E-Synergy

Local collaboration in Agriport

Ewout Smits 1503480

Challenge the future 1

Architectural Engineering inspired by a technique

<u>Nature</u> = most sophisticated technique

Sustainable energy closer to its user

"Truly a disadvantage?"

Energy infrastructure change of scale: macro

Conventional energy infrastructure

macro scale

One way distribution

Energy infrastructure change of scale: to micro

implementations

micro scale

Two way distribution

Less demand from macro system

Energy infrastructure change of scale: to micro

further implementations

micro scale

Imbalance

Energy infrastructure change of scale: meso is the answer

Small scale power plants (micro) Implemented in a system (macro) = a short term-based transition

We need to revolutionize the system:

meso scale

And eventually go for a worldwide grid

Energy infrastructure change of scale: meso is the answer

Energy infrastructure new spatial planning concept

Energy infrastructure new spatial planning concept

Context: Agriport

Challenge the future 12

Agriport Agricultural cluster

Cluster of large scale food

- production
- processing
- logistics

business park

160 MW datacenter

Agriport energy analysis energy exchange & CHP: current

CHP (3 – 4 MW capacity): 49% heat; 43% electricity

Agriport energy analysis *implementation geothermal*

Currently providing 10 – 15 % of heat demand of greenhouses

Agriport energy analysis *implementation geothermal: future*

Agriport energy analysis *actual future situation*

Agriport energy analysis datacenter: waste heat

Agriport energy analysis greenhouses: electricity

Waste electricity from greenhouse next to datacenter: 3800 MWh

Average electricity use per household in NL: **3500 kWh**

Waste is enough for 1000 households!

But it's not consistent

Agriport energy analysis *meso solution*

<u>Complement</u> the energy exchange in the cluster (not only using wastes)

- energy balance in own cluster
- exchange with other clusters
- use national/international energy shortages (wider scale)

Agriport energy analysis energy & resource exchange

Function:

Swimming pool

(& water treatment plant)

- using mainly waste heat

- using waste electricity
- provides clean surface water

Program: Natural swimming pool

Challenge the future 23

Agripool energy & resource exchange: incoming

Agripool energy & resource exchange: **outgoing**

Agripool energy & resource exchange

Region scan is there a need for a swimming pool?

A7 highway

Agripool water treatment

Water treatment for the cluster Agriport

Technique = nature

Agripool natural water treatment: sewage water

Agripool natural water treatment: pool water

goal: chlorine free swimming pool

Challenge the future 30

Agripool *legislation vs. creativity*

Design: Agripool

Challenge the future 32

Impression

Design principles the different **scales** implemented

TUDelft

Design principles *context implemented*

Materialization:

glass facade (greenhouses)

Shape: rational & functional (factories)

Design principles *technique implemented*

Sewage treatment:

in greenhouse appendix

Pool water treatment:

outside but under construction

Challenge the future 37

Challenge the future 38

Agripool

organization: middle part (ground floor)

basement needed for tension of construction (under pools)

Technical design installations: black water

Technical design installations: heating water

waste heat datacenter (30 – 40 °C)

used for:

- swimming water
- underfloor heating
- ventilation

Technical design installations: swimming water

outdoor part

Technical design installations: ventilation (BaOpt)

conventional ventilation

BaOpt ventilation

Technical design BaOpt ventilation

conventional solution:

inspired by a technique called 'nature'

BaOpt solution:

