Agents
A BOA agent should behave identically to the agent from which

its components are derived. Equivalence can be verified in two
ways; first, given the same negotiation environment and the same
state, both agents should behave in exactly identical ways (Sec-
tion 4.2.1); second, the performance in a real time negotiation of
both agents should be similar (Section 4.2.2).

4.2.1 Identical Behavior Test
Two deterministic agents can be considered equivalent if they

perform the same action given the same negotiation trace. There are
two main problems in determining equivalence: first, most agents
are nondeterministic, as they behave randomly in certain circum-
stances; for example, when picking from a set of bids of similar
utility; second, the default protocol in GENIUS uses real time [18],
which is highly influenced by cpu performance. This entails that in
practice, two runs of the same negotiation are never exactly equiv-
alent.

To be able to run an equivalence test despite of the agents choos-
ing random actions, we fixed the seeds of the random functions of
the agents. The challenge of working in real time was dealt with by
changing the real time deadline to a maximum amount of rounds.
Since time does not pass within a round, cpu performance does not
play a role.

All agents were evaluated on the ANAC2011 domains (see [2]
for a domain analysis). The ANAC2011 domains vary widely in
characteristics: the number of issues ranges from 1 to 8, the size
from 3 bids to 390.625 bids, and the discount from none (1.0) to
strong (0.424). Some ANAC2010 agents, specifically Agent Smith
and Yushu, were not designed for large domains and were therefore
run on a subset of the domains.

The opponent strategies used in the identical behavior test should
satisfy two properties: the opponent strategy should be determin-
istic, and secondly, the opponent strategy should not be the first to
accept, to avoid masking errors in the agent’s acceptance strategy.
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Given these two criteria, we used the standard time-dependent tac-
tics [10, 11] for the opponent bidding strategy. Specifically, we use
Hardliner (e = 0), Linear Conceder (e = 1), and Conceder (e = 2).
In addition, we use the Offer Decreasing agent which offers the set
of all possible bids in decreasing order of utility.

All original and BOA agents were evaluated against all four op-
ponents on eight domains, using both preference profiles defined
on each domain. An agent running both strategies in parallel was
used to check that both strategies were equivalent.

After the experiments were performed, the test results indicated
that all BOA agents were exactly identical to their original counter-
parts.

4.2.2 Similar Performance Test
Two agents can perform the same action given the same input,

but may still achieve different results because of differences in
their real time performance. When decoupling agents, there is a
trade-off between performance and interchangeability of compo-
nents. For example, most agents record only a partial negotiation
history, while some acceptance strategies require the full history
of the agent and/or its opponent. In such cases, the agent can be
constrained to be incompatible with these acceptance strategies, or
generalized to work with the full set of available acceptance strate-
gies. We typically elected the most universal approach, even when
this negatively influenced performance. We will demonstrate that
while there is some performance loss when decoupling existing
agents, it does not significantly impact the negotiation outcome.

The performance of the BOA agents was tested by letting them
participate in the ANAC 2011 tournament (using the same setup,
cf. [2]). The decoupled ANAC 2011 agents replaced the original
agents, resulting in an 8× 8 tournament, while the ANAC 2010
agents were added to the tournament, resulting in 9× 9 tourna-
ments.

For our experimental setup we used computers that were slower
compared to the IRIDIS high-performance computing cluster that
was used to run ANAC 2011. As we were therefore unable to re-
produce exactly the same data, we first recreated our own ANAC
2011 tournament data (Appendix B), which is used as our baseline
to benchmark the decoupled agents. The difference in performance
caused small changes compared to the official ANAC 2011 rank-
ing, as Agent K2 moved up from 5th to 3rd place.

Table 2 in Appendix A provides an overview of the results. We
evaluated the performance in terms of time of agreement and av-
erage overall utility. From these results, we can conclude that the
variation is minimal: the largest difference between the original and
decoupled agents is 0.010 for the average time of agreement (due
to Agent Smith ) and 0.009 for the average utility (due to Hard-
Headed ). Therefore the BOA agents and their original counterparts
show comparable performance.

5. APPLICATIONS OF THE BOA FRAME-
WORK

The BOA framework can be used to compare the performance of
components and, using this knowledge, we can search for negotia-
tion strategies that improve the current state-of-the-art. In this sec-
tion we discuss a first exploratory test setup in which we change the
acceptance condition and opponent model of existing ANAC 2011
agents to improve their performance.

Despite the reduced negotiation space that is searched, the space
still needs to be scaled down. Decoupling n agents can in theory
give rise to n3 new agents if each agent implements all BOA com-
ponents (see Figure 1), and even larger if we allow different param-

eters for each component. In practice, it quickly becomes unfeasi-
ble to search the full Cartesian product of components. To reduce
the space, we have devised a method to test multiple acceptance
criteria at the same time, as is explained below.

5.1 Scaling the Negotiation Space
Suppose that two negotiating BOA agents A and B have identical

bidding mechanisms and the same opponent modeling technique,
so that only their acceptance criteria differs. Furthermore, suppose
agent A accepts in the middle of the negotiation, and agent B at the
end. The agents have accepted at a different time during the negoti-
ation, but the bidding behavior will be identical until the acceptance
occurred. The only difference between the complete traces is that
the trace of agent A is cut-off in the middle of the negotiation.

In the BOA framework we exploit this property by running all
acceptance conditions in parallel, and recording when each accep-
tance condition accepts. This reduces the amount of component
combinations from n3 to n2 as the n acceptance conditions are re-
duced to 1. This approach is from now on referred to as multi-
acceptance criteria (MAC).

In addition, since we support parameters for the acceptance con-
ditions, a large number of acceptance conditions varying only in
the value of their parameters can be tested during the same ne-
gotiation thread. Note that this approach assumes that checking
additional acceptance conditions does not introduce a large com-
putational overhead. In practice we found that the computational
overhead was less than 5%, even when more than 50 variants of
acceptance conditions were used at the same time.

Note that a similar technique cannot be applied for the bidding
strategy and the opponent model, as both components directly in-
fluence the negotiation trace.

Even if MAC is applied, there are still n2 possible combinations
to explore. This is already problematic for a limited amount of
domains and agents. To illustrate, ANAC 2011 consists of 448 ne-
gotiation sessions [2] which may all last 3 minutes. In worst case, it
requires 22 hours to run a single tournament, and almost four weeks
for running it 28 times, as we did for the similarity test discussed in
Section 4.2.2. Towards improving scalability, we extended GENIUS
so that a negotiation tournament may be distributed among multiple
computers.

5.2 Improving the State-of-the-Art
Using the scaling methods discussed in the previous section, we

were able to explore a reduced space of negotiation strategies. We
opted to limit our attention to the ANAC 2011 agents for two rea-
sons: first, because it is a competition that already has verified data
which can be re-used; second, the ANAC 2011 tournament is the
most recent incarnation of ANAC at the time of writing, and can
therefore be assumed to contain state-of-the-art negotiation agents.

5.2.1 Searching the Negotiation Space
For each agent of our test setup, the original bidding strategy was

fitted with alternative acceptance conditions and opponent models.
We used the following sets of BOA components:

(B) For the bidding strategies, the seven decoupled agents from
ANAC 2011 were used (see Table 1).

(O) As our opponent model set we elected the two representa-
tive opponent models we identified in Section 4.1 (i.e., a
Bayesian model and a frequency model). In addition, we al-
lowed the strategies to use no opponent model, as the compu-
tational overhead of an opponent model could lead to worse
performance.
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(A) All acceptance conditions of the seven decoupled agents of
the ANAC 2011 were used, except for the acceptance condi-
tion of Gahboninho, as it is relatively heavy-weight, resulting
in poor cpu performance.

In addition to the existing acceptance mechanism compo-
nents, we used acceptance mechanisms that combined cer-
tain acceptance criteria, such as ACcombi(T,MAXW ) [3], and
the discounted version of ACnext, called ACdisc

next(α,β ,γ,δ ).
Similar to the acceptance condition of IAMcrazyHaggler [23],
it differentiates between domains with and without discount
factors; on undiscounted domains, it behaves identically to
ACnext(α,β ) [3]; on the discounted domains it is equal to
ACnext(γ,δ ). Table 4 in Appendix C provides an overview
of all 83 tested acceptance conditions.

All possible combinations were run three times during an ex-
ploratory search to determine the best combination of components
for each agent. Similar to the equivalence test, we replaced the
original agent strategy by the new strategy and measured its per-
formance in the ANAC 2011 tournament. The best agent strategies
were run 10 times to determine whether the average utility was sig-
nificantly improved.

5.2.2 Results
From the seven agents analyzed in the test set we were able to

considerably improve four: Gahboninho, Agent K2, Nice Tit for
Tat, and BRAM Agent. All four perform significantly better than
their original (two-tailed t-test, p < 0.01).

For the other three agents, all the combinations of acceptance
conditions and opponent models resulted in similar or worse per-
formance. This indicates that the components of these strategies
are well geared to one another. Note that this does not mean that
the match is optimal, it only indicates that the components of the
strategy are optimal within the tested set of components. Table 5 in
Appendix D provides an overview of the performance of the best
combination of components for each agent.

We note that using an improved opponent model does not ensure
a better negotiation outcome, and in some cases can even result
in worse performance due to the overhead caused by updating the
model. An interesting direction for future work could be to quan-
tify the contribution of opponent models to the performance of the
ANAC agents.

All in all, the results demonstrate that the BOA framework not
only assists in exploring the negotiation strategy space and improv-
ing existing agents, but it also helps to identify which components
of the agent are decisive in its performance.

6. CONCLUSION AND FUTURE WORK
This paper introduces a framework that distinguishes the bidding

strategy, the opponent model, and the acceptance strategy in auto-
mated negotiation strategies and recombines these components to
systematically explore the space of automated negotiation strate-
gies. The main idea behind the BOA framework is that we can
identify several components in a negotiating agent, all of which can
be optimized individually. Our motivation in the end is to create a
proficient negotiating agent by combining the best components.

We have shown that many of the existing negotiation strategies
can be re-fitted into our framework. We identified and classified
the key components in them, and we have demonstrated that the
original agents and their decoupled versions have identical behav-
ior and similar performance. Finally, we have given an application
of the BOA framework by recombining different components of

the ANAC agents, and we have demonstrated this can significantly
improve their performance.

One obvious direction of future research is to look at differ-
ent BOA components in isolation; for example, to find the best
opponent model that is currently available. After identifying the
best performing components, we can turn our attention to answer
whether combining effective components leads to better overall re-
sults, and whether an optimally performing agent can be created
by taking the best of every component. Our framework allows us
to make these questions precise and provides a tool for answering
these questions.

Another possible improvement is extend the focus of current
work on preference profile modeling techniques to a larger class of
opponent modeling techniques, such as strategy prediction. Also,
an agent is currently equipped with a single component during the
entire negotiation session. It would be interesting to run multiple
BOA components in parallel, and use recommendation systems to
elect the best component at any given time.
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APPENDIX
A. SIMILARITY TEST

Avg. time of agr. SD time of agr. Avg. utility SD utility
Agent K (Org.) 0.713 0.0057 0.666 0.0035
Agent K (Dec.) 0.714 0.0061 0.672 0.0045
Agent Smith (Org.) 0.469 0.0083 0.703 0.0041
Agent Smith (Dec.) 0.479 0.0053 0.707 0.0041
FSEGA (Org.) 0.425 0.0013 0.721 0.0009
FSEGA (Dec.) 0.426 0.0041 0.721 0.0024
IAMcrazyHaggler (Org.) 0.591 0.0103 0.699 0.0078
IAMcrazyHaggler (Dec.) 0.587 0.0069 0.702 0.0099
IAMhaggler2010 (Org.) 0.633 0.0110 0.682 0.0093
IAMhaggler2010 (Dec.) 0.636 0.0101 0.684 0.0066
Nozomi (Org.) 0.663 0.0071 0.704 0.0063
Nozomi (Dec.) 0.666 0.0062 0.708 0.0053
Yushu (Org.) 0.798 0.0030 0.715 0.0035
Yushu (Dec.) 0.800 0.0026 0.717 0.0037
Agent K2 (Org.) 0.619 0.0046 0.685 0.0040
Agent K2 (Dec.) 0.621 0.0050 0.686 0.0034
BRAM Agent (Org.) 0.683 0.0089 0.683 0.0054
BRAM Agent (Dec.) 0.687 0.0060 0.683 0.0033
Gahboninho (Org.) 0.667 0.0055 0.736 0.0044
Gahboninho (Dec.) 0.668 0.0053 0.742 0.0015
HardHeaded (Org.) 0.738 0.0009 0.758 0.0024
HardHeaded (Dec.) 0.735 0.0028 0.749 0.0034
IAMhaggler2011 (Org.) 0.494 0.0102 0.685 0.0023
IAMhaggler2011 (Dec.) 0.493 0.0078 0.683 0.0024
Nice Tit for Tat (Org.) 0.677 0.0078 0.676 0.0043
Nice Tit for Tat (Dec.) 0.683 0.0070 0.668 0.0025
The Negotiator (Org.) 0.716 0.0016 0.679 0.0027
The Negotiator (Dec.) 0.716 0.0014 0.679 0.0023

Table 2: The table shows performance (with standard devia-
tion) of agents in an ANAC 2011 tournament before and after
being decoupled.
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B. RESULTS OF ANAC COMPETITION

Agent A
m

st
er

da
m

Tr
ip

C
am

er
a

C
ar

E
ne

rg
y

G
ro

ce
ry

C
om

pa
ny

A
cq

ui
si

tio
n

L
ap

to
p

N
ic

e
or

D
ie

M
ea

n
ut

ili
ty

HardHeaded 0.891 0.818 0.961 0.664 0.725 0.747 0.683 0.571 0.757
Gahboninho 0.912 0.659 0.928 0.681 0.667 0.744 0.726 0.571 0.736
Agent K2 0.759 0.719 0.922 0.467 0.705 0.777 0.703 0.429 0.685
IAMhaggler 2011 0.769 0.724 0.873 0.522 0.725 0.814 0.749 0.300 0.685
BRAM Agent 0.793 0.737 0.815 0.420 0.724 0.744 0.661 0.571 0.683
The Negotiator 0.792 0.744 0.913 0.524 0.716 0.748 0.674 0.320 0.679
Nice Tit for Tat 0.733 0.765 0.796 0.508 0.759 0.767 0.660 0.420 0.676
Value Model Agent 0.839 0.778 0.935 0.012 0.767 0.762 0.661 0.137 0.611

Table 3: ANAC 2011 results of our hardware (n = 10).

C. VARIABLES USED FOR ACCEPTANCE
CONDITIONS

Acceptance Condition Range Increments
ACmaxinwindow(T ) T∈ [0.95, 0.99] 0.01
ACdisc

next(α,β ,γ,δ ) α ∈ [1.0, 1.05] 0.05
β ∈ [0.0, 0.1] 0.05
γ ∈ [1.0, 1.1] 0.05
δ ∈ [0.0, 0.15] 0.05

ACHardHeaded – –
ACTheNegotiator – –
ACNiceTitForTat – –
ACBRAMAgent – –
ACAgentK2 – –
ACIAMhaggler2011 – –

Table 4: Variables that were used for the acceptance conditions.
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D. IMPROVED AGENTS STRATEGY RESULTS

Agent Original Best Performing Best Performing Improved
Utility Opponent Model Acceptance Condition Utility

Gahboninho 0.736 Original Model ACdisc
next(α,β ,γ,δ ) 0.759

(No Model) α: 1.0; β : 0.0; γ: 1.1; δ : 0.1;

Agent K2 0.685 IAMhaggler Model ACdisc
next(α,β ,γ,δ ) 0.724

α: 1.0; β : 0.0; γ: 1.0; δ : 0.15;

BRAM Agent 0.683 Original Model ACdisc
next(α,β ,γ,δ ) 0.697

(No Model) α: 1.0; β : 0.05; γ: 1.1; δ : 0.1;

Nice Tit For Tat 0.676 Original Model ACmaxinwindow(t) 0.696
(Bayesian Model) t: 0.99

HardHeaded 0.757 Original Model ACHardHeaded –
(Frequency Model)

TheNegotiator 0.679 Original Model ACTheNegotiator –
(No Model)

IAMhaggler2011 0.685 Original Model ACIAMhaggler2011 –
(No Model)

Table 5: Results of the improved agent strategies in an ANAC
2011 tournament (for n = 10 runs). The first four agents were
improved significantly. Ther other two agents did not improve
significantly in our test setup.
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Chapter 4

Applying the BOA Framework

In Chapter 3 the BOA framework was introduced which can be used to create a negotiation
strategy by selecting a bidding strategy, opponent model, and acceptance strategy. This
chapter discusses the design of a negotiation agent created using the BOA framework. The
negotiation agent participated in the ANAC 2012 with sixteen other teams in which it won
the award for the highest utility on undiscounted domains – one of the two parts of the
competition – and overall the third place. Our team was the only team of master students to
enter the finals.

This paper is part of the post-proceedings of the ACAN 2012 workshop which took
place at the AAMAS 2012.
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A Competitive Strategy for Real-time Bilateral Negotiations
Application of the BOA Framework

A.S.Y. Dirkzwager, M.J.C.Hendrikx

Abstract Each year the ANAC introduces an increasingly complex negotiation setting to stimulate the
development of negotiation strategies. This year, the ANAC2012 competition introduced a real-time bi-
lateral negotiation setting with reservation values and discounts. This work introduces the strategy of the
third place finalist and agent with best performance in undiscounted domains: TheNegotiator Reloaded
(TNR). TNR is the first ANAC agent created using the BOA framework, a framework allowing to sepa-
rately develop and optimize different components of a negotiation strategy. The agent uses a time-based
strategy of which the concession speed is determined based on an analysis of the opponent’s behavior and
discount factor. In addition, an opponent model is used to determine the maximum concession based on
an estimation of the Kalai-Smorodinsky point and the reservation value of the domain. Our contribution
to the field of bilateral negotiation is threefold: first, we present the implementation and optimization of
a negotiation strategy for a complex negotiation setting; second, we implement and use a set of quality
measures to analyze the agent’s performance; finally, we discuss how the agent could be improved and
extended.

1 Introduction

Last year, the ANAC2011 competition introduced a negotiation setting in which agents competed in a
real-time bilateral negotiation on domains with time-based discounts. This year the setting was further
extended to include reservation values. Interestingly, this setting is of sufficient complexity to capture
some real-life negotiations, for example a negotiation about a used car. Introducing an advanced nego-
tiation strategy for the ANAC2012 competition could help in improving the outcome and efficiency of
current (human) negotiations.

This work introduces the strategy of the third place finalist and agent with the best performance on
undiscounted domains in the ANAC2012 competition: TheNegotiator Reloaded (TNR). TNR is the first
agent based on the BOA framework, a framework which allows to separately develop the bidding strategy,
opponent model, and acceptance conditions and to easily swap these components [2]. The agent uses an
analysis of the opponent’s strategy and the discount of the domain to determine its concession speed.
In addition, TNR estimates the Kalai-Smorodinsky point and uses the reservation value to determine its
maximum concession.

A.S.Y. Dirkzwager · M. Hendrikx
Interactive Intelligence Group, Delft University of Technology, Mekelweg 4, Delft, The Netherlands,
e-mail: {A.S.Y.Dirkzwager,M.J.C.Hendrikx}@student.tudelft.nl
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Fig. 1: Overview of the components of TheNegotiator Reloaded.

Towards stimulating the development of better performing negotiation strategies, this work discusses
the implementation of TNR and analyzes its performance. Section 2 discusses the negotiation strategy and
how it is implemented and optimized using the BOA framework. In Section 3 a toolkit of quality measures
is used to quantify the performance of the negotiation strategy. Finally, Section 4 provides directions for
future research.

2 Negotiation Strategy

This section discusses the strategy of TheNegotiator Reloaded. Section 2.1 briefly describes the BOA
framework used to create TNR, for a more detailed description we refer to [2]. Following, Section 2.2
discusses how the BOA framework is used to implement TNR’s main components.

2.1 Introduction to the BOA Framework

The BOA framework is a framework implemented for GENIUS which allows to separately develop the
components of a negotiation strategy. The BOA framework makes a distinction between between three
types of components: a Bidding strategy which maps a negotiation trace to a bid; an Opponent model,
which is a learning technique used to model the opponent’s preference profile; and finally an Acceptance
strategy which determines whether the opponent’s offer is acceptable. A full negotiation strategy is cre-
ated by selecting a component for each of the three types. In fact, the full Cartesian product of these
components can be chosen resulting in a large space of possible negotiation strategies.

The advantages of implementing an agent as a set of BOA compatible components (a BOA agent)
are threefold: first, it allows to study the performance of individual components; second, it allows to
systematically explore the space of possible negotiation strategies to find an optimal strategy; third, the
identification of unique interacting components simplifies the creation of new negotiation strategies.

Figure 1 provides an overview of how the components interact. When receiving an opponent bid, the
BOA agent first updates the bidding history and opponent model to ensure that the most up-to-date data
is used, maximizing the information known about the environment and opponent. Given the opponent
bid, the bidding strategy determines the counter offer by first generating a set of bids with a similar
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utility for the agent. Following, the bidding strategy uses the opponent model to select a bid from this
set by taking the opponent’s utility into account. Finally, the acceptance strategy decides whether the
opponent’s action should be accepted. If the opponent’s bid is not accepted by the acceptance strategy,
then the bid generated by the bidding strategy is offered instead.

Each component of TNR was implemented separately using the BOA framework. The following sec-
tion discusses the implementation and optimization of each component in detail.

2.2 Implementing the BOA Components

This section discusses the BOA components of TNR. Figure 1 provides an overview of the components of
the agent’s negotiation strategy. Section 2.2.1 discusses the bidding strategy. In Section 2.2.2 the opponent
model is described. Finally, Section 2.2.3 discusses the acceptance strategy. Each section is subdivided
into implementation and optimization.

2.2.1 Bidding Strategy

Implementing the Bidding Strategy

TNR is a BOA agent which uses a domain analyzer and strategy analyzer to adapt its decision function
during the negotiation. TNR uses the standard time-dependent decision function discussed by Faratin
et al. [4]. We specifically chose to adopt this decision function, as its parameters can easily be adapted
during the negotiation. An overview of the bidding strategy is depicted in Figure 2.

The first step taken by TNR, is that it determines if the discount is low, medium, or high. Following,
the time is divided in a set of windows. At the start of each window, the domain analyzer is used to
estimate the Kalai-Smorodinsky point and the strategy analyzer is asked if the opponent is a conceder or
hardliner. Note that preferably, these calculations should be done each round. Unfortunately, this is too
computationally expensive and therefore we use a number of windows. The next step is to choose the
parameters of the standard time-dependent decision function depicted in Equation 1.

Pmin +(Pmax −Pmin) · (1−F(t)) where F(t) = k+(1− k) · t1/e. (1)

The first step in selecting the parameters, is to select the concession speed e. The value for e is se-
lected from a table which, given the discount type (low, medium, high) and the opponent’s strategy type
(conceder or hardliner), specifies a concession speed e. While the discount type does not change, the
identification of the opponent’s strategy can differ each window. The second and final step is to set the
maximum concession Pmin to the estimated Kalai-Smorodinsky point calculated by the domain analyzer.

Fig. 2: Overview of bidding strategy of TNR.
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For domains with a discount, Pmin is multiplied by the discount to ensure that the agent concedes faster.
Following, if the undiscounted reservation value is higher than Pmin, then Pmin is set to the reservation
value. However, if the resulting Pmin is smaller than 0.4, Pmin is set to 0.4. The variable k is always zero,
and Pmax is always one.

The target utility is used by the bid selector to select a bid with a utility as close as possible to the
target utility by using the binary search algorithm. Note that an alternative approach would be to select a
set of bids and use an opponent model to select the best bid for the opponent. However, in our tests this
approach did not result in a significant gain in performance.

Optimizing the Bidding Strategy

As discussed in the first part of this section, the concession speed e is chosen based on the opponent’s
strategy type (conceder or hardliner) and discount type (low, medium, high). Initially, we distinguished
four different discount types: no [1.00], low [0.85, 1.00), medium (0.40 - 0.85) and high [0.0 - 0.40]. This
distinction was made to allow our agent to be more flexible and perform better in a tournament where
these different types of discounts can be present. To find the optimum values of these eight parameters, we
created four variants of each ANAC2011 domain based on the discount types. The exact discount values
were chosen randomly (within the discount type range) for each domain. Following a set of representative
opponent’s was defined. We chose to use the ANAC2011 agents except for ValueModelAgent. This agent
was excluded both to decrease the test size, as well as an effort to decrease the standard deviation of the
discounted utility. The Energy and NiceOrDie domains were also discarded for the same reasons.

For each domain type a competition was ran in which TNR competed against all ANAC2011 agents.
Each domain type requires two parameters, corresponding to both possible strategy types of the oppo-
nent. Using trial-and-error the optimum value maximizing the discounted utility for each type of domain
was found. The optimized values resulted in a first place for our agent in each of the four tournaments.
Following, we further optimized the concession speeds to maximize the distance to the second place.
After the optimization step, we noted that there was little difference between the domains with no and
low discount. Therefore we merged these two types, resulting in the three discount types (low, medium,
high).

2.2.2 Opponent Model

Implementing the Opponent Model

Using the BOA framework, the following opponent models were compared with regard to accuracy: the
Bayesian Model [5], Scalable Bayesian Model [5], HardHeaded Frequency Model [3], and the IAMhag-
gler Bayesian Model [9]. The IAMhaggler Bayesian Model, which is part of the Southampton framework,
was found to be the most accurate in estimating the Kalai-Smorodinsky point. Note that after we submit-
ted our agent, we found that the HardHeaded Frequency Model, or a similar frequency model, would
have been a better choice. Unfortunately, the performance of the model was initially measured to be poor
due to a bug in GENIUS.

The computational resources required by the IAMhaggler Bayesian Model depend strongly on the
domain size. In addition, we found that while initially learning improves the estimation, the quality of the
estimation actually decreases over time on some domains after a small number of rounds. Therefore we
stop updating our model after 35% of the time has passed.
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Optimizing the Opponent Model

To select the best opponent model given the set of opponent models part of the BOA framework, we
first implemented a set of opponent model quality measures which are used to visualize the quality of an
opponent model over time. An overview of the quality measures is depicted in Table 1.

Quality measure Description
Pearson correlation
coefficient of bids [7]

Pearson correlation between the estimated utility of each bid for the opponent and the actual
utility

Ranking distance
of bids [7]

Distance between the estimated utility of each bid for the opponent and the actual utility

Absolute Kalai difference Absolute difference between the estimated and actual utility of the Kalai-Smorodinsky point
for the opponent

Table 1: Overview of quality measures used to estimate the opponent model’s accuracy.

In contrast to expectation, the accuracy of the IAMhaggler Bayesian Model in general becomes worse
over time. We believe that this can be attributed to the assumed decision function, which more accurately
reflects the real decision function at the beginning of the negotiation for most agents. To improve the
model’s accuracy, the assumed decision function was adapted to concede less over time. This lead to
better results at the beginning of the negotiation. In addition, we stop updating the model after 35% of
the time. This value was found by analyzing the performance of the opponent model on a large set of
domains.

2.2.3 Acceptance Strategy

Implementing the Acceptance Strategy

The acceptance strategy of TNR consists of a set of basic acceptance conditions discussed in [1]. The
flowchart of the acceptance strategy is depicted in Figure 3. As visualized, there are two paths depending
if the discount is negligible or not and six parameters (α,β ,γ,δ ,ε,ζ ).

ACreservation is an acceptance condition which accepts when the discounted utility of the bid under
consideration for offering is lower or equal to the reservation value. ACconstant is an acceptance condition
which accepts when the utility of the opponent’s bid is at least equal to a constant ζ . ACnext accepts when
a linear function of the opponent’s bid utility is better than the utility of the bid under consideration.
Finally, we use ACmax in window when there is 1−ε time left and the utilities of the bids of the agents have
not crossed. This acceptance condition compares the offered bid with the maximum bid that has been
given in a particular window and will accept if is higher than the maximum given in the previous window
and if it is higher than 0.5. For more detail about these acceptance conditions we refer to [1]

Fig. 3: Basic acceptance conditions used by TNR.
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Optimizing the Acceptance Strategy

The multi-acceptance criteria (MAC) functionality of the BOA framework introduced in [2] was used to
optimize the acceptance strategy. In short, the MAC can be used to run a large set of acceptance conditions
in parallel during the same negotiation thread, assuming that the computational cost of each acceptance
condition is minimal. Each acceptance is recorded separately, which allows us to study the performance
of the different acceptance conditions.

In our test, we used the same negotiation setting used for optimizing the opponent model in Sec-
tion 2.2.2. In total 288 acceptance conditions were tested varying in the usage of the panic phase and the
four parameters of the two acceptance conditions ACnext . We found that α = 1.0,β = 0.0,γ = 1.05,δ =
0.0,ε = 0.99 led to be the best results.

3 Empirical Evaluation

The performance of the final agent was analyzed by running a tournament. Section 3.1 discusses the
setup of this tournament and introduces the selected quality measures. Following, Section 3.1 discusses
the results of the tournament in Section 3.2.

3.1 Tournament Setup

The default alternating offers protocol of GENIUS is used to run the tournament [8]. The tournament is
similar to the ANAC2011 competition, except that ValueModelAgent is excluded and TNR is included,
and that the agents compete on the 24 modified ANAC2011 domains discussed in Section 2.2.2. The
full tournament is executed 10 times to increase the statistical significance of the results. In total 13440
matches were ran using the distributed version of GENIUS discussed in [2]. The computers used have
similar hardware to minimize the variance of results. The set of quality measures used is shown in Table 2.

Quality measure Description
Avg. time of agreement The average time of agreement of all matches which resulted in agreement
Std. time of agreement Standard deviation of the average time of agreement of each run
Avg. discounted utility Average discounted utility of all matches
Std. discounted utility Standard deviation of the average discounted utility of each run
Percentage of agreement Percentage of matches which resulted in an agreement
Avg. Kalai distance The average Kalai distance of all matches
Avg. unfortunate moves [6] The average percentage of unfortunate moves of all matches
Avg. fortunate moves [6] The average percentage of fortunate moves of all matches
Avg. nice moves [6] The average percentage of nice moves of all matches
Avg. selfish moves [6] The average percentage of selfish moves of all matches
Avg. concession moves [6] The average percentage of concession moves of all matches
Avg. silent moves [6] The average percentage of silent moves of all matches

Table 2: Overview of quality measures used to estimate the quality of a negotiation strategy.
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3.2 Evaluation

This section discusses the results of the tournament visualized in Table 3. First, the table shows that for
all agents the standard deviation of the time of agreement and discounted utility is negligible. Almost
all matches end in agreement. TNR achieves the highest discounted utility, and strongly outperforms the
runner-up. The last six measures in Table 3 are the set of trajectory measures discussed in [6]. TNR
makes the least concessions, as indicated by its high percentage of silent moves and its low ranking on
the percentage of unfortunate moves, fortunate moves, nice moves, and concession moves, which are all
types of moves made when the agent tries to make a concession. TNR agent does not make selfish moves,
which can be attributed to its usage of the time-dependent strategy.
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TheNegotiator Reloaded 0.545 0.001 0.809 0.002 99.911 0.033 0.000 0.033 0.000 0.003 0.930
Gahboninho 0.528 0.002 0.782 0.001 99.672 0.027 0.001 0.038 0.002 0.004 0.929
HardHeaded 0.638 0.001 0.778 0.001 99.911 0.111 0.013 0.133 0.052 0.028 0.663

Nice Tit For Tat Agent 0.605 0.003 0.767 0.002 100.00 0.112 0.079 0.066 0.116 0.115 0.512
Agent K2 0.493 0.002 0.755 0.001 99.821 0.154 0.116 0.069 0.203 0.174 0.284

The Negotiator 0.591 0.001 0.751 0.001 100.00 0.080 0.036 0.071 0.077 0.051 0.685
IAMhaggler2011 0.377 0.003 0.748 0.002 99.970 0.162 0.120 0.074 0.203 0.178 0.263

BRAMAgent 0.578 0.004 0.740 0.001 100.00 0.115 0.075 0.085 0.148 0.104 0.472

Table 3: Overview of the results of the quality measures for each agent. Bold text is used to emphasize
the highest value, and underlined the lowest value. All averages are in the range [0,1].

4 Conclusion and Future Work

The tournament results discussed in Section 3 indicate a strong performance of TNR on various domains
against a range of opponents. In the ANAC2012, TNR finished third overall and achieved the highest
utility on undiscounted domains. The agent finished fifth when only focussing on the discounted domains.
We believe that this can be attributed to our test set used to optimize the agent: ANAC2011 agents perform
relatively poor on discounted domains.

In addition, as discussed in Section 2.2.2, we noted that a frequency-based opponent model such as the
HardHeaded Frequency Model would have been a better choice to both estimate the Kalai-Smorodinsky
point and select a bid for the opponent given a set of similarly preferred bids.

For future work, it could be interesting to enable TNR to identify behavior-based strategies. In this case
the bidding strategy should be further extended to use an effective counter-strategy. Finally, the choice of
the concession speed could be made dependent on the exact discount.

Concluding, in this work we discussed the implementation, optimization, and evaluation of a flexible
negotiation strategy which outperforms the ANAC2011 agents on various domains and performs well in
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the ANAC2012. In addition, we presented the first ANAC agent developed using the BOA framework. For
future work we plan to continue our work in designing negotiation strategies for automated negotiations.
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Chapter 5

Evaluating the Quality of Opponent
Models

One of the main directions for future work discussed in the survey of opponent models
in Chapter 2, is the construction of evaluation methods to quantify the quality of existing
opponent models. In line with this direction for future work, this chapter presents two papers
on evaluating the quality of opponent models which estimate the opponent’s preferences.

The first paper concerns a measurement method to quantify the performance gain of an
opponent model relative to not using a model. The main strength of this method, is that
it directly provides insight which opponent model is best in a specific setting. The paper
was submitted to the 25th Australasian Joint Conference on Artificial Intelligence. We are
currently waiting for an acceptance notification.

The second paper concerns a measurement method which quantifies the accuracy of an
opponent model, and therefore provides better insight in how the model can be improved.
Furthermore, this work discusses the relationship between the accuracy and the performance
of a model. We plan to publish this paper in the near future.

Taken together, the combination of the measurement method allows us to compare the
quality of existing models and decide which one is best. One of our most interesting conclu-
sions, is that two simple types of opponent models – value models and frequency models –
actually strongly outperform the Bayesian models which are popular in both literature [11]
and the ANAC [1, 2].
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Measuring the Performance of Online Opponent Models
in Automated Bilateral Negotiation
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Abstract. An important aim in bilateral negotiations is to achieve a win-win
solution for both parties; therefore, a critical aspect of a negotiating agent’s suc-
cess is its ability to take the opponent’s preferences into account. Every year,
new negotiation agents are introduced with better learning techniques to model
the opponent. Our main goal in this work is to evaluate and compare the perfor-
mance of a selection of state-of-the-art online opponent modeling techniques in
negotiation, and to determine under which circumstances they are beneficial in a
real-time, online negotiation setting. Towards this end, we provide an overview
of the factors influencing the quality of a model, and we analyze how the per-
formance of opponent models depends on the negotiation setting. This results in
better insight into the performance of opponent models, and allows us to pinpoint
well-performing opponent modeling techniques which did not receive much pre-
vious attention in literature.

Keywords: Negotiation, Opponent Model Performance, Quality Measures

1 Introduction

A negotiation between two agents is a game in which both agents try to reach an agree-
ment better than their status quo. To avoid exploitation, agents often keep their prefer-
ences private during the negotiation [6]; however, if an agent has no knowledge about
its opponent’s preferences, then this can result in a suboptimal outcome [9]. A common
technique to counter this is learning the opponent’s preference profile during the nego-
tiation, which aids in increasing the quality of the negotiation outcome by identifying
bids that are more likely to be accepted by the opponent [6, 9, 20].

If there have been previous negotiations with a similar opponent, the opponent
model can be prepared before the start of the actual negotiation; we will refer to these
models as offline models (for example [6]). Contrastingly, if the agent has to learn the
preferences during the negotiation it performs online modeling (for example [8, 9, 13]).

In this work we focus on online opponent models in a single-shot negotiation with
private preference profiles; i.e., a setting in which an agent has no knowledge about the
opponent’s preference profile and no history of previous negotiations is available. There
has been recent interest in opponent modeling for such settings, for example in the
Automated Negotiating Agents Competition (ANAC) [1, 4]. Despite ongoing research
in this area, it is not yet clear how different approaches compare, and empirical evidence
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has raised the question whether using an opponent model is beneficial at all in such a
setting. To illustrate: state-of-the-art agents, such as the top three agents of both ANAC
2010 [4] and ANAC 2011 [1], do not model the opponent, yet outperformed agents that
do. One reason that opponent modeling does not guarantee a better outcome for an agent
is that the model can be a poor representation of the opponent’s preferences. If the model
consistently suggests unattractive bids for the opponent, it may even be preferable to not
employ one at all. Secondly, a time-based deadline introduces an additional challenge
for online opponent modeling, as learning the model can be computationally expensive
and can therefore influence the amount of bids that can be explored. More precisely,
the gain in using the model should be higher than the loss in utility due to decreased
exploration of the outcome space. We will refer to this as the time/exploration trade-off.

Apart from the inherent trade-off in opponent modeling, we are interested whether
opponent models are accurate enough to provide gains at all, even when ignoring com-
putational costs. To this end, we evaluate opponent models in two settings: a time-based
and round-based negotiation protocol. This paper compares a large set of opponent
modeling techniques, which were isolated from state-of-the-art negotiation strategies.
We measure their performance in various negotiation settings, and we provide a detailed
overview of how the different factors influence the final negotiation outcome.

After discussing related work in Section 2, we introduce the negotiation setting and
consider the difficulties in evaluating opponent models in Section 3. In Section 4 we
introduce a method to quantify opponent model performance, after which we apply it
to a set of models in Section 5. We formulate hypotheses and analyze the results in
Section 6; and finally, in Section 7 we provide directions for future work.

2 Related Work

Opponent modeling has received a lot of attention in automated negotiation. There are
three groups of related work when considering opponent model evaluation. The first
category consists of work that details an agent strategy in which the opponent model is
introduced, but the performance is not evaluated. Examples of this type are [8] and [19].

The second category compares a single novel model to a set of baseline strate-
gies. The approaches usually differ in how they define performance. In [9] for example,
a model is introduced for the same time-based protocol discussed in this work. The
performance of the opponent model is estimated by embedding it in a strategy and
comparing the average utility against two baseline strategies. The modeling technique
discussed by [15] introduces a model for a similar protocol, but in this case the baseline
is set by humans. Zeng and Sycara measure performance in terms of social welfare,
but focus on single-issue negotiations in which they compare the performance of three
settings: both learn, neither learn, and only the buyer learns [20]. Finally, [5] evaluates
the accuracy of a model against simple baseline strategies in terms of the likelihood that
the correct class is estimated to which the opponent’s preference profile belongs.

The last category is most similar to our work, and consists of literature comparing
the performance of a model against other models or against a theoretical lower or up-
per bound. For example, Coehoorn and Jennings [6] evaluate the performance of their
opponent model using a standard bidding strategy which can be used both with and
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without a model. The performance of the strategy is evaluated in three settings: without
knowledge, with perfect knowledge, and when using an offline opponent model. This
work is similar to our work, however, it differs in the fact that we focus on online oppo-
nent modeling. Our setting is especially challenging as it involves the time/exploration
trade-off. Another example is the work by [12], which introduces two opponent models
for e-recommendation in a multi-object negotiation. Compared to our work, we focus
on the more general type of multi-issue negotiations. Finally, [10] defines two accuracy
measures and uses these measures to analyze the accuracy of two opponent models.
The main differences are that we focus on a larger set of performance measures, and
pay more attention to the factors that influence the performance of the model.

Furthermore, as far as we know, our work is the first to compare and analyze such a
large set of state-of-the art models of the opponent’s preference profile.

3 Evaluating Opponent Models

The main goal of this work is to answer the question: “Under what circumstances is
it beneficial to use an online opponent model in a real-time negotiation setting?”. An
answer is not straightforward due to the time/exploration trade-off and potentially poor
accuracy of a model. In particular, we want to answer the following research questions:

1. Assuming perfect knowledge about the opponent’s preferences, is there a signifi-
cant performance gain in using this information compared to ignoring it?

2. Is there a significant performance gain from using an online opponent model in
comparison to not using a model, assuming no prior knowledge is available?

The main difficulty in finding a conclusive answer to these questions, is that the perfor-
mance of an opponent model depends on the negotiation setting. Therefore, we study
an third, overarching research question:

3. How does the performance of using an opponent model depend on the setting?

3.1 Preliminaries

In this work we focus on a bilateral automated negotiation in which two agents try
to reach an agreement while maximizing their own utility. Agents use the widely-
employed alternating-offers protocol for bilateral negotiations [16], in which the ne-
gotiating parties take turns in exchanging offers. A negotiation scenario consists of the
negotiation domain, which specifies the setting and all possible bids, together with a
privately-known preference profile for each party. A preference profile is described by
a utility function u(x), which maps each possible outcome x in the negotiation domain
to a utility in the range [0, 1]. In this work we discuss opponent models that attempt to
estimate the opponent’s utility function u′(x) during the negotiation.

3.2 Influence of the Agent’s Strategy

Different agents apply their opponent model in different ways. There are two main
factors in which the application of an opponent model by a bidding strategy can differ:
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– Type of information gained from the opponent model. A bidding strategy can em-
ploy an opponent model for different reasons: for example, it can be employed to
select the best bid for the opponent out of a set of similarly preferred bids [3, 19]; or
to select a bid that optimizes a weighted combination of both utility functions [8];
or it can help to estimate the utility of a specific outcome such as the Nash-point [3].

– Selecting a bid using an opponent model. When a model is used to select a bid from
a set of similarly preferred bids, the question still remains what selection criteria to
use. One straightforward solution is to select the best bid for the opponent, but this
may not be optimal, as in general opponent models are imperfect. An alternative is
to select a random bid from the set of n best bids [3].

Even when the factors above are taken into account, still care has to be taken to properly
compare different models. Opponent models can only be fairly compared if the other
components, such as bidding strategy and acceptance strategy [2] are fixed.

3.3 Influence of the Opponent’s Strategy

All opponent modeling techniques make certain assumptions about the opponent, so as
to assign meaning to the observed behavior. If the opponent does not adhere to these
assumptions, the model may not reflect reality well. The set of strategies against which
a model is tested is a decisive factor when measuring its performance. Therefore, a set
of opponents should contain both agents that fulfill the model’s assumptions to deter-
mine its efficacy in optimal conditions; and agents that test the model’s robustness by
violating its assumptions.

The following assumptions were found by analyzing the models in Section 5.2:

1. The concession of the opponent follows a particular function. Some opponent mod-
eling techniques assume that the opponent uses a given time-based bidding strategy.
Modeling the opponent then reduces to estimating all issue weights such that the
predicted utility by the modeled preference profile is close to the assumed utility.

2. The first bid made by the opponent is the most preferred bid. The best bid is the se-
lection of the most preferred value for each issue, and thereby immediately reveals
which values are the best for each issue. Many agents start with the best bid.

3. There is a direct relation between the preference of an issue and the times its value
is significantly changed. To learn the issue weights, some models assume that the
amount of times the value of an issue is changed is an indicator for the importance
of the issue. The validity of this assumption depends on the distribution of the issue
and value weights of the opponent’s preference profile and its bidding strategy.

4. There is a direct relation between the preference of a value and the frequency it
is offered. A common assumption to learn the value weights is to assume that val-
ues which are more preferred are offered more often. Similar to the issue weights
assumption, this assumption strongly depends on the agent’s strategy and domain.

3.4 Influence of the Negotiation Scenario

Three main factors of a scenario influence the quality of an opponent model:
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1. Domain size. In general, the larger the domain, the less likely a bid is a Pareto-bid.
Furthermore, domains with more bids are likely more computationally expensive
to model. Therefore, the influence of the time/exploration trade-off is higher.

2. Bid distribution. The bid distribution quantifies how bids are distributed. We define
bid distribution as the average distance of all bids to the nearest Pareto-bid. The bid
distribution directly influences the performance gain attainable by a model.

3. Opposition. We define opposition as the distance from the Kalai-point to complete
satisfaction (1, 1). The opposition of a domain influences the number of possible
agreements, and opponent models may be help in locating them more easily.

4 Measuring the Performance of Opponent Models

As we noted in the previous section, the effectiveness of an agent’s opponent model is
heavily influenced by the negotiation setting. This work proposes a careful measure-
ment method of opponent modeling performance, and can be interpreted as a first step
towards creating a generic performance benchmark for the type of opponent models
that we study here. The following sections discuss the four components of the method.

4.1 Negotiation Strategies of the Agents

For the negotiation strategies of the agents in which the opponent models are embedded,
we elected a variant of the standard time-dependent tactic [7]. This strategy is chosen
for its simple behavior, which elicits regular behavior from its opponents; furthermore,
adding a model may significantly increase its performance. Given a target utility, the
adapted agent generates a set of similarly preferred bids and then selects a bid using the
opponent model. We focus on selecting a bid from a set of similarly preferred bids, as
this usage is commonly applied, for example in [19] and [13]. We embedded the models
in four time-dependent agents (e = 0.1; 0.2; 1.0; 2.0). We opted for multiple agents as
we believed that the concession speed can influence the performance gain.

The remaining issue in using an opponent model is which bid to select for the op-
ponent given a set of similarly preferred bids. Given the approaches in Section 3.2, we
opted to have the models select the best bid for the opponent, as this approach is most
differentiating: it leads to better performance of the more accurate opponent models.

4.2 Negotiation Strategies of the Opponents

This section discusses the opponents selected using the guidelines outlined in Sec-
tion 3.3. The set of opponent strategies consists of three cooperative agents, which
should be easy to model as their concession speed is high, and five competitive agents.
The set of conceding agents consists of two time-dependent agents with high concession
speeds e ∈ {1, 2}, and the offer decreasing agent, which offers the set of all possible
bids in decreasing order of utility. The set of competitive agents contains two time-
dependent agents with low concession speeds e ∈ {0.0, 0.2}, and the ANAC agents
Gahboninho, HardHeaded, and IAMcrazyHaggler.
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Given the five opponent modeling assumptions introduced in Section 3.3, the first
assumption about the opponent’s decision function fails in general, as an opponent in
practice never completely adheres to the assumed decision function. The second as-
sumption holds for all agents except IAMcrazyHaggler, whose first bid is randomly
picked. The other three assumptions are typical for the frequency models. It is not pos-
sible to adhere to or violate these assumptions completely, as they depend both on the
negotiation scenario structure and opponents.

4.3 Negotiation Scenarios

As we explored in Section 3.4, the domain size, bid distribution, and opposition of a
negotiation scenario are all expected to influence an opponent model’s performance,
and therefore we aimed for a large spread of the characteristics of the scenarios, as
visualized in Table 1. In total seven negotiation scenarios were selected from ANAC
and existing literature.

Scenario name Size Bid distrib. Opposition
ADG [1] 15625 (med.) 0.136 (low) 0.095 (low)
Grocery [1] 1600 (med.) 0.492 (high) 0.191 (med.)
IS BT Acquisition [1] 384 (low) 0.121 (low) 0.125 (low)
Itex–Cypress [11] 180 (low) 0.222 (med.) 0.431 (high)
Laptop [1] 27 (low) 0.295 (med.) 0.178 (med.)
Employment contract [18] 3125 (med.) 0.267 (med.) 0.325 (high)
Travel [4] 188160 (high) 0.416 (high) 0.230 (med.)

Table 1. Characteristics of the negotiation scenarios.

4.4 Quality Measures for Opponent Models

The quality of an opponent model can be measured in two ways: a black box approach,
in which performance measures evaluate the ultimate goal, namely the quality of the
outcome; and there is the white box view, which uses accuracy measures capable of
considering the internal design of a strategy and revealing the accuracy of the estimation
of the opponent’s preference profile.

This work focuses on performance measures, as [10] has already compared oppo-
nent models using a white box approach, albeit in a more limited setting. Furthermore,
more accurate models do not necessarily lead to improved performance; however, we
also discuss accuracy measures in future work.

In this work we employ six performance measures. First, the utility performance of
an individual opponent model, which is measured as the average score of the agents em-
ploying it against the selected opponents on all negotiation scenarios. We also measure
the average time of agreement and the average amount of rounds that the negotiation
takes. Finally, we test the average distance from the outcome to the Pareto-frontier,
Kalai-point, and Nash-point of all negotiations that result in an agreement.
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5 Experiments

We applied the method described in the previous section to our experimental setup
below in order to answer the research questions introduced in Section 3.

5.1 Experimental Setup

To analyze the performance of different opponent models, we employed GENIUS [14],
which is an environment that facilitates the design and evaluation of automated ne-
gotiators’ strategies and their components. The experiments are subdivided into two
categories: we use a standard time-based protocol, as well as a round-based protocol.
In total, we ran 17920 matches, which on a single computer takes nearly two months.

Our main interest goes out to the real-time setting, as this protocol features the
time/exploration trade-off. We applied our benchmark to the set of models using the
time-based protocol. Each match features a real-time deadline set at three minutes.

In the round-based protocol the same approach is applied, but in this case, time does
not pass within a round, giving the agent infinite time to update its model. This provides
valuable insights into the best theoretical result an opponent model can achieve.

5.2 Opponent Models

We compare the performance of the opponent models used in ANAC [1, 4], which is a
yearly international competition in which negotiating agents compete on multiple do-
mains. Each year, the competition leads to the introduction of new negotiation strategies
with novel opponent models. While the domain (i.e. the set of outcomes) is common
knowledge to all agents, the utility function of each player is private information and
hence has to be learned. The utility functions of the agents are linearly additive; that
is, the overall utility consists of a weighted sum of the utility for each individual issue.
The setting of ANAC is consistent with the preliminaries in this paper.

We specifically opted to use agents that participated in ANAC for the following
reasons: the agents are designed for one consistent negotiation setting which makes it
possible to compare them fairly; their implementation is publicly available; and finally,
we believe that the agents and opponent models represent the current state-of-the-art.
We used modeling techniques from ANAC 2010 [4], ANAC 2011 [1], and a selection of
opponent models designed for ANAC 2012. We isolated the opponent models from the
agents and reimplemented them as separate generic components to be compatible with
all other agents (as in [2]). As discussed in Section 3.2, this setup allows us to equip a
single negotiation strategy with various opponent models, which makes it straightfor-
ward to fairly compare the different modeling techniques.

Table 2 provides a summary of the opponent models used in our experiments. We
did not include the Bayesian Model from [9] and the FSEGA Bayesian Model [17], even
though they fitted our setup, as both models were not designed to handle domains con-
taining more than a 1000 bids. We are aware that many alternative opponent modeling
techniques exist [5, 9, 15, 20]; however, for our negotiation setting, this is currently the
largest set available of comparable opponent modeling techniques.
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Based on our analysis, we found that in our selection two approaches to opponent
modeling are prominent: Bayesian opponent models and Frequency models.

Bayesian opponent models generate hypotheses about the opponent’s preferences [9].
The models presuppose that the opponent’s strategy adheres to a specific decision func-
tion; for example a time-dependent strategy with a linear concession speed. This is then
used to update the hypotheses using Bayesian learning.

Frequency models learn the issue and value weights separately. The issue weights
are usually calculated based on the frequency that an issue changes between two offers.
The value weights are oten calculated based on the frequency of appearance in offers.

Both modeling approaches are prone to failure as they rely on a subset of the as-
sumptions introduced in Section 3.3. More specifically, Bayesian models make strong
assumptions about the opponent’s strategy, whereas frequency models assume knowl-
edge about the value distribution of the issues of a preference profile and place weak
restrictions on the opponent’s negotiation strategy. Generally, the Bayesian models are
far more computationally expensive; however, it is unknown if they are more accurate.

Model Description M
No Model No knowledge about the preference profile. -
Perfect Model Perfect knowledge about the preference profile. -

Bayesian Scal-
able Model [9]

This model learns the issue and value weights separately. The opponent is
assumed to concede a constant amount per turn.

1

IAMhaggler Bay.
Model [19]

This model uses an efficient Bayesian learning technique in which the
opponent is assumed to use a specific time-dependent decision function.

1

HardHeaded
Freq. Model [13]

This model learns the issue weights based on how often the values change.
The value weights are learned based on frequency.

3
4

Smith
Freq. Model [8]

Uses a similar approach to the HardHeaded Frequency Model, but far less
computationally efficient.

3
5

Agent X
Freq. Model

This model is a more complex variant of the HardHeaded Frequency
Model, which also takes the opponent’s repeated bids into account.

3
4

N.A.S.H.
Freq. Model

In contrast to HardHeaded Frequency Model, this model learns the issue
weights based on the frequency that the assumed best value is offered.

2
4

Table 2. Overview of the opponent models and their modeling assumptions (M).

6 Results

Below we analyze the outcomes of the experiment to provide an answer to the research
questions in the form of hypotheses H1–H6. We first discuss the overall gain in per-
formance when using perfect knowledge versus online opponent modeling. Section 6.2
provides an answer to the final research question on how the negotiation setting influ-
ences the performance of an opponent model.
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6.1 Overall Performance of Opponent Models

Our experimental results for a selection of the quality measures described in Section 4.4
are shown in Table 3 for both the time-based and round-based protocol. Before we
analyze the performance gain of online opponent models, we first answer the question
whether perfect knowledge aids in improving the negotiation outcome at all:

H1. Usage of the perfect model by a negotiation strategy leads to a significant perfor-
mance gain in comparison to not using an opponent model.

We expected that perfect knowledge about the opponent’s preference profile would
significantly improve performance of an agent. Our main aim here was not to recon-
firm the already widely acknowledged benefits of integrative bargaining, but to analyze
whether our experimental setup is a valid instrument for measuring the learning effect
in other types of settings. Our expectation is confirmed by the experiment, as the per-
fect model yields a significant performance increase on all quality measures (except
average rounds) for both negotiation protocols. For the real-time protocol, the differ-
ence between the best online opponent (HardHeaded Frequency Model) and No Model
is 0.0135; for the round-based protocol it is 0.0144 (Smith Frequency Model). Note
that while the gains are small, there are three small domains where opponent modeling
does not result in significant gains. If we solely focus on the large Travel negotiation
scenario, then the gain relative to No Model becomes 0.0413 for the Perfect Model.
Especially note the improvement in distance between the outcome and Pareto-frontier,
and the earlier agreements, in Table 3. This leads us to conclude that using an opponent
model leads to better performance as it aids in increasing the quality of the outcome.

H2. Usage of an online opponent model leads to a significant performance gain when
time is not an issue. Online opponent modeling does not yield the same benefit in a
real-time setting because of the time/exploration trade-off.

We noted previously that in some cases, ANAC agents that do not model the opponent
can outperform agents that do, and such agents have even won the competition. This
led us to believe that online modeling does not benefit the agents, either because it
misrepresents the preferences, or by taking too much time in a time-sensitive setting.

This is why it came as a surprise that in both the time- and round-based protocol,
online opponent models performed significantly better on all quality measures. For the
time-based protocol the best online opponent models are the frequency models, ex-
cept for the Smith Frequency Model who scores badly in this case. However, for the
round-based protocol, the Smith Frequency Model is actually best. This is caused by the
time/exploration trade-off, because the model is computationally expensive as indicated
by the small amount of bids offered in the time-based protocol.

Surprisingly the worst performance on a quality measure is not always made by us-
ing No Model. For example in the time-based experiment the Bayesian Scalable Model
has the worst performance. The Bayesian model of IAMhaggler however, performs
much better, but disappoints in the round-based protocol. We believe this can be at-
tributed to its updating mechanism: only unique bids are used to update the model,
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Quality Measures
Perfect HH.

FM
Agent X
FM

Nash
FM

IAH.
BM

Smith
FM

None Scal.
BM

Time-based
Avg. utility .7285 .7260 .7257 .7257 .7178 .7156 .7125 .7077
Avg. time of agr. .4834 .4865 .4867 .4865 .4958 .4937 .5022 .5055
Avg. rounds 7220 7218 7231 7198 7004 4745 7352 4836
Avg. Pareto dist. of agr. .0007 .0017 .0015 .0018 .0069 .0068 .0059 .0071
Avg. Kalai dist. of agr. .2408 .2434 .2447 .2428 .2515 .2474 .2683 .2561
Avg. Nash dist. of agr. .2442 .2471 .2481 .2483 .2541 .2500 .2721 .2594

Rounds-based
Avg. utility .7235 .7196 .7191 .7192 .7111 .7199 .7050 .7124
Avg. time of agr. .4928 .4975 .4978 .4977 .5058 .4974 .5136 .5038
Avg. rounds 2508 2531 2533 2533 2572 2531 2567 2562
Avg. Pareto dist. of agr. .0010 .0029 .0023 .0028 .0073 .0026 .0066 .0063
Avg. Kalai dist. of agr. .2332 .2380 .2395 .2380 .2456 .2369 .2614 .2445
Avg. Nash dist. of agr. .2370 .2403 .2437 .2404 .2516 .2403 .2644 .2472

Table 3. Performance of all models on a set of quality measures for both protocols.

which speeds-up updating but can result in poor performance against slowly conceding
agents which offer the same bid multiple times.

In conclusion, online opponent model can result in significant gains and surpris-
ingly, frequency models lead to the largest gains, outperforming the Bayesian models.
We believe that the winners of ANAC could have performed even better by learning the
opponent’s preferences with a frequency model. The success of the frequency model
can be attributed to its simplicity and hence faster performance, and to the fact that it
is more robust by making weaker assumptions about the strategy of the opponent in
comparison to the Bayesian modeling approaches.

6.2 Influence of the Negotiation Setting

We will now discuss the influence of each of the three components of the negotiation
setting on the quality of an opponent model, following the structure of Section 3.

Influence of the Agent’s Strategy. The performance gain of using an opponent
model necessarily depends on the strategy in which it is embedded. Table 4 provides an
overview of the relative gain in comparison to No Model for all opponent models in the
time-based experiment. Based on the results, we have tested the following hypothesis:

H3. The more competitive an agent, the more it benefits from using an opponent model.

At each turn of a negotiation session, a set of possible agreements can be defined. This
is the intersection of two sets: the set of bids which an agent considers for offering,
and the set of all bids acceptable to the opponent. The more competitive the agent, the
smaller the intersection between the two sets. When an agent concedes, the number
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of possible agreements increases at the cost of utility. An opponent model can help
in finding possible agreements, preventing concession and therefore loss in utility. We
therefore expected the gain for competitive agents to be higher, as the set of possible
agreements each turn is smaller, and therefore an optimal bid is more easily missed by
an agent not employing an opponent model. This is especially decisive in the last few
seconds of the negotiation, when many agents concede rapidly to avoid non-agreement.

The hypothesis is confirmed by our experiments. In Table 4 there is a negative cor-
relation between the concession speed and relative gain in performance. If we ignore
the results of the three worst performing models, a small – albeit statistically signifi-
cant – negative correlation of −0.508 is found between the concession speed and the
performance gain of an agent.

Agents e = 0.1 e = 0.2 e = 1 e = 2

Perfect Model 0.0180 0.0164 0.0152 0.0144
HardHeaded Freq. Model 0.0156 0.0137 0.0118 0.0128
Agent X Freq. Model 0.0161 0.0137 0.0116 0.0113
N.A.S.H. Freq. Model 0.0166 0.0129 0.0108 0.0121
IAMhaggler Bay. Model 0.0084 0.0055 0.0033 0.0039
Smith Freq. Model -0.0031 0.0020 0.0071 0.0063
Bayesian Scalable Model -0.0050 -0.0058 -0.0032 -0.0053

Table 4. Utility of each opponent model relative to using No Model for each agent.

Influence of the Opponent’s Strategy. The opponent’s behavior also has an impor-
tant impact on the performance of an opponent model. Based on the results shown in
Table 5, we test the three hypotheses below.

H4. An agent benefits more from an opponent model against competitive agents.

Intuitively, the more competitive the opponent, the more useful the opponent model as
the set of possible agreements is smaller, analogous to hypothesis H3. Therefore, we
expected the highest gain against the competitive agents Gahboninho V3, HardHeaded,
and IAMcrazyHaggler. However, in Table 5 only the gain for Gahboninho V3 and IAM-
crazyHaggler is very high.

For HardHeaded, we believe this can be attributed to the agent using an opponent
model itself. If the opponent uses a well-performing opponent model, then the per-
formance gain of an opponent model can be expected to be lower, as the opponent is
already able to make Pareto-optimal bids. Our experiment appears to the confirm this
hypothesis in the case of playing against HardHeaded, whose well-performing oppo-
nent model seems to diminish the effect of opponent modeling by the other side.

Concluding, given the results of our experiment, we believe that the hypothesis
holds, at least for consistently competitive opponents without an opponent model.

H5. Frequency models are more robust against opponents employing a random tactic
than the Bayesian models.
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Opponents TDT
0

TDT
0.2

TDT
1.0

TDT
2.0

OD Gah. HH. IcH.

Perfect .0085 .0015 .0008 .0022 .0060 .0676 .0015 .0399
HH. Freq. Model .0085 .0013 -.0002 .0019 .0060 .0515 .0000 .0388
Agent X Freq. Model .0085 .0019 .0002 .0036 .0058 .0561 .0009 .0285
N.A.S.H. Freq. Model .0085 .0005 -.0005 .0020 .0065 .0507 .0037 .0336
IAH. Bay. Model .0000 .0003 -.0021 -.0001 -.0046 .0511 .0039 -.0066
Smith Frequency -.0038 -.0023 -.0019 .0007 -.0113 .0357 -.0224 .0297
Bay. Scalable Model .0000 -.0033 -.0055 -.0058 -.0535 .0458 -.0128 -.0036

Table 5. Utility of each opponent model relative to using No Model for each opponent.

In order to estimate the opponent’s utility of a certain bid, both types of models make
certain assumptions about the opponent. The Bayesian opponent models assume that
the opponent follows a particular decision function through time (cf. modeling assump-
tion 1 in Section 3.3), while the frequency models assume higher valued bids are of-
fered more often (cf. modeling assumptions 3 and 4). Many opponent strategies do not
adhere to these assumptions, which causes the learning models to make wrong predic-
tions when playing against them. For example, opponents such as IAMcrazyHaggler
who employ a random negotiation strategy, explicitly violate the assumptions of both
models. For the Bayesian learning models, this means the opponent preferences will be
estimated incorrectly, and more so through time. The frequency models however, are
much more robust, not only in the sense that a negotiation tactic has a greater chance
to satisfy its assumptions, but more significantly: it is less sensitive to a tactic violating
its assumptions. For instance, in the case of IAMcrazyHaggler, it will deduce that it
equally prefers any bid it has offered so far – which, in this case, is exactly right.

We therefore expected relatively poor performance from the Bayesian models. This
hypothesis is confirmed by our experiment: the frequency models have a high per-
formance gain against IAMcrazyHaggler, whereas using the Bayesian models is even
worse than not using an opponent model at all.

Influence of the Negotiation Scenario. The performance of an opponent model is
influenced by the characteristics of the negotiation scenario, such as amount of bids,
distribution of the bids, and the opposition of the domain. Table 6 provides an overview
of the relative gain of all opponent models in comparison to No Model for in the time-
based experiment. Based on these results, we formulate the following hypothesis:

H6. The higher the amount of bids, bid distribution, or opposition of a scenario, the
more an agent benefits from using an opponent model.

We anticipated the bid distribution to be the major factor determining the perfor-
mance gain of an opponent model. If the bid distribution is high, then the Pareto-frontier
is more sparse. This means a higher gain can be expected of utilizing an opponent model
to locate bids close to the Pareto-frontier. This hypothesis is confirmed by our experi-
ments, as we found a strong Pearson correlation of 0.778 between the bid distribution
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Model Low Medium High
Size Perfect 0.001 0.022 0.041

Best 4 0.002 0.018 0.039
Bid Distribution Perfect 0.001 0.013 0.035

Best 4 -0.001 0.010 0.034
Opposition Perfect 0.001 0.023 0.020

Best 4 -0.001 0.022 0.016
Table 6. Gain of each model relative to using No Model for each scenario parameter.

and the performance gain of the best four models, and 0.701 if we solely focus on the
perfect opponent model. Therefore we confirm this sub-hypothesis.

Another factor is the size of the negotiation domain. If a domain contains more bids,
then there are relatively less bids that are Pareto-optimal, so an opponent model can aid
more in identifying them. On the other hand, opponent models are more computation-
ally expensive on the larger domains. Despite this effect, we found a strong Pearson
correlation between the amount of bids and the performance gain: 0.631 for the best
four models, and 0.596 when using the perfect model.

The final factor is the opposition of the scenario. Intuitively, if the opposition is
higher, then there are less possible agreements. Opponent models can aid in identifying
these rare acceptable bids, thereby preventing break-offs, or unnecessary concessions.
Nevertheless, if the opposition is high, then the bids are also relatively closer to the
Pareto-optimal frontier, which renders it more difficult for an opponent model to make
a significant impact on the negotiation outcome. Despite this effect, we expected that
higher opposition would lead to higher performance gain. However, in our experiments
we noted only a small positive Pearson correlation of 0.256 for the best four models and
0.262 for the perfect model. Based on these results we are unable to draw a conclusion,
which leads us to believe the two mentioned effects cancel each other out, making the
other two characteristics of the scenario decisive in the effectiveness of a model.

7 Conclusion and Future Work

This paper evaluates and compares the performance of a selection of state-of-the-art
online opponent models. The main goal of this work is to evaluate if, and under which
circumstances, opponent modeling is beneficial.

Measuring the performance of an opponent model is not trivial, as the details of
the negotiation setting affects the effectiveness of the model. Furthermore, while we
know an opponent model improves the negotiation outcome in general, the role of time
should be taken into account when considering online opponent modeling in a real-
time negotiation because of the time/exploration trade-off: a computationally expensive
model may produce predictions of better quality, but in a real-time setting it may lead
to less bids being explored, which may harm the outcome of the negotiation.

Based on an analysis of the contributing factors to the quality of an opponent model,
we formulated a measurement method to quantify the performance of online opponent
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models and applied it to a large set of state-of-the-art opponent models. We analyzed
two main types of opponent models: frequency models and Bayesian models. We noted
that the time/exploration trade-off is indeed an important factor to consider in opponent
model design of both types. However, we found that the best performing models did
not suffer from the trade-off, and that most – but not all – online opponent models re-
sult in a significant improvement in performance compared to not using a model; not
only because the deals are made faster, but also because the outcomes are on average
significantly closer to the Pareto-frontier. A main conclusion of our work is that we
noted that frequency models consistently outperform Bayesian models. This is not only
because they are faster, because the effect remains in a round-based setting. This sug-
gests that frequency models combine the best of both worlds. Surprisingly, despite their
performance, frequency models have not received much attention in literature.

Our other main conclusion concerns the effects of the negotiation setting on an
opponent model’s effectiveness. We found that the more competitive an agent, or its
opponent, the more benefit an opponent model provides. In addition, we found that the
higher the size or the bid distribution of a scenario, the higher the gain of using a model.

For future work, it would be interesting to examine other uses of opponent model-
ing, such as opponent prediction. Another direction of future work is to investigate the
interaction between opponent model performance and its accuracy through time. We
also plan to test a larger set of models derived from literature and ANAC 2012.
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ABSTRACT
Opponent models are an important component in the development
of efficient negotiation strategies, as they aid in increasing the qual-
ity of the negotiation outcome. A large set of opponent models have
already been introduced, but to date, opponent models are mainly
evaluated as black-box components that aim to improve the perfor-
mance of a negotiation strategy. Such an approach does not fully
provide insight into the reason why certain opponent models work
better than others. In contrast, in this work we introduce and ap-
ply a method to quantify the accuracy of an opponent model. Our
approach is novel in the sense that we quantify the accuracy of a
set of opponent models in various ways, and we analyze how the
accuracy changes over time depending on the negotiation setting.
Furthermore, we determine in what way improved accuracy trans-
lates into increased performance, and we provide a set of measures
that we believe are most useful to include in a benchmark.

As we plan to publish this paper in a conference this year, the
version of the paper in this thesis is limited to an abstract. The
committee members graded the full paper. A full version of the
paper can be requested by contacting the authors.
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Chapter 6

Conclusion and Future Work

There is an increasing interest in the research field of automated negotiation, mainly driven
by cost reduction due to automation [5, 15, 21]. One of the main subjects of automated ne-
gotiation is the design of effective negotiation strategies. Opponent models are an important
part of effective negotiation strategies, as they can aid in taking the opponent into account.

Many types of opponent models have been introduced in literature, however, up till
now there was no recent survey providing structure and direction to the field. Towards this
end, in Chapter 2 we identified and discussed six types of opponent models. We provided
directions for future work for each type of opponent model. An important direction for
future work is the design of benchmarks to evaluate and compare models of the same type.

In line with this direction, the goal of this thesis was to improve the state of the art by
creating a method to quantify the quality of opponent models which estimate the opponent’s
preferences. An important aspect required to estimate the quality of an model, is the possi-
bility to switch the opponent model of an existing strategy for another or no model. Towards
this end, we introduced the BOA framework in Chapter 3.

The BOA framework is a framework that distinguishes the bidding strategy, the oppo-
nent model, and the acceptance strategy in automated negotiation strategies and allows to
recombine these components to systematically explore the space of automated negotiation
strategies. For this framework we decomposed the strategy of a large set of agents in the
ANAC [1, 2]. In total the components of more than twenty agents were isolated and adapted
to be compatible with framework. An important direction for future work is to extend the
BOA framework to include a component which estimates the opponent’s bidding strategy.

In Chapter 4 we discussed how the BOA framework was applied to create a negotiation
agent which participated in the ANAC 2012. The agent finished third in the competition,
which illustrates that the framework can be used to create state of the art negotiation agents.

Furthermore, based on the BOA framework, in chapter 5 we introduced a method to
quantify the quality of an opponent in terms of performance gain relative to not using an
opponent model. The method is based on an analysis of how the performance of an oppo-
nent model depends on in which agent it is embedded, the characteristics of the opponent,
and the parameters of the negotiation scenario. We applied the method to a large set of
opponent models derived from the ANAC. Surprisingly, some of the models we evaluated
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Conclusion and Future Work

– which received much attention in literature – had a negative utility gain, whereas others –
which have not received attention – were not far from theoretically optimal.

However, while we found the performance gain of a large set of models, the question
remained how accurate the models are and how their accuracy changes during a negotiation.
Therefore, we introduced an additional method to quantify the accuracy of opponent models
over time using a large set of accuracy measures. Surprisingly, we found that while in
literature it is believed that opponent models improve due to learning, we found that against
a set of simple time-dependent agents, the accuracy of a majority of the models actually
decreased over time. Furthermore, in line with our previous paper on quality evaluation, we
found that frequency and value models are the best, despite that the models have currently
not received attention in literature. Finally, for each of the four types of opponent models
we distinguished, we provided directions on how to improve the models.

Concluding, in this work we introduced a survey providing structure to the field of op-
ponent modeling and introduced two methods which augment each other in quantifying the
quality of an opponent model of the opponent’s preferences. There are two straightforward
directions for future work; first, the two evaluation methods could be combined in a single
benchmark which can be easily used to quantify the quality of novel opponent models; sec-
ond, a similar evaluation method can be created for the other five types of opponent models.
We believe that both directions for future work are an important step in advancing the field
of opponent modeling.
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Appendix A

Implementation

The experiments discussed in the previous chapters were run using GENIUS [20]. GENIUS

is a flexible program which can be used to simulate various types of negotiations. The
original version of GENIUS did not implement all functionality required to run our ex-
periments. Therefore, we extended the GENIUS in four ways: the BOA framework (Sec-
tion A.1), Distributed Genius (Section A.2), quality measures (Section A.3), and general
improvements (Section A.4).

A.1 BOA Framework

The BOA framework is a major extension of GENIUS which allows to separately develop
the bidding strategy, opponent model, opponent model strategy, and acceptance strategy of
a agent. Figure A.1 provides an overview of the components of an agent created using the
BOA framework.

To add a BOA agent to a negotiation the user can use the GUI depicted in Figure A.2.
In this GUI, a user can simply select a component of each type to create a new agent.
Additionally, parameters can be given to each component, which can be used to test variants
of the same component.

Figure A.1: Overview of the structure of the agent template used to create a BOA agent.
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Implementation A.1 BOA Framework

Figure A.2: The GUI of the BOA framework.

When a negotiation starts, the components of the BOA agent are loaded from file and
packed as a normal negotiation strategy by copying them in the agent template illustrated
in Figure A.1. This entails that from an outside perspective the BOA agent is similar to a
normal agent and therefore we can benefit from existing functionality.

A new component can be easily created by implementing the interface of the type of
component. Following, by adding the component to the repository, the component is added
to the list of available components. We added a detailed explanation on how to use the BOA
framework to the manual of GENIUS.

In contrast to the paper on the BOA framework, for the other papers the framework was
extended in two ways:

1. First, a new component called opponent model strategy was added, which allows to
specify how the bidding strategy uses the opponent model to select a bid. To illustrate,
an opponent model can select the best bid from the set of similarly preferred bids.

Furthermore, using this component, the default updating rule that all bids are used
to update the opponent’s model can be replaced. For example, an opponent model
strategy can specify that the opponent model only updates half of the time on a large
domain and thereby save computational resources.

2. Second, in line with the requirements for the ANAC2012 competition, the possibility
to send a break action was added. This action immediately breaks off the negotiation,
which may be beneficial in domains with discounts and a high reservation value.
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A.2 Distributed Genius Implementation

Finally, we created a set of support classes to more easily create new bidding strategies.
For example, a bidding strategy may benefit from using the SortedOutcomeSpace class to
efficiently search the outcome space.

A.2 Distributed Genius

The problem with the default implementation of GENIUS, is that large tournaments can take
days to complete on a single computer. Up till now, the solution was to manually split up
the tournament, and let each computer run a part of the tournament. As we had to run a
large number of tournaments, we created Distributed Genius.

Distributed Genius is an extension of GENIUS which can be used to divide a tournament
among multiple computational threads, which may be different computers. Figure A.3 de-
picts an overview of how the system works. Initially, a user specifies the tournament to be
run. The tournament is automatically split into smaller tournaments called jobs, which are
stored in a central database together with the specification of the tournament. Subsequently,
clients can join the tournament and are automatically allocated a job. When a job is finished,
the results are stored in the database. Finally, when all jobs have been processed the results
of the tournament are sent to all clients.

Figure A.3: Creating an running a tournament using distributed GENIUS.

During a tournament, it can happen that a computer crashes and therefore fails to finish
its job. In this case, after all other jobs have been processed, the other clients detect that a
job has been left unfulfilled an automatically start on this job.

In our configuration we used a small set of computers and a simple database server. At
times, more than 20 computational threads were working on the same tournament, effec-
tively realizing a speed-up of 20 times over using a single computer.

A.3 Quality Measures

Originally, GENIUS included only a small set of quality measures insufficient for our pur-
poses. Therefore, we implemented five additional sets of quality measures. Each set is
implemented in a way that it can be easily extended with novel quality measures.
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Implementation A.4 General Improvements to Genius

1. Opponent model accuracy measures can be used to measure the accuracy of an op-
ponent model during a negotiation. More than ten measures are included, which are
discussed in detail in Chapter 5.

2. Outcome measures quantify the quality of the outcome of a single match and includes
four measures: Kalai distance, Nash distance, Pareto distance, and social welfare.

3. Scenario Measures are a separate set of measures used to measure the properties of
a scenario, for example the opposition of the preference profiles or their bid distribu-
tion. This set includes nine measures.

4. Tournament measures is a collection of more than twenty measures which summa-
rize the results of a tournament. The set of measures include the average time of
agreement, average rounds, and percentage of agreements.

5. Trajectory measures capture properties of the negotiation trace of an agent using
measures from [10], such as the percentage of concessions. Besides the measures
from [10], we included two measures which quantify the percentage of bids explored.

A.4 General Improvements to Genius

Besides the extensions of GENIUS discussed in the previous section, there are three major
improvements we made to existing functionality:

1. Memory leaks. During tournaments we noted that the memory became full over time.
This resulted in less offers being made, which in some cases strongly influenced the
outcome of the negotiation. Using a memory analyzer we found several bugs which
we resolved. The current version of GENIUS can run for days without problems.

2. GUI. In the original GUI, when a list of scenarios or agents exceeded a maximum
length then they could no longer be selected. To resolve this problem, we generalized
both GUI’s to a single scrollable GUI which can be given an arbitrary list of items.
Our improved GUI has been included in the last official builds of GENIUS.

3. Pareto frontier. During the implementation of the accuracy measures, we required a
faster algorithm to calculate the Pareto frontier. Tim Baarslag had already written a
faster algorithm, however, this version was not included in the main branch as it was
not validated. Therefore, we created a test method which compares the results of an
efficient algorithm with a slow bruteforce algorithm.

Surprisingly, we found that both the new and the old algorithm returned incorrect
results in a specific case in which two Pareto optimal bids were identical with regard
to their utility for both parties. In large domains, a significant percentage of the
Pareto bids have the same utility. In this case, Pareto bids were incorrectly discarded.
This is a serious problem, as it can lead to biased results when the bids are used for
example by the accuracy measures. Therefore, we adapted the faster algorithm by
Tim Baarslag, which is incorporated in the latest builds of GENIUS.
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Appendix B

Contribution of Authors

In line with the requirements, this section discusses my contribution to each paper. The
order of the papers follows the structure of the main text. The survey of opponent models is
not discussed, as the version in this thesis was fully written by me.

B.1 Decoupling Negotiating Agents to Explore the Space of
Negotiation Strategies

Tim Baarslag proposed the idea to split the negotiation strategy into components to analyze
the quality of individual components. I refined this idea by analyzing which components
can be found in existing strategies. Based on an analysis of a large set of existing agents,
I identified four components: the bidding strategy, acceptance strategy, opponent model,
and opponent model strategy. The idea to add the opponent model strategy was one of my
insights which I obtained from analyzing existing agents. For each component I defined an
interface, and implemented a framework to combine different components. Based on this
framework, at the end of my thesis, I implemented more than 80 such components in Java
partly derived from more than 20 agents. As part of the first experiment, which was thought
up by me and Alex Dirkwager, for all decomposed ANAC agents I validated whether the
combination of components was equal to the original agent.

Furthermore, as part of the second experiment thought up mainly by Tim Baarslag, I
tried to improve the state of the art by combining the best components. After more than a
week without success, as a result of a discussion with Tim Baarslag, I executed and analyzed
an alternative experiment in which I tried to improve every ANAC 2011 agent. I reported
the results of this experiment in the paper.

Writing the paper was joint work by me, Alex Dirkzwager and Tim Baarslag. Tim
Baarslag was the main author. Alex Dirkzwager and I wrote large parts of every sections,
and Tim Baarslag wrote the outline of the paper, provided detailed feedback, and in general
improved the quality of the writing. In total, I wrote nearly half of the work.
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Contribution of Authors B.2 A Competitive Strategy

B.2 A Competitive Strategy for Real-time Bilateral
Negotiations

As part of our master track, me and Alex Dirkzwager designed a negotiation agent as part of
an artificial intelligence course. The agent competed in ANAC 2010 against state of the art
negotiation strategies created by research teams all over the world. In this competition we
entered the finals and ultimalely finished sixth. As part of our placement in the finals, we
presented our work at AAMAS 2011. In addition, we wrote a paper about our negotiation
agent which is published in the post-proceedings of the ACAN 2011 workshop.

Furthermore, during our master thesis we designed a new negotiation strategy which
participated in the ANAC 2012. This negotiation strategy was created based on a detailed
analysis of the best existing agents. The design and implementation of the agent was a
joint effort. While Alex Dirkzwager spent relatively more time on the design, I focused on
the efficient implementation of the agent. Furthermore, I wrote the paper, whereas Alex
Dirkzwager provided feedback. Finally, I presented the agent at the ACAN 2012 workshop
on the AAMAS 2012.

B.3 Measuring the Performance of Online Opponent Models in
Automated Bilateral Negotiation

This paper concerns the evaluation of the performance of a model. To analyze and compare
the quality of a set of opponent models, I came up with an experimental setup to fairly
quantify the performance of an opponent model. For the experiment I implemented a large
set of quality measures based on a survey of literature.

Furthermore, I ran the experiment and stored the results in an easily accessible format
which I devised. Using this dataset, I tested a set of hypotheses using statistical methods. I
documented my results, which were later on added to the paper.

Finally, writing the paper was joint work by me and Tim Baarslag. Tim Baarslag was
the main author. He came up with the outline of the paper and improved the quality of the
work in general. Similar to the BOA paper, I wrote large parts of the paper.

B.4 Measuring and Modeling what Matters in Automated
Negotiations

This paper concerns the evaluation of the accuracy of a model. To evaluate the accuracy of
a set of opponent models, I came up with an experimental setup to fairly quantify the ac-
curacy of a model. This experimental setup contains the implementation of set of accuracy
measures which I derived from literature; however, I also implemented a set of novel mea-
sures. My best accuracy measure proved to be better than all currently existing accuracy
measures. I refined my experimental setup in discussion with my co-authors. In addition, I
analyzed the results of the experiment and visualized the results using multiple figures.
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B.4 Evaluating the Accuracy of Opponent Models Contribution of Authors

In contrast with what is currently believed in the field of opponent modeling, I found
that many opponent models degrade in accuracy over time. Furthermore, I found the most
simple most to perform the best, despite that the more complex models – with poor perfor-
mance – are popular in literature.

Tim Baarslag devised the second experiment in which the relation between performance
and accuracy was analyzed. Similar to the first experiment, I created the initial experimental
setup. Furthermore, I executed the experiment, and both analyzed an visualized the results.

Based on the results of both experiments, I concluded which type of model is best and
how to improve the quality of each type of opponent model. For each type of model, I
formulated detailed directions on how to improve the models and thereby improve the state
of the art.

Similar to the other papers, the writing process was joint work by me an Tim Baarslag.
Tim Baarslag is the main author of the work, and came up with the initial structure of the
paper. In addition, he gave feedback on my writing. In its current form, the majority of the
writing is done by me. After my thesis, we plan to finish the paper.
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