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Distributed Reinforcement Learning Algorithm for
Dynamic Economic Dispatch with Unknown

Generation Cost Functions
Pengcheng Dai, Wenwu Yu, Senior Member, IEEE, Guanghui Wen, Senior Member, IEEE

and Simone Baldi, Member, IEEE

Abstract—In this paper, the dynamic economic dispatch (DED)
problem for smart grid is solved under the assumption that
no knowledge of the mathematical formulation of the actual
generation cost functions is available. The objective of the DED
problem is to find the optimal power output of each unit at each
time so as to minimize the total generation cost. To address the
lack of a priori knowledge, a new distributed reinforcement learn-
ing optimization algorithm is proposed. The algorithm combines
the state-action-value function approximation with a distributed
optimization based on multipliers splitting. Theoretical analysis of
the proposed algorithm is provided to prove the feasibility of the
algorithm, and several case studies are presented to demonstrate
its effectiveness.

Index Terms—Distributed reinforcement learning, dynamic
economic dispatch, state-action-value function approximation,
multipliers splitting.

I. INTRODUCTION

The power grid is undergoing significant changes due to
the integration of distributed energy resources, the develop-
ment of smart technologies, the high demand of transactions
and energy management and so on [1], [2]. Within this
context, smart grids have received increasing attention [3].
The smart grid technology makes full use of communication
and sensing in an effort to attain safe, efficient, stable and
sustainable power services [4]–[6]. In smart grid, the DED
problem has attracted much attention. The aim of DED is
to find the optimal power output of each generator at each
time to minimize the total generation cost in a given time
horizon. In most practical cases, the DED problem needs
to be solved in a distributed way. It has been learned from
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existing literature that multi-agent systems theory [7]–[9] is
an appealing framework to solve such a problem. The static
economic dispatch (SED) problem is a special case of DED
which has also been studied in the framework of multi-agent
systems [10]–[20]. Specifically, a fully distributed λ-consensus
algorithm was proposed in [10] for smart grid with a directed
topology. The authors of [11] proposed a distributed discrete-
time consensus algorithm under a jointly connected switching
undirected topology. In [12], under a uniformly jointly strong
connected directed graph with time-varying delays, some
distributed gradient push-sum algorithms were discussed for
SED. A distributed Laplacian-gradient algorithm was proposed
in [13] with feasible initial point. Yi et al. [14] solved the
SED problem via an initialization-free distributed algorithm
based on the multipliers splitting method. Guo et al. [15]
proposed an average consensus algorithm and the distributed
projection gradient algorithm to solve SED with consideration
of wind turbines and energy storage system. A distributed
auction-based algorithm was proposed in [16] to solve a non-
convex SED. In the presence of communication uncertainties,
an adaptive incremental cost consensus-based algorithm was
proposed in [18]. In contrast, few results on DED problem are
reported in the literature due to the complexity of this problem
[21]–[23]. A distributed primal-dual dynamic algorithm was
proposed in [21]. Zhao et al. [22] deal with a fully decentral-
ized optimization for the multi-area DED through the cutting
plane consensus algorithm. More recently, by integrating the
average consensus protocol and alternating direction method
of multipliers (ADMM), a distributed coordination algorithm
has been proposed in [24] to solve the dynamic social welfare
problem. In practice, the accurate mathematical expression of
the cost functions in a DED problem may be unavailable as the
cost functions are affected by various factors, such as operating
conditions and aging of the generator. Note that most of the
aforementioned algorithms no longer work when the accurate
mathematical formation of the cost function is unavailable.
Hence, it is of both theoretical and practical interest to design
an algorithm to solve the DED problem with little information
of the actual cost functions.

Reinforcement learning [25] is a method through which an
agent can find the optimal policy by interacting with the envi-
ronment. This has motivated the application of reinforcement
learning algorithms in control and optimization problems,
sometimes in the context of multi-agent systems [26]–[31].
The reinforcement learning-based approach is used to investi-
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gate the optimal tracking control problem in [26]. Data-driven
optimal control based on reinforcement learning was proposed
in [27] for discrete-time multi-agent systems with unknown
dynamics. Wang et al. [28] proposed a dual heuristic dynamic
programming algorithm for a class of nonlinear discrete-time
systems affected by time-varying delay. The method of policy
iteration in reinforcement learning was used in [29] to find the
optimal control for zero-sum games. Exciting applications of
deep reinforcement learning are [30], [31], which show that an
agent can learn to play Atari better than humans. In this paper,
we draw inspiration from reinforcement learning techniques,
especially from state-action-value function approximation and
from nonlinear programming theories to solve the DED prob-
lem with little information of actual cost functions.

The contributions of this paper are as follows.

1) The techniques of state-action-value function approxima-
tion based on semi-gradient Q-learning and distributed opti-
mization algorithm based on multipliers splitting are success-
fully combined in the proposed algorithm. This algorithm can
deal with the situation of which the mathematical expression
of the cost functions is not available.

2) The update of the operating policy depends not only
on the optimal solution of the approximate state-action-value
function but also on the last operating policy. This means that
the cost can be proven to be monotonically non-increasing at
each iteration.

3) Time-varying parameters in approximate state-action-
value function are proposed. As compared to the use of a
time-invariant parameters, they enable to reduce the error and
preserve convexity of approximate state-action-value function.
To the best of our knowledge, this is the first attempt to employ
time-varying parameters in the approximation of the state-
action-value function.

The rest of this paper is organized as follows. The DED
problem is formulated in Section II. The distributed reinforce-
ment learning optimization algorithm is proposed in Section
III. Section IV confirms the feasibility of the distributed rein-
forcement learning optimization algorithm. Simulation results
to demonstrate the effectiveness of the algorithm are provided
in Section V. Finally, Section VI presents the conclusion and
future work. The Appendix gives preliminaries about convex
analysis, algebraic graph theory and reinforcement learning.

II. PROBLEM STATEMENT

A. Dynamic Economic Dispatch

We consider a smart grid setting where N units must make
their electricity generation equal to the total power demand at
each time slot t. The objective of the DED problem is to find
the optimal electricity allocation such that the total generation
cost of all units is minimized. The mathematical expression

of this problem is:

min
T∑
t=1

N∑
i=1

Fi(pi,t)

s.t.
N∑
i=1

pi,t = Dt, t = 1, 2, · · · , T,

p
i
≤ pi,t ≤ pi, i = 1, 2, · · · , N,

|pi,t − pi,t−1| ≤ pRi , i = 1, · · · , N, t = 1, · · · , T,
(1)

where Fi(·) is the generation cost function of unit i, pi,t is the
power output of unit i at time t, Dt is the total power demand
at time t, pRi is the ramp-rate limit of unit i. p

i
and pi are the

minimum and maximum power output of unit i, respectively.
For notational brevity, set pi,0 + pRi = pi, pi,0− pRi = p

i
, and

Dt−
N∑
i=1

pRi ≤ Dt+1 ≤ Dt +
N∑
i=1

pRi , i = 1, 2, · · · , T − 1. We

denote Pi = [p
i
, pi] as the set of admissible power output of

unit i.
Various forms of the generation cost function have been

proposed in literatures. The most common generation cost
function is: Fi(pi,t) = aip

2
i,t + bipi,t + ci, where ai, bi, and

ci are some coefficients for unit i [19]. The cost function
considered in this work is a more general sinusoidal cost
function inspired by [33]:

Fi(pi,t) = aip
2
i,t + bipi,t + ci + |ei · sin(fi · (pi − pi,t))|,

where the additional coefficients ei and fi are related to the
capacity of unit i. Note that the mathematical expression of
this cost function is known for simulation purposes, but it is
unknown for the purpose of controller design.

When considering the above cost function, the following
challenges should be taken into account: (i) the non-convex
objective function invalidates existing algorithms based on
convex optimization problems; (ii) only the value of the gen-
eration cost is known while the mathematical formulation of
cost function is unknown. Fortunately, reinforcement learning
algorithm can be applied to tackle such challenges.

Remark 1: In the DED problem, the total demand Dt, the
feasible power output combination (FPOC) of units and the
generation cost at each time slot can be seen as the state,
action and reward in the mind of reinforcement learning.
Furthermore, the generation cost at each time slot is also
important and should be fully considered with dealing with
the DED problem. Hence, the discount factor γ introduced in
the step of reinforcement learning (cf. Appendix C) is set as
1 in the DED problem.

Two standard assumptions are made to guarantee existence
of an optimal distributed solution to (1):

Assumption 1: There exists at least one FPOC
(p1,1, · · · , pN,1, · · · , p1,T , · · · , pN,T )T at all time such

that
N∑
i=1

pi,t = Dt, pi,t ∈ Pi, |pi,t − pi,t−1| ≤ pRi , t =

1, · · · , T, i = 1, · · · , N.
Assumption 2: The graph topology about the units is undi-

rected and connected. At each time slot t, each agent i can only
access the local power demand Di,t, adjust the local power
output pi,t and obtain the local generation cost Fi(pi,t).



III. DISTRIBUTED REINFORCEMENT LEARNING
OPTIMIZATION ALGORITHM

In order to solve the DED problem with unknown cost
functions, we apply reinforcement learning ideas. Suppose
each agent corresponding to each unit was assigned a unique
identifier ID, e.g., its IP address. By using the graph dis-
covery algorithm proposed in [15], each agent can get the
total number of agents. A distributed reinforcement learning
optimization algorithm is proposed based on seven steps.

1) Discover the total demand at time slot t: Define D̄t[0] =
(D1,t, D2,t, · · · , DN,t)

T . Apply the average-consensus proto-
col (18) for each agent i as follows:

D̄t[k + 1] = D̄t[k]− εLD̄t[k], (2)

where L is the Laplacian matrix of graph G, ε ∈ (0, 1
max

i
lii

).

From Lemma 1 in Appendix B, we get lim
k→∞

D̄t[k] =

( 1
NDt)1N where 1N is a N -dimensional column vector with

each entry being 1. Hence, the local estimation of the average
power demand converges to the actual average power demand
at time t. As result, the total demand at time t can be obtained
as Dt.

2) Find a FPOC at time slot t: Choose pi,t ∈
(max{p

i
, pi,t−1 − pRi },min{p̄i, pi,t−1 + pRi }). Define the

mismatch of demand-generations mt[0] = (D1,t −
p1,t, · · · , DN,t − pN,t)

T , and apply Lemma 1 in Appendix
B again as follows:

mt[k + 1] = mt[k]− εLmt[k]. (3)

It holds that lim
k→∞

mt[k] = 1
N

N∑
i=1

(Di,t − pi,t)1N = α1N .

Adjust pi,t according to the following policy:

pi,t ←


pi,t + sign(α) min{min{p̄i, pi,t−1 + pRi }
− pi,t, α}, α ≥ 0,

pi,t + sign(α) min{−max{p
i
, pi,t−1 − pRi }

+ pi,t, |α|}, α < 0,

(4)

where sign(·) is symbolic function. Repeat (3) and (4) till
α = 0.

Note that, when α = 0, Pt = (p1,t, p2,t, · · · , pN,t)T is a
FPOC at time slot t.

3) Measure the total generation cost at time slot t: Define
ct[0] = (c1,t, · · · , cN,t)T , and ct as the local estimation of the
average generation cost at time slot t, where ci,t = Fi(pi,t)
for each agent i. Apply the average-consensus protocol:

ct[k + 1] = ct[k]− εLct[k]. (5)

As a result of Lemma 1 in Appendix B, we can obtain
lim
k→∞

ct[k] = ct1N , i.e., the local estimation of the average
generation cost converges to the actual average generation cost
at time slot t, then the total generation cost is Nct.

4) Update the parameters of approximate function at time
slot t: Define Jt(Dt, Pt, θ

t) = φ(Pt)
T θt to be the approximate

state-action-value function, where φ(Pt) is a feature vector.
The update of the parameters θt is{

θt ← θt + β[Nct + min
Pt+1

Jt+1(Dt+1, Pt+1, θ
t+1)

− Jt(Dt, Pt, θ
t)]φ(Pt).

(6)

The feature vector may be constructed from Pt in many
different ways. For easier analysis, it is smart to design
φ(Pt) such that the approximate state-action-value func-
tion is a convex function. For example, let φ(Pt) =
(p1,t, · · · , pN,t, p2

1,t, · · · , p2
N,t)

T , θt = (θt1, · · · , θt2N )T ,
and fi(pi,t) = θtipi,t + θti+Np

2
i,t. Then Jt(Dt, Pt, θ

t) =

φ(Pt)
T θt =

N∑
i=1

fi(pi,t), (6) becomes
θti ← θti + β[Nct + min

Pt+1

Jt+1(Dt+1, Pt+1, θ
t+1)

− Jt(Dt, Pt, θ
t)]pi,t,

θti+N ← θti+N + β[Nct + min
Pt+1

Jt+1(Dt+1, Pt+1,

θt+1)− Jt(Dt, Pt, θ
t)]p2

i,t.

(7)

Remark 2: min
Pt+1

Jt+1(Dt+1, Pt+1, θ
t+1) in (7) can be ob-

tained through step 5). Taking into account the particularity
of the finite horizon in (1), we use time-varying parameters θt

for each time slot t. This is done in order to guarantee that the
approximate state-action-value function is a convex function
(necessary for the analysis in Sect. IV). Note that (7) can be
seen as a semi-gradient method applied to the state-action-
value function [25].

5) Obtain min
Pt

Jt(Dt, Pt, θ
t) in a distributed way: Solve

the following problem about approximate state-action-value
function

min
N∑
i=1

fi(pi,t)

s.t.
N∑
i=1

pi,t = Dt,

pi,t ∈ Pi, i = 1, 2, · · · , N,
|pi,t − pa∗i,t−1| ≤ pRi , i = 1, 2, · · · , N.

(8)

where pa∗i,0 = pi,0 for each i. Before moving on, let Pnewi,t =
Pi ∩ [pa∗i,t−1 − pRi , p

a∗
i,t−1 + pRi ]. Problem (8) can be solved

under the following standard assumption:
Assumption 3: There exists a finite optimal solution P a∗t

to problem (8). The Slater’s constraint condition is satisfied
for (8), that is there exist p̂i,t ∈ int(Pnewi,t ), ∀ i, such that
N∑
i=1

p̂i,t = Dt.

Here is the procedure to solve (8). The duality of (8) with
λ ∈ R is

max
λ∈R

N∑
i=1

qi(λ) =

N∑
i=1

inf
pi,t∈Pnew

i,t

{fi(pi,t)− λpi,t + λ
1

N
Dt}.

We formulate a constrained optimization problem with Lapla-
cian matrix L and Λ = (λ1, λ2, · · · , λN )T ∈ RN as

max
Λ

N∑
i=1

qi(λi)

s.t. LΛ = 0N .
(9)

The augmented Lagrangian duality of (9) with multipliers Z =
(z1, z2, · · · , zN )T ∈ RN is

min
Z

max
Λ

N∑
i=1

qi(λi)− ZTLΛ− 1

2
ΛLΛ.



The distributed algorithm for agent i is given as follows:
ṗi,t = PPnew

i,t
(pi,t −∇fi(pi,t) + λi)− pi,t,

λ̇i = ( 1
NDt − pi,t)−

∑
j∈Ii

(zi − zj)−
∑
j∈Ii

(λi − λj),

żi =
∑
j∈Ii

(λi − λj).

(10)

From the KKT condition, the equilibrium point of (10) is
the optimal solution to (8) (cf. analysis in Sect. IV). Denote
one of such equilibrium points is col(P a∗t ,Λa∗, Za∗) as the
column vector stacked with vectors P a∗t ,Λa∗, and Za∗. Then,

the value of
N∑
i=1

(Fi(p
a∗
i,t)) can be obtained by Lemma 1 in

Appendix B.
6) Renew the local operating policy: Renew the local

operating policy according to the following algorithm.

Denote Wa∗ =
T∑
t=1

N∑
i=1

(Fi(p
a∗
i,t)), Wp =

T∑
t=1

N∑
i=1

(Fi(pi,t)),

Wπ =
T∑
t=1

N∑
i=1

(Fi(πi(Dt))), then the local operating policy

can be renewed by

πi(Dt)←


pa∗i,t, if Wa∗ = min{Wa∗, Wp, Wπ},
pi,t, if Wp = min{Wa∗, Wp, Wπ},
πi(Dt), otherwise,

(11)

where P a∗t = (pa∗1,t, · · · , pa∗N,t)T = arg min
Pt

Jt(Dt, Pt, θ
t). In

particular, π(Dt) is a determined policy in DED problem.
7) Balance exploration and exploitation: In order to balance

exploration and exploitation, we use the ε-greedy policy, i.e.,
selecting the action (πi(Dt), · · · , πN (Dt))

T with probability
1− ε, and other FPOC with probability ε.

The distributed reinforcement learning optimization algo-
rithm for the DED problem is summarized in Algorithm 1.

Remark 3: In the process of developing the distributed
algorithm, the key difficulties are: (i) How to determine the
total power demand at each time by agents in a distributed way
in the absence of a centralized decision-making agent with
global information? (ii) How to find a FPOC in a distributed
way? (iii) How to renew the local operating policy in a
distributed manner? For issue (i), the total power demand Dt

can be obtained by the average-consensus protocol (2). The
aim of (3) and (4) is to solve issue (ii) by finding a FPOC in
a distributed way. Issue (iii) is addressed through (11).

IV. THEORETICAL ANALYSIS

In this section, the main theoretical results of the proposed
distributed reinforcement learning optimization algorithm are
provided and proven via convex analysis and projection.

First of all, the equilibrium point of (10) with P a∗t is
analyzed to be the optimal solution of (8), and the convergence
of (10) to the exact optimal solution of (10) is also proved.
Denote

Pnewt = Pnew1,t × Pnew2,t × · · · × PnewN,t ,

Pt = (p1,t, p2,t, · · · , pN,t)T ,

Algorithm DED with distributed reinforcement learning optimization
1: Initialize t = 0, k = 0;
2: Initialize ε with ε-greedy policy;
3: Repeat
4: t← t+ 1;
5: Obtain the total power demand Dt at time t via (2);
6: Initialize the parameters θt of the approximate

state action-value function;
7: Set Jt with θt = 0;
8: Until t = T
9: Define JT+1 = 0.
10: Repeat
11: k ← k + 1;
12: r̃ = rand(1);
13: Reset t = 1, Wp = 0, Wa∗ = 0;
14: Repeat
15: If k ≥ 2 and r̃ ≥ ε then
16: Repeat
17: Choose power output as π(Dt);
18: Obtain immediate generation cost of π(Dt) via (5);
19: Update the parameter θt through (7);
20: Wp ←Wp +Nct;
21: Find the Pa∗t of (8) by (10);
22: Obtain immediate generation cost of Pa∗t via (5);
23: Wa∗ ←Wa∗ +Nca∗t ;
24: t← t+ 1;
25: Until t = T + 1
26: Else
27: Repeat
28: Propose a power output pi,t of unit i;
29: Repeat
30: Predict the average demand-generation mismatch α

based on (3);
31: Adjust pi,t according to (4);
32: Until α→ 0
33: If k = 1 then
34: Denote the local operation policy π(Dt) as Pt;
35: Wπ ←Wπ +Nct;
36: Else
37: Choose power output as Pt;
38: Obtain immediate generation cost via (5);
39: Update the parameter θt through (7);
40: Wp ←Wp +Nct;
41: Find the Pa∗t of (8) by (10);
42: Obtain immediate generation cost of Pa∗t via (5);
43: Wa∗ ←Wa∗ +Nca∗t ;
44: End if
45: t← t+ 1;
46: Until t = T + 1
47: End if
48: Until t = T + 1
49: Update the local operation policy by (11);
50: Wπ = min{Wa∗, Wp, Wπ};
51: Until k = K
52: /* K is the maximum number of trials */

Λ = (λ1, λ2, · · · , λN )T ,

Z = (z1, z2, · · · , zN )T ,

∇f(Pt) = (∇f1(p1,t),∇f2(p2,t), · · · ,∇fN (pN,t))
T .

Then, the compact form of (10) is
Ṗt = PPnew

t
(Pt −∇f(Pt) + Λ)− Pt,

Λ̇ = −LΛ− LZ + 1
NDt1N − Pt,

Ż = LΛ.

(12)

The following theorem is given for the equilibrium point
of (12), which indicate that P a∗t in the equilibrium point
(P a∗t ,Λa∗, Za∗) of (12) is corresponding to the optimal so-
lution of (8).



Theorem 1: Suppose that Assumptions 1-3 hold and the
with equilibrium point of distributed algorithm (12) with
(P a∗t ,Λa∗, Za∗), then P a∗t is the optimal solution of (8).

Proof: By the property of the equilibrium point
(P a∗t ,Λa∗, Za∗) of (12), we get the following equations:

(i) LΛa∗ = 0 i.e., Λa∗ = λa∗1N , λa∗ ∈ R, because the
undirected graph G is connected.

(ii) −LΛa∗ − LZa∗ + 1
NDt1N − P a∗t = 0, which implies

that Dt = 1TNP a∗t i.e.,
N∑
i=1

pa∗i,t = Dt.

(iii) PPnew
t

(P a∗t − ∇f(P a∗t ) + Λa∗) − P a∗t = 0, which
implies that −∇f(P a∗t ) + Λa∗ ∈ NPnew

t
(P a∗t ).

Therefore, the equilibrium point (P a∗t ,Λa∗, Za∗) of (12)
satisfies the KKT condition for (8)

0 ∈ ∇fi(pa∗i,t)− λa∗ +NPnew
t

(pa∗i,t),
N∑
i=1

pa∗i,t = Dt.
(13)

Hence, P a∗t in the equilibrium point (P a∗t ,Λa∗, Za∗) of (12)
is the optimal solution of (8).

Based on the above result, our next task is to prove that the
trajectories of (12) with Pt will convergence to the optimal
solution P a∗t .

Theorem 2: Under Assumptions 1-3, given the initial points
pi,t ∈ Pnewi,t , i ∈ 1, 2, · · · , N , the trajectories of the algorithm
of (12) are bounded and the power output pi,t of agent i
convergences to pa∗i,t.

Proof: Denote Pnewt = Pnewt × RN × RN . We define
a new vector M = col(Pt,Λ, Z) and the function F (M) :
R3N → R3N as

F (M) =

 ∇f(Pt)− Λ
LΛ + LZ − ( 1

NDt1N − Pt)
− LΛ

 . (14)

Then, (12) can be written as Ṁ = PPnew
t

(M − F (M))−M .
Define H(M) = PPnew

t
(M − F (M)), and the dynamics

become Ṁ = H(M)−M . Consider the candidate Lyapunov
function

V = −〈F (M), H(M)−M〉−1

2
‖H(M)−M‖2+

1

2
‖M−Ma∗‖2,

where Ma∗ = col(P a∗t ,Λa∗, Za∗) is the equilibrium point of
(12). Via convex analysis and projection, we obtain

V =− 〈F (M), H(M)−M〉 − 1

2
‖H(M)−M‖2

+
1

2
‖M −Ma∗‖2

=
1

2
[‖M − F (M)−M‖2 − ‖H(M)− (M − F (M))‖2]

+
1

2
‖M −Ma∗‖2

≥1

2
‖M −H(M)‖2 +

1

2
‖M −Ma∗‖2.

Hence, V = 0 if and only if M = Ma∗. The derivative of V
along (12) is

V̇ =(F (M)− [JF (M)− I](H(M)−M))T (H(M)−M)

+ (M −Ma∗)T (H(M)−M), (15)

where JF (M) is the Jacobian matrix of F (M)

JF (M) =

 ∇2f(Pt) − I 0
I L L
0 − L 0

 , (16)

which is positive semidefinite.
With the property of projection, it is obvious that 〈M −

F (M) − H(M), H(M) −Ma∗〉 ≥ 0, which implies 〈M −
H(M) − F (M), H(M) − M + M − Ma∗〉 ≥ 0. Hence,
〈H(M) − M,M − Ma∗ + F (M)〉 ≤ −‖H(M) − M‖2 −
〈F (M),M −Ma∗〉. We may further get that

V̇ =〈M −Ma∗ + F (M), H(M)−M〉+ ‖H(M)−M‖2

− (H(M)−M)TJF (M)(H(M)−M)

≤− (H(M)−M)TJF (M)(H(M)−M)〉
− 〈F (M),M −Ma∗〉

≤ − 〈F (M),M −Ma∗〉
≤ − 〈F (M)− F (Ma∗),M −Ma∗〉 − 〈F (Ma∗),M −Ma∗〉
≤0.

The last inequality holds because the Laplacian matrix is
positive semidefinite, f(Pt) is convex and because of the
variational inequality of the optimal solution Ma∗. Therefore,
there exists a forward compact invariance set given as

IS = {M |1
2
‖M −Ma∗‖2 ≤ V (M(0))}.

From the KKT condition, there exist pa∗ ∈ NPnew
t

(P a∗t ) such
that pa∗ = −∇f(P a∗t ) + Λa∗. Furthermore, we can obtain

V̇ ≤− 〈F (M),M −Ma∗〉
=− 〈Pt − P a∗t ,∇f(Pt)− Λ−∇f(P a∗t )〉

− 〈Λ− Λa∗, LΛ + LZ − (
1

N
Dt1N − P a∗t )〉

− 〈Z − Za∗,−LΛ〉 − 〈Pt − P a∗t ,Λa∗ − pa∗〉
≤ − 〈Pt − P a∗t ,∇f(Pt)−∇f(P a∗t )〉

+ 〈Pt − P a∗t , pa∗〉 − 〈Λ− Λa∗, L(Λ− Λ)〉
≤ − 〈Pt − P a∗t ,∇f(Pt)−∇f(P a∗t )〉
− 〈Λ− Λa∗, L(Λ− Λ)〉.

Denote the setM = {M |V̇ = 0}. Because of the positive def-
inite Hessian matrix ∇2f(Pt) and the null space for Laplacian
matrix L, we can obtain M = {Pt = P a∗t ,Λ ∈ span{1N}}.

Next, we claim that the maximal invariance set within
the set M is the equilibrium point of (8). Because of
Λ ∈ span{1N}}, then Z = Za∗. According to (13), it is
obvious that Λ̇ = LZa∗ − ( 1

NDt1N − P ∗at ). We claim that
LZa∗−( 1

NDt1N−P a∗t ) = 0. Assume that LZa∗−( 1
NDt1N−

P a∗t ) 6= 0, then Λ will go to infinity, which contradicts that
M is a compact set within IS. Hence, Λ̇ = 0 and Λ = Λa∗.
By the LaSalle invariance principle, the power output pi,t of
agent i convergence to pa∗i,t.

V. SIMULATION

In this section, the proposed distributed reinforcement learn-
ing optimization algorithm is tested through several examples.



TABLE I: Parameters of generation Units

Unit number p
i

pi ai bi ci ei fi pRi
1 200 600 0.0020 10 500 300 0.03 50
2 100 400 0.0025 8 300 200 0.04 50
3 100 300 0.0050 6 100 150 0.05 50
4 50 200 0.0060 5 90 130 0.06 50

1

2 3

4

Fig. 1: Communication graph in Example 1.
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Fig. 2: The total generation cost of policy produced by the
distributed reinforcement learning optimization algorithm in
Example 1.
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Fig. 3: The time-varying parameters θti in approximate state-
action-value function.
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Fig. 4: The time-varying parameters θti+N in approximate
state-action-value function.

Example 1. Consider four units connected via the undirected
graph shown in Fig. 1. The cost function for each unit i is taken
as Fi(pi) = aip

2
i + bipi + ci + |ei · sin(fi · (pi − pi))|, with

coefficients shown in Table I (known only to the purpose of
simulation). The admissible power outputs of each unit are set
as follows: P1 = [200, 600], P2 = [100, 400], P3 = [100, 300],
and P4 = [50, 200] (MW). The total power demand Dt is 800,
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Fig. 5: The P a∗ of approximate state-action-value function
after training.
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Fig. 6: The time-invariant parameters θi in approximate state-
action-value function.
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Fig. 7: The time-invariant parameters θi+N in approximate
state-action-value function.
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Fig. 8: The evolution of the total generation cost of updated
policies in difference ε.

850,880, 900, 860, 930, and 950 (MW) for time periods [0, 2),
[2, 6), [6, 8), [8, 18), [18, 22), and [22, 24), respectively.

We take for simplicity ε in the ε-greedy policy to be constant
and equal to 0.2. As shown in Fig. 2, the total generation
cost of updated policy is getting better and better during the
training process. Figs. 3-4 show the time-varying parameters θt

in approximate state-action-value functions for all time slots.
In this example, the approximate state-action-value functions

take the form Jt(Dt, Pt, θ
t) =

N∑
i=1

(θtipi,t + 1
4θ
t
i+Np

2
i,t). The

optimal solutions P a∗t of the approximate function for all time
slots after training are shown in Fig. 5.

Remark 4: As the approximate state-action-value function
Jt(Dt, Pt, θ

t) is the sum of total generation cost from time
slot t to time slot T in the DED problem considered in this



paper. It can seen from Figs. 3-4 that θit and θti+N are almost
decreasing from time slot 1 to time slot T . Note that θti for time
slot 2 is larger than θti over time slot 1 which does not satisfy
the property of decreasing, however it has no effect according
to the form of approximate state-action-value function.

In order to show the advantage of using time-varying
parameters θt in the function approximation, a time-invariant
parameters θ will be considered for all time slots. In other
words, the approximate function takes the form J(Dt, Pt, θ) =
N∑
i=1

(θipi,t + 1
4θi+Np

2
i,t). The parameters θi and θi+N are

updated according to:
θi ← θi + β[Nct + min

Pt+1

J(Dt+1, Pt+1, θ)

− J(Dt, Pt, θ)]pi,t,

θi+N ← θi+N + β
4 [Nct + min

Pt+1

J(Dt+1, Pt+1, θ)

− J(Dt, Pt, θ)]p
2
i,t.

(17)

Figs. 6-7 show updating process. As shown in Fig. 7, θ6

goes below 0, which contradicts the assumption of convexity
of approximate state-action-value function. In this case, the
step 5) cannot be performed as the necessary assumptions are
violated.

Remark 5: By the definition of the state-action-value func-
tion, one gets that using time-invariant parameters θ for each
time slot will cause severe fluctuations for the update of θ.
Note that the reinforcement learning optimization algorithm
associated with time-varying parameters θt for each time slot
t can reduce the concussion in the process of update of θt. It
is also worth pointing out that using time-varying parameter is
also an efficient way when there exist same FPOC in different
time slots.

For the purpose of considering the effect of different ε
in the ε-greedy policy, we take fixed ε = 0.1, ε = 0.2
and ε = 0.3 and also take ε = 1

k , ε = 10
k and ε = 100

k
which decreases gradually such that the operating policy is
greedy limit with infinite exploration (GLIE) in ε-greedy.
Fig. 8 shows the evolution of total generation cost of each
updated policy through 10000 times training. As shown in Fig.
8, distributed reinforcement learning optimization algorithm
yields a favorable policy when taking ε = 0.3.

Remark 6: It can be seen from the results given in Example
1 that the exploration in the distributed reinforcement learning
optimization algorithm is very important as the number of
FPOC is infinite in each time slot.

TABLE II: Parameters of units

Unit number ai bi ci p
i

pi pRi
1 0.0072 5.56 30 60 339.69 50
2 0.0168 4.32 25 25 479.10 50
3 0.0216 6.60 25 28 290.4 50
4 0.0141 7.90 16 40 306.34 50
5 0.0273 7.54 6 35 593.80 50
6 0.0054 3.28 54 29 137.19 50
7 0.0159 7.31 23 45 595.40 50
8 0.0189 2.45 15 56 162.17 50
9 0.0084 7.63 20 12 165.1 50

10 0.0138 4.76 12 30 443.41 50
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Fig. 9: IEEE 39-bus system.

Example 2. We consider the IEEE-39 bus system with 10
units. The communication network of these agents, which
is described by the blue lines in Fig. 9, is undirected and
connected. The cost function of each unit i is determined as
Fi(pi) = aip

2
i + bipi + ci, where the coefficients are shown

in Table II together with the minimum and maximum power
generation of each unit. In this Example, we consider the
DED problem in five time slots. The power demand Dt is
assumed to be 1500, 1600, 1700, 1800, and 1900 (MV) for
time slot 1, 2, 3, 4, and 5, respectively. At first, considering the
object function is quadratic convex function and the feasible
set is also convex set. We use the distributed optimization
algorithm based on multipliers splitting method to find the
exact optimal solution at time slot 1, 2, 3, 4, and 5 in Fig.
10. However, we do not know the form of the cost functions
and the exact parameters in cost functions of units actually.
Under this premise, we use the distributed reinforcement
optimization algorithm to find the optimal policy. The Fig.
11 shows that the evolution of operating policy produced
by distributed reinforcement learning optimization algorithm
after 1087 times training in this Example. The exact optimal
solution and the operating policy after 1087 times training
are respectively shown in Table III and Table IV. The error
between exact optimal cost and the operating policy cost is less
than 4% of exact optimal cost. In contrast to the ED problem
studied in [34], the DED problem under consideration is more
difficult as the ramp-rate limit in each time slot.
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Fig. 10: The exact optimal solution.
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Fig. 11: The evolution of policy after 1087 times training.

TABLE III: Exact optimal solution for all time.

Agent P ∗
1 P ∗

2 P ∗
3 P ∗

4 P ∗
5

1 332.01 339.68 339.69 339.69 339.69
2 179.47 195.27 212.33 229.38 246.42
3 87.01 99.12 112.38 125.64 138.90
4 87.58 105.82 126.13 146.45 166.77
5 51.78 61.27 71.79 82.31 92.82
6 137.18 137.18 137.19 137.19 137.19
7 96.35 112.44 130.48 148.53 166.58
8 162.16 162.16 162.17 162.17 162.17
9 163.43 165.09 165.10 165.10 165.10

10 202.98 221.90 242.71 263.52 284.32

TABLE IV: The operating policy after 1087 times training.

Agent π(D1) π(D2) π(D3) π(D4) π(D5)
1 293.62 302.95 312.25 339.69 339.69
2 288.83 289.10 291.46 322.48 372.48
3 115.78 132.80 145.35 147.90 165.72
4 40 40 54.01 54.25 40
5 35 41.41 53.54 53.73 41.41
6 137.19 137.19 137.19 137.19 137.19
7 69.84 95.43 113.71 115.26 121.75
8 162.17 162.17 162.17 162.17 162.17
9 69.91 109.37 139.93 143.96 146.25
10 287.64 289.55 290.36 323.31 373.31

VI. CONCLUSION AND FUTURE WORK

In this paper, we have formulated a DED problem with
a little a prior information of the generation cost functions
in smart grid. To solve the DED problem, we combined the
state-action-value function approximation and the distributed
optimization algorithm based on multipliers splitting to get
a distributed reinforcement learning optimization algorithm.
Each step in the proposed algorithm is fully distributed. The-
oretical analysis as well as case studies have been presented
to demonstrate the effectiveness of these proposed algorithms.

With respect to future works, the case that the total power
demand Dt+1 is decided by the feasible power output Pt at
time slot t should be considered. Some constraints such as
energy storage can be also considered in the future.

APPENDIX

A. Preliminaries on Convex Analysis

The following definitions and properties about convex set,
convex function and projection can be found in [32].

A set Ω ⊂ Rn is called convex set, if αx + (1 − α)y ∈
Ω,∀ x, y ∈ Ω,∀ α ∈ [0, 1]. A function f(·) : Ω → R called
to be convex function, if f(αx + (1− α)y) ≤ αf(x) + (1−

α)f(y), ∀ x, y ∈ Ω, ∀ α ∈ [0, 1]. If f(·) : Ω→ R is differen-
tiable at x ∈ Ω, its gradient denoted by ∇f(x). f(·) : Ω→ R
is called differentiable on Ω, if f(x) is differentiable at any
point x ∈ Ω. Denote NΩ(x) as the normal cone of Ω at x,
that is, NΩ(x) = {y : 〈y, x′ − x〉 ≤ 0, ∀x′ ∈ Ω}.

For a closed set Ω, define the projection of x onto Ω is
PΩ(x) = argminy∈Ω‖x − y‖. The common properties of
projection as follows

〈x− PΩ(x),PΩ(x)− x′〉 ≥ 0, ∀x′ ∈ Ω, ∀x ∈ Rn.

‖x−PΩ(x)‖2+‖PΩ(x)−x′‖2 ≤ ‖x−x′‖2,∀x′ ∈ Ω,∀x ∈ Rn.

Further, the normal cone NΩ(x) can also be defined as
NΩ(x) = {y : PΩ(x+ y) = x}.

B. Algebraic Graph Theory

The interaction topology of a system consisting of N units
can be described by a graph. Let G = (V, E) be a graph with
the set of nodes (i.e., units) V = {1, 2, · · · , N}, the set of
edges E ⊆ V × V . A directed edge eij ∈ E represents that
node i can get the information from node j, the graph G is
said to be undirected when eij ∈ E if and only if eji ∈ E .
The in-degree neighbors Ii of node i is the set of nodes who
can send their information to node i, i.e., Ii = {j|eij ∈ E}.
A path is a sequence of distinct nodes in V such that any
consecutive nodes in the sequence correspond to an edge of
graph. The undirected graph is connected, if there exists at
least one path between any two nodes. The adjacency matrix
A has the entries aij = 1 if eij ∈ E , and aij = 0, otherwise.
The Laplacian matrix L = [lij ]N×N of G = (V, E) is defined
as

lij =


− aij , i 6= j,

N∑
k=1,k 6=i

aik, i = j.

Lemma 1: [7] Assume that the undirected graph G is
connected, the first-order discrete-time protocol:

x[k + 1] = x[k]− εLx[k], (18)

where ε ∈ (0, 1
max

i
lii

), achieves asymptotic average consensus,

i.e., lim
k→∞

xi[k] = 1
N

N∑
i=1

xi[0], ∀ i ∈ {1, 2, · · · , N}, where

xi[k] is the i-th element of x[k].

C. Reinforcement Learning

Reinforcement learning is a framework of the problem of
learning from interaction to achieve a goal. The learner is
called the agent, which interacts with the environment by
getting some immediate reward as a consequence of taking an
action. Reinforcement learning with discrete states and actions
is usually formulated as a Markov Decision Process (MDP).
The MDP is defined as a tuple {S,A, T ,R, γ}, where S is the
set of states, A is the set of actions. T : S×A×S → [0, 1] is
the state transition function,R : S×A×S → R represents the
reward function, and γ ∈ [0, 1] is a discount factor. A policy
π : S × A → [0, 1] is a probability distribution over actions



for each state. The state-action-value function qπ(s, a) under
policy π is defined as the expected discount of the long term
reward to the agent at the initial state s, taking action a and
then following policy π. The aim of reinforcement learning is
to find the optimal policy π∗. The policy π∗ to maximize
(minimize) cumulative reward is called to be the optimal
policy, if qπ∗(s, a) ≥ qπ(s, a) (or qπ∗(s, a) ≤ qπ(s, a)), ∀s ∈
S, a ∈ A, ∀π. In standard reinforcement learning problem,
the environment is unknown, i.e., the transition function T and
reward function R are unknown but static.

For large state and action spaces, function approximation
in reinforcement learning is usually employed. Let J(s, a, θ)
be an approximate function of the state-action-value function.
We assume that J(s, a, θ) is differential function of parameter
vector θ for all s ∈ S, a ∈ A. The update of θ as follows

θ ← θ + κδ∇θJ(s, a, θ),

where κ ∈ (0, 1) and δ is the one-step temporal difference
(TD) error given by

δ = r + γJ(s′, a′, θ)− J(s, a, θ),

where r is immediate reward after taking action a on state
s, γ is the discount factor and (s′, a′) is state-action pair
immediately after (s, a).
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