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Summary
Quantumnetworks consist of interconnected quantum computers, similar to how ‘normal’
(classical) computers and devices are connected together in networks like the internet. By
using quantum mechanical phenomena like superposition and entanglement, quantum
networks enable applications that are impossible with classical computers and networks,
like extra secure communication and doing quantum computations in the cloud. So far,
only simple ‘proof of concepts’ have been demonstrated on small-scale quantum networks
that were optimized specifically for those demonstrations. To improve usage of quantum
networks, and accelerate adoption, it is necessary to use (software) abstractions and tools
that allow for flexibly programming and executing new applications on the nodes—the
quantum devices and computers. Here it is important that (software) developers are able
to write computer programs without requiring knowledge of the underlying (quantum)
mechanisms and that nodes possess an operating system that is able to execute these pro-
grams. Such abstractions and tools do however not yet exist for quantum networks.

In this thesis, we therefore present new system and software architectures that enable,
for the first time, programming and execution of arbitrary quantum network programs.
This involves a number of challenges. We would like to stay independent of specific quan-
tum hardware; we need to deal with the fact that quantummemory quality decreases (very
quickly) over time; and a question is how exactly we should represent and execute the mix
of classical and quantum operations.

We present a series of architectures that build on top of each other. First we intro-
duce NetQASM — an instruction set for quantum network programs that contains instruc-
tions for making entanglement with other quantum devices in the network. Moreover we
present a software development kit — a toolbox for software developers to program quan-
tum network applications without having to deal with underlying quantum hardware.

Then, we present an operating system for nodes —QNodeOS— that is able to execute ar-
bitrary programs that have been programmed using NetQASM. We implement QNodeOS
and test it successfully on a real quantum network in the lab consisting of two small quan-
tum computers. Furthermore we show that QNodeOS is able to multitask which leads to
more efficient usage of the hardware.

We proceed by investigating how to improve the quality of applications by focusing on
both scheduling and compilation of programs. This leads to a new design —Qoala, building
on top of QNodeOS— inwhich a scheduler manages both classical and quantum tasks, and
where a compiler can optimize program code and translate it to executable instructions.
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Samenvatting
Kwantumnetwerken bestaan uit kwantumcomputers die met elkaar verbonden zijn, net
zoals ‘normale’ (klassieke) computers en apparaten verbonden zijn in netwerken zoals het
internet. Door gebruik te maken van kwantummechanische verschijnselen als superpo-
sitie en verstrengeling, bieden kwantumnetwerken toepassingen die onmogelijk zijn met
klassieke computers en netwerken, zoals extra beveiligde communicatie en het doen van
kwantumberekeningen in de cloud. Tot nu toe zijn er slechts simpele ‘proof of concepts’
gedemonstreerd op kleinschalige kwantumnetwerken die speciaal voor die demonstratie
waren geoptimaliseerd. Om gebruik van kwantumnetwerken te bevorderen, en daarmee
adoptie te versnellen, is het nodig om (software)abstracties en tools te gebruiken waar-
door het mogelijk is om verschillende, nieuwe toepassingen flexibel te programmeren en
uit te voeren op de nodes—de kwantumapparaten- en computers. Daarbij is het belang-
rijk dat (software)ontwikkelaars computerprogramma’s kunnen schrijven zonder verstand
te hoeven hebben van de onderliggende (kwantum)mechanismes, en dat nodes een bestu-
ringssysteem hebben dat in staat is zulke programma’s uit te voeren. Dit soort abstracties
en tools bestaan op het moment echter nog niet voor kwantumnetwerken.

In dit proefschrift presenteren wij daarom nieuwe systeem- en softwarearchitecturen
die het voor het eerst mogelijk maken om willekeurige kwantumnetwerkprogramma’s te
programmeren en uit te voeren. Hierbij komt een aantal uitdagingen kijken. Zo willen
we graag onafhankelijk blijven van specifieke kwantumhardware, moeten we rekening
houden met het feit dat de kwaliteit van kwantumgeheugen met de tijd (erg snel) afneemt,
en is het de vraag hoe we precies de mix van klassieke- en kwantumoperaties moeten
representeren en uitvoeren.

We presenteren een reeks architecturen die op elkaar voortbouwen. Eerst introduce-
ren we NetQASM — een instructieset voor kwantumnetwerkprogramma’s dat instructies
bevat voor het maken van verstrengeling met andere kwantumapparaten in het netwerk.
Ook presenteren we een software development kit — een gereedschapskist voor softwa-
reontwikkelaars om kwantumnetwerktoepassingen te programmeren zonder rekening te
hoeven houden met de onderliggende kwantumhardware.

Vervolgens presenteren we een besturingssysteem voor nodes — QNodeOS — dat in
staat is om willekeurige programma’s uit te voeren die zijn geprogrammeerd met Net-
QASM. We implementeren QNodeOS en testen het met succes op een echt kwantumnet-
werk in het lab bestaande uit twee kleine kwantumcomputers. We laten ook zien dat
QNodeOS kan multitasken waardoor we efficiënter gebruik maken van de hardware.

Daarna onderzoekenwe hoewe de kwaliteit van toepassingen kunnen verbeteren door
te focussen op zowel scheduling (taakplanning) als compilatie (vertaling) van programma’s.
Dit leidt tot een nieuw ontwerp — Qoala, dat voortbouwt op QNodeOS — waarin een sche-
duler het overzicht houdt over zowel klassieke- als kwantumtaken en waarin een compiler
programmeercode kan optimaliseren en vertalen naar uitvoerbare instructies.
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1
Introduction

A world without computers and computer networks can hardly be imagined in our mod-
ern day. From basic tasks like communication and information retrieval to more complex
functions such as running businesses, managing global logistics, and advancing scientific
research, we rely on these computers and networks to work efficiently and stay connected.
Computers are programmable, meaning that one can give them an arbitrary list of in-
structions — a recipe if you will — according to which they perform a large variety of
functions. When connected through networks, computers can share data, resources, and
applications across the world, amplifying their power and functionality. This combination
of programmability and networking has given rise to technologies like the internet, cloud
computing, and distributed systems, all of which form the foundation of today’s digital
world and has had a transformative impact on our society [7].

Quantum mechanics may seem, at first glance, unrelated to computers and networks,
as it primarily describes how nature behaves at the sub-atomic level. However, quan-
tum computers and quantum networks present opportunities for applications that are im-
possible on non-quantum (or classical) computers and networks. While classical, digital,
computers and networks represent data as 0s and 1s (bits), quantum computers use quan-
tum bits (qubits) that can exist in multiple states simultaneously, thanks to the principles
of superposition and entanglement. This allows quantum computers to perform certain
calculations much faster than classical computers, such as simulation of molecular struc-
tures, fast searching, optimization algorithms, and machine learning [15, 34]. Quantum
networks use quantum entanglement to realize quantum connections between its nodes,
which are quantum (computing) devices. Using such remote entanglement as a quantum
connection, quantum networks enable applications [46] including data consistency in the
cloud [3], privacy-enhancing proofs of deletion [37], exponential savings in communica-
tion [20], or secure quantum computing in the cloud [4, 9]. Scaling up of quantum net-
works is expected to result in a global quantum internet, in which, similar to the classical
internet, arbitrary quantum devices can participate and communicate with each other.

To transform a theoretical idea for a new application or use-case into an actual work-
ing implementation on computers and networks, a set of abstractions is essential. These
abstractions simplify complex software and hardware operations and allow developers to
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focus on designing functionality rather than dealing with low-level details. These software
abstractions include: programming languages towrite the code, compilers to translate that
code into machine-readable instructions, and runtime environments (such as operating
systems) to execute the application. These tools, which are widespread for classical com-
puting and networking [1, 23, 42], enable the efficient use of computing and networking
resources, turning high-level ideas into executable software.

For quantum computers, similar abstractions have been developed, especially in the
last decade. These include low-level instruction sets [28] for quantum circuits, higher-level
languages for representing hybrid classical-quantum code [21], compilers [10] and full-
stack runtimes for hybrid classical-quantum execution [2]. Without such abstractions and
tools, it would be nearly impossible to realize and scale innovative applications, whether
in classical or quantum computing and networking.

1.1 Problem statement
For quantum networks and for a future quantum internet, however, abstractions like lan-
guages, compilers and runtimes are at present virtually non-existing. Indeed, it is cur-
rently not possible for developers to program and execute arbitrary quantum network
applications without having to deal with hardware-specific details.

Although small-scale quantum networks linking multiple quantum computing devices
have recently been realized as physics experiments in laboratories [22, 24, 27, 32, 36, 39,
43, 44] and fiber networks [25, 29, 45], these demonstrations so far relied either on ad-hoc
software, or chose to establish that hardware parameters were in principle good enough to
support a given quantum network application, although the application itself was not real-
ized [30, 35, 47]. These experiments are highly technical, requiring manual manipulation
of microwave pulses, lasers, and extensive knowledge of quantum physics.

In order to achieve, for quantum networks, the same level of programmability as for
classical computers, classical networks and quantum computers, what is missing is hence
a framework that enables (1) programming quantum network application logic in a high-
-level, hardware-agnostic way (2) compilation of application code into low-level executable
(quantum network node) machine code, and (3) execution of arbitrary applications on
quantum network nodes on different kinds of hardware.

It is true that one can re-use existing abstractions from quantum computing, as well
as from classical computing and networking, in order to realize the above framework.
However, quantum network applications present unique challenges that are not addressed
by existing solutions.

Challenge 1. First, at the time of starting this work there simply did not exist a
representation for quantum network applications, high-level nor low-level. An initial ap-
proach at addressing this was presented with the CQC interface [14], but this is more a
protocol for communication between classical and quantum devices rather than a unified
programming model. Existing quantum computing languages and compilers [21, 28] do
not support instructions for creating entanglement with remote nodes, while these are
crucial for quantum network applications.

Challenge 2. Furthermore, there is not yet a hardware-agnostic framework for quan-
tum network programming. Just as with classical and quantum computing, such an ab-
straction is needed to shield developers from low-level hardware details (especially since
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there are multiple promising technologies including color centers in diamond [40] and
trapped ions [33, 38]), enabling them to focus on application logic.

We should first highlight the difference between the quantum network applications
we consider in this thesis and distributed quantum computing (DQC) [6]. The latter is a
model of computation where multiple quantum computers (nodes in a network) work to-
gether to perform a quantum computation. In this model, a quantum program (such as a
single quantum circuit) is distributed (for example using circuit cutting [8]) over separate
quantum computers, which use entanglement between each other in order to jointly real-
ize the original computation. Typically, there is a single entity that manages the circuit
distribution as well as scheduling of entanglement between nodes. For DQC there have in
the recent years been developments in the creation of frameworks to program and compile
such distributed quantum computations [8, 11, 18].

By contrast, the quantum network applications we consider in this work involve inde-
pendent nodes, each of which determines which programs to run, how to compile them,
and how to schedule tasks. This is similar to the classical internet, where nodes run ap-
plications autonomously and decide when and how to interact with others. Indeed, our
model focuses more on applications for a future quantum internet, rather than on DQC.
With this distinction clear, we can consider other challenges in realizing the aforemen-
tioned needed framework for quantum network (or internet) applications.

Challenge 3. Quantum network applications consist of a hybrid of classical and quan-
tum code segments. While such hybrid code is also seen in quantum computing — such as
variational quantum eigensolvers (VQE) [16, 31] or quantum approximate optimization al-
gorithms (QAOA) [17] — these typically alternate between classical code and quantum cir-
cuits, never leaving quantum memory ‘live’ while doing extensive classical computations.
By contrast, quantum network applications are more interactive: classical and quantum
code segments may run concurrently, communicating and influencing each other in real-
time. For instance, a quantum circuit may “pause” halfway, keeping quantum states in
memory, and wait for a value from a classical segment (like a classical message from a re-
mote node) before continuing. Given the limited lifetime of quantum memories (quantum
states decoherence — decrease in quality over time) [41], scheduling and synchronizing
these interdependent quantum and classical segments is needed in order to achieve ade-
quate application execution.

Challenge 4. Another crucial part of quantum network applications is entanglement
generation between nodes. Research is being done on how to realize a quantum network
stack [5, 13, 26], which organizes entanglement generation in networks, including tim-
ing synchronization, routing, and serving application requests [19]; however, integration
of applications with such a stack has not yet been implemented and studied. Moreover,
this integration requires handling both local application instructions and network-wide
communication, which introduces a large span of time scales, a challenge for designing
a software architecture for quantum network nodes. Indeed, entanglement generation
requires very precise (at least nanosecond) timing synchronization between the network
nodes [12], while application logic, including classical messaging between nodes, may be
on the order of milliseconds.

Challenge 5. Finally, quantum network applications often have moments in which
they are idle since they have to wait for a message to arrive from another node. Such idle
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times present an opportunity to do multitasking — running multiple applications concur-
rently — on a node, in order to make more efficient use of quantum hardware.

1.2 Research objective
In this thesis, we address the gap that exists for quantum networks: namely that there
is no programming and execution framework for quantum network (or internet) applica-
tions. The main goal is to enable programming and execution of arbitrary quantum network
applications in a hardware-agnostic way while optimizing runtime performance. We work
towards this goal by addressing the following research questions:

Q1. How should quantumnetwork applications be programmed? Wefirst address the
question of how one should represent quantum network applications as programming
code. The goal is to develop a model similar to that in classical and quantum computing,
where applications have both a high-level, human-friendly representation and a lower-
level, execution-oriented one.
One challenge comes from the hybrid nature of quantum network applications, which
require the integration of both classical and quantum code. Additionally, we aim to sup-
port a variety of hardware types. For the high-level representation, programmers should
be able to focus on application logic without needing to understand specific hardware
constraints. For the lower-level representation, we aim for flexibility, allowing the in-
tegration of emerging hardware platforms as they are developed. We do this given the
uncertainty around which quantum hardware platforms will ultimately prove viable.
Finally, the representation should be suitable for execution on quantum network nodes,
leading to the next research question.

Q2. How should a quantum network node execute arbitrary applications? Program-
ming an application is one step; executing it on real quantum network nodes is another.
We tackle the challenge of executing arbitrary applications — anything a programmer
might write using our representation (Q1) — on quantum network nodes. Again, the
hybrid nature of these applications presents a challenge: how can we effectively control
the execution of both classical and quantum code? Additionally, we must consider how
application logic (classical or quantum) should interact with the networking code. An-
other difficulty is managing and integrating the range of timescales mentioned above.
Finally, in order to make optimal use of hardware and to increase throughput, we inves-
tigate how to enable multitasking of applications.

Q3. How can we improve performance of application execution? A framework for
programming and executing applications does not by itself guarantee optimal runtime
performance. Application performance may be measured using classical metrics like
execution time, and quantum metrics like success probability (see Chapter 2). In gen-
eral, the runtime performance of applications depends on ahead-of-time compilation and
runtime scheduling. We investigate how we can perform compilation and scheduling in
order to increase performance of applications. Especially in a multitasking scenario,
scheduling has a large effect on performance. However, even without multitasking, the
question remains of how to schedule both application code and networking tasks.
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1.3 Thesis outline
With this thesis, we achieve the goal of enabling programming and execution of quan-
tum network applications. We do this by presenting new tools and system and software
architectures. Figure 1.1 visualizes how these fit together.

In Chapter 2, we first provide more background information about quantum internet
applications. It introduces concepts and terminology that are used in the following chap-
ters.

In Chapter 3, we present NetQASM: the first programming representation for quan-
tum network applications, addressing Q1. This representation includes a new low-level
instruction set architecture tailored to quantum network applications, but it also contains
a high-level software development kit, enabling developers to express their application
logic. We purposefully make NetQASM hardware-independent and extendible. We also
introduce a first model for execution of applications programmed using NetQASM, ad-
dressing Q2. We evaluate our design choices in simulation.

In Chapter 4 we fully focus on the question of application execution (Q2). Building on
top of our execution model from Chapter 3, we present a detailed full-stack system archi-
tecture — QNodeOS — for executing arbitrary applications on quantum network nodes.
This architecture is the first of its kind. We implement QNodeOS on a setup with two real
physical quantum network nodes, and show that our architecture can successfully exe-
cute quantum network applications. We report on the performance of our architecture by
looking at application throughput and success probability.

Based on what we learned from our QNodeOS implementation and evaluation, we pro-
pose an improved architecture — Qoala — for executing applications on quantum network
nodes in Chapter 5. Qoala addresses the compilation and scheduling challenges found in
QNodeOS, by allowing hybrid classical-quantum compilation and scheduling. We show
how this architecture enables strategies to achieve better application performance, ad-
dressing Q3.

In Chapter 6we discuss inmore detail howQoala can be used for improved compilation
strategies. Finally, in Chapter 7 we conclude and reflect upon future directions.
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Figure 1.1: Visualization of how the architectures presented in this thesis fit together. Left: high-level schematic
of a quantum network node stack. A developer writes a program using the NetQASM SDK (Chapter 3), which
is executed by QNodeOS (Chapter 4). QNodeOS internally uses NetQASM (Chapter 3) to communicate between
the classical and quantum systems (CNPU, QNPU, see Chapter 4). QNodeOS controls the quantum network
device containing quantum memory (qubits, purple circles, some of which may be entangled with qubits in
other nodes).
Right: Same quantum network node stack but with updates fromChapters 5 and 6: Qoala is an updated execution
framework, still using the CNPU and QNPU, but adding a scheduler and shared memory (Chapter 5). Moreover,
a compiler (Chapter 6) first converts source code into an executable, which is then executed by Qoala.
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2
Preliminaries

In this chapter we discuss some of the concepts that are relevant for understanding the
rest of the thesis. Although most of these concepts are explained again in the following
chapters, the aim here is to already familiarize the reader with the overall context of this
work.

2.1 Quantum networks
A quantum network consists of devices that are connected together and that can estab-
lish entanglement between separate devices in that network. A global network of quan-
tum networks, envisioned to be realized in the future, may be called a quantum internet.
More specifically, we assume a quantum network to consist of nodes that are connected
by classical channels and quantum channels. Classical channels enable classical commu-
nication between nodes, while quantum channels are used for entanglement generation
(Section 2.1.2) between nodes. Within a quantum network, one can distinguish between
twomain types of nodes: First, there are end nodes [36], withwhich users execute quantum
network applications (Section 2.2). In classical networks, end nodes are laptops, phones
or other devices. In the quantum domain, end nodes may be simple photonic devices that
can only create or measure quantum states, or they may be quantum processors capable
of arbitrary qubit operations and storage of information within a quantum memory. The
type of end node dictates what applications are possible [36], and we have chosen to focus
on the most general form of an end node, namely, a quantum processor including quan-
tum memory. So, our goal is to enable programming and execution of arbitrary quantum
network applications on end nodes that are quantum processors. For the remainder of this
thesis, we will thus always take end nodes to be quantum-processor end nodes.

Second, a quantum network can include intermediate nodes that perform routines nec-
essary to connect two or more end nodes (Figure 2.1). We refer the reader with a back-
ground in computer science to [35] for a gentle introduction to quantum networks. Inter-
mediate nodes, such as quantum-repeater nodes, are used to establish long-distance en-
tanglement between remote end nodes. These intermediate nodes may employ protocols
such as entanglement swapping and entanglement distillation in order to realize end-to-
end links with sufficiently high fidelity (quality) for network applications. These protocols
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End node

Physical layer

Network layer

Application layer

End node

Physical layer

Network layer

Application layer

Figure 2.1: Schematic overview of a quantum network. A quantum network consists of nodes (yellow and
grey circles) that are connected by classical and quantum communication channels (grey lines). Each node im-
plements a physical layer (green boxes and lines) that enables entanglement generation with neighboring nodes.
Each node also implements a network stack, including a network layer (red boxes and lines, which may be sub-
divided into a separate link layer and a network layer [9, 21]). This layer realizes long-distance entanglement
creation between nodes and may include protocols such as entanglement swapping and distillation.
We emphasize however that the focus of this work is to program and execute applications on the end nodes,
i.e. enabling the application layer in networking terms. Only end nodes (yellow circles) implement an additional
application layer (blue boxes and line), which executes arbitrary user applications. From the perspective of this
layer, end nodes are logically directly connected (blue line), and this layer is hence independent from implemen-
tations and protocols in the network layer and is only dependent on the service provided by the network layer.
Logically directly connected means that the application layer relies on the service of the network layer to enable
end-to-end entanglement generation between end nodes and does not concern itself with how the entanglement
is generated. This abstraction is a key element enabled by a quantum network stack such as [9] and exactly
analogous to abstractions used in classical networking, where e.g. a web browser can be executed on a laptop
independently of how the internet connection between the laptop and a web server is realized.

are handled by a network stack (see, e.g. [9]) that exists at each node. The network stack
includes a link layer, a network layer, a control plane, and other networking functions; it
is responsible for entanglement generation.

Intermediate nodes do not execute user applications (i.e. the applications we focus on
in this thesis), which is done only by end nodes. Therefore, only end nodes need to have an
additional stack implementing the application layer in a network, which is referred to as
an application stack (see Figure 2.1). The application stack is responsible for the execution
of arbitrary user applications, and integrates with the network stack for entanglement
generation over the network. We remark that it is the purpose of a network layer [9, 20]
to provide a service to the application layer that allows entanglement generation with
remote end nodes. Importantly, this service should not require the application layer to
have any knowledge about the connectivity of the network.

2.1.1 End nodes
As mentioned above, end nodes in a quantum network possess a quantum processor act-
ing on quantum memory. Quantum memory consists of individual quantum bits (qubits),
each of which can have a quantum state, such as |0⟩ , |1⟩ or |+⟩ (see [26] for a an extensive



2.1 Quantum networks

2

15

introduction to qubits and quantum states). The quantum network can deliver entangled
pairs (Section 2.1.2) to end nodes, such that end nodes can obtain qubits in their quantum
memory that are entangled with qubits in the quantum memory of other end nodes. An
end node also possesses a classical processor and a classical memory. Furthermore, an end
node can send and receive classical messages to and from other end nodes in the network.
These abilities (classical and quantum processing, as well as classical and quantum com-
munication, the latter being entanglement generation) are all required for the execution
of quantum network applications (Section 2.2).

Quantum memory. Each quantum memory has a certain topology that describes which
operations can be applied on which (pair of) qubits. Some of the qubits in a quantum
memory may be used to create an entangled state with another node. These qubits are
called communication qubits [10], in contrast to storage qubits which can only directly
interact with other qubits part of the same local node. A storage qubit may however hold a
state that is entangled with a qubit in another node: after remote entanglement generation
using a communication qubit, the state in that local qubit could be transferred to one of
the storage qubits, preserving the remote entanglement. Some hardware implementations
only have a single communication qubit and multiple storage qubits [5], whereas others
can have multiple communication qubits [18].

There are various quantum hardware implementations for quantum network proces-
sors, such as nitrogen-vacancy centers in diamond [28], trapped ions [22], and neutral
atoms [17, 30], which all have different capabilities and gates that can be performed.

Noise and decoherence. All current quantum processor implementations are in the so-
called Noisy Intermediate-Scale Quantum (NISQ) stage, meaning that they have a limited
number of qubits (typically in the order of tens or a few hundred for (non-network) quan-
tum computers, and only a handful of qubits for quantum network processors), and these
qubits are susceptible to noise and errors due to their limited coherence (lifetime) and im-
perfect control. Limited lifetime means that the quality of qubits decreases (called decoher-
ence) over time, eventually rendering them unreliable (computations produce random or
incorrect results). Decoherence may also happen by applying gates. Gates transform the
state of qubits, but typically also induce some noise, leading to decoherence of the qubit.

Therefore, the timing and duration of operations (such as local gates or entanglement
generation with another node) have an impact on the quality of quantum memory, and
indirectly on the performance of applications.

Throughout this thesis, whenwe say ‘qubit’, thesemay be physical qubits, but may also
be logical qubits (multiple physical qubits together representing one more robust usable
qubit) in case the end node does error correction [24].

2.1.2 Entanglement generation
Entanglement is a phenomenon in quantum physics where two or more particles (qubits)
are correlated in a way that is not possible classically. In a quantum network, such en-
tangled qubits may be established across separate nodes, realizing a quantum connection
between those nodes. Entanglement can be used as a resource in order to realize appli-
cations [36] that are impossible with classical networks, including applications such as
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data consistency in the cloud [1], privacy-enhancing proofs of deletion [29], exponential
savings in communication [15], or secure quantum computing in the cloud [6, 8].

In order for two neighboring quantum network nodes to produce entanglement be-
tween them, they need to simultaneously perform an action to trigger entanglement gen-
eration (at the physical layer, synchronized to nanosecond precision). This means neigh-
boring quantum network nodes need to perform a network operation (entanglement gen-
eration) in a very specific time slot in which they make an attempt to generate entangle-
ment. Such time slots are generally aggregated into larger time bins, corresponding to
making batches of attempts in time slots synchronized at the physical layer. We refer to
e.g. [27] for background information on the physical layer of entanglement generation in
quantum networks, and the readers with a background in computer science to e.g. [9] for
a detailed explanation of scheduling of entanglement generation in quantum networks.

The time bins cannot be determined by the quantum node itself. Instead, selection
of time bins for a specific quantum operation requires agreement with the neighboring
node [9] (and more generally with the quantum network when the end-to-end entangle-
ment is made via intermediate network nodes, Figure 2.1) by means of a network schedule,
e.g. determined by a (logically) centralized controller, see [31].

2.2 Programs and applications
In this section we discuss what (quantum network) applications and programs are, and
how they are represented.

2.2.1 Quantum computing
First, let us briefly discuss quantum computing (rather than networking). A quantum com-
puting program runs on a single quantum processor, which may be an individual node in
a quantum network, but may also just be a standalone quantum computer. Such a local
(non-network) program consists of performing operations on qubits, and is typically rep-
resented as a quantum circuit. A circuit describes the program’s quantum memory — as
individual qubits — and the gates that are applied on these qubits. When visualized, like
in Figure 2.2, qubits are represented by horizontal lines and operations by boxes on those
lines. Such circuits must be read from left to right: gates on the left are applied first, then
the ones to the right and so on.

Operations include quantum gates (such as rotation gates or the Hadamard gate), ini-
tialization, and measurement (readout). Quantum gates may be applied on a single qubit,
or on multiple qubits. For example, the CNOT gate used in the example of Figure 2.2 is
a 2-qubit gate. The code, or the ‘recipe’ of quantum programs is hence classical, while
the information and memory that the program manipulates is quantum. Program devel-
opers may describe their programs as circuits, but often also write them as program code
(Figure 2.2), using existing languages like Python (e.g. [33]) or using custom quantum
languages (such as e.g. [34]). We refer to Sections 3.1.2 and 6.3.3 for more examples of pro-
gramming languages and frameworks. Besides quantum operations, there may be limited
classical control, such as a gate being executed depending on a measurement outcome.
Typically, a quantum circuit is executed in one go, on a very small timescale. Quantum
memory used for quantum computing [23] often only stays coherent (alive and useful) for
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Figure 2.2: Two representations of an example quantum program using two qubits. This program can run on a
quantum computer, whichmay be a node in a quantum network. Left: circuit model of the program. A horizontal
line represents a single qubit. Blocks are quantum gates applied on qubits; there are single-qubit gates (such as
a rotation gate around axis 𝑋 with angle 𝜋 (𝑅𝑋 (𝜋)) and multi-qubit gates (such as a CNOT; note that a CNOT
gate is also sometimes depicted as a vertical line and an XOR symbol on one of the qubits). Time goes from left
to right, so the gates are applied in the order (left to right) they are depicted. A measurement ‘gate’ destroys
the qubit and produces a classical bit, depicted by a double line. Right: the same program but represented in a
programming language (language shown is fictional and for illustration purposes only; in Chapter 3 we present
a real, detailed language). This is what a developer might write when programming (‘coding’) the program.

microseconds. For more information on quantum computing, see e.g. [26].
Quantum computing does not necessarily involve only quantum circuit executionwith

limited classical control. Hybrid classical-quantum programs consist of an interleaving
of purely classical computation and quantum circuit execution. For example, in Vari-
ational Quantum Eigensolvers (VQE) [11, 25] and Quantum Approximate Optimization
Algorithms (QAOA) [13], upon completion of a quantum circuit, the classical results are
processed, resulting in a new quantum circuit that is then executed; this process repeats
multiple times.

2.2.2 Quantum network (or internet) applications
Quantum network (or internet) applications, also called protocols, are multi-partite pro-
grams that involve entanglement generation and classical communication between differ-
ent end nodes, as well as local computation. The local computation includes arbitrary
classical computation as well as local quantum operations (like in quantum computing
circuits, see above). Examples include Quantum Key Distribution (QKD) [2, 12], leader
election protocols [14, 19], and Blind Quantum Computation (BQC) [37]. In this thesis,
we consider quantum network applications in the quantummemory stage [36] and above.
That is, applications that require the use of a quantum processor that can manipulate and
store qubits. For simpler applications in the prepare-and-measure and entanglement gen-
eration stages [36], e.g. quantum key distribution [3, 12], where the quantum states are
immediately measured by the nodes, it would be sufficient to realize a system implement-
ing a quantum network stack and classical processing only.

2.2.3 Programs
Throughout this thesis, we will use the following terminology. Applications refer to multi-
node protocols or use-cases of quantum networks, such as QKD and BQC. Programs refer
to the code that is run on individual quantum network nodes. Applications are realized
by the joint execution of programs on their respective nodes.
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Figure 2.3: Two representations of an example two-node quantum network application. The application is run
on the nodes Alice (possessing one qubit) and Bob (possessing two qubits). Left: circuit model of the application.
The Entangle operation is depicted here as a two-qubit gate; however since it acts on qubits in different nodes
(Alice and Bob), this is not as trivial as a local two-qubit gate such as the CNOT, and instead requires coordination
between the two nodes. Furthermore, classical communication may happen in the form of sending a message.
In this case, after measuring her qubit, Alice sends the classical outcome bit 𝑚 to Bob. Bob then uses this in
his local X-rotation gate. Right: the same application but represented as two separate programs written in a
programming language. Since Alice and Bob are separate nodes, they each program their own local code. This
code may however include external operations, such as entanglement creation with the other node, and sending
or receiving messages. Note that these operations must match — something they are responsible for themselves,
by e.g. following some pre-established protocol.

A multi-node quantum network application is hence partitioned into separate single-
node programs that run concurrently on different network end nodes (e.g. in BQC: a client
program on a client node and a server program on a server node, or in secret sharing [16]:
a program each on 𝑁 nodes). Each of these programs runs independently, and may also
be independently programmed (and compiled), as shown in Figure 2.3. This highlights
the difference with distributed quantum computing (see e.g. [7]), where all nodes can be
accessed and controlled by a single program.

Program ingredients. The single-node programs that constitute a quantum network ap-
plication are hybrid in nature (see Figure 2.4): First, they contain quantum operations, such
as local quantum gates and measurements (e.g. to perform a server computation in BQC),
and entanglement generation (e.g. to produce key in QKD). Second, programs need to
perform classical operations, such as message passing (e.g., a BQC client program sending
desired measurement bases to the BQC server), and local classical processing (e.g., post-
processing measurement outcomes in QKD). Programs may also involve asynchronous
operations (e.g. a server awaiting entanglement with multiple clients).

Quantum network applications may be represented as circuits (such as in Figure 2.3),
although this may be less feasible for more complex applications if classical processing is
more elaborate.

Interactivity. Classical blocks of code may depend on quantum ones via classical vari-
ables generated during the quantum execution (such as measurement results, notification
of entanglement generation, and information on the state of the quantum system such as
the availability of qubits). Similarly, quantum blocks may depend on variables set by the
classical blocks (such as messages received from remote network nodes). Finally, quan-
tum blocks may themselves depend on other quantum blocks via qubits in the quantum
memory.
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Figure 2.4: Another visualization of a quantum network application, focusing on the different types of operations
and the role of time and latencies. This application consists of two hybrid classical-quantum programs (on Nodes
1 and 2) including (1) Entanglement generation between two qubits (circles) in a synchronized time slot (defined
by a network controller). (2) A local measurement of qubit A at Node 1 resulting in a classical outcome bit
(destroying the qubit). (4) Communication of the classical bit from Node 1 to Node 2 (taking non-deterministic
time). (5) Execution of a quantum circuit on qubit B at Node 2 depending on the classical bit. The quality of qubit
B has degraded during the time elapsed since (1). (6) Node 2 measures qubit B and outputs the classical result.

2.2.4 Application execution
Mode of Execution. There exist quantum applications and functionalities, where one
pair of programs is executed only once, e.g. a simple example of quantum teleporta-
tion [4]. As in quantum computing, however, some quantum network applications [36]
are expected to succeed only with a specific success probability 𝑝succ when executed once.
This may be either since the application itself is non-deterministic in nature, or (and this
holds for all applications) because noise (see above) introduces errors. Applications are
hence typically executedmany times in succession, where outcome statistics are computed
in order to validate successful execution (e.g. by majority of outcomes).

Performancemetrics. Performance of application execution on quantumnetwork nodes
can be measured by several metrics. In this thesis we consider both (1) metrics that apply
to a single application that one executes on the quantum network, and (2) metrics that
apply to a node in the network that executes one or more programs.

For an application, we consider makespan as a classical metric and success probability
as a quantum metric. Makespan is the time it takes to execute (all repetitions of) the
application. The success probability is the one mentioned above. It is typically related to
quantum fidelity 𝐹 ∈ [0,1], which is a measure of closeness of a quantum state to some
ideal quantum state. Since present-day quantum systems are noisy (see above), quantum
memory is non-perfect (𝐹 < 1) which negatively affects application success probability. For
quantum network nodes, we consider common classical metrics [32]: utility (fraction of
time that a node is doing useful things), throughput (amount of application executions per
time unit) and latency (which may be between internal components of a node, or between
nodes).
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Multitasking. Due to the nature of quantum network programs, execution may have to
wait for some time. For example, the program needs to wait until another node sends a
classical message, or until remote entanglement has been established. Therefore, it makes
sense to run multiple (independent) quantum network programs on a node at the same
time (interleaved), so that processor idle times can be filled by execution of other programs.
This is something that typically does not happen on local quantum computers, and there-
fore introduces new challenges, explained in more detail in the following chapters.
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3
NetQASM: A low-level instruction

set architecture for hybrid
quantum-classical programs in a

quantum internet
We introduce NetQASM, a low-level instruction set architecture for quantum internet appli-
cations. NetQASM is a universal, platform-independent and extendable instruction set with
support for local quantum gates, powerful classical logic and quantum networking operations
for remote entanglement generation. Furthermore, NetQASM allows for close integration of
classical logic and communication at the application layer with quantum operations at the
physical layer. This enables quantum network applications to be programmed in high-level
platform-independent software, which is not possible using any other QASM variants. We im-
plement NetQASM in a series of tools to write, parse, encode and run NetQASM code, which
are available online. Our tools include a higher-level SDK in Python, which allows an easy
way of programming applications for a quantum internet. Our SDK can be used at home
by making use of our existing quantum simulators, NetSquid and SimulaQron, and will also
provide a public interface to hardware released on a future iteration of Quantum Network
Explorer.

3.1 Introduction
Quantum mechanics shows that if one is able to communicate quantum information be-
tween nodes in a network, one is able to achieve certain tasks which are impossible using

This chapter is based on the publication: A. Dahlberg, B. van der Vecht, C. Delle Donne, M. Skrzypczyk, I. te
Raa, W. Kozlowski, and S.Wehner. “NetQASM—ALow-Level Instruction Set Architecture for Hybrid Quantum–
Classical Programs in a Quantum Internet”. In: Quantum Science and Technology 7.3 (2022), p. 035023. DOI:
10.1088/2058-9565/ac753f.
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only classical communication. There are many applications [72] where a quantum network
has advantage over a classical (non-quantum) network, either by (1) enabling something
that is theoretically impossible in a classical network, such as the establishment of an
unconditionally secure key [4] and secure blind quantum computing [12] or (2) allowing
something to be done faster or more efficiently such as exponential savings in communi-
cation [11] and extending the baseline of telescopes [36]. In recent years, many experi-
ments have been conducted to show that a quantum network is not only a theoretical con-
cept, and indeed advancements have been made to implement such a quantum network
on various hardware platforms [40, 42, 43, 45, 47, 56, 65]. However, these experiments
alone do not yet make a quantum network programmable, since the program logic was
hard-coded into the experimental hardware ahead of time. (There have been examples of
experiments with some simple logic but only with a very limited number of pre-loaded
decision-branches.)

As explained in Chapter 2, quantum networks consist of nodes that are connected by
channels (Figure 2.1). Classical channels enable classical communication between nodes,
while quantum channels are used for entanglement generation between nodes. So-called
end-nodes may contain quantum processors that can run arbitrary (quantum) programs.
They have access to a quantum memory consisting of qubits, on which they can perform
operations, including quantum computations. Some of these qubits may be used for es-
tablishing an entangled quantum state with a remote node. An end-node also possesses
a classical processor and a classical memory. Furthermore, an end-node can send and
receive classical messages to and from other end-nodes in the network. A network of
quantum networks may be a called a quantum internet.

Quantum (network) processors differ from classical processors in a number of ways.
Firstly, quantummemory has limited lifetime, meaning that its quality degrades over time.
For example, quantummemories based on nitrogen-vacancy (NV) centers in diamond have
impressively been optimized to achieve lifetimes in the order of seconds [1]; however, this
is still very short compared to classical memories, which generally do not have a limited
lifetime at all. Therefore, the quality of program execution is time-sensitive. Secondly,
physical devices are prone to inaccuracies which lead to decreased quality of (quantum)
computation. For example, applying an operation (like a gate) on a qubit affects that
qubit’s quality. We note that the two challenges mentioned so far are also inherent to non-
network quantum processors. Quantum network processors have additional challenges:
(1) the processor may have to act as a local computation unit and a network interface at
the same time; for example, in NV centers, an electron spin qubit is used for generating
entanglement with a remote node but is also needed to do local two-qubit gates, (2) remote-
entanglement operations may not have a fixed time in which they complete, which makes
scheduling and optimization more difficult.

As also explained in Chapter 2, quantum network applications, also called protocols,
are multi-partite programs that involve entanglement generation and classical communi-
cation between different end-nodes, as well as local computation. Examples include Quan-
tum Key Distribution (QKD) [4, 23], leader election protocols [28, 51], and Blind Quantum
Computation (BQC) [72]. Such applications are split into distinct programs each of which
runs on a separate end-node. The programs consist of both local operations (classical and
quantum) and network operations (classical and quantum), see Figure 3.1. These programs,
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Figure 3.1: A quantum network application consists of a program for each of the nodes involved in the appli-
cation. Each program is locally executed by the node. Program execution on each node is split into execution
in a Classical Network Processing Unit (CNPU), which can send and receive classical messages, and a Quan-
tum Network Processing Unit (QNPU), which can create entanglement with another node. The communication
between nodes can hence be both classical and quantum. Communication instructions need to be matched by
corresponding instructions in the other program. There is no global actor overseeing execution of each of the
programs, and the nodes may be physically far apart.

running on different nodes, are in principle programmed and executed by independent
actors (such as a client that programs and executes a BQC client program, which commu-
nicates with a completely independent entity that acts as a BQC server and programs and
executes its own BQC server program). We also note that programs often need to wait for
some event to happen (such as arrival of a message from a remote node), which presents
a motivation for multitasking (where waiting times may be filled by execution of other
programs). We refer back to Chapter 2 for more information about quantum network
programs.

3.1.1 Contribution
In this chapter we introduce an abstract model—including a QuantumNetwork Processing
Unit (QNPU)— for end-nodes in a quantum network, which we define in Section 3.2. We
then propose Quantum Network Assembly Language (NetQASM), an instruction set ar-
chitecture that can be used to run arbitrary programs (of the form described in Figure 3.2)
on end-nodes, as long as the end-nodes realize the model including the QNPU.

NetQASM consists of a specification of a low-level assembly-like language to express
the quantum parts of quantum network program code. It also specifies how the CNPU
should interact with the QNPU and how the assembly language can be used to execute
(network) quantum code. This is not possible using other QASM languages.

The NetQASM language is extendible using the concept of flavors. The core language
definition consists of a common set of instructions that are shared by all flavors. This
common set contains classical instructions for control-flow and classical memory opera-
tions. This allows the realization of low-level control logic close to the quantum hardware;
for example, to perform branching based on a measurement outcome. Quantum-specific
instructions are bundled in flavors. We introduce a vanilla flavor containing universal



3

28
3 NetQASM: A low-level instruction set architecture for hybrid quantum-classical programs in a

quantum internet

Program

depends on

Classical code

depends on

depends onClassical code

depends
on

Quantum code

depends on

Quantum code

Classical code
on other node

Figure 3.2: A program on a single node consists of different blocks of code, which can be quantum (pure quantum
instructions with classical control in between), or classical (no quantum operations at all). These blocks may
depend on each other in various ways. For example, the outcome of a measurement happening in one of the
quantum blocks may be used in a calculation performed in one of the classical blocks. Blocks may also depend
on other nodes. For instance, the value of a message coming from another node can influence the branch taken
in one of the classical blocks.

platform-independent quantum gates. Using this flavor of the NetQASM language enables
the platform-independent description of quantum network programs. Platform-specific
flavors may be created to have quantum operations that are native and optimized for a
specific hardware platform. As an example, we show a flavor tailored to the Nitrogen-
Vacancy (NV) hardware, a promising platform for quantum network end-nodes [39, 70].

In our model, application-specific classical communication only happens at the CNPU
(Figure 3.1). In particular, this means that NetQASM contains no provision for classical
communication with the remote node. We remark that of course, classical control commu-
nication may be used by the QNPU to realize the services of the quantum network stack
accessed through NetQASM.

We note that NetQASM is used for representing and running code that runs on a sin-
gle node in a quantum network. Synchronization between the (NetQASM) programs of
multiple nodes is the responsibility of the programmer. For example, in a client-server
application, if the client code contains a ‘receive classical message’ operation, it is the re-
sponsibility of the server node that its program code contains a ‘send classical message’
operation at the right moment. The same holds for instructions for creating remote en-
tanglement. In terms of precise timing, which is needed for entanglement generation, it
is the QNPU that is responsible to communicate and synchronize with the QNPU of the
other node to make sure entanglement attempts are synchronized.

With NetQASM, we solve various problems that are unique to quantum internet pro-
gramming: (1) for remote entanglement generation, we introduce new instruction types
for making use of an underlying quantum network stack [17, 52], (2) for the close inter-
action between classical and quantum operations, we use a shared-memory model for
sharing classical data between the CNPU and the QNPU, (3) in order to run multiple ap-
plications on the same quantum node—which may be beneficial for overall resource usage
(see Section 3.4)—we make use of virtualized quantum memory, similar to virtual mem-
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ory in classical computing [3], (4) since on some platforms, not all qubits may be used
to generate remote entanglement, we introduce the concept of unit-modules describing
qubit topologies with additional information per (virtual) qubit about which operations
are possible.

Since NetQASM is meant to be low-level, similar in nature to classical assembly lan-
guages, we have also developed a higher-level software development kit (SDK), in Python,
to make it easier to write applications. This SDK and related tools are open-source and
freely available at [30], as part of our Quantum Network Explorer [63]. Through the SDK
we have also enabled the quantum network simulators NetSquid [14] and SimulaQron [19]
to run any application programmed in NetQASM.

We have evaluated NetQASM by simulating the execution of a teleportation applica-
tion and a blind quantum computation using NetQASM. Hereby we have shown that
interesting quantum internet applications can indeed be programmed using NetQASM.
Furthermore, the evaluations argue certain design choices of NetQASM, namely the use
of so-called unit modules, as well as platform-specific flavors.

We remark that NetQASM has already been used on a real hardware setup in the lab,
in a highly simplified test case that only produces entanglement [61]. Furthermore, in
Chapter 4, we present a full stack implementation that uses NetQASM.

3.1.2 Related work
In the field of quantum computing, a substantial amount of progress has beenmade related
to developing architectures (e.g. [2, 8, 27, 37, 50, 57, 69, 71]), instruction sets (e.g. [16, 26, 35,
44, 46, 49, 54, 55, 67]) and compilers [21, 22, 33, 34, 38, 41, 53, 59, 60, 62, 66, 68, 73, 74]. One
example is QASM, an instruction set framework, borrowing ideas from classical assembly
languages, which has gained a lot of popularity over the years and has been successfully
integrated in software stacks for quantum computers. There are in fact many variants
of QASM such as OpenQASM [16], cQASM [49], eQASM [26], f-QASM [54]. Some of these
variants are at a level closer to the physical implementation, such as eQASM, allowing for
specifying low-level timing of quantum operations, while others, such as f-QASM, are at a
higher level. Together with the definition of these QASM-variants, progress has also been
made in compilation of applications programmed in QASM to hardware implementations.
More abstract languages and programming frameworks for quantum programs include
Quil [67], Qiskit [44], Cirq [35], Q# [55], QuEST [46].

None of these instruction sets or languages contain elements for remote entanglement
generation (i.e. between different nodes), which NetQASM does provide. A NetQASM
program that uses the vanilla flavor and only contains local operations would look similar
to an OpenQASM program. However, the instruction set is not quite the same, since
NetQASM uses a different memory model than OpenQASM. This is due to the hybrid
nature of quantum network programs, which has more interaction between classical data
and quantum data than non-networking programs (for which OpenQASMmight be used).
So, NetQASM is not just a superset of the OpenQASM instruction set (in the sense of
adding entanglement instructions).

In [19], we introduced the Classical Quantum Combiner (CQC) interface, which was a
first step towards a universal instruction set. However, CQC had a number of drawbacks,
in particular: (1) CQC does not have a notion of virtualized memory (see Section 3.4),
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which meant that applications needed to use qubit IDs that were explicitly provided by
the underlying hardware. This introduced more communication overhead and fewer opti-
mization opportunities for the compiler. (2) CQC does not provide as much information
about hardware details. Therefore, platform-specific compilation and optimization is not
possible. (3) Furthermore, CQC does not match entirely with the later definition of our
quantum network stack [17, 52]. For example, it was not clearly defined how CQC relates
to the definition of a network layer.

Many of the ideas from e.g. QASM for how to handle and compile local gates can be
reused also for quantum network applications. For example, version 3 of OpenQASM [15]
which is under development, proposes close integration between local classical logic and
quantum operations, which is something we also propose in this work. However, there
are two key differences that we need to address:

1. Instructions for generating entanglement between remote nodes in the network need
to be handled and integrated with the rest of the application, see Section 3.2 below.

2. The local operations performed by a node might depend on information communicated
by another node and only known at runtime. Note that this is different from the con-
ditionals on local classical information, proposed in for example OpenQASM version
3, which does not require communication between remote nodes in a network. This
brings new constraints in how to handle memory allocation, scheduling and address-
ing. We discuss this point in further detail in the coming sections.

NetQASM solves the above two points and improves upon CQC.

3.1.3 Outline
In Section 3.2 we define relevant concepts and introduce the model of end-nodes that we
use, including the QNPU. In Section 3.3 we discuss use-cases of a quantum network which
NetQASM should support. In Section 3.4 we consider requirements and considerations
any instruction set architecture for quantum networks should fulfill which then lay the
basis for the decisions that went into developing NetQASM, see Section 3.5. In Section 3.6
and Section 3.7 we describe details about the NetQASM language and associated SDK.
In Section 3.8 we quantitatively evaluate some of the design decision of NetQASM by
benchmarking quality of execution using the quantum network simulator NetSquid [14,
64]. We conclude in Section 3.10.

3.2 Quantum node model
In this work we will assume an abstract model of the hardware and software architecture
of end-nodes in a quantum network. Specifically, we assume each end-node to consist
of a Classical Network Processing Unit (CNPU) and a Quantum Network Processing Unit
(QNPU). The CNPU can be also be seen as a the user space of a classical computer, and
the QNPU as a coprocessor.

This model takes into account both physical- and application-level constraints found
in quantum network programming. The QNPU can be accessed by the CNPU, at the same
node, to execute quantum and classical instructions. We define the capabilities of the
QNPU, and roughly their internal components, but do not assume how exactly this is
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implemented. In the rest of this work, we simply use the QNPU as a black box.

TheQNPU can do both classical and quantum operations, including (1) local operations
such as classical arithmetic and quantum gates and (2) networking operations, i.e. remote
entanglement generation. The CNPU cannot do any quantum operations. It can only do
local computation and classical communication with other nodes. In terms of classical
processing power, the difference between the CNPU and the QNPU is that the CNPU
can do heavy and elaborate computation, while we assume the QNPU to be limited in
processing power.

The CNPU can interact with the QNPU by for example sending instructions to do
certain operations. The CNPU and the QNPU are logical components and may or may not
be the same physical device. It is assumed that there is low latency in the communication
between these components, and in particular that they are physically part of the same
node in the network.

One crucial difference between the CNPU and the QNPU is that the CNPU can do
application-level classical communication with other end-nodes, while the QNPU cannot.
The QNPU can communicate classically to synchronize remote entanglement generation,
but it does not allow arbitrary user-code classical communication. We use this restriction
in order for the QNPU to have relatively few resource requirements.

The QNPU consists of the following components, see Figure 3.3:

• Processor: The processor controls the other components of the QNPU and understands
how to execute the operations specified by the CNPU. It can read and write data to the
classical memory and use this data to make decisions on what operations to do next. It
can apply quantum gates to the qubits in the quantum memory and measure them as
well. Measurement outcomes can be stored in the classical memory.

• Classical memory: Random-access memory storing data produced during the execu-
tion of operations, such as counters, qubit measurement outcomes, information about
generated entangled pairs, etc.

• Quantum memory: Consists of communication and storage qubits, see Chapter 1, on
which quantum gates can be applied. The qubits can be measured and the resulting
outcome stored in the classical memory by the processor. The communication qubits
are connected through a quantum channel to adjacent nodes in the quantum network,
through which they can be entangled. This quantum channel may also include classical
communication needed for synchronization, phase stabilization or other mechanisms
needed in the specific realization.

• Quantum network stack: Communicates classically with other nodes and quantum
repeaters in the network to synchronize the generation of remote entanglement, and is-
sues low-level instructions to execute the entanglement generation procedures, see [17,
52].

We stress that the internals of the QNPU are not relevant to the design of NetQASM.
We do assume that the QNPU only has limited classical processing power, and can there-
fore be implemented on for example a simple hardware board.
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Figure 3.3: Overview of QNPU components and interfaces. The CNPU talks to the QNPU using NetQASM. The
processor inside the QNPU can interact with all other components. Channels are connecting components with
corresponding components in adjacent nodes in the network.

3.2.1 Applications and programs
As also mentioned in Section 2.2, quantum network applications (or protocols) are multi-
partite and distributed over multiple end-nodes. The unit of code that is executed on each
of the end-nodes that are part of the application, is called a program. We will use this
terminology throughout the rest of this thesis.

As mentioned in the previous section, the end-nodes are modeled such that there is a
CNPU and a QNPU. We assume that execution of quantum network programs is handled
by the CNPU. How exactly the program is executed, and how theQNPU is involved herein,
is part of the NetQASM proposal.

3.3 Use-cases
In the next section we will discuss the design considerations taken when developing
NetQASM. These design considerations are based on a set of use-cases listed in this section
which we intend for NetQASM to support. Applications intended to run on a quantum
network will often depend on a combination of these use-cases.

• Local quantum operations. Applications running on a network node need to perform
quantum operations on local qubits, including initialization, measurement, and single-
ormulti-qubit gates. Such local qubitmanipulation is well known in the field of quantum
computing. For example, OpenQASM [16] describes quantum operations. Quantum
network applications should be able to do these local operations as well.

• Local quantum operations depending on local events or data. The next use-case
stems from applications consisting of programs in which limited classical computation
or decision making is needed in-between performing quantum operations. Here we
consider only dependencies in a program between quantum operations and information
that is produced locally, that is, on the node that this program is being executed. For
instance, a program might only apply a quantum gate on a qubit depending on the



3.4 Design considerations

3

33

measurement outcome of another qubit, or choose between execution branches based
on evaluation of a classical function of earlier measurement outcomes. An example is for
the server-side of blind quantum computation, which performs a form of Measurement-
Based Quantum Computation (MBQC). In each step of the MBQC, the server performs
certain gates on a qubit, depending on results of measuring previous qubits [25]. These
applications need classical operations to not take too much time, so that qubit states
stay coherent during these operations. This implies that switching between classical
and quantum operations should have little overhead.

• Entanglement generation. Crucial to quantum networks is the ability to generate
remote entanglement. Applications should be able to specify requests for entanglement
generation between remote nodes. In some cases, a Measure-Directly (MD) [17] type
generation is required, where entangled state is measured directly, without storing in
memory, to obtain correlated classical bits, such as in Quantum Key Distribution (QKD).
However, inmany cases a Create-Keep (CK) [17] type is needed, where the entanglement
needs to be stored in memory and further operations applied involving other qubits. We
want applications to be able to initiate or receive (await) entanglement of both formswith
nodes in the network.

• Local quantum operations depending on remote events or data. We already men-
tioned the use-case of having conditionals based on local information. We also envision
applications that need to store qubits and subsequently perform local quantum opera-
tions on them and other local qubits, based on classical information coming from another
node. An example is teleportation in which the receiver—after successful entanglement
generation—needs to apply local quantum corrections based on the measurement out-
comes of the sender. Another application is blind quantum computation, where the
server waits for classical instructions from the client about which quantum operations
to perform. Hence, there need to be integration of classical communication (sending
the measurement results or further instructions) and the local quantum operations. Fur-
thermore, since classical communication has a non-zero latency (and is in general even
non-deterministic), it should be possible to suspend doing quantum operations while
waiting for communication or performing classical processing, while quantum states
stay coherent.

• Waiting time. We consider the scenario where an application requires two nodes to
communicate with each other, and where communication takes a long time, for example
since they are physically far apart. It should be possible for a program to suspend doing
quantum operations while waiting for communication or performing classical process-
ing, while quantum states stay coherent. Furthermore, in order to maximize the usage
of the QNPU we want to have a way to fill this waiting time in a useful way.

3.4 Design considerations
In this section we review the most important design considerations and requirements that
were applied when developing NetQASM. Our proposed solutions to these design consid-
erations are presented in the next section, withmore details about NetQASM as a language
in the subsequent sections.
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• Remote entanglement generation: One of the main differences compared to the de-
sign considerations of a quantum computing architecture is that of remote entanglement
generation (see the use-case in Section 3.3). Nodes need to be able to generate entan-
glement with a remote node, which requires the collaboration and synchronization of
both nodes, and possibly intermediate nodes, which is handled by the network stack
(Section 3.2).
Further requirements arise in platformswith a limited number of communication qubits.
The extreme case is nitrogen-vacancy centers in diamond which have a single communi-
cation qubit that additionally is required for performing local operations. For this reason
it is not possible to decouple local gates on qubits from entanglement generation. We
note the contrast with classical processors, where networking operations are typically
intrinsically separate kinds of operations. For example, operations such as sending a
message may simply involve moving data to a certain memory (e.g. that of a physically
separate network interface), which is often abstracted as a system call.
A quantum network stack has already been proposed in [17, 52], and we expect the
QNPU of the end-node to implement such a stack, including a network layer that exposes
an interface for establishing entanglement with remote nodes. The way in which a
program creates remote entanglement should therefore be compatible with this network
layer.

• Conditionals: In Section 3.3 we mentioned the need to do local quantum operations
conditioned on classical data that may be generated locally or by remote nodes. Such
classical data include for example measurement results or information communicated
to or from other nodes in the network. We distinguish between real-time and near-time
conditionals [15]. Real-time conditionals are time-sensitive, such as applying a certain
quantum operation on a qubit depending on a measurement outcome. For such condi-
tionals, we would like to have fast feedback, in order for quantum memory not to wait
too long (which would decrease their quality). Near-time conditionals are not as sen-
sitive to timing. For example, a program may have to wait for a classical message of a
remote node, while no quantum memory is currently being used. Although it is prefer-
ably minimized, the actual waiting time does not affect the overall execution quality.

• Sharedmemory: As described in Section 3.2, we expect end-nodes to consist of a CNPU
and a QNPU. These two components have different capabilities. For example, only the
CNPU has the ability to do arbitrary classical communication with other nodes. Only
the QNPU can do quantum operations. These restrictions lead the design in a certain
way. The two components hence need to work together somehow. There needs to be
model for interaction between the two, and also for shared memory.
Executing programs on an end-node is shared by the CNPU and the QNPU (see Sec-
tion 3.2). Indeed, only the QNPU can do quantum-related operations, whereas the CNPU
needs to do classical communication. In order tomake thesework together, the two com-
ponents have to share data somehow. This includes the CNPU requesting operations on
the QNPU, and sending the following from the QNPU to the CNPU: (1) measurement
outcomes of qubits, (2) information about entanglement generation, in particular a way
to identify entangled pairs. This communication between CNPU and QNPU needs to
be done during runtime of the program. This is in contrast to local quantum computa-
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tion, where one might wait until execution on the QNPU is finished before returning
all data. The challenge for quantum network programs is to have a way to return data
while quantum memory stays in memory.

• Processing delay: Since we assume that the CNPU and the QNPU have to share exe-
cution of a single program, the interaction between the two layers should be efficient.
Unnecessary delays lead to reduced quality (see Section 3.1). The challenge is therefore
to come up with an architecture for the interaction between the CNPU and the QNPU,
as well as a way to let QNPU execution not take too long.

• Platform-independence: As explained in Section 3.1, hardware can have many differ-
ent capabilities and gates that can be performed. However, application programmers
should not need to know the details of the underlying hardware. For this reason, there
needs to be a framework through which a programmer can develop an application in a
platform-independent way which compiles to operations the QNPU can execute.

• Potential for optimization: Since near-term quantum hardware has a limited number
of qubits and qubits have a relatively short lifetime, the hardware should be utilized in
an effective way. There is therefore a need to optimize the quantum gates to be applied
to the qubits. This includes for example choosing how to decompose a generic gate
into native gates, rearranging the order of gates and measurements and choosing what
gates to run in parallel. Since different platforms have vastly different topologies and
gates that they can perform, this optimization needs to take the underlying platform into
account. The challenge is to have a uniform way to express both platform-independent
and platform-specific instructions.

• Multitasking: The ‘Waiting time’ use-case in Section 3.3 describes that a node’s QNPU
may have to wait a long time. We consider the solution that the QNPU may do multi-
tasking, that is, run multiple (unrelated) programs at the same time. Then, when one
program is waiting, another program can execute (partly) and fill the gap. To make our
design compatible with suchmultitasking, we need to provide a way such that programs
can run at the same time as other programs, but without having to know about them.

• Ease of programming: Even though NetQASM provides an abstraction over the inter-
action with the QNPU, it is still low-level and hence not intended to be used directly by
application developers. Furthermore, applications also contain classical code that is not
intended to run on the QNPU. Therefore it should be possible to write programs con-
sisting of both classical and quantum (network) operations in a high-level language like
Python, and compile them to a hybrid quantum-classical program that uses NetQASM.

3.5 Design decisions
Based on the use-cases, design considerations and requirements, we have designed the
low-level language NetQASM as an API to the QNPU. In this section we present concepts
and design decisions we have taken. Details on the mode of execution and the NetQASM-
language are presented in Section 3.6.

3.5.1 Interface between CNPU and QNPU
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Execution model
As described in Section 3.2, and also in Section 3.4 program execution is split across the
CNPU and the QNPU. Since the QNPU is assumed to have limited processing power
(Section 3.2), our design lets the CNPU do most of the classical processing. The program
blocks (Figure 3.2) are hence spread over two separate systems: blocks of purely classical
code are executed by the CNPU, and blocks of quantum code (containing both quantum
operations and limited classical control) are executed by the QNPU.

The quantum code (including limited classical control) is expressed using theNetQASM
language. The classical code is handled completely by the CNPU, and we do not impose a
restriction to its format. In our implementation (Section 3.7), we use Python. This classi-
cal code on the CNPU also handles all application-level classical communication between
nodes, since it cannot be done on the QNPU.

We let the CNPU initiate a program. Whenever quantum code needs to be executed,
the CNPU delegates this to the QNPU. Since processing delay should be minimized (Sec-
tion 3.4), the communication between CNPU and QNPU should be minimized. Therefore,
NetQASM bundles the quantum operations together into blocks of instructions, called
subroutines, to be executed on the QNPU. A program, then, consists of both both classical
code and quantum code, and the quantum code is represented as one or more subroutines.
These subroutines can be seen as the quantum code blocks of Figure 3.2.

For most programs, we consider subroutines to be sent consecutively in time. How-
ever, if the QNPU supports it, NetQASM also allows to send multiple subroutines to be
executed on the QNPU at the same time, although this requires some extra care when
dealing with shared memory. From the perspective of the QNPU, a program consists of a
series of subroutines sent from the CNPU. Before receiving subroutines, the CNPU first
registers a program at the QNPU. The QNPU then sets up the classical and quantum mem-
ories (see below) for this program. Then, the CNPU may send subroutines to the QNPU
for execution.

Shared classical memory
Since classical and quantum blocks in the code (as per Figure 3.2) can depend on each other,
the CNPU and the QNPU need to have a way to communicate information to each other.
For example, a subroutine may include a measurement instruction; the outcome of this
measurement may be used by the CNPU upon completion of the subroutine. Therefore,
NetQASM uses a shared memory model such that conceptually both layers can access and
manipulate the same data. This solves the need to return data, and to do conditionals
(Section 3.4).

Each program has a classical memory space consisting of registers and arrays. Regis-
ters are the default way of storing classical values, like a measurement outcome. In the
example of the CNPU needing a measurement outcome, there would be an instruction in
the subroutine saying that a measurement outcome needs to be placed in a certain regis-
ter. The CNPU can then access this same register (since they share the memory space) and
use it in further processing. The number of registers is small, and constant for each pro-
gram. Arrays are collections of memory slots (typically the slots are contiguous), which
can be allocated by the program at runtime. Arrays are used to store larger chunks of
data, such as parameters for entanglement requests, entanglement generation results, or
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Figure 3.4: Program interaction between the CNPU and a quantum device in both the case of hybrid-quantum
computing (a) and quantum networks (b). In the case of hybrid-quantum computing, qubits are reset in between
circuits (in e.g. QASM). For quantum internet programs the qubits should on the other hand be kept in memory,
since they might be entangled with another node and intended to be used further.

multiple measurement outcomes when doing multiple entangle-and-measure operations.
The CNPU may only read from the shared memory; writing to it can only be done by is-
suing NetQASM instructions such as set (for registers) and store (for arrays). The QNPU
may directly write to the shared memory, for example when entanglement finished and it
writes the results to the array specified by the program.

Unit modules
In order to support systems with multitasking (Section 3.4), NetQASM provides a virtual-
ized model of the quantum memory to the program. This allows the QNPU to do mapping
between the virtualized memory and the physical memory and perform scheduling be-
tween programs.

The quantum memory for a program is represented by a unit module (Figure 3.5). A
unit module defines the topology of the available qubits (which qubits are connected, i.e.
on which qubit pairs a two-qubit gate can be executed), plus additional information on
each qubit. This additional information consists of which gates are possible onwhich qubit
or qubit pair. It also specifies if a qubit can be used for remote entanglement generation or
not. The extra information is needed since on some platforms, not all qubits can be used
for entanglement generation and different qubits may support different local gates. For
example, in a single NV-centre, there is only one communication qubit and any additional
qubits are storage qubits. Also, the communication qubit can do different local gates than
the storage qubits.

A single program has a single quantum memory space, which is not reset at the end of
a subroutine, which is in contrast with quantum computing. This allows the CNPU to do
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processing while qubits are in memory. The following sequence of operations provides an
example. (1) The CNPU first sends a subroutine containing instructions for entanglement
generation with a remote node R. (2) The QNPU has finished executing the subroutine,
and informs the CNPU about it. There is now a qubit in the program’s memory that is
entangled with some qubit in R. (3) The CNPU does some classical processing and waits
for a classical message from (the CNPU of) R. (4) Based on the contents of the message,
the CNPU sends a new subroutine to the QNPU containing instructions to do certain
operations on the entangled qubit. The subroutine can indeed access this qubit by using
the same identifier as the first subroutine, since the quantum memory is still the same.
We note the contrast with (non-network) quantum computing, where quantum memory
is reset at the end of each block of instructions (Figure 3.4).

Unitmodules contain virtual qubit IDs. This is because of the requirement that it should
be possible to run multiple programs at the same time on a single QNPU (Multitasking
consideration in Section 3.4). We use an approach that is similar to virtual memory in
classical systems [3]. Each application has control over a set of physical qubits, but the
application does not (need to) know which physical qubits these are exactly. The unit
module provides a virtualized view of this available memory. This view contains virtual
IDs each representing a single qubit, called a virtual qubit. TheQNPUmaintains amapping
of virtual IDs (per application) to physical qubits. The QNPU may change this mapping
over time, without the applications knowing. We stress that our virtualization hence only
involves a mapping from IDs to physical qubits. There is no copying of quantum states
involved.

We note that this design decision meets our Multitasking consideration(Section 3.4).
By using virtualized unit modules, the QNPU is free to map qubit IDs of the application
to physical qubits as it sees fit. For example, consider a node with a physical memory con-
sisting of one communication qubit, and multiple memory qubits. Application A creates
entanglement with a remote node such that its half of the pair is in the communication
qubit. Then, application A needs to wait for a long time before further processing the
quantum state in this qubit, for example since it needs to wait for a classical message from
a remote node. Meanwhile, application B is waiting to be executed on the QNPU, and it
also requires the communication qubit for entanglement generation. The QNPU can now
move the state from the communication qubit to one of the memory qubits, and update
the mapping of application A’s ID to this physical memory qubit. Then, the QNPU can
run application B while A is waiting for the classical message. When B has finished, the
QNPU can move A’s state back to the communication qubit. Since application A uses the
unit module and does not know about the physical memory, it (1) does not care that its
state was temporarily moved to a different physical qubit, and (2) can remain oblivious
about any other application being run (like B) while it is waiting.

3.5.2 NetQASM language
Instructions
As explained in Section 3.5.1, the CNPU delegates quantum code (including limited clas-
sical control) of the program to the QNPU by creating blocks of instructions and send-
ing these to the QNPU for execution. These blocks are called subroutines and contain
NetQASM instructions. Since the QNPU is meant to be limited in processing power, the
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q0

{ crot_x, crot_y }

q1

{ crot_x, crot_y }

q2

{ rot_x, rot_y, rot_z } { rot_x, rot_y, rot_z }

{ meas, rot_x, rot_y, rot_z }

communication qubit

storage qubit

two-qubit gate

Figure 3.5: Example of a unit-module topology on a platform using nitrogen-vacancy centers in diamond. A
unit-module is a hypergraph [6], with associated information on both nodes and edges. Each node represents a
virtual qubit, containing information about (1) its qubit type (communication or storage), (2) physical properties
of the qubit, such as decoherence times and (3) which single-qubit gates are supported on the qubit, together with
their duration and noise. Each edge represents the possibility of performing joint operations on those qubits,
such as two-qubit gates, and also containing information about gate durations and noise.

instruction set that it interprets should also be simple and low-level. The NetQASM in-
struction set contains instructions for simple arithmetic, classical data manipulation, and
simple control flow in the form of (un)conditional branch instructions. Although condi-
tional control-flow can be done at the CNPU as well, NetQASM branching instructions
allow for much faster feedback since they are executed by the QNPU, and hence cover
the design consideration of real-time conditionals (Section 3.4). We note the obvious per-
formance gain by being able to do control logic without having to go back to the CNPU.
There are no higher-level concepts such as functions or for-loops, which would require
more complicated and resource-demanding parsing for the QNPU, such as constructing
an abstract syntax tree.

A single instruction specifies an operation, possibly acting on classical or quantum
data. For example, a single-qubit rotation gate is represented as an instruction contain-
ing the type of gate, the classical register containing the rotation angle, and the classical
register containing the virtual ID of the qubit (as specified in the unit module) to act on.
NetQASM specifies a set of core instructions that are expected to be implemented by any
QNPU. These include classical instructions like storing and loading classical data, branch-
ing, and simple arithmetic. Different hardware platforms support different quantum oper-
ations. NetQASM should also support platform-specific optimization (Section 3.4). There-
fore, NetQASM uses flavors of quantum instructions (Section 3.5.2). The vanilla flavor
consists universal of a set of platform-independent quantum gates. Particular hardware
platforms, such as the NV-centre, may use a special NV flavor, containing NV-specific in-
structions. A QNPU implementation may use a custom mapping from vanilla instructions
to platform-specific ones. The instructions in a flavor are also called a software-visible
gate set [57]. See Appendix A.6 for more details on NetQASM instructions.

Remote entanglement generation
Generating entanglement with a remote node is also specified by instructions. These are
however somewhat special compared to other instructions. First, entanglement genera-
tion has a non-deterministic duration. Therefore, when an entanglement instruction is
executed, the request is forwarded to the part of the system responsible for creating en-
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1 array 10 @0 // array for writing EPR results to
2 array 1 @1 // array with virtual IDs for entangled qubits to

generate
3 store 0 @1[0] // set virtual ID of the only generated qubit to 0
4 array 20 @2 // array for holding EPR request parameters
5 store 0 @2[0] // set request type to 0 (Create and Keep)
6 store 1 @2[1] // set number of requested EPR pairs to 1
7 create_epr (1,0) 1 2 0 // wait until results for first pair are

available
8 set Q0 0
9 meas Q0 M0 // measure the entangled qubit , store result in M0

10 qfree Q0 // free the qubit
11 ret_reg M0 // return measurement outcome

Figure 3.6: Example of NetQASM code for generating a single entangled pair with another node followed by a
measurement. See the Appendix for more details of the instructions.

tanglement, but the instruction itself immediately returns. A separate wait instruction
can be used to block on entanglement generation to actually be completed. Second, en-
tanglement generation requests should be compatible with the network stack proposed
in [17], including the network layer from [52]. These requests need to be accompanied
by information such as the number of EPR pairs to generate or the minimum required
fidelity. Third, this information should be able to depend on runtime information. For ex-
ample, the required fidelity may depend on an earlier measurement outcome. Therefore,
entanglement generation parameters cannot be static data, and must be stored in arrays.
Furthermore, the result of entanglement generation with the remote node consists of a
lot of information, such as which Bell state was produced, the time it took, and the mea-
surement results in case of measuring directly. This information is written by the QNPU
to an array which is specified by the entanglement instruction. Finally, since writing the
information to the array indicates that entanglement generation succeeded, the wait in-
struction can be used to wait until a certain array is filled in, such as the one provided
by the entanglement instruction. Since the entanglement instruction is non-blocking, it is
possible to continue doing local operations while waiting for entanglement generation to
complete.

We assume that the QNPU implements a network stack where connections need to
be set-up between remote nodes before entanglement generation can happen [17, 52].
NetQASM provides a way for programs to open such connections in the form of EPR
sockets. The CNPU can ask the QNPU to open an EPR socket with a particular remote
node. The QNPU is expected to set up the required connections in the network stack,
and associates this program socket with the connection. When the program issues an
instruction for generating entanglement, it refers to the EPR socket it wants to use. Based
on this, the QNPU can use the corresponding connection in the network.

Flavors
We want to keep NetQASM platform-independent. However, we also want the potential
for platform-specific optimization (Section 3.4). Therefore we introduce the concept of
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flavors. Flavors only affect the quantum instruction set of the language, and not the mem-
ory model or the interaction with the QNPU. We use the vanilla or generic flavor for a
general, universal gate set. Subroutines may be written or generated in this vanilla fla-
vor. Platform-independent optimization may be done on this level. A QNPU may directly
support executing vanilla-flavored NetQASM. Platform-specific translations may then be
done by the QNPU itself. It can also be that a QNPU only supports a specific flavor of
NetQASM. A reason for this could be that the QNPU does not want to spend time trans-
lating of the instructions at runtime. In this case, the CNPU should perform a translation
step from the vanilla flavor to the platform-specific flavor. In such a case, the vanilla flavor
can be seen as an intermediate representation, and the translation to a specific flavor as a
back-end compilation step.

Programmability
Since the NetQASM instructions are relatively low-level, we like to have a higher-level
programming language for writing programs, that is automatically compiled to NetQASM.
We introduce a higher-level SDK in Section 3.7. However, we do not see this as part of
the NetQASM specification itself. This decoupling allows the development of SDKs to be
independent such that these can be provided in various languages and frameworks.

We still want NetQASM instructions to be suitable for manual writing and inspection.
Therefore, instructions (and subroutines) have two formats: a binary one that is used
when sending to the QNPU, and a text format that is human-readable. The text format
resembles assembly languages including OpenQASM. Examples are given in Section 3.7
and the Appendix.

3.6 Implementation
3.6.1 Interface between CNPU and QNPU
Here we explain the flow of messages between the CNPU and the QNPU. The CNPU
starts by declaring the registration of an application, including resource-requirements for
the application. After this, the CNPU sends some number of subroutines for the QNPU to
execute before declaring the application is finished. See Figure 3.7 for a sequence diagram
and below for a definition of the messages. In Section 3.6.2 we will describe in more details
the content of the subroutines and the format of instructions. The QNPU returns to the
CNPU an assigned application ID for the registered application and returns data based on
the subroutines executed.

The CNPU and the QNPU are assumed to run independently and in parallel. For ex-
ample, while a subroutine is being executed by the QNPU, the CNPU could in principle
do other operations, such as heavy processing or communication with another node.

Figure 3.7 shows an example of amessage exchange between the CNPU and the QNPU.
The content of these messages is further detailed in Appendix A.1.

3.6.2 The language
The syntax and structure of NetQASM resemble that of classical assembly languages,
which in turn inspired the various QASM-variants for quantum computing [16, 26, 49,
54].
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RegisterApp

RegisterAppOk

Subroutine

Subroutine

Done

Update Memory

Done

StopApp

Execute subroutine

Execute subroutine

CNPU QNPU

Figure 3.7: Flow of messages between the CNPU and the QNPU.

A NetQASM-instruction is formed by an instruction name followed by some number
of operands:

0 instr operands

where instr specifies the instruction, for example add to add numbers or h to perform a
Hadamard. The operands part consists of zero or more values that specify additional infor-
mation about the instruction, such as which qubit to act on in the case of a gate instruction.
Instructions and operands are further specified in Appendix A.2.

3.6.3 Instructions
There are eight groups of instructions in the core of NetQASM. Also summarized in Fig-
ure 3.8, these are:

• Classical: Classical arithmetic on integers.
• Branch: Branching operations for performing conditional logic.
• Memory: Read and write operations to classical memory (register and arrays).
• Allocate: Allocation of qubits and arrays.
• Wait: Waiting for certain events. This can for example be the event that entanglement
has been generated by the network stack.
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Classical:
add, sub,

addm, subm

Branch:
jmp. bez, bnz

beq, bne, blt, bge

Memory:
set, store, load,

undef, lea

Allocate:
array, qalloc, qfree

Wait:
wait_all, wait_any,

wait_single

Return:
ret_reg, ret_arr

Measurement:
meas

Entanglement:
create_epr, recv_epr

...

Vanilla flavor:
init,

x, y, z,
h, s, k, t,

rot_x, rot_y, rot_z,
cnot, cphase

NV flavor:
init,

rot_x, rot_y, rot_z,
cx_dir, cy_dir

TI flavor:
...

NetQASM flavors:

Core

Figure 3.8: The core of NetQASM consists of eight groups of instructions. The quantum gates are defined as a
set of software-visible gates part of a NetQASM flavor. The vanilla flavor is the unique platform-independent
NetQASM flavor of NetQASM, which can be used by a compiler.

• Return: Returning classical values from theQNPU to the CNPU. In our implementation
we implement this by having the QNPU write to the shared memory so that the CNPU
can access it.

• Measurement: Measuring a qubit.
• Entanglement: Creating entanglement with a remote node using the quantum net-
work stack.
Quantum gates are specific to a NetQASM flavor and given as a set of software-

visible gates of a given platform, see Section 3.4. There is a single platform-independent
NetQASMflavorwhich we call the vanilla flavor, see Figure 3.8. The vanilla flavor can
be used as an intermediate representation for a compiler.

3.6.4 Compilation
Although application programmers could write NetQASM subroutines manually, and let
their (classical) application code send these subroutines to the QNPU, it is useful and more
user-friendly to be able to write quantum internet applications in a higher level language,
and have the quantum parts compiled to NetQASM subroutines automatically. For this,
we use the compilation steps depicted in Figure 3.9. The format and compilation of the
higher-level programming language is not part of the NetQASM specification. However,
we do provide an implementation in the form of an SDK, see Section 3.7.
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Higher-level programming language

Hybrid quantum-classical program

NetQASM (vanilla flavor)

NetQASM (HW flavor)

NetQASM (HW flavor)

CNPU

Compilation

(multiple subroutines)

(heavy compiling)

QNPU

Full application, written by
a programmer (e.g. Python)

Full application, multiple subroutines
compiled together, including also
classical logic at application level

Virtual qubits part of allocated unit-
module, abstract gates, single subroutine

Same as above except for software-
visible gates (platform-dependent)

Input from above

Figure 3.9: Compilation steps from higher-level programming language, to the NetQASM flavor exposed by the
specific platform. What is contained at each level is further specified to the right of the diagram.

3.7 Python SDK
We implemented NetQASM by developing a Software Development Kit (SDK) in Python.
This SDK allows a programmer to write quantum network programs as Python code, in-
cluding the quantum parts. These parts are automatically translated to NetQASM subrou-
tines. The SDK contains a simulator that simulates a quantum network containing end-
nodes, each with a QNPU. The SDK can execute programs by executing their classical
parts directly and executing the quantum parts as NetQASM subroutines on the simulated
QNPU. By executing multiple programs at the same time, on the same simulated net-
work, a whole multi-partite application can be simulated. In Section 3.8 we use this SDK
to evaluate some of the design decisions of NetQASM.

We refer to the docs at [30] for the latest version of the SDK. Below, we give an example
of an application written in the SDK to give an idea of how development in the SDK looks
like. In Appendix A.8.2 we provide a few more examples of applications in the SDK and
their corresponding NetQASM subroutines.

All code can be found at [30] and [31], including: (1) Tools for serializing (de-serializing)
to (from) both human-readable text form and binary encoding, (2) the NetQASM SDK, to-
gether with compilers (no optimization yet), (3) support for running applications written
in the SDK on the simulators NetSquid [14, 64] and SimulaQron [19], and (4) implemented
applications in NetQASM, including: anonymous transmission [13], BB84 [4], blind quan-
tum computing [10, 24], CHSH game [48], performing a distributed CNOT [20], magic
square game [9], teleportation [5].

SDK. The SDK of NetQASM uses a similar framework to the SDK used by the predecessor
CQC [29]. Any program on a node starts by setting up a NetQASMConnection to the QNPU-
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implementation in the backend. The NetQASMConnection encapsulates all communication
that the CNPU does with the QNPU. More information about supported backends can
be found below in Section 3.7. Using the NetQASMConnection one can for example con-
struct a Qubit object. The Qubit object has methods for performing quantum gates and
measurements. When these methods are called, corresponding NetQASM instructions are
included in the current subroutine being constructed. One marks the end of a subroutine,
and the start of another, either by explicitly calling flush on the NetQASMConnection or
by ending the scope of the with NetQASMConnection ... context.

The following Python code shows a basic application written in the NetQASM SDK.
The application will be compiled into a single subroutine executed on the QNPU, which
creates a qubit, performs a Hadamard operation, measures the qubit and returns the result
to the CNPU.

0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection(”Alice”) as alice:
3 # Create a qubit
4 q = Qubit(alice)
5 # Perform a Hadamard on the qubit
6 q.H()
7 # Measure the qubit
8 m = q.measure ()
9 # The end of the context also marks

10 # the end of the subroutine
11 # automatically but can also be done
12 # explicitly using ‘alice.flush ()‘

The following NetQASM subroutine is the result of translating the above Python code
to NetQASM of the vanilla (platform-independent) flavor.

0 # NETQASM 1.0
1 # APPID 0
2 // Set the virtual qubit ID to use
3 set Q0 0
4

5 // Allocate and initialize a qubit
6 qalloc Q0
7 init Q0
8

9 // Perform a Hadamard gate
10 h Q0
11

12 // Measure the qubit
13 meas Q0 M0
14

15 // Return the outcome
16 ret_reg M0
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Backends
Asmentioned above, the NetQASMConnection in the SDK is responsible for communicating
with the implemented QNPU in the backend. The backend can either be a simulator or
an actual QNPU using real quantum hardware. Currently supported backends are the
simulators SquidASM [31] (using NetSquid [14, 64]) and SimulaQron [19]. A physical
implementation of QNPU running on quantum hardware is being worked on at the time
of writing. Using the SDK provided at [30], one can for example simulate a set of program
files for the nodes of a quantum network on NetSquid using a density matrix formalism
with the command:

0 netqasm simulate --simulator=netsquid --formalism=dm

For more details see the docs at [30].

3.8 Evaluation
We evaluate two of the design choices that we made for NetQASM: (1) exposing unit-
modules to the CNPU and (2) adding the possibility to use platform-specific flavors of
instructions. For both elements we study the difference in including them in NetQASM
versus not including them. We do this by simulating a teleportation application and a blind
quantum computation application. These examples also showcase the ability of NetQASM
to express general quantum internet applications.

We have implemented a simulator, called SquidASM [31], that simulates a network in
which end-nodes have the internal architecture as described in Section 3.2, that is, with an
CNPU and a QNPU. The simulator internally uses NetSquid [64], which was made specifi-
cally for the simulation of quantumnetworks. SquidASM executes programswritten using
the SDK (Section 3.7), including sending NetQASM subroutines to the (simulated) QNPU.
The code and data that were used to produce the results in this section can be found at [32].

We evaluate the performance of NetQASM by looking at the runtime quality of two
applications, both consisting of two programs (one per node). The first is a teleportation of
a single qubit from a sender node to a receiver node. We define the quality as the fidelity
between the original qubit state at the sender and the final qubit state at the receiver. The
second application is a blind computation protocol which involves a client and a server.
The server effectively performs, blindly, a single-qubit computation on behalf of the client.
The protocol is a so-called verifiable blind quantum computation [24]. Thismeans that some
of the rounds of the protocols are trap rounds. We define the quality that we evaluate as
the error rate of these trap rounds, since this indicates the blindness of the server.

We run these applications on SquidASM, where we simulate realistic quantum hard-
ware. Specifically, we simulate nodes based on nitrogen-vacancies (NV) in diamond, that
can do heralded entanglement generation between each other. The simulated hardware
uses noise models that are also used in [14]. For more details, see Section 3.9.

A note on how we chose what to evaluate and what not. We listed several design
considerations in Section 3.4. We addressed these in our design decisions (Section 3.5).
For some of these, it is straightforward to see how they address a certain consideration,
such as conditionals allowing for fast runtime feedback, and unit modules for allowing
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Figure 3.10: Average fidelity between the original state at the sender and the final state at the server, as a function
of the depolarizing noise of the native two-qubit gate of the NV-platform, both for the case of performing step 6
after (No unit modules) and before (Unit modules) step 4 and 5. Execution time of the native two-qubit gate
is set to 0.5 ms. The rest of the parameters used are listed in Section 3.9. Each point is the average over each of
the six Pauli states as initial state, repeated 100 times.

multitasking, as explained in Section 3.5. Also, fundamental requirements like remote-
entanglement generation and shared memory have been addressed. The remaining con-
siderations, and our solutions, namely platform independence and memory virtualization
using unit modules, are less trivial to evaluate just by looking at the design. Therefore, we
focus on the evaluation of these two design decisions.

In our evaluation, we focus specifically on the Nitrogen-Vacancy hardware for our
nodes. This has two reasons. First, it is a promising hardware platform for quantum
network nodes [70] which we know quite well since it is available in the lab, and we have
even used NetQASM in a simple test case running on nodes based on NV [61]. Second,
the NV hardware is interesting since it has a restricted gate set and qubit topology, which
is explained in more detail below. Therefore, we expect that the use of unit modules and
an NV-specific flavor makes a difference in terms of runtime quality.

3.8.1 Unit modules
We ask ourselves the question whether it pays off to expose unit modules, that is, a qubit
topology with gate- and entanglement information. Specifically, we want to know if there
are situations where knowing the unit module gives the CNPU an opportunity to optimize
the application in a way that is not possible when not knowing the unit module. If so, we
are interested in how much advantage this gives (in terms of the runtime quality defined
above).

In the next section we show that there are indeed situations where knowledge of the
unit module is advantageous. It can be that the order in which NetQASM instructions
are issued in a subroutine is sub-optimal, since virtual qubit IDs may be mapped in such
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a way that the QNPU has to move virtual qubits to different physical qubits in order to
execute the instructions. If the CNPU layer does not know this mapping, it cannot know
that the instructions are ordered sub-optimally. With knowledge of the unit module, on
the other hand, the CNPU can optimize the order and the overall application performance
is improved.

We consider a teleportation application where a sender program teleports a single
qubit to another receiver program. It is assumed that the underlying platform is based
on nitrogen-vacancy centers in diamond (NV) and use well-established models for both
the noise and operations supported on such platforms, see Section 3.9. The sender program
uses two qubits: one to create entanglement with the receiver (qubit E), and one to send
(teleport) to the receiver (qubit T). At some point, the sender measures both qubits, after
which it sends the outcomes to the receiver so that it can do the relevant corrections on its
received qubit. We assume that the sender program is written in a higher-level language
like, like in our SDK (Section 3.7), and in such a way that it first issues a measurement op-
eration on qubit T, and then on E. However, due to the differences in characteristics of the
physical qubits, as will be explained below, it is more efficient to first do the measurement
on E, and then on T. Now we consider two scenarios, namely
• Unit-modules (UM). We assume that the sender program is written and executed on a
software stack implementing NetQASM, which means that the application’s view of its
quantum working memory is in the form of a unit module. This unit module contains
information about the above-mentioned hardware restrictions, and therefore a compiler
can take advantage of it by re-ordering the measurement operations while generating
the NetQASM subroutines to be sent to the QNPU.

• No unit-modules (NUM). In this case the software stack also implements NetQASM,
but without unit modules. Specifically, the application sees its quantum memory as
just a number of uniform qubits. Therefore, a compiler for this application does not
know about the hardware restrictions, and will construct NetQASM-subroutines sent to
the QNPU without doing any optimization and leaves the order of the operations to be
performed as they are specified in the high-level SDK.
Let’s first go through the steps of the teleportation application:

sender :

1. Initialize qubit 𝑞𝑡 to be teleported in a Pauli state.
2. Create entanglement with receiver using qubit 𝑞𝑠 .
3. Perform CNOT gate with 𝑞𝑡 as control and 𝑞𝑠 as target.
4. Perform Hadamard gate on 𝑞𝑡 .
5. Measure qubit 𝑞𝑡 and store outcome as 𝑚1.
6. Measure qubit 𝑞𝑠 and store outcome as 𝑚2.
7. Send 𝑚1 and 𝑚2 to receiver.

receiver :



3.8 Evaluation

3

49

Figure 3.11: Average fidelity of the teleported state (left y-axis, solid lines) and total execution time of the tele-
portation application (right y-axis, dashed lines) as a function of the execution time of the native two-qubit gate
of the NV-platform, both for the case of performing step 6 after (No unit modules) and before (Unit modules)
step 4 and 5. Dephasing parameter of the native two-qubit gate is set to 0.02. The rest of the parameters used
are listed in Section 3.9. Each point is the average over each of the six Pauli state as initial state, repeated 100
times. In both figures, error bars are smaller than the drawn dots.

1. Receive entanglement with sender using qubit 𝑞𝑟 .
2. Receive measurement outcomes from sender.
3. Apply correction operations on 𝑞𝑟 based on measurement outcomes.

We will now consider the order of the steps of the sender. Firstly, we assume that
the qubit to be teleported, 𝑞𝑡 , is always created before the entanglement. We motivate
this assumption below. For this reason, steps 1–3 and 7 are fixed and cannot change.
However, we are free to do step 6 before step 4 and 5, since these single-qubit operations
and measurements commute, as long as we are consistent with the outcomes 𝑚1 and 𝑚2.
Let’s now consider what impact this decision of measuring 𝑞𝑠 before 𝑞𝑡 or not has on the
quality of execution for a NV-platform.

One of the biggest restrictions on a NV-platform is the topology of the qubits. In
particular, the NV-platform has a single communication-qubit (electron) surrounded by
some number of storage qubits (carbon spins), see for example Figure 3.5. The single
communication qubit is not only responsible for any remote entanglement generation but
also for any two-qubit gate and is the only qubit that can be directly measured. These
restrictions require qubit states to be moved back and forth between the communication
qubit and the storage qubits in order to free up the communication qubit, to create new
entanglement or to measure another qubit. Since the operation of moving a qubit state
is relatively slow on this platform (up to a millisecond [43]) and adds noise to the qubits,
it is important to try to minimize the number of moves needed. For more details on the
NV-platform, see for example [7] or [17].
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In the steps of the sender above, the communication qubit is first initialized to a Pauli
state. This state is then moved to a storage qubit to free up the communication qubit in
order to create entanglement with the receiver. Then in step 5, 𝑞𝑡 should be measured,
which is currently in the storage qubit. This requires the qubit state to first be moved to
the communication qubit. However, at this point the communication qubit is occupied by
the entangled pair and therefore first needs to be moved to a second storage qubit. Qubit
𝑞𝑡 can then be moved to the communication qubit to be measured and then the same is
done for 𝑞𝑠 , requiring in total four move operations and three physical qubits.

We can now see that performing step 6 before 4 and 5 has the advantage that this
qubit is already in the communication qubit and can be measured directly without moving
it first. Afterwards, 𝑞𝑡 can be moved to the communication qubit, which is cleared after
the measurement, requiring in total only 2 move operations and only two physical qubits.
The decision of performing step 6 before 4 and 5 is highly dependent on the NV-platform
and can only be made by a compiler that is aware about these restrictions. The inclusion
of unit-modules and qubit types in the NetQASM-framework, which are exposed to the
compiler at the CNPU, allows for these optimization decision and can therefore improve
the quality of execution.

For the two scenarios we consider, i.e. performing step 6 before 4 and 5 (Unitmodules
(UM)) or not (No unit-modules (NUM)), we check the average fidelity of the teleported
state as a function of the gate noise (Figure 3.10), as well as the average fidelity and execu-
tion time as a function of gate duration (Figure 3.10), of the native two-qubit gate of the
NV-platform. We see that performing step 6 before 4 and 5 improves both total execution
time and average fidelity. This can be explained by the fact that using unit modules al-
lowed a compiler to produce NetQASM code containing fewer two-qubit gates. Therefore,
an increase in two-qubit gate noise leads to a lower fidelity. Also, an increase in two-qubit
gate duration leads to higher execution time difference between the two scenarios. Finally,
Figure 3.10 shows that the two-qubit gate duration does not affect the final fidelity in this
situation, but the difference between using unit modules versus not using them remains.

3.8.2 Flavors
While aiming to let NetQASM be mostly platform-independent, we did also choose to
allow platform-specific instructions, bundled in flavors. The idea is that this allows for
platform-specific optimization leading to better application performance. Here we evalu-
ate if flavors really impact potential performance, and if so how much.

We show that platform-specific optimization can indeed improve application perfor-
mance, and that there are such optimizations that are not possible without flavors. We see
that it has impact mostly on the execution time, but not necessarily on outcome quality.

We consider the blind computation application depicted in Figure 3.12, where both the
client and server node implement the NV hardware. Again we compare two scenarios, in
this case:
• Vanilla. We compile both the client’s and server’s application code to NetQASM sub-
routines with the vanilla flavor. The QNPU, controlling NV hardware which does not
implement all vanilla gates natively, needs to translate the vanilla instructions on the go.
We assume this translation is ad-hoc and does not do any optimizations like removing
redundant gates.
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Client

Server

Entangle (Φ+)

Rz(θ2) H p2

Server

Entangle (Φ+)

Rz(θ1) H p1

Rz(δ1) H m1

Rz(δ2) H q

Figure 3.12: Circuit representation of the simulated BQC application. The client remotely prepares two qubits
on the server, by twice creating an entangled pair with the server followed by a local measurement. The server
locally entangles its two qubits (cphase gate). Then, the client and server use classical communication to further
guide the server’s quantum operations. The client computes 𝛿1 = 𝛼 −𝜃1 +𝑝1 ⋅ 𝜋 and sends this to the server. The
server uses the received value to do a local rotation and later sends measurement outcome𝑚1 back to the client.
The client then sends 𝛿2 = (−1)𝑚1 ⋅ 𝛽 − 𝜃2 +𝑝2 ⋅ 𝜋 to the server. The qubit state 𝑞 is the result of this application.

• NV. The code is compiled to NetQASM subroutines containing instructions in the NV
flavor, and redundant gates are optimized away. The QNPU can directly execute the
instructions on the hardware.
We implemented this by writing two separate programs in the SDK, one for the client

and one for the server. The SDK automatically compiles the relevant parts of these pro-
grams into NetQASM subroutines. Classical communication (values 𝛿1, 𝑚1 and 𝛿2) is
done purely between the two simulated CNPUs, so these operations are not compiled to
NetQASM subroutines. More details about the simulation can be found in Section 3.9.

The protocol is a verifiable blind quantum protocol [24], which means that the circuit
in Figure 3.12 is run multiple times, namely once per round. Some of these rounds are
trap rounds in which the client chooses a special set of input values. Such a trap round
can either succeed or fail, depending on the values returned by the server. The fraction of
trap rounds that fail is called the error rate. The error rate should stay low in order for the
computation to be blind.

We simulate the BQC application by running the client’s and server’s programs in
SquidASM. We look at the error rate of the trap round as a function of the two-qubit gate
noise. The result can be seen in Figure 3.13. It can be seen that using the NV flavor provides
a better (lower) error rate than using the vanilla flavor. This can be explained by noting
that NetQASM instructions in the vanilla flavor are mapped ad-hoc to native NV gates by
the QNPU at runtime, which leads to more two-qubit gates in total.

To gain somemore insight into why using the NV flavor provides a lower error rate we
also look at the fidelity of the two quantum states on the server before any local gates are
applied. As can be seen in Figure 3.12, the client remotely prepares two states on the server
by twice creating entanglement and measuring its own half of the EPR pair. In Figure 3.14
we see that already during this remote state preparation phase the NV flavor outperforms
the vanilla flavor in terms of the fidelity of the prepared states.

3.8.3 Relation to other results
We note that a similar question of how many physical details to expose from lower-level
layers (in our case the QNPU) to higher-level layers (in our case the CNPU) has also been
evaluated in [57]. Their conclusion is that exposing and leveraging some of these details
can indeed improve certain program success metrics. That result agrees with that of ours,
which shows that program execution quality can improve by exposing and leveraging unit
modules and platform-specific NetQASM flavors.
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Figure 3.13: Average error rate of trap rounds for the circuit of Figure 3.12. Each point is the average over
four combinations of 𝜃1 and 𝜃2, each used in 500 trap rounds. It can be seen that using the vanilla (platform-
independent) NetQASM flavor results in a worse (higher) error rate on average.

Figure 3.14: Fidelity of the two remotely prepared states on the server in the BQC application. To remotely
prepare a state, the client and server first create an EPR pair, and the client then measures its half in a specific
basis while the server keeps its half stored in the communication qubit. This first prepared state is then moved
to a memory qubit to free up the communication qubit for preparing the second state. This move operation has
a negative effect on the fidelity of the first prepared state. Since the fidelity of the second prepared state only
depends on the link entanglement generation, there is no difference between using vanilla or NV instructions.
The values are from the same simulation experiment as for Figure 3.13. Error bars are negligible.
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3.9 Simulation details
In this section we detail how simulations in Section 3.8 were performed and what mod-
els and parameters were used. All simulations used the NetQASM SDK [30], using Net-
Squid [14, 64] as the underlying simulator. All code used in these simulations can also be
found at [31].

3.9.1 Noise model
In both the teleportation and the blind quantum computing scenario we used the same
model for nitrogen-vacancy centres in diamonds as was used in [17] and [14]. All gates
specified by the application in the SDK were translated to NV-specific gates, see Table 3.1,
using a simple compiler without any optimization. The parameters used in the model
from [17] are listed in Tables 3.1 and 3.2, together with an explanation and a reference.
ec_controlled_dir_xy are the native two-qubit gates of the NV-platform, ideally performing
one of the unitary operations

𝑈ecx(𝛼) = (𝑅𝑥 (𝛼) 0
0 𝑅𝑥 (−𝛼)) (3.1)

𝑈ecy(𝛼) = (𝑅𝑦(𝛼) 0
0 𝑅𝑦(−𝛼)) (3.2)

(3.3)

where 𝑅𝑥 (𝛼) and 𝑅𝑦(𝛼) are the rotation matrices around 𝑋 and 𝑌 , respectively. When
sweeping the duration and noise of this two-qubit gate the same value is also used for
the carbon_xy_rot (𝑋 - and 𝑌 -rotations on the carbon) on the storage qubits, since these
are also effectively done with a similar operation also involving the communication qubit
(electron). All noise indicated by a fidelity in Table 3.2 are applied as depolarising noise
by applying the perfect operation, producing the state 𝜌ideal, and mapping this to

𝜌noisy = (1−𝑝)𝜌ideal +
𝑝
3𝑋𝜌ideal𝑋 + 𝑝

3𝑌𝜌ideal𝑌 + 𝑝
3𝑍𝜌ideal𝑍 (3.4)

where 𝑋 , 𝑌 and 𝑍 are the Pauli operators in Equations (A.1) to (A.3), 𝑝 = 4
3 (1− 𝐹), with 𝐹

being the value specific in Table 3.2. Decoherence noise is specific as 𝑇1 (energy/thermal
relaxation time) and 𝑇2 (dephasing time) [58].

3.9.2 BQC application and flavors
In Section 3.8.2 we simulated the blind quantum computation (BQC) application from Fig-
ure 3.12. The code for this is available at [31].

In the scenario when the application codewas compiled to subroutines with the vanilla
flavor, the QNPU had to map the vanilla instructions to NV-native operations on the fly.
We used the gate mappings listed below. For convenience we use PI and PI_OVER_2 for 𝜋
and 𝜋

2 respectively.
A h (Hadamard) vanilla instruction was mapped to the following NV instruction se-

quence:
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Gate Durations (ns) Explanation
electron_init 2e3 Initialize a comm. qubit (electron) to |0⟩
electron_rot 5 Single-qubit rotation on communication

qubit (electron)
measure 3.7e3 Measure communication qubit (electron)

carbon_init 3.1e5 Initialize a storage qubit (carbon) to |0⟩
carbon_xy_rot 𝑡 𝑋 /𝑌 -rotation on storage qubit (carbon)
carbon_z_rot 5 𝑍 -rotation on storage qubit (carbon)

ec_controlled_dir_xy 𝑡 Native two-qubit gates
(Equations (3.1) and (3.2))

Table 3.1: Gate durations for scenario B of Section 3.8. 𝑡 is the value being swept in Figure 3.11. All values are
from [17].

Parameter Value Explanation
electron_T1 1 hour 𝑇1 of communication qubit (electron)
electron_T2 1.46 seconds 𝑇2 of communication qubit (electron)
electron_init 0.99) Fidelity to initialize comm. qubit (electron)

electron_rot 1.0 Fidelity for 𝑍 -rotation on
communication qubit (electron)

carbon_T1 10 hours 𝑇1 of storage qubit (carbon)
carbon_T2 1 second 𝑇2 of storage qubit (carbon)

carbon_init 0.997 Fidelity to initialize storage qubit (carbon)

carbon_z_rot 0.999 Fidelity for 𝑍 -rotation on
storage qubit (carbon)

carbon_xy_rot 𝑓 Fidelity for 𝑋 /𝑌 -rotation on
storage qubit (carbon)

ec_controlled_dir_xy 𝑓 Fidelity for native two-qubit gate

prob_error_meas_0 0.05 Probability of flipped measurement
outcome for |0⟩

prob_error_meas_1 0.005 Probability of flipped measurement
outcome for |1⟩

link_fidelity 0.9 Fidelity of generated entangled pair.

Table 3.2: Noise parameters for used in the simulations of Section 3.8. 𝑓 is the value being swept in Figure 3.10
and Figure 3.13. All fidelities are realized by a applying depolarising noise as in Equation (3.4). All values
are from [14], except link_fidelity which is set to relatively high value to avoid this being the major noise-
contribution and preventing any conclusions to be made.
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0 rot_y PI_OVER_2
1 rot_x PI

A cnot C S vanilla instruction between a communication qubit (C) and a storage qubit
(S) (as specified in the unit module) was mapped to the following NV instruction sequence:

0 crot_x C S PI_OVER_2
1 rot_z C -PI_OVER_2
2 rot_x S -PI_OVER_2

A cnot S C vanilla instruction between a store qubit (S) and a communication qubit (C)
(as specified in the unit module) was mapped to the following NV instruction sequence:

0 rot_y C PI_OVER_2
1 rot_x C PI
2 rot_y S PI_OVER_2
3 crot_x C S PI_OVER_2
4 rot_z C -PI_OVER_2
5 rot_x S -PI_OVER_2
6 rot_y S PI_OVER_2
7 rot_y C PI_OVER_2
8 rot_x C PI

A cphase C S vanilla instruction between a communication qubit (C) and a storage qubit
(S) (as specified in the unit module) was mapped to the following NV instruction sequence:

0 rot_y S PI_OVER_2
1 crot_x C S PI_OVER_2
2 rot_z C -PI_OVER_2
3 rot_x S -PI_OVER_2
4 rot_y S -PI_OVER_2

3.10 Conclusion
NetQASMenables the development of quantum internet applications in a platform-independent
manner. It solves the question of dealing with the complexity of having both classical and
quantum operations in a single program, while at the same time providing a relatively
simple format for QNPU-like layers to handle. Multiple applications, such as remote tele-
portation and blind quantum computation, have already been implemented. A simple
compiler has been implemented that can translate code written in the higher-level SDK
into NetQASM.

3.11 Data availability
The data that support the findings of this study are openly available at the following DOI:
https://doi.org/10.4121/21355329. The software packages created for this work (and

https://doi.org/10.4121/21355329
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used for the simulation) are https://github.com/QuTech-Delft/netqasm (NetQASM) and
https://github.com/QuTech-Delft/squidasm (SquidASM). These packages are also part
of the Quantum Network Explorer (QNE) SDK found at https://quantum-network.com.
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4
QNodeOS: An operating system for
executing applications on quantum

network nodes
The goal of future quantum networks is to enable new internet applications that are impossi-
ble to achieve using solely classical communication[51, 95, 99]. Up to now, demonstrations of
quantum network applications[5, 33, 72] and functionalities[21, 42, 47, 58, 67, 75] on quantum
processors have been performed in ad-hoc software that was specific to the experimental setup,
programmed to perform one single task (the application experiment) directly into low-level
control devices using expertise in experimental physics. Here, we report on the design and
implementation of the first architecture capable of executing quantum network applications
on quantum processors in platform-independent high-level software. We demonstrate the ar-
chitecture’s capability to execute applications in high-level software, by implementing it as a
quantum network operating system — QNodeOS — and executing test programs including a
delegated computation from a client to a server[14] on two quantum network nodes based on
nitrogen-vacancy (NV) centers in diamond[19, 31]. We show how our architecture allows us
to maximize the use of quantum network hardware, by multitasking different applications
on a quantum network for the first time. Our architecture can be used to execute programs on
any quantum processor platform corresponding to our system model, which we illustrate by
demonstrating an additional driver for QNodeOS for a trapped-ion quantum network node
based on a single 40Ca+atom[36]. Our architecture lays the groundwork for computer sci-
ence research in the domain of quantum network programming, and paves the way for the
development of software that can bring quantum network technology to society.

This chapter is based on the article: C. D. Donne, M. Iuliano, B. van der Vecht, G. M. Ferreira, H. Jirovská,
T. van der Steenhoven, A. Dahlberg, M. Skrzypczyk, D. Fioretto, M. Teller, P. Filippov, A. R.-P. Montblanch, J.
Fischer, B. van Ommen, N. Demetriou, D. Leichtle, L. Music, H. Ollivier, I. t. Raa, W. Kozlowski, T. Taminiau, P.
Pawełczak, T. Northup, R. Hanson, and S. Wehner. “An operating system for executing applications on quantum
network nodes”. In: Nature 639 (Mar. 12, 2025), pp. 321–328. DOI: 10.1038/s41586-025-08704-w.
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4.1 Introduction
The first quantum networks linking multiple quantum processors as end nodes have re-
cently been realized as physics experiments in laboratories [43, 56, 69, 77, 82, 87, 88]
and fiber networks [52, 63, 89], opening the tantalizing possibility of realizing advanced
quantum network applications [99] such as data consistency in the cloud [7], privacy-
enhancing proofs of deletion [79], exponential savings in communication [40], or secure
quantum computing in the cloud [14, 20]. Demonstrations relied either on ad-hoc soft-
ware, or chose to establish that hardware parameters were in principle good enough to
support a given quantum network application, although the application itself was not re-
alized [64, 72, 100]. While quantum nodes have been linked at the hardware level [43, 48,
52, 56, 60, 69, 77, 82, 87, 88, 89], including the design [2, 25, 54, 76] and realization [70,
78] of network stacks to manage entanglement generation, a critical innovation required
to make quantum networks useful is lacking: an architecture enabling the execution of
quantum applications.

It is a major challenge to design and implement an architecture that can enable the ex-
ecution of arbitrary quantum network applications on quantum processor end nodes (Fig-
ure 4.1), while enabling programming in high-level software that neither depends on the
underlying quantum hardware, nor requires the programmer to understand the physics
of the underlying devices. In the domain of the conventional internet, the possibility of
programming arbitrary internet applications in high-level software has led to the realiza-
tion of radically new communication applications by diverse communities, which had a
transformative impact on our society [17]. What’s more, the advent of programmable
hardware and new application areas sparked novel fields of computer science research
and guided further hardware development (e.g. network programming and protocols,
distributed systems, internet of things, and more). A similar development is underway
in quantum computing, where the availability of high-level programming tools allows a
broad participation in developing applications [80].

In realizing the first such system architecture we overcome all challenges below, in-
cluding both fundamental challenges that are inherent to quantum network applications
at any scale, as well as technological challenges that arise from the current state of the art
of quantum network hardware.
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Figure 4.1: Application Paradigm. A quantum networking application consists of multiple programs, each
running on one of the end nodes [26]. An end node is a device in a quantum network that executes user ap-
plications. A network stack enables entanglement generation between end nodes over a quantum network
(Figure 4.6). The distinct programs at each end node can only interact via (1) quantum communication (e.g. en-
tanglement generation) and (2) classical communication. This allows a programmer to realize security-sensitive
applications, but prohibits a global orchestration of the quantum execution, like one might do in (distributed)
quantum computing [16] in which a single quantum program is executed on multiple nodes. Our architecture
allows programs to be written in high-level quantum hardware independent software, and executed on a quan-
tum hardware independent system that controls a hardware dependent system (QDevice, Figure 4.2) such as a
nitrogen-vacancy (NV) center node with a diamond chip (photo taken by authors, left images) or a trapped-ion
quantum node [93] (right images). These platforms constitute physically very different QDevice systems, but
can both be programmed by our architecture.

4.2 Design considerations and challenges
Interactive Classical-Quantum Execution. The execution of quantum network appli-
cations requires a continuing interaction between the quantum and classical parts of the
execution, including interactions between different programs (Figure 4.1). For example,
during secure quantum computing in the cloud [14, 65], the program on the server is wait-
ing for classical messages from a remote client program before continuing the quantum
execution at the server. This is in sharp contrast to quantum computing applications,
where a quantum application is a single program that can be executed in one batch, with-
out the need to keep quantum states live while waiting for input from other programs. In
quantum computing, only relatively low-level and predictable interactions between clas-
sical and quantum processing are realized, such as in quantum error correction [61], or
mid-circuit measurements [13]. Higher-level classical-quantum interactions in quantum
computing [11] do not keep qubits live in memory.

We assume that the programs are divided into classical and quantum blocks of instruc-
tions (by a programmer or a compiler). Classical blocks consist of local classical operations
executed on a conventional classical processor, as well as networked classical operations
(i.e. sending messages to remote nodes) executed using network devices. Quantum blocks
consist of local quantum operations (gates, measurements, classical control logic), as well
as networked quantum operations (entanglement generation) executed on quantum hard-
ware. A single quantum block, in essence, corresponds to a program in quantum comput-
ing, and may contain simple classical control logic, such as for the purpose of mid-circuit
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measurements [13].

DifferentHardware Platforms. Interfacing with different hardware platforms presents
technological challenges: currently, a clear line between software and hardware has not
been defined, and the low-level control of present-day quantum processor hardware has
been built to conduct physics experiments. Early microarchitectures [10, 37] and oper-
ating systems [39, 53] for quantum computing do not address the execution of quantum
network applications. We thus have to define a hardware abstraction layer (HAL), capable
of interfacing with quantum network processors, including present-day setups.

Timescales. It is a fundamental challenge that different parts of such a system operate
at vastly different timescales. For nodes separated by hundreds of kilometers, the dura-
tion of network operations is in the millisecond (ms) regime, and some applications [99]
need significant local classical processing (ms). In contrast, the time to execute quantum
operations on processing nodes is in the regime of microseconds (𝜇s), and the low-level
control (including timing synchronization between neighboring nodes to generate entan-
glement [44]) requires nanosecond (ns) precision.

Memory Lifetimes. Present-day quantum network nodes have short coherence times,
posing a technological challenge to ensure operations are executed within the timeframe
allowed by the quantum memory.

Scheduling Local and Network Operations. Entanglement is a key resource for quan-
tum network applications [99]. In contrast to classical networking, entanglement is a
form of stateful connection already at the physical layer where both nodes hold one qubit.
Our architecture should allow for the execution of applications at end nodes, and these
may be separated by a large quantum network that facilitates entanglement generation
between them. This can be achieved by the implementation of a network stack [25, 54].
A technological challenge arises in the integration of such a network stack with the ap-
plication stack of QNodeOS, when employing heralded entanglement generation at the
physical layer [25] (as done in all current demonstrations linking quantum processors [78,
89]). Heralded entanglement generation requires agreement between neighboring net-
work nodes to trigger entanglement generation in precise time-bins [25], organized into
a network schedule [85] that dictates when nodes make entanglement. Such a schedule
could be set by a centralized controller [85], or by a distributed protocol (see e.g. [25]).

It is a technological challenge to manage the interdependencies between the sched-
ule of local operations, and the networked operations, since in all current processing
node implementations [34, 77], entanglement generation cannot be performed simulta-
neously with local operations [57, 77]. While interdependencies may be mitigated in the
future [97], this implies that we cannot schedule (i.e. decide when to execute) the execu-
tion of local quantum operations independently of the network schedule.

Multitasking. When executing (quantum) network applications, one node is typically
idle while waiting for the other node before it can continue execution. For example, a
client program may need to wait for a server to finish processing and send a message. It
is hence a fundamental challenge how we can increase the utility of the system by per-
forming multitasking [29, 68], that is, allowing the concurrent execution of several pro-
grams at once to make use of idle times. Consequently, there is a need for managing state
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Figure 4.2: QNodeOS architecture. (a)QNodeOS consists of a Classical Network Processing Unit (CNPU) and a
Quantum Network Processing Unit (QNPU, classical system). QNodeOS controls a QDevice (quantum hardware
and low-level classical control). (b) Schematic of our implementation of QNodeOS on a two-node setup where
both QDevices control a single qubit in a diamond nitrogen-vacancy (NV) center. The CNPU is implemented
on a general-purpose PC, and the QNPU on an embedded system, connected via Gigabit Ethernet (blue). The
QNPU connects to its QDevice via a serial peripheral interface (SPI, pink). The two QNPUs (brown), and the
two CNPUs (green) connect to each other via Gigabit Ethernet. The setup is based on [78] with two QDevices
(including arbitrary waveform generators (AWG) and microcontroller units (MCU); QDevices communicating
over a classical DIO interface) and a heralding station composed by a balanced 50:50 beam-splitter (whose output
ports are connected to superconducting nanowire single-photon detectors (SNSPD) via optical fibers (red)), a
TimeTagger (TT), and a Complex Programmable Logic Device (CPLD) that heralds the entanglement generation
between QDevices and sends a classical message to the MCU.

and resources for multiple independent programs, including processes, quantum memory
management, and entanglement requests.

In Section 4.8 we provide more in-depth design considerations and challenges.

4.3 Architecture
We divide the architecture logically into three main components (Figure 4.2, Section 4.6):
The Classical Network Processing Unit (CNPU) is the logical element responsible for start-
ing the execution of programs, and the execution of classical code blocks; the Quantum
Network Processing Unit (QNPU, realized on classical hardware) is the logical element re-
sponsible for governing the execution of the quantum code blocks; The CNPU and QNPU
together form QNodeOS and control the QDevice, which is responsible for executing
any quantum operations (gates, measurements, entanglement generation at the physical
layer [25]) on the quantum hardware. Upon starting the execution, the CNPU creates
a process (a well-known concept in classical operating systems [30, 90]) on the CNPU
(a CNPU process), registers the program on the QNPU (via the QNPU’s end node applica-
tion programming interface (API), Section 4.9.2), which, in turn, creates its own associated
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QNPU process (including context such as process owner, ID, process state and priority).
QNodeOS also defines kernel processes on the QNPU, which are similar to user processes,
but are created when the system starts (on boot). The CNPU sends quantum blocks to the
QNPU in the form of NetQASM subroutines [26] (see also Chapter 3). Classical control
logic in quantum blocks is executed by the QNPU processor. Quantum gates and mea-
surements (from any QNPU process) and entanglement instructions (from the network
process) are delegated to the QDevice by submitting physical instructions (Section 4.6),
after which the QDevice responds back to the QNPU with the result of the instruction
(Section 4.9.6).

To enable different hardware platforms, we introduce a QDriver realizing the HAL for
any hardware corresponding to our minimal QDevice system model (Section 4.6). The
QDriver is the only hardware-dependent element of the architecture, and is responsible
for translating quantum operations, expressed in NetQASM [26], into platform dependent
(streams of) physical instructions to the underlying QDevice. We realize a QDriver for
the trapped-ion system of [92, 93], and one for NV centers in diamond based on the sys-
tem of [42, 77, 78]. We validate the trapped-ion QDriver (Figure 4.5) by implementing
and verifying a set of single-qubit gate operations (Section 4.6), and the QDriver on the
NV system as part of the full stack system evaluation (see below). To allow for different
timescales, we logically divide the architecture into CNPU, QNPU and QDevice which can
thus be realized at different timing scale granularities. In our proof-of-concept implemen-
tation, we realize the CNPU and QNPU on different devices, reflecting the ms timescales
of communication between distant nodes (Section 4.6).

Ensuring the necessary interactivity requires architectural as well as implementation
choices: as programs may depend on messages from remote nodes, the architecture needs
to be able to dynamically handle both classical and quantum blocks, even if not known
at runtime. Consequently, it is not possible to preload all quantum blocks of the program
into the low-level controller of the QDevice ahead of time as done in previous physics
experiments. Instead, in our system model the QDevice is capable of executing individual
physical instructions similar to a classical CPU. Consequently, the QNPU is continuously
ready to receive new NetQASM subroutines from the CNPU, and the QDevice can contin-
uously receive and respond to physical instructions from the QNPU (Section 4.6).

In our NV QDevice implementation, we address the challenge of interactivity by inter-
leaving specific user-requested pulse sequences (realizing physical instructions sent from
QNodeOS) and dynamical decoupling (DD) sequences (protecting quantum memory from
decoherence) in an arbitrary waveform generator (AWG) [46]. The DD sequences extend
qubit coherence times up to 𝑇coh = 13(2) ms, while arbitrary physical instructions can
be handled by triggering the corresponding pulse sequence, without knowing them in
advance (Section 4.6).

To integrate local operations with the network schedule, our architecture first intro-
duces a QNPU scheduler that can choose which of the ready processes is assigned to the
local processor (Figure 4.2, Section 4.6) and QDevice. This allows interleaving the execu-
tion of different processes directly on the QNPUwithout incurring delays on the timescale
of the CNPU (ms), addressing the challenge of short coherence times. In our implemen-
tation, we choose to schedule QNPU processes using a priority based non-preemptive
scheduler [62], due to limited quantum memory lifetimes, which make it undesirable to
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pre-empt and temporarily store quantum states while halting the execution. Second, we
realize a network process as a kernel process, which manages entanglement generation us-
ing the network stack [25, 54] (implemented in [78] without the ability to execute network
applications). While our architecture can work with any way of setting a network sched-
ule, in our implementation we choose to determine the schedule using a time-division
multiple access (TDMA) controller [85], allowing the schedule to be centrally optimized
tomitigate present-daymemory decoherence. The network process handles entanglement
requests submitted by user processes, coordinates entanglement generation with the rest
of the network via the TDMA controller, interacts with the QDevice and eventually re-
turns entangled qubits to user processes. User processes enter the waiting state when they
need entanglement, and become ready again once entanglement was delivered. The net-
work process has the highest scheduling priority, and is consequently given precedence
over the execution of any local quantum operations. We remark local operations may
still be executed during time-bins already occupied by the network schedule, if a running
non-preemptable user process prevents the network process from running, as we indeed
observe in our evaluation.

To increase utility, QNodeOS allows multiple programs to be run concurrently, using
the QNPU scheduler from above to enable multitasking [29, 68] user processes on the
QNPU itself. The QNPU hence needs to keep context for each process, including a virtual
quantum memory space (as in classical operating systems [27]). Similar to classical mem-
ory management systems [74], a quantum memory management unit (QMMU) on the
QNPU manages qubit allocations from processes, and translates virtual qubit addresses
in NetQASM subroutines to physical addresses in the QDevice. This allows flexibility in
translating a virtual qubit address to: (1) a different physical qubit address over time, al-
lowing qubits to be rearranged transparently in the physical memory in the future, or (2)
a logical qubit address, when QNodeOS is executed on top of a processor employing quan-
tum error correction [61] (Section 4.6). Entanglement generation between different pairs
of processes at remote nodes are distinguished by Entanglement Request (ER) sockets,
inspired by classical sockets [18, 59], which are established once a user process requests
entanglement from the network process. In our implementation, processes of the same
priority are scheduled first-come-first-served [74], where the total schedule of the pro-
gram in our implementation is dependent both on the schedule on the CNPU as well as
the QNPU (Section 4.6).

In Section 4.9 we providemore details about the QNodeOS design and implementation.
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Figure 4.3: Delegated computation between two NV center nodes using QNodeOS. (a) Delegated Quan-
tum Computation (DQC) circuit (effective computation: single-qubit rotation 𝑅𝑍 (𝛼), Section 4.6). The DQC
application consists of 𝑘 repetitions of this circuit (varying measurement bases for tomography on |𝜓 ⟩) realized
by two programs: the DQC-client program (client node, repeating the sequence “quantum block (C1, orange) –
classical block (computing 𝛿)” 𝑘 times), and the DQC-server program (server node, repeating “quantum block
(S1, blue) - classical block (receiving 𝛿) –quantum block (S2, purple)” 𝑘 times). Client and server produce an
entangled pair |Φ+⟩ = (|00⟩+ |11⟩)/ √2 (S1 and first part of C1). The client performs local gates and a measurement
(“destroying” qubit), resulting in outcome bit 𝑚𝑐 (rest of C1). Client computes 𝛿 as function of 𝑚𝑐 and DQC
parameters 𝛼 ∈ [0,2𝜋) and 𝜃 ∈ [0,2𝜋), and sends 𝛿 to server (classical message). Meanwhile the server keeps
its qubit coherent (alive). Upon receiving 𝛿 , the server applies gates depending on 𝛿 , resulting in single-qubit
state |𝜓 ⟩ (S2) depending only on 𝛼 and 𝜃 . (b) Experimental results of executing DQC for 6 different sets of (𝛼,𝜃)
parameters (𝑘 = 1200, i.e. 7200 executions of the circuit of Figure 4.3a). The fidelity of the resulting server state
to the target state |𝜓 ⟩ is estimated using single-qubit tomography (1200 measurement results per data point),
and corrected for known tomography errors (SSRO, blue), and post-selected for Charge-Resonance (CR) check
validation (purple), and post-selected for latencies (orange) (Section 4.6). (c) Sequence diagram including the
interaction CNPU-QNPU-QDevice for one execution of the DQC circuit of Figure 4.3a on QNodeOS (repeated
𝑘 = 1200 times in each experiment) (time flows to the right; not to scale). CNPUs prepare NetQASM subroutines
(C1, S1, S2), and send them to their respective QNPUs. CNPUs also do classical computation (computing 𝛿)
and communication (message containing 𝛿). QNPUs execute subroutines, sending physical instructions to their
QDevices. Entanglement is generated by QDevices doing a batch of attempts, resulting in the heralding of a two-
qubit entangled state (Bell pair) rotated to |Φ+⟩ by the server. (d) Processing times and latencies while server
qubit is live (time frame red line 3c, averaged over all 7200 circuit executions except executions with latency
spikes, see Section 4.6), including CNPU-QNPU communication latencies, CNPU processing on both nodes and
client-server communication latency (CC) (average total of ∼ 4.8(±0.8) ms, error bars for the sum of individual
segments (variance per segment in Section 4.11.6).



4.4 Demonstrations

4

71

4.4 Demonstrations
Delegated Computation. We first validate our architecture and implementation by the
first successful execution of an arbitrary— i.e. not preloaded— execution of a quantumnet-
work application in high-level software on quantum processors. We implement QNodeOS
on a two-node setup of NV centers using one qubit per node (Figure 4.2, Section 4.6).
We choose to execute an elementary form of delegated quantum computation (DQC) [14]
from a client to a server, because the client and server programs jointly realize repetitions
of a circuit (Figure 4.3a) that triggers all parts of our system (Figure 4.3c). We first verify
that the quantum result (fidelity) was found to be above the classical bound [66] > 2/3,
which verifies that QNodeOS can successfully handle interactive applications consisting
of entanglement generation, millisecond-scale memory lifetimes, and classical message
passing. The non-perfect fidelity (Figure 4.3b) comes mainly from two sources: a noisy en-
tangled state with fidelity 0.72(2) (quantum hardware limitation), and decoherence in the
server qubit (depending on 𝑇coh) due to waiting for several milliseconds (classical software
latencies, Figure 4.3d). We proceed to characterize latencies. As expected, we find that the
duration that the server qubit must remain alive is dominated (> 50%) by processing in the
CNPU, which could be improved by caching the preparation of S2, and implementing the
CNPU and QNPU on one board (Outlook). We observe that CNPU processing time varies
significantly (standard deviation 30%, Section 4.11.6), due to limited scheduling control
over CNPU processes (Section 4.6). Using an a priori estimate of what delays lead to too
low a quality of execution (i.e. delays that are too long for the server qubit to be storedwith
sufficiently high quality), we discard application iterations in which the CNPU latencies
spiked by more than 8.95 ms. This lead to discarding of 2% of iterations in post-processing
(Section 4.6).
Demonstration of Multitasking. We also validate QNodeOS’s multitasking capability
by the first concurrent execution of two quantum applications on a quantum network: the
DQC application, and a single-node local gate tomography (LGT) application on the client
(Figure 4.4a). The two programs for the client are started in the CNPU at the same time
(two CNPU processes, subject to CNPU scheduler), which means that the QNPU continu-
ously receives subroutines for both programs from the CNPU (two QNPU processes and
corresponding subroutines, subject to QNPU scheduler). This leads to a multitasking chal-
lenge directly on the QNPU to schedule the different subroutines received (Figure 4.4b).
Since the client has only one qubit, the multitasking of DQC and LGT never results in
both programs having a quantum state alive on the client; therefore, multitasking should
not affect the fidelity of LGT. We observe interleaved execution of DQC quantum blocks
and LGT quantum blocks on the client node (Figure 4.4b). The LGT application produces
a quantum result (fidelity, Figure 4.4c) equal to that in the scenario where we run LGT on
its own (not interleaved by DQC circuit executions), as expected.

We further test multitasking by scaling up the number of programs executed concur-
rently on the client node, up to 5 DQC and 5 LGT programs running at the same time on
the client. The interleaved execution of subroutines of different programs increases device
utilization (fraction of time spent on executing physical instructions) on the client QDevice
compared to the same scenario but with multitasking disabled (Figure 4.4d). As expected,
we observe that LGT subroutines were scheduled to be executed in between DQC subrou-
tines, resulting in lower client QDevice idle time. When multitasking 1 DQC and 1 LGT
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program, we observe 1 or 2 subroutines in between DQC iterations in most cases (LGT
subroutine duration 2.4 ms, Section 4.12.3). We observe cases where both server and
client QDevice remain idle, which could be improved in part by smarter CNPU-QNPU
scheduling algorithms: (1) both the client and server wait until the start of the next net-
work schedule time-bin (time-bin length 10 ms) (2) the client QNPU finishes a subroutine
for user process P, but must wait until the CNPU sends the next subroutine for P (up to
150 ms for 1 DQC and 1 LGT program, but less (up to only 8 ms) when more applications
are running, since there are more CNPU processes independently submitting subroutines),
(3) the client is ready to perform entanglement generation for DQC, but the next time-bin
starts only at some future time 𝑡 , preventing activation of the network process. The sched-
uler activates a user process which runs a LGT circuit, which completes at some time > 𝑡 ,
delaying the start of the DQC network process, even though the server node was ready at
𝑡 .
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Figure 4.4: Multitasking experiment on two NV centers with QNodeOS. (a) Local Gate Tomography (LGT)
Circuit. A single NetQASM subroutine (L1) executes the following 6 times for different bases 𝐵 ∈ {±𝑋 ,±𝑌 ,±𝑍}:
initialize qubit to |0⟩, rotate around fixed axis 𝐷 ∈ {𝑋 ,𝑌 } by angle |𝜙⟩, measure in 𝐵. The LGT application consists
of a single LGT program, which submits subroutine L1 for execution to the QNPU (fixed 𝐷 and 𝜙) 𝑘 times in suc-
cession. (b) Example sequence diagram illustrating concurrent execution (multitasking) of the DQC application
(Figure 4.3) and the LGT program on the client: time slice in which two DQC circuit repetitions (Figure 4.3a) are
realized (2 subroutines on the client (orange), 4 on the server (blue and purple)), and three LGT circuit repetitions
(3 subroutines, green). The client QNPU receives subroutines for both the DQC program and the LGT program,
which the QNPU scheduler can interleave: While the server executes S2 (purple), the client cannot yet execute
the next S1 (orange) since it involves joint entanglement generation. In this idle time, the client can execute
a number of LGT subroutines (number can vary). (c) Results of multitasking LGT (client) and DQC (on both
server and client). For each input pair (𝐷,𝜙) ∈ {(𝑋 ,0), (𝑋 ,𝜋), (𝑌 ,𝑝𝑖/2), (𝑌 ,−𝜋/2), (𝑋 ,−𝜋/2), (𝑋 ,𝜋/2)} (6 cardinal
states {±𝑋 ,±𝑌 ,±𝑍}), the following experiment was performed: simultaneously (1) a single LGT program was
initiated on the client (𝑘 = 1000), (2) a single DQC-client program was initiated on the client (𝑘 = 200 successive
subroutines), and (3) a single DQC-server program was initiated at the server (𝑘 = 200, i.e. 400 successive subrou-
tines). This resulted in a total of 6000 LGT subroutine executions and 36000 LGT measurement results, yielding
plotted fidelity estimates for the LGT quantum state before measurement. Results are the same as running LGT
on its own (no multitasking with DQC), as expected (Section 4.12.2). (d) Scaling number of programs on the
client. For 𝑁 ∈ {1,2,3,4,5}, we initiate at the same time: (1) 𝑁 LGT programs (each using 𝑘 = 100) on the client,
(2) N DQC-client programs on the client (each using 𝑘 = 60), and (3) 𝑁 DQC-server programs on the server (each
using 𝑘 = 60). This results in 2𝑁 programs active at the same time on the client, each continuously submitting
subroutines from the CNPU to the QNPU, where the QNPU scheduler chooses which process to execute when.
Each experiment was repeated but with multitasking disabled on the client. Plot shows the utilization factor
of the QDevice (fraction of time spent executing instructions), corrected for variable entanglement generation
duration (Section 4.6), with (blue) and without (orange) multitasking, showing that multitasking can increase
device utilization.
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4.5 Outlook
We designed and implemented the first architecture allowing high-level programming and
execution of quantum network applications. Our architecture does not depend on the
distance or connectivity between the end nodes, as long as the network stack enables the
use of a quantum network to generate entanglement between them. To deploy our system
onto nodes separated by several kms, one possible improvement to the implementation of
our architecture would be to realize the CNPU and the QNPU on two devices on a single
system board, ideally with mutual access to a shared memory to avoid ms delays in their
communication. Such a merge would also allow the definition of a joint classical-quantum
executable and processes, opening further doors to reduce latencies by a better scheduling
control. Our architecture could also be used to distribute a quantum computing program
over multiple quantum processors by submitting jobs as NetQASM subroutines to the
QNPU of each node.

Our work provides a framework for a new domain of computer science research into
programming quantum network applications on quantum processors including: novel
real-time [81] scheduling algorithms for classical-quantum processes, compile methods
for quantum network applications [26], or novel programming language concepts includ-
ing entanglement to make software development even easier, thus advancing the vision
to make quantum network technology broadly available.
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Figure 4.5: Trapped-ionQDevice implementation. Schematic of our implementation of QNodeOS on a single-
node setup in which the QDevice contains a single trapped-ion qubit. The QNPU QDriver is implemented on a
field-programmable gate array (FPGA) that connects to its QDevice via a serial peripheral interface (SPI) (Sec-
tion 4.6). The setup consists of an emulator that translates between SPI messages and TTL signals, experimental
control hardware that includes an FPGA and direct digital synthesis (DDS) modules, a trapped-ion qubit [93]
under ultra-high vacuum (Figure 4.1), and a photomultiplier tube (PMT) that registers atomic fluorescence.

4.6 Methods
QDevice Model. The QDevice includes a physical quantum device, which can initialize
and store quantum bits (qubits) which are individually identified by a physical address,
apply quantum gates, measure qubits, and create entanglement with QDevices on other
nodes (either entangle-and-measure, or entangle-and-keep [25]), either another end node,
or an intermediary node in the network. We remark that the ability for two end node
QDevices that are not immediate neighbors in the quantum network (but that are sepa-
rated by other network nodes) to generate entanglement between them relies on the ar-
chitecture implementing a network layer protocol as part of a network stack [25]. Qubits
thereby refers to any possible realization of qubits, including logical qubits realized by
error-correction. TheQDevice exposes the following interface to QNodeOS (Section 4.9.6):
number of qubits available, and the supported physical instructions that QNodeOS may
send. Physical instructions include qubit initialization, single- and two-qubit gates, mea-
surement, entanglement creation, and a ‘no-op’ for do nothing. Each instruction has a
corresponding response (including entanglement success or failure, or a measurement
outcome) that the QDevice sends back to QNodeOS.

QNodeOS and the QDevice interact by passing messages back and forth on clock ticks
at a fixed rate (100 kHz in our NV implementation, 50 kHz in the trapped-ion implemen-
tation). During each tick, at the same time (1) QNodeOS sends physical instruction to
QDevice, (2) QDevice can send a response (for a previous instruction). Upon receiving
an instruction, the QDevice performs the appropriate (sequence of) operations (e.g. a par-
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ticular pulse sequence in the AWG). An instruction may take multiple ticks to complete,
where the QDevice returns the response (success, fail, outcome) during the first clock tick
following completion. The QDevice handles an entanglement instruction by performing
(a batch of) entanglement generation attempts [78] (synchronized by the QDevice with
the neighboring node’s QDevice).
QNodeOSArchitecture. QNodeOS consists of two layers: CNPU andQNPU (Figure 4.2a,
Section 4.3, Section 4.9). Processes on the QNPU are managed by the Process Manager,
and executed by the local processor. Executing a user process means executing NetQASM
(see [26] and Chapter 3) subroutines (quantum blocks) for that process, which involves
running classical instructions (including flow control logic) on the QNPU’s local proces-
sor, sending entanglement requests to the network stack, and handling local quantum
operations by sending physical instructions to the QDriver (Figure 4.2a). Executing the
network process means asking the network stack which request (if any) to handle and
sending the appropriate (entanglement generation) instructions to the QDevice.

A QNPU process can be in the following states (see Figure 4.8 for state diagram): idle,
ready, running and waiting. A QNPU process is running when the QNPU processor is
assigned to it. The network process becomes ready when a network schedule time-bin
starts; it becomes waiting when it finished executing and waits for the next time-bin; it
is never idle. A user process is ready when there is at least one NetQASM subroutine
pending to be executed; it is idle otherwise; it goes into the waiting state when it requests
entanglement from the network stack (using NetQASM entanglement instructions [26])
and is made ready again when the requested entangled qubit(s) are delivered.

The QNPU scheduler oversees all processes (user and network) on the QNPU, and
chooses which ready process is assigned to the QNPU processor. CNPU processes can run
concurrently, and their execution (order) is handled by the CNPU scheduler. The QNPU
scheduler operates independently and only acts on QNPU processes. CNPU processes can
only communicate with their corresponding QNPU processes. Since multiple programs
can run concurrently on QNodeOS, the QNPUmay have multiple user processes that have
subroutines waiting to be executed at the same time. This hence requires scheduling on
the QNPU.

Processes allocate qubits through the Quantum Memory Management Unit (QMMU),
which manages virtual qubit address spaces for each process, and translates virtual ad-
dresses to physical addresses in the QDevice. The QMMU can also transfer ownership of
qubits between processes, for example from the network process (having just created an
entangled qubit), to a user process that requested this entanglement. The Network Stack
uses Entanglement Request (ER) sockets (opened by user programs through QNPU API
once execution starts) to represent quantum connections with programs on other nodes.
The Entanglement Management Unit (EMU) maintains all ER sockets and makes sure that
entangled qubits are moved to the correct process.
NV QDevice Implementation. The two-node network employed in this work includes
the nodes“Bob”(server) and“Charlie”(client) (separated by 3 meters) described in [42,
77, 78]. For the QDevice, we replicated the setup used by [78], which mainly consists
of: an Adwin-Pro II [101] acting as the main orchestrator of the setup; a series of sub-
ordinate devices responsible for qubit control, including laser pulse generators, optical
readout circuits and an arbitrary waveform generator (Zurich Instruments HDAWG [46]).
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The quantum physical device, based on NV centers, counts one qubit for each node. The
twoQDevices share a common 1MHz clock for high-level communication and their AWGs
are synchronized at sub-nanosecond level for entanglement attempts.

We address the challenge of limited memory lifetimes by employing dynamical decou-
pling (DD). While waiting for further physical instructions to be issued, DD sequences
are used to preserve the coherence of the electron spin qubit [28]. DD sequences for
NV-centers can prolong the coherence time (𝑇coh) up to hundreds of ms [42] or even sec-
onds [1]. In our specific case, we measured 𝑇coh=13(2) ms for the server node, correspond-
ing to 1300 DD pulses. The discrepancy to the state-of-the-art for similar setups is due
to several factors. To achieve such long 𝑇coh, a thorough investigation of the nuclear spin
environment is necessary to avoid unwanted interactions during long DD sequences, re-
sulting in an even more accurate choice of interpulse delay. Other noise sources include
unwanted laser fields, the quality of microwave pulses and electrical noise along the mi-
crowave line.

A specific challenge arises at the intersection of extendingmemory lifetimes using DD,
and the need for interactivity: to realize individual physical instructions, manywaveforms
are uploaded to the Arbitrary Waveform Generator (AWG), where the QDevice decodes
instructions sent by QNodeOS into specific preloaded pulse sequences. This results in a
waveform table, containing 170 entries. The efficiency of the waveforms is limited by the
AWG’swaveform granularity that corresponds to steps that aremultiples of 6.66 ns, having
a direct impact on the 𝑇coh. We are able to partially overcome this limitation through the
methods described in [23]. Namely, each preloadedwaveform, corresponding to one single
instruction, has to be uploaded 16 times in order to be executed with sample precision. To
not fill up the waveform memory of the device, we apply the methods in [23] only to the
DD pulses that are played while the QDevice waits for an instruction from the QNPU,
whereas the instructed waveforms (gate/operation + first block of XY8 DD sequence) are
padded according to the granularity, if necessary. The physical instructions supported by
our NV QDevice is given in Section 4.10.1.

NVQNPU Implementation. TheQNPUs for both nodes are implemented in C++ on top
of FreeRTOS [103], a real-time operating system for microcontrollers. The stack runs on a
dedicated MicroZed [104]—an off-the-shelf platform based on the Zynq-7000 SoC, which
hosts two ARM Cortex-A9 processing cores, of which only one is used, clocked at 667
MHz. The QNPU was implemented on top of FreeRTOS to avoid re-implementing stan-
dard OS primitives like threads and network communication. FreeRTOS provides basic OS
abstractions like tasks, inter-task message passing, and the TCP/IP stack. The FreeRTOS
kernel—like any other standard OS—cannot however directly manage the quantum re-
sources (qubits, entanglement requests and entangled pairs), and hence its task scheduler
cannot take decisions based on such resources. The QNPU scheduler adds these capabili-
ties (Section 4.9.5).

TheQNPU connects to peer QNPU devices via TCP/IP over a Gigabit Ethernet interface
(IEEE 802.3 over full-duplex Cat 5e). The communication goes via two network switches
(Netgear JGS524PE, one per node). The two QNPUs are time-synchronized through their
respective QDevices (granularity 10 𝜇s), since these already are synchronized at the 𝜇s-
level (common 1Mhz clock).



4

78 4 QNodeOS: An operating system for executing applications on quantum network nodes

TheQNPU device interfaces with the QDevice’s ADwin-Pro II through a 12.5 MHz SPI
interface, used to exchange 4-byte control messages at a rate of 100 kHz.
NV CNPU Implementation. The CNPUs for both nodes are a Python runtime execut-
ing on a general-purpose desktop machine (4 Intel 3.20 GHz cores, 32 GB RAM, Ubuntu
18.04). The choice of using a high-level system was made as the communication between
distant nodes would ultimately be in the ms-timescales, and this allows for ease of pro-
gramming the application. The CNPU machine connects to the QNPU device via TCP
over a Gigabit Ethernet interface (IEEE 802.3 over full-duplex Cat 8, average ping RTT of
0.1 ms), via the same single network switch as mentioned above (one per node), and sends
application registration requests and NetQASM subroutines over this interface (10 to 1000
bytes, depending on the length of the subroutine). CNPUs communicate with each other
through the same two network switches.
Scheduler Implementation. We use a single Linux process (Python) for executing pro-
grams on the CNPU. CNPU ‘processes’ are realized as threads created within this single
Python process. Python was chosen since the NetQASM SDK is implemented in Python.
When running multiple programs concurrently, a pool of such threads is used. Scheduling
of the Python process and its threads is handled by the Linux OS. Each thread establishes
a TCP connection with the QNPU in order to use the QNPU API (including sending sub-
routines and receiving their results) and executes the classical blocks for its corresponding
program. Both the CNPU andQNPUmaintain processes for running programs. TheCNPU
scheduler (standard Linux scheduler, see above) schedules CNPU processes, which indi-
rectly controls in which order subroutines from different programs arrive at the QNPU.
The QNPU scheduler handles subroutines of the same process priority on a first-come-
first-served (FCFS) basis, leading however to executions of QNPU processes not in the
order submitted by the CNPU (Section 4.12.3).

Using only the CNPU scheduler is not sufficient since (1) we want to avoid millisecond
delays needed to communicate scheduling instructions across CNPU and QNPU, (2) user
processes need to be scheduled in conjunction with the network process (meeting the
challenge of scheduling both local and network operations), which is only running on
the QNPU, and (3) QNPU user processes need to be scheduled with respect to each other,
(e.g. a user process is waiting after having requested entanglement, allowing another user
process to be run; as observed in the multitasking demonstration).
Sockets and the Network Schedule. In an ER Socket, one node is a ‘creator’ and the
other a ‘receiver’. As long as an ER socket is open between the nodes, an entanglement
request from only the creator suffices for the network stack to handle it in the next cor-
responding time-bin, i.e. the ‘receiver’ can comply with entanglement generation even if
no request has (yet) been made to its network stack.
Trapped-ion Implementation. The experimental system used for the trapped-ion im-
plementation is discussed in [92, 93] and is described in detail in [91]. The implementation
itself is described in [36]. We confine a single 40Ca+ion in a linear Paul trap; the trap is
based on a 300 µm thick diamondwafer onwhich gold electrodes have been sputtered. The
ion trap is integrated with an optical microcavity composed of two fiber-based mirrors,
but the microcavity is not used here. The physical-layer control infrastructure consists
of C++ software; Python scripts; a pulse sequencer that translates Python commands to a
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hardware description language for a field-programmable gate array (FPGA); and hardware
that includes the FPGA, input triggers, direct digital synthesis (DDS) modules, and output
logic.

QNodeOS provides physical instructions through a development FPGA board (Texas
Instruments, LAUNCHXL2-RM57L75) that uses a serial peripheral interface (SPI). We pro-
grammed an additional board (Cypress, CY8CKIT-14376) that translates SPI messages into
TTL signals compatible with the input triggers of our experimental hardware. The imple-
mentation consisted of sequences composed of seven physical instructions: initialization,
𝑅𝑥 (𝜋), 𝑅𝑦(𝜋), 𝑅𝑥 (𝜋/2), 𝑅𝑦(𝜋/2), 𝑅𝑦(−𝜋/2), and measurement. First, we confirmed that
message exchange occurred at the rate of 50 kHz as designed. Next, we confirmed that
we could trigger the physical-layer hardware. Finally, we implemented seven different
sequences. Each sequence was repeated 104 times, which allowed us to acquire sufficient
statistics to confirm that our QDriver results are consistent with operation in the absence
of the higher layers of QNodeOS.

Metrics. Both classical and quantum metrics are relevant in the performance evaluation:
The quantum performance of our test programs is measured by the fidelity 𝐹(𝜌, |𝜏 ⟩) of an
experimentally obtained quantum state 𝜌 to a target state |𝜏 ⟩ where 𝐹(𝜌, |𝜏 ⟩) = ⟨𝜏 |𝜌 |𝜏 ⟩,
estimated by quantum tomography [73]. Classical performance metrics include device
utilization 𝑇util = 1−𝑇idle/𝑇total where 𝑇idle is the total time that the QDevice is not execut-
ing any physical instruction, and 𝑇𝑡𝑜𝑡𝑎𝑙 is the duration of the whole experiment excluding
time spent on entanglement attempts (see below).

Experiment Procedure NV Demonstration. Applications are written in Python using
the NetQASM SDK [26] (code in Appendix B), with a compiler targeting the NV flavor [26],
as it includes quantum instructions that can be easily mapped to the physical instructions
supported by the NV QDevice. The client and server nodes independently start execution
of their programs by invoking a Python script on their own CNPU, which then spawns
the threads for each program. During application execution, the CNPUs have background
processes running, including QDevice monitoring software.

A fixed network schedule is installed in the two QNPUs, with consecutive time-bins
(all assigned to the client-server node pair) with a length of 10 ms (chosen to be equal to
1000 communication cycles between QNodeOS and QDevice as in Ref. [78]) to assess the
performance without introducing a dependence on a changing network schedule. Dur-
ing execution, the CNPUs and QNPUs record events including their timestamps. After
execution, corrections are applied to the results (see below) and event traces are used to
compute latencies.

DelegatedQuantumComputation. Our demonstration of DQC (Figure 4.3) implements
the effective single-qubit computation |𝜓 ⟩ = 𝐻 ∘𝑅𝑧(𝛼) ∘ |+⟩ on the server, as a simple form
of blind quantum computing (BQC) that hides the rotation angle 𝛼 from the server, when
executed with randomly chosen 𝜃 , and not performing tomography. The remote entangle-
ment protocol utilized is the single-photon protocol [12, 15, 41] (Section 4.10.1).

Filtering. Results, with no post-selection, are presented including known errors that oc-
cur during the tomography single-shot readout (SSRO) process (Figure 4.3b, blue) (details
on the correction Supplementary of [77]). We also report the post-selected results inwhich
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data are filtered based on the outcome of the Charge-Resonance check [83] after one ap-
plication iteration (Figure 4.3b, purple). This filter enables the elimination of false events,
specifically when the emitter of one of the two nodes is not in the right charge state (ion-
ization) or the optical resonances are not correctly addressed by the laser fields after the
execution of one iteration of DQC.

Additional filtering (Figure 4.3b latency filter) is done on those iterations that showed
latency not compatible with the combination of 𝑇coh of the server and the average entan-
gled state fidelity. For this filter, a simulation (using a depolarizing model, based on the
measured value 𝑇coh, Section 4.11.4) was used to estimate the single qubit fidelity (given
the entanglement fidelity measured above) as a function of the duration the server qubit
stays live in memory in a single execution of the DQC circuit (Figure 4.3a). This gives a
conservative upper bound of the duration as 8.95 ms, to obtain a fidelity of at least 0.667.
All measurement results corresponding to circuit executions exceeding 8.95 ms duration
were discarded (146 out of 7200 data points).

Othermain sources of infidelity, that are not considered in this analysis of the outcome,
include, for instance, the non-zero probability of double excitation for the NV center [41].
During entanglement generation, the NV center can be re-excited, leading to the emission
of two photons that lower the heralded entanglement fidelity. The error can be corrected
by discarding those events that registered, in the entanglement time-window, a photon at
the heralding station (resonant Zero-Phonon Line photon) and another one locally at the
node (off-resonant Phonon-Side Band photon).

Finally, the dataset presented in Figure 4.3b (not shown chronologically) was taken in
“one shot”to prove the robustness of the physical layer, therefore no calibration of relevant
experimental parameters was performed in between, leading to possible degradation of the
overall performance of the NV-based setup.

The single qubit fidelity is calculated with the same methods as in [47], measuring
in the state |𝑖⟩ and in its orthogonal state |−𝑖⟩, provided that we expect the outcome
|𝑖⟩, whereas the two-qubit state fidelity is computed taking into account only the same
positive-basis correlators (XX, YY, ZZ).

Multitasking: Delegated Computation and Local Gate Tomography. In the first
multitasking evaluation, we concurrently execute two programs on the client: a DQC-
client program (interacting with a DQC-server program on the server) and a Local Gate
Tomography (LGT) program (on the client only) (Figure 4.4). The client CNPU runtime exe-
cutes the threads executing the two different programs concurrently. The client QNPU has
two active user processes, each continuously receiving new subroutines from the CNPU,
which are scheduled with respect to each other and the network process.

Estimates of the fidelity (Figure 4.4b) include same corrections as in the Supplemen-
tary of [77] To assess the quantum performance of the LGT application, we used a mocked
entanglement generation process on the QDevices (executing entanglement actions with-
out entanglement) to simplify the test: weak-coherent pulses on resonance with the NV
transitions, that follow the regular optical path, are employed to trigger the CPLD in the
entanglement heralding time-window. This results in comparable application behavior
for DQC (comparable rates and latencies, Section 4.12.1) with respect to multitasking on
QNodeOS.
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Multitasking: QDeviceUtilizationwhen scaling number of programs. We scale the
number of programs being multitasked (Figure 4.4d): We observe how the client QNPU
scheduler chooses the execution order of the subroutines submitted by the CNPU. DQC
subroutines each have an entanglement instruction, causing the corresponding user pro-
cess to go into the waiting state when executed (waiting for entanglement from the net-
work process). The QNPU scheduler schedules another process [(56%, 81%, 99%) for (N=1,
N=2, N>2)] of the times that a DQC process is put into the waiting state (demonstrating
that the QNPU schedules independently from the order in which the CNPU submits sub-
routines). The number of consecutive LGT subroutines (of any LGT process; LGT block
execution time 2.4 ms) that is executed in between DQC subroutines is 0.83 for N=1, in-
creasing for each higher N until 1.65 for N = 5, showing that indeed idle times during DQC
are partially filled by LGT blocks (Section 4.12.3).

Device utilization (see Metrics above) quantifies only the utilization factor in between
entanglement generation time windows to fairly compare the multitasking and the non-
multitasking scenario. In both scenarios, the same entanglement generation processes
are performed, which hence have the same probabilistic durations in both cases. To avoid
inaccurate results due to this probabilistic nature, we exclude the entanglement generation
time windows in both cases.

4.7 Data availability
The datasets that support this manuscript and the software to analyze them are available
at https://doi.org/10.4121/6aa42f05-6823-4848-b235-3ea19e39f4ae. The application
software development kit used for writing program code is open-sourced on GitHub [105].
The QNodeOS source code is not currently open source.

4.8 Detailed design considerations and challenges
We provide additional information for some of the design considerations and challenges
for an operating system for executing applications on a quantum network node.

4.8.1 Quantum networks
Node Types. Within a quantum network, one can distinguish between two main types
of nodes: First, there are end nodes [99], with which users execute quantum network appli-
cations. Classically, such end nodes are laptops, phones or other devices. In the quantum
domain, end nodes may be simple photonic devices that can only create or measure quan-
tum states, or they may be quantum processors capable of arbitrary qubit operations and
storage of information within a quantum memory. The type of end node dictates what
applications are possible [99], and we have chosen to focus on the most general form of
an end node, namely, a quantum processor. More precisely, our goal is to enable program-
ming and execution of arbitrary quantum network applications on end nodes that are
quantum processors. For the remainder of this text, we will thus always take end nodes
to be quantum-processor end nodes.

Second, a quantum network can include intermediate nodes that perform routines nec-
essary to connect two or more end nodes (Figure 4.6). We refer the reader with a back-
ground in computer science to [95] for a gentle introduction to quantum networks. In-

https://doi.org/10.4121/6aa42f05-6823-4848-b235-3ea19e39f4ae
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termediate nodes, such as quantum-repeater nodes, are used to establish long-distance
entanglement between remote end nodes. These intermediate nodes may employ pro-
tocols such as entanglement swapping and entanglement distillation in order to realize
end-to-end links with sufficiently high fidelity for network applications. These protocols
are handled by a network stack (see, e.g. [25]) that exists at each node. The network stack
includes a link layer, a network layer, a control plane, and other networking functions; it
is responsible for entanglement generation.

Intermediate nodes do not execute user applications, which is done only by end nodes.
Therefore, only end nodes need to have an additional stack implementing the application
layer in a network, which is referred to as an application stack (see Figure 4.6). The appli-
cation stack is responsible for the execution of arbitrary user applications, and integrates
with the network stack for entanglement generation over the network. We remark that
it is the purpose of a network layer [25, 54] to provide a service to the application layer
that allows entanglement generation with remote end nodes. Importantly, this service
should not require the application layer to have any knowledge about the connectivity
of the network. While QNodeOS can in principle also be run on intermediate nodes as it
already implements a network stack, we remark that it is designed primarily to enable the
execution of applications on end nodes, which is the focus of this work.

End Node Quantum Memory. A quantum processor end nodes possesses quantum
memory in the form of qubits, and allows gates and measurements to be executed on
such qubits (see Section 4.6, ‘QDevice Model’), which can be used to realize user appli-
cations. These qubits may be physical qubits, but may also be logical qubits (multiple
physical qubits together representing one more robust usable qubit) in case the end node
does error correction [61]. For our architecture it does matter how qubits are realized
in the QDevice (which may internally employ quantum error correction), as long as the
QDevice follows our system model.

Entanglement. Entanglement is a phenomenon in quantum physics where two or more
particles are correlated in a way that is not possible classically. In a quantum network,
such entangled particles may be established across separate nodes, realizing a quantum
connection between those nodes. Entanglement can be used by quantum network appli-
cations as a resource in order to realize applications [99] that are impossible with clas-
sical networks, including applications such as data consistency in the cloud [7], privacy-
enhancing proofs of deletion [79], exponential savings in communication [40], or secure
quantum computing in the cloud [14, 20].

4.8.2 Application paradigm
Our architecture is primarilymeant to enable the execution of quantumnetwork applications
in the quantum memory stage [99] and above. That is, applications that require the use of
a quantum processor that can manipulate and store quantum bits (qubits). For simpler
applications in the prepare-and-measure and entanglement generation stages [99], e.g.
quantum key distribution [8, 35], where the quantum states are immediately measured
by the nodes, our system can also be used, but it would be sufficient to realize a system
implementing a quantum network stack and classical processing only.
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End node

Physical layer

Network layer

Application layer

End node

Physical layer

Network layer

Application layer

Figure 4.6: Schematic overview of a quantum network. A quantum network consists of nodes (yellow and
grey circles) that are connected by classical and quantum communication channels (grey lines). Each node im-
plements a physical layer (green boxes and lines) that enables entanglement generation with neighboring nodes.
The physical layer is the domain of the QDevice. Each node also implements a network stack, including a net-
work layer (red boxes and lines, which may be subdivided into a separate link layer and a network layer [25,
55]). This layer realizes long-distance entanglement creation between nodes and may include protocols such as
entanglement swapping and distillation. As QNodeOS implements a network stack, it could also be deployed on
intermediate nodes in a network, where e.g. entanglement distillation could be added to the protocol realizing
the network layer service implemented by QNodeOS.
We emphasize however that the focus of this work is to program and execute applications on the end nodes,
i.e. enabling the application layer in networking terms. Only end nodes (yellow circles) implement an additional
application layer (blue boxes and line), which executes arbitrary user applications. From the perspective of this
layer, end nodes are logically directly connected (blue line), and this layer is hence independent from implemen-
tations and protocols in the network layer and is only dependent on the service provided by the network layer.
Logically directly connected means that the application layer relies on the service of the network layer to enable
end-to-end entanglement generation between end nodes and does not concern itself with how the entanglement
is generated. This abstraction is a key element enabled by a quantum network stack such as [25] and exactly
analogous to abstractions used in classical networking, where e.g. a web browser can be executed on a laptop
independently of how the internet connection between the laptop and a web server is realized. In the same
way, QNodeOS could operate on end nodes separated by a large quantum network of the future, in which many
intermediary nodes may lie on the path connecting the end nodes.
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Separated programs. Recall that a quantum networking application consists of multiple
programs, each running on one of the end nodes, where for ease of explanation we will
assume we are executing an application between two nodes, i.e. a client and a server.
Each node in the network runs its own independent Quantum Network Operating System
(QNodeOS), on which the node’s program is executed. The two programs may interact
with each other via message passing and entanglement generation, where both types of
interactions are managed by the node’s QNodeOS. Next to interaction via the programs,
the nodes may exchange additional classical messages which are not part of the program
itself, for example, in order to enable the realization of a network stack [25] managing
entanglement generation between the nodes.

Classical blocks of code consist of instructions for local classical operations and clas-
sical message passing. Quantum blocks of code consists of (1) quantum operations (initial-
ization, quantum gates, measurement), (2) low-level classical control logic (branching on
classical variables and loops), as well as (3) instructions to make entanglement between re-
mote nodes. We remark that classical and quantum instructions may require many actions
by the underlying QNodeOS (and quantum system controlled by it) in order to be fulfilled:
it is the goal of such instructions to abstract away aspects of the underlying system.

Classical blocks of code may depend on quantum ones via classical variables generated
during the quantum execution (such as measurement results, notification of entanglement
generation, and information on the state of the quantum system such as the availability
of qubits). Similarly, quantum blocks may depend on variables set by the classical blocks
(such as messages received from remote network nodes). Finally, quantum blocks may
themselves depend on other quantum blocks via qubits in the quantum memory.

Performance metrics. Next to classical metrics, such as utility (see ‘Methods, Metrics‘),
throughput or latency [86], the successful execution of quantum network applications is
governed by quantum metrics, which are unique to quantum networks and not present
in classical networks. Such quantum network-specific metrics include fidelity (see ‘Meth-
ods, Metrics‘), or the probability of success in executing an application, where the latter
depends directly on the fidelity of the quantum states prepared.

Mode of Execution. There exist quantum applications and functionalities, where one
pair of programs is executed only once, e.g. a simple example of quantum teleporta-
tion [9]. As in quantum computing, however, some quantum network applications [99] are
expected to succeed only with a specific probability of success 𝑝succ when executed once.
The application is then typically executed many times in succession in order to gather
statistics (for example to amplify 𝑝succ). A common use case for executing the same ap-
plication repeatedly also occurs when evaluating the performance of a system (as we do
here), where the goal is to estimate quantum performance metrics, such as the probability
of success or the fidelity (see ‘Methods, Metrics‘). When executing the same application
multiple times, the programmer can choose to launchmany instances of the same program
at once if multitasking is possible (see below), or to write one program which repeatedly
executes the node’s part of the program, asking for a successive execution of the applica-
tion.
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4.8.3 Interactive classical-quantum execution
Let us elaborate further on the relation, and differences, between the execution of quantum
network applications, and the execution of quantum computing applications: One could
envision building a system for executing quantumnetwork applications on top of a simpler
system for the execution of quantum computing programs, as long as the latter can be
augmented with networking instructions to generate entanglement: in essence one quantum
block can be seen as one quantum computing program. Such a block may realize mid-
circuit measurements by the classical control logic allowed within one quantum block,
or error correction. Error correction could in this paradigm be realized both by classical
control logic allowed within one quantum block, or by considering the error correction
itself as part of the Quantum Device (QDevice) (see Section 4.9.1) which then only exposes
logical qubits and operations to QNodeOS, instead of physical qubits and operations. In
that sense, one may think of the interactivity required between classical and quantum
operations as taking place not only at a higher level, but also stemming from the fact
that classical messages are used to create a new interaction between separate quantum
programs, while in quantum computing we have only one single program.

4.8.4 Different hardware platforms
Platform Independence
We provide further background on the concept of platform, i.e. hardware, independence.
It is the goal of our architecture to be platform-independent, including a standard inter-
face to a driver for different hardware platforms. The driver is thus the only part that is
platform-dependent in order to steer the underlying hardware platform. Such an interface
is known as a hardware abstraction layer Hardware Abstraction Layer (HAL) that allows
interfacing with different (quantum) platforms. To restate, in the context of “classical” op-
erating systems, a HAL is a core component that existed in many operating systems (like
Windows 7 [84, Section 19.3.1]) and continues to be used extensively to this day in operat-
ing systems for a broad set of computing platforms, including mobile ones [android_hal].
A HAL allows the operating system kernel to interact with the device hardware (drivers)
through standardized programming interfaces, instead of relying on interfaces written
specifically for each available hardware (which would, for example, necessitate to know
how to configure specific memory bus or access specific type of memory for a specific
hardware running on a device that the operating system has to control). Therefore, a HAL
allows for an ultimate portability of the operating system, making it platform-independent
above the HAL, and simplifies the architecture of the operating system.

QDevice
We consider as a quantum processor system the QDevice model (see Section 4.6, ‘QDevice
Model’), exposing a set of physical instructions addressing specific qubits (see Section 4.9.6).
These physical instructions may be dependent on the type of quantum hardware, e.g., Ni-
trogen Vacancy (NV) in diamond, or trapped ions, and (1) include instructions for initial-
izing and measuring qubits on the chip, (2) moving the state of a qubit to another location
in the quantum memory (3) performing quantum gates, as well as (4) to make attempts at
entanglement generation at the physical layer [78].
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Quantum processors in general offer two types of qubits (see e.g. [25]): communication
qubits which can be used to generate entanglement with remote nodes next to other quan-
tum operations, as well as storage qubits which cannot be used to generate entanglement
and only for implementing local quantum operations. We remark that on near-term quan-
tum processors, the types of operations also depends on the connectivity of the qubits.
That is, not all (pairs of) qubits may allow the same set of quantum operations to be per-
formed on them.

To later enable compile time optimization, it is desirable that quantum hardware fur-
thermore exposes the capabilities of the quantum chip: (1) the number of qubits, (2) the
type of each qubit, (3) the memory lifetime of the qubits, (4) the physical instructions that
can be performed on on the qubit(s) and (5) the average quality of these instructions.

4.8.5 Timescales
Quantum network programs are meant to be executed between distant nodes, meaning
the communication times between them are in themillisecond regime. We remark that the
same is not true for networked or distributed quantum computing : if the goal is to combine
several less powerful quantum processors via a network into one more powerful quantum
computing cluster, then it is advisable to place the individual processors as close to each
other as possible, in order to minimize the time needed to (1) exchange messages, and (2)
generate entanglement between processors. Thus, apart from the execution of applications
following a different paradigm (see Figure 4.1), the case of distributed quantum computing
also has different timescales than quantum networking. Of course, it is conceivable that
in the future, one may also link distant quantum computers into more powerful quantum
computing clusters via quantum internet infrastructure.

4.8.6 Scheduling network operations
In order for two neighboring quantum network nodes to produce heralded entanglement
between them, they need to simultaneously perform an action to trigger entanglement
generation (at the physical layer, synchronized to nanosecond precision). This means neigh-
boring quantum network nodes need to perform a network operation (entanglement gen-
eration) in a very specific time slot in which they make an attempt to generate entangle-
ment. Such time slots are generally aggregated into larger time bins, corresponding to
making batches of attempts in time slots synchronized at the physical layer. We refer to
e.g. Ref. [78] for background information on the physical layer of entanglement genera-
tion in quantum networks, and the readers with a background in computer science to e.g.
Ref. [25] for a detailed explanation of scheduling of entanglement generation in quantum
networks.

In short, network operations in quantum networks need to be executed by the node
at very specific time bins. These time bins cannot be determined by the quantum node
itself. Instead selection of time bins for a specific quantum operation require agreement
with the neighboring node [25] (and more generally with the quantum network when the
end-to-end entanglement is made via intermediary network nodes) by means of a network
schedule, e.g. determined by a (logically) centralized controller, see Ref. [85].
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4.8.7 Scheduling local operations versus scheduling network opera-
tions

For computer scientists, we provide further information on the inability to execute at the
same time both local as well as networked quantum operations on present-day quantum
processors. At a high-level, present-day quantum processor can be seen as both a quantum
Central Processing Unit (CPU)/memory, as well as network device at the same time. Phys-
ical properties of the device and its control at the level of experimental physics, prohibits
the usage of the quantum processors for both network and CPU/memory functions at the
same time. A good example is given by the system of NV centers in diamond [44, 49]:
the communication qubit, i.e. the network device, of the NV quantum processor system
is given by its electron spin. Further storage qubits may be available by the surrounding
nuclear spins in the diamond material. However, such nuclear spins cannot easily be ad-
dressed without involving the electron spin, prohibiting their use as a separate processor
that is independent from the use as a network device.

It is conceivable that in the future, two devices could be used [97]: one quantum pro-
cessor as a network device (but not as a device for execution of general quantum gates
and measurements), and a another quantum processor performing only local quantum op-
erations (but not as a device for long-distance networking). The network device could
produce entanglement with distant quantum nodes (which may be taking many millisec-
onds to conclude successfully), and only once such entanglement is ready inject it into the
second quantum processor. The latter may still involve short-distance entanglement gen-
eration between the network device and the second quantum processor, which however is
very fast at short distances. This way the time that the second quantum processor would
be blocked by networking operations would diminish significantly.

4.8.8 Multitasking
When executing quantum network applications, multitasking is well motivated in order
to increase the utility of the system. Multitasking (or time sharing) is a well-established
concept in classical operating systems (see e.g. [84, Section 1.4]) that allows the concurrent
execution of multiple programs. For the reader from physics, we summarize some of these
concepts in order to give context, and then reflect on what these imply in our setting.

In order to allow for multitasking, operating systems typically employ a notion of pro-
cesses (or threads [84, Chapter 4], or tasks [84, Section 3.1]), where a process is created
whenever a program starts, and the process forms an instance of the program being exe-
cuted on the system. Multitasking (time sharing) thus refers to the concurrent execution
of multiple processes at once, where it is possible to have multiple processes for the same
program, corresponding to the execution of several instances of the program in parallel.
We remark that the term concurrent thereby refers to the fact that the processes are exist-
ing in the system at the same time, while—due to the fact that they need to share limited
resources (e.g. a CPU or other devices)—not all of them may be running at the same time.

Allowing multitasking requires the system to include a number of additional features:

Managing Processes
At a high-level, multitasking requires the system to keep track of the currently running
processes, which means that when program starts executing, a process must be registered
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in the system. Since the system needs to decide which process can be executed at what
time, i.e., which process can be given access to the necessary resources to allow its execu-
tion, the system needs to keep track of the state of the process, which typically includes
(1) whether it is ready for execution, (2) currently running, or (3) whether it cannot cur-
rently be executed since it is waiting e.g. for other processes.

In the case of executing quantum network applications, different parts of the applica-
tion require different resources in order to run: classical blocks need the classical processor
(CPU) and potentially network device present in a CNPU, while quantum blocks require
the quantum processor (QDevice). It is desirable for our system that both resources can
be used concurrently. That is, two different processes should be able to execute a classical
block (on the CNPU), and a quantum block (on the QNPU) at the same time.

Memory Management Unit
A program typically relies on the ability to store classical variables (in a classical memory),
as well as quantum variables (the state of qubits in a quantum memory). Such variables
are stored in a classical and quantum memory device (here, the quantum processor), re-
spectively. In order to allow multiple concurrent processes at the same time, the system
needs to keep track of which part of the classical and quantum memory is assigned to
which process. This concept is known broadly as memory management [84, Section 1.7]
in classical operating systems.

In order to allow multitasking of quantum network applications, we thus require a
Quantum Memory Management Unit (QMMU) (next to standard ways of performing clas-
sical memory management). The QMMU is responsible for the following tasks:

Qubit information handling. A QMMU has knowledge of the physical qubits available
on the underlying quantum hardware, and may keep any other information about said
qubits, such as the qubit type (communication or storage qubit) and qubit lifetime. Phys-
ical qubits thereby refer to both qubits realized at the device level, e.g. in the electron
spin states of the NV center in diamond, or at a logical level where quantum error cor-
rection [61] is used to protect the quantum memory, i.e. one logical qubit is created by
performing error-correcting using many device level qubits. A QMMU should allow such
physical qubits to be assigned to different owners, i.e. different processes, or the operating
system itself.

Transfer of qubit ownership. The QMMU may also allow a transfer of ownership of
the qubits from one owner to the other, such as for example from a network process which
makes entanglement to a user process.

Quantum memory virtualization. A QMMU may also provide abstractions familiar to
classical computing such as a virtual address space, where the applications refer to virtual
qubit addresses that are then translated to physical qubit addresses. This virtual address
space avoids the situation in which physical qubit addresses must be bound at compile
time, particularly limiting when allowing multiple applications to concurrently run on the
same node. This would allow the transparent moving of qubits in a quantum memory in
the future (for example moving them from a processor to a memory-only device while the
process is waiting, e.g., for a message from a remote node). We remark however that the
noise in present-day quantum devices means that any such move introduces a significant
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amount of additional noise to the quantum state that may prevent the successful execution
of the application.

Qubit memory lifetime management. Advanced forms of a QMMU may also cater to
the limitations of near term quantum devices, by matching memory lifetime requirements
specified by the application code to the capabilities of the underlying qubits, as well their
topology, i.e., taking into account which two qubits allow two-qubit gates to be performed
on them directly. While one cannot measure the decoherence of a qubit during a general
program execution on the quantum level, the QMMU could also take into account addi-
tional information from the classical control system to signal to the application that a qubit
has become invalid.

Scheduler
When multitasking, we need to decide which process should be executed at what time.
This concept is referred to as scheduling in classical operating systems [90, Section 2.4], [84,
Section 3.2]. We first discuss design considerations for scheduling when executing quan-
tum network applications, and then reflect on how scheduling may be realized at different
levels of the operating system for the quantum network nodes.

General considerations. We first provide three general considerations for complete-
ness, which are not specific to the execution of quantum network applications but apply
to all system in which several resources (such as the QDevice and a classical CPU) can be
used (largely) independently of each other:
1. Local quantum computation: in addition to quantum networking, a node’s resources

must also be reserved for local quantum gates, which are integral parts of quantum
network applications.

2. Multitasking: for a node to be shared by multiple users, the scheduler should not allo-
cate all the available resources to a single application indefinitely, and instead it should
be aware of the presence of multiple applications.

3. Inter-block dependencies: quantum and classical processing blocks of an application
may depend on results originating from other blocks, and thus cannot be scheduled
independently.

Quantum network considerations. Two specific considerations stand out in the do-
main of quantum networking:
1. Synchronized network schedule: due to the bilateral nature of entanglement, each node

needs to have its quantum networking activity synchronized with its immediate neigh-
bors. This means that while the scheduler at each QNodeOS node runs independently
of each other, nodes must take into account the network schedule which defines when
the node needs to perform networking actions with its neighboring node.

2. Limited memory lifetimes: the performance of quantum networking applications de-
pends on both classical as well as quantum metrics. Once qubits are initialized, or
entanglement has been created, the limited lifetime of present-day quantum memories
implies that executionmust be completed by a specific time in order to achieve a desired
level of quantum performance.
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Quantum/classical performancemetrics trade-off. Thebest quantum performance is
reached when the entire quantum network system (all nodes) are reserved for the execu-
tion of one single quantum network application. That is, programs are executed in a serial
fashion and no multitasking is performed that could introduce delays which negatively
impact the quantum performance. However, this approach does not in general achieve
the best utilization of the system.

While our implementation makes use of a simple priority based scheduler, we remark
that our work opens the door to apply more advanced forms of schedulers in the future. In
particular, the fact that execution quality degrades over time suggests using forms of real-
time schedulers for quantum network applications (taking inspiration from the extensive
work on this topic in classical systems, see e.g. Ref. [62]). We remark that a program-
mer (or compiler) could provide advise on such (soft) deadlines, for example in the form
of a lookup table that includes suggestions for deadlines for a desired level of quantum
performance, based on the capabilities provides by the underlying hardware systems (e.g.
memory lifetimes, expected execution time of quantum blocks), and the network (e.g. rate
and quality (fidelity) of the entanglement that can be delivered). This advise could then
be used by the scheduler to inform its scheduling decisions.

We remark that determining precise deadlines (e.g. when too much time has elapsed
for the qubits to yield a specific probability of success) is in general a computationally
expensive procedure, sometimes estimated in practice by a repeated simulation of the ex-
ecution. It is an interesting open question to find (heuristic) efficient methods to approx-
imate a performance prediction. We remark that there is no way in quantum mechanics
to measure the current quality of a qubit or operation during the ongoing execution, and
such qualities are determined by performing estimates independently of the program ex-
ecution itself. Of course, QNodeOS could itself engage in such estimates when idling in
order to update its knowledge of the capabilities of the quantum hardware.

To allow for potentially time-consuming classical pre- and post-processing, it is natural
to apply such deadlines not for the entirety of the application, but for the period between
initializing the qubits and terminating the quantum part of the execution. While outside
the scope of this work, we remark that this type of scheduling offers to inspire new work
in a form of “quantum soft-real time” scheduling, where deadlines may occasionally be
missed at the expense of reduced application performance (success probability), to maxi-
mize the overall (averaged) performance of the system in which applications are typically
executed repeatedly.

Scheduling at different system levels. Above we discussed scheduling at the level
of processes, corresponding to executions of program instances. A system may realize
scheduling at different levels, including
1. Classical versus quantum processes: The system may sub-divide processes into classi-

cal processes (executing classical code blocks), and quantum user processes (executing
quantum code blocks). In this case, these can be scheduled independently (provided
inter-dependencies are taken into account).

2. Scheduling of quantum blocks: The system may further sub-divide quantum processes
into smaller units to allow different quantum code blocks of the same process to be
scheduled independently.
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3. Scheduling of individual operations: The level of operating systems is not typically con-
cerned with the scheduling of individual operations, which is instead taken care of by
the underlying CPU. We remark that while we do not envision this type of scheduling
to be part of such a system in the future, but rather be relegated to control hardware in a
microarchitecture for quantum nodes as e.g. in Fu et al. [38], our current realization of
QNodeOS achieves a simple form of instruction schedule by populating an instruction
queue in software due to the absence of a suitable low-level microarchitecture.
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4.9 QNodeOS design and implementation
We proceed with a more detailed description of the QNodeOS architecture and implemen-
tation, where (for the reader’s convenience) we include some information already found
in Sections 4.3 and 4.6. Recall, that a quantum network application is realized by running
separate programs, one on each end node of the quantum network that takes part in the
quantum application. The individual programs interact with each other only via classical
message passing and entanglement generation. Each program itself consists of classical
and quantum blocks of code (see Section 4.8.2) which require execution in the quantum
memory for the application to succeed.

4.9.1 QNodeOS architecture
Quantum Network Node System
We remark that QNodeOS—a real-time system for quantum network nodes—is designed
to be deployed on end and intermediary nodes (Section 4.8.1), where QNodeOS use on in-
termediary nodes can be restricted to facilitate entanglement generation over the network
via a (series) of intermediate nodes. As the focus of this work is the execution of quantum
network application, we focus here on running QNodeOS on end nodes.

In our model, as depicted in Figure 4.2a, we divide the functions of a node into three
high-level components:
• a CNPU, on which classical blocks of code are executed. The CNPU is required at end
nodes, and requires classical computing hardware (including a classical CPU), as well
as a classical network device to allow the exchange of messages with the CNPU of re-
mote nodes. While quantum networking programs can in principle be developed and
compiled outside of the CNPU), the CNPU may also realize a user environment where
quantum networking programs (refer to Section 4.9.1) are developed and compiled, and
where program results are stored;

• a QNPU, which receives quantum blocks from the CNPU and entanglement generation
requests from peer nodes, and manages execution on the quantum physical device;

• aQDevice—the quantum physical device—consisting of a quantum processor, a quantum
network device, and a quantummemory, where actual quantum computations and com-
munications take place. In present-day quantum hardware implementations, the same
device acts as a quantum processor, a network device and a memory.
In summary, in our design a quantum network program starts on the general-purpose

Operating System (OS), i.e. a CNPU, which runs classical code blocks internally, and
offloads quantum code blocks to the QNPU. The QNPU runs the quantum code blocks,
relying on the underlying quantum device, i.e., QDevice, to execute the actual quantum
operations.

CNPU and QNPU—while both being capable of performing non-quantum operations—
are conceptually separate components, with the main difference being that the QNPU is
expected tomeet real-time requirements (to enable entanglement generation) and perform
its arbitration tasks within set deadlines, whereas the CNPU does not need to provide such
guarantees. This is because the QNPU should adhere to a network schedule which imposes
real-time requirements. CNPU, QNPU and QDevice have a classical connection to their
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counterpart at the remote node, where the QDevice also has an additional optical fiber
connection to the quantum network to perform quantum operations.

An implementation of the quantum network node could have these three top-level
components (CNPU, QNPU and QDevice) deployed on three physically distinct environ-
ments, or group some of them on the same chip or board. Furthermore, classical and
quantum code blocks can be run on a single system, provided that this system has a con-
nection to the quantum device to execute the actual quantum instructions. However, in
the interest of a simpler implementation, where each system has a scoped responsibility,
we opted to map classical and quantum blocks onto two distinct environments. Classical
blocks are run on a system that features a fully-fledged OS (here, Linux), with access to
high level programming languages (like C++ and Python) and libraries. Quantum blocks
are delegated to the QNPU, which is a system capable of interpreting quantum code blocks
and managing the resources of a quantum device.

We note that the QNPU itself is an entirely classical system that interacts with the
quantum hardware (the QDevice). At the moment, our implementation of the QNPU is
fully software, including the instruction processor. In general, the system may be imple-
mented entirely in software running on a classical CPU, or parts of its functionality may be
implemented in classical hardware, e.g. Field Programmable Gate Array (FPGA) (see the
description of the trapped-ion platform implementation in Section 4.10.2) or Application-
Specific Integrated Circuit (ASIC).

Quantum Network Programs
A quantum networking user program is what a programmer writes on the CNPU, in a
high-level language, through the use of some Software Development Kit (SDK). Classi-
cal code blocks can in principle be programmed in any language yielding an executable
suitable to run on the CNPU. Fully-classical code blocks—which include local processing
and communication with other end nodes—often produce input data for the next quan-
tum code blocks. That is, a classical code block typically precedes a quantum code block
whose instructions depend on external data coming from a remote end node. In the future,
quantum blocks could include real-time execution constraints, for example, a deadline by
which execution should be completed in order to reach a specific application performance
while the quantum memory has a limited memory lifetime.

NetQASM. To express quantum code blocks, we make use of NetQASM (see [26] and
Chapter 3) as an instruction set for quantum network programs, which is described in
detail in [26]. Before this work, NetQASM has only ever been used to execute quantum
network programs on simulated quantum network nodes, and has never been realized on
hardware to execute quantum network applications.

The instruction set used in NetQASM for the quantum code blocks is similar to other
Quantum Assembly Language (QASM) languages (see e.g. Refs. [24, 37, 50]), but it is ex-
tended to include instructions for quantum networking. We emphasize that NetQASM
is not a strict requirement of QNodeOS, and other ways to express quantum code blocks
could be used in other implementations. The instruction set of this language should sup-
port both computational and networking quantum instructions, as well as simple classical
arithmetic and branching instructions to be used for real-time processing on the QNPU. It
is the compiler’s task to transform high-level blocks for the QNPU into NetQASM blocks.
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NetQASM defines a notion of NetQASM subroutines, where each subroutine corre-
sponds to a quantum block of code, specified by the compiler or programmer. We there-
fore use the term quantum block to refer to a NetQASM subroutine in the remainder of this
text. A full list of operands that can appear in a NetQASM subroutine is given in [26, Ap-
pendix B]. NetQASM assumed subroutines would be executed on a form of QNPU (with-
out specifying an architecture for the QNPU), potentially using a form of shared memory
with CNPU. In the absence of a shared memory, NetQASM allowed classical variables
inside subroutines to be kept on the QNPU, and accessed read-only by the CNPU via the
NetQASM interface (see below). The CNPU can also specify classical constants for the use
inside subroutines, as part of submitting a subroutine to the QNPU.

We use here the NetQASM SDK [105] to write programs, where the SDK compiles
a quantum network program, written in Python, into a series of classical and quantum
code blocks. This SDK was previously used to express programs on a simulated quantum
network [107].

NetQASM Interface. Our interface between the CNPU and the QNPU (Section 4.9.2)
includes the NetQASM interface defined in [26, Appendix A]. This interface in particular
allows the CNPU to register a program on the QNPU, submit NetQASM subroutines, and
access the results of said subroutines.

Program Processing Pipeline
CNPU Processing. When a program start execution on the CNPU, a new CNPU process
is created. As we separate the CNPU from the QNPU in our implementation, it is natural
to rely on the properties of an existing classical operating system to take care of this
function. In our implementation, we start a single program on the CNPU which then
creates a thread (using standard Linux thread library [106] for each CNPU process. The
classical blocks belonging to the CNPU program are executed locally on the CNPU. These
may involve some form of coordination with the remote CNPU of the user program, as
well as pre- or post-processing of the results coming from NetQASM subroutines. While
this can also be done later, when the program starts it will typically also establish a TCP/IP
connection with the program running on the remote CNPU leading to the establishment
of a TCP/IP socket that will be used for classical application level communication between
the CNPUs.

The CNPU then registers the program on the QNPU. Later, NetQASM subroutines of
these programs are sent from the CNPU to the QNPU through the NetQASM interface.

QNPU Processing. When a program is registered with the QNPU by the CNPU, the
QNPU creates a user process to store program data and execution state. The QNPU also
keeps track of NetQASM subroutines belonging to the user process, which may be submit-
ted only later, as well as other run-time data analogous to what a typical process control
block contains, useful for the execution of the program. As depicted in Figure 4.2a, a
subroutine can, in general, be composed of three classes of instructions:

• Quantum operations: quantum physical operations, to be performed on the underlying
quantum device;
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• Classical logic: arithmetic and branch instructions, to be executed in-between quantum
operations, useful to store results of quantum operations and to perform responsive
decision-making;

• Entanglement requests: requests to generate an entangled qubit pair with a remote node
in the network.

Classical logic is processed locally on the QNPU, and potentially results in the update of a
process’s data. This data includes NetQASM variables capturing measurement results, for
example, that may latter be conveyed to the CNPU.

When the user process starts on the QNPU an Entanglement Request (ER) socket
(see Section 4.9.3) is established with the remote QNPU that is used to associate later
entanglement requests with the specific user process. Entanglement requests contained
in the NetQASM subroutines are forwarded to the quantum network stack, which stores
them together with other requests coming from network peers. Entanglement generation
requests coming from other nodes in the network are received on the quantum network
stack through the Quantum Network Stack (QNetStack) interface.

Quantum instructions are sent to the QDevice through the QDevice Driver (QDriver),
which provides an abstraction of the QDevice interface. The QDriver translates NetQASM
instructions into physical instructions suitable to the underlying physical platform.

QDevice Processing. Physical instructions are executed on the QDevice, the quantum
processing and networking unit. The QDevice processing stack heavily depends on the
underlying physical platform—for instance, NV centers in diamond, or Trapped Ions.

As we remarked in Section 4.9.1, a QDevice has two communication channels with
its direct neighbors: a classical channel, used for low-level synchronization of the entan-
glement generation procedure and other configuration routines, and a quantum channel,
typically an optical fiber, through which qubits can travel.

4.9.2 QNPU stack
QNodeOS is a system consisting of multiple abstraction layers, as depicted in Figure 4.7. It
is designed to be platform-independent, i.e., independent of the underlying quantum phys-
ical platform (quantum hardware) controlled by QNodeOS, where connections to different
realizations of QDevice are captured by a platform-dependent QDriver. The implementa-
tion of QNodeOS itself is of course dependent on the classical physical platform(s) on
which QNodeOS is implemented, including the physical interface between the CNPU and
QNPU.

QNPU API
At the center of the stack lie the the QNPU API handler layer and the the QNPU core layer.
The API handler is responsible for listening to system calls made to the the QNPUAPI, and
to relay these calls to the appropriate component inside of the core layer. Such system calls
may originate from the CNPU via the CNPU communication handler, see again Figure 4.7.

The QNPU API is the central engine for managing the execution of local quantum op-
erations and entanglement requests, and manages the hardware resources of the QDevice.
The QNPU API exposes services to:
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Figure 4.7: QNPU stack. The QNPU API handler and the QNPU core form the central processing layers, and are
independent of the underlying quantum physical platform and of the device where QNodeOS runs. The CNPU
communication handler translates protocol-specific messages from the CNPU into API calls. The QDevice driver
(or QDriver) abstracts the QDevice hardware. The Platform layer abstracts the hardware where QNodeOS runs,
and is accessible to all other layers. Note that three other Application Programming Interface (API) types are
implemented, i.e. control, management, and operations. Control API is used for the network schedule, while
management and operations API are for operational purposes.

• Register and deregister a program on the QNPU; This is part of the NetQASM interface
(see Section 4.9.1).

• Add a quantum block (subroutine) for a user process; This is again part of the NetQASM
interface.

• Open an ER socket with a remote node (NetQASM interface).
• Control to configure the quantum network stack, i.e., to configure the network schedule;
This is used for the interaction with a network controller that sets network-wide entan-
glement schedules, as presented in Ref. [85].

• Perform management and operations functions.

The topmost horizontal layer is the CNPU communication handler, which implements a
protocol wrapper around NetQASM. We implement this wrapper protocol using Embedde-
dRPC [102] for the on-the-wire definition of the messages (including (de-)serialization)).
The communication handler translates protocol-specific messages into API calls for the
QNPU. EmbeddedRPC allows to decouple the interface definition and (de-)serialization
from the underlying transport layer. We note that only the transport layer is implementation-
specific, which depends on the devices where CNPU and QNPU are implemented and on
what the physical interface between them looks like.¹

The QDevice driver (QDriver) layer, at the bottom of the stack, provides an abstraction
of the QDevice hardware, and its implementation depends on the nature of the QDevice

¹TCP/IP for now, shared memory in the future.
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itself, and on the physical communication interface between QNPU and QDevice. Two
QDevice implementations may differ in a variety of factors, including what quantum phys-
ical platform they feature and what digital controller interfaces with the QNPU.

Lastly, the vertical Platform layer provides System on a Chip (SoC)-specific abstrac-
tions for the QNPU to access the physical resources of the platform it is implemented on,
including I/O peripherals, interrupts controllers and timers. Additionally, if the QNPU is
implemented on top of a lower-level operating system, this layer gives access to system
calls to the underlying OS. The Platform layer is vertical to indicate that it can be accessed
by all other QNPU layers.

Porting the QNPU to a different SoC (or similar hardware) boils down to implementing
a new platform layer. Deploying the QNPU on a different QDevice, instead, requires both
a new QDriver and a compiler—on the CNPU—that emits quantum instructions supported
by the specific QDevice.

4.9.3 Processes
A quantum network program starts on the CNPU—there, the CNPU environment com-
piles it into classical and quantum code blocks, and creates a new process associated with
the program. In the future, an optimized compilation ahead of execution could produce
an executable that includes further information (such as execution deadlines depending
on the device’s memory lifetimes, as mentioned at the beginning of Section 4.9.1). The
CNPU then registers the program with the QNPU (through the QNPU’s end node API,
see Section 4.9.2), which, in turn, creates its own process associated with the registered
program. The process on the CNPU is a standard OS process, which executes the classical
code blocks and interacts, (that is: communicating NetQASM subroutines and their results
between CNPU and QNPU), with the counterpart process on the QNPU. This interaction
can be done by means of a shared memory (and when no shared memory is physically
realized: by an exchange of messages [26]). On the QNPU, a process encapsulates the ex-
ecution of quantum code blocks of a program with associated context information, such
as process owner, process number (ID), process state, and process priority.

In the near-term test applications we execute, the execution time of a program is
typically dominated by that of quantum blocks, as entanglement generation is a time-
consuming operation. Without advanced quantum repeaters [3], its duration grows expo-
nentially with the distance between the nodes. For this reason, we focus on the scheduling
of quantum blocks only, and thus we only discuss QNPU processes (also referred to as user
processes) from this point onward. Again, this does not exclude that in a future iteration
of the design CNPU and QNPU could be merged into one system, and therefore classical
and quantum blocks would be scheduled jointly.

Process Types and Their Interaction
QNPU user processes. TheQNPU allocates a new user process to each quantum network
program registered by the CNPU. A user process is the program’s execution context, and
consists of NetQASM blocks and other context information—the process control block—
including process number (ID), process owner, process state, process scheduling priority,
program counter, and pointers to process data structures. Process state and priority deter-
mine how processes are scheduled on the QNPU. A user process becomes active (ready to
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Figure 4.8: Process state diagram. An idle process becomes ready when a block for that process is loaded onto the
QNPU (from the CNPU). A ready process becomes running when it is scheduled. A running process goes back
to idle if all blocks are completed, or transitions to waiting if it expects an event to occur before it can proceed.
A waiting process becomes ready again when the expected event occurs.

be scheduled) as soon as the QNPU receives a quantum code block from the CNPU. Mul-
tiple user processes—relative to different CNPU programs—can be concurrently active on
the QNPU, but only one can be running at any time. A running user process executes its
quantum code block directly, except for entanglement requests, which are instead submit-
ted to the quantum network stack and executed asynchronously.

QNodeOS network process. The QNPU also defines kernel processes, which are similar
to user processes, but are created when the system starts (on boot) and have different
priority values. Currently, the only existing kernel process is the network process. The
network process, owned by the QNetStack, handles entanglement requests submitted by
user processes, coordinates entanglement generation with the rest of the network, and
eventually returns entangled qubits to user processes. The activation of the network pro-
cess is dictated by a network-wide entanglement generation schedule. Such a schedule
defines when a particular entanglement generation request can be processed, and there-
fore it has intersecting entries on adjacent nodes (given that entanglement is a two-party
process). The schedule can be computed by a centralized network controller [85] or by a
distributed protocol [25]. In our design, the network process follows a time division multi-
ple access schedule, computed by a centralized network controller (as originally proposed
by Skrzypczyk and Wehner [85]) and installed on each QNodeOS node (see Section 4.9.3).

QNPU process states. A QNPU process can be in any of the following states: (1) Idle:
when the CNPU has registered a program and the QNPU has spawned a process, but it
has not received a block yet; (2) Ready: when it has (at least) one block, sent from the
CNPU, and can be scheduled and run; (3) Running: when it is running on the QNPU and
has the quantum processor and the quantum network device assigned to it; (4) Waiting:
when it is waiting for some event to occur. Figure 4.8 shows the possible process states
and the valid state transitions. A process transitions from idle to ready when one block
gets added. A ready process transitions to running when the the QNPU scheduler assigns
it to the processor. A running process transitions to waiting when it has to wait for an
event to occur, and transitions from waiting to ready when the event occurs—for instance,
a process could be waiting for an Entanglement Pair Request (EPR) pair to be generated,
and become ready again when the pair is established. Finally, a process goes back to the
idle state when all its blocks have been completed.
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Figure 4.9: Flow of execution between a user process requesting entanglement and the network process respon-
sible for generating entanglement. The user process starts by asynchronously issuing an entanglement request.
Once issued, it is free to continue with other local operations or classical processing. Once it reaches a point in
its execution where entanglement is required the process enters the waiting state. The network process is sched-
uled once the appropriate time bin (as determined by the network schedule) starts. Once running, it attempts
entanglement generation until entanglement success (or until a set timeout). The entangled qubit is then trans-
ferred to the user process. This unblocks the process which consumes the entanglement and releases the qubit.
In our experiments, the process always immediately waits after requesting entanglement (no local operations
are done in between).

Inter-process communication. At the moment, the QNPU does not allow for any ex-
plicit inter-process communication. The only indirect primitive available to processes to
interact with one another is qubit ownership transfer, used when a process produces a qubit
state which is to be consumed by another process. Most notably, the quantum network
stack kernel process transfers ownership of the entangled qubits that it produces to the
process which requested the EPR pairs.

Process concurrency. Thestrict separation between local quantumprocessing and quan-
tum networking is a key design decision in QNodeOS, as it helps us address the scheduling
challenge, see Section 4.8. A user process can continue executing local instructions even af-
ter it has requested entanglement. Conversely, networking instructions can execute asyn-
chronously of local quantum instructions. This is important in a quantum network, since
entanglement generation must be synchronized with the neighboring node (and possibly
the rest of the network [85]). Additionally, separating user programs into user processes
also allows QNodeOS to schedule several programs concurrently.

Process flow. Figure 4.9 illustrates the typical control flow between a user process and
the network process. User processes are free to execute any non-networked instructions
independently of the network process and other user processes. Once the program reaches
a point in its executionwhere an entangled qubit is required, the process enters thewaiting
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state and is flagged as waiting for entanglement. When the network process is scheduled,
it issues network instructions and generates entanglement as requested by the user pro-
cess. Once an entangled pair is generated by the network process, the qubit is handed
over to the waiting user process. When all the entangled pairs that the user process was
waiting for are delivered, the user process becomes ready and can start running again.

Process Scheduling
At present, the the QNPU scheduler does not give any guarantees on when a process is
scheduled—for that, one would need to define concrete real-time constraints to feed to the
scheduler. Instead, the current version of the QNPU implements a best-effort scheduler,
which selects processes on the basis of their priority, and does not allow preemption. In
particular, the network process is assigned the highest priority, and is activated whenever
the network schedule specifies entanglement should be made in the next time-bin [85].

As already mentioned, QNodeOS defines the concept of user processes and kernel pro-
cesses, with the QNetStack process being the only kernel process at the moment. User
processes are released (i.e., they become ready) asynchronously—when a process block
is loaded, or when they leave the waiting state—while the QNetStack process is released
periodically—at the beginning of each time bin of the network schedule (although the pe-
riod of time bins can vary). Given that generating an EPR pair on a link requires that both
nodes attempt entanglement simultaneously, the QNPU assigns the QNetStack process a
priority higher than any user process. This ensures that, at the beginning of each time bin
of the network schedule, the priority-based process scheduler can assign the QNetStack
process as soon as the processor is available, and thus a node can start attempting en-
tanglement with its neighbor as soon as possible and minimize wasted attempts on the
neighbor node.

Figure 4.10 exemplifies a snapshot of a hypothetical execution of a user process and
the QNetStack process. The latter is activated at the beginning of a time-bin assigned to
networking, and is scheduled as soon as the processor is available—for instance, at times 0
and 4 it is scheduled immediately, while at time 8 it is scheduled after one time unit, as soon
as the running process yields. The user process becomes ready at time 0—at which point
the QNetStack process is ready as well and has highest priority, meaning the network
process is scheduled; then it is scheduled at time 2, as soon as the QNetStack process
completes; then it goes into waiting state at time 3 because the user process requested
entanglement and it waits for the entanglement to be established; finally it becomes ready
again at time 7—and it is scheduled immediately given that no other processes are running.

To avoid context switching overhead, potentially leading to degraded fidelity, the
QNPU scheduler is cooperative. That is, once a process is scheduled, it gets to run until
it either completes all of its instructions or it blocks waiting for entanglement. Allow-
ing process preemption would need a definition of critical section and could potentially
impact the quality of the affected qubit states. Moreover, the lack of a preemption mecha-
nism could potentially result in low-priority user processes hogging the processor at the
expense of high-priority entanglement generation attempts. On the other hand, if entan-
glement instructions always consume the entirety of the time bin, the QNetStack process
would be immediately assigned the processor each time it relinquishes it, causing low-
priority user processes to starve. To at least mitigate the second issue, we made sure that
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Figure 4.10: Snapshot of a hypothetical execution of a user process and the QNetStack process. The higher-
priority QNetStack process is activated at the start of each time bin of the network schedule, and it is assigned
to the processor as soon as it is available. The lower-priority user process gives precedence to the QNetStack
process when they become ready at the same time, but, when it is running on the processor, it is not preempted
if the QNetStack process becomes ready while the user process is running. Black arrows represents a moment
where the process goes into the ready state and the green stop sign (at time 3) represents a process going into
the waiting state.

the number of consecutive entanglement attempts performed by the QDevice within one
single entanglement instruction is always less than how many would fit in a time bin, so
as to leave some slack for low-priority user processes to run.

Networking
The network stack QNetStack is based on the existing stack [25], including the link layer
Quantum Entanglement Generation Protocol (QEGP) [25]. However the main difference
between the QNetStack implemented on the QNPU and the original design of the proto-
cols lies in how the QEGP processes the outstanding entanglement requests. QEGP [25]
employed the concept of a distributed queue to sort and schedule entanglement requests
on one node by coordinating with the counterpart node on the other end of the link, to en-
sure that both nodes would be servicing the same entanglement request at any given time.
This synchronization is necessary because different entanglement requests may require
different EPR pair fidelities, in which case QEGP would issue different QDevice entangle-
ment instructions. However, link-local request scheduling becomes more complicated if
nodes have more than just one link. In that case, entanglement requests would be better
scheduled at a level where network-wide request schedules are known.

Network Schedule. The QEGP protocol implemented on the QNPU transitioned [78]
from scheduling entanglement requests via a pairwise agreed upon distributed queue, to
deferring this task to a logically centralized control plane, whereby a node’s schedule can be
computed on the basis of the whole network’s needs by a (logically) centralized controller
(see e.g. [85]). This means that the network stack of the nodes convey their demands for
end-to-end entanglement generation to the central controller, who then makes a network
schedule, which is communicated back to the nodes.

All nodes divide time into time-bins, where the central controller employs a scheduling
algorithm to assign either network actions (or no actions) to time-bins. That is, the term
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Figure 4.11: Internal components and data structures of the Quantum Network Stack (QNetStack). Entangle-
ment requests are received through the Entanglement Management Unit (EMU), while the network schedule
is installed by a centralized control plane. Quantum Entanglement Generation Protocol (QEGP) maps such re-
quests onto the network schedule to produce the correct entanglement instructions. While not needed on our 2
node implementation, a Distributed Queue Protocol (DQP) (which is a simplified version of the DQP presented
in [25, Section 5.2.1]) could forward entanglement requests to the next hop’s Quantum Network Processing
Unit (QNPU) to realize a network layer protocol such as [54].
.

network schedule refers to a schedule, i.e. allocation of resources over time, of time-bins
at the nodes, where a time-bin may be marked for networking activities (entanglement
generation) or be left empty (to be used arbitrarily to execute local operations). Given
that entanglement generation requires a non-deterministic amount of attempts and time,
time bins are computed to be large enough to accommodate the average run time of an
entanglement generation instruction. We remark that the node functions internally as a
higher timing granularity than a time-bin allocated by the network scheduler, that is, it
can execute other operations (such as for example local quantum operations) also within
a time-bin allocated by the network schedule, provided entanglement is made early.

Once the node received the network schedule from the controller, the network sched-
ule is used to satisfy all outstanding end-to-end entanglement requests, and is used by
QEGP to produce the correct QDevice instructions at any point in time. Whenever a
time bin is assigned to networking to two neighboring nodes, the nodes attempt entangle-
ment generation over their shared link in order to realize the QEGP link layer protocol.
Figure 4.11 shows internal components and data structures of the QNetStack as it is imple-
mented on the QNPU. Entanglement requests received by the Entanglement Management
Unit (EMU) are forwarded by Quantum Network Protocol (QNP) to the next hop’s QNPU
system. Entanglement requests and network schedule—the latter installed by a logically
centralized control plane—are used by QEGP to produce the correct entanglement instruc-
tions to populate the QNetStack process’s block at each activation of the process.

ER Socket. The concept of an ER socket is inspired by that of a classical network socket,
in that it defines the endpoint of an entanglement generation request, and is used by the
QNPU’s quantum network stack to set up network tables and to establish connections
with its peers. We remark that the current realization of the ER Socket (see below) is
a proof of concept implementation opening future computer science research, and does
not aim to prevent misuse if different users had access to the same node. A program can
request from QNodeOS the opening of an ER socket with a program on a remote node.



4.9 QNodeOS design and implementation

4

103

An ER socket is identified by the tuple (node_id, er_socket_id, remote_node_id, re-
mote_er_socket_id). The other program (on the other node) must open its own corre-
sponding ER socket (i.e with values (remote_node_id, remote_er_socket_id, node_id,
er_socket_id)) on its own QNodeOS. A request for opening an ER socket is executed by
the CNPU, by asking the QNPU (through the QNPU API) to open the socket. The QNPU
then registers the ER socket with the quantum network stack (provided it did not yet ex-
ist), and the CNPU also keeps a reference using the tuple as an identifier. The program
can then use this socket for requests. The network stack only handles requests for entan-
glement between two nodes if the corresponding ER sockets are opened on both nodes.

Programs are themselves responsible for coordinating the ER socket IDs. Using these
IDs allow the same node pair to open multiple pairs of ER sockets, which may be used by
different applications or inside the same application. Socket IDs must be unique within
the node. ER sockets are typically opened at the start of a program, and live (and may be
used multiple times) until the program finishes.

Programs use the ER socket to submit entanglement requests to the network stack.
This is done through NetQASM instructions (create_epr and recv_epr) that refer to the
ER socket in their operands. One program must execute a create_epr instruction and the
other a recv_epr instruction (to be coordinated by the programs themselves). The program
executing the create_epr instruction is treated by the network stack as the initiator and
the program executing recv_epr the receiver. Upon receiving an entanglement request, the
network stacks of the two nodes communicate between each other in order to coordinate
entanglement generation. The initiator node always initiates this communication. The
receiver node always accepts the entanglement initiative as long as the corresponding ER
socket is open. This means that the receiver node agrees with entanglement generation as
soon as the initiator node has submitted an entanglement request (through its create_epr),
even if the receiver node itself has not yet submitted its corresponding request (through
its recv_epr). On the receiver node, the generated entangled qubit will remain in memory
until it gets asked for by a user process executing this recv_epr.

Multitasking
Multi-tasking forms an essential element of our architecture already at the level of schedul-
ing the network process in relation to any user process, to address the challenges inherent
in the way entanglement is produced at the physical layer, requiring agreement on a net-
work schedule (see Section 4.9.3). For this important reason, the QNPU is designed to
arbitrate between these two processes (see Figure 4.9), and to manage the resources being
used by each of them. Multitasking, hence, is a fundamental requirement for a system
managing the hardware of a quantum network node, especially while such hardware has
only limited resources available.

To further increase the utility of the system, we also allow the multi-tasking of user
processes. Like in most operating systems, these tasks, which on the QNPU are encap-
sulated into processes, can sometimes necessitate a resource which is not immediately
available—for instance, a free qubit, or a qubit entangled with a remote one. Maximizing
the utilization of the quantum device is also one of the goals of QNodeOS, whose design
allows multiple processes, user and kernel, to be active concurrently, so that whenever
one is in a waiting state, another one can potentially be scheduled to use the quantum
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Figure 4.12: Quantum Network Processing Unit (QNPU) core components and internal interfaces. The core layer
includes: (1) a process manager (ProcMgr), which owns and manages access to QNPU processes; (2) a scheduler,
responsible for selecting the next process to be run; (3) a processor, which processes blocks’ instructions; (4) an
EMU, which keeps a list of entanglement requests and available entangled qubits; (5) a QNetStack, whose respon-
sibility is to coordinate with peer nodes to schedule quantum networking instructions; (6) a QMMU, which keeps
a record of allocated qubits.

device. This design aspect is relevant for quantum networking nodes, as the execution of
the local program is often waiting, both for classical messages from remote nodes, as well
as the generation of entanglement.

Lastly, multitasking is an important feature for systems that are to be shared by multi-
ple users, and that offer each user the possibility to run multiple programs concurrently.
Themultitasking capabilities of QNodeOS are also aimed at improving the average through-
put and latency of user programs.

4.9.4 QNodeOS components and interfaces
We provide here additional details on the components of the QNPU architecture and their
interfaces. Figure 4.12 gives an overview of all the components of the QNPU. The pro-
cess manager marshals accesses to all user and kernel processes. The scheduler assigns
ready processes to the processor, which runs quantum instructions through the underlying
QDevice, processes classical NetQASM instructions locally, and registers entanglement re-
quests with the EMU. The EMU maintains a list of ER sockets and entanglement requests,
forwards the latter to the quantum network stack, which, in turn, registers available entan-
gled qubits with the EMU. Finally, the QMMU keeps track of used qubits, and transfers
qubit ownership across processes when requested.

Process Manager
The process manager owns QNPU processes and marshals accesses to those. Creating
a process, adding a block to it and accessing the process’s data must be done through
the process manager. Additionally, the process manager is used by other components to
notify events that occur inside the QNPU, upon which the state of one of more processes
is updated. Process state updates result in a notification to the scheduler.

Interfaces. The process manager exposes interfaces for three services:
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• Process management (interface 1 in Figure 4.12): to create and remove processes, and
to add quantum blocks to them. When the user registers a program, the the QNPU API
Handler uses the process manager to create a QNPU user process. The returned process
ID can be later used to add a block to that process, or to remove the process once all its
blocks are fully processed.

• Event notification (interface 2 in Figure 4.12): to notify an event occurred inside the
QNPU, including the addition of a block, the completion of a block, the scheduling of
the process, the hitting of a Waiting condition (see Figure 4.8), and the generation of
an entangled qubit destined to the process. Some events trigger follow-up actions—for
instance, when a process that was waiting for an event becomes ready, it gets added to
the queue of ready processes maintained by the scheduler.

• Process data access (interface 3 in Figure 4.12): to access a process’s blocks and its clas-
sical memory space, mostly used while running the process (through the processor).

Scheduler
The QNPU scheduler registers processes that are ready to be scheduled, and assigns them
to the QNPU processor when the latter is available. Ready processes are stored in a priori-
tized ready queue, and processes of the same priority are scheduled with a first-come-first-
served policy.

Interfaces. The scheduler only exposes one interface for process state notifications (in-
terface 4 in Figure 4.12), used by the process manager to signal when a process transitions
to a new state. When a QNPU process transitions to the ready state, it is directly added to
the scheduler’s prioritized ready queue. When a process becomes idle, or is waiting for an
event to happen, the scheduler simply registers that the processor has become available.

Processor
The QNPU processor handles the execution of QNPU user and kernel processes, by run-
ning classical instructions locally and issuing quantum instructions to the QDriver. It is
also responsible for multitasking by means of process manager. While executing a pro-
cess, the processor reads its blocks and accesses (reads and writes) its classical memory.
The processor implements a specific instruction set architecture dictated by the NetQASM
language of choice.

Interfaces. The processor exposes one interface for processor assignment (interface 5 in
Figure 4.12), used by the QNPU scheduler to activate the processor, when it is idling, and
assign it to a QNPU process.

Entanglement Management Unit
The Entanglement Management Unit (EMU) contains a list of open ER sockets and a list of
entanglement requests, and keeps track of the available entangled qubits produced by the
quantum network stack. Received entanglement requests are considered valid only if an
ER socket associated to such requests exists. Valid requests are forwarded to the quantum
network stack. Entangled qubit generations are notified as events to the process manager.
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Interfaces. The EMU exposes interfaces for three services:
• ER socket registration (interface 6 in Figure 4.12): to register and open ER sockets be-
longing to a program, and to set up internal classical network tables and to establish
classical network connection.

• ER registration (interface 7 in Figure 4.12): to add entanglement requests to the list of
existing ones, to be used when matching produced entangled qubits with a process that
requested them.

• Entanglement notification (interface 8 in Figure 4.12): to register the availability of an
entangled qubit, produced by the quantum network stack, and to link it to an existing
entanglement request.

Quantum Network Stack
Thequantumnetwork stack on theQNPU closely follows themodel presented byDahlberg
et al. [25] which is based on the classical Open Systems Interconnect (OSI) network stack
model for the purpose of the separation of responsibilities. In particular, data link layer is
part of the quantum network stack on the QNPU. The physical layer is implemented on
the QDevice, the application layer is part of the CNPU, and all remaining layers are not
currently part of the stack.

The quantum network stack component has an associatedQNPU kernel process, created
statically on the QNPU. However, this process’s block is dynamic: the instructions to be
executed on the processor depend on the outstanding entanglement generation requests
received from EMU and network peers.

Interfaces. The quantum network stack exposes interfaces for two services:
• Entanglement request registration (interface 9 in Figure 4.12): to add entanglement re-
quests coming from the EMU to the list of existing ones, which are used to fill in the
quantum network stack process’s block with the correct quantum instructions to exe-
cute.

• Entanglement request synchronization (interface 10 in Figure 4.12): similar to the entan-
glement request registration interface, but to be used to synchronize (send and receive)
requests with QNodeOS network peers.

Quantum Memory Management Unit
QuantumMemoryManagement Unit (QMMU) receives requests for qubit allocations from
QNPU processes, and manages the subsequent usage of those. It also translates NetQASM
virtual qubit addresses into physical addresses for the QDevice, and keeps track of which
process is using which qubit at a given time. In general, a QMMU should take into account
that the topology of a quantummemory determines what operations can be performed on
which qubits, and thus allow processes to allocate qubits of a specific type upon request.
An advanced QMMU could also feature algorithms tomove qubits in the background—that
is, without an explicit instruction from a process’s block—to accommodate a program’s
topology requirements while not trashing the qubits being used by other QNPU processes.
Such a feature could prove crucial to increase the number of processes that can be using
the quantum memory at the same time, and to enhance multitasking performances.
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Interfaces. The QMMU exposes interfaces for three services:
• Qubit allocation and de-allocation (interface 11 in Figure 4.12): a running process can
ask for one or more qubits, which, if available, are allocated by the QMMU, and the phys-
ical addresses of those are mapped to the virtual addresses provided by the requesting
process.

• Virtual address translation (interface 12 in Figure 4.12): before sending quantum instruc-
tions to the QDriver, the processor uses virtual qubit addresses specified in NetQASM
to retrieve physical addresses from the QMMU, and then replaces virtual addresses with
physical addresses in the instructions for the QDriver.

• Qubit ownership transfer (interface 13 in Figure 4.12): qubits are only visible to the
process that allocates them. However, in some cases, a process may wish to transfer
some if its qubits to another one. A notable example is the quantum network process
transferring an entangled qubit to the process that will use it.

4.9.5 QNPU implementation: scheduler
The QNPU scheduler is an important component of our QNodeOS architecture, and deals
with scheduling of QNPU processes. TheQNPU is implemented on FreeRTOS [103], which
itself includes a scheduler. On FreeRTOS, code is organized into tasks, which can be seen
as separate threads or processes. These tasks are scheduled concurrently by FreeRTOS
based on priority. In our implementation, we realize QNPU components and interfaces
(hence including the QNPU scheduler) as FreeRTOS tasks. We configured task priorities
such that the components with tight interaction with the QDevice (QDriver, quantum net-
work stack, QNPU processor) have highest priority. We stress the difference between the
FreeRTOS scheduler and our QNPU process scheduler. The QNPU scheduler schedules
QNPU processes based on their status and priorities, which are independent of the priori-
ties assigned by the FreeRTOS scheduler. The FreeRTOS hence runs on a different layer:
it makes sure the QNPU components (including QNPU scheduler, processor, QDriver)
run concurrently. The QNPU scheduler runs on the level of QNPU processes. Whenever
the FreeRTOS scheduler activates the FreeRTOS task realizing the QNPU scheduler, the
QNPU scheduler then schedules the process with the highest priority on a first come first
serve basis, by adding it to the processing queue of the relevant resource (e.g. QNPU pro-
cessor) and generating an interrupt leading to the execution of the QNPU processor task
on FreeRTOS (and consequently the execution of the process).

4.9.6 QDevice interface
The implementation of a QDevice depends on a number of factors. Most importantly, the
physical signals that are fed to the quantum processing and networking device (and those
that are output from the device) are specific to the nature of the device itself. Different
qubit realizations require different digital and analog control. For instance, manipulating
the state of a spin-based qubit (e.g., in a NV center processor) and that of an atom qubit
(e.g., in a trapped ion processor) are two physical processes that vastly differ in a number
of complex ways.

For QNodeOS to be portable to a diverse set of quantumphysical platforms, there needs
to be a common QDevice interface that QNodeOS can rely on, and that each QDevice in-
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stance can implement as it is most convenient for the underlying quantum device. This in-
terface (1) needs to be general, (2) to be able to express all quantum operations that different
quantum devices might be capable of performing, and (3) abstract, so that two different
implementations of a well-defined qubit manipulation operation can be expressed with
the same instruction on QNodeOS. Nevertheless, an interface that is too general could
result in a high implementation complexity on the QDevice, as it might have to transform
high-level instructions in a series of native operations on the fly. Other than complexity of
implementation, a very high-level set of QDevice instructions might compromise the com-
piler’s ability to optimize a program for a certain physical platform, as reported by Murali
et al. [71].

Design Choices
Defining a set of instructions to express abstract quantum operations as close as possible
to what different quantum physical platforms can natively perform is—to some extent—
an open problem. Nonetheless, we have made an effort to specify an interface which
is a good compromise between generality and expressiveness. The QDevice interface is
essentially a set of instructions that QNodeOS expects a QDevice to implement. To be
precise, a QDevice might implement a subset of the interface, according to what native
physical operations it can perform. The CNPU compiler must then have knowledge about
the set of instructions implemented by the underlying QDevice, so that it can decompose
instructions that are not natively supported.

Even though this interface does not impose any formal timing constraints, it is impor-
tant to note that a QDevice implementation that tries to guarantee more or less determin-
istic instruction processing latencies can prove more beneficial to the real-time require-
ments of the QNPU. Particularly, it would be advisable to time-bound the processing time
of operations whose duration is by nature probabilistic—most notably, those involving en-
tanglement generation. Creating an EPR pair may involve a varying number of attempts.
Sometimes, if the remote node becomes unresponsive for some time, the number of nec-
essary attempts can increase by a large amount. Capping the number of attempts could,
for instance, provide a more deterministic maximum processing latency for entanglement
instructions, which in turn might help QNodeOS react more timely to temporary failures
or downtime periods of remote nodes. Not to mention that unbounded entanglement at-
tempts affect the state of other qubits in memory, because of both passive decoherence
and cross-qubit noise.

QDevice synchronization
The QDevice receives physical instructions from QNodeOS, acts on them, and returns a
response. For entanglement instructions, the QDevice must first synchronize with the
QDevice on the other node (using classical communication). If the other QDevice is busy,
(e.g. it is still trying to pass the CR check, see Section 4.10.1 and [78]), synchronization
fails, and an ENT_SYNC_FAIL response is returned (see Table 4.2).

Instructions and Operands
Table 4.1 lists the complete set of instructions defined in the QDevice interface. Instruc-
tions can have operands, whose range of valid values depends on the underlying QDevice.
For instance, an operand that specifies which qubit to apply an operation to can only have
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Instruction Description
INI Initialize a qubit to default state
SQG Perform a single-qubit gate
TQG Perform a two-qubit gate
AQG Perform a gate on all qubits
MSR Measure a qubit in a specified basis
ENT Attempt entanglement generation
ENM Attempt entanglement and measure qubit
MOV Move qubit state to another qubit
SWP Swap the state of two qubits
ESW Swap qubits belonging to two EPR pairs
PMG Set pre-measurement gates

Table 4.1: Summary of QDevice instructions defined in the QDevice interface. A specific QDevice might imple-
ment a subset of these, depending on the underlying quantum physical device and on other design constraints.

as many valid values as there are physical qubits in memory. Details for each instruction
and its operands are given below.

Qubit Initialization (INI). The INI instruction brings a qubit to the |0⟩ state. On some
physical platforms, single-qubit initialization is not possible, thus this instruction initial-
izes all qubits to the |0⟩ state.

Operand Description
qubit Physical address of the qubit to initialize, ignored on platforms where

single-qubit initialization is not possible

Single-Qubit Gate (SQG). The SQG instruction manipulates the state of one qubit. The
gate is expressed as a rotation in the Bloch sphere.

Operand Description
qubit Physical address of the qubit to manipulate
axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)

Two-Qubit Gate (TQG). The TQG instruction manipulates the state of two qubits. The gate
is expressed as a controlled rotation, with one qubit being the control and the other one
being the target.

Operand Description
qub_c Physical address of the control qubit
qub_t Physical address of the target qubit
axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)
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All-Qubit Gate (AQG). The AQG instruction manipulates the state of all available qubits.
The gate is expressed as a rotation in the Bloch sphere.

Operand Description
axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)

Qubit Measurement (MSR). The MSR instruction measures the state of one qubit in a spec-
ified basis. A qubit measurement is destructive—that is—the qubit has to be reinitialized
before it can be used again.

Operand Description
qubit Physical address of the qubit to measure
basis Measurement basis, can be X, Y, Z, H (support is QDevice-dependent)

Entanglement Generation (ENT). The ENT instruction performs a series of entangle-
ment generation attempts, until one succeeds, or until a maximum number of attempts
is reached (the behavior is QDevice-dependent).

Operand Description
nghbr Neighboring node to attempt entanglement with, if the local QDevice has

multiple quantum links
fid Target entanglement fidelity (granularity and range are QDevice-

dependent)

Entanglement Generation With Qubit Measurement (ENM). The ENM instruction per-
forms a series of entanglement generation attempts followed by an immediate measure-
ment of the local qubit, until one succeeds, or until a maximum number of attempts is
reached (the behavior is QDevice-dependent).

Operand Description
nghbr Neighboring node to attempt entanglement with, if the local QDevice has

multiple quantum links
fid Target entanglement fidelity (granularity and range are QDevice-

dependent)
basis Measurement basis, can be X, Y, Z, H (support is QDevice-dependent)

Qubit Move (MOV). The MOV instruction moves the state of one qubit to another qubit.
A qubit move renders the state of the source qubit undefined, and the qubit has to be
reinitialized before it can be used again.

Operand Description
qub_s Physical address of the source qubit
qub_d Physical address of the destination qubit
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Qubit Swap (SWP). The SWP instruction swaps the state of two qubits.

Operand Description
qub_1 Physical address of the first qubit
qub_2 Physical address of the second qubit

Entanglement Swap (ESW). The ESW instruction results in two qubits belonging to two
EPR pairs to have their roles swapped.

Operand Description
qub_1 Physical address of the first qubit
qub_2 Physical address of the second qubit

Pre-Measurement Gates Setting (PMG). The PMG instruction allows for a set of (up to)
3 rotations to be performed before a qubit measurement (MSR or ENM). If the axis of the
second rotation is orthogonal to the axis of the first and the third rotation, these gates can
be used to perform a qubit measurement in an arbitrary basis, given that most likely a
QDevice can natively measure in a limited set of bases.

Operand Description
axes Combination of orthogonal axes to use for the three successive rotations,

can be X–Y–X, Y–Z–Y and Z–X–Z (support is QDevice-dependent)
ang_1 Rotation angle of the first gate, relative to the first axis in axes (granularity

and range are QDevice-dependent)
ang_2 Rotation angle of the second gate, relative to the second axis in axes (gran-

ularity and range are QDevice-dependent)
ang_3 Rotation angle of the third gate, relative to the third axis in axes (granularity

and range are QDevice-dependent)

No operation (NOP). The NOP instruction does not result in any operation on the QDevice.

Return values
Table 4.2 lists the possible return values that the QDevice sends back to QNodeOS as a
response to a physical instruction.
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4.10 QDevice implementations
4.10.1 NV center platform
The QDevice employed for the benchmark experiments is constituted by an NV center
processor. We use the NV center in its negatively charged state (called NV−) for quantum
information processing. NV− is a spin-1 system, whose ground states are non-degenerate
in the presence of an external magnetic field, see Figure 4.13 [31]. We employ the𝑚𝑠 = 0 as
our |0⟩ state for the qubit, while for the |1⟩ we can choose one of 𝑚𝑠 = ±1. Details on how
the choice is made will follow in the next section. The NV can be optically excited reso-
nantly (637 nm) and off-resonantly (typically 532 nm), and it emits in 3% of the cases single
photons (Zero-Phonon Line (ZPL) photons), while the remaining part is constituted by the
emission of a photon and a phonon (Phonon-Side Band (PSB)). The optical transitions are
spin-selective, as shown in Figure 4.13. In the presence of lateral strain and external DC
field (Stark effect), the excited states of the NV split apart, maintaining their spin-selective
properties. In this work, we use a natural lateral strain between 2GHz and 5GHz. The
cycling transition denoted as Readout (RO) in Figure 4.13 is used to emit single photons
(ZPL) for entanglement generation and to read out the state of the qubit (fluorescence in
the PSB). From the excited states, the NV can also decay through metastable states (not
shown in Figure 4.13). The preferable decay from such metastable states is the 𝑚𝑠 = 0
state. In this way, it is possible to optically initialize the qubit state to |0⟩ (dashed line
in Figure 4.13), with fidelity above 99%, when on-resonantly exciting the Spinpump (SP)
transition and averaging for long enough to ensure a spin-flip. In our experiments, we
apply a laser field on resonance with the SP transition at 500 𝑛W for 1.5 𝜇s for fast initial-
ization during entanglement attempts, whereas a slow initialization (10 𝑛W for 100 𝜇s) is
used for single-qubit gates experiments (like local tomography). On the other hand, while
exciting the RO transition, decays to 𝑚𝑠 = ±1 are also possible, but they present longer
cyclicity. This feature is relevant for the optical read-out of the qubit state, which can be
done in a single shot and is discussed in the following sections.

In our demonstration, the server has an external magnetic field of 𝐵𝑧 = 189mT aligned
along the symmetry axis 𝑧 of the NV, while the client experiences 𝐵𝑧 = 23mT. The mag-
netic field is applied via permanent magnets placed both inside and outside the high-
vacuum chamber of our closed-cycle cryostats. Fluctuations of the magnetic field are
observed on the order of nT on a timescale of hours, therefore they do not constitute
a limitation for our demonstration. We also measured a perpendicular component of the
permanent magnetic field for both setups of ∼1mT. Such misalignment becomes crucial
for the coherence time of the electron spin qubit, as in the interaction with the surround-
ing nitrogen nuclear spins, the off-axis hyperfine interaction terms become non-negligible
and the decoupling of the electron spin is harder [31]. Notably, the server node is in the
regime of “high magnetic field”. In the level structure depicted in Figure 4.13, this means
that the 𝑚𝑠 = −1 ground state crossed the 𝑚𝑠 = 0 state (at ∼ 100mT), and the optical transi-
tions for the SP are well separated, such that a double laser field with proper detuning is
necessary to correctly address both of them.

Single Node Operations
In this section, details on how to operate a single node for quantum information processing
are given. The physical setup is the one employed for the demonstration in Ref. [78].
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Figure 4.13: Energy structure of NV− at 4 K. The ground state of the NV splits into three distinct levels (Zeeman
splitting). The optical transitions are spin-selective. The excited states are represented as one, but they are non-
degenerate when lateral strain is applied. We denote as Readout (RO) the transition |0⟩→ 𝐸𝑥/𝑦 and as Spinpump
(SP) the transition |1⟩ → 𝐸1/2. The wiggly lines represent the photoluminescence when such transitions are
excited, whereas the dashed lines represent the decay via metastable states that is used for initialization of the
qubit state into |0⟩. Microwave (MW) pulses enables the transfer of population between the two states of the
qubit, allowing for quantum information processing.

Charge-resonance check. To use the NV as a processing node, it is necessary to guar-
antee that it is in the correct charge state and the laser fields are on resonance with the
transitions. Before executing any instructions coming from the QNPU, both nodes go
through the so-called Charge-Resonance (CR) check. We apply resonant fields for 100 𝜇s
on both the RO (1 𝑛W) and SP (10 𝑛W) transitions and we monitor the fluorescence. If
the number of photons exceeds the threshold (25 for the client and 60 for the server for
our experiments), the node is considered ready to accept instructions from the QNPU and
can proceed with synchronization with the other node (for multinode instructions). The
threshold is set considering the brightness of each NV. The success is considered valid
for 100𝑚s. After this time, if no instructions arrive, the CR check is repeated. In case the
number of photons is below the threshold, we distinguish two cases: (1) the counts are
between the success threshold and a second threshold called Repump: we repeat the CR
check and tune the frequency of the red lasers, as they might not address the transitions
correctly; (2) the number of counts is below the Repump threshold (set at 15 for the client
and 25 for the server): this means that the NV might be in the dark charge state (NV0) due
to ionization. To restore the charge state, in the next round of CR check we first illuminate
with off-resonant green laser (20 𝜇W for 50 𝜇s), or, for the client node only, with yellow
light (575 nm, 35 𝑛W for 300 𝜇s) on resonance with the ZPL transition of NV0 [4]. This
is necessary because we additionally apply an external DC field to the NV on the client
node. We, indeed, exploit the Stark effect to tune the RO transition to be the same as
the server’s one [6]. In this way, we can ensure photon indistinguishability in frequency
that is crucial for entanglement generation. The typical DC field used for this work is
∼2V, modulated via an error signal that is computed on the CR check counts, acting as a
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Client Server
Duration 𝜋 rotation 200 𝑛s 190 𝑛s

Amplitude 𝜋 rotation 0.78 0.89
Skewness 𝜋 rotation -1.5e−9 -3.5e−9

Duration 𝜋/2 rotation 150 𝑛s 100 𝑛s
Amplitude 𝜋/2 rotation 0.38 0.56
Skewness 𝜋/2 rotation -1.2e−8 -7.1e−9

Power 42W 42W

Table 4.3: Characterizing values for the MW pulses. Other rotation angles have the same duration and skewness
as the 𝜋 pulse, and the amplitudes scale accordingly. The rotation axes are obtained by changing the phase of
the pulse. With the current setup configuration, only rotations along 𝑥̂ and 𝑦̂ axes are feasible, so ̂𝑧 rotations are
compiled as combinations of gates along 𝑥̂ and 𝑦̂.

Proportional-Integral-Derivative (PID) loop.
The CR check is repeated after an experiment iteration. This round is utilized to val-

idate the experiment and post-select the results based on success or failure of this proce-
dure, as discussed in Section 4.6.

Single qubit gates. To manipulate the state of the electron spin qubit, microwave pulses
are on resonance with the transition |0⟩ → |1⟩ are employed. For the server node, the
𝑚𝑠 = −1 state is used as |1⟩ and the resonance frequency is 2.4 GHz. The client node utilizes
the 𝑚𝑠 = +1, with a resonance frequency of 3.5 GHz. The choice of the |1⟩ is made based
on the gate fidelity.

We use skewed-Hermite Microwave (MW) pulses [96, 98] with high Rabi frequency
(∼10MHz), which generates an alternating magnetic field capable of manipulating the
state of the qubit. The characterizing values for the two nodes are reported in Table 4.3.
The measured infidelity on a single MW pulse is below 1%. Instructed by the QNPU, we
performed local quantum tomography on both the server and the client, showing high
fidelity. One example is reported in Figure 4.18.

Dynamical decoupling. Once MW pulses are set up with high fidelity, it is possible to
implement Dynamical Decoupling (DD) sequences that increase the coherence time of the
electron spin qubit. DD sequences are especially crucial in our experiments when the la-
tency of the QNPU is long (milliseconds timescale), like in the Delegated Quantum Com-
putation (DQC) demonstration. The characterizing parameter for a DD sequence is the
time delay between the 𝑋 and 𝑌 pulses. To optimize it, we swept the interpulse delay, at
the sample precision of our Arbitrary Waveform Generator (0.42 𝑛s, Zurich Instruments
HDAWG), while playing the effective single-qubit computation of the DQC protocol in-
structed by the QNPU, as explained in Section 4.6, on both the client and the server. In
doing so, we added an extra waiting time of 5𝑚s between the initialization of the qubit
into the superposition state and the subsequent gates tomimic the real-case scenario of the
DQC. In this way, we are able to set the optimal interpulse delay, obtaining a single-qubit
fidelity of 0.96(2) for the server and 0.88(2) for the client.

Single-shot readout. When a measurement instruction arrives from the QNPU, this is
translated by the physical layer as a Single-Shot Readout measurement. To assign a state
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to the qubit, we can use the RO optical transition. The RO laser field is on for ∼10 𝜇s at
1 𝑛W. This will produce fluorescence only if the NV is in the |0⟩ state. If no photons are
detected while the laser is on, the outcome is assigned to the |1⟩ state. The fidelity of
the measurement process is defined as 𝐹 = 1/2(𝐹0|0 +𝐹1|1), where 𝐹0|0 (𝐹1|1) represents the
fidelity of measuring |0⟩ (|1⟩) when the qubit is prepared in |0⟩ (|1⟩). For our experiments,
we obtain 0.841(4) and 0.997(1) respectively for the client, and 0.912(3) and 0.995(1) for the
server, achieving above 0.90 of process fidelity.

Entanglement generation
The entanglement request from the QNPU is translated into executing a single-photon pro-
tocol. The communication qubit on each node is initialized in the state √𝜂|0⟩ + √1−𝜂 |1⟩,
where 𝜂 represents the bright state population. For maximum state fidelity, the condition
𝜂𝐶𝑝𝐶 ≈ 𝜂𝑆𝑝𝑆 applies, where 𝜂𝐶(𝑆) is the bright state population of the client (server) and
𝑝𝐶(𝑆) is the photon detection probability of the client (server). In this work, 𝜂𝐶 = 0.07 and
𝜂𝑆 = 𝜂𝐶 𝑝𝐶

𝑝𝑆
= 0.04. The choice of 𝜂𝐶 is a trade-off between entangled state fidelity and entan-

glement generation rate. The produced entangled state is (non-deterministically) one of
two Bell states |Ψ±⟩ = 1

√2 (|01⟩±𝑒
𝑖Δ𝜃 |10⟩), based on which detector clicked at the heralding

station. The phase Δ𝜃 is actively stabilized [77] before the execution of the entanglement
request, via a combination of homodyne interference, for the global phase of the network,
and a heterodyne interference, to stabilize the local phase at each node. Pauli-correction
gates, based on the state prepared, are issued from the server QNPU to its QDevice to
obtain |Φ+⟩: an 𝑋𝜋 gate if the generated Bell-state is |Ψ+⟩ and an 𝑋𝜋 gate followed by a 𝑍𝜋
gate (decomposed into X and Y gates) for |Ψ−⟩. As preparation for the experiment, we ver-
ified the entanglement generation, instructed by the QNPUs and using the same method
as in Ref. [78], achieving a fidelity of 0.72(±0.02) for the |Φ+⟩ state. The Bell corrections
done through the server QNPU take up to 0.16 ms for |Ψ+⟩ and up to 0.49ms for |Ψ−⟩. On
the other hand, generating entanglement without the QNPU and with no Pauli correction,
we achieve an average fidelity of 0.74(±0.03), with 𝜂𝐶 = 0.1 and 𝜂𝑆 = 0.06. The choice of
different 𝜂 values is due, in the first place, to speed up the rate of such a measurement. It
shows, however, better performance with respect to the instructed version, which is due
to the fact that the Pauli-correction instruction comes with a latency.

4.10.2 Trapped-ion platform
Setup
The trapped-ion QDevice implementation faces different challenges than the NV QDevice
implementation. Trapped-ion state preparation, gate operations, and readout occur on
longer timescales (between microseconds and milliseconds) than the corresponding op-
erations for NV centers. As a result, latencies introduced by QNodeOS are insignificant,
and we do not expect the use of QNodeOS to reduce fidelities of local gate operations or
entangling operations on the trapped-ion QDevice. On the other hand, trapped ions are
typically manipulated using control sequences that are compiled for a given set of parame-
ters and uploaded to hardware. (Here, sequences consist of pulses of Transistor-Transistor
Logic (TTL) signals, analog voltages, and radio frequency or microwave signals, some of
which are phase-referenced to one another. These pulses typically control the laser and
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microwave fields with which ions are manipulated.) The challenge here is that decision
making within QNodeOS must take place further up the network stack and is not compat-
ible with pre-compiled sequences.

We address this challenge by exploiting a triggering capabilitywithin our pre-compiled
sequences (which are written as Python scripts and then translated to a hardware descrip-
tion language for a FPGA). A sequence can contain labels that act as memory pointers; at
any point in a given sequence, a function can jump to one of these labels, at which point
execution continues starting at that label. Thus, we can structure a sequence as a list of
possible subsequences—each of which corresponds to a physical instruction or some part
thereof. This list is preceded by a control subsequence. Input triggers from QNodeOS
cause the control subsequence to jump to a certain subsequence representing a physical
instruction. After the subsequence—that is, the physical instruction—is implemented, the
sequence returns to the control subsequence, where it waits for another input trigger.

A second challenge is the compatibility between QNodeOS and physical-layer hard-
ware. The QDriver for QNodeOS is implemented with a development FPGA board (Texas
Instruments LAUNCHXL2-RM57L [94]) that sends messages via Serial Peripheral Inter-
face (SPI). Our physical layer hardware, however, is not compatible with serial com-
munication protocols. We bridge this gap with an emulator board (Cypress, CY8CKIT-
14371 [45]). The emulator board requests and reads SPI messages from QNodeOS and,
based on the message, generate TTL signals that are sent as input triggers to the physical
layer hardware. The emulator also receives outputs from the physical layer hardware: it
monitors whether the hardware is available for new commands or busy, and it collects
measurement results and passes them back to QNodeOS. In this case, the measurement
result consists of TTL signals from the Photomultiplier Tube (PMT) detecting ion fluores-
cence. When a counter value on the emulator board exceeds a certain preset threshold,
the ion state is registered as the qubit state |0⟩ and otherwise as |1⟩.

Testing the QDriver
Tests were carried out using a trapped-ion setup designed for integration with a fiber-
based cavity [92, 93]. The qubit states consisted of the 42𝑆1/2 and 32𝐷5/2 manifolds of 40Ca+,
hereafter referred to as |0⟩ and |1⟩. The cavity was not used in these tests, which focused
on single-qubit operations. The cavity was designed to enable ion-photon entanglement,
which we plan to implement in future work through physical instructions from QNodeOS.
Our primary goal in these tests was to verify that the QNodeOS hardware, the emulator,
and the physical-layer hardware could work together.

Initial tests confirmed that messages were being exchanged at the programmed clock
rate of 50 kHz and that hardware pulses in the physical layer were triggered correctly via
the emulator. Next, the following seven tests were implemented:

1. Initialization of the ion in a specific Zeeman state via Doppler cooling and optical pump-
ing;

2. a bit flip around the X axis via a 𝜋 pulse with phase 0 on the 729 nm quadrupole tran-
sition of 40Ca+;

3. a bit flip around the Y axis via a 𝜋 pulse with phase 𝜋/2 on the 729 nm transition;
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4. preparation of a superposition state via a 𝜋/2 pulse with phase 0 on the 729 nm transi-
tion;

5. readout of a qubit eigenstate in the Y basis via a 𝜋 rotation around X followed by a 𝜋/2
pulse with phase 𝜋/2 around X on the 729 nm transition;

6. readout of a superposition state in the X basis via a 𝜋/2 rotation around Y followed by
a 𝜋/2 pulse around X on the 729 nm transition;

7. measurement of the ion’s electronic state via fluorescence at 397 nm in the presence of
an 866 nm repump, following preparation of a superposition state.
Operations are considered to be correctly realized from the point of QNodeOS, but do

contain errors at the quantum level. Results for the tests (numbers above) were as follows:
1. The ion was detected in the target initial state |0⟩ in 98.4% of trials;
2. Following the X-axis bit flip operation, the ion was detected in |1⟩ in 96% of trials;
3. Following the Y-axis bit flip operation, the ion was detected in |1⟩ in 95% of trials;
4. A projective measurement determined that the 40Ca+ ion was in |0⟩ 52% of the time and

in |1⟩ 48% of the time;
5. A projective measurement determined that the 40Ca+ ion was in |0⟩ 54% of the time and

in |1⟩ 46% of the time;
6. The ion was detected in |0⟩ 93% of the time;
7. The ion population was found to be in |0⟩ 37% of the time and in |1⟩ 63% of the time.

These results were consistent with the performance of the physical-layer hardware in
the absence of QNodeOS. (Note that Doppler cooling had not been optimized and that
magnetic-field drifts at the time were not properly compensated for. Gate operations with
much higher fidelities are typically achieved in trapped-ion experiments, but here our
focus was on verifying the electronic signaling.) No problems or inconsistencies with the
electronic signaling were identified.

A next step will be to implement a more sophisticated processing of PMT TTL signals
by the emulator board in order to identify when the ion has been delocalized due to a
background-gas collision; in that case, additional laser cooling will be implemented that
returns the ion to Doppler-limited temperatures. Such a step is a typical part of compiled
physical-layer sequences but should now be implemented within QNodeOS as part of the
physical instruction for qubit initialization.
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4.11 Delegated quantumcomputation (DQC) experiment
on NV

4.11.1 Procedure
We execute the application in a tomography way to establish QNodeOS the quantum per-
formance metric (Figure 4.3b, where we use 𝑃𝑐 to refer to the client program, and 𝑃𝑠 to
the server program): The client CNPU initiates 𝑃𝑐 with fixed (𝛼,𝜃). This results in a single
CNPU process, a single QNPU process, and opening of an ER socket (see Section 4.9.3) with
the server node. At the same time, the server CNPU initiates 𝑃𝑠 resulting in single CNPU
process, a single QNPU process, and opening of an ER socket with the client node. The
client and the server programs execute the subroutines in Figure 4.3c, looping 1200 times:
both immediately start the second iteration once the first is completed. After the 1200th
iteration, both client and server stop their respective CNPU and QNPU processes. Source
code including compiled NetQASM subroutines is available in Appendix B. We repeat 6
times for (𝛼,𝜃) ∈ {𝜋/2,𝜋}×{𝜋/4,𝜋/2,𝜋} for a total of 7200 executions of the circuit depicted
in Figure 4.3a. We expect |𝜓 ⟩ to be either |−𝑌 ⟩ (for 𝛼 = 𝜋/2) or |−𝑍⟩ (for 𝛼 = 𝜋 ). To estimate
the resulting |𝜓 ⟩ per (𝛼,𝜃), the contents of S2 (containing the server qubit measurement)
in the server loop is was varied such that we obtained 600 measurement outcomes in basis
|+𝑌 ⟩ (|+𝑍⟩) and 600 measurement outcomes in the corresponding orthogonal basis |−𝑌 ⟩
(|−𝑍⟩) for 𝛼 = 𝜋/2 (𝜋 ).

Since our experiments are conducted on two NV nodes that are directly connected,
we install a constant network schedule with time-bins of 10ms in which all time-bins are
assigned to networking. This allows us to assess the performance of executing quantum
network applications without introducing a dependence on changing network schedules.
This means the network process is made ready at the start of each such time-bin, although
may not instruct the QDevice to make entanglement if no requests for entanglement have
been made.

4.11.2 Definitions
The result of a single DQC circuit execution (Figure 4.3a) is a single-qubit state 𝜌DQC on
the server. The success of running DQC can be expressed as the fidelity of 𝜌DQC compared
to the expected state (in case of no noise) |𝜓 ⟩ (Figure 4.3a). In the following we will call
this fidelity the DQC fidelity, or 𝐹DQC.

The value of 𝐹DQC is affected the most by (1) the fidelity 𝐹EPR of the entangled pair cre-
ated between the client and server, and (2) the qubit memory time 𝑡mem, which is the time
that the server qubit must remain in memory (from entanglement success until measure-
ment). The latter depends on the time at which the client sends amessage to the server (Fig-
ure 4.3). We refer to the two-qubit maximally entangled Bell states as |Φ+⟩ = (|00⟩+ |11⟩),
and |Ψ±⟩ = (|01⟩± |10⟩), where Φ+ = |Φ+⟩ ⟨Φ+| and Ψ± = |Ψ±⟩ ⟨Ψ±|.

4.11.3 Post-selection based on latency
In our experiments, the server qubit memory time 𝑡mem has a significant variance across
executions of the DQC circuit. In some iterations, there were huge spikes in latencies,
which skew the results significantly. An upper bound 𝑡max (see Section 4.11.4) was used
to filter out results from iterations in which 𝑡mem was larger than 𝑡max. This resulted in
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filtering 146 out of 7200 data points. We note that for computing 𝐹DQC, we applied the
latency filter on top of the Single-Shot Readout (SSRO) and CR filters (see Methods). For
the processing time analysis (below), however, we applied only the latency filter directly
to all 7200 original data points.

4.11.4 Simulation
A simulation (using NetSquid [22]) of the DQC application was performed in order to
estimate the expected 𝐹DQC on our NV setup, and to establish a suitable value for 𝑡max
(used in latency post-selection).

We emphasize that this simulation is a heuristic to find 𝑡max, and does not aim to
predict the performance to full accuracy. All runs for which latencies were less than 𝑡max
were ultimately used to assess the performance from data, not using this simulation.

The simulation contains the following steps, where we used the model explained in
Ref. [77]:
1. Start with a density matrix 𝜌EPR describing the approximate state of the EPR pair just

after entanglement success.
2. Apply operations representing the local gates on both the client and server, including

the measurement on the client qubit. These operations are assumed to be perfect (no
noise).

3. Apply depolarizing noise to the server qubit for a duration of 𝑡mem, using the decoher-
ence formula 𝑒−(𝑡mem/𝑇coh)𝑛 where 𝑇coh was set to 13ms and 𝑛 = 1.67. These values are
obtained via fitting experimental data from prior tests.

4. Calculate the fidelity between the final server qubit state and the expected state |𝜓 ⟩.
Based on the parameters of the setup when the DQC experiment was performed, 𝜌EPR

is set to

⎡⎢⎢⎢
⎣

0.049 0 0 0
0 0.437 0.284 0
0 0.284 0.454 0
0 0 0 0.061

⎤⎥⎥⎥
⎦

which has fidelity 0.729 to the perfect Ψ+ state. The setup can also produce Ψ− states but
for simplicity we use only the Ψ+ case here.

The simulation computes an estimate of 𝐹DQC for a given server qubit memory time
𝑡mem. Since the desired minimum value for 𝐹DQC was 0.667, the latency threshold 𝑡max
was set to 8.95ms (Figure 4.14a).

4.11.5 Sweep of qubit memory time and bright state population
As explained in Section 4.10.1, entanglement is created using the single-photon protocol
using bright state population parameter 𝜂.² Using the simulation, we can estimate how
𝐹DQC would change for different values of 𝜂 and 𝑡mem. Figure 4.14b shows the estimated
𝐹DQC for different values of 𝜂 and 𝑡mem. It indicates that for the particular setup used,

²In most literature, the variable 𝛼 is used for this parameter; here we use 𝜂 to avoid confusion with the 𝛼 param-
eter of the DQC application.
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(a)

(b)

Figure 4.14: (a) Expected values (based on simulation, Section 4.11.4) of DQC fidelity 𝐹DQC for different duration
values that the server qubit must remain in memory (𝑡mem). The maximum allowed qubit memory time 𝑡max is
chosen such that application iterations that are expected to result in too low 𝐹DQC (< 0.667) are filtered out. (b)
Expected values (based on simulation) of DQC fidelity 𝐹DQC for different values of the bright state population (𝜂)
in the single click protocol, and for different duration values that the server qubit must remain in memory (𝑡mem).
The red line indicates the threshold of 0.667 for the target fidelity. The white box represents the experimentally
obtained results (we fixed 𝜂 = 0.07 and observed 𝑡mem 4.8(8)ms, see Figure 4.3d).
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Figure 4.15: Average latency (duration) of each of the processes happening while the server qubit remains in
memory in the DQC application. The QNPU to CNPU latency and CNPU to QNPU latency are estimated as
explained in Section 4.11.6, and fixed to 0.305ms (server) and 0.197ms (client). The other latencies are the mean
and variance of the corresponding processes averaged over all DQC circuit iterations that passed the latency
filter.

increasing 𝜂 has little effect, while reducing qubit memory time does. For the DQC exper-
iment 𝜂 = 0.07 was used.

4.11.6 Processing time and latencies
Here we provide a detailed breakdown of the duration of execution phases of the DQC
application, in order to gain insights into the processing times and latencies of the system
for the different components.

Server qubit memory time
Figure 4.3c shows the duration that the server qubit must remain in memory 𝑡mem while
waiting, averaged over all DQC circuit iterations that passed the latency filter. Figure 4.3d
shows the breakdown of 𝑡mem into individual segments of processing on both client and
server. In Figure 4.15 we show the average duration and the variance of each of these
segments. The largest time is spent on preparing S2, which involves running Python code
on the CNPU and converting this (using Python) into a NetQASM subroutine. Caching of
the preparation of the NetQASM subroutine could significantly speed up this process. In
the future, further improvements could include an optimized ahead-of-time compilation
step. The large variance is due to the fact that on the CNPU, other (background) processes
run simultaneously with the DQC application process, and there is no precise control over
the scheduling of these processes.

Tracing
The CNPU, QNPU, and QDevice all keep track of events happening in their system, by
storing a tuple (𝑡, 𝑒) where 𝑡 is a timestamp and 𝑒 the name of the event. The events that
are traced on the CNPU and QNPU are listed in Section 4.14. A trace plot showing events
in CNPU, QNPU, and QDevice during a single execution of the DQC circuit is also shown
in Section 4.14.
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Derived latency (fit) Description Value (ms)
Δ𝑐𝑆1 −Δ𝑞𝑆1 Send S1 + receive S1 result 0.384
Δ𝑞𝑆12 −Δ𝑐𝑆12 Receive S1 result + Send S2 0.609
Δ𝑐𝑆2 −Δ𝑞𝑆2 Send S2 + receive S2 result 0.467
Δ𝑐𝐶1 −Δ𝑞𝐶1 Send C1 + receive C1 result 0.394

Table 4.4: Derived values for CNPU-QNPU communication latencies. The Δ variables are observed timestamp
differences on the CNPU or QNPU, per execution of the DQC circuit, as shown in Figure 4.16. Subtracting
pairs of variables from each other produces sums of two CNPU-QNPU communication latencies. These sums
of latencies highly fluctuate per execution of the DQC circuit, due to the inaccuracy of the CNPU timestamps.
However, the data fits a constant value, which is shown in the table and used in further analysis.

The QNPU timestamp granularity is 10 𝜇s, since that is the duration of a single QNPU
clock cycle. This clock cycle is synchronized with the clock of the QDevice, which in turn
is synchronized with the QDevice of the other node (see Section 4.6 and all paragraphs
therein related to NV implementation). This results in the two QNPUs (of the two nodes
in the experiment) having synchronized clocks with 10 𝜇s precision. This means that the
event indicating to the QNPUs that EPR generation has succeeded happens at the same
clock cycle on both QNPUs.

The CNPU is not a real-time system (instead, it runs on a general purpose Linux OS)
and records timestamps by consulting the system clock at 𝜇s precision. These timestamps
are not synchronized to the QNPU timestamps. Furthermore, the CNPU timestamps ob-
tained in this way are not as consistent as the real-time clock ticks on the QNPU. There-
fore, the relative CNPU time compared to the QNPU time (on the same node) may fluctu-
ate.

CNPU-QNPU communication latency
The latency of communication between the CNPU and QNPU can be calculated by looking
at the time between CNPU events and QNPU events. However, since the CNPU times-
tamps are fluctuating compared to the QNPU timestamps, we cannot use a direct com-
parison between CNPU and QNPU timestamps. Instead, we look at time differences on
the CNPU and compare them to time differences on the QNPU, given that we know the
order in which events occur during the DQC application execution. Figure 4.16 shows
a schematic overview of events happening on the CNPU and the QNPU during a single
execution of the DQC circuit. By comparing, e.g., (1) the time difference on the CNPU
between sending subroutine S1 and receiving its result with (2) the time difference on the
QNPU between receiving subroutine S1 and finishing it, we can estimate the total latency
of sending S1 from CNPU to QNPU and receiving its result. Using this technique, we
can estimate the latencies for each communication between CNPU and QNPU, as listed
in Table 4.4. Again, since the CNPU timestamps fluctuate compared to the QNPU times-
tamps, the derived latencies fluctuate and can even be negative. However, for all derived
latencies, we found that a constant function best fit the data. This verifies that the actual
latency is constant as expected, and that the variance is due to the inaccuracy of CNPU
timestamps.

Using the result from Table 4.4, we can compute bounds on the four individual latency
variables of the server (we have a system of three linear equations, and we know that all
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Figure 4.16: Schematic of events happening on the CNPU and QNPU during a single execution of DQC on the
server (a) and the client (b). Time flows to the right. The Δ variables are the time differences between events,
and are used to estimate CNPU-QNPU communication latencies (𝑎→ 𝑏, 𝑐 → 𝑑 , 𝑒 → 𝑓 , 𝑔 →ℎ on the server and
𝑎 → 𝑏, 𝑐 → 𝑑 on the client).

latencies must be strictly non-negative):
• Sending S1 from CNPU to QNPU: < 0.242ms.
• Receiving S1 result on CNPU from QNPU: between 0.142 and 0.384ms.
• Sending S2 from CNPU to QNPU: between 0.225 and 0.467ms.
• Receiving S2 result on CNPU from QNPU: < 0.242ms.

In the latency breakdown of the server qubit memory time (see Section 4.11.6) we are
only interested in the latencies that happen during the time that the server qubit is in
memory. For the server these are the latencies for receiving the S1 result and sending S2.
The sum of these two latencies is Δ𝑞𝑆12 −Δ𝑐𝑆12 = 0.609ms (see Table 4.4). For simplicity,
we say that both latencies constitute half of this time, as mentioned in the caption of
Figure 4.15. Similarly, for the client we are only interested in the latency of receiving the
C1 result. For simplicity we take this latency to be the same as that of sending C1, i.e. we
use half of Δ𝑐𝐶1 −Δ𝑞𝐶1.

Entanglement generation
An overview of all values discussed in this section is given in Table 4.5.

EPR generation happens by attempting entanglement repeatedly until success. The
QNPU sends an ENT physical instruction (Table 4.1) to the QDevice, which starts a batch
of physical attempts. Each attempt takes 3.95 𝜇s and a batch contains 500 attempts. If
a batch fails (no success after 500 attempts), the QNPU sends another ENT instruction.
Table 4.5 lists the average success probability per attempt and per batch that we found in
the DQC experiments. As explained in Section 4.10.1, the NV QDevice creates either a
Ψ+ or a Ψ− state. Table 4.5 shows statistics on how often each of these states was created
during our experiments.

Figure 4.17 shows the distribution of time it takes to generate an EPR pair in the DQC
experiment, where the average duration of such is 439ms. This is the duration between
starting the network process and finishing it, which includes entanglement attempts until
success on the QDevice and subsequent Bell state corrections to Φ+ (see Section 4.10.1).
This duration corresponds to a fitted rate of 2.28(3) created EPR pairs per second. If only
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Figure 4.17: Histogram of EPR generation durations (time from first attempt until success) based on all EPR
generations in the DQC experiment (using only latency-filtered data points, see Section 4.11.3). The histogram
shows which fraction of all durations were in a particular duration window (window width: 25ms). Expected
EPR generation duration follows an exponential decay, with a rate parameter of 2.28(3) successes (EPR pairs) per
second.

the QDevice entanglement generation is considered (i.e. without Bell state corrections
and without QNPU processing overhead), this rate is 2.37(2) EPR pairs per second.

Local gate durations
As part of the DQC execution, the QNPU sends physical instructions to the NV QDevice
for executing local quantum gates. In Table 4.6 we report on the observed durations of
these gates from the perspective of the QNPU: these durations are from the time the phys-
ical instruction is sent to the QDevice until the corresponding result is received from the
QDevice. We note that these durations are longer than these gates would take if they were
executed directly on the QDevice (without QNodeOS, see Table 4.3) because of two rea-
sons: (1) the limited granularity with which the QNPU and QDevice communicate (rounds
of 10 𝜇s) and (2) the fact the QDevice interleaves DD sequences in between sequences for
the physical instruction itself, as explained in Section 4.6.

General experiment statistics
Table 4.7 lists statistics about the overall DQC experiment (all 7200 DQC circuit executions
combined). We confirm our hypothesis that the overwhelming fraction of time is spent
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Parameter Value
Duration of a single entanglement attempt* 3.95 𝜇s

Number of attempts per batch* 500
Average number of failed batches until success 144

Average success probability per batch 6.95×10−3
Average success probability per attempt 1.39×10−5

Number of Psi+ states generation 3187 (44.3%)
Number of Psi- states generation 4013 (55.7%)

EPR generation rate (fit) (QDevice) 2.37(2) EPRs/s
EPR generation rate (fit) (QNodeOS) 2.28(3) EPRs/s

Average fraction of EPR generation time spent on sync failure 0.18

Table 4.5: Overview of values derived from the DQC experiment analysis, based on all 7200 DQC circuit execu-
tions. Entries with an asterisk (*) are values that we fixed in our experiments. The other values are observed
experimental results. Average success probabilities are derived from the number of failed batches until success.
EPR generation rate is distinguished between QDevice and QNodeOS. For the QDevice, it indicates the fitted
(to an exponential decay function) time between the first ENT physical instruction and the first entanglement
success (see Section 4.9.6). For QNodeOS, it indicates the fitted time between the start of the network process
and the end of the network process (i.e. when entanglement has been created and Bell state corrections have
been applied, see Section 4.10.1). Entanglement sync failures happen when one QDevice (server or client) wants
to attempt entanglement but the other QDevice is not ready (Section 4.9.6). Such sync failures were observed
intermittently during a batch of entanglement attempts.

Physical instruction Duration (client) Duration (server)
Measure 130–160 𝜇s 80 - 100 𝜇s

X90 80–100 𝜇s 50 - 130 𝜇s
X180 80–100 𝜇s 10 - 130 𝜇s
-X90 — 50 - 130 𝜇s
Y90 70–200 𝜇s 50 - 130 𝜇s
Y90 — 50 - 130 𝜇s

Table 4.6: Duration of executing local quantum gates on the NV QDevice in the DQC experiment. Durations are
from sending the physical instruction from QNPU to QDevice until receiving the QDevice response. The -X90
and Y90 gates were never executed in the client DQC program.

on the network process, namely generating EPR pairs. We also see that as expected, the
server spends more time on user processes than the client does, since it does more local
gates than the client (namely, the gates in subroutine S2).

4.11.7 QNPU network process analysis
In this section we focus on the execution of the network process in the QNPU as observed
in the execution of DQC. The ER sockets (Section 4.9.3) are designed to facilitate the
generation of entanglement belonging to a pair of user processes between two different
QNPUs. In particular, the ER socket allows the QNPU to proceed with entanglement
generation, while only one node may not have issued a request for entanglement yet.

During execution of the DQC application, the client QNPU has a single user process
𝑃𝑐 for its DQC program and the server QNPU has a single user process 𝑃𝑠 for its DQC
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Value Client Server
Total experiment duration 4243 s 4065 s

Time spent executing network process 3840 s 3825 s
Time spent executing user processes 5.041 s 7.618 s

Table 4.7: Overall durations of the DQC experiment.

program. Both user processes realize the repeated execution of subroutines that jointly
realize the DQC circuit (Figure 4.3a).

In each single repetition of the DQC circuit, 𝑃𝑠 executes first S1 and then S2, and 𝑃𝑐
executes C1. 𝑃𝑠 (in S1) and 𝑃𝑐 (in C1) execute a NetQASM instruction for creating an
entangled pair, which results in an entanglement request that is submitted to the network
stack. Then, 𝑃𝑐 and 𝑃𝑠 go into the waiting state (see Section 4.9.3) until the entangled pair
is delivered by the network process.

𝑃𝑐 executes a create_epr instruction and 𝑃𝑠 executes a recv_epr instruction (deter-
mined by program source code, see Appendix B. Therefore, the client is seen as the initia-
tor (see Section 4.9.3). 𝑃𝑠 and 𝑃𝑐 open a pair of ER sockets with each other when they start
and keep it open for the whole experiment. 𝑃𝑐 and 𝑃𝑠 , being on different nodes, operate in-
dependently, and may hit their entanglement request instruction at different times. Since
the client is the initiator and the server the receiver, the server is always willing to handle
an entanglement request with the client. So, the network stack on both client and server
will handle a request for entanglement as soon as the client submitted it to its network
stack, regardless of whether the server already executed the corresponding recv_epr in
S1.

We observe that in 3245 out of all 7200 DQC circuit executions, the client submitted
the corresponding entanglement request to its network stack (in C1) before the server
submitted its entanglement request to its own network stack (in S1), but where the server
still complied by starting the network process and handling the request.

Client waits for server
From our architecture, we expect that it can happen that the client must wait for the
server. This can be the case in the following scenario: The client executes C1 for DQC
circuit iteration 𝑖 and submits the entanglement request. Then, the next network time
bin starts and the client QNPU starts the network process. However, the server is at this
time (the beginning of the time bin) still busy with executing S2 for iteration 𝑖 − 1 (in user
process 𝑃𝑠). Therefore the server QNPU cannot yet activate its own network process. Since
the ER socket with the server is open and the client is the ‘initiator’, the client will send
entanglement physical instructions to the QDevice anyway, but the QDevice will not be
able to do actual attempts because the server QDevice is not ready (Section 4.9.6). Only
when the server QNPU completes S2, it can activate the network process, which then
sends entanglement physical instructions to the QDevice. Only at this point the QDevices
can start actual entanglement generation. We observe that it did indeed happen that the
client had to wait for the server, although we observed this behavior in only in 60 out of
7200 DQC circuit executions.
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Parameter Value
Number of times server puts EPR request to network stack before client 1774/7200
Number of times server starts entanglement before putting in EPR request 3245/7200
Number of times submitted EPR request is handled in immediate next time bin 5523/7200
Average number of bins that pass before request is handled 2.33
Number of times server needs to wait for client 1323/7200
Number of times client needs to wait for server 60/7200
Number of times client network process starts > 100 𝜇s after time bin starts 0
Number of times server network process starts > 100 𝜇s after time bin starts 13

Table 4.8: Statistics on the QNPU network process behavior during the whole DQC experiment, i.e. totalled over
all 7200 DQC circuit iterations.

Server waits for client
We expect that it can also happen that the server must wait for the client. This can be
the case in the following scenario: The server executes S1 for DQC circuit iteration 𝑖 and
submits the entanglement request. Then, the next network time bin starts. However, the
client did not yet hit the entanglement request in C1 for DQC iteration 𝑖, so there is nothing
to do for the server network process. The server hence needs to wait for the next time-bin,
and check again if by now the client has submitted its entanglement request. We observe
that in 1323 out of 7200 DQC circuit executions, the server had to wait for the client.

Start of network process
We examine the start of the network process in relation to the start of a time bin. In
particular, the start of the network process may be delayed if there is still a user process
running.

The network process is only activated at the beginning of a time bin. In our experiment,
a time bin starts every 10ms and lasts 10ms. In most cases when the network process is
activated, this activation happens very quickly after the time bin start (within 100 𝜇s, as
some QNPU software processing is needed). For the client QNPU, the network process
never starts more than 100 𝜇s after a time bin start. For the server, in 13 out of 7200 DQC
circuit executions, the network process starts more than 100 𝜇s after a time bin starts,
since in these cases there was still a user process running. In Table 4.8, an overview of all
network process statistics is given.
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4.12 Multitasking experiments on NV
The multitasking evaluation was done in two parts:

• Quantum tomography while multitasking: Executing a single DQC application (on
client and server) and a single Local Gate Tomography (LGT) application (on client
only) where it was verified that the LGT application produces expected quantum results
(see Section 4.12.2).

• Scaling the number of applications: Executing 𝑁 DQC applications and 𝑁 LGT ap-
plications, where the classical device utilization metric was compared with a version of
QNodeOS without multitasking, and where we investigated the behavior of the QNPU
scheduler on the client in the context of multiple programs (see Section 4.12.3).

The network schedule was set as in the previous DQC experiment for direct comparison.

4.12.1 Mocked entanglement
For the multitasking evaluation, we focused on the behavior of QNodeOS, and opted not
to use the standard entanglement generation procedure in our NV QDevices as done in
the DQC experiments (Section 4.11) to allow for a simpler experiment. Instead, we used
a mocked entanglement generation process on the QDevices (executing entanglement ac-
tionswithout entanglement): Weak-coherent pulses on resonancewith theNV transitions,
that follow the regular optical path, are employed to trigger the CPLD in the entanglement
heralding time-window.

We stress that in our multitasking experiments, the exact same physical instructions
are sent to the QDevice as would be done when using real entanglement, and the exact
same responses are sent back. Therefore, QNodeOS needed to perform the same opera-
tions (including scheduling decisions) as it would have needed to do with real entangle-
ment. Furthermore, we aimed to keep the rate of entanglement ‘success’ in the QDevices
the same order of magnitude as that of the DQC experiments (10.14 EPRs/s compared to
2.37 EPRs/s in the DQC experiment) by keeping the mean-photon number of the weak-
coherent pulse comparable to 𝑝𝐶 and 𝑝𝑆 (in the order of ∼ 10−4).

4.12.2 Tomography results
We perform tomography when not multi-tasking, in order to verify our expectation that
multi-tasking should not affect the quantum performance of LGT: The tomography results
of the LGT application in the multitasking scenario are given in Figure 4.4c. We also ran
the same LGT application on the client in a non-multitasking scenario. In this case, the
client ran the LGT application and there was no DQC application run at all (the server did
nothing). The tomography results of LGT for the non-multitasking scenario are given in
Figure 4.18. The results are slightly different since the multitasking experiment was done
on a different day than the non-multitasking experiment. However, within error bars we
verify that multitasking does not affect the quantum performance of the LGT application.

4.12.3 Scaling to more than two applications
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Figure 4.18: Local Gate Tomography results on the client node in a non-multitasking scenario.

QNPU processes and steps
For the scaling evaluation, we did an experiment for each 𝑁 ∈ {1,2,3,4,5}. For each ex-
periment, the client CNPU started 𝑁 DQC-client programs and 𝑁 LGT programs concur-
rently (pseudocode in Appendix B), and the server CNPU started𝑁 DQC-server programs.
In this section we discuss the observed behavior of the client and server QNPUs during
these experiments. The client QNPU has 2𝑁 user processes (𝑁 DQC user processes and 𝑁
LGT user processes), each of which continuously receives quantum blocks in the form of
NetQASM subroutines (C1 for DQC processes and L1 for LGT processes). These 2𝑁 user
processes and the single client network process are scheduled by the client QNPU sched-
uler. The server has 𝑁 user processes (all for DQC) which are scheduled together with
the server network process by the server QNPU scheduler. Figure 4.19 shows a schematic
diagram of the nominal (most often occurring) pattern of scheduling.

In both S1 and C1, there is a single create_epr NetQASM instruction (see [26] and
Chapter 3) for creating entanglementwith the other node, followed by a wait_allNetQASM
instruction that waits until the request entangled qubit is delivered. The create_epr in-
struction is handled by the QNPU processor by sending the entanglement request to the
network stack. Upon executing the wait_all instruction, the user process executing this
subroutine (S1 or C1) goes into the waiting state (green stop sign in Figure 4.19). When
the network process completes (having created the entangled qubit), the user process can
be resumed, finishing the subroutine (C1 or S1).

On the server QNPU, for each DQC user process 𝑈 the following sequence is repeated:

• 𝑈 is in the idle state;
• NetQASM subroutine S1 is submitted by the CNPU to the QNPU, moving 𝑈 to ready;
• 𝑈 is activated; S1 is executed until it hits the wait_all instruction; 𝑈 goes into the
waiting state;

• The network process handles the entanglement request for S1 until EPR creation suc-
ceeds; 𝑈 goes into ready again;

• 𝑈 is activated; S1 is executed until completion; 𝑈 goes to idle;
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• NetQASM subroutine S2 is submitted by the CNPU; 𝑈 goes to ready;
• 𝑈 is activated; S2 is executed until completion; 𝑈 goes to idle.
The above sequence is for one execution of the DQC circuit (Figure 4.3a), and is hence
repeated many times.

On the client QNPU, for each DQC user process 𝑈 the following sequence is repeated:
• 𝑈 is in the idle state;
• NetQASM subroutine C1 is submitted by the CNPU, moving 𝑈 to ready;
• 𝑈 is activated; C1 is executed until it hits the wait_all instruction; 𝑈 goes into the
waiting state;

• the network process handles the entanglement request for C1 until EPR creation suc-
ceeds; 𝑈 goes into ready again;

• 𝑈 is activated; C1 is executed until completion; 𝑈 goes to idle.
The above sequence is for one execution of the DQC circuit (Figure 4.3a), and is hence
repeated many times.

On the client QNPU, for each LGT user process 𝑈 the following sequence is repeated:
• 𝑈 is in the idle state;
• NetQASM subroutine L1 is submitted by the CNPU, moving 𝑈 to ready;
• 𝑈 is activated; L1 is executed until completion; 𝑈 goes to idle.
The above sequence is for one execution of the LGT circuit (Figure 4.4a), and is hence
repeated many times.

For the above sequences for user processes, only the internal order is fixed; the time
in between steps depends on the QNPU scheduler, as well as the time at which the CNPU
submits subroutines. Furthermore, since there are multiple user processes at the same
time (for the server, only for 𝑁 > 1), the above steps happen for each user process 𝑈𝑖 and
the steps are interleaved. Figures 4.19 to 4.21 show examples of how these user processes
can be interleaved on both client and server QNPU.

DQC and LGT interleaving
We investigate the degree of interleaving the execution of DQC and LGT, in particular how
many LGT subroutines are executed when a DQC process is waiting: The client QNPU ex-
ecutes both DQC and LGT user processes. DQC user processes are often in the waiting
state. This happens when their C1 subroutine is suspended, waiting for the network pro-
cess to handle their entanglement request. The network process is only activated at the
beginning of a time bin, which happens only every 10ms, or when a user process finishes
executing a subroutine, the latter not occurring very frequently for low number of pro-
grams 𝑁 . Furthermore, DQC user processes can be in the idle state, namely when they
completed execution of C1 for some iteration 𝑖 of the DQC circuit, but are still waiting for
the CNPU to send C1 for iteration 𝑖 +1. In both these types of ‘gaps‘ (waiting or idle), LGT
subroutines can be executed (each taking ≈2.4ms). Table 4.9 lists the maximum number
of consecutive LGT subroutines that were executed in between DQC subroutines for both
types of gaps.
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Subroutine (Quantum block) execution order
We investigate whether the QNPU schedules quantum subroutines in a different order
than they arrived from the CNPU. As expected, we find that this is the case. Although
the QNPU handles subroutines from the CNPU first-come-first-served, some of these sub-
routines (in our experiments, precisely the DQC subroutines that wait for entanglement)
are put into the waiting state. This allows the QNPU to schedule other subroutines (in our
experiments, we observe LGT subroutines being executed), even if they arrived later from
the CNPU than the waiting DQC subroutine. Schematic overviews of such scheduling
that we observed are depicted in Section 4.13.

User process idle times
We examine the number of times, and the duration, that a user process is idle waiting for
submission of a subroutine from the CNPU as a function of 𝑁 : A user process is idle when
there are currently no subroutines associated with the process pending to be executed.
This means that the QNPU waits, at least for this user process, until the CNPU sends the
next subroutine for the user process. Table 4.9 lists the number of times and durations
of moments at which all client QNPU user processes are idle. This number and their
durations decrease for larger values of 𝑁 . This is expected since there are more active
processes, and hence more subroutines being sent from the CNPU for different processes.
In most cases, when finishing a subroutine for user process 𝑈 , there is then another user
process 𝑈 ′ already waiting with another subroutine to execute.

Network process start delays
We examine the scheduling behavior of the network process in relation to user processes.
We expect that due to the fact we use a non-preemptive scheduler, a network process may
not be activated at the start of a network time bin, due to a user process still being executed.
We investigate the occurrence of such events in our multi-tasking experiment, including
the delay with which the network process is started in such a scenario (see Table 4.9):
When a user process submits and entanglement request to the network stack, this request
is handled at the earliest when the network process is activated. This happens either at
the start of the next network time bin, or when a user process finishes a subroutine. There-
fore, there is often some time in between submitting the request and the network process
handling it. This waiting time is in most cases bounded by 10ms, since that is the length
of a time bin, and all time bins are assigned to networking in our experiment. However, in
some cases the client may still be executing a LGT subroutine when a new time bin starts,
delaying the start of the network process until this subroutine has finished. We expect
however that in all cases, as soon as such an LGT subroutine finishes, the QNPU sched-
uler then immediately schedules the network process, and not another LGT subroutine.
We found that the maximum difference between time bin start and network process start
is 2.59ms, which verifies that indeed at most one LGT subroutine is sometimes executed
during a time bin start (LGT subroutine execution duration being ≈2.4ms.)

We remark that with increasing 𝑁 , the network process is delayed more frequently
by a LGT subroutine. This is expected due to the fact more subroutines from different
user processes await execution. Consequently, with increasing 𝑁 it also happens more
frequently that the client and server do not start execution of the network process in the
same time-bin (see below).
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Client waits for server and vice versa
In order to better understand the concurrent execution of multiple applications (here DQC
and LGT) and corresponding programs, we investigate scenarios and times in which the
client waits for the server (or vice versa).

The client and server open an ER socket at the beginning of each DQC application. So,
during runtime, there are 𝑁 ER sockets opened on the server QNPU (one for each DQC
process) and𝑁 ER sockets opened on the client QNPU (one for each DQC process). In each
DQC application, the client QNPU user process for that DQC application is the ‘initiator’
(see Section 4.9.3). This means that as soon as the client user process submits a request for
entanglement (from within C1), both server and client QNPU start their network process
to handle it (at the start of the next time bin, and provided the network process should not
first handle a request from a user process from another DQC application).

It can happen that the client QNPU and serverQNPUdo not start their network process
at the same time bin. This mostly happens when one of the nodes is still busy executing
a user process subroutine when a time bin starts, as explained above. If this happens,
the QNPU that did already start their network process sends entanglement instructions to
their QDevice, but this will not result in physical entanglement attempts since the other
QDevice is not available (leading to a entanglement sync failure, see Section 4.9.6). Ta-
ble 4.9 lists the number of times that this happened.

For each of the 𝑁 DQC applications that are running on client and server, and for
each execution of the DQC circuit in those applications, there is a single entanglement
request from the client (in C1) and a single entanglement request from the server (in S1).
For each of these request pairs, the client at some point starts the network process and
handles this request, and the server at some point starts the network process and handles
its corresponding request. For each such pair of requests, the following scenarios can
happen:
1. Client and server QNPU start their network process in the same time-bin (one of them

may start a bit later than the start of the time-bin because it needs to complete a quan-
tum subroutine).

2. The client starts its network process in time-bin 𝑘 but the server starts it at some time-
bin > 𝑘. This happens when the server still has a qubit in memory when time-bin 𝑘
starts. Therefore, the server cannot activate its network process yet. A qubit still being
in memory happens when the server QNPU has executed S1 for some DQC process
(which produced an entangled qubit) but has not yet executed S2 (in which the qubit is
measured and hence freed).

3. The server starts its network process in time-bin 𝑘 but the client starts it at time-bin 𝑘 +
1. This happens (although rarely) when the client user process puts the entanglement
request to the network stack just before the start of 𝑘. The server will immediately start
attempts at 𝑘, but the client itself is still processing and ‘misses’ 𝑘; the client then only
starts at time-bin 𝑘 +1.
Table 4.9 lists how often the above scenarios happen for each 𝑁 .
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Figure 4.19: Nominal scheduling pattern on the client and server QNPUs when multitasking 1 DQC application
(on client and server) and 1 LGT application (on client only). Pictured is a slice of time (moving to the right)
in which a whole DQC circuit execution is realized, and 3 LGT circuit executions. Up-arrows indicate that
the process becomes ready (either since a subroutine was submitted from the CNPU, or because a requested
entangled qubit becomes available). Green blocks are NetQASM subroutines. Blue blocks are entanglement
generation. Ticks indicate completion of a subroutine (user process) or entanglement request (network process).
Stop sign means the user process goes into the waiting state. Time not to scale. Time bin length is 10ms.
Duration of L1 is ≈2.4ms. Duration of entanglement generation is non-deterministic. On the server QNPU the
following happens. S1 arrives from CNPU; DQC user process becomes ready. DQC user process is activated and
executes S1. The entanglement instruction inside S1 is reached; entanglement request is sent to network stack;
DQC user process becomes waiting. When time bin 1 starts, network process becomes ready. There is a pending
entanglement request, so network process is activated; QDevice attempts entanglement until success (after non-
deterministic number of time bins, blue tick). Requested entangled qubit is available: DQC user process becomes
ready again; is activated; executes S1 until completion; becomes idle. QNPU receives subroutine S2 from CNPU;
activates DQC user process; executes S2 until completion. At this point, the QNPU completed execution of
the current repetition of the DQC circuit. QNPU then receives again a subroutine S1 (for the next DQC circuit
iteration), and the same pattern repeats. On the client QNPU the following happens. C1 arrives from CNPU;
DQC user process becomes ready. DQC user process is activated and executes C1. The entanglement instruction
inside C1 is reached; entanglement request is sent to network stack; DQC user process becomes waiting. L1
arrives from CNPU; LGT user process becomes ready. LGT user process is activated; fully executes L1. When
time bin 1 starts, network process becomes ready. There is a pending entanglement request, so network process is
activated; QDevice attempts entanglement until success (blue tick). While network process is active, another L1
block arrives from CNPU (for next LGT circuit iteration) so LGT user process becomes ready. LGT user process
is not activated since network process is still running. Upon entanglement success, requested qubit is available;
DQC user process is activated to complete C1. QNPU has now completed execution of the current repetition of
the DQC circuit. LGT user process is activated to execute L1 which was still pending. The same pattern repeats.
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Figure 4.20: Example scheduling pattern of scenario with 2 DQC applications and 2 LGT applications (the symbol
and color coding is the same as in Figure 4.19). In this case, the client needs to wait (red shaded area) for the
server to finish S2 of DQC user process 1, before they can do entanglement generation for DQC user process
2. Scenario: 2 DQC applications (A1 and A2) are concurrently executed (A1: DQC-server program executed by
server DQC user process 1 and DQC-client program executed by client DQC user process 1; A2: DQC-server
program executed by server DQC user process 2 and DQC-client program executed by client DQC user process
2). Client and server successfully create entanglement for some DQC circuit execution 𝑖 for A1 (just before
time bin 𝑁 starts). Client finishes C1 for user process 1, and meanwhile the server finishes S1 for user process
1. The client has completed its part of DQC circuit execution 𝑖 for A1, but the server still needs to wait for S2
from the CNPU. Then, the client executes C1 for user process 2, which is the start of circuit execution 𝑗 for A2;
user process 2 becomes waiting. Meanwhile the server executes S1 for user process 2 which becomes waiting.
The client needs to wait until the start of the next time bin (𝑁 +1) until it can activate the network process to
handle the request. In the meantime, it can execute an L1 block. Time bin 𝑁 +1 starts and the client handles the
request. However, the server has received S2 for execution 𝑖 of A1, and starts executing it just before the time
bin starts. Only after finishing it, the server can start the network process, which picks up the request for A2.
While S2 is executing, the client QDevice tries to do entanglement attempts, but gets entanglement sync failures
(Section 4.9.6) since the server QDevice is busy with S2.
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Figure 4.21: Example scheduling pattern of multitasking one DQC application (on client and server) and one
LGT application (on client only), where the server must wait for client to finish its LGT user process (red area);
the symbol and color coding is the same as in Figure 4.19. At the start of time bin 𝑁 +1, the server activates the
network process to handle the request that was put by the previous S1 execution. However the client only starts
some time later during the time bin, since it first needs to finish executing L1 for the LGT user process.
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4.14 Traces
In our NV experiments, the CNPU, QNPU and QDevice, on both client and server nodes,
trace (i.e. record the timestamps of) events happening on their system. The events that
are traced on the CNPU and QNPU are listed in Tables 4.10 and 4.11, respectively. The
NV QDevice separately records messages received (physical instructions from the QNPU,
see Table 4.1) and responses sent back to the QNPU(see Table 4.2).

Figure 4.22 shows a full-stack trace slice of a single execution of the DQC circuit. This
particular sequence of events started at offset 60460ms from the start of the experiment.
The following events (among others) can be seen:
• At ≈ 60470ms: client CNPU sends subroutine C1 to the QNPU; it is received slightly
after on the QNPU (PROCMGR_SUBROUTINE_ADDED_P0).

• Slightly after 60470ms: the QNPU starts the user process containing C1; it hits the entan-
glement instruction andmoves the process to thewaiting state (PROCESSOR_WAIT_USER_PROCESS).

• At 60480ms: the first next time bin starts, starting the network process on both client
and server. This results in ENTANGLE commands being sent to the QDevices by both client
and server.

• Between 60480 and 60550ms: the two QDevices repeatedly attempt entanglement but
fail (each ENTANGLE instruction from theQNPU starts one batch; each ENTANGLEMENT_FAILURE
return message indicates the batch failed).

• Meanwhile at 60485ms, the server CNPU sends subroutine S1 to the QNPU.
• At ≈ 60552.5ms, the QDevices succeed in entanglement generation, producing a |Ψ+⟩
Bell pair.

• After this, the client and server finish C1 and S1, respectively. The client sends instruc-
tions for local gates ending with a MEASURE physical instruction. The server starts S1,
hits the recv_epr instruction, goes into the waiting state, gets immediately unblocked
(since the entangled pair was already created) and sends a bell state correction gate to
the QDevice (X180).

• At ≈ 60553.5ms, the client CNPU receives the result of C1 (RESULT_RCVD), and sends the
classical message 𝛿 to the server CNPU (CLAS_MSG_SENT).

• At ≈ 60554ms, the server CNPU receives 𝛿 (CLAS_MSG_RCVD).
• At ≈ 60557ms, the server CNPU sends S2 to the QNPU. The QNPU executes the user
process containing S2which involves sending local quantum instructions to theQDevice
ending with a measurement.

• At ≈ 60558ms, the QNPU sends the result of S2 to the CNPU.
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Event name Description
SUBROUTINE_SEND_ATTEMPT Try to send subroutine to QNPU

SUBROUTINE_SENT Subroutine sent to QNPU
RESULT_RCVD Subroutine results received from QNPU
CLAS_MSG_SENT Classical message sent to other node
CLAS_MSG_RCVD Classical message received from other node

Table 4.10: CNPU events that are traced (recorded with their timestamps) during application execution.

Event name Description
SCHEDULER_ARRIVE_USER_PROCESS A user process goes to the Ready state

SCHEDULER_SCHEDULE_USER_PROCESS A user process goes to the Running state
SCHEDULER_ARRIVE_NET_PROCESS Network process goes to the Ready state

SCHEDULER_SCHEDULE_NET_PROCESS Network process goes to the Running state

PROCMGR_SUBROUTINE_ADDED_P<i>
New subroutine received from CNPU for
process <i>

PROCMGR_SUBROUTINE_DONE_P<i> A subroutine for process <i> finished execution

PROCESSOR_START_USER_PROCESS
Processor starts or resumes executing a user
process

PROCESSOR_WAIT_USER_PROCESS
Processor suspends a user process and puts it
in the Waiting state

PROCESSOR_FINISH_USER_PROCESS Processor stops executing a user process

PROCESSOR_START_NET_PROCESS
Processor starts or resumes executing the
network process

PROCESSOR_FINISH_NET_PROCESS Processor stops executing the network process

QDEVICE_PRODUCE_<cmd>_CMD
Processor prepares <cmd> command for the
QDevice

QDEVICE_CONSUME_CMD
QDevice reads the next command from the
QNPU

QDEVICE_PRODUCE_OUTCOME QDevice sends result to the QNPU
PROCESSOR_CONSUME_OUTCOME Processor reads QDevice result

QNETWORK_ENT_PULL Network stack pulls instruction from the EGP
EGP_NEI_OK QEGP notifies that EPR pair has been created

Table 4.11: QNPU events that are traced (recorded with their timestamps) during application execution. <i> can
be any number from 0 to 9 (‘subroutine added‘ and ‘subroutine done‘ events are not traced for processes with
ID 10 or larger). <cmd> can be any physical instruction.
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Figure 4.22: Full-stack event trace for one particular execution of the DQC circuit. Between timestamps 60490
and 60550 are more entanglement attempts which are cut out for the sake of clarity.
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5
Qoala: an Application Execution

Environment for Quantum Internet
Nodes

In Chapter 4, we presented a first-of-its-kind operating system for programmable quantum
network nodes, called QNodeOS. In this chapter, we present an extension of QNodeOS called
Qoala, which introduces (1) a unified program format for hybrid interactive classical-quantum
programs, providing a well-defined target for compilers, and (2) a runtime representation of a
program that allows joint scheduling of the hybrid classical-quantum program, multitasking,
and asynchronous program execution. Based on concrete design considerations, we put for-
ward the architecture of Qoala, including the program structure and execution mechanism.
We implement Qoala in the form of a modular and extendible simulator that is validated
against real-world quantum network hardware (available online). However, Qoala is not
meant to be purely a simulator, and implementation is planned on real hardware. We eval-
uate Qoala’s effectiveness and performance sensitivity to latencies and network schedules
using an extensive simulation study. Qoala provides a framework that opens the door for
future computer science research into quantum network applications, including scheduling
algorithms and compilation strategies that can now readily be explored using the framework
and tools provided.

5.1 Introduction
Advances in quantum computing and quantum communication technologies are paving
the way for a quantum internet [31, 55], where quantum applications are executed across
multiple network nodes. Examples of such applications include quantum key distribu-
tion (QKD) [7, 22] and blind quantum computation (BQC) [2, 9] from a client to a quan-
tum cloud server. A multi-node quantum internet application is partitioned into separate
This chapter is based on the preprint: B. van der Vecht, A. T. Yücel, H. Jirovská, and S. Wehner. “Qoala: an
Application Execution Environment for Quantum Internet Nodes”. In: arXiv preprint arXiv:2502.17296 (2025).
DOI: 10.48550/arXiv.2502.17296.

https://doi.org/10.48550/arXiv.2502.17296


5

152 5 Qoala: an Application Execution Environment for Quantum Internet Nodes

single-node programs (e.g. a client program and a server program in BQC) that run con-
currently on different network nodes. To support security sensitive applications, each
program performs local classical and quantum computations on its own private node, and
programs interact with each other only via classical message passing and entanglement
generation. This is in sharp contrast to distributed quantum computing (see e.g. [13]),
where all nodes can be accessed and controlled by a single program.

The single-node programs that constitute a quantum internet application are hybrid
in nature (see Figure 5.1): they can contain both classical and quantum operations, and
these operations can be both local (executed fully on the node itself) or networked (inter-
acting with another node in the network). Quantum operations include quantum gates
and measurements, e.g. to perform a server computation in BQC, (local quantum), and
entanglement generation, e.g. to produce classical bits for a secret key in QKD (networked
quantum). Entanglement is a special property of two quantum bits (qubits) that forms
a key resource for quantum internet applications. All quantum operations are executed
on quantum processors that can store, manipulate and measure quantum information,
where small networks including such processors have been realized using different quan-
tum hardware platforms including, for example, nitrogen-vacancy (NV) centers in dia-
mond [43], and trapped ions [33]. Programs also need to perform classical operations,
such as message passing (networked classical, e.g. a BQC client program sending desired
measurement bases to the BQC server), and local classical processing (local classical, e.g.
post-processing measurement outcomes in QKD).

Realizing the execution of quantum internet applications presents unique challenges
(see Section 5.3): First, a program for a quantum internet application is not merely a hybrid
of classical and quantum code segments; these segments are also highly interactive: classi-
cal and quantum code may run concurrently, communicating and influencing each other.
E.g., a quantum circuit (a series of local quantum gates) may “pause” halfway, keeping
quantum states in memory, and wait for a value from a classical segment (e.g. a classi-
cal message from a remote node) before continuing. This interactivity makes arbitrary
quantum network applications more complex than simple prepare-and-measure quantum
network protocols that do not require this interactivity, such as QKD. Quantum memories
have limited lifetimes, meaning qubits are subject to decoherence, degrading their quality
over time. This introduces the need control the joint schedule of the classical and quantum
segments of the program to reach desired levels of application performance.

Second, a compiler should be able to optimize the whole program including both clas-
sical and quantum code, as well as to provide information that can be used in our archi-
tecture to align and inform scheduling decisions.

Finally, we are faced with a mix of time scales: on the one hand, entanglement gener-
ation requires a very precise network schedule that is agreed ahead of time between the
network nodes [16]. On the other hand, classical messages are exchanged asynchronously
between the nodes without guaranteed message delivery times. This motivates an archi-
tecture in which different segments of the system may operate at different levels of timing
precision. In Chapter 4, we presented QNodeOS, the first architecture for executing arbi-
trary programs on quantum network nodes. QNodeOS tackles the above challenges, but
we suggested that there is room for improvements in the architecture, including enabling
better support for compilation and gaining better scheduling control by putting compo-
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Figure 5.1: Example application consisting of two hybrid classical-quantum programs (on Nodes 1 and 2) includ-
ing (1) Entanglement generation between two qubits (circles) in a synchronized time slot (defined by network
controller). (2) A local measurement of qubit A at Node 1 resulting in a classical outcome bit (destroying the
qubit). (3) Outcome bit is stored in classical memory. (4) Communication of the classical bit from Node 1 to
Node 2 (taking non-deterministic time). (5) Execution of a quantum circuit on qubit B at Node 2 depending on
the classical bit. The quality of qubit B has degraded during the time elapsed since (1). (6) Node 2 measures qubit
B and outputs the classical result.

nents on the same board. In this chapter, we explore these improvements.

5.1.1 Main contributions
We propose an extension of the QNodeOS architecture for program execution on quan-
tum network nodes, called Qoala, that addresses the above challenges. Qoala is an exe-
cution environment tailored to programmable quantum internet nodes, accommodating
the hybrid, interactive, networked, and asynchronous nature of quantum internet
applications.

Unified program format for hybrid-classical quantum programs: Qoala defines
a unified program format for executables, encompassing classical and quantum (networked
and local) code, and defining basic blocks. This format is suitable for arbitrary quantum
network programs up to the most advanced stage [55]. This paves the way for a joint
optimization of the classical and quantum code by a compiler.

Runtime representation allowing scheduling: Qoala separates the static unified
program format from a runtime representation consisting of tasks. This paves the way to
design and implement algorithms for scheduling the quantum program in order to meet
deadlines imposed by decoherence of the quantum memory. To provide advice to the
scheduler on deadlines to achieve a desired program performance, programs can specify
advice for timing and prioritization depending on the quantum hardware capabilities of
the node. The separation of a static program from its runtime tasks also allows for the
programmer to define asynchronous code segments, the execution of which is decided
by the scheduler alone. This is the first architecture that allows for effective scheduling
control of hybrid interactive classical-quantum programs, thus addressing a critical issues
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in the successful execution of quantum internet applications.
Integrationwith quantumnetwork stack: Qoala integrates with the existing quan-

tum network stack [16], also present in QNodeOS [42], for realizing entanglement gener-
ation between nodes. This opens the door for Qoala to be implemented on such networks.

Implementation in hardware validated simulation: We implement the proposed
architecture as a modular and composable simulator, which enables the evaluation
of different execution strategies and techniques. The simulation is validated against real-
world quantum hardware implementations, opening the door to understand performance
tradeoffs and requirements for Qoala’s implementation. Specifically, the simulator allows
configuring different hardware parameters, latencies, and software component organiza-
tions, to evaluate implementation choices of Qoala in simulation.

Using the implementation we demonstrate the effectiveness and feasibility of our pro-
posed architecture on different types of quantum hardware, including its ability to sched-
ule andmultitask applications using a number of existing schedulingmethods (EDF, FCFS).
We continue to examine tradeoffs in the classical and quantum performance metrics of
using different types of scheduling approaches. We examine Qoala’s improvement over
NetQASM ([17] and Chapter 3) in enabling hybrid classical-quantum compilation possi-
bilities. Finally, we study trends in application performance when varying the amount of
concurrency, and examine the impact of a network schedule for entanglement generation
on the performance of Qoala.

We stress that Qoala is not just a simulator. Qoala is an architecture for executing
quantum network programs, and is not tied to specific implementations. The simulator
implementation of the architecture validates the design and opens possibilities for further
research. However, Qoala is also planned to be implemented as (part of) an operating
system running on real (quantum) hardware.

We highlight the role of Qoala in opening the door for computer science research. We
make our simulator available as open source [44], paving the way for computer scien-
tists to conduct further research, e.g., into the design of compilers, or schedulers that can
readily be tested using the simulator.

The remainder of this chapter is structured as follows. Section 5.2 compares our work
to related studies. In Section 5.3 we explain important context and terminology, followed
by considerations that we used to design our architecture (Section 5.4). Section 5.5 dis-
cusses our implementation and Section 5.6 provides evaluation results using this imple-
mentation. We conclude and give suggestions on future work (Section 5.7).

5.2 Related work
Networks of quantum processors have been realized using different quantum hardware
platforms including, for example, nitrogen-vacancy (NV) centers in diamond [43], and
trapped ions [33]. A first operating system QNodeOS [20] (see also Chapter 4) includ-
ing a network stack [42] has been designed and implemented on real quantum network
nodes based on NV centers in diamond. QNodeOS makes use of the NetQASM execution
framework [17] (see also Chapter 3), where a classical network processing unit (CNPU) dis-
patches NetQASM routines for execution by a quantum network processing unit (QNPU).
Our work builds on top of ideas of QNodeOS and NetQASM, but addresses critical chal-
lenges that were not handled by these previous systems, including the ability to schedule
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Figure 5.2: QNodeOS (Chapter 4) vs. Qoala capabilities.

hybrid programs and to optimize over the whole program code (see Figure 5.2 for a com-
parison). Building on the only such systems that have seen real world implementation
on quantum hardware, opens the door for a later implementation of Qoala on quantum
hardware by implementing an improved low-level classical control hardware architecture
(Section 5.4).

Research has been done on related topics, such as distributed quantum computing, or
hybrid (non-interactive) quantum computing. Hybrid classical-quantum programs have
been extensively studied in quantum computing, e.g. in the context of variational quantum
eigensolvers (VQE) [18, 39] or quantum approximate optimization algorithms (QAOA) [23].
However, they differ in two important aspects: although they are hybrid, they are not
interactive during the quantum execution: (1) classical and quantum segments do not run
concurrently, but quantum segments are executed in their entirety before returning to
classical segments, i.e. no quantum state is kept in the processor between the execution
of different quantum segments. (2) such hybrid programs lack network interoperability
(entanglement generation and classical message-passing between nodes), and also do not
have the same timing and flexibility requirements.

Distributed quantum computing [12] shares similarities with quantum internet appli-
cations but differs in several aspects. In the former, complete control is assumed over all
participating nodes, such as an application distributed across multiple cores on a single
chip [30, 40]. Generally, the capabilities of each core and the latencies between them are
fully known, allowing for precise scheduling and orchestration of individual programs
running on each core to optimize overall execution. In contrast, programs in quantum
internet applications operate independently (and may even be running on different quan-
tum hardware); therefore they have a degree of autonomy in their own scheduling, and
are not fully aware of the actions or timing of other programs.

Entanglement distribution in networks is another related topic that has been exten-
sively studied (see e.g. surveys [4, 56]). However, these works do not deal with executing
network applications, and give only predictions for applications in which entanglement
is immediately measured (e.g. QKD).

The concept of (soft) deadlines for program execution is of course well known from
classical real-time systems that are often used in domains where deterministic and time-
critical response is essential, such as automotive, aerospace and medical devices [11, 26,
38], including examples of systems with mixed timing precision [10]. We draw inspira-
tion from this domain, and the present architecture opens the door to explore algorithms
and concepts from this domain to be applied to the execution of quantum internet appli-
cations.
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5.3 Design considerations
5.3.1 Background and context
We first revisit some of the relevant background and context (see also Chapter 2).

Quantum nodes. A quantum internet connects quantum nodes on which quantum
programs may be executed. In their most general form, such nodes are processing nodes
that have a quantummemory to store quantum bits (qubits) on which quantum operations
(qubit initialization, quantum gates and measurements) can be performed. Pairs of nodes
can establish entanglement between them over a quantum network. Entanglement is a
special property of two qubits (an entangled pair), where one qubit is stored in thememory
of each node. Nodes can also exchange classical messages (e.g. via dedicated classical links
or the internet), where no guarantees are assumed on their message delivery times.

Programs. A program is a series of instructions to be executed by a node. Instructions
can be categorized into four types: local classical processing, classical message-passing,
quantum local processing (quantum operations), and remote entanglement generation. A
program can keep classical variables in a classical memory, and quantum variables (qubits)
in the node’s quantummemory during the execution. Multiple programs, each running on
their own node, together form an application (see Figure 5.1), e.g. QKD (two programs, one
per node), or secret sharing [28] (a program each on many nodes). Programs may involve
asynchronous operations (e.g. a server awaiting entanglement with multiple clients).

Network schedule. A quantum network stack has been proposed [16] and implemented
[42] that turns entanglement generation into a robust service independent of the quantum
hardware platform. Important for the design of an architecture for the execution of quan-
tum internet applications is that in this stack, the nodes will establish a network schedule
of time slots in which they will trigger entanglement generation (due to need to synchro-
nize entanglement generation at the physical layer [16] at high precision (ns)). This means
that once entanglement has been requested from the network, the nodes can use only
the slots in the network schedule to produce entanglement between them, imposing con-
straints on the ability to schedule applications. What’s more, in present day systems [33,
43] limitations in the physical devices prohibit the execution of local operations while en-
gaging in network operations (entanglement generation), creating further dependencies
between the local quantum execution and entanglement generation. As the specifics of
network scheduling [6, 50] are not within scope of this thesis, we assume the existence of
a network controller that takes application demand for entanglement and issues a network
schedule to the nodes. A schedule consists of sequential time slots, each with a start time
and duration, when the node will trigger entanglement generation. Nodes are not forced
to attempt entanglement in corresponding time slots, and can instead choose to do local
processing instead.

Performance metrics and noise. Quantum internet applications have classical outcomes
that are typically probabilistic in nature: (1) applications may intentionally do measure-
ments on quantum states that have fundamentally probabilistic outcomes (e.g. quantum
cryptography), (2) in practice, quantum hardware is imperfect (or noisy). That is, unde-
sired errors occur when performing operations (such as gates, measurements, or entangle-
ment generation) or when keeping quantum states in memory for too long.

In many quantum internet applications (e.g. BQC), a single execution of the applica-
tion can result in failure or success (e.g. a BQC client receives correct measurement results
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from the server program [36]). Applications are often executed many times, where out-
come statistics are computed in order to validate successful execution (e.g. by majority
of outcomes). We consider two metrics: a quantum metric — the success probability of
executing a single instance of the application (on average), and a classical metric — the
makespan, i.e. the average execution time of an application instance.

5.3.2 Considerations
Considerations can be categorized into three main groups: fundamental, technological,
and enabling.
Fundamental Considerations (1) Hybrid nature of applications (FC1): Quantum inter-
net applications inherently consist of both classical and quantum segments, as well as
local and networking operations. The execution environment must account for this hy-
brid nature, and the program structure should accommodate all types of operations. (2)
Interactive nature of applications (FC2): Quantum internet applications require classical
communication between nodes. This communication may take place in between classical
and quantum segments of a single program. This implies the need for application-level
interfaces between programs on different nodes, and for interfaces between classical and
quantum code segments on a single node. (3) Multitasking (FC3): Programs may spend
a significant amount of time waiting for messages from a remote node (ms), motivating
multitasking to make optimal use of the classical and quantum computing resources at
each node. This requires scheduling of time and resources.
Technological Considerations (1) Limited qubit lifetime (TC1): Quantummemory quality
degrades over time, presenting a significant challenge for the execution environment, espe-
cially in near-term hardware (sub-millisecond to multiple seconds memory lifetimes [32,
43, 47]). As such, there are natural deadlines to application execution after which a de-
sired performance (success probability) can no longer be reached. We thus desire that a
program specification allows indication of memory quality constraints (deadlines), which
the runtime environment can act upon (e.g. by appropriate scheduling or restarting). (2)
Integration of processing and networking (TC2): We assume that near-term nodes only have
a single quantum processor, which needs to perform both local quantum gates as well as
remote entanglement generation. That is, while performing local operations the proces-
sor is blocked from networking operations and vice versa, as is the case for all current
implementations [33, 43] but may be mitigated partially using future proposals [53]. The
node must hence allocate time for local computation while at the same time adhering to
the network schedule which constrains timing of the entanglement operations.
Enabling Considerations (1) Different compilation strategies and programming languages
(EC1): The execution environment should support various compilation strategies and ac-
cessible programming languages. In order to enable compilation, we furthermore want a
representation of the program that can be integrated with existing compiler frameworks.
(2) Different scheduling strategies (EC2): Since we expect that scheduling plays a vital role
in optimizing application performance, the execution environment should enable schedul-
ing, and support different scheduling algorithms and policies, allowing for their compar-
ison and evaluation. (3) Different (control) hardware implementations (EC3): The architec-
ture should make minimal assumptions on the classical control hardware, and be indepen-
dent of the choice of quantum hardware platform, allowing for integration with multiple
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(future) technologies such as NV centers [42] or trapped ions [21].

5.4 Architecture
Based on these design considerations, we propose Qoala (see Figure 5.4), an execution
environment for programmable nodes in a quantum internet. Provided minimal hard-
ware assumptions are met (Section 5.4.1), each node implements its own Qoala execution
environment, supporting a specific program structure (Section 5.4.2) and implementing a
specific runtime environment (Section 5.4.3) that is able to schedule tasks (Sections 5.4.4
to 5.4.6). Details in Sections 5.9 to 5.11.

5.4.1 Minimal hardware assumptions
Qoala is based on only a few core assumptions on the processing node (consideration EC3,
Figure 5.3):

CPS-QPS distinction. We assume the node distinguishes between a classical processing
system (CPS) managing classical computing resources (e.g. CPU, classical memory and
networking), and a quantum processing system (QPS), responsible for executing quantum
operations (gates, measurements, entanglement generation) on quantum hardware includ-
ing a quantum memory as in Chapters 3 and 4. We hence use a similar distinction as with
the CNPU and QNPU from Chapters 3 and 4 but with a slightly different terminology and
division of abstractions: the CPS is on the same level as the CNPU from Chapters 3 and 4,
but the QPS is either just the QNPU level or the combined ‘QNPU + QDevice’ level. Unlike
in the implementation of QNodeOS, we assume a shared classical memory is accessible to
both the CPS and QPS, enabling communication between the two processing systems, ad-
dressing the interactive property of quantum internet programs. The CPS can act as a
fully-fledged classical computer, and performs application-level classical communication
with other nodes as well as with a network controller who sets a network schedule. The
QPS can execute routines consisting of low-level quantum gates, basic classical control
logic (branching), and entanglement generation. This opens the door for the QPS to be
based on essentially any quantum hardware platform where a specialized microcontroller
is used to control the quantum hardware, and a separate microprocessor implements the
CPS, where a shared memory could be realized next to the two processors on-chip. The
scheduler controls both CPS and QPS execution, and may physically be realized on either
one.

Time granularity. Both CPS and QPS are assumed to have knowledge of time, albeit
operating with different timing precision (𝑚𝑠 precision for CPS mirroring node-to-node
communication latencies vs. 𝜇𝑠 and 𝑛𝑠 precision needed for synchronized entanglement
generation [16, 42].)

Network stack. A quantum network stack including a network layer [16] is imple-
mented on the node with which Qoala can interface. This stack can receive and fulfill
requests for remote entanglement generation.

5.4.2 Program structure
Qoala defines a hybrid format for programs, mapping naturally to their hybrid nature
(consideration FC1 in Section 5.3). A Qoala program is a combination of quantum and
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Figure 5.3: Minimal hardware assumptions for a single node. A Classical Processing System (CPS) can execute
classical code and can communicate classical messages with other nodes in the network. A Quantum Processing
System (QPS) can execute quantum code and can realize entanglement (quantum connections) with other nodes
in the network. The CPS and QPS are controlled by a scheduler, and have access to shared memory. In the
QNodeOS architecture [20], the CPS is realized as the CNPU, and the QPS as the combined QNPU-QDevice
system. For Qoala, we only focus on the classical-quantum distinction, and not the internal implementation
(such as a QNPU-QDevice separation), hence the different terminology.

classical instructions, organized into three main sections: host code (containing classical
instructions), local routines (containing local quantum instructions), and request routines
(for remote entanglement generation). This hybrid format allows a compiler to optimize
the whole program, including critical code paths with dependencies between classical and
quantum segments. Local routines and request routines can be triggered from within host
code as function calls, addressing the interactivity between them (consideration FC2).

A Qoala program is an executable and output of a compiler. The format is separate
from any high-level language in which a programmer might write code; hence Qoala in
theory allows for compatibility with any such language (consideration EC1). Entry and
exit points of a program are in host code. Figure 5.5 shows an example program in text for-
mat. We contrast Qoala’s program format with that of NetQASM (see [17] and Chapters 3
and 4), in which there was no way to compile across classical and quantum code segments.
A Qoala program has program arguments that are filled in during program instantiation
(Section 5.4.5).

Host code. Host code, executed on the CPS, encompasses local computation, control-
flow, inter-node messaging, and can initiate local and request routines. For example, in
a program that is part of a QKD application, classical post-processing (including sending
bases, local error correction, and privacy amplification [54]) would be represented in host
code. Host code is structured as a sequence of blocks, each holding a list of instructions.
Blocks dictate control-flow by ending with a (conditional) jump instruction (default: next
block in the sequence). This block division not only facilitates task creation and scheduling
(see Section 5.4.4) but also streamlines compiler integration (which may use blocks in its
intermediate representation). Blocks can contain metadata about their expected duration,
(relative) deadlines, and they may be inside critical sections, encompassing a sequence
of blocks with a maximally allowed execution duration. This metadata is propagated to
corresponding tasks and used by the scheduler in order to mitigate quantum decoherence
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Figure 5.4: High-level overview Qoala: An SDK allows program code in a high-level language (e.g. Python). A
compiler translates this code into aQoala program (specific compiler not in scope of this work). To run, a program
is instantiated with concrete values for program arguments. Tasks are created for the program instance, which
are scheduled and executed by the scheduler. Multiple program instances may exist at the same time (both
multiple instances of the same or different programs). All tasks from all instances are added to a single task
graph (Section 5.4.4) used by the scheduler.

due to limit qubit lifetime (consideration TC1). Asynchronous execution is possible by
‘submitting’ multiple routines for execution, and waiting for all of them to finish. At
runtime, the scheduler can decide in which order to execute the routines.

Local routine. A local routine (LR) represents a series of quantum operations (like gates
and measurement), to be executed by the QPS locally (no interaction with external nodes
or controllers). An LR may also contain limited classical computation and control-flow
code allowing for fast feedback, which can increase quantum performance (Section 5.3.1)
due to less decoherence. An updated version of NetQASM (see [17] and Chapter 3) is used
to represent the instructions, which allows both hardware-specific and hardware-agnostic
instructions. Therefore, the program format is compatible with different quantum hard-
ware. In contrast to [17], Qoala’s version of NetQASM does not have instructions for en-
tanglement generation (cleanly separating local and networked quantum operations) nor
‘wait’ instructions. This allows routines to be treated as atomic non-preemptable blocks.

Request routine. A request routine (RR) consists of a request for entanglement gener-
ation with another node, and represent requests to the node’s quantum network stack.
It can have local routines as callbacks, allowing quick local (quantum) processing of en-
tangled qubits on the QPS without returning to the CPS, decreasing waiting time and
decoherence.

5.4.3 Runtime environment
The Qoala runtime environment provides various resources that programs can leverage
during execution.

Exposed Hardware Interface (EHI). The Exposed Hardware Interface provides informa-
tion about the hardware and software capabilities and restrictions of the node and the
network, like available quantum memory and expected latencies. Each node provides
their own EHI which is used in capability negotiation (see below), and allows a choice of
executable code optimized by a compiler for those capabilities ahead of time.

Shared memory. To address the classical-quantum interactivity in programs, the CPS
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HOST
  ^b0: // start basic block b0
    run_request() : req1     // call req1
  ^b1: // start basic block b1
    angle = recv_cmsg(0)            // receive message
  ^b2 { deadline: [b0 = 0.1*T2] }: 
    m = run_routine(angle) : subrt1 // call subrt1
  ^b3:
    return_result(m)                // program result

ROUTINE subrt1           // Local routine definition
    params: angle        // Argument (in @input[0])
    result: m            // Result (in @output[0])
  NETQASM_START
    load C0 @input[0]   // load angle
    set Q0 0            // use qubit 0
    rot_y Q0 C0 4       // rotate qubit 0
    meas Q0 M0          // measure qubit 0
    store M0 @output[0] // return outcome
  NETQASM_END

REQUEST req1            // Request routine definition
    remote_id: alice_id // Node to create EPR pair with
    epr_sck_id: 0       // EPR socket ID
    num_pairs: 1        // Number of pairs to create
    virt_ids: all 1     // Store EPR qubit as virt ID 1
    type: create_keep   // Keep EPR qubit in memory

Figure 5.5: Example Qoala program containing a host sectionwith 4 blocks, a local routine (subrt1), and a request
routine (req1). Block b2 has a relative deadline to b0 of 0.1 times qubit noise parameter 𝑇2.

and QPS share data with each other via shared classical memory. Write conflicts are
avoided by explicit read/write rules for shared memory regions (Section 5.10.3). Our con-
ceptual model of a shared memory leaves open different implementation choices, includ-
ing a physical shared memory or a message-passing protocol. Calls in host code to local or
request routines use the shared memory to communicate routine arguments and results.

Quantum memory. Quantum memory is organized into a virtual quantum memory
space (VQMS) for each program instance (see Section 5.4.5 for instantiation), represented as
Unit Modules (specifying the qubit topology [17]). Qoala maps each VQMS to the physical
qubits available in the QPS. VQMS information like qubit connectivity and noise character-
istics is provided by the EHI, which a compiler can use to optimize a program. The VQMS
enables multitasking since programs have their own runtime context, while a scheduler
(Section 5.4.6) sees the whole physical memory space and can schedule programs accord-
ingly.

Remote interaction. For interaction with programs on remote nodes, the runtime pro-
vides classical sockets and EPR sockets based on [17]. Host code uses classical sockets for
sending and receiving messages; EPR sockets are indicated in request routines (see e.g.
Figure 5.5).

5.4.4 Tasks
We introduce tasks to enable multitasking (consideration FC3). Each task represents a
code segment of a running program with a context of runtime variables. Tasks have dif-
ferent types (Figure 5.6) based on the code they represent. By splitting a program into
distinct executable tasks, we can utilize the parallel execution on the CPS and QPS (by
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Task Type Processing
Sytem

Pre-
emptable Trigger Explanation

HostLocal CPS Yes - Local classical processing
(LCP)

HostEvent CPS Yes
Remote

message
arrival

LCP starting with
"receive classical message"

PreCall CPS Yes - Allocate shared memory and
write args for LR or RR call

PostCall CPS Yes - Free shared memory and
read results of LR or RR call

LocalRoutine QPS No - Execute a full Local Routine
(LR)

SinglePair/
MultiPair QPS No

Start of slot
in network
schedule

Create one or more pairs for
a Request Routine (RR)

SPCallback/
MPCallback QPS No -

Execute a callback LR after
creating one or more pairs

of an RR

(a)

PreCall(b1, s1)

PostCall(b1, s1)

LocalRoutine(s1)

PreCall(b1, s2)

PostCall(b1, s2)

LocalRoutine(s2)
^b1:
    submit_subroutine() : s1
    submit_subroutine() : s2
    join_routine(s1, s2)

PreCall(b2, req) SinglePair(req)

SPCallback(req, cb)

SinglePair(req)

SPCallback(req, cb)PostCall(b2, req)

^b2:
    run_request() : req

REQUEST req:
    callback: cb
    callback_type: sequential
    num_pairs: 2

Host code snippet Task Graph

(b)

Figure 5.6: (a) Overview of task types. (b) Examples of host code and corresponding task graphs. Shaded tasks
are executed by the QPS, the others by CPS. Top: asynchronous submission of local routines s1 and s2. The
graph consists of two separate chains of tasks and the scheduler can choose in which order to execute these
chains (possibly interleaved). Bottom: a request routine uses the callback entry to immediately add tasks for
executing local routine cb after each entangled pair generation.
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assigning tasks to the corresponding system), and we can interleave execution of multi-
ple programs by filling waiting times of one program by execution of tasks of another.
Code segments indicated to run asynchronously (Section 5.4.2) can also be represented by
tasks, the execution order of which can then be governed by a scheduler. Further, tasks
enable interleaving of local operations and quantum network (entanglement generation)
operations. A scheduler can choose when to execute entanglement tasks (with strict tim-
ing requirements from the network schedule) and when to execute local tasks (less strict
requirements), addressing consideration TC2.

Task graph. Tasks are organized in a task graph, a directed acyclic graph (DAG) where
each node represents a single task. Edges can be precedence constraints (task A must con-
clude before task B initiates) or relative deadlines (task B should start within maximum
duration 𝑡 after completion of task A). Using a task graph introduces a well-defined and
isolated scheduling problem: given a graph of tasks, which task(s) should be executed
next? Deadlines are used to assist the scheduler (see below) in mitigating the gradual
quality degradation of quantum states over time (decoherence) by choosing appropriate
tasks. Some tasks are only enabled after certain events happen. HostEvent tasks are en-
abled by an incoming classical message and SinglePair or MultiPair tasks are enabled by
network schedule timestamps. Tasks also have information about what quantummemory
they use, helping the scheduler decide which tasks it can execute at a given time.

Task creation. A task is created for a segment of a running program. If a program
segment is executed multiple times (e.g. because of a loop in the code), this results in
multiple tasks. A host code block is translated into a HostLocal task (block contains only
local instructions) or a HostEvent task (block starts with a ‘receive message’ instruction).
A local routine call is represented by (1) a PreCall task (CPS allocates shared memory
and writes routine arguments), (2) a LocalRoutine task (QPS executes routine), and (3)
a PostCall task (CPS reads routine results from shared memory). Request routine calls
are handled similarly (with SinglePair or MultiPair). MultiPair tasks can be more time-
and resource efficient since the network stack can handle multiple pair generations at
once. Callback tasks for local routines acting as entanglement generation callbacks allow
quick successive execution. For each task, its expected duration is calculated based on the
metadata of the corresponding block or routine in the program, together with information
from the EHI (see below). See Figure 5.6a for task types and Figure 5.6b for examples of
host code and corresponding tasks (details in Section 5.11).

5.4.5 Program instantiation
A program is part of an application that uses entanglement generation orchestrated by a
network controller (Figure 5.1). Therefore, before execution, the program must align with
the other programs of its application as well as with the network controller. (1) Capability
negotiation and entanglement demand registration. First, all collaborating nodes exchange
their EHI and agree on concrete values for deadlines and task duration estimations (using
advice pre-computed by the compiler). These values are needed to do effective schedul-
ing at runtime. Second, the nodes together register their entanglement demands to the
network controller, which then creates a network schedule based on these. This schedule
consists of time slots, each of which is assigned to an individual application instance (tu-
ple of program instances, one per node). (2) Program instantiation. Concrete values for
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program arguments can be filled in such as deadlines, durations and program-specific in-
put values. Typically, for a given application, the involved nodes create many program
instances of the same program (to gather statistics, Section 5.3.1).

5.4.6 Scheduling and execution
Tasks produced for program instances are executed by the node scheduler. This scheduler
manages a global task graph containing all tasks that have been created for instantiated
programs and that are awaiting execution. Among the tasks that do not have any prece-
dence constraints going into them (anymore), the scheduler continuously chooses the next
task(s) to execute. It may choose to run a task on the CPS and a task on the QPS in parallel.
If a task completed successfully, it is removed from the task graph, and precedence con-
straints and relative deadlines are updated accordingly. Based on the control flow of the
program that this task was for, new tasks may be created representing the next segment of
the program. These tasks are then added to the task graph. If a task failed (for example, en-
tanglement generation did not succeed for a SinglePair task), it either (a) remains in the
task graph and may be scheduled again at a later time, or (b) the whole program instance
is aborted, depending on the scheduler implementation. For predictable programs (where
control-flow and hence all corresponding tasks are known beforehand), their entire task
graph may be created ahead of execution (no need to add new tasks at runtime). Tasks for
entanglement generation (like SinglePair) additionally contain information about when
they are allowed to start according to the network schedule, allowing the scheduler to
make sure that the network schedule is respected. The scheduler allows pre-emption of
CPS tasks. For instance, the arrival of a message from a remote node might activate a
HostEvent task with high priority; if the CPS was executing another lower priority task,
it may be pre-empted and resumed at a later time. Since quantum tasks cannot in gen-
eral be rolled back or resumed (e.g. measurements are destructive and cannot be undone),
Qoala does not allow the pre-emption of QPS tasks. Although we define a scheduling
problem, and a framework for designing and implementing scheduling algorithms, we on
purpose do not prescribe an explicit implementation and leave the question of an optimal
scheduling approach open for further research (consideration EC2, see also Section 5.7).

5.5 Implementation
We implement our architecture in the form of an open-source simulator [44]. Implementa-
tion on real hardware requires developing new classical control hardware which is outside
the scope of this work. The simulator is built on top of NetSquid [15] which can simulate
quantum behavior as well as asynchronous classical processes. Specifically, NetSquid pro-
vides detailed configuration allowing for simulations of hardwarewith parameters that are
validated in real experiments, not possible using other simulators such as QuNetSim [19],
QNET [45], and QuISP [48]. SquidASM [46] simulates the software and hardware stack
used in the NetQASM/QNodeOS system mentioned in Section 5.2, and hence misses the
scheduling capabilities that we introduce in Qoala.

The simulator has on purpose been made modular and composable: components of
Qoala’s architecture (like CPS, QPS, scheduler, shared memory) are provided by the simu-
lator as building blocks that can be configured and put together in different ways (details
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Section 5.12). Both classical software parameters and quantum hardware noise models
can be configured. In this way, the simulator allows one to investigate different architec-
ture and parameter choices. In the simulator, a network of quantum nodes implementing
Qoala can be constructed, and Qoala programs can be submitted for execution to these
nodes. Static network schedules can be provided (capability negotiation and automatic
network schedule creation are not simulated). The simulator then executes the programs,
providing application results and statistics. Our implementation allows researchers to not
only test Qoala, but also configure parameters and architectures to investigate scheduling
algorithms and hardware implementation choices.

5.5.1 Scheduler implementation
In our implementation, we use a two-level hierarchical scheduler architecture, consisting
of a node-wide node scheduler which controls two processor schedulers, one for the CPS
and one for the QPS (Figure 5.7, details in Section 5.11). Such an approach has been used
in other contexts not related to quantum networks [24, 41].

Each scheduler maintains their own task graph. The node scheduler task graph con-
tains all tasks (CPS or QPS) that are to be executed. Each processor scheduler task graph
is a partial copy of the node scheduler task graph containing only the tasks that can be
executed by its own processor. Edges in the node scheduler graph between heterogeneous
tasks (i.e. between CPS and QPS tasks) are represented in the partial processor graphs by
an external-dependencies node attribute. When a processor scheduler finishes a task,
it is removed from the task graph and a signal is sent to the node scheduler. The node
scheduler updates its own task graph accordingly, and may then add new tasks to the task
graph of the processor scheduler. Write conflicts on the processor task graphs are avoided
since tasks can only be added by the node scheduler, and tasks can only be removed by
the processor scheduler.

The processor schedulers support both a first-come-first-serve (FCFS) and an earliest-
deadline-first (EDF) [49] scheduling mechanism. In our evaluation (Section 5.6), deadlines
are used as soft deadlines, i.e. there is no guarantee about meeting deadlines.
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Figure 5.7: Overview of our hierarchical scheduler implementation. The node scheduler maintains a graph of
all tasks. The CPS and QPS maintain partial graphs with only tasks they can execute themselves. Partial graphs
are updated by the node scheduler. The CPS scheduler has access to a buffer with classical messages from other
nodes, activating HostEvent tasks. The QPS scheduler has access to the network schedule, determining allowed
start times of Pair tasks.

5.6 Evaluation
All simulations were run on a machine using 80 Intel Xeon Gold cores at 3.9 GHz and 192
GB of RAM. Each subsection describes an independent evaluation (details in Section 5.13):

5.6.1 Demonstrating the architecture’s effectiveness
Wefirst validate the functionality of our architecture by demonstrating that applications of
different CPS-QPS interactions types can successfully be executed on two or more nodes.
Using our implementation (Section 5.5), we report that we successfully simulated the fol-
lowing applications: (A1) quantum key distribution (2 nodes, first QPS generating 103
EPR pairs followed by only CPS actions (classical computation and messaging)), (A2) blind
quantum computation (1 client and 1 server node, first QPS generating 2 EPR pairs, then
CPS performing rounds of classical messaging followed by local quantum gates by QPS),
(A3) single-qubit teleportation across two nodes (1 sender and 1 receiver node, QPS gener-
ating one EPR pair followed by QPS measurement by the sender, CPS classical messaging
and QPS local quantum gates by the receiver), (A4) a ping-pong application which re-
peats the single-qubit teleportation application to transfer states back and forth, and (A5)
a multi-node GHZ-state [25] creation application (3 nodes, QPS creating a tripartite entan-
gled state using multiple EPR pairs, using CPS classical messaging and QPS local quantum
gates).

Each program is instantiated 1000 times and all tasks are immediately added to the
task graph (since the the programs are predictable (Section 5.4.6)). Precedence constraints
are added such that instances are executed sequentially for simplicity. We use a fixed
network schedule (no demand registration (Section 5.4.5) since network schedule genera-
tion is not handled by Qoala itself and hence not part of the evaluation). To demonstrate
the hardware independent performance of Qoala, all simulations are performed on three
different hardware models: a generic quantum platform (uniform qubit connectivity and
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Figure 5.8: Self-preemption of a teleportation program. For certain durations of the time slot length (as fraction
of node-node communication latency, x-axis), the makespan is considerably higher (spikes in the plot). Reason:
a classical message arrives for some teleportation instance 𝑖, making the node scheduler choose to perform the
local quantum gates for 𝑖. During this, the time slot for instance 𝑗 > 𝑖 starts. Since the QPS is busy with 𝑖, it
cannot work on entanglement generation for 𝑗. Therefore, 𝑗 must wait for the next repetition of the network
schedule, leading to a higher overall makespan.

vanilla (hardware-agnostic) NetQASM instruction set ([17] and Chapter 3), and two mod-
els based on data validated on real hardware (NV centers [8, 27] and trapped ions [33]).
We observe successful execution (desired deterministic outcome when setting noise pa-
rameters (Section 5.3.1) to 0, and expected non-deterministic outcome distributions with
realistic noise parameters) for all types of applications (details in Section 5.13).

5.6.2 Demonstrating Qoala’s multitasking potential
Next, we demonstrate that Qoala can execute multiple instances of (different) programs
concurrently by interleaving. We examine (1) makespan decrease (Section 5.3.1) when in-
terleaving the instances compared to sequential execution, (2) whether makespan depends
on the network schedule.

We first evaluatemultitasking instances of the same application: teleportation (same as
A3 in Section 5.6.1), 100 instances, with a fixed network schedule (no time slots; entangle-
ment generation always allowed). Sequential scheduling of instances results in makespan
𝑁 ⋅𝐶𝐶 while interleaved scheduling (tasks for all instances created at the same time; no
precedence constraints between instances) results in ⌈𝑁 /𝑄⌉ ⋅ 𝐶𝐶 (number of instances
𝑁 , classical node-node communication latency 𝐶𝐶 , number of available memory qubits
at receiving node 𝑄). We also evaluate the effect of network schedules with time slots
(repeating pattern of slots assigned to A3 instances), and find that the time slots length
influences the makespan (Figure 5.8) in a non-trivial manner due to instances pre-empting
each other. BQC (same as A2 in Section 5.6.1, 100 instances) interleaved gives a makespan
decrease over sequential of (21%,56%,65%) for (2, 5, 10) server qubits, respectively. The
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Figure 5.9: Execution of interactive quantum program in the presence of a ‘busy’ CPS program (tasks with
duration 𝑓 ⋅ 𝐶𝐶 for fraction 𝑓 of the classical node-to-node latency 𝐶𝐶 , x-axis). Comparison of schedulers:
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (no scheduling nor interleaving), 𝐹𝐶𝐹𝑆: first-come-first-serve scheduler (interleaving possible, no dead-
lines to prioritize quantum tasks), 𝐸𝐷𝐹 : earliest-deadline-first scheduler (with deadlines to prioritize quantum
tasks). The interactive program regularly waits (duration 𝐶𝐶), with quantum states in memory, for incoming
classical messages. Task interleaving allows busy CPS tasks to fill waiting times. EDF leads to higher success
probability than FCFS, showcasing usefulness of deadlines. Tradeoffs: The baseline of sequential execution
leads to the best possible success probability (quantum metric) at the expense of longest makespan. EDF allows
a lowering of makespan (classical metric) at the expense of a lower succ. prob. (quantum metric).

network schedule affects the makespan decrease: doubling the time slot length results in
a smaller decrease (12%,48%,48%).

We then execute instances of different applications and again examine the effect of the
network schedule on the makespan decrease: 50 QKD (A1 in Section 5.6.1) and 50 BQC
(A2) instances give a makespan decrease of 9.5% (fixed schedule which first has time slots
for QKD and then for BQC) and 39% (schedule with time slots alternating between QKD
and BQC). We observe that multitasking can lead to improved (lower) makespan and that
the network schedule can have considerable impact on the makespan.

5.6.3 Improvement over NetQASM architecture
We compare the Qoala architecture with the NetQASM runtime approach for executing
programs on a node from [17] and show that Qoala provides new compilation possibilities
(optimizing across classical and quantum code) and can lead to a better application execu-
tion makespan. We consider a remote measurement-based quantum computing program
written in Python (the program format of the NetQASM runtime) which has suboptimal
code logic on purpose. Executing this program in the NetQASM runtime performs worse
(success probability 66%) than the same program but compiled manually into a Qoala
program and executed in the Qoala runtime (succ. prob. 82%). We note that manual
compilation allowed optimization that is not possible in the NetQASM program format,
exemplifying the new compilation potential provided by Qoala.
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(a)

(b)

Figure 5.10: Concurrent execution of teleportation (A3 in Section 5.6.1) and a local application (only preparing
and measuring qubits). (a) Success probability of teleportation for different numbers of teleportation and local
instances. More local instances lead to lower teleportation succ. prob. (effect more pronounced with few telepor-
tation instances). (b) Success probability of local program. More local instances lead to lower local succ. prob.,
independent of the number of teleportation instances.



5

170 5 Qoala: an Application Execution Environment for Quantum Internet Nodes

5.6.4 Tradeoffs between classical and quantumperformancemetrics
We compare different scheduling modes enabled by Qoala and evaluate tradeoffs between
makespan and success probability, noting that theNetQASM runtime did not allow schedul-
ing at all (Figure 5.9). We expect that interleaving of tasks reduces the makespan, but may
lead to lower success probability due qubits degrading inmemorywhile tasks wait for each
other. We compare 3 scheduling modes: no scheduling (baseline), FCFS scheduling, and
EDF scheduling. We consider a simple runtime scenario with (1) a local quantum program
which alternates between doing local quantum gates and waiting for a remote classical
message before continuing and (2) a classical ‘busy program’ consisting only of CPS tasks
(duration defined as fraction of classical node-node latency). We find that (a) scheduling
(FCFS or EDF) decreases success probability (EDF less than FCFS); impact larger for long
task durations, but (b) EDF provides a better makespan than no scheduling. Note that
the baseline necessarily gives the highest success probability due to no waiting, but at the
expense of maximal makespan (sequential execution).

5.6.5 Success probabilities with quantum multitasking
Next, we consider a quantummultitasking scenario wherewe investigate trends in applica-
tion success probability while varying the number of concurrent applications (Figure 5.10).
In addition to a teleportation application (A3 in Section 5.6.1), the receiver node also ex-
ecutes multiple instances of a local quantum program (only applying quantum gates).
Whenever the receiver node must wait for classical messages to come in for A3, it can
work on its local quantum programs. We find that success probability of both types of
programs decreases in the presence of another program.

5.6.6 Performance sensitivity
Finally, we investigate the influence of classical message-passing latencies, internal laten-
cies, and network schedule contents on application success probability of BQC (A2, 100
instances). We find that the duration of sending classical messages between nodes has a
large impact on the success probability: node-node latencies [0.01, 0.1, 1] times the qubit
coherence time lead to success probabilities [0.89(2), 0.83(2), 0.54(4)], respectively. Inter-
nal latencies (between CPS and QPS, and between the scheduler and CPS or QPS) only
have a significant impact when message-passing durations are low (0.01 times the qubit
coherence time). We also compare different network schedules (simple linear repeating
schedule where each client-server pair gets a time slot consecutively; slot length is varied).
We obtain success probabilities [0.90(2), 0.69(3), 0.48(4)] for time slot lengths [0.01, 0.1, 1]
times the qubit coherence time, respectively.

5.7 Conclusion
Qoala is the first architecture for executing quantum applications that addresses the need
for scheduling and compiling hybrid classical-quantum programs for a quantum inter-
net. This allows Qoala to ensure successful execution of quantum programs even in the
presence of limited quantum memory lifetimes, and opens the door for a compile time op-
timization of the hybrid classical-quantum program. By building on an existing quantum
network stack [16, 42] and the implementation of QNodeOS on quantum hardware [20,
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42] (see also Chapter 4) we pave the way for the real-world implementation of Qoala in
a platform-independent way on diverse hardware platforms including NV centers in dia-
mond [42, 43] and trapped ions [32, 33]. Such an implementation may require, however,
a new classical control hardware as opposed to [20, 42], e.g. by placing CPS and QPS on a
single board with access to an on-chip shared memory.

Our work opens the door for further computer science research in executing quan-
tum internet applications: Advanced scheduling algorithms: More sophisticated scheduling
strategiesmay lead to higher success probabilities and lowermakespanwhen concurrently
executing multiple program instances, where inspiration may come from [1, 5, 41, 51]. In
the quantum domain, missing the deadline will result in a degradation of the success prob-
ability as a function of the time by which the deadline was exceeded. This suggest the use
of time-utility functions (TUF, see e.g. [29, 37]) to inform scheduling decisions, where it is
an open question how such TUF could even be defined in the quantum domain. Our work
also raises the question on what fundamental tradeoffs between the classical (makespan)
and quantum (success probability) performance metrics are at all possible. Compiler de-
sign: Qoala’s program format now allows for a compiler design that takes into account
the hybrid and networked nature of programs. It is an open question to design compil-
ers enabling effective code optimization and translation of different types of high-level
code into executables. Capability negotiation: We assumed that the compiler provides ad-
vice that the nodes use in a capability negotiation and demand registration (Section 5.4.5).
It is an open question how to best compute such advice, and find efficient protocols for
negotiating capabilities and register demand. Network schedule: As expected, our evalu-
ation shows that application performance depends on the network schedule, where we
emphasize that ensuring network service is out of scope for Qoala as an environment for
executing applications. This highlights a need for understanding the quality of service
a quantum network should provide, as well as to design good network scheduling algo-
rithms to satisfy them, in order to achieve good application performance.

5.8 Data availability
The implementation of Qoala as a simulator can be found online [44]. The code and data
supporting the evaluation can be found at [14].

5.9 Program structure
This section provides details about the structure and contents of Qoala programs as de-
scribed in Section 5.4.2.

5.9.1 Program representation and components
A Qoala program is represented in human-readable text format. This allows one to di-
rectly write Qoala programs, although our vision is that programmers write their code in
a higher-level language, and that a compiler translates this into a Qoala program.

In the main text, some parts of example programs were omitted for brevity. In Fig-
ure 5.11 we show an example of a full Qoala program.

A Qoala program encompasses both classical and quantum code. These different code
segments are put into different sections in the program. The host section contains Qoala-
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Host code which is to be run on the CPS. The NetQASM section contains local routines
(containing NetQASM instructions) which are meant to be run on the QPS. The request
section contains specifications of requests for remote entanglement generation, to be han-
dled by the QPS. Furthermore, there is a meta section which defines global information
about the program. Each of these sections is explained in more detail below.

In all of the sections in a Qoala program, values may be replaced by a template. A
template represents a value that is not defined for the program, but is filled in at program
instantiation. For example, a QKD program might have a request object in its request
section containing the entry num_pairs: N, where N is a template. This construction
allows one to instantiate the same program with different values for N, and it is hence not
needed to define separate programs for each different number of pairs to generate in the
QKD program.

5.9.2 Program metadata
Program metadata contains:

• Name: The name of this program.
• Parameters: Global arguments to this program. These arguments may be used as tem-
plates (see above) in the program. Examples may be the name of a remote node, or the
number of EPR pairs to generate.

• Classical Sockets: A mapping from IDs to remote node names. The IDs are local iden-
tifiers that can be used by Host code to distinguish different classical sockets.

• EPR Sockets: A mapping from IDs to remote node names. The IDs are local identifiers
that can be used by Host code to distinguish different EPR sockets.

5.9.3 Host section
The host section contains code the be executed by the CPS. It consists of both local pro-
cessing (like calculation and conditional logic), and communication (sending and receiving
classical messages to and from other nodes in the network).

The language in which host code is represented is called QoalaHost. This is a low-
level instruction set with well-defined semantics and types, and is meant to be executed
by a virtual machine or interpreter. One can also imagine QoalaHost code to be translated
(either ahead-of-time or at just-in-time) to native CPS code, such as x86 or ARM. However,
for the sake of simplicity and of implementation independence, we treat here only the
QoalaHost language and its semantics itself.

The QoalaHost (QH) language was designed to resemble intermediate representations
as found in LLVM [34] and MLIR [35], such that integration with future compilers is ac-
cessible. Specifically, one may imagine a compiler that uses MLIR for its intermediate
representation (IR). When this compiler then produces the host code of the program, the
translation of its own IR to QoalaHost code should be straightforward.

Blocks. The Host section consists of a list of blocks. A block consists of a block
metadata and a list of QH instructions.

The block metadata contains the following entries:
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• Name: The name of this block. Host code can refer to this name in QH branch instruc-
tions.

• Type: one of CL, CC, QL or QC (see below).
• Deadlines: Deadlines relative to other blocks. The deadlines are specified in terms of
EHI arguments. Upon program instantiation, concrete values are filled in based on the
actual EHI value.

• Time hints: Duration estimate of executing the block. The estimates are specified in
terms of EHI arguments. Upon program instantiation, concrete values are filled in based
on the actual EHI value.

5.9.4 Block types
Blocks are categorized into the following four types:
• CL: Classical Local. The block contains only instructions that are classical, local and
only involve the CPS

• CC: Classical Communication. CPS-only instructions, but startswith a ‘receivemessage‘
instruction.

• QL: Quantum Local. The block contains calls to local routines.
• QC: Quantum Communication. The block contains calls to request routines.

QoalaHost Language. The QH Language describes a fixed set of QH instructions as
well as QH Variable types. Host code is represented as blocks containing QH instructions.
These instructions may be directly interpreted by a processor or OS.

All basic values are 32-bit signed integers (i32) or floating point values (f32). A variable
in Host code can either be
• singleton variable, holding one basic value. Has a single name. E.g. x
• vector, holding an arbitrary number of basic values. Has a single name. E.g. x<>

TheQHLanguage allows for expressingmultiple variables in a single expression, called
a tuple. A tuple holds a fixed number of basic values. E.g. tuple<x, y, z>.

Local Memory. Host code is assumed to have access to a local memory space that is
logically organized as a mapping of names to values. For example, the local memory may
at some point during execution contain the following items:

1 ”var_x” -> 3
2 ”my_vec” -> <1, 2, 5>

Shared Memory. The QH Language does not allow direct access to shared memory.
Only variables from the local memory can be used. When calling and getting results
from Local Routines (LRs) and Request Routines (RRs), values are automatically moved
from local memory to shared memory. Shared memory is discussed in more detail in
Section 5.10.3.
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Block format
A block has the following format:

0 ^#name {type = #type}:
1 <list of QH instructions >

Example:
0 ^b0 {type = CL}:
1 x = assign () : 3
2 return_result(x)

QH instructions
A full list of QoalaHost instructions is given in Figure 5.12.

5.9.5 NetQASM section
The NetQASM section consists of a list of local routines that are to be executed on the
QPS. A local routine is only executed when it is called by host code using the run_routine
instruction. A local routine may be run multiple times, again depending on the host code.

The instructions of a local routine are represented using the NetQASM 2.0 format. This
is an updated format compared to NetQASM 1.0 as presented in [17] and Chapter 3.

NetQASM values. All values are 32-bit signed integers. Floating-point values are not
supported. Angles for qubit rotations must be expressed as discrete values. Booleans are
represented as follows: true is the 32-bit 0 value, false is the 32-bit 1 value. Any other
32-bit value is not a valid boolean. The reason for keeping the different types limited is to
keep the QPS implementation simple.

NetQASM Local Memory The QPS is expected to have a local memory (only acces-
sible by the QPS itself) consisting of 64 32-bit registers:
• 16 R registers: R0 to R15

• 16 C registers: C0 to C15

• 16 M registers: M0 to M15

• 16 Q registers: Q0 to Q15

The four groups of registers are not inherently different. A compiler producingNetQASM
code may use a certain group only for certain values, but this is not mandatory.

Shared Memory See Section 5.10.3 for more information about Shared Memory and
arrays. The QPS is expected to have access to Shared Memory (accessible by both the CPS
and QPS). Two shared memory Arrays are available:
• an @input array, containing the LR input variables
• an @output array, with space to write the LR results to

The length of the @input array is equal to the number of LR parameters. The length of
the @output array is equal to the number of LR return variables.
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• The @input and @output arrays are the only arrays accessible from within the LR.
• The QPS can only read from the @input array (see load instruction below).
• The QPS can only write to the @output array (see store instruction below).

NetQASM Instruction Each instruction consists of the instruction type followed by
a list of operands. The text form of an instruction is:

1 instr_name op0 op1 ... opn

where the number of operands can be 0 or more (no limit).
A list of all NetQASM 2.0 instructions can be found in Figure 5.13.
These instructions can be classified as:

• shared memory access: load for reading LR inputs, store for writing LR results
• classical logic and control-flow: like set , add, or jmp
• quantum operations: gates from a specific flavor [17]

NetQASM instructions representing quantum operations are either core instructions or
flavor-specific instructions. Core instructions are quantum hardware independent and are
expected to be compatible with any QPS implementation. On top of the core instructions,
flavor-specific instructionsmay be added and supported by a specific QPS implementation.
For example, a QPS that controls an NV-centre may support NetQASM instructions of
the NV flavor, which contain gate operations only available on this particular quantum
hardware. Which NetQASM instructions are supported by the QPS is exposed to higher
layers (including a compiler) as part of the EHI (see Section 5.10.5). Using this information,
a compiler may produce optimized NetQASM code using the flavor-specific NetQASM
instructions.

Note that NetQASM 2.0 does not contain (in contrast to NetQASM 1.0 [17]):
• Allocation instruction (qalloc in NetQASM 1.0): The memory manager allocates virtual
qubits based on the LR header information. Note that qubit allocation is different from
qubit initialization (init instruction).

• Instructions for EPR generation: This is handled by request routines.
• Waiting instructions: Waiting is handled by the scheduler choosing which tasks to exe-
cute when.
Local Routine A Local Routine (LR) represents a block of local program operations

that are executed on the QPS. An LR is:
• local: there is no interaction whatsoever with external nodes or controllers
• atomic: execution of an LR cannot be pre-empted; when the QPS start executing an LR,
it will not do anything else until the LR has finished (unless an abort happens)
An LR consists of a header and a body. The header contains metadata such as the

resource usage of the LR, and its input/output interface. The body contains the actual
instructions in the form of NetQASM code.
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Arguments and Returns. An LR may have zero or more arguments: values that are
provided to the LR only at runtime. They can be seen as inputs or parameters to the LR.
These values appear in the @input array in shared memory, and are put there by the CPS.

An LR may also have zero or more returns: values that are provided by the LR only
at runtime. They can be seen as outputs or results of the LR. These values must be written
to the @output array in shared memory, and can then be used by the CPS.

Arguments and returns are always 32-bit signed integers. There is no limit to the
number of arguments and returns an LR may have.

Local routine header. A Local routine (LR) header contains the following entries:
• Name: The name of this LR. Host code refers to this name in a run_routine QoalaHost
instruction.

• Uses: A list of virtual qubits IDs. These refer to all virtual qubits that are used by this
LR. At runtime, the memory manager makes sure that these virtual qubits are allocated
before execution of the LR starts. (They may already have been allocated earlier; alter-
natively the memory manager allocates them just before the LR starts.)

• Keeps: A list of virtual qubit IDs. These refer to all virtual qubits that should remain
allocated after finishing the LR. (They may e.g. be used in subsequent LRs.)

• Args: A list of names for the arguments of the LR. They are in the same order as how
their values are accessible from the @input Array.

• Returns: A list of names for the returns of the LR. They are in the same order as how
their values are put into the @output Array.
Quantummemoryusage annotations. TheLRheader indicateswhich virtual qubits

are used and freed by the LR. This makes it possible for the scheduler to decide which Lo-
calRoutine task it may schedule when. For more information, see section Section 5.11 on
scheduling. The following listing provides an example:

0 SUBROUTINE subrt1
1 uses: 0, 1
2 keeps: 0
3 returns: m0
4 <rest omitted >
5 NETQASM_START
6 set Q0 0
7 set Q1 1
8 init Q0
9 init Q1

10 cnot Q0 Q1
11 meas Q1 M1
12 store M1 @output [0]
13 NETQASM_END

This local routine initializes virtual qubits 0 and 1 and then applies a CNOT gate on them.
It measures qubit 1 and stores the output in the @output array which can then be accesses
by host code using the name m0. Using the metadata, a scheduler knows the following
information even before executing this LR: virtual qubits 0 and 1 need to be free before this
LR can run, and after running the LR, qubit 1 is free (again) but qubit 0 remains occupied.
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It is the responsibility of the compiler to make sure that the use and free values corre-
spond to the actual NetQASM code.

5.9.6 Request section
The callback (which is an LR) can have zero or more arguments (just like standard LRs).
The runtime values of these arguments are provided by the QPS directly. A Request Rou-
tine (RR) may have zero or more returns: outputs or results of the entire RR. The only
allowed results at this moment are measurement outcomes in case of Measure Directly
requests. RR callbacks can have (just like standard LRs) zero or more returns.

Request routine header A Request routine (RR) header contains the following en-
tries:

• Name: The name of this RR. Host code refers to this name in a run_request.
• Returns: A list of names for the returns of the RR. Since the returns can only be mea-
surement outcomes, these names are either (1) the name of a single QoalaHost vector
variable which will hold all outcomes, or (2) a list of names for each individual outcome
stored in its own QoalaHost int variable.

• Callback type: Either sequential or wait_all. Sequential means that the callback of
this RR is executed for each generated pair, before the next pair is generated. Wait-
all means that the callback is only executed once, namely when all pairs have been
generated.

• Callback: The name of the LR that acts as the callback for this RR. Can be empty (no
callback is used).

Request Parameters

• Remote ID: The node ID of the remote node with which to generate entanglement.
• EPR Socket ID: The ID of the EPR Socket to use.
• Number of pairs: The number of entangled pair to generate.
• Virtual IDs: A specification of the virtual IDs to assign to the entangled qubits. This
may be in one of three formats:
– all <N>: all qubits get virtual ID <N>. This might be used when a sequential callback is

used that measures the qubit immediately after generating; thereby freeing up virtual
ID <N> immediately for the next pair

– increment <N>: the first generated qubit gets ID <N>, the next <N> + 1, etc.
– custom <N1, N2, ...>: a custom list of IDs that should have the same length as the

number of pairs
• Fidelity: The desired fidelity F of the generated pairs. If this request routine is for
multiple pairs and the callback type is wait_all, this value is used to specify that all
pairs, after they have all been created, should have fidelity at least F. (How this is realized,
which may involve multiple retries, is up to the network stack implementation in the
QPS.)

• Type: Create andKeep (create_keep), MeasureDirectly (measure_directly), or Remote
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State Preparation (rsp) [16].
• Role: create or receive. These roles are used to break symmetry between two nodes
participating in entanglement generation (they should always have different roles). The
‘create’ node is the initiating one.
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1 META_START
2 name: bob
3 parameters: alice_id
4 csockets: 0 -> alice
5 epr_sockets: 0 -> alice
6 META_END
7

8 ^b1 {type = QC}:
9 run_request(vec <>) : req

10 ^b2 {type = QL}:
11 vec <m0> = run_routine(vec <>) : post_epr
12 ^b3 {type = CL}:
13 return_result(m0)
14

15 SUBROUTINE post_epr
16 params:
17 returns: m0
18 uses: 0
19 keeps:
20 request:
21 NETQASM_START
22 set Q0 0
23 meas Q0 M0
24 store M0 @output [0]
25 NETQASM_END
26

27 REQUEST req
28 callback_type: wait_all
29 callback:
30 return_vars:
31 remote_id: {alice_id}
32 epr_socket_id: 0
33 num_pairs: 1
34 virt_ids: all 0
35 timeout: 1000
36 fidelity: 1.0
37 typ: create_keep
38 role: receive

Figure 5.11: Example Qoala program which creates an EPR pair with remote program Alice, measures the local
qubit, and returns the classical outcome value. Meta section. Defines the name of this program, global arguments
(in this case: the node ID of the Alice program), classical sockets used (mapping local socket ID to name of
remote node, and EPR sockets used (similar mapping)). Host section. In this example: consists of three blocks
(b1, b2, b3). b1 calls request routine req (no result values). b2 calls local routine post_epr, resulting in a
classical vector with one value (m0). b3 returns m0 as the result of this program. Local routines section. Consists
of a single local routine called post_epr. It requires the virtual qubit (see Section 5.10) with ID 0 to be allocated,
and acts on this qubit. Upon finishing the local routine, this qubit is not in use anymore (the keeps entry is
empty). The NetQASM code represents measuring the qubit, and then storing the result (in register M0) to the
@output array (see Section 5.10), which is in shared memory and can be accessed by host code by the name m0.
Request routines section. Consists of a single request routine called req. It represents a request to the network
stack for generating a single entangled pair (num_pairs is 1), which is kept in memory (typ: create_keep; not
measured immediately). This program acts as a ‘receiver’ for entanglement generation (role attribute), which
breaks symmetry in the entanglement generation process (the remote Alice program must have role: sender).
Symmetry breaking is needed for the network stack to organize the entanglement generation. No callbacks are
used, and all qubits (in this case: one) are stored in virtual qubit 0.
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Instruction Syntax Semantics

Assign %name = assign() : <i32> Put the immediate value <i32> in variable %name

Add %result = add(%op1, %op2) Add the values of variables %op1 and %op2 and store the
result in variable %result

Subtract %result = sub(%op1, %op2) Subtract the value of variable %op2 from the value of variable
%op1 and store the result in variable %result

Multiply constant %result = mult_const(%op) : <i32> Multiply the value of variable %op with the immediate <i32>
and store the result in %result

Bit-conditional
multiply constant

%result = bcond_mult_const(%op1, %op2)
: <i32>

If %op2 is 0, do nothing
If %op2 is 1, multiply the value of variable %op1 with the
immediate <i32> and store the result in %result
If %op2 is any other value, Undefined Behavior

Jump jump() : #name Jump to the Block with name #name

Branch if equal beq(%op1, %op2) : #name Jump to the Block with name #name only if the values of
variables %op1 and %op2 are equal

Branch if not equal bne(%op1, %op2) : #name Jump to the Block with name #name only if the values of
variables %op1 and %op2 are not equal

Branch if greather
than

bgt(%op1, %op2) : #name Jump to the Block with name #name only if the value of
variable %op1 is greater than the value of variable %op2

Branch if less than blt(%op1, %op2) : #name Jump to the Block with name #name only if the value of
variable %op1 is less than the value of variable %op2

Send message send_msg(%csck, %op) Send the value in variable %op over the classical socket to
another node

Receive message %msg = recv_msg(%csck) Block and wait until a message is received over the classical
socket and store its value in the variable %msg

Run Local Routine %result = run_routine(%args) : #name Run the Local Routine named #name with arguments %args
and store results in %result

Run Request
Routine

%result = run_request(%args) : #name Run the Request Routine named #name with arguments %args
and store result in %result

Submit Routines submit_routines(%args) : [#name] Submit a batch of Local and/or Request Routines with names
[#name] for execution, with arguments %args

Join on Routine
results

%results = join_routines() : [#name] Block until the results are available for all Local and/or Request
Routines with names [#name] and store the results in %results

Figure 5.12: Overview of all host code (QoalaHost) instructions, their syntax and their semantics.
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Instruction Syntax Semantics

Set set <reg0> <imm0> Put the immediate value <imm0> in register <reg0>

Add add <reg0> <reg1> <reg2> Add the values in <reg1> and <reg2>  together and store the
result in <reg0>

Subtract sub <reg0> <reg1> <reg2> Subtract the value in <reg2> from the value in <reg1> and store
the result in <reg0>

Multiply mul <reg0> <reg1> <reg2> Multiply the values in <reg1> and <reg2> together and store
the result in <reg0>

Quotient quot <reg0> <reg1> <reg2> Divide the value in <reg1> by the value in <reg2> and store the
quotient in <reg0>

Remainder rem <reg0> <reg1> <reg2> Divide the value in <reg1> by the value in <reg2> and store the
remainder in <reg0>

Jump jmp <imm0> If the current instruction index (in the LR) is n, the next
instruction to execute is at index n + imm0

Branch if equal beq <reg0> <reg1> <imm0>
If the value in <reg0> is equal to the value in <reg1>, the next
instruction to execute is at index n + imm0, otherwise it is at
n + 1

Branch if not equal bne <reg0> <reg1> <imm0>
If the value in <reg0> is not equal to the value in <reg1>, the
next instruction to execute is at index n + imm0, otherwise it is
at n + 1

Branch if greater or
equal

bge <reg0> <reg1> <imm0>
If the value in <reg0> is greater than or equal to the value in
<reg1>, the next instruction to execute is at index n + imm0,
otherwise it is at n + 1

Branch if less or
equal

ble <reg0> <reg1> <imm0>
If the value in <reg0> is less than or equal to the value in
<reg1>, the next instruction to execute is at index n + imm0,
otherwise it is at n + 1

Load from shared
memory

load <reg0> @input[<reg1>] Load the value at index "value of <reg1>" in the input array and
store the value in <reg0>

Store to shared
memory

store <reg0> @output[<reg1>] Store the value of <reg0> in the output array at index "value of
<reg1>"

Figure 5.13: Overview of all NetQASM classical instructions, their syntax and their semantics. Quantum instruc-
tions depend on the particular flavor [17] that is being used.
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5.10 Runtime environment
In this section we provide more information about the runtime environment described in
Section 5.4.3. Figure 5.18 provides an overview of the runtime architecture.

5.10.1 Program instantiation
A program instance is a Qoala program with additional runtime- and context-specific in-
formation that is supplied when preparing execution of the program. A program instance
represents a single execution of a Qoala program.

The additional information consists of: concrete values for the global arguments of
the program, the Exposed Hardware Info (EHI), an explicit Unit Module (see below), and
results from capability negotiation.

Based on the above additional information, a program instance can be created which
has the following properties:
• Program ID: A unique ID for distinguishing multiple program instances that all need
to be scheduled and run.

• Program: The static Qoala program (without runtime information).
• Program Inputs: The values for the program’s global arguments.
• Unit Module: The virtual quantum memory space that this program instance may use
at runtime.

• Timing Information: Deadlines for individual tasks. Computed using both the pro-
gram’s timing hints and information from the EHI.
Figure 5.14 provides a schematic example of program instantiation.

5.10.2 Program versus program instance
A program is typically the output of a compiler. For example, a compiler might produce a
BQC-server program, including global arguments for the remote ID of the client (i.e. the
client ID is not hardcoded into it). A program instance represents a single execution of a
Qoala program with concrete values for its global arguments. For instance, the client ID
now has the explicit value of 3, since the remote client happens to have node ID 3. Often
many program instances may be created for a single program. For example, if 1000 runs
of the BQC program are desired, 1000 program instances are created based on the single
Qoala program.

Batches. A program may be submitted for execution in a batch.
A batch 𝐵 consists of a program 𝑃 , the number of execution 𝑁 and inputs for each

execution. Based on this, 𝑁 program instances are created.

5.10.3 Shared memory
The CPS and QPS need to exchange information in order to execute local routines and
request routines. They do so using shared memory. The CPS writes routine arguments
and reads results. The QPS reads routine arguments and writes results.

Conflicts in writing and reading are avoided by the runtime itself (it is not assumed
the hardware itself enforces read-only or write-only regions of memory). This is achieved
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Program Instance

Program

Host Block b1
exp duration: N * QL duration

Host Block b2
exp duration: 1 * CC duration

EHI:

QL duration = 100us
CC duration = 2 ms

decoherence rate: 0.2

Instantiate

Host Block b3
exp duration: 1 * QL duration

deadline rel. to b1: 10 QL duration / decoh_rate

Host Block b1
exp duration: 1 ms

Host Block b2
exp duration: 2 ms

Host Block b3
exp duration: 100 us

deadline relative to b1: 5 ms

Global arguments: N

Global arguments:

N = 10

Figure 5.14: Schematic example of program instantiation. A program containing global arguments (𝑁 ) is instan-
tiated using a concrete value for the arguments (𝑁 = 10) and the EHI (containing values for the expect duration
of a QL block, the expected duration of a CC block, and the qubit noise parameter expressed as the decoherence
rate). This results in a program instance for which the expected durations have concrete values.

by strict read/write rules in Qoala: certain regions can only be written to by the CPS (QPS)
while only be read from the QPS (CPS). No region can be written to by both CPS and QPS.
Note that this design leaves open how the shared memory can be implemented: either as
real physical shared memory, or as a message passing protocol.
Arrays. The shared memory is logically divided into array elements that can be allocated
only by the CPS (Figure 5.15). Each element can hold a single 32-bit signed integer. The
CPS can allocate shared memory space by specifying a size, resulting in an allocated array.
An array is an ordered list of array elements. One can think of an array being a region in
Shared Memory consisting of a consecutive list of elements.

Shared Memory is similar to the heap in classical OSes. Allocating an array is similar
to malloc in C. Each program instance has its own view in the global shared memory,
just like in classical OS, each program instance (or ‘process’) has its own virtual memory
space.

Elements that have been allocated but never written to have an undefined value.
An array may be named; it is written as @arrayname. An element in an array at index

i is written as @arrayname[i]. This notation is used in NetQASM(Section 5.9.5).
Arrays are used to share data between the CPS and the QPS. They are used for execut-

ing both LRs and RRs.
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Shared Memory

@array_name
@array_name[2]

@other_array

Figure 5.15: Schematic overview of shared memory, which is organized as arrays. Arrays are allocated by the
CPS with a certain size (the number of array elements). Each array element holds a single classical value. Arrays
are identified using the [@<name>] syntax. Particular array elements may be accessed using the [index] syntax.

RR_in

RR_out

CR_inLR_inLR_out

QPS - LR processor

QPS - RR processor

CPS

Figure 5.16: Shared memory regions. The CPS writes local routine arguments to the LR_in section and request
routine arguments to the RR_in section. The CPS reads local routine results from the LR_out section and request
routine results from the RR_out section. The QPS reads local routine arguments from LR_in and write results to
LR_out. The QPS reads request routine arguments from RR_in and write results to RR_out. Callbacks for request
routines use the separate CR_in section to use request routine results as arguments of the callback local routine.

The shared memory is logically divided into 5 regions (Figure 5.16). Each of the regions
contains array elements, and in each region, arrays can be allocated. The regions are only
a logical division, where each arrays in a certain region are only used to hold data for a
specific use-case:

• LR_in: Argument values for LRs. CPS writes, QPS reads.
• LR_out: Result values for LRs. CPS reads, QPS writes.
• RR_in: Argument values for RRs. CPS writes, QPS reads.
• RR_out: Result values for RRs. CPS reads, QPS writes.
• CR_in: Argument values for callback LRs. QPS reads, QPS writes.

Arrays for local routines. Before an local routine (LR) can be executed, two arrays must
be allocated by the CPS:
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• An array in the LR_in region. Its size needs to match the number of arguments for the
LR.

• An array in the LR_out region. Its size needs to match the number of results of the LR.

The array in the LR_in region can be accessed by the NetQASM code in the LR body
using the name @input. The array in the LR_out region can be accessed by the NetQASM
code in the LR body using the name @output.

Note that each program instance allocates (at runtime) its own arrays. Each individual
LR in each individual program instance has access to two arrays called @input and @output,
but in practice there can hence be multiple ”input” and ”output” arrays, each occupying a
different part of the global Shared Memory.

Arrays for request routines. Before a request routine (RR) can be executed, multiple
arrays must be allocated by the CPS:

• An array in the RR_in region.
• An array in the RR_out region. Its size needs to match the number of names in the
”Results” entry in the RR header.

• An array in the CR_in region. Its size needs to match the number of arguments for the
callback LR of the RR.

The results of the RR are written to the array in the RR_out region. Arguments to the
callback LR are written to the array in the CR_in region.

5.10.4 Quantum memory
The QPS is assumed to have access to a quantum random access memory (QRAM) con-
sisting of qubits. Each qubit is a single location in the QRAM and can hold a single 2-
dimensional quantum value, like |0⟩ or |+⟩.

We distinguish between (1) the physical quantum memory space (PQMS) consisting of
physical qubits and (2) a virtual quantummemory space (VQMS) for each program instance
(Section 5.4.3).

The topology (qubit connectivity) and noise characteristics of the PQMS are exposed as
part of the EHI. Each program instance has access to its own VQMS, which is represented
as a Unit Module ([17] and Chapter 3). The VQMS for each program instance is created
when instantiating the program. This can be seen as virtual memory allocation for the
program. At runtime, the VQMS of each running program instance is mapped to the
PQMS.

UnitModules. AUnit Module (UM) describes the topology of a VQMS as well as its noise
characteristics. That is, a UM contains:

• Qubit Info: a list of all qubits available in the VQMS, with for each qubit the following
information: its virtual ID, whether it is a communication qubit or not, and its decoher-
ence rate per second.

• Gate Info: a list of all quantum gates and quantum local operations available for the
qubits in the VQMS, with for each item the following information:
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Unit Module for
program instance 1

Unit Module for
program instance 2

Physical quantum
memory

maps to

maps to

Figure 5.17: Example of a physical quantum memory available in a node (four qubits) and two allocated unit
modules. The colors of the qubits represent the physical locations they map to. Note that the top-left qubit of
Unit Module 2 is not currently mapped and that it also cannot be mapped. Therefore, tasks that require program
instance 2 to use a third qubit cannot be executed at this time.

– Which NetQASM instruction it is represented by (may be in a particular NetQASM
flavor).

– On which sets of qubits the gate or operation can be applied.
– Its duration.
– The decoherence rate per second on each of the qubits it acts on.
A UM can be seen as a subset of the full EHI of a node, specifically containing a subset

of all qubits available in the node.
Qubits in the Unit Module are called virtual qubits. They are identified by their virtual

IDs and are mapped to physical qubits (Figure 5.17).

Memory manager. Quantum memory allocation and freeing is handled by a memory
manager, which lives in the QPS. The memory manager keeps track of the unit modules
of all program instances, and maps virtual qubits to physical qubits.

Before starting a local routine or request routine, the memory manager allocates the
corresponding qubits. For example, if a local routine for program instance 𝑃 defines in
its metadata (see Section 5.9) that it uses virtual qubits 0 and 1, the memory manager
allocates virtual qubits 0 and 1 (if not already allocated). This involves finding currently
unused physical qubits and mapping new virtual qubit to these free physical qubits.

5.10.5 Exposed hardware interface
TheQoala execution environment exposes certain information related to the hardware and
software capabilities. This information includes noise characteristics of quantum memory
and of entanglement generation, as well as estimates of classical latencies.
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All information that is exposed falls under the Exposed Hardware Interface (EHI). The
EHI can be divided into node info and network info.
EHI Node Info. The EHI node info consists of:
• Qubit Info: a list of all qubits available at the node, with for each qubit the follow-
ing information: (1) its ID, (2) whether it is a communication qubit or not, and (3) its
decoherence rate per second.

• Gate Info: a list of all quantum gates and quantum local operations available at the
node, with for each item the following information: (1) which NetQASM instruction it
is represented by (may be in a particular NetQASM flavor, (2) on which sets of qubits
the gate or operation can be applied, (3) its duration, and (4) the decoherence rate per
second on each of the qubits it acts on.

• NetQASM flavor: a list of all supported NetQASM instructions. All NetQASM instruc-
tions mentioned in Gate Info must be in this list

• Classical latencies: Covers (1) duration of executing a single QH Instruction, and (2)
duration of executing a classical NetQASM instruction (Note that the duration of quan-
tum operations is covered by the Gate Info).

EHI Network Info. The EHI network info consists of Link Info for each link in the
network, with (1) the expected duration of generating an entangled pair on this link, and
(2) the expected fidelity of generating an entangled pair on this link.

5.10.6 Sockets
Connections with remote nodes are modeled as sockets. Each program instance running
on a node has access to classical sockets an EPR sockets. Classical sockets represent an
endpoint for connections over which classical messages can be sent. A program instance
can have classical sockets with any other nodes in the network.

An EPR socket represents an endpoint of a quantum connection. Through the EPR
socket, a program can ask for entanglement with a remote node.
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5.11 Scheduling and execution
This section provides more details about tasks, task creation and scheduling (Section 5.4)
as well as about our scheduler implementation Section 5.5.

5.11.1 Tasks
Task creation. Tasks are created based on the blocks in a program. Specifically, a block
𝐵 in the program is mapped to a set 𝑇(𝐵) of tasks. Since a block may be executed multiple
times, multiple instances of 𝑇(𝐵) can be created at runtime.

CL and CC blocks are mapped to CPS tasks only. QL and QC blocks are mapped to a
sequence of CPS- and QPS tasks.

• CL block. A single HostLocal task is created.
• CC block. A single HostEvent task is created.
• QL block. If there is a single run_routine call, a LocalRoutine task is created for theQPS,
as well as a PreCall tasks and a PostCall task for the CPS. Two precedence constraints
are added: the PreCall task precedes the LocalRoutine task, and the LocalRoutine task
preceded the PostCall task. If there is a join_routines on multiple local routine, mul-
tiple PreCall-LocalRoutine-PostCall task sets are created, without any dependencies
between the task sets.

• QC block. If the request that is called from this block is for a single pair, a SinglePair
task is created. If the request is for more than 1 pair, a MultiPair task is created. In both
cases, an additional PreCall and a PostCall task are createdwith precedence constraints
like for QL blocks. If there is a join_routines on multiple request routines, multiple
PreCall-Pair-PostCall task sets are created, without any dependencies between the
task sets.

Figure 5.20 shows an overview of blocks and corresponding tasks and their precedence
constraints.

Predictable vs unpredictable programs. Tasks are created based on the contents of a
program instance, and their precedence relations are defined by the control-flow of the
blocks in the program’s host code. Because of jump and branch instructions in the host
code, a block may be executed zero, one or multiple times. Furthermore, the exact number
of executions of a block may not be known ahead of time. For example, a program might
loop through a sequence of blocks by using a conditional branch instruction at the end of
the last block of the sequence. The condition could depend on a runtime value (such as
the result of a quantum measurement). We say that control-flow is predictable if it can be
completely known before runtime. Unpredictable control-flow, on the other hand, depends
on values available only at runtime. For predictable programs, all its tasks can be created
before runtime. For unpredictable programs, (some of) its tasks must be created on-the-fly
during program execution. Figure 5.19 illustrates the difference between predictable and
unpredictable programs.

Task execution. Tasks are executed by the CPS or the QPS, and the specific operations
involved depend on the type of the task.
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Figure 5.19: Schematic overview of the difference between predictable and non-predictable programs. The
control-flow of the predictable program (left) is linear: first block 1 is executed (calling local routine (LR) 1),
then block 2 (calling request routine (RR) 1), and finally block 3. Therefore, the number of tasks is fixed and
known before execution. The non-predictable program is similar but after executing block 2, control-flow may
go back to block 1 (again), depending on a runtime value (e.g. the result of RR 1). Hence, the number of times
that blocks 1 and 2 are executed is not known beforehand, and therefore the number of tasks is also not known.

HostLocal task execution. A HostLocal task 𝑡ℎ𝑙 = (𝑃,𝐵) for program instance 𝑃 and
block 𝐵 is handled by executing each of the instructions in 𝐵. When the task finishes, the
name of the next block to execute is recorded. If 𝐵 ends with a branch instruction, this is
the target block; otherwise it is the next block in the program (if this was the last block,
the next block is nil).

HostEvent task execution. A HostEvent task represents a block 𝐵 of type 𝐶𝐶 , which
must start with exactly one recv_cmsg instruction. Handling the task involves reading
a message from the message buffer and assigning it to the result variable of the receive
instruction. Then, the remaining instructions in 𝐵 are executed just like in a HostLocal
task.

PreCall task execution. A PreCall task corresponds to a LR call instruction in Host
code. The CPS allocates space in the shared memory for arguments and results. It then
writes argument values to the shared memory.

PostCall task execution. A PostCall task corresponds to a LR call instruction in Host
code. The CPS reads the results from the shared memory and copies them to the corre-
sponding variables in the host local memory.

LocalRoutine task execution. A LocalRoutine task is executed by the QPS. It involves
the following steps. First, based on information in the uses/keeps metadata, virtual quan-
tummemory is allocated. Then all NetQASM instructions are executed, whichmay involve
loading values from shared memory (reading arguments) and storing values to shared
memory (populating results). Finally, quantum memory is freed.

SinglePair task execution. A SinglePair task is executed by the QPS. First, arguments
are read from shared memory. Then, an EPR request (see Section 5.11.5) is sent to the
network controller.

MultiPair task execution. A MultiPair task is executed by the QPS. First, arguments
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^b3:
  submit_subroutine() : subrt2
  submit_subroutine() : subrt3
  join_routine(subrt2, subrt3)

^b2:
  m = run_subroutine(x) :
subrt1

^b1:
  m = recv_cmsg()

^b0:
  send_cmsg(m)

^b4:
  run_request() : req1

REQUEST req1:
  callback: 

^b5:
  run_request() : req2

REQUEST req2:
  callback: subrt2
  callback_type:
sequential
  num_pairs: 2

Figure 5.20: Overview of different host blocks with corresponding tasks. In the rightmost column, tasks with
a dark background are QPS tasks, the others are CPS tasks. This example shows that tasks contain data about
the program segment they correspond to, such as LocalRoutine tasks having the name of the routine they are
executing.
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are read from shared memory. Then, multiple EPR requests are sent to the network con-
troller. Whether these requests are all sent at once or consecutively and waiting for in-
termediate responses is up to the implementer; the choice may depend on efficiency and
resource considerations.

SinglePairCallback and MultiPairCallback task execution. First read results (from a
SinglePair or MultiPair task) from shared memory. Then execute the callback routine
just like a LocalRoutine task.

Deadlines. Deadlines can be specified for blocks relative to other blocks using the syntax:

0 ^block_0:
1 ...
2

3 ^block_1 { deadlines = [b0: 3ms] }: // relative deadline of 3 ms compared to
block_0

4 ...

A relative deadline to some block 𝐵 is always with respect to the last task in 𝑇(𝐵), for
the last task set instance (in case of multiple execution of this task set). The deadline value
may be an explicit value (like 3𝑚𝑠) or it can be in terms of EHI values, such as for example
0.1 ∗𝐶𝐶 where 𝐶𝐶 is the expected classical node-node latency provided by the EHI.

Precedence constraints. By default, blocks are executed in the order they are given in
the program. Blocks ending with a jump or branch instruction define precedence con-
straints at runtime for unpredictable programs.

Scheduling happens at runtime and involves choosing which task to execute next. In
Qoala, there are three schedulers per node: the CPS scheduler controls task execution on
the CPS, the QPS scheduler controls task execution on the QPS, and the node scheduler
controls the CPS- and QPS schedulers. The CPS- and QPS schedulers are both processor
schedulers.

5.11.2 Scheduling
In this and the following sections we describe the scheduler from our implementation
(Section 5.5).

Each scheduler maintains their own task graph, which is a directed acyclic graph
(DAG) in which the nodes represent tasks and edges represent precedence constraints.
The node scheduler task graph contains all tasks (CPS or QPS) that are to be executed.
Each processor scheduler task graph is a partial copy of the node scheduler task graph
containing only the tasks that can be executed by its own processor. Edges in the node
scheduler graph between heterogenous tasks (i.e. between CPS and QPS tasks) are rep-
resented in the partial processor graphs by the external dependencies node attribute. See
Figure 5.21 for an example. When a processor scheduler finishes a task, it is removed
from the task graph and a signal is sent to the node scheduler. The node scheduler up-
dates its own task graph accordingly, and may then add new tasks to the task graph of the
processor scheduler. Note that although the processor task graphs are accessible by both
the owning processor scheduler and the node scheduler, there are no read/write conflicts
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Task ID: 2
Type: PreCall

Task ID: 5
Type: PostCall

Task ID: 1
Type: HostLocal

Task ID: 3
Type: MultiPair

Task ID: 4
Type: MPCallback

Task ID: 6
Type: HostLocal

Task ID: 2
Type: PreCall

Task ID: 5
Type: PostCall

Ext. dep: 4

Task ID: 1
Type: HostLocal

Task ID: 6
Type: HostLocal

Task 4

Project onto CPS
scheduler

Figure 5.21: Example of a mapping from a full task graph (containing both CPS and QPS tasks) to a partial
graph (containing only CPS tasks). Task 5 depends on task 4, which is external from the perspective of the CPS
scheduler (indicated using the external-dependencies attribute). Note that Task 3 is not needed at all in the
partial graph; only the dependency on task 4.

since tasks can only be added by the node scheduler, and tasks can only be removed by
the processor scheduler.

Task graph. A task graph consists of
• tasks to be scheduled (the nodes),
• precedence constraints between the tasks (precedence edges),
• external precedence constraints for tasks in the case of processor task graphs (annotated
on the nodes),

• relative deadlines between tasks (deadline edges),
• trigger annotations for some tasks (like incoming messages or network schedule times-
tamps)
Upon program instantiation, all created tasks are added to the node scheduler task

graph, and the relevant tasks are added to the processor schedulers. The number of tasks
that are created (and can hence be added to the task graphs) depends on the predictability
of the program. During runtime, the node scheduler may create new tasks based on the
control-flow of the program.

Task graph splitting. The node scheduler creates a heterogenous task graph consisting
of both CPS and QPS tasks. This graph needs to be split into a partial CPS and a partial
QPS graph. This is done using the following algorithm.

We consider creating the partial graph for the CPS, and hence the QPS is ‘the other
processor’. For the partial graph of the QPS the procedure is exactly the same but with
reversed roles.

For a heterogenous task graph 𝐺 containing tasks 𝑇 (all tasks for both CPS and QPS),
precedence constraints 𝑃 ((𝑡1, 𝑡2) ∈ 𝑃 means that 𝑡1 must precede 𝑡2), compute the partial
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CPS graph 𝐺𝐶𝑃𝑆 as follows:

• Split 𝑇 into a set 𝑇𝐶𝑃𝑆 consisting of all tasks that run on the CPS, and 𝑇𝑄𝑃𝑆 consisting
of all other tasks in 𝑇 . 𝐺𝐶𝑃𝑆 will consist of only tasks in 𝑇𝐶𝑃𝑆 .

• Let 𝑃𝐶𝑃𝑆 ⊂ 𝑃 consist of all precedence constraints (𝑡1, 𝑡2) where 𝑡1 ∈ 𝑇𝐶𝑃𝑆 and 𝑡2 ∈ 𝑇𝐶𝑃𝑆 .
These constraints will remain the same in 𝐺𝐶𝑃𝑆 since they are between tasks in 𝑇 ′.

• Compute the ‘immediate cross-predecessors’ set 𝐼 of all tasks 𝑡𝑐𝑝 ∈ 𝑇𝑄𝑃𝑆 such that there
exists a task 𝑡 ∈ 𝑇𝐶𝑃𝑆 and (𝑡𝑐𝑝 , 𝑡) ∈ 𝑃 . In other words, 𝐼 contains all tasks running on the
QPS that are immediate predecessors of CPS tasks.

• For each 𝑡𝑖 ∈ 𝐼 , compute the ‘closest CPS ancestor’ task 𝑡𝑎𝑛𝑐 ∈ 𝑇𝐶𝑃𝑆 , which is a CPS task
that has a direct precedence constrain with the closest ancestor of 𝑡𝑖 . Add (𝑡𝑎𝑛𝑐 , 𝑡𝑖) to
the precedence constraints of 𝐺𝐶𝑃𝑆 .

Scheduler communication. Here we describe how the schedulers communicate in our
implementation (Section 5.5).

The three schedulers need to exchange information in order to work together. All
schedulers can broadcast a signal with short information such as ‘task N completed’ or
‘memory freed’. Each scheduler receives these signals. Furthermore, the following read
and write access is given:

• The CPS scheduler can read from the completed task ID list of the QPS and vice versa.
This makes it possible for the CPS (QPS) scheduler to directly update their remote depen-
dencies without having to wait for a signal from the node scheduler, leading to overall
improvement in efficiency

• The node scheduler can add new tasks to the partial graphs of the CPS and QPS. Note
that the node scheduler will only add tasks to the partial graph of a processor scheduler
when this scheduler is in a waiting state; that is, after the processor scheduler has sent a
‘waiting’ signal and before the node scheduler has sent a ‘task added’ signal (only after
this signal will the processor scheduler continue). In this way, there are no read/write
conflicts in the partial graphs of processor schedulers.

• The CPS (QPS) scheduler can only remove tasks from its own partial graph, not add any.

5.11.3 Scheduler algorithms
Node scheduler algorithm. Belowwe describe the high-level steps involved in the node
scheduler algorithm implementation of Section 5.5.

1. Split the current task graph into a partial CPS graph and a partial QPS graph. For the
algorithm, see ‘Task graph splitting’ above.

2. Add the CPS (QPS) tasks to the partial graph of the CPS (QPS) scheduler
3. Wait for a ‘task finished‘ signal from either CPS or QPS scheduler
4. Remove the corresponding task from the task graph.
5. If the finished task was a HostLocal task for some program instance P, and if the CPS

partial graph is empty, check which block the program instance should jump to. This
information is given by the task itself (and stored in the completed task list of the CPS
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scheduler), after evaluating the last instruction (a jump or branch instruction) in the
BB that the task represented. For this new BB, create corresponding tasks for both the
CPS and QPS. Task creation is discussed in Section 5.11.1.

6. If the task graph is empty, idle until new programs are instantiated.
7. Go back to step 1.

Note that the role of the node scheduler is much smaller when only predictable pro-
grams are run. When predictable programs are instantiated, all of their tasks are created
at once, resulting in a large task graph in the node scheduler, which never gets new tasks
created at runtime. In this scenario, after steps 1 and 2 the CPS and QPS schedulers possess
a partial graph which will never get any new tasks. Both processor schedulers will work
on their tasks until they are both empty, after which all program instances have finished.
Meanwhile, the node scheduler just loops through steps 1, 2, 3 and 6, not doing anything.

CPS scheduler algorithm. Below we describe the high-level steps involved in the CPS
scheduler algorithm implementation of Section 5.5.
1. Check which new tasks were completed by the QPS by reading from the shared task

memory. Remove external dependency edges that correspond to QPS tasks that have
completed.

2. Find all tasks in the partial graph that are ready to execute. These are tasks that fulfill
all following requirements:
• The task has no incoming precedence constraints (there are no unfinished tasks in
the task graph that must precede this task)

• The task has no external precedence constraints (there are no unfinished QPS tasks
that must precede this task)

• If the task is a HostEvent task, there must be at least one message in the CPS’ message
buffer

• If the task has a specific start time, the current time should be at least the start time
3. If there is no task ready to execute, send a ‘waiting‘ signal and wait until a signal is

received that indicates one of the following events:
• The node scheduler has added one or more tasks to the partial graph
• The QPS scheduler has completed a task
• The start time has arrived of one of the tasks that were previously not ready only
because their start time had not yet passed

• One or more new messages have been put into the message buffer
After one of these signals is received, go back to step 1.

4. If there is at least one task ready to execute, choose which one to execute now. This
depends on the scheduling policy that is being used. The policy may or may not use
information about the deadlines of the available tasks. Scheduling policies that were
implemented for our evaluation are described in Section 5.13.

5. If the task failed, go back to step 1
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6. If the task completed, remove it from the partial graph, add its ID to the completed task
ID list, and broadcast a signal that the task was finished. If the task was a HostLocal
task, then also store (in the completed task list) an entry containing the name of the
next block to execute. (In this way, the node scheduler knows which task(s) to create
and add to the full task graph. See Section 5.11.1 for more details.) Update the deadlines
of all other tasks in the task graph. Then go back to step 1.

QPS scheduler algorithm. Below we describe the high-level steps involved in the QPS
scheduler algorithm implementation of Section 5.5.

1. Check which new tasks were completed by the CPS by reading from the shared task
memory. Remove external dependency edges that correspond to CPS tasks that have
completed.

2. Find all tasks in the partial graph that are ready to execute. These are tasks that fulfill
all following requirements:
• The task has no incoming precedence constraints (there are no unfinished tasks in
the task graph that must precede this task)

• The task has no external precedence constraints (there are no unfinished CPS tasks
that must precede this task)

• If the task is a SinglePair or MultiPair task, the current time should be the beginning
of a network time slot that corresponds to this task. (For example, if the task is for
creating EPR pairs for program instance 1 on this node (called ‘Alice’) and program
instance 2 on node ‘Bob’, then the current time should be the start of a (𝐴𝑙𝑖𝑐𝑒,1,𝐵𝑜𝑏,2)
time slot).

• If the task has a specific start time, the current time should be at least the start time
3. If there is no task ready to execute, wait for a signal that indicates one of the following

events:
• The node scheduler has added one or more tasks to the partial graph
• The CPS scheduler has completed a task
• The start time has arrived of one of the tasks that were previously not ready only
because their start time had not yet passed

• The start of a time slot has arrived which corresponds to one of the tasks that were
previously only blocked on the arrival of this time slot

After one of these signals is received, go back to step 1.
4. If there is at least one task ready to execute, choose which one to execute now. This

depends on the scheduling policy that is being used. The policy may or may not use
information about the deadlines of the available tasks.

5. If the task failed, go back to step 1
6. If the task completed, remove it from the partial graph, add its ID to the completed task

ID list, and broadcast a signal that the task was finished. Update the deadlines of all
other tasks in the task graph. Then go back to step 1.
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Figure 5.22: Different implementations of network controller and network stack. (a) The network controller is
centralized and the nodes send requests to this controller whenever they are executing SinglePair or MultiPair
tasks. (b) The network controller is distributed over the nodes. Inside each node there is a network stack which
autonomously talks with the network stack of other nodes and synchronizes entanglement generation. Execu-
tion of SinglePair and MultiPair tasks involves sending a request to the network stack within the node, which
then handles pair generation by synchronizing with the network stack in other nodes.

Task graph updates. The node scheduler may add tasks to the current task graph of the
CPS or QPS. When a processor scheduler has finished a task, it is removed from the task
graph. This has the following effects:
• Precedence edges from this task are removed, potentially making other tasks available
for execution

• The time of finishing is recorded; and the deadlines and relative deadlines of all other
tasks are updated accordingly

5.11.4 Other algorithms
Linear graphs. When instantiating a program multiple times (for example instantiating
a BQC program 1000 times), one has the option to linearize the graphs. Each instantiation
has its own graph, and the full graph of all instances result in many independent tasks.
One can force all instances to be run in sequence, rather than interleaved, resulting in a
linear chain of single-instance graphs. This is done using the following algorithm:
• For each pair (𝑖1, 𝑖2) of consecutive instances, add a precedence constraint between the
last tasks(s) of 𝑖1 and the first task(s) 𝑖2.

Estimating task durations. The scheduler uses the EHI to estimate the duration of a
task. This duration may then be used by the scheduler to decide which task to execute
when. In our implementation, the scheduler does not make use of these estimates, but we
did implement a simple estimator algorithm:

The estimated duration 𝐸 of a task is computed as follows:
• For a HostLocal or HostEvent task representing a program block 𝐵, 𝐸 is𝑁 ⋅ host_latency
where 𝑁 is the number of HostLanguage operations in 𝐵 and host_latency is given in
the EHI.

• For a LocalRoutine tasks representing a block that call a NetQASM routine 𝑆, 𝐸 is the
sum of estimated durations of each NetQAM instruction in 𝑆. The duration of each quan-
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tum instruction is obtained from the EHI, and the duration of each classical instruction
is given by the qnos_latency entry in the EHI.

• For a SinglePair or MultiPair task based on a block that calls a request 𝑅 for 𝑁 EPR
pairs, 𝐸 is 𝑁 times the duration of a single EPR generation as listed in the EHI.

• For PreCall and PostCall tasks, the duration is set to the host_latency entry in the
EHI.

5.11.5 Entanglement distribution
Qoala only defines how program are executed on a node in a quantum network, and not
how and when entanglement is created between nodes. However, Qoala does assume
certain things about how nodes can interact with the entanglement distribution system,
however this is implemented. The assumption about entanglement generation are as fol-
lows.

Network controller with time slots. Conceptually, there is a network controller
that oversees entanglement generation and distribution across the whole network. Qoala
does not care whether this controller is implemented as a single entity, or is distributed
in some way across multiple (processing) nodes (Figure 5.22). The network controller
maintains a global timeline divided into time slots, which can have arbitrary length. Each
time slot may be assigned to a session, which is a 4-tuple (𝑁1,𝑃1,𝑁2,𝑃2) where 𝑁1 (𝑁2)
is the name of a node in the network and 𝑃1 (𝑃2) is an ID of a program instance running
within 𝑁1 (𝑁2). A session hence represents a pair of running program instances across
two nodes, and it is such pairs of program instances that want to create entanglement
with each other. If a time slot is assigned to some session (𝑁1,𝑃1,𝑁2,𝑃2), only program
instances 𝑃1 and 𝑃2 (on nodes 𝑁1 and 𝑁2) may create entanglement with each other
during this time slot.

Populating the network controller’s time slot with sessions is the result of (1) demand
registration by nodes in the network, followed by (2) network schedule generation by the
network controller itself, which we do not consider here (Figure 5.23). In the following,
we simply assume that the network controller has a list of time slots assigned to sessions
relating to program instances that are being run, and that these time slots are also known
by the individual processing nodes.

On-demand entanglement requests. At runtime, nodes implementing Qoala may
send requests to the network stack. This network stack then issues EPR requests to the
network controller. Upon receiving an EPR request, the network controller stores it and
potentially acts on it:

• If there is a matching EPR request from the other node, and if the current time slot
is assigned to the corresponding session, perform the actual entanglement generation
process.

• If at least one of the two above conditions does not hold, keep the request until both
conditions are satisfied (a matching request from the other node arrives, or the corre-
sponding time slot arrives, or both).

An EPR request is a request for a single EPR pair. A SinglePair task is handled by the
network stack sending a single EPR request to the network controller. A MultiPair task
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Figure 5.23: High-level steps of using the network controller. 1. Nodes discuss among each other constraints
about application execution (Capability Negotiation). 2. The outcome of Capability Negotiation, which contains
demands about entanglement generation, is sent to the network controller (Demand Registration). 3. Based on
the demands from the nodes, the network controller constructs a network schedule consisting of time slots. Each
time slot is assigned to zero or more sessions, which correspond to program instance pairs.

is handled by sending multiple EPR requests, possibly interleaved by local QPS processing
such as callback routines.

The network stack may fail handling a request. For example, it might timeout trying
to produce an EPR pair. In this case, the corresponding task (SinglePair or MultiPair)
also fails. Depending on the scheduler implementation, this task may be executed again
at a later time, or the whole program instance may be aborted.

Entanglement generation as a black box. We assume that all nodes can create
entanglement with all nodes, orchestrated by the network controller. Qoala does not as-
sume anything about the existence of repeater nodes or entanglement routing algorithms.
Rather, a node sending a request for entanglement (in a suitable time slot) will either get
this entanglement (created in some way, irrelevant to Qoala) or not (creation failed for
some reason, again irrelevant to Qoala). The network stack and controller may be imple-
mented in various ways, such as illustrated in Figure 5.22.

5.12 Simulator implementation
Package overview. The simulator has been implemented as a Python package and is
available at [44]. It is divided into three subpackages: (1) lang, defining the format of Qoala
programs and of the EHI, (2) runtime defining common types for the runtime system, and
(3) sim containing Netsquid objects that implement the Qoala runtime.

The division into subpackages is made in such a way that only sim depends on (imports
from) Netsquid; the other two subpackages are implementation independent. The lang can
be used standalone in a compiler, without having the compiler to depend on the runtime
implementation, whether that is in simulation or on real hardware.

Netsquid: Protocols, Components, and Listeners. The Qoala simulator make heavy
use of Netsquid’s Protocol class, which can be used to model concurrent software systems.
Each protocol defines its own run function, and the Netsquid simulator executes the run
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Figure 5.24: High-level overview of sequence of steps performed in order to simulate a network running pro-
grams on nodes implemented Qoala.

functions of each protocol concurrently. (Netsquid uses only a single thread, but protocols
are run interleaved, i.e. NetSquid provides provides an asynchronous runtime).

The simulator implements a hierarchy of protocols. Each node in the network is a
protocol, containing subprotocols for a Host, Qnos, and Netstack. The Host represents the
CPS, and the Qnos and Netstack together represent the QPS, where Qnos handle local
quantum processing, and the Netstack handles requests to the central network controller.

The protocol objects implement the runtime logic of the subsystems. The Netsquid
Component holds static information about the subsystem, and contains Ports for commu-
nicating with other components. Protocols use these ports to send messages to other
protocols.

Listener objects are a feature of the Qoala simulator that are protocols with the sole
purpose towait for any incomingmessages on a port and then notifying the corresponding
protocol of them.

Interfaces and configuration. The Qoala simulator allows for a lot of configuration.
The Low-level Hardware Interface (LHI) defines a format for defining physical quantum
instructions, durations, and noise models. Default values are provided for NV-centers
and trapped ions, but custom hardware models can easily be added. The LHI allows for
representing real-life validated hardware, but also for simulating hardware that does not
(yet) exist.

The LHI allows for the configurations of
• Allowed gate types, gate durations, and gate noise models
• Qubit decoherence model and qubit topology in a node
• Topology of the network
• Entanglement fidelity and generation duration between pairs of nodes
• Classical communication latency between nodes
• Internal communication latency between scheduler components
• Duration of CPS instructions and of classical QPS instructions
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The Native-To-Flavor (NTF) interface is used to define the translation from LHI phys-
ical quantum instructions to a NetQASM flavor. The QPS is expected to provide an imple-
mentation of the NTF, such that it can translate instruction in Local Routines (which are
from a particular NetQASM flavor) into the corresponding hardware instructions.

The Exposed Hardware Interface (EHI) is described in Section 5.4. The simulator pro-
vides automated tools for translating a combination of an LHI instance and a NTF into an
EHI.
Simulator Architecture. The simulator defines various component and protocol classes
representing the concepts defined in Section 5.4. These classes can be instantiated in a
custom way, and can hence be seen as building blocks. The simulator provides a default
way of using these blocks (namely, in the way explained in the Qoala architecture), but
it is possible to use these blocks in another way to investigate different architectures. In
Figure 5.25 a schematic overview of the most important classes and their roles is given,
and in Figure 5.24 an overview is provided of the general sequence of actions involved
when simulating the execution of one or more applications on a quantum network.

In our simulator, the network controller (Section 5.11.5) is implemented as a single
centralized entity called EntDist (Figure 5.25).
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5.13 Evaluation details
5.13.1 Simulator setup
All simulations have been done with the simulation package found at [44] and were run
on a machine using 80 Intel Xeon Gold cores at 3.9 GHz and 192 GB of RAM. All code used
for the evaluations is available in the evaluation/ folder [44]. For each evaluation done
(each subsection in Section 5.6, it includes the Qoala program source code, the scripts for
running the simulations, the scripts for producing the plots, and a README that explains
how to use the code. In the source code, the term time bin is used for what we here call
time slot.

5.13.2 Hardware parameters
In this section we describe the characteristics of the hardware types that have been used
in our evaluations. For the evaluation in Section 5.6.1 we simulated all three types below;
for the other evaluations we only considered the generic hardware type.
Generic hardware. The allowed gate set is expressed as a particular NetQASM flavor
([17] and Chapter 3).
• Allowed single-qubit gates (vanilla NetQASM flavor [17]): init, rot_x, rot_y, rot_z, x,
y, z, h, meas.

• Allowed two-qubit gates (vanilla NetQASM flavor): cnot, cphase.
Qubit decoherence times are expressed as T1 (amplitude damping) and T2 (dephasing

time), which is commonly done in quantum computing. Unless stated otherwise in the
evaluation details below, the default noise and duration parameters used for the generic
hardware are:
• Single-qubit duration: 5 ⋅ 103 ns.
• Two-qubit duration: 200 ⋅ 103 ns.
• Qubit T1 time: 109 ns.
• Qubit T2 time: 108 ns.
NV hardware. Values from [3] and private communication.
• Allowed single-qubit gates on communication qubit (NV NetQASM flavor): init, rot_x,
rot_y, meas.

• Allowed single-qubit gates on memory qubit (NV NetQASM flavor): init, rot_x, rot_y,
rot_z, meas.

• Allowed two-qubit gates between communication qubit andmemory qubit (NVNetQASM
flavor): crot_x, crot_y.
Unless stated otherwise in the evaluation details below, the default noise and duration

parameters used for the NV hardware are:
• Single-qubit duration on communication qubit: 300 ns.
• Single-qubit duration on memory qubit: 1.2 ms.
• Two-qubit duration: 1 ms.



5

204 5 Qoala: an Application Execution Environment for Quantum Internet Nodes

• Communication qubit T1 time: 3600 ms
• Communication qubit T2 time: 500 ms
• Memory qubit T1 time: 35000 ms
• Memory qubit T2 time: 1 ms
Trapped Ion hardware. Values from [3] and private communication.
• Allowed single-qubit gates (trapped ion NetQASM flavor): init, rot_z, meas.
• Allowed all-qubit gates (trapped ion NetQASM flavor): init_all, meas_all, rot_x_all,
rot_y_all, rot_z_all, bichromatic.
The effect of applying a bichromatic gate is expressed as

𝑈𝑋𝑋 (𝜃) = exp(−𝑖 𝜃2 ∑𝑖<𝑗
𝜎 (𝑖)𝑋 𝜎 (𝑗)𝑋 )

for some angle 𝜃 .
Unless stated otherwise in the evaluation details below, the default noise and duration

parameters used for the Trapped Ion hardware are:
• Single-qubit duration on communication qubit: 26.6 𝜇𝑠.
• All-qubit duration: 85 ms.
• Qubit T1 time: ∞.
• Qubit T2 time: 85 ms.
NetQASM gate sequence for CNOT on Trapped Ion hardware. We list the sequence
of netqasm instructions to effectively apply a CNOT gates on two qubits, which is non-
trivial.

Assuming 2 qubits are in use, CNOT gate between qubit 0 and qubit 1 on trapped ion:

0 NETQASM:
1 // cnot between q0 and q1
2 rot_x_all 8 4
3 rot_z Q0 8 4
4 rot_x_all 24 4
5 bichromatic 8 4
6 rot_x_all 24 4
7 rot_x_all 8 4
8 rot_z Q0 24 4
9 rot_x_all 24 4

5.13.3 Details for: Demonstrating the architecture’s effectiveness
Details for the evaluation described in Section 5.6.1.

A free network schedule was used, meaning that there were no specific time slots, and
entanglement generation was allowed at any time. Such a free network schedule was jus-
tified since we considered only whether the application ran successfully All applications
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Application # nodes
# EPR
pairs per
instance

Max
# qubits
per node

# Instances Simulation
duration (s)

A1. QKD 2 1000 1 1000 2166
A2. BQC 2 2 2 1000 227
A3. Teleportation 2 1 2 1000 24
A4. Ping-pong 2 2 2 1000 35
A5. GHZ 3 4 2 1000 41

Table 5.1: Overview of application used in the evaluation described in Section 5.6.1. Each application was sim-
ulated three times, once for each hardware type (generic, NV, Trapped Ion). Each simulation was for 1000
instances of the application. The simulation duration is an average over the three simulations per application.

were run with both (a) hardware-validated parameters (see above); all executions were
successful and (b) no-noise versions of these parameters (same durations of all operations
but no decoherence nor gate noise); these were used to check if the expected outcomes
were obtained. Table 5.1 provides an overview of the applications.
Quantum Key Distribution (QKD). . Two programs (on two nodes): Alice and Bob.
𝑁 EPR are pairs are generated. Each generated pair is immediately measured by both
programs. This results in both programs having 𝑁 classical outcome bits. See Figure 5.26a
for the circuit. Success per instance is determined by checking that Alice and Bob got the
same 𝑁 outcomes bits. For the evaluation, we ran 1000 instances, each creating 1000 EPR
pairs.
Teleportation. . Two programs (on two nodes): Sender and Receiver. The Sender tele-
ports a state (which is state is an argument to the Sender program) to the Receiver. The
Receiver measures in a basis (which basis is an argument to the Receiver program) and ob-
tains a single classical outcome bit which is the result of the application. See Figure 5.26b
for the circuit. Success per instance is determined by checking that the Receiver got the
expected outcome bit (which depends on the combination of state and basis). For the
evaluation, we ran 1000 instances.

For each of the Sender program instances, the state argument was chosen evenly from
the following: |0⟩, |1⟩, |+⟩ = 1/ √2(|0⟩+ |1⟩), |−⟩ = 1/ √2(|0⟩− |1⟩), |+𝑖⟩ = 1/ √2(|0⟩+ 𝑖 |1⟩), |−𝑖⟩ =
1/ √2(|0⟩− 𝑖 |1⟩).

For each corresponding Receiver program instance, the basis argument was chosen
such that the expected outcome bit is always 1. Hence, a single application instance suc-
ceeded if the Receiver outcome was 1.
Ping-pong. . Teleportation from Sender to Receiver and immediately back to Sender.
Same as teleportation application, but the Receiver does not measure; the Sender receives
the state back by teleportation and measures. See Figure 5.26b for the circuit. State and
basis per instance were chosen similarly as for the teleportation application. Success now
depends on the Sender measurement outcome being 1. For the evaluation, we ran 1000
instances.
Blind Quantum Computation (BQC). . Two programs (on two nodes): Client and
Server. Two EPR pairs are generated, after which 2 rounds happen. In each round, the
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client sends a classical message to the server, after which the server performs a measure-
ment on one of its qubits, sending the measurement outcome back. The same BQC ap-
plication was used as in [17], using values 𝛼 = 𝜋/2 and 𝛽 = −𝜋/2. See Figure 5.27a for
the circuit. Success per instance is determined by checking that the Client received the
expected classical bit 𝑚2. For the evaluation, we ran 1000 instances.

GHZ. . Three programs (on three nodes): Alice, Bob, and Charlie. Alice creates an EPR
pair with Bob, and Bob creates an EPR pair with Charlie. Then, local gates and classical
messages are sent between the nodes, resulting in a 3-qubit state (one qubit per node)
that is an entangled GHZ state [25]. At the end, each program measures its own qubit.
See Figure 5.27b for the circuit. Success per instance is determined by checking that the
all three programs got the same measurement outcome. For the evaluation, we ran 1000
instances.

5.13.4 Details for: Demonstrating Qoala’s multitasking potential
Details for the evaluation described in Section 5.6.2.

Sequential vs Interleaved execution. Sequential: All tasks for all instances were cre-
ated and added to the task graph at the beginning, but additional precedence constraints
were added between the last task for each instance and the first task of the next instance.
This resulting in the sequential execution of the 10 instances. Interleaved: All tasks for
all instances were created and added to the task graph at the beginning, and no additional
precedence constraints were added. We used an FCFS scheduler to pick tasks; since there
were no precedence constraints between tasks of different instances, the execution of in-
stances was interleaved.

Teleportation multitasking scenario. One sender node and one receiver node. The
teleportation application (A3 in Section 5.6, see also Figure 5.26b) was instantiated 100
times. Classical node-node communication latency: 107 ns. Sender node: 2 qubits. Re-
ceiver node: sweep over range [1,…,6]. For each number of qubits 𝑄 ∈ [1,…,6], we ran
a simulation using both a sequential and an interleaved scheduling approach. For the
self-preemption case, the teleportation application was only instantiated 5 times.

BQCmultitasking scenario. 10 client nodes and one server node. The BQC application
(A2 in Section 5.6, see also Figure 5.27a) was instantiated 10 times for each client, for a total
for 100 program instances. Classical node-node communication latency: 105 ns. Client
node: 2 qubits. Server node: sweep over {2,5,10}. For each number of qubits 𝑄 ∈ {2,5,10},
we ran a simulation using both a sequential and an interleaved scheduling approach.

QKD-BQC multitasking scenario. One client node and one server node. Client and
server execute both (a) 50 instances of QKD (A1 in Section 5.6, see also Figure 5.26a) and (b)
50 instances of BQC (A2 in Section 5.6, see also Figure 5.27a). We compared two network
schedules. Sequential network schedule with repeating pattern 𝑃𝑠𝑒𝑞 . 𝑃𝑠𝑒𝑞 consists of time
slots 𝑄𝐾𝐷1, 𝑄𝐾𝐷2, … , 𝑄𝐾𝐷50, 𝐵𝑄𝐶1, 𝐵𝑄𝐶2, … , 𝐵𝑄𝐶50. Alternating network schedule
with repeating pattern 𝑃𝑎𝑙𝑡 . 𝑃𝑎𝑙𝑡 consists of time slots 𝑄𝐾𝐷1, 𝐵𝑄𝐶1, 𝑄𝐾𝐷2, 𝐵𝑄𝐶2, … ,
𝑄𝐾𝐷50, 𝐵𝑄𝐶50.
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5.13.5 Details for: Improvement over NetQASM architecture
Details for the evaluation described in Section 5.6.3.

Scenario. Twonodes: client and server. The client and server execute a remotemeasurement-
based quantum computing (MBQC) application. The server initializes local qubits and
applies two-qubit gates on them, resulting in a cluster state of three qubits. Then, three
rounds of communication happen. In each round, the client sends a classical message
containing a measurement basis to the server, the server measures one of its qubits, and
finally sends the measurement outcome to the client. After three rounds, the application
ends; the last message from the server is the result of the application. This result has an
expected value, which is used to determine if a single application instance succeeded or
not. The success probability is calculated as the fraction of instances that resulted in the
expected value.

We consider a program implementation 𝑃 for the server. The steps of 𝑃 are as follows.
1. (Quantum) Initialize all three qubits and apply gates until the desired cluster state is

realized.
2. (Classical) Wait for a message 𝜃0 from the client, representing the first measurement

basis.
3. (Quantum) Measure the first qubit in basis 𝐵(𝜃0), resulting in classical bit 𝑚0.
4. (Classical) Send 𝑚0 to the client.
5. (Classical) Wait for a message 𝜃1 from the client, representing the second measurement

basis.
6. (Quantum) Measure the second qubit in basis 𝐵(𝜃1), resulting in classical bit 𝑚1.
7. (Classical) Send 𝑚1 to the client.
8. (Classical) Wait for a message 𝜃2 from the client, representing the third measurement

basis.
9. (Quantum) Measure the third qubit in basis 𝐵(𝜃2), resulting in classical bit 𝑚2.

10. (Classical) Send 𝑚2 to the client.
In our evaluation, we considered a program 𝑃𝑛𝑒𝑡𝑞𝑎𝑠𝑚 written in the NetQASM runtime

format [17], which would be written in Python. Specifically, 𝑃𝑛𝑒𝑡𝑞𝑎𝑠𝑚 contains the above
steps in Python code, in the same order. The quantum steps are converted on-the-fly into
NetQASM subroutines. This means that, in the NetQASM runtime, we have the following
execution:

𝑃𝑛𝑒𝑡𝑞𝑎𝑠𝑚 execution:
1. NetQASM subroutine for initializing the three qubits.
2. Classical Python code for waiting for 𝜃0.
3. NetQASM subroutine for measuring the first qubit.
4. Classical Python code for sending for 𝑚0.
5. Classical Python code for waiting for 𝜃0.
6. NetQASM subroutine for measuring the second qubit.
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7. Classical Python code for sending for 𝑚1.
8. Classical Python code for waiting for 𝜃2.
9. NetQASM subroutine for measuring the third qubit.

10. Classical Python code for sending for 𝑚2.

We note that since the NetQASM runtime does not allow for compilation across classi-
cal and quantum segments of the code, there is no way to change the order of the steps. In
our evaluation, we represented 𝑃𝑛𝑒𝑡𝑞𝑎𝑠𝑚 as a Qoala program 𝑄𝑛𝑒𝑡𝑞𝑎𝑠𝑚 with the exact same
contents, but with classical code represented as host code, and the NetQASM subroutines
as Qoala local routines.

𝑃 can be optimized by noting that some qubit operations can be delayed until a later
time, decreasing the duration the some qubits have to stay in memory. This mitigates
decoherence and it is expected that overall such an optimized program 𝑃𝑜𝑝𝑡 leads to a
higher success probability.

The steps of 𝑃𝑜𝑝𝑡 are:
1. Wait for a message 𝜃0 from the client, representing the first measurement basis.
2. Initialize the first 2 qubits and apply gates until a partial cluster state is realized.
3. Measure the first qubit in basis 𝐵(𝜃0), resulting in classical bit 𝑚0.
4. Send 𝑚0 to the client.
5. Wait for a message 𝜃1 from the client, representing the second measurement basis.
6. Initialize the third qubit and apply gates until the remaining partial cluster state is

realized.
7. Measure the second qubit in basis 𝐵(𝜃1), resulting in classical bit 𝑚1.
8. Send 𝑚1 to the client.
9. Wait for a message 𝜃2 from the client, representing the third measurement basis.

10. Measure the third qubit in basis 𝐵(𝜃2), resulting in classical bit 𝑚2.
11. Send 𝑚2 to the client.

where we note that the end-to-end behavior of 𝑃𝑛𝑒𝑡𝑞𝑎𝑠𝑚 and 𝑃𝑜𝑝𝑡 are the same, and hence
𝑃𝑜𝑝𝑡 is a valid optimized version of 𝑃 . In our evaluation, we represented 𝑃𝑜𝑝𝑡 as a Qoala
program 𝑄𝑜𝑝𝑡 with the exact same steps.

For the client, we used a single program implementation 𝑄𝑐𝑙𝑖𝑒𝑛𝑡 , optimized for Qoala.
We compared running (NETQASM): 𝑄𝑐𝑙𝑖𝑒𝑛𝑡 on the client node and 𝑄𝑛𝑒𝑡𝑞𝑎𝑠𝑚 on the

server node with (QOALA): 𝑄𝑐𝑙𝑖𝑒𝑛𝑡 on the client node and 𝑄𝑜𝑝𝑡 on the server node. In
both cases we instantiated the application 1000 times. We obtained success probabilities
66% for NETQASM and 82% for QOALA.

5.13.6 Details for: Tradeoffs between classical and quantum perfor-
mance metrics

Details for the evaluation described in Section 5.6.4.
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Scenario. Two nodes: Alice and Bob. Bob executes an interactive quantum program
where classical input is given by Alice. Bob also executes a ‘busy’ program consisting
only of CPS tasks.

Interactive program. The interactive program does the following steps: (1) prepare a lo-
cal qubit in a state (state given as program instance argument) by initialization and qubit
rotation, (2) send an ‘acknowledge’ message to Alice, (3) wait for a message from Alice, (4)
measure the local qubit in a basis (basis given as program instance argument) (5) return
the measurement result (classical bit). For each combination of state and basis, an ex-
pected measurement result value is computed. The success probability of the interactive
program is given by the fraction of program instances that produces the expected value.
The interactive program was instantiated 1000 times.

Busy program. Thebusy program consists only of a block which waits for some duration
(input argument). This waiting time mimics the CPS being busy with some local classical
computation.

Fixed parameters. Qubit coherence times: 𝑇1 = 1010 ns, 𝑇2 = 108 ns. Classical node-to-
node communication latency: 107 ns. Rate of arrival of busy programs instances: once
every 106 ns.

5.13.7 Details for: Success probabilities with quantum multitasking
Details for the evaluation described in Section 5.6.5.

Local program. A programwhich prepares a single qubit to the |−⟩ = 1/ √2(|0⟩+ |1⟩) state,
then waits for duration 𝑑 , and then measures the qubit in the 𝑋 -basis. The expected out-
come bit is hence 1.

Scenario. Two nodes: Alice and Bob. Alice and Bob execute the teleportation applica-
tion (A3 in Section 5.6, see also Figure 5.26b) 𝑇 times. Bob concurrently executes the local
program described above 𝐿 times. For each combination of 𝑇 ∈ [1,15] and 𝐿 ∈ [1,15], we
ran a simulation 𝑆𝐼𝑀 200 times, where in each simulation, all instances and all their tasks
are created at the same time and added to the task graphs of the node. The success per
teleportation instance is calculated as in Section 5.13.3. Success probability is calculated as
the fraction of successful instances. The success probability of the local program is calcu-
lated as the fraction of all local program instances (across all 200 runs) gave the expected
classical result 1.

Fixed parameters. Qubit coherence times: 𝑇1 = 1010 ns, 𝑇2 = 107 ns. Classical node-
node communication latency: 0.1 ms. Network schedule: repeating pattern 𝑃 of time
slots, where 𝑃 = ⟨0,…,𝑛⟩where 𝑛 is the number of teleportation instances and where each
𝑖 is associated with a single teleportation instance. Number of qubits at Bob: 10. Number
of qubits at Alice: 20.

5.13.8 Details for: Performance sensitivity
Details for the evaluation described in Section 5.6.6.
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Scenario. One server node runs 10 BQC applications (A2 in Section 5.6, see also Fig-
ure 5.27a) concurrently with 10 client nodes (one BQC application per client node). One
BQC instance is run for each client. This scenario was repeated 100 times for each of the
three evaluations (impact of node-node-latencies, impact of internal latencies, impact of
time slot length) in order to obtain statistics. The success per BQC instance is calculated as
in Section 5.13.3. Success probability is calculated as the fraction of successful instances.
Fixed parameters. Number of client nodes: 10. Number of qubits per client node: 1.
Number of qubits for server node: 20. Qubit coherence time: 𝑇2 = 1 ⋅ 107 ns. Network
schedule: repeating pattern of 10 slots, each assigned to one client-server pair.
Impact of node-to-node classical communication latencies. Network time slot length:
1 ⋅ 105 ns. Internal scheduler communication latency: 0 ns. Values used for node-to-node
classical communication latencies: 105, 106, 107 ns (i.e. 0.01, 0.1, 1 times the 𝑇2 coherence
time).
Impact of internal scheduler latencies. Network time slot length: 1 ⋅ 105 ns. Classical
communication latency: 105 ns. Values used for internal scheduler communication laten-
cies: 103, 105, 107 ns, where we obtained success probabilities 0.89(2), 0.89(2), 0.83(2),
respectively.
Impact of network schedule time slot length. Classical communication latency: 105
ns. Internal scheduler communication latency: 0 ns. Values used for time slot length: 105,
106, 107 ns, (i.e. 0.01, 0.1, 1 times the 𝑇2 coherence time).
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Figure 5.26: Circuit for applications A1 (QKD), A3 (Teleport) and A4 (ping-pong) from Section 5.6. Single lines
represent qubits. Double lines represent classical values. (a) QKD (A1). Two nodes repeatedly generate entangled
pairs which are immediately measured. (b) Teleport (A3). A sender node (having 2 qubits) teleport a state to
a receiver node. The sender applies local quantum operations (initialization, qubit rotation gates). The sender
and receiver create an entangled pair. The sender performs local quantum gates and measurements resulting in
classical outcomes. The sender sends the classical outcomes to the receiver. Based on the outcomes the receiver
applies local quantum gates and measurement. (c) Ping-pong (A4). The sender teleports a state to the receiver
and the receiver immediately teleports it back to the sender. In total, 2 entangled pairs are created.
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Figure 5.27: Circuit for applications A2 (BQC) and A5 (GHZ) from Section 5.6. Single lines represent qubits.
Double lines represent classical values. (a) BQC (A2). A client node remotely prepares two qubits on a server
node by creating an entangled pair and locally measuring its qubits, resulting in classical outcomes 𝑝1 and 𝑝2.
The server applies a local two-qubit gate (CZ or cphase) on its qubits. The client sends a classical value 𝑑1 which
it calculates based on 𝑝1 and other application input values. The server applies local gates based on 𝑑1 and
measures, resulting in classical value 𝑚1 which it sends to the client. The client sends a classical value 𝑑2 which
it calculates based on 𝑝2, 𝑚1 and other application input values. The server applies local gates based on 𝑑2 and
measures, resulting in classical value 𝑚2 which it sends to the client. The client uses the values 𝑚2 to calculate
the final result (not in the Figure). (b) Three nodes (Alice, Bob, and Charlie) create pair-wise entangled pairs.
Bob applies local gates and measures one of his qubits, sending the outcomes to Charlie. Based on this outcome,
Charlie performs local operations and sends a measurement outcome back to Bob. At the time of the vertical
dashed line, the three nodes share a 3-qubit GHZ state. They all measure and check their correlations.
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6
Compiling Qoala programs

In this chapter, we discuss the problem of compiling quantum network programs. We review
what we want compilers to do for quantum network applications and discuss related work.
We then discuss design consideration for a compiler for Qoala programs. We give recommen-
dations on the design of such a compiler and conclude with pointers for further research and
evaluation.

6.1 Introduction
Recall that our overarching objectives for programming and executing quantum network
applications are, as also discussed in Chapter 1:
• Improve accessibility by enabling programming using high-level concepts and tools.
• Execute quantum internet programs efficiently in terms of application success probabil-
ity and success rate.
In the previous chapters we presented building blocks towards these objectives. In

Chapter 3 the low-level instruction set NetQASM was introduced for representing quan-
tum operations. We also defined a software development kit (SDK) that allows one to
write programs in Python and which compiles quantum code into NetQASM subroutines.
In Chapter 4 we introduced an operating system, QNodeOS, that executes these programs.
In Chapter 5 we improved on the design of the operating system and presented the Qoala
program format and execution model. We also noted that Qoala enables a compiler de-
sign that takes into account the hybrid and networked nature of programs. In this chapter
we discuss what would be needed for such a design and provide recommendations for
working out such as design.
Why a compiler? Although programmers could express their program logic directly in
the Qoala format, this is not practical for several reasons. First, since the format is low-
level, it is quite verbose. This is a similar issue as with classical machine code (or lower-
level languages): although possible, it is often very impractical to write complete programs
This chapter is based on the article in preparation: B. van der Vecht, S. Oslovich, D. Rivera, and S. Wehner.
“Qoala Compiler”.
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1 q = create_epr ()
2 q.H() # hadamard
3 t = recv_from_remote_node ()
4 q.H() # hadamard
5 q.rot_Z(angle=t)
6 q.measure ()

Figure 6.1: Simple program source code which cannot be optimized with the NetQASM SDK. The NetQASM
SDK splits the quantum code into two separate subroutines — S1 containing the entanglement creation and the
hadamard gate, and S2 containing the second hadamard gate until the measurement — because of the classical
communication operation (receiving 𝑡). A compiler that can compile across such classical operations would
cancel out the two hadamard gates since their consecutive execution is equal to the identity operation.

in machine code itself. Second, the low-level format can be quite far from the high-level
program logic. Someone who wants to implement a certain quantum network program
typically only cares about the overall (high-level) behavior of the program. For example,
they might simply want to express that the program should create entangled states repeat-
edly, and then measure all created qubits. Having to deal with low-level details about how
to express looping behavior, which and howmuch (quantum)memory to allocate, and how
to integrate the classical and quantum code is in most cases not something a programmer
wants to deal with. Third, the Qoala program format allows hardware-specific details,
such as hardware-specific quantum instructions (using NetQASM flavors, see Chapter 3).
Although not required to add these details by the programmer, if one wants to make use of
these details to improve execution (e.g. increasing success probability), the programmer
should have knowledge about the hardware. Ideally, the programmer should not have to
write different versions of a program, one for each hardware platform that the program is
intended to run upon.

In Chapters 3 and 4 we described how NetQASM and QNodeOS already provide a way
for programmers to express program logic in a high-level language, Python. However, in
QNodeOS, compilation would happen on-the-fly (also called interpretation): while execut-
ing a program (i.e. at runtime), program code is evaluated and quantum instructions are
translated into NetQASM subroutines. This lead to certain problems, also discussed in the
evaluation of Qoala (Section 5.6):
• Compilation slows down execution: Since compilation needs to happen at runtime, over-
all execution time increases. This can be especially bad if quantum states must stay alive
during this compilation time. This can be seen clearly in Figure 4.3.

• No cross-compilation possible: Since code is interpreted on the fly, optimizations taking
into account future code cannot be made. See Figure 6.1 for a simple example piece of
code that cannot be optimized further in NetQASM/QNodeOS.
Qoala, with its new model of programs (Section 5.4), enables addressing of the above

problems, by requiring hybrid classical-quantum ahead-of-time compilation. Furthermore,
Qoala’s feature of deadlines may be used to aid the scheduler at runtime, improving run-
time performance. Before we discuss how a compiler for Qoala should look like, we first
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review what compilers are and related work.

6.2 Compilers
Compilation is the translation from a high-level source code representation of a program
into a lower-level representation of that program, typically machine code, that a com-
puter’s processor can execute. Compilation is itself done by a computer program, namely
the compiler. The type of machine code that a compiler produces depends on the target
of the compiler. The target is typically a combination of processor architecture (such as
x86 or ARM for classical computers) and operating system (such as Linux or Windows for
classical computers).

Program compilation is a well-studied topic in both classical [1] and quantum com-
puting [8] and is a vital tool in everyday practical software development. Many existing
ideas and strategies can be re-used for compiling quantum network applications. How-
ever, quantum network applications present unique challenges that need to be solved by
a compiler.

Generally, a compiler has three purposes:

• Translation. Allowing a programmer to write application logic in a high-level lan-
guage improves the accessibility: it relieves the programmer of the burden of thinking
about low-level details, and makes it easier to express complex logic. However, in the
end, hardware must execute low-level code and a translation step is required. Such
translation must maintain the intended behavior of the program (correctness).

• Error detection. A compiler checks whether the program source code is valid and
throws an error if it is not.

• Optimization. A compiler tries to perform optimization with respect to various met-
rics. It may try to minimize the size of the final executable. It may also try to produce
an executable such that the expected runtime performance is optimized. Increasing ex-
pected runtime performance can be done in many ways, which are discussed in more
detail below.

6.3 Related work
6.3.1 Compilers for classical computing.
Compilers for classical computers have been developed and used since the creation of the
first digital computers and are therefore a well-studied topic [1, 20, 47, 54]. A common
architecture for compilers is to use one or more Intermediate Representation (IR)s. In this
model, the high-level program source code is first translated by a front-end compiler to
the (highest-level) IR, then possibly translated to lower-level IRs, before it is translated
from the (lowest-level) IR by a back-end compiler to machine code (Figure 6.2). Separat-
ing the front-end from the back-end enables extensibility of the compiler: for each high-
level language for which one wants to implement a compiler, only a front-end must be
developed, since further compilation can happen using existing back-ends. Similarly, for
each machine target, only one back-end needs to be created. In this way, many different
programming languages and machine targets may use the same infrastructure, by ‘going
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Program source code
(high-level language)

Front-end
compiler

Back-end
compiler

Intermediate
Representation (IR) Machine code

Figure 6.2: Schematic of high-level steps in compilers that use Intermediate Representation (IR)s. A source
language-specific front-end compiler translates the source code into the IR. There may be different front-end
compilers for different source code languages, all translating to the same IR. A machine code-specific back-end
compiler translates the IR tomachine code. Theremay be different back-end compilers for differentmachine code
types (i.e. targets). Optimizationsmay be applied on the IR, or during front-end and/or back-end translation. This
model allows flexibility: making a new source code language compatible only requires developing a new front-
end compiler; making a new machine target compatible only requires a new back-end compiler. Furthermore,
optimizations on the IR code do not need to know about source code language nor target machine code.

through’ the same IR(s). A well-known compiler that uses this model is LLVM [30] which
uses the LLVM IR.

Compilers for classical computers perform code optimizations. Code optimization
techniques include

• Target-independent optimization [17], such as including removal of dead (unused) code,
optimizations of looping constructs and combining common expressions to reduce code,
and

• Target-dependent optimization [6, 48], such as register allocation, instruction re-ordering,
branch prediction and elimination, vectorization and cache optimization.

These optimizations typically aim to improve execution speed and memory efficiency [1,
47].

6.3.2 Compilers for classical networking.
Classical applications that use networking are also compiled by classical compilers. Typ-
ically, compilers do not apply network-specific optimizations. This is since network op-
erations are often handled by system calls, which compilers do not have control over.
Moreover, compilers also don’t have control over the execution and timing of other ap-
plications in the network, nor over the network itself. Network-specific optimization is
therefore indirect, namely by optimizing the number of network system calls, reducing
memory that would need to be context-switched upon network events, and optimizing
local code that affects networking code [11]. We note that there exist compilers for net-
work programming languages [34, 39]. However, these relate to programming the control
plane of networks (a paradigm called software-defined networking (SDN)), including how
data is routed through the network, and are hence different from user applications that
‘merely use’ the network.

6.3.3 Compilers for quantum computing.
As already described in Chapter 2, quantum computing programs are typically expressed
as quantum circuits. Circuits consist of qubits, which are memory locations on which
operations are applied. Limit classical control may be added.

There exist many languages for quantum computing [8, 22]. Many frameworks make
use of assembly-like languages like OpenQASM [9] or cQASM [28]. Also more high-level
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languages exist such as Q# and Scaffold [22, 35, 50].

Circuit optimizers. Compilers for quantum computing programs often try to optimize
circuit depth (number of gates) and width (number of qubits). Most compilers focus on
NISQ computers, dealing with resource constraints (like limited qubit availability, and
restricted topology) [3, 8, 41] and qubit mapping [4, 33, 44, 56]. Benchmarks exist [32, 51]
with which to compare compilers, by looking at the output, like circuit size.

Hybrid classical-quantum compilers. In the last years, more focus has been brought
on hybrid classical-quantum compilers. This can be seen in the proposal of full-stack
architectures, including classical and quantum processing [27, 38, 41], and the focus on
hybrid quantum computing programs, like Variational Quantum Eigensolvers (VQE) [13,
36] or Quantum Approximate Optimization Algorithms (QAOA) [14]

One can distinguish two approaches:

• integration of classical and quantum code but optimization is separate or limited [18,
26, 35, 55]

• joint classical-quantum optimization (MLIR-based [31], LLVM based) [25, 37, 42, 46].

In order to deal with the hybrid code of hybrid programs, often intermediate repre-
sentations (IRs) are used [43, 45]. The existing LLVM framework has been re-used and
integrated in quantum compilers [35, 40, 41]. A quantum-specific IR has been created:
QIR [19, 21].

6.3.4 Compilers for quantum networking.
For quantum networking, compilation has not much been studied. For distributed quan-
tum computing, compilers do exist [7, 10, 15, 16]. One approach is to take the input circuit
and first split it into separate circuits: circuit cutting [7]. However, as also explained in
Chapter 1, distributed quantum computing — although also dealing with multiple nodes
or cores — is different from quantum networking: in distributed quantum computing, a
single compiler produces circuits for each node, whereas in quantum networking each
node is independent and has its own compiler.

Intermediate representations have also been proposed for network-related quantum
programs: NetQIR [53] (an extension toQIR for network-related programs), and InQuIR [45].
However, these are also for distributed quantum computing, and hence not for quantum
networking which we are dealing with in this work.

6.3.5 Session types
As mentioned above, compilers may also perform correctness checking. In the context
of networked programs, one could also say that correctness should include adherence to
a (communication) protocol. Session types is a formalism used for defining communica-
tion protocols between different parties [23]. They can be used to for example specify
the order in which messages need to be sent and received. By having the protocol in a
well-defined format, the parties can check whether they adhere to the agreed upon proto-
col. Tools exist that can check at compile-time if a program adheres to a communication
protocol [2, 12]. Session types may be used for two parties, but multi-party session types
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also exist [24]. Multiparty session types have been considered for quantum network pro-
grams [29]. Timed session types are an extension to session types, adding explicit time
constraints to operations [5]. Timed session types have not yet been applied to quantum.

6.4 Design considerations
In this section we go through considerations to take into account when designing a com-
piler for Qoala programs. In general, we want to re-use existing compilation strategies,
but also need to address the unique challenges for compiling quantum network programs,
as well as using features from Qoala like the hybrid representation and deadlines. For
optimization, the metrics we are interested in are makespan and application success prob-
ability.

Program elements. Quantum network programs consist of four types of code: classi-
cal local (CL), classical communication (CC), quantum local (QL), and quantum commu-
nication (QC). For purely CL and QL segments in the source code, existing compilation
techniques can be used as described in Section 6.3.

Hybrid classical-quantum code. A compiler should take advantage of the fact that the
Qoala executable contains both classical and quantum code. This enables the compiler to
perform optimizations on the mixed classical-quantum segments of the source code.

Networking operations. Network operations (i.e. classical communication and entan-
glement generation) are slow compared to local operations. For example, waiting to re-
ceive a classical message can take in the order of milliseconds (see Figure 4.2). Also, en-
tanglement generation may take milliseconds (Figure 4.17 in Section 4.11.6). By contrast,
individual local quantum operations like gates take only microseconds (Table 4.6 in Sec-
tion 4.11.6) and local classical operations can be as fast as nanoseconds. As can be seen in
Table 4.7, most of the time is spent on network processing.

Since quantum memory decoheres over time, a general optimization for the compiler
is to minimize the time that quantum memory must remain idle during some other oper-
ation. Because of the comparably long duration of network operations, special attention
must be made by the compiler to minimize the time that there is quantum memory alive
while doing network operations. This may mean that the compiler should re-order oper-
ations (without changing the behavior of the program) around network operations, such
as exemplified in Figure 6.4.

Non-deterministic durations. Not only are network-related operations slow, their du-
ration is also non-deterministic (Figure 4.15 and Figure 4.17). Even with optimizations
(like re-ordering local operations) to minimize the time that quantum memory must re-
main alive, a network operation (such as entanglement generation) may take too long —
resulting in a too low-quality quantummemory to produce meaningful results. This raises
two points: (1) the compiler can use Qoala’s feature of deadlines: by adding (relative) dead-
lines to (parts of) the code, the compiler can hint to the scheduler to, at runtime, either
abort the program or to retry a certain piece of code, and (2) the question is what deadline
the compiler should insert. For this, it may be possible for the developer to insert fidelity
constraints in the high-level language (or as a compiler flag), such that the compiler can in-
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sert the corresponding deadlines (possibly parametrized by hardware characteristics from
the Exposed Hardware Interface (EHI), see Section 5.4.3).

Correctness guarantee of compiler. A compiler must at all times guarantee that the
behavior of the program does not change due to optimizations or rewrites. For quantum
network programs, this also means that any communication operations (classical commu-
nication of entanglement generation) must not be re-ordered among themselves. This is
because programs on other nodes in the network may expect these operations to happen
in a certain order, and they cannot know of any re-orderings on this side.

Runtime performance depends on scheduler. The compiler only affects the contents
of the Qoala executable. Howwell the program does at runtime also depends on (as shown
in Section 5.6) (1) the network schedule, and (2) the node scheduler, especially in the case
of multitasking (i.e. when other programs are executed concurrently with this program).
Specifically, the network schedule and the node scheduler affect both the makespan (time
it takes to execute the whole program) and the average application success probability
(see Chapter 2 for metrics).

Private program in networked context. Recall that Qoala programs are part of multi-
node applications, but that the compiler individually compiles the programs for a single
node. This means that program code must be compatible with code in the programs that
are to be run on other nodes. These other programs may not be in control by the developer
nor the compiler. For example, in a client-server application like BQC, a server node may
already have implemented the server-side program, and advertises a service for clients
to connect with, by describing a protocol that a client program should adhere to. On
the client side, a developer may write the client-side program. This client program must
be compatible with the server-side program, including the correct order of communica-
tion operations (both classical communication and entanglement generation operations),
which may also include retries. We may consider two alternatives:

• It is the developer’s responsibility to make sure the client program contains the correct
order of communication operations, and hence adheres to the protocol. In this case, the
compiler does not specifically know about the protocol; it will just optimize the program,
and makes sure it does not re-order the internal ordering of communication operations
(see consideration above). However, if the developer wrote the program in such a way
that the program is not fully adherent to the protocol, the compiler cannot correct for
this.

• There is a formal specification of the protocol, for example in the form of session types
(Section 6.3.5), which the compiler has access to. The developer must still make sure the
program code adheres to the specification, but the compiler can perform an additional
correctness check by evaluating protocol adherence, and warn the developer if this is
not the case. If the protocol specification contains requirements about fidelity or timing,
the compiler can, on top of checking for correctness, also try to meet these requirements
by performing appropriate optimizations and inserting deadlines to guide the scheduler.

Target-specific optimization. The compiler may perform optimizations specific to the
hardware that a programwill run on. TheExposedHardware Interface (EHI) (Section 5.4.3)
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can serve as the target for a compiler, such that the compiler can insert advice (such as
deadlines to code blocks) for the scheduler.

6.5 Architecture recommendations
We list recommendations for an architecture of a Qoala program compiler, based on the
considerations above.

6.5.1 Translation from high-level to Qoala
Decouple front-end language from compilation framework by using Intermedi-
ate Representations (IRs). As explained in Section 6.3, classical compilers typically use
a hierarchy of steps: a front-end for any high-level language to an Intermediate Repre-
sentation (IR), and a back-end for IR to machine code. Using an IR decouples the main
compiler design from specific input and output formats, making it more flexible and scal-
able. Furthermore, if an IR would be used that is already part of existing compilation
frameworks, it can re-use existing compiler techniques. The Quantum Intermediate Rep-
resentation (QIR) [19, 21] may be used. However, QIR uses opaque pointers for quantum
types, which prevents certain optimizations [25, 46]. Multi-Level Intermediate Represen-
tation (MLIR) avoids these issues, since it allows for creating domain-specific dialects. Di-
alects have been created for quantum such that quantum types can be represented natively,
allowing optimizations to be applied on operations including quantum ones [25, 46]. [37,
42] also use MLIR before then compiling to QIR.

The front-end language is not a primary concern; we want to leave design and im-
plementations open. We also want to allow multiple (existing) high-level formats. We
recommend using the existing technique of IRs, gradually lowering code (translating to a
lower-level IR) and performing optimizations at each level. Specifically, we recommend
MLIR [31] since it enables defining intermediate representations specifically for quantum
networking, while still having access to standard (classical) LLVM optimizations.

One may consider at least three IRs (Figure 6.3):
• A high-level IR (QoalaHIR), consisting of a uniform hybrid classical-quantum represen-
tation of operations, where quantum values are native types. Native quantum values
allow value-semantics, meaning that quantum operations consume and produce quan-
tum state values. This is in contrast with memory semantics where qubits are seen as
pointers (such as in QIR [19, 21]) and where quantum operations have side-effects. By
using value-semantics, the compiler can perform (quantum) data-flow analysis in order
to apply classical optimization techniques such as loop unrolling or dead code elimina-
tion [25, 46].

• A mid-level IR (QoalaMIR), where classical code is explicitly separated from quantum
code. The classical code segments will eventually compile down to classical Qoala blocks
(classical local and classical networking blocks, Section 5.4.2), while quantum code seg-
mentswill eventually compile down to quantumQoala blocks (local routines and request
routines, Section 5.4.2). The explicit separation (1) makes it easier to perform the back-
end compilation step (going from low-level IR to Qoala executable) since the formats
are already similar and (2) forces the compiler to decide on where to make the separa-
tions, allowing it to optimize it (see below). QoalaMIR explicitly maps qubit values to
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Figure 6.3: Schematic of a high-level architecture for a Qoala program compiler. Overall, the same structure
is used as in Figure 6.2, but now with three IRs. Source code (in any high-level language) is first translated
into a high-level IR called QoalaHIR. In this IR, classical and quantum code can be mixed arbitrarily, allowing
optimizations to be applied on the whole hybrid code. QoalaHIR has quantum values as native types, which
enables the compiler to do (quantum) data-flow analysis in order to apply existing optimizations that make use
of these def-use chains of quantum values [46]. Control-flow may be complex. After applying optimizations on
QoalaHIR, the program is translated to amid-level IR (QoalaMIR) inwhich an explicit distinction ismade between
code that will run on the CPS and code that will be run on the QPS. Quantum values are now represented as
pointers to memory locations, which means that quantum operations are in the circuit model, enabling existing
quantum circuit optimization techniques. Then, a translation is made to the low-level IR QoalaLIR, in which the
program is explicitly represented in a format close to the final Qoala executable. Optimizations on QoalaLIR may
be hardware-specific and noise-aware. Finally, a back-end compiler translates the QoalaLIR code into an actual
Qoala executable (.iqoala).

quantum memory locations, hence not using value-semantics. By including quantum
memory, the compiler can do hardware-specific optimizations such as qubit mapping.

• A low-level IR (QoalaLIR), where operations are as close as possible to the native Qoala
instructions (including QoalaHost instructions and NetQASM instructions). From this
QoalaLIR representation, it is then relatively straightforward to convert the program to
the Qoala executable (.iqoala) format.

Support fidelity and timing constraints inhigh-level language. Asmentioned above,
we do not want to specify one specific high-level language for developers to write their
quantum network programs in. Instead wewant to allowmultiple (existing) high-level for-
mats in order to provide flexibility in adoption. The NetQASM SDK (Chapter 3 and Chap-
ter 4) may be used, which is implemented in Python. However, we recommend adding
constructs to the high-level language for supplying fidelity and timing constraints. In
this way, the developer can indicate that certain parts of the code are critical, and that the
compiler should handle this by adding deadline constraints. For example, a developer may
indicate that a particular qubit variablemust have at least 𝐹 fidelity compared to some ideal
state at the moment it gets measured; the compiler, seeing that certain network-related
operations happen while this qubit is alive, may estimate the fidelity of the qubit as a func-
tion of how long these operations take. In order to meet the required fidelity, then, the
compiler can insert a deadline for the network-related operations corresponding to the
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maximum time that still realizes fidelity 𝐹 .

Use ExposedHardware Interface (EHI) as compilation target. A compilermust have
an explicit target that describes the software and hardware characteristics that the com-
piled executable must be compatible with. This target includes at least the qubit topology
of the quantum memory and the NetQASM flavor (i.e. the allowed quantum instructions,
see also Section 3.5.2). This information can come from the EHI. We note that the EHI also
contains information about noise and durations (of gates and network operations). This
information may or may not be used by the compiler for optional optimization, but is not
part of the target.

Optionally use session types for protocol adherence checking. As mentioned in
Section 6.4, a program typically implements some multi-node protocol that has certain
requirements on communication order and possibly fidelity or timing. If such a proto-
col would have a formal description in the form of session types, a compiler for Qoala
programs should check the program’s contents and see if it adheres to the protocol.

6.5.2 Optimization
The compiler should optimize programs with respect to various metrics. Some of these
metrics are those from standard compilers: memory usage and execution time (ormakespan).
This holds for both classical and quantum code. For classical code, existing optimization
can be used from MLIR (part of LLVM), applied on the program when it is in one of the
IRs (Figure 6.3). For quantum code, also existing techniques can be used, see Section 6.3.3.
These include circuit mapping and gate optimization techniques.

Moreover, by using the hybrid classical-quantum format of QoalaHIR we can re-use
existing optimizations such as loop unrolling and others, see [25, 37, 42, 46]. This also
enables cross-subroutine optimizations, something not possible in NetQASM.

Other metrics the compiler should optimize for are (1) amount of CPS-QPS communi-
cation, since this negatively impacts execution time and possibly the time that quantum
states must remain in memory, and (2) success probability of the application. In general
this is application specific, but a good heuristic is to reduce the time that quantum states
remain in memory, which may be done by adding deadlines that help the scheduler.

As with classical network or internet applications, the performance of quantum net-
work applications also depends on the network itself, on which the compiler does not
have influence. A large factor in performance is the fidelity (quality) of entangled states
produced by the network. Although the compiler does not control this fidelity directly,
it can indirectly help by doing clever capability negotiation (see Chapter 5) and adding
deadlines.

Furthermore, the compiler should do noise-aware optimization including existing tech-
niques for local quantum operations [40, 49].

Re-use existing (classical and quantum) compilation techniques for local code
These include classical techniques like loop unrolling, and quantum techniques (qubit map-
ping, gate optimization, see Section 6.3). Existing quantum circuit optimizations can be
applied to local quantum code. For network-related operations, see below.
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1 q = init_local_qubit ()
2 q.H() # hadamard
3 e = create_epr ()
4 q.H() # hadamard
5 q.measure ()

Figure 6.4: Simple program that (1) initializes a local qubit 𝑞, (2) applies a Hadamard gate on it, (3) creates an
entangled qubit 𝑒, (4) applies another Hadamard gate on 𝑞 and (5) measures 𝑞. 𝑞 and 𝑒 are completely indepen-
dent in terms of application logic. Since the creation of the entangled qubit 𝑒 may take a long time, executing
the operations in the order they are given means that 𝑞 —after the first Hadamard — must remain in memory
while waiting for the entanglement generation to finish. During this time 𝑞 might decohere considerably. An
optimization would be to move the entanglement creation to the very end (after measuring of 𝑞) such that the
initialization, gates, and measurement of 𝑞 happen in one go, providing best performance.

Perform optimizations on joint classical-quantum representation Make use of
the fact that classical and quantum code can be jointly analyzed and optimized. Use exist-
ing techniques, see [25, 37, 42, 46]. Use existing MLIR infrastructure.

Optimize using noise characteristics As mentioned above, the compiler’s target
comes from the EHI, which contains information about noise and durations (of gates and
network operations). The compiler can use this information to do specific optimizations,
including
• compiling to specific NetQASM flavor,
• mapping to specific qubits with better topology, and
• noise-aware optimizations such as [40, 49].

Give hints to scheduler (deadlines) In Section 6.4 we mentions that the compiler
could add deadlines for parts of the code in order to meet fidelity requirements that are
put in the code by a developer or that may come from a protocol description. The compiler
may do so by analyzing the code and estimating the fidelity of certain quantummemory at
a given moment in time, as a function of the time it took to do the operations before. It can
use the EHI for this, which contains information about gate duration, estimated network
operation duration, and coherence times of qubits. For this, algorithms would need to
be developed to perform the estimation. The deadline can then be used by a scheduler,
and depending on the scheduling algorithm, these may increase the application success
probability.

Do network-specific optimizations On top of the existing optimizations for classi-
cal and quantum local code (mentioned above), the compiler should try to perform opti-
mizations relating to networking operations, as mentioned in Section 6.4:
• Re-order operations to minimize qubit memory time (see Figure 6.4 for a simple exam-
ple).

• Even without protocol description: do not re-order external operations.
• Add deadlines to code blocks to guide scheduling.
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6.6 Implementation
We report on a preliminary implementation of our compiler, using the LLVM framework
(C++), specifically making use of the MLIR subproject of LLVM [31]. This implementation
focuses mainly on translating high-level code to a Qoala executable, using Intermediate
Representation (IR)s as proposed in the previous section. We have not yet implemented
any optimizations, but we emphasize that our implementation can easily incorporate op-
timizations by writing these as passes (a construct in LLVM [30]) that are applied on the
IRs.

6.6.1 Overview
TheQoala compiler uses three intermediate representations (IRs): a high-level IR (QoalaHIR),
a mid-level IR (QoalaMIR), and a low-level IR (QoalaLIR). Each IR is associated with a par-
ticular set of MLIR dialects [31]. TheQoala compiler uses four customMLIR dialects, called
qnet, qmem, qoalahost, and netqasm, explained in more detail below.
• QoalaHIR (High-level): A higher-level IR, where operations are closely related to the
Python source code. Quantum operations are represented using the qnet dialect, which
consume and produce quantum values. Programs in the QoalaHIR format use the follow-
ing dialects: qnet (Qoala-specific dialect), and arith, scf, affine, async, tensor (default
dialects in MLIR, which support complex control-flow and data structures).

• QoalaMIR (Mid-level): A mid level IR, similar to QoalaHIR but with explicit memory lo-
cations, using the Qoala-specific qmem dialect instead of qnet (qmem uses quantum point-
ers instead of quantum values).

• QoalaLIR (Low-level): A lower level IR, where operations are closer to the classical
and quantum assembly instructions. Quantum operations are represented using the
netqasm dialect, which take quantum quantum memory pointers as operands and have
side-effects on the quantum value stored in the registers. Programs in the QoalaLIR
format use the following dialects: qoalahost (Qoala-specific), netqasm (Qoala-specific),
and arith, cf, memref, async (standard MLIR dialects). We note that only simple control-
flow and data structures are supported (cf and memref), since they map more directly
onto the allowed control-flow and data structures in Qoala executables.

6.6.2 Lowering passes
We have implemented the following compiler passes for lowering QoalaHIR code into
QoalaLIR code (Figure 6.3).

QoalaHIR to QoalaMIR. Go from a value-semantics representation (qubits are values
that are consumed and produced by operations) in the qnet dialect to a memory-semantics
representation (qubits are pointers and quantum operations acting on qubit pointers have
side effects) in the qmem dialect.

QoalaMIR functionizing. Split QoalaMIR code into functions. This ‘functionizing’ is
done in such away that the program structure already resembles the final Qoala executable
structure.

Functionizing algorithm:
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1. Loop over all operations in the order they are given until either a classical receive
operation or an entanglement operation is found. (When the end of the program is
reached, exit.)

2. Create one or more new functions:
• If a classical receive operationwas encountered: gather all quantum operations found
so far, plus all (possibly non-quantum) operations that produce values used by these
quantum operations. Put all these operations inside a new function and replace the
original QoalaMIR code with a call to this new function.

• If an entanglement operation was encountered: gather all non-entanglement opera-
tions found so far, and put them in a new function (F1) (like in the previous point).
Additionally, create a second new function (F2) containing the entanglement oper-
ation itself, including the corresponding allocation operation. Replace the original
QoalaMIR code with calls to F1 and F2.

3. Go back to (1) starting at the operation after the previously found receive or entangle-
ment operation. Note that classical receive operations always remain outside newly
created functions, whereas entanglement operations are always moved into their own
new functions.

QoalaMIR to QoalaLIR. Convert operations inside functions to the netqasm dialect.
Convert other operations to the qoalahost dialect. The format is now already close to
a Qoala executable (.iqoala).

6.6.3 Python SDK
We have implemented a new, bare-bones, SDK for the purpose of trying our compiler; in
the future we aim to merge this with the NetQASM SDK (Chapter 3) such that programs
written in this existing SDK can immediately be compiled using our compiler. The SDK
enables the following program development flow:

• Programmer writes source code in Python using the Qoala Python SDK.
• The Python SDK itself provides a compile function that executes the source code which
produces a .mlir file containing the program code in QoalaHIR format.

• This Python SDK implements some functionality present in the “frontend” of a classical
compiler, for example, a semantical analysis to check the validity of the classical and
quantum operations specified in the program.

• A separate opt-like tool (built using LLVM/MLIR) takes the .mlir as input and produces
(after several applying passes) a .iqoala file.

• The .iqoala file can then be executed by a Qoala runtime.

6.6.4 Example lowering
Take the below example program written in the high-level Qoala Python SDK. The pro-
gram first creates an entangled qubit (q) with remote node Bob, after which a Hadamard
gate is applied on q. Then, the program waits to receive a classical real number (a float) as
a classical message from Bob, calling it t1. An x-rotation gate is applied on q with angle
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t1. Finally, q is measured, producing bit m which is returned as result of this program.



6.6 Implementation

6

233

0 class MyProgram(QoalaProgram):
1 def main(self , ctx: QoalaContext):
2 q = ctx.entangle_keep(”Bob”)
3 ctx.hadamard(q)
4 t1 = ctx.recv_float(”Bob”)
5 ctx.rot_x(q, t1)
6 m = ctx.measure(q)
7 ctx.add_return(m)
8

9 program = MyProgram ()
10 mlir = program.compile () # ‘compile ‘ is defined in ‘QoalaProgram ‘
11 with open(”program.mlir”, ”w”) as f:
12 f.write(mlir.text())

The program.compile() method produces an in-memory representation of this pro-
gram but in QoalaHIR format. Finally, it is written to the file program.mlir, which can
then be fed to qoala-opt, the main Qoala compiler. The QoalaHIR format looks as follows:

0 qnet.func @main() -> i1 {
1 %q = qnet.eprs {N = 1, remote = @Bob} : !qnet.qubit
2 %q2 = qnet.hadamard %q : !qnet.qubit
3 %floats1 = qnet.recv_floats {remote = @Bob , length = 1 : i32} : tensor <1xf32

>
4 %t1 = tensor.extract %floats1 [%zero] : tensor <1xf32 >
5 %q3 = qnet.rot_x %q2, %t1 : !qnet.qubit
6 %m = qnet.measure %q3 : i1
7 qnet.return %m : i1
8 }

As can be seen, the variable q from the original Python program is now called %q (using
% is MLIR syntax), and is the result of the eprs operations defined in the qnet dialect. This
operation produces a variable of type !qnet.qubit, a native qnet type.

The hadamard operation in the qnet dialect consumes !qnet.qubit values (in this case,
%q) and produces a new !qnet.qubit value (in this case, %q2). Using value-semantics (con-
suming and producing values) allows for already-existing MLIR optimization passes (such
as dead code elimination, but not shown in this example) to be applied on our custom qnet
dialect as well.
LoweringQoalaHIR toQoalaMIR. When lowering the aboveQoalaHIR code toQoalaMIR,
the change is that instead of using value-semantics for qubits, now explicit allocations are
done for quantum memory. Quantum operations are applied on quantum pointers, and
have side effects. (In contrast to consuming a quantum value and producing a new one.)
As can be seen below, the qnet.eprs operation producing qubit variable %q is replaced by
a qalloc operation (in the qmem dialect), producing a qubit pointer %qptr (not a quantum
value), followed by a eprs operation (in the qmem dialect instead of the qnet dialect) which
acts on %qptr.
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0 qmem.func @main() -> i1 {
1 %qptr = qmem.qalloc : i32
2 qmem.eprs %qptr
3 qmem.hadamard %qptr
4 %floats1 = qmem.recv_floats {remote = @Bob , length = 1 : i32} : tensor <1xf32

>
5 %t1 = tensor.extract %floats1 [%zero] : tensor <1xf32 >
6 qmem.rot_x %qptr , %t1
7 %m = qmem.measure %qptr : i1
8 qmem.return %m : i1
9 }

Functionizing QoalaMIR. On QoalaMIR code, a functionizing pass is applied, which
splits quantum code into separate functions that are called from the main function. The
main function itself only keeps classical instructions. Here we see the first split that even-
tually becomes the split between CPS code (in the main function) and QPS code (in the
separate functions). The result of applying the functionize pass on the above QoalaMIR
code looks like this:

0 qmem.func @routine1 () -> i32 {
1 %qptr = qmem.qalloc : i32
2 qmem.eprs %qptr
3 qmem.return %qptr : i32
4 }
5

6 qmem.func @routine2 (%qptr: i32) -> i32 {
7 qmem.hadamard %qptr
8 qmem.return %qptr : i32
9 }

10

11 qmem.func @routine3 (%qptr: i32 , %t1: f32) -> i1 {
12 qmem.rot_x %qptr , %t1
13 %m = qmem.measure %qptr : i1
14 }
15

16 qmem.func @main() -> i1 {
17 %qptr = qmem.call @routine1 () : () -> i32
18 qmem.call @routine2 (%qptr) : () -> i32
19 %floats1 = qmem.recv_floats {remote = @Bob , length = 1 : i32} : tensor <1xf32

>
20 %t1 = tensor.extract %floats1 [%zero] : tensor <1xf32 >
21 %m = call @routine3 (%qptr1 , %t1) : (i32 , f32) -> i1
22 qmem.return %m : i1
23 }

Lowering functionizedQoalaMIR toQoalaLIR. When lowering toQoalaLIR, the quan-
tum functions are replaced by either request_routine operations (for functions contain-
ing EPR creation operations) or local_routine operations (for function with only local
quantum operations). Moreover, these functions are now all in the netqasm dialect. The
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code in the main function is replaced by appropriate operations in the qoalahost dialect.
As can be seen below, the structure of the resulting QoalaLIR code already looks close to
the final Qoala executable (.iqoala) format: netqasm.request_routine functions can be
mapped to Qoala Request Routines, netqasm.local_routine functions can be mapped to
Qoala Local Routines, and the main_func code can be mapped to Qoala Host code (Sec-
tion 5.4.2).

0 netqasm.request_routine @req1() -> i32 {
1 %vqubit = netqasm.qalloc : i32
2 netqasm.eprs %vqubit {remote = @Bob}
3 return %vqubit : i32
4 }
5

6 netqasm.local_routine @subrt2 (% vqubit: i32) {
7 netqasm.hadamard %vqubit
8 return
9 }

10

11 netqasm.local_routine @subrt3 (% vqubit: i32 , %num: i32 , %denom: i32) {
12 netqasm.rot_x %vqubit , %num , %denom
13 %m = netqasm.measure %vqubit : i1
14 return %m : i1
15 }
16

17 qoalahost.main_func @main() -> i1{
18 %zero = arith.constant 0 : index
19 %vqubit = qoalahost.call @req1() : () -> i32
20 netqasm.call @subrt2 (%vqubit , %num1 , %denom1) : (i32 , i32 , i32) -> ()
21

22 %floats1 = qoalahost.recv_floats {remote = @Bob , length = 1 : i32} : tensor
<1xf32 >

23 %t1 = tensor.extract %floats1 [%zero] : tensor <1xf32 >
24 %num1 , %denom1 = func.call @conver_float_to_num_and_denom (%t1) : (f32) -> (

i32 , i32)
25

26 %m = netqasm.call @subrt3 (%vqubit , %num1 , %denom1) : (i32 , i32 , i32) -> i1
27 qoalahost.return %m : i1
28 }

6.7 Conclusion
We have discussed design considerations for a Qoala program compiler, and proposed a
high-level architecture for such a compiler. Our overall recommendation is to re-use exist-
ing compilation techniques wherever possible, such as for purely classical code segments
and purely local quantum code segments. We also recommend using existing infrastruc-
ture such asMLIR in order to (1) re-use existing techniques and (2) represent the hybrid na-
ture of quantum network programs. Moreover, we have provided pointers for (quantum)
network-specific optimizations, including instruction re-ordering and inserting deadlines
to code blocks.

More research is needed for the ideas presented in this chapter before a detailed com-
piler design can be completed. For example, how should developers describe their fidelity
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constraints in high-level source code? How can a compiler translate such constraints into
deadlines? Also, the idea of using session types for protocol descriptions must be investi-
gated more. Finally, evaluation of the compiler design is crucial to test the merit of these
ideas and to guide further research. Evaluation may be done by inspecting the compila-
tion output (for instance, the number of (blocks of) instructions in the Qoala executable)
or the runtime performance. However, we note that the runtime performance (including
makespan and application success probability) also depends on the node scheduler and
network schedule. Therefore, future research may want to focus on the joint compilation-
scheduling problem.
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7
Conclusion

In this final chapter, we provide a brief summary of the work presented in this thesis and
list possible future lines of research and development.

7.1 Summary of results
In Chapter 1 we have explained that for quantum networks, there was previously no pro-
gramming and execution framework for quantum network (or internet) applications. Our
main goal has hence been to enable programming and execution of arbitrary quantum net-
work applications in a hardware-agnostic way while optimizing runtime performance. In
Chapters 3 to 6 we presented novel (system) architectures towards achieving this goal.

NetQASM. In Chapter 3 we introduced NetQASM — the first ever instruction set that
can express quantum network instructions including remote entanglement generation.
NetQASM enables the development of quantum network applications in a hardware-ag-
nostic manner by providing a high-level SDK, and by making the instruction set hard-
ware-independent (although we also allow hardware-specific optimizations). We also in-
troduced a model of execution for quantum network nodes, which consists of a CNPU
performing classical processing and communication with other nodes, and a QNPU re-
sponsible for executing quantum instructions as well as delivering entanglement to user
applications. By using virtualized quantum memory spaces, NetQASM allows multitask-
ing on a node: the concurrent execution of multiple applications, in order to increase
device utilization. We validated and evaluated NetQASM in simulation.

QNodeOS. In Chapter 4 we extended our execution model from Chapter 3, and presented
the first ever full-stack system architecture for quantum network nodes — QNodeOS — for
executing arbitrary applications on quantum network nodes. QNodeOS is an architecture
that spans both CNPU and QNPU, and describes how user applications written with the
NetQASM SDK can be executed, by also incorporating the network stack [1, 4]. We have
validated our architecture by implementing it on real hardware: we showed the successful
execution of simple quantum network applications on a setup of two nodes based on NV
centers. Moreover we have shown that QNodeOS is platform-agnostic by also connecting
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it to a quantum device with trapped ions. Finally we validated that QNodeOS can do
multitasking of multiple applications and can increase quantum device utility this way.

Qoala. We learned from QNodeOS that there are opportunities to improve compilation
and scheduling, which will then lead to better runtime performance. In Chapter 5 we ex-
plained these opportunities and proposed an improved architecture — Qoala — for execut-
ing applications on quantum network nodes. In the Qoala architecture, the split between
CNPU and QNPU (in Chapter 5 called CPS and QPS) is lessened: Qoala describes a hybrid
classical-quantum format of programs, allowing more advanced compilation, and a node-
wide scheduler that allows more advanced scheduling. We evaluated how Qoala enables
improvement of both compilation and scheduling in simulation.

Compiler. While the Qoala architecture enables better compilation in the first place, in
Chapter 6 we discussed how such a compiler could look like. We discussed design con-
siderations and proposed a high-level architecture for such a compiler. Our overall rec-
ommendation is to re-use existing compilation techniques wherever possible, such as for
purely classical code segments and purely local quantum code segments. We also recom-
mend using existing infrastructure such as MLIR in order to (1) re-use existing techniques
and (2) represent the hybrid nature of quantum network programs. Moreover, we have
provided pointers for (quantum) network-specific optimizations, including instruction re-
ordering and inserting deadlines to code blocks.

7.2 Future work
We believe that our work has contributed to addressing the objective of enabling program-
ming and execution of arbitrary quantum network nodes, by designing and implementing
the frameworks mentioned above. Still, there remain areas for improvement and more
research.

Implement Qoala on real hardware. Although we have validated Qoala’s improve-
ments over QNodeOS in simulation, it is important to validate this on a real implementa-
tion as well. A real implementation of Qoala, by upgrading the existing QNodeOS imple-
mentation would enable running the same experiments on real hardware with Qoala as
we did with QNodeOS in Chapter 4.

Scaling up. All the work presented here has been evaluated on small networks, whether
it be on real hardware (Chapter 4) or in simulation (Chapters 3 and 5). EvaluatingQNodeOS
and Qoala on larger systems (meaning: larger networks, more applications, more qubits
per node, more instructions per program) can give insights into howmuch our architecture
scales, and whether changes in the design have to be made before larger scale adoption
can be realized.

Qoala compiler. In Chapter 6 we discussed possibilities for the design of a compiler for
Qoala programs. Finalizing the design and then implementing it would enable evaluation
(in simulation or on hardware), which would in turn point to future improvements of
the design. It would be especially interesting to see how compilation strategies may be
combined with scheduling strategies, because of their interplay as shown in Chapter 5.
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Advanced scheduling algorithms. In Chapter 5we evaluated only simple node schedul-
ing algorithms (first-come-first-serve and earliest-deadline-first) since our main objective
was to showcase the ability to do node scheduling in the first place, rather than coming up
with an optimized scheduler. More sophisticated scheduling strategies may lead to higher
success probabilities and lower makespan when concurrently executing multiple program
instances, where inspiration may come from existing strategies such as time-utility func-
tions (TUF, see e.g. [3, 5]) to inform scheduling decisions, and where it is an open question
how such TUFs could even be defined in the quantum domain. Further research on the
fundamental tradeoffs between the classical (makespan) and quantum (success probabil-
ity) performance metrics may also guide further design choices on scheduling algorithms.
Investigate using Qoala for distributed quantum computing. Although Qoala has
been designed with quantum network (or internet) applications in mind, it may also be
used for distributed quantum computing (DQC, although not to be confused with Dele-
gated Quantum Computation from Chapter 4). Since DQC only needs to do limited clas-
sical communication (sending teleportation corrections), Qoala’s architecture of having a
separate CPS doing arbitrary classical computation and communication may not be the
most efficient solution. However, it may be that overhead is minimal and is made up for
by being able to use the same architecture (namely Qoala) as for more general quantum
network applications. Indeed, using Qoala may enable DQC in larger-scale networks com-
prised of autonomous nodes (like a quantum internet), something not immediately possi-
ble with existing frameworks such as [2] which assume central control over all nodes.
Because of the more predictable nature of DQC applications (there is typically no com-
plex control-flow depending on runtime information) simple node scheduling algorithms
may suffice, although this needs to be investigated.
Capability negotiation. In Section 5.4.5 wementioned that the compiler provides advice
that the nodes use in capability negotiation and demand registration (Section 5.4.5). It is an
open question how to best compute such advice, and find efficient protocols for negotiating
capabilities and register demand. This must be fleshed out in coordination with network
scheduling research.
Network schedule. As expected, our evaluation shows that application performance de-
pends on the network schedule, where we emphasize that ensuring network service is out
of scope for Qoala as en environment for executing applications. This highlights a need
for understanding the quality of service a quantum network should provide, as well as
to design good network scheduling algorithms to satisfy them, in order to achieve good
application performance.
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A.1 Flow of messages
Here we define the content of each of the messages being sent between the CNPU and the
QNPU. Each message has an ID chosen by the CNPU which is used to associate replies
from the QNPU to the CNPU.
• RegisterApp: Sent once from the CNPU to the QNPU whenever a new application starts.
Contains information on what resources are required by the application, in particular:
– unit_module_spec: Specification of unit-module needed, e.g. number of qubits.
– epr_socket_spec: Specification of EPR sockets needed, see [3], containing (1) EPR socket

ID, (2) remote node ID, (3) remote EPR socket ID and (4) minimum required fidelity.
• RegisterAppOK: Returned from the QNPU when application is registered, containing an
application ID to be used for future messages.
– app_id: Application ID.

• RegisterAppErr: Returned from the QNPU when registration of application failed. For
example if required resources could not be met.
– error_code: Error code specifying what went wrong.

• Subroutine: Message from the CNPU to the QNPU, containing a subroutine to be exe-
cuted. Details on the content are presented in later sections.
– app_id: Application ID.
– subroutine: The subroutine to be executed.

• Done: Message from the QNPU to the CNPU, indicating that a subroutine has finished.
Which subroutine is indicated by the message ID.
– message_id Message ID used for the Subroutine-message.

• Update memory: The CNPU will have access to a copy of the memory allocated by the
QNPU for certain registers and arrays, see Section 3.6.2. This memory is read-only by
the CNPU. Updates to the copy of the memory are performed by the end of a subroutine
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or if the subroutine is waiting. Furthermore, updates need to be explicitly specified in
the subroutine by using one of the return-commands. How the actual update is imple-
mented depends on the platform and can either be done by message-passing or with
an actual shared memory. However, the subroutine is independent from this imple-
mentation. The CNPU will be notified by an explicit message whenever the memory is
updated.

• StopApp: Sent from the CNPU to the QNPU indicating that an application is finished.

A.2 Operands
In this section we give the exact definition of the types of operands used in the NetQASM
language. Each instruction of NetQASM takes one or more operands. There are five types
of operands, which are listed and described below. Each instruction has a fixed types
of operands at each position. The exact operands for each instruction is listed in Ap-
pendix A.6. We note also that in the human-readable text-form of NetQASM, there are
also branch variables. However, these are always replaced by IMMEDIATEs (constants),
corresponding to the instruction number of the subroutine, before serializing, see Ap-
pendix A.3.

The operand types of NetQASM are:
• IMMEDIATE(constant): An integer seen as it’s value. The following instruction, beq
branch-if-equal, branches to instruction index 12 since the number 0 equals the number
0.

0 beq 0 0 12

In the binary encoding used at [2], IMMEDIATEs are int32.
• REGISTER: A register specifying a register name and a index. The following instruction
sets index 0 of the register name R to be 0.

0 set R0 0

In the current version of NetQASM there are four register names and the indices are
relative to the names. They are all functionally the same but are meant to be used for
different purposes and increase readability:
– C: Constants, meant to only be set once throughout a subroutine.
– R: Normal register, used for looping etc.
– Q: Stores virtual qubit IDs.
– M: Stores measurement outcomes.
In the binary encoding used at [2], REGISTERs are specified by one byte and hold one
int32.

• ADDRESS: Specifies an address to an array. Starts with @. The following instruction
declares an array of length 10 at address 0.
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0 array 10 @0

For more information about arrays, see below. The address here is just an identifier of
the array and does not refer to a actual memory address. For this reason @1 above does
not mean the second entry of the declared array but simply a different array. Addresses
are relative to the application ID and are valid across subroutines.

• ARRAY_ENTRY: Specifies an entry in an array. Takes the form @a[i], where a specifies
the address and i the index. The following instruction stores the value of R0 to the second
entry of the array with address 0.

0 store R0 @0[1]

In the text-form i can either be an IMMEDIATE or aREGISTER, however in the binary
encoding used at [2], i is always aREGISTER. This is handled by the compiler by using
a set-command before.

• ARRAY_SLICE: Specifies a slice of an array. Takes the form @a[s:e], where a specifies
the address, s the start-index (inclusive) and e the end-index (exclusive). The following
instruction waits for the second to the fourth entry of array with address 0 to become
not null, see Appendix A.6.6.

0 wait_all @0[1:4]

In the text-form s and e can either be an IMMEDIATEs or a REGISTERs, however
in the binary encoding defined used at [2], s and e are always a REGISTERs. This is
handled by the compiler by using a set-commands before.

A.3 Branch variables
The human-readable text-form of NetQASM supports the use of branch variables. Branch
labels are declared as VAR: before the instruction to branch to. Before serializing aNetQASM-
subroutine, all branch variables are replaced with IMMEDIATEs corresponding to the
correct instruction index. Delaying this replacement to the end is useful if the compiler
wants to move around instructions. For example if a subroutine is as follows:

0 # NETQASM 1.0
1 # APPID 0
2 set R0 0
3

4 // Loop entry
5 LOOP:
6 beq R0 10 LOOP_EXIT
7

8 // Loop body
9 // If statement

10 bge R0 5 ELSE
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11 // true block
12 add R0 R0 1
13 jmp IF_EXIT
14 // false block
15 ELSE:
16 add R0 R0 2
17 IF_EXIT:
18

19 // Loop exit
20 jmp LOOP
21 LOOP_EXIT:

Which effectively does the same as the following program written in Python (where the
variable i corresponds to the register R0 above).

0 i = 0
1 while i != 10:
2 if i < 5:
3 i += 1
4 else:
5 i += 2

After replacing the branch labels the body of the subroutine will instead look:
0 store R0 0
1 beq R0 10 7
2 bge R0 5 5
3 add R0 R0 1
4 jmp 6
5 add R0 R0 2
6 jmp 1

A.4 Arrays
Classical data produced during the execution of a subroutine are stored in either fixed reg-
isters or allocated arrays. Arrays in NetQASM have fixed-length, which is specified when
declared using the array-instruction. Each entry of an array is an optional IMMEDIATE,
meaning that the entry is an integer (e.g. int32) or not defined (null). The arrays can be
used to collect measurement outcomes to be returned to the CNPU but also other data such
as information about the generated remote entanglement [1, 3]. All wait-instructions of
NetQASM wait for one or more entries in an array to become defined (i.e. not null). The
main use-case is for the execution of the subroutine to wait until the quantum network
stack of the QNPU has finished generated an entangled pair with a remote node. The sub-
routine will be waiting for information about the entangled pair to be stored in a given
array. Once this is done, the execution can proceed.

The following subroutine for example creates and array with three elements, stores
the values 1 and 2 to the array and reads them and adds them up, storing the value in the
third entry.
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0 // Create two constant registers
1 set C1 1
2 set C2 2
3 // Make an array of three entries
4 array 3 @0
5 // Load the constants to the array
6 store C1 @0[0]
7 store C2 @0[1]
8 // Load the array entries to two other registers
9 load R0 @0[0]

10 load R1 @0[1]
11 // Add the registers and store the result in the first
12 add R0 R1 R0
13 // Store the sum in the third entry of the array
14 store R0 @0[2]

A.5 Qubit address operands
Commands that perform actions on qubits have REGISTER-operands which specify the
virtual address of the qubit to act on. It is good practice to use register name Q for these
registers. The following subroutine performs a Hadamard gates on qubits with virtual
addresses 0, 1 and 2.

0 set Q0 0
1 set Q1 1
2 h Q0
3 h Q1
4 set Q0 2
5 h Q0

Note that Q0 is used twice but the value of the register is different.

A.6 Instructions
Here we list the current instructions part of the vanilla flavor of NetQASM. For the most
up to date version of the language, refer to [2]. Commands are specified as follows:

• name <operand-type 1> <operand-type 2> ...: Description of instruction.

Description of operands.

Operand types can be reg for a REGISTER, imm for an IMMEDIATE, addr for an AD-
DRESS, arr-ent for an ARRAY_ENTRY, arr-slice for an ARRAY_SLICE.

We note that in the human-readable text-form of NetQASM, it is allowed to provide
an IMMEDIATE for operands that are specified as REGISTER. The compiler will then
replace these, using the set-command.
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Allocation.

• qalloc <reg>: Start using a qubit in the unit module.
<reg>: The virtual address of the qubit.

• array <imm> <addr>: Creates an array of a certain length (width is fixed).
<imm>: Number of entries in the array. <addr>: Address of array.

A.6.1 Initialization
• init <reg>: Initializes a qubit to |0⟩.

<reg>: The virtual address of the qubit.

• set <reg> <imm>: Set a register to a certain value.
<reg>: The register to assign a value to. <imm>: The value to assign.

A.6.2 Memory operations
• store <reg> <arr-ent>: Stores the value in a register to an index of an array.

<reg>: The register holding the value to store. <arr-ent>: The array-entry to store the
value to.

• load <reg> <arr-ent>: Loads the value from an index of an array to a register.
<reg>: The register to store the value to. <arr-ent>: The array-entry holding the value.

• undef <arr-ent>: Sets an entry of an array to null, see Appendix A.6.6.
<arr-ent>: Array-entry to make null.

• lea <reg> <addr>: Loads a given address of an array to a register.
<reg>: The register to store the address to. <addr>: The address to the array.

A.6.3 Classical logic
There are three groups of branch instructions: nullary, unary and binary.

Nullary branching

• jmp <imm>: Jump to a given line (unconditionally).
<imm>: Line to branch to.

Unary branching There are two unary branching instructions: beq and bnz, which
both have the following structure:

• b{ez,nz} <reg> <imm>: Branch to a given line if condition fulfilled, see below.
<reg>: Value 𝑣 in condition expression. <imm>: Line to branch to.

Branching occurs if:

• bez: 𝑣 = 0 (branch-if-zero)
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• bnz: 𝑣 ≠ 0 (branch-if-not-zero)

Binary branching There are four binary branch instructions: beq, bne, blt and bge,
which all have the following structure:

• b{eq,ne,lt,ge} <reg0> <reg1> <imm>: Branch if condition fulfilled, see below.

<reg0>: Value 𝑣1 in conditional expression. <reg1>: Value 𝑣2 in conditional expression.
<imm>: Line to branch to.

Branching occurs if:

• beq: 𝑣0 = 𝑣1 (branch-if-equal)

• bne: 𝑣0 ≠ 𝑣1 (branch-if-not-equal)

• blt: 𝑣0 < 𝑣1 (branch-if-less-than)

• bge: 𝑣0 ≥ 𝑣1 (branch-if-greater-or-equal)

A.6.4 Classical operations
There are currently four binary classical operations: addition (add), subtraction (sub) and
addition (addm), subtraction (subm) modulo a number. The first two have the following struc-
ture:

• {add,sub} <reg0> <reg1> <reg2>: Perform a binary operation and store the result.

<reg0>: Register towrite result (𝑟 ) to. <reg1>: First operand in binary operation (𝑣0). <reg2>:
Second operand in binary operation (𝑣1).

The second two have an additional operand to specify what module should be taken
for the result:

• {add,sub}m <reg0> <reg1> <reg2> <reg3>: Perform a binary operationmodulo𝑚 and store the
result.

<reg0>: Register towrite result (𝑟 ) to. <reg1>: First operand in binary operation (𝑣0). <reg2>:
Second operand in binary operation (𝑣1). <reg3>: Modulo in binary operation (𝑚).

Binary operations are the following:

• add, 𝑟 = (𝑣0 +𝑣1)

• sub, 𝑟 = (𝑣0 −𝑣1)

• addm, 𝑟 = (𝑣0 +𝑣1) (mod 𝑚)

• subm, 𝑟 = (𝑣0 −𝑣1) (mod 𝑚)
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A.6.5 Quantum gates
Single-qubit gates There is a number of single-qubit gates which all have the following
structure

• instr <reg>: Perform a single-qubit gate.
<reg>: The virtual address of the qubit.

Single-qubit gates without additional arguments are the following.

• x: X-gate.

𝑋 = (0 1
1 0) (A.1)

• y: Y-gate.

𝑌 = (0 −𝑖
𝑖 0 ) (A.2)

• z: Z-gate.

𝑍 = (1 0
0 −1) (A.3)

• h: Hadamard gate.

𝐻 = 1
√2 (

1 1
1 −1) (A.4)

• s: S-gate (phase)

𝑆 = (1 0
0 𝑖) (A.5)

• k: K-gate.

𝐾 = 1
√2 (

1 −𝑖
𝑖 −1) (A.6)

• t: T-gate.

𝑇 = (1 0
0 𝑒𝑖𝜋/4) (A.7)

Single-qubit rotations Additionally one can perform single-qubit rotations with a
given angle. The angles a are specified by two integers n and d as:

𝑎 = 𝑛𝜋
2𝑑 (A.8)

These instructions have the following structure

• rot_{x,y,z} <reg> <imm0> <imm1>: Perform a single-qubit rotation.
<reg>: Register containing the virtual address of the qubit. <imm0>: n, for angle, see above.
<imm1>: d, for angle, see above.
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Single-qubit rotations are the following.

• rot_x: Rotation around X-axis.

• rot_y: Rotation around Y-axis.

• rot_z: Rotation around Z-axis.

Two-qubit gates There are two two-qubit gates which have the following structure

• {cnot,cphase} <reg0> <reg1>: Perform a two-qubit operation.
<reg0>: Register containing the virtual address of the control qubit. <reg1>: Register con-
taining the virtual address of the target qubit.

Two-qubit gates are the following.

• cnot: Controlled 𝑋 gate.

• cphase: Controlled 𝑍 gate.

Measurement

• meas <reg0> <reg1>: Measure a qubit in the standard basis.
<reg0>: Register containing the virtual address of the qubit. <reg1>: Register to write
outcome address to.

Pre-measurement rotations To measure in other bases one can perform gates/rota-
tions before the measurement. If the same measurement basis is used a lot, one can also
make use of pre-measurement rotations which can reduce the amount of communication
needed internally in the QNPU. A pre-measurement rotations is specified by either the
pmr_xyx, pmr_zxz or pmr_yzy which have the following structure. With any two of the bases
X, Y and Z, one can do any rotation.

• pmr_{xyx,zxz,yzy} <imm0> <imm1> <imm2> <imm3> <imm4> <imm5>: Specify a pre-measurement ro-
tation.
<imm0>: n0, for angle of first rotation, see below. <imm1>: d0, for angle of first rotation, see
below. <imm2>: n1, for angle of second rotation, see below. <imm3>: d1, for angle of second
rotation, see below. <imm4>: n2, for angle of third rotation, see below. <imm5>: d2, for angle
of third rotation, see below.

If a pre-measurement rotation is specified, then three rotations are performed before mea-
suring using a meas_rot-command, see below. The axes of these rotations as given in the
instruction name.

The angles of the rotations are specified by the integers n{0,1,2} and d{0,1,2} in the
same way as for single-qubit rotations. That is, rotation i is done by angle 𝜋𝑛𝑖

2𝑑𝑖 .
Entanglement generation
There are two commands related to entanglement generation. A node can initiate

entanglement generation with another node by using the create_epr-command. This com-
mand is not blocking until entanglement has been generated but a wait-instruction (see
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below) can be used to block until certain a certain array has been written to, indicating
that entanglement has been generated. The remote node should also provide a recv_epr

-command. This command does not initiate the entanglement generation but is used to
provide the virtual qubit IDs that should be used for the entangled qubits.

• create_epr <reg0> <reg1> <reg2> <reg3> <reg4>: Create an EPR pair with a remote node.

<reg0>: Remote node ID. <reg1>: EPR socket ID. <reg2>: Provides the address to the array
containing the virtual qubit IDs for the entangled pairs in this request. The value of the
register should contain the address to an array with as many virtual qubit IDs stored
as pair requested. <reg3>: Provides the address to the array which holds the rest of
the arguments of the entanglement generation to the network stack [1, 3]. The value
of the register should contain the address to an array with as entries as arguments in
the entanglement generation request to the network stack [1, 3] (except remote node
ID and EPR socket ID). <reg4>: Provides the address to the array to which information
about the entanglement should be written. The value of the register should contain the
address to an array with as many entries as 𝑛pairs ×𝑛args, where 𝑛𝑢𝑚args is the number
of arguments in the entanglement information provided by the network stack [1, 3].

• recv_epr <reg0> <reg1> <reg2> <reg3>: Receive an EPR pair from a remote node.

<reg0>: Remote node ID. <reg1>: EPR socket ID. <reg2>: Provides the address to the array
containing the virtual qubit IDs for the entangled pairs in this request. The value of the
register should contain the address to an array with as many virtual qubit IDs stored as
pair requested. <reg3>: Provides the address to the array to which information about the
entanglement should be written. The value of the register should contain the address to
an array with as many entries as 𝑛pairs ×𝑛args, where 𝑛args is the number of arguments
in the entanglement information provided by the network stack [1, 3].

A.6.6 Waiting
There are three wait-commands that can wait for entries in arrays to become defined, i.e.
not null. Entries in a new array is by default null (undefined).

• wait_all <arr-slice>: Wait for all entries in a given array slice to become not null.

<arr-slice>: Array slice to wait for.

• wait_any <arr-slice>: Wait for any entry in a given array slice to become not null.

<arr-slice>: Array slice to wait for.

• wait_single <arr-ent>: Wait for a single entry in an array to become not null.

<arr-ent>: Array entry to wait for.

A.6.7 Deallocation
• qfree <reg>: Stop using a qubit in the unit module.

<reg>: Register containing the virtual address of the qubit.
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A.6.8 Return
There are two commands for returning data to the CNPU. These commands indicate that
the copy of the memory on the CNPU side should be updated, see above.

• ret_reg <reg>: Return a register.

<reg>: The register to return.

• ret_arr <addr>: Return an array,

<addr>: The address of the array to return.

A.7 Preprocessing
A subroutine written in text form will first be preprocessed, which does the following:

• Parses preprocessing commands and handles these. Any preprocessing command starts
with ## and should be before any command in the body of the subroutine. Allowed
preprocessing commands are:

– NetQASM (required): Sets the NetQASM version in the metadata.

0 # NETQASM 1.0

– APPID (required): Sets the application ID in the metadata.

0 # APPID 0

– DEFINE (optional): Defines a macro with a key and a value. Any occurrence of the key
prepended by $ will be replaced with the value in the subroutine. Values containing
spaces should be enclosed with {}.

0 # DEFINE q 0
1 # DEFINE add {add @0 @0 @1}

First command replaces any occurrence of $q with 0 and second $add with add @0 @0 @1.

A.8 Examples
Here we list some examples of programs written in NetQASM. In Appendix A.8.1, we
show some examples written directly in the NetQASM-language. In Appendix A.8.2, we
show the corresponding examples, instead written in the Python SDK.
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A.8.1 NetQASM
Classical logic (if-statement)
A subroutine which creates a qubit, puts in the |+⟩ state, measures it and depending on the
outcome performs an X-gates such that by the end of the subroutine the qubit is always
in the state |0⟩.

0 # NETQASM 1.0
1 # APPID 0
2 // Set the virtual qubit ID to use
3 set Q0 0
4

5 // Allocate and initialize a qubit
6 qalloc Q0
7 init Q0
8

9 // Perform a Hadamard gate
10 h Q0
11

12 // Measure the qubit
13 meas Q0 M0
14

15 // Branch to end if m = 0
16 bez M0 EXIT
17

18 // Perform X gate
19 x Q0
20

21 EXIT:

Classical logic (for-loop)
A subroutine which performs a for-loop which body creates a qubit, puts in the |+⟩ state
and measures it. The outcomes are stored in an array. In a higher-level language (using
python syntax) the below subroutine might be written as follows:

0 ms = [None] * 10
1

2 for i in range (10):
3 q = Qubit()
4 q.H()
5 m = q.measure ()
6 ms[i] = m

The equivalent NetQASM subroutine is:
0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE ms @0
3 # DEFINE i R0
4 # DEFINE q Q0
5 # DEFINE m M0
6 // Create an array with 10 entries (all null)
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7 array 10 $ms
8

9 // Initialize loop counter
10 store $i 0
11

12 // Set the virtual qubit ID to use
13 set $q 0
14

15 // Loop entry
16 LOOP:
17 beq $i 10 EXIT
18

19 // Loop body
20 qalloc $q
21 init $q
22 h $q
23 meas $q $m
24 store $m $ms[$i]
25 qfree $q
26 add $i $i 1
27

28 // Loop exit
29 jmp LOOP
30 EXIT:

In the above subroutine DEFINE statements have been used to clarify what registers/ar-
rays correspond to the variables in the higher-level language example above.

Create and recv EPR
This code is for the side initializing the entanglement request.

0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE qubits @0
3 # DEFINE args $1
4 # DEFINE entinfo @2
5 // Initializer side
6

7 // Setup array with virtual qubit IDs to be used
8 // for the EPR pairs
9 array 1 $qubits

10 store 0 $qubits [0]
11

12 // Setup array to store other arguments to entanglement
13 // generation request
14 array 20 $args
15

16 // Setup array to store entanglement information
17 array 10 $entinfo
18

19 // Create entanglement
20 // Remote node ID 0 and EPR socket ID 0
21 // NOTE that these IMMEDIATEs will be replaced by
22 // REGISTERs when pre -processing.
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23 create_epr 1 0 $qubits $args $entinfo
24

25 // Wait for the entanglement to succeed
26 // i.e. that all entries in the entinfo array becomes
27 // valid.
28 wait_all $entinfo [0:10]
29

30 // Measure the entanglement qubit
31 load Q0 $qubits [0]
32 meas Q0 M0
33

34 // Return the outcome
35 ret_req M0

This code is for the receiving side.

0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE qubits @0
3 # DEFINE entinfo @1
4 // Receiver side (very similar to the initializer side)
5

6 // Setup array with virtual qubit IDs to be used
7 // for the EPR pairs
8 array 1 $qubits
9 store 0 $qubits [0]

10

11 # Setup array to store entanglement information
12 array 10 $entinfo
13

14 // Receive entanglement
15 // Remote node ID 1 and EPR socket ID 0
16 // NOTE that these IMMEDIATEs will be replaced by
17 // REGISTERs when pre -processing.
18 recv_epr 1 0 $qubits $entinfo
19

20 // Wait for the entanglement to succeed
21 wait_all $entinfo [0:10]
22

23 // Measure the entanglement qubit
24 load Q0 $qubits [0]
25 meas Q0 M0
26

27 // Return the outcome
28 ret_req M0

A.8.2 SDK
Each of the examples in this section are functionally the same as the examples in Ap-
pendix A.8.1. A compiler will produce a similar subroutine as the examples in the previous
section but might vary depending on the exact implementation of the compiler.



A.8 Examples

A

261

Classical logic (if-statement)
Functionally the same as the NetQASM-subroutine (Appendix A.8.1).

0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection(”Alice”) as alice:
3 # Create a qubit
4 q = Qubit(alice)
5 # Perform a Hadamard on the qubit
6 q.H()
7 # Measure the qubit
8 m = q.measure ()
9 # Conditionally apply a X-gate

10 with m.if_eq (1):
11 q.X()

Classical logic (for-loop)
Functionally the same as the NetQASM-subroutine (Appendix A.8.1).

0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection(”Alice”) as alice:
3 # Create an array for the outcomes
4 outcomes = alice.new_array (10)
5 # For -loop
6 with alice.loop (10) as i:
7 # Create a qubit
8 q = Qubit(alice)
9 # Perform a Hadamard on the qubit

10 q.H()
11 # Measure the qubit
12 m = q.measure ()
13 # Add the outcome to the array
14 outcomes[i] = m

Create and recv EPR
Functionally the same as the NetQASM-subroutine (Appendix A.8.1).

This code is for the side initializing the entanglement request.
0 # Setup an EPR socket with the node Bob
1 epr_socket = EPRSocket(”Bob”)
2 # Setup connection to backend
3 # as the node Alice
4 with NetSquidConnection(
5 ”Alice”,
6 epr_sockets =[ epr_socket],
7 ):
8 # Create entanglement
9 epr = epr_socket.create ()[0]

10 # Measure the entangled qubit
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11 m = epr.measure ()

This code is for the receiving side.
0 # Setup an EPR socket with the node Alice
1 epr_socket = EPRSocket(”Bob”)
2 # Setup connection to backend
3 # as the node Bob
4 with NetSquidConnection(
5 ”Alice”,
6 epr_sockets =[ epr_socket]
7 ):
8 # Create entanglement
9 epr = epr_socket.recv()[0]

10 # Measure the entangled qubit
11 m = epr.measure ()
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1 # Bases to measure the final server state in.
2 # Note: for efficiency reasons , only bases +Y and -Y were
3 # used for alpha=pi/2, and +Z and -Z for alpha=pi.
4 MEAS_BASES = [”+X”, ”+Y”, ”+Z”, ”-X”, ”-Y”, ”-Z”]
5

6 # Server code (no parameters).
7 class DelegatedComputationServer(Application):
8 def _rotate_basis(self , qubit: Qubit , basis: str) -> None:
9 right_angle = math.pi / 2

10 if basis == ”+X”:
11 qubit.rot_Y(angle=-right_angle)
12 elif basis == ”+Y”:
13 qubit.rot_X(angle=right_angle)
14 elif basis == ”-X”:
15 qubit.rot_Y(angle=right_angle)
16 elif basis == ”-Y”:
17 qubit.rot_X(angle=-right_angle)
18 elif basis == ”-Z”:
19 qubit.X()
20

21 def run(self , context: ApplicationContext) -> Dict[str , Any]:
22 outcomes = {}
23 for basis in MEAS_BASES:
24 # Create EPR pair with client
25 epr = context.epr_sockets [0]. recv_keep ()[0]
26 # Compile and send subroutine S1.
27 context.connection.flush()
28 # Wait and receive delta from client.
29 delta = context.app_socket.recv_float ()
30 # Local gates using delta.
31 epr.rot_Y(angle=math.pi / 2)
32 epr.rot_X(angle=delta)
33 epr.rot_X(angle=math.pi)
34 # At this point , the server has qubit state |psi >.
35 # Measure in particular basis (part of tomography).
36 self._rotate_basis(qubit=epr , basis=basis)
37 m_s = epr.measure(store_array=False)
38 # Compile and send subroutine S2.
39 context.connection.flush()
40 # Receive and store result (m_s).
41 m_s = int(m_s)
42 outcomes[basis] = m_s
43 return outcomes

Listing B.1: Delegated Quantum Computation (DQC) source code for the server.
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1 # Bases to measure the final server state in.
2 # Note: for efficiency reasons , only bases +Y and -Y were
3 # used for alpha=pi/2, and +Z and -Z for alpha=pi.
4 MEAS_BASES = [”+X”, ”+Y”, ”+Z”, ”-X”, ”-Y”, ”-Z”]
5

6 # Client code , with parameters alpha and theta.
7 class DelegatedComputationClient(Application):
8 def __init__(self , alpha: float , theta: float):
9 self._theta = theta

10 self._alpha = alpha
11

12 def run(self , context: ApplicationContext) -> Dict[str , Any]:
13 outcomes = {}
14 for basis in MEAS_BASES:
15 # Create EPR pair with server
16 epr = context.epr_sockets [0]. create_keep ()[0]
17 # Local gates
18 epr.rot_Y(angle=math.pi / 2)
19 epr.rot_X(angle=self._theta)
20 epr.rot_X(angle=math.pi)
21 # Measurement
22 m_c = epr.measure(store_array=False)
23 # Compile and send subroutine C1
24 context.connection.flush()
25 # Receive and store result (m_c).
26 outcomes[basis] = m_c
27 # Compute and send delta.
28 delta = self._alpha - self._theta + m_c * math.pi
29 context.app_socket.send_float(delta)
30 return outcomes

Listing B.2: Delegated Quantum Computation (DQC) source code for the client.
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1 # Bases to measure the final server state in.
2 MEAS_BASES = [”+X”, ”+Y”, ”+Z”, ”-X”, ”-Y”, ”-Z”]
3

4 # Local tomography code with axis and angle parameters.
5 class ClientLocalApp(Application):
6 def __init__(self , axis: str , angle: float) -> None:
7 self._axis = axis
8 self._angle = angle
9

10 def run(self , context: ApplicationContext) -> Dict[str , Any]:
11 outcomes = {}
12 # Loop over all 6 cardinal measurement bases.
13 for basis in self.MEAS_BASES:
14 # Create and initialize a qubit in the |0> state.
15 q = Qubit(context.connection)
16 # Rotate it to one of the 6 cardinal states.
17 if self._axis == ”X”:
18 q.rot_X(angle=self._angle)
19 else:
20 q.rot_Y(angle=self._angle)
21 # Measure it in the current measurement basis.
22 self._rotate_basis(qubit=q, basis=basis)
23 outcomes[basis] = q.measure(store_array=False)
24 # Compile send the subroutine containing the above instructions

.
25 context.connection.flush()
26 return outcomes

Listing B.3: Local Gate Tomography (LGT) source code.
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1 # Instantiate the programs to run.
2 programs = []
3 er_socket_ids = {}
4 for i in range(N):
5 dqc_program = create_dqc_client_program ()
6 lgt_program = create_lgt_program ()
7 programs.append(dqc_program)
8 programs.append(lgt_program)
9 er_socket_ids[dqc_program] = i # assign unique ID for ER socket

10

11 # Create a thread pool that can be executed by the OS hosting the CNPU.
12 tpe = ThreadPoolExecutor ()
13

14 # For each program , submit a piece of code that executes the whole
program.

15 for program in programs:
16 runner = program_runner(program , er_socket_ids[progam ])
17 tpe.submit(runner) # submit it to the thread pool
18

19 # Block until the OS hosting the CNPU has finished all programs.
20 tpe.wait()
21

22

23 # Code for running a single program.
24 def program_runner(program , er_socket_id):
25 # Create connection with QNPU
26 qnpu_connection = connect_qnpu ()
27

28 # Use connection to setup processes.
29 qnpu_connection.register_program ()
30 for remote_node in program.remote_nodes:
31 er_socket = ERSocket(
32 remote_node=remote_node.name ,
33 er_socket_id=er_socket_id ,
34 remote_er_socket_id=er_socket_id ,
35 )
36 qnpu_connection.open_er_socket(er_socket)
37

38 # classical sockets with other programs do not go through the QNPU
39 create_classical_sockets ()
40

41 # Execute the program code; it can use the connection to send
42 # subroutines to the QNPU and receive results.
43 run(program , qnpu_connection)

Listing B.4: Pseudocode illustrating the CNPU runner. It can instantiate multiple programs, like the ones defined
in Examples B.1 to B.3. Each program is submitted for concurrent execution to a thread pool executor which is
managed by the host OS. Each program independently sets up a connection with the QNPU, and executes the
program code itself.
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1 array 10 @0
2 array 1 @1
3 store 0 @1[0]
4 recv_epr (2,0) 1 0 // submit request for entanglement
5 set R0 0
6 LOOP3:
7 beq R0 1 LOOP_EXIT3
8 set R3 0
9 set R4 0

10 set R5 0
11 set R6 0
12 LOOP:
13 beq R6 10 LOOP_EXIT
14 add R3 R3 R0
15 add R6 R6 1
16 jmp LOOP
17 LOOP_EXIT:
18 add R4 R0 1
19 set R6 0
20 LOOP1:
21 beq R6 10 LOOP_EXIT1
22 add R5 R5 R4
23 add R6 R6 1
24 jmp LOOP1
25 LOOP_EXIT1:
26 wait_all @0[R3:R5] // wait until entangled qubit is ready
27 set R3 9 // check which Bell state
28 set R4 0
29 LOOP2:
30 beq R4 R0 LOOP_EXIT2
31 add R3 R3 10
32 add R4 R4 1
33 jmp LOOP2
34 LOOP_EXIT2:
35 load R2 @0[R3] // load Bell state type into R2
36 set R1 0
37 bne R2 3 IF_EXIT
38 rot_z R1 16 4 // correction for Phi -
39 IF_EXIT:
40 bne R2 1 IF_EXIT1
41 rot_x R1 16 4 // correction for Psi+
42 IF_EXIT1:
43 bne R2 2 IF_EXIT2
44 rot_x R1 16 4
45 rot_y R1 8 4
46 rot_x R1 16 4
47 rot_y R1 24 4 // corrections for Psi -
48 IF_EXIT2:
49 beq R0 0 IF_EXIT3 // no correction for Phi+
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50 IF_EXIT3:
51 add R0 R0 1
52 jmp LOOP3
53 LOOP_EXIT3:
54 ret_arr @0
55 ret_arr @1

Listing B.5: NetQASM subroutine S1 of the DQC application. Compiled by the DQC server program code listed
in Example B.1.

1 set Q0 0
2 rot_y Q0 1 1
3 set Q0 0
4 rot_x Q0 1 0
5 set Q0 0
6 rot_x Q0 1 0
7 set Q0 0
8 meas Q0 M0
9 qfree Q0

10 ret_reg M0

Listing B.6: NetQASM subroutine S2 of the DQC application. Compiled by the DQC server program code listed
in Example B.1. The exact gates may differ depending on the iteration of the program loop and the 𝛿 value sent
by the client.
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1 array 10 @0
2 array 1 @1
3 store 0 @1[0]
4 array 20 @2
5 store 0 @2[0]
6 store 1 @2[1]
7 create_epr (1,0) 1 2 0 // submit request for entanglement
8 set R0 0
9 LOOP2:

10 beq R0 1 LOOP_EXIT2
11 set R3 0
12 set R4 0
13 set R5 0
14 set R6 0
15 LOOP:
16 beq R6 10 LOOP_EXIT
17 add R3 R3 R0
18 add R6 R6 1
19 jmp LOOP
20 LOOP_EXIT:
21 add R4 R0 1
22 set R6 0
23 LOOP1:
24 beq R6 10 LOOP_EXIT1
25 add R5 R5 R4
26 add R6 R6 1
27 jmp LOOP1
28 LOOP_EXIT1:
29 wait_all @0[R3:R5] // wait until entangled qubit is ready
30 add R0 R0 1
31 jmp LOOP2
32 LOOP_EXIT2: // end of entanglement creation code
33 set Q0 0
34 rot_y Q0 1 1 // local gate in C1
35 set Q0 0
36 rot_x Q0 1 0 // local gate in C1
37 set Q0 0
38 meas Q0 M0 // measurement
39 qfree Q0
40 ret_arr @0
41 ret_arr @1
42 ret_arr @2
43 ret_reg M0

Listing B.7: NetQASM subroutine C1 of the DQC application. Compiled by the DQC client program code listed
in Example B.2. The exact gates may differ depending on the DQC parameters 𝛼 and 𝜃 .
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1 set Q0 0
2 qalloc Q0
3 init Q0
4 rot_y Q0 3 1
5 meas Q0 M0
6 qfree Q0
7 qalloc Q0
8 init Q0
9 rot_x Q0 1 1

10 meas Q0 M1
11 qfree Q0
12 qalloc Q0
13 init Q0
14 meas Q0 M2
15 qfree Q0
16 qalloc Q0
17 init Q0
18 rot_y Q0 1 1
19 meas Q0 M3
20 qfree Q0
21 qalloc Q0
22 init Q0
23 rot_x Q0 3 1
24 meas Q0 M4
25 qfree Q0
26 set Q0 0
27 qalloc Q0
28 init Q0
29 rot_x Q0 1 0
30 meas Q0 M5
31 qfree Q0
32 ret_reg M0
33 ret_reg M1
34 ret_reg M2
35 ret_reg M3
36 ret_reg M4
37 ret_reg M5

Listing B.8: NetQASM subroutine L1 of the LGT application. Compiled by the LGT program code listed
in Example B.3. The exact gates may differ depending on the iteration of the program loop.
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Glossary

API Application Programming Interface
ASIC Application-Specific Integrated
Circuit

CNPU Classical Network Processing
Unit
CPLD Complex Programmable Logic
Device
CPU Central Processing Unit
CQC Classical Quantum Combiner
CR Charge-Resonance

DD Dynamical Decoupling
DQC Delegated Quantum Computation
DQP Distributed Queue Protocol

EGP Entanglement Generation Protocol
EHI Exposed Hardware Interface
EMU Entanglement Management Unit
EPR Entanglement Pair Request
ER Entanglement Request

FPGA Field Programmable Gate Array

HAL Hardware Abstraction Layer

IR Intermediate Representation

LGT Local Gate Tomography

MLIR Multi-Level Intermediate
Representation
MW Microwave

NetQASM Quantum Network Assembly
Language
NISQ Noisy Intermediate-Scale
Quantum
NV Nitrogen Vacancy

OS Operating System
OSI Open Systems Interconnect

PID Proportional-Integral-Derivative
PMT Photomultiplier Tube
PSB Phonon-Side Band

QAOA Quantum Approximate
Optimization Algorithms
QASM Quantum Assembly Language
QDevice Quantum Device
QDriver QDevice Driver
QEGP Quantum Entanglement
Generation Protocol
QMMU Quantum Memory Management
Unit
QNetStack Quantum Network Stack
QNodeOS Quantum Network Operating
System
QNP Quantum Network Protocol
QNPU Quantum Network Processing
Unit
QPU Quantum Processing Unit

RO Readout

SDK Software Development Kit
SoC System on a Chip
SP Spinpump
SPI Serial Peripheral Interface
SSRO Single-Shot Readout

TDMA Time-Division Multiple Access
TTL Transistor-Transistor Logic

VQE Variational Quantum Eigensolvers

ZPL Zero-Phonon Line




