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Expressions and bounds for Newman’s modularity are presented. These results reveal conditions for or
properties of the maximum modularity of a network. The influence of the spectrum of the modularity matrix on
the maximum modularity is discussed. The second part of the paper investigates how the maximum modularity,
the number of clusters, and the hop count of the shortest paths vary when the assortativity of the graph is
changed via degree-preserving rewiring. Via simulations, we show that the maximum modularity increases, the
number of clusters decreases, and the average hop count and the effective graph resistance increase with
increasing assortativity.
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I. INTRODUCTION

Graph communities reveal important structural features of
the topology. The communities can be observed as sections
of the graph topology that exhibit relatively higher levels of
connections within the regions and lower connectivity be-
tween the regions. Such a structure plays a significant role in
both the sorting of nodes and the evolution of processes on
graphs, including slowing spreading epidemics and contain-
ing cascading failures �1–3�. Although there is no definition
of community that is accepted for all graph-based systems, a
metric known as modularity has led to a surge of research in
community structure discovery and analysis �4�. Fortunato
�5� provides a sound summary of this collection of works. A
significant fraction of this research focuses on ways to assign
nodes to communities in efforts to maximize the modularity
metric �6�. Other pursuits have begun characterizing the
modularity metric, investigating the counterintuitive non-
trivial expected values for random graph models and lattices
�7� and the upper bound and partitioning resolution �8–13�.
Characterizing modularity is also done by examining how it
relates to other significant graph metrics. Introduced only
shortly before modularity, assortativity is a correlation of the
similarities of nodes sharing a link �14,15�. Newman sug-
gested that one driving factor in the formation of communi-
ties was the preference of nodes to connect to other nodes
that possessed similar characteristics to their own. This has
been observed in some social networks where the similarities
are race related �16�. Within topological analysis, assortativ-
ity is most commonly used with the node degrees or node
strengths. Previous work has shown relations between the
assortativity of a graph and the characteristic path length, the
fraction of nodes in the giant component, the clustering co-
efficient, the robustness, the spectra of the adjacency matrix,
and the modularity �17–20�.

This paper presents an analysis of the relationships among
the modularity, the assortativity, the largest eigenvalues of

the adjacency and modularity matrices, the number of clus-
ters, the hop count or characteristic path length, and the ef-
fective graph resistance. Section II summarizes mathematical
formulations of the modularity and it provides bounds. Sec-
tion III attempts to understand the effect of increasing and
decreasing the assortativity of a graph via degree-preserving
rewiring. We show that, in most complex networks, the
maximum modularity �and the largest eigenvalue of the
modularity matrix� increases with assortativity.

II. MODULARITY

The modularity m, proposed by Newman �4�, is a measure
of the quality of a particular division of the network, which
is defined in �21� as1

m =
1

2L
�
i=1

N

�
j=1

N �aij −
didj

2L
�1�i and j belong to the same community	,

�1�

where aij is the matrix element of the adjacency matrix A of
the graph with N nodes and L links. The modularity is pro-
portional to the number of links falling within clusters or
groups minus the expected number in an equivalent network
with links placed at random. Thus, if the number of links
within a group is not better than random, the modularity is
zero. A modularity approaching 1 reflects networks with
strong community structure: a dense intragroup and a sparse
intergroup connection pattern. If links are placed at random,
then the expected number of links between node i and node
j equals didj /2L, where dj is the degree of node j.

A. Expressions and bounds for the modularity

The general definition �1� is first rewritten as follows. We
transform the nodal representation to a counting over links
l= i
 j such that

*p.f.a.vanmieghem@tudelft.nl 1We follow the notation of our book �22�.
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�
i=1

N

�
j=1

N

aij1�i and j belong to the same cluster	 = 2�
k=1

c

Lk,

where Lk is the number of links of cluster Ck, and the factor
2 arises from the fact that all links are counted twice due the
symmetry A=AT of the adjacency matrix. If we denote by
Linter the number of intercommunity links, i.e., the number of
links that are cut by partitioning the network into c commu-
nities or clusters, then

L = �
k=1

c

Lk + Linter.

Similarly,

�
i=1

N

�
j=1

N

didj1�i and j belong to the same cluster	

= �
k=1

c

� �
i�Ck

di�� �
j�Ck

dj� = �
k=1

c

DCk

2 ,

where

DCk
= �

i�Ck

di

is the sum of the degrees of all nodes that belong to cluster
Ck. Clearly, DCk

�2Lk, because some nodes in cluster Ck

may possess links connected to nodes in other clusters. The
basic law of the degree then shows that �k=1

c DCk
=2L. Sub-

stituting these expressions in definition �1� leads to an alter-
native expression2 for the modularity:

m = �
k=1

c �Lk

L
− �DCk

2L
�2� . �2�

The last faction can also be written as

DCk

2L
=

nk

N

E�Dk�
E�D�

,

where nk and Dk are the number of nodes and the degree of
a random node in cluster Ck, respectively. Thus, the modu-
larity is the sum over all clusters of the fraction of links per
cluster minus the square of the fraction of nodes per cluster
multiplied by the ratio of the average degree in a cluster over
the average degree in the network.

Subject to the basic law of the degree, �k=1
c DCk

=2L, the
sum �k=1

c DCk

2 is maximized when DCk
= 2L

c for all 1�k�c.
Indeed, the corresponding Lagrangian,

L = �
k=1

c

DCk

2 + ���
k=1

c

DCk
− 2L� ,

where � is a Lagrange multiplier, supplies the set of
equations for the optimal solution, �L /�DCj

=2DCj
+�=0

for 1� j�c and �L
�� =�k=1

c DCk
−2L=0, which is satisfied for

�=− 4L
c and DCj

= 2L
c for all 1� j�c. Hence, �k=1

c DCk

2

� �2L�2 /c. The modularity in Eq. �2� is minimized, for c
�1, if Lk=0 for 1�k�c, and �k=1

c DCk

2 is maximized such

that m�− 1
c . In conclusion, the modularity of any graph is

never smaller than − 1
2 , and this minimum is obtained for the

complete bipartite graph. This result was earlier stated in
�23�, but with a different proof.

Invoking the Cauchy identity �see �22�� and �k=1
c DCk

=2L,

�
k=1

c

DCk

2 =
�2L�2

c
+

1

c
�
j=2

c

�
k=1

j−1

�DCj
− DCk

�2,

results in yet another expression for the modularity:

m = 1 −
Linter

L
−

1

c
−

1

c
�
j=2

c

�
k=1

j−1 �DCj
− DCk

2L
�2

. �3�

Since the double sum is always positive, Eq. �3� provides us
with an upper bound for the modularity,

m � 1 −
1

c
−

Linter

L
. �4�

The upper bound �4� is only attained if the degree sum of all
clusters is the same. In passing, we mention that Eq. �3�
rigorously proves the upper bound derived by Fortunato and
Barthélemy �10� based on a cyclic chain of same subgraphs,
for which, indeed, DCj

=DCk
for each pair �j ,k�. In addition,

the upper bound �4� shows that m�1 and that a modularity
of 1 is only reached asymptotically, when the number of
clusters c→� and Linter=o�L�, implying that the fraction of
intercommunity links over the total number of links L is
vanishingly small for large graphs �N→� and L→��.

Let D�C=max�Cj,Ck	DCj
−DCk

, then a lower bound of the
modularity, deduced from Eq. �3�, is

m � 1 −
Linter

L
−

1

c
−

�c − 1�
2

�D�C

2L
�2

. �5�

Only if D�C=0 the lower bound �5� equals the upper bound
�4� and the equality sign can occur. Excluding the case that
D�C=0, then not all DCj

’s are equal, and we may assume an
ordering DC1

�DC2
� ¯ �DCc

, with at least one strict in-
equality. We demonstrate that, for c�2, not all differences
DCj

−DCk
=D�C�0 for any pair �j ,k�. For, assume the con-

trary, so that DC1
−DC2

=DC2
−DC3

=DC1
−DC3

=D�C�0, then
D�C=DC1

−DC3
= �DC1

−DC2
�+ �DC2

−DC3
�=2D�C, which

cannot hold for D�C�0. Hence, if D�C�0, the inequality in
Eq. �5� is strict; alternatively, the lower bound �5� is not
attainable in that case.

In order for a network to have a modular structure, the
modularity must be positive. The requirement that the lower
bound �5� is non-negative supplies us with an upper bound
for the maximum difference D�C in the nodal degree sum
between two clusters in a “modular” graph,

2Newman �33� presented still another expression for the
modularity.

VAN MIEGHEM et al. PHYSICAL REVIEW E 82, 056113 �2010�

056113-2



D�C � 2L� 2

c − 1
�1 −

Linter

L
−

1

c
� . �6�

For c�1, Eq. �6� demonstrates that D�C�2L. Ignoring the
integer nature of c, the lower bound �5� is maximized with
respect to the number of clusters c when

c� =
2�2L

D�C
� �2, �7�

resulting in

m � 1 −
Linter

L
− �2�D�C

2L
� +

1

2
�D�C

2L
�2

.

The right-hand side in this lower bound is positive provided
that 1�D�C /2L��2�1−�Linter /L�. When this lower bound
for D�C /2L is satisfied, the modularity m is certainly posi-
tive, implying that the graph exhibits a modular structure.

Another presentation for the modularity applies the iden-
tity

��
j=1

n

xj�2

= �
j=1

n

�
k=1

n

xjxk = �
j=1

n

xj
2 + 2�

j=2

n

�
k=1

j−1

xjxk �8�

to xj =DCj
,

�
k=1

c

DCk

2 = �2L�2 − 2�
j=2

c

�
k=1

j−1

DCj
DCk

,

such that Eq. �2� is rewritten as

m =
2

�2L�2�
j=2

c

�
k=1

j−1

DCj
DCk

−
Linter

L
. �9�

Using the basic law of the degree, �k=1
c DCk

=2L, the first term
in Eq. �9� is maximized, as follows from a similar Lagrang-
ian argument as before, when the degree is distributed uni-
formly across the communities as DCk

=2L /c, resulting in

m �
1

2L2�
j=2

c

�j − 1��2L

c
�2

−
Linter

L

�
1

2L2�2L

c
�2� c2 − c

2
� −

Linter

L
� 1 −

1

c
−

Linter

L
,

which is again the upper bound �4� and, hence, agrees with
the degree balancing of Eq. �3�. Equations �3� and �9� present
the maximization of the modularity from dual perspectives,
yet both point to a common solution of degree balancing and
minimizing Linter.

Finally, we present a probabilistic setting for the modular-
ity m by defining the random variable DC as the sum of the
degrees in an arbitrary cluster. The average is E�DC�
= 1

c �k=1
c DCk

= 2L
c and, comparing with the estimate c� in Eq.

�7�, it always holds that c=2L /E�DG�. However, estimate �7�
suggests that the extreme difference D�C is not that far way
from the mean, roughly by a factor of �2. Further, with

1

c
�
k=1

c

DCk

2 = Var�DC� + �E�DC��2,

expression �2� for the modularity becomes

m = 1 −
Linter

L
−

1

c
−

c

�2L�2Var�DC� , �10�

which, again, leads to the upper bound �4� when the variance
is zero, i.e., when all clusters have an equal degree sum.
Incidentally, comparing Eqs. �3� and �10�, we find that

Var�DC� = �
j=2

c

�
k=1

j−1 �DCj
− DCk

c
�2

,

and this is a general result that holds for any random variable
in a specific graph �22�.

B. Spectral form for the modularity

The N	c community matrix S, defined as

Sik = �1 if node i belongs to community k

0 otherwise,
�

can be used to rephrase condition in �1� as

1�i and j belong to the same community	 = �
k=1

c

SikSjk,

leading to the matrix representation of the modularity:

m =
1

2L
�
k=1

c

�
i=1

N

�
j=1

N

SikmijSjk =
tr�STMS�

2L
, �11�

where

M = A −
1

2L
d · dT �12�

is the modularity matrix and d is the degree vector. We define
the community vector sk, which equals the kth column of the
community matrix S and which specifies the kth cluster: all
components of sk, corresponding to nodes belonging to clus-
ter Ck, are equal to 1; otherwise, they are zero.

Using the eigenvalue decomposition of the symmetric
modularity matrix M =W diag�
 j�M��WT, where W is the or-
thogonal N	N matrix with the jth eigenvector wj belonging
to 
 j�M� in column j, the general spectral expression for the
modularity m follows from Eq. �11� as

m =
tr��WTS�Tdiag�
 j�M��WTS	

2L

=
1

2L
�
j=1

N ��
k=1

c

�wj
Tsk�2�
 j�M� , �13�

because �WTS� jk=�l=1
N WljSlk=wj

Tsk. In particular, the scalar
product wj

Tsk=�q�Ck
�wj�q is the sum of those eigenvector

components of wj that belong to cluster Ck. If we write the
community vector as a linear combination of the eigenvec-
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tors of M, sk=� j=1
N �kjwj, then the orthogonality of eigenvec-

tors indicates that the coefficients equal �kj =wj
Tsk. Moreover,

the vectors s1 ,s2 , . . . ,sc are orthogonal vectors; and, by defi-
nition, �k=1

c sk=u. Since u is an eigenvector of M belonging
to the zero eigenvalue as follows from the definition of the
modularity matrix �12� because

M · u = Au −
1

2L
d · dTu = d − d = 0,

and Au=d and dTu=2L, we observe that

�
k=1

c

wj
Tsk = 0,

provided the eigenvector wj�u. Using the Cauchy identity

c�
k=1

c

�wj
Tsk�2 − ��

k=1

c

wj
Tsk�2

=
1

2 �
m=1

c

�
k=1

c

�wj
T�sm − sk��2

= �
m=2

c

�
k=1

m−1

�wj
T�sm − sk��2,

we find that

m =
1

2Lc
�
j=1

N ��
m=2

c

�
k=1

m−1

�wj
T�sm − sk��2�
 j�M� . �14�

For c=2 and y=s1−s2, which is a vector with component
yj =1 if node j belongs to cluster C1 and yj =−1 if node j
belongs to cluster C2, the general relation �14� reduces to

m2 =
1

4L
�
j=1

N

� j
2
 j�M� , �15�

where y=� j=1
N � jwj, with � j =yTwj. Expression �15� was

Newman’s starting point in �21� for his iterated bisection
method.

Since WWT= I, we have that tr��WTS�TWTS�=tr�STS�=N
�see �22��, such that

�
j=1

N

�
k=1

c

�wj
Tsk�2 = N . �16�

In the bicluster case where c=2, we see that yTy=N such that
� j=1

N � j
2=N. Let wq= u

�N
denote the eigenvector of M belong-

ing to the eigenvalue 
q�M�=0, then

�
k=1

c

�wq
Tsk�2 =

1

N
�
k=1

c

�uTsk�2 =
1

N
�
k=1

c

nk
2,

where nk is the number of nodes in cluster Ck. By applying
the inequality

min
1�k�n

ak

qk
�

a1 + a2 + ¯ + an

q1 + q2 + ¯ + qn
� max

1�k�n

ak

qk
, �17�

where q1 ,q2 , . . . ,qn are positive real numbers and
a1 ,a2 , . . . ,an are real numbers,

�
j=1;j�q

N ��
k=1

c

�wj
Tsk�2�
 j�M�

�
j=1;j�q

N

�
k=1

c

�wj
Tsk�2

� max
1�j�N

��
k=1

c

�wj
Tsk�2�
 j�M�

�
k=1

c

�wj
Tsk�2

= 
1�M� ,

from which we find, with E�D�= 2L
N , a spectral upper bound

for the modularity:

m �

1�M�
E�D� �1 −

1

N2�
k=1

c

nk
2� .

This bound can also be written as

m �

1�M�
E�D�

�1 −
1

c
−

c

N2Var�nC�� ,

where nC is the number of nodes in an arbitrary cluster, be-
cause E�nC�= 1

c �k=1
c nk= N

c . Since Var�nC��0, we arrive at the
upper bound

m �

1�M�
E�D�

�1 −
1

c
� . �18�

We observe that Eq. �18� may lead to a sharper upper bound
than Eq. �4� if 
1�M��E�D� �see, e.g., Fig. 3 below�.

We have shown in �22� that the eigenvalues of the modu-
larity matrix M =A− 1

2Ld ·dT are interlaced with those of A,


1�A� � 
1�M� � 
2�A� � 
2�M� � ¯ � 
N�A� � 
N�M� .

Hence, increasing 
2�A� implies increasing 
1�M�. For regu-
lar graphs, all eigenvalues of the modularity matrix M are the
same as those of the adjacency matrix A, except that 
1�A� is
replaced with a zero eigenvalue.

C. Maximizing the modularity

Maximizing the modularity for c�2 is an non-
polynomial �NP�-complete problem �21,23�. However, Stoer
and Wagner �24� presented a highly efficient algorithm to
compute the minimum-cut problem when c=2, such that the
modularity clustering for c=2 is not NP hard. In this section,
we consider the spectral form �13� to deduce further insight
along the lines of Newman in �25�. We define the non-
negative weights

v j = �
k=1

c

�wj
Tsk�2,

and the modularity in Eq. �13� becomes

m =
1

2L
�
j=1

N

v j
 j�M� . �19�

First, assume that v1=�k=1
c �w1

Tsk�2=N, then Eq. �16� im-
plies that wj

Tsk=0 for all 1�k�c and all j�1. This means
that the vectors s1 ,s2 , . . . ,sc �or any linear combination
of them, apart from �k=1

c sk=u� are orthogonal to the eigen-
vectors w2 ,w3 , . . . ,wN. Since eigenvectors span the
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N-dimensional space, it means that all sk’s must be parallel
or proportional to w1. However, the vectors s1 ,s2 , . . . ,sc are
orthogonal; hence, this is not possible.

If there are c clusters, it seems that we must require in Eq.
�16� that

�
j=1

r

v j = N ,

for r�c−1, and that necessarily at least c−1 eigenvalues in
Eq. �13� play a role, because then wj

Tsk=0 for all 1�k�c
and all j�c. This means that the vectors s1 ,s2 , . . . ,sc �or any
linear combination of them, apart from �k=1

c sk=u that is pro-
portional to wq= u

�N
� are orthogonal to the eigenvectors

wc ,wc+1 , . . . ,wN or, equivalently, that each community vector
sk �with 0 or 1 components� is a linear combination of the
first c−1 eigenvectors of M, sk=� j=1

c−1�kjwj, where �kj
=wj

Tsk=�q�Ck
�wj�q. Together with the equation �k=1

c sk=u,
this set of equations is sufficient to determine all c commu-
nity vectors. How to choose these coefficients �kj to optimize
Eq. �13� remains a difficult problem. For example, we may
adopt the strategy to choose the weights v j, so that v j
�v j+1 for each 1� j�c. However, by incorporating an ad-
ditional eigenvector wc, it can be possible to increase the
weight v1 corresponding to 
1�M� more �despite a lower

c�M� is included in sum �13� and an extra vc in � j=1

c v j =N,
such that the average weight E�v�= N

c decreases�. Numerical
computations �see Fig. 4 below� show that all vector compo-
nents in Eq. �13� seem to play a role, but that the first eigen-
vector w1 is by far the most important.

For a regular graph with degree r, it is known �22� that

1�M�=
2�A��
1�A�=r=E�D� such that bound �18� equals

mregular graph �

2�A�

1�A�

�1 −
1

c
� � 1 −

1

c
.

Since in general 
1�A��
1�M��
2�A�, we observe that the
lowest upper bound in Eq. �18� is reached for regular graphs.
Another consequence of the interlacing is that in graphs with
large spectral gap 
1�A�−
2�A�, the largest eigenvalue 
1�M�
can be much smaller than 
1�A�. For example, the complete
graph that possesses the largest possible spectral gap equal to
N has 
1�M�=0, the lowest possible largest eigenvalue of
any modularity matrix M. Intuitively, graphs with large spec-
tral gap are difficult to tear apart, which means that they form
already a quite tight community or cluster and that further
dividing such a graph is hardly possible, resulting in a low
modularity m.

III. ASSORTATIVITY

Networks where high-degree nodes preferentially connect
to other high-degree nodes are called assortative, whereas
networks where high-degree nodes connect to low-degree
nodes are called disassortative. Assortativity is measured by
the linear degree correlation coefficient �D, but we use here
assortativity and �D interchangeably.

In �26�, it has been shown that increasing the assortativity
also increases the lower bound for 
1�A�, but not necessarily


2�A�. However, by degree-preserving rewiring the matrix
1

2Ld ·dT is not changed, only A is. This implies that increasing
�D via degree-preserving rewiring does not change the sum
of the eigenvalues of M, but it may increase the upper bound
of 
1�M� and, hence, via Eq. �18� also the modularity. In any
case, it will not decrease the upper bound for 
1�M�, as fol-
lows from the interlacing property above.

A. Assortativity, maximum modularity, and the spectrum
of A and M

Figure 1 shows the 20 largest �in absolute value� eigen-
values of both the adjacency matrix A and the modularity
matrix M of a realization of the Barabási-Albert scale-free
graph with N=500 nodes, L=1960 links, E�D��7.85, and
�D�−0.05. Each elementary degree-preserving rewiring
step,3 specified by the lemma in �26� that changes the assor-
tativity, results in a connected different graph �with the same
degree vector�. From one rewiring step to another, the large
majority of eigenvalues of A �and, similarly, of M� are inter-

3A degree-preserved rewired Barabási-Albert scale-free graph
�and similarly an Erdős-Rényi random graph�, where �D is signifi-
cantly changed, is not a Barabási-Albert scale-free graph anymore,
which is characterized by �D→0 asymptotically �and �D=0 for
Erdős-Rényi random graphs as shown in �26��.
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FIG. 1. �Color online� The 20 largest �in absolute value� eigen-
values of the adjacency matrix A and of the modularity matrix M as
function of the percentage degree-preserving rewired links in an
instance of the Barabási-Albert scale-free graph with N=500 and
L=1960 links. The relation between �D and the percentage of re-
wired links as well as three hop count distributions is also plotted.
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laced as shown in �26�, while always, the eigenvalues of M
are interlaced by those of A. The white band of eigenvalues
around zero in Fig. 1 thus contains 480 smaller eigenvalues
�which are not shown because the picture would color com-
pletely�. Also the relationship between assortativity �via �D�
and the percentage of degree-preserving rewired links is
shown, together with the hop count distribution of the origi-
nal graph �no rewiring�, and that at �Dmax and �Dmin.

Figures 2 and 3 show, for a realization of the rewired
Barabási-Albert scale-free graph and of the rewired Erdős-
Rényi random graph with equal N and almost equal number
of links L, respectively, how the first few eigenvalues of the
adjacency and modularity matrix vary with the linear degree

correlation coefficient �D. We observe for the two realiza-
tions of different classes of graphs that, in the disassortativity
region ��D�0�, 
1�M� follows 
2�A� reasonably well, while
in the assortativity region 
1�M� starts increasing toward

1�A�. However, 
1�M� never reaches 
1�A�, because 
1�M�
is always strictly smaller than 
1�A�, as proved in �22�. As a
consequence and assuming that there is room to increase or
decrease �D, the larger the spectral gap, 
1�A�−
2�A�, the
larger the potential increase in modularity that can be
achieved via degree-preserving rewiring.

Figures 2 and 3 also illustrate that the maximum modu-
larity is roughly proportional to 
1�M� as long as 
1�M� is
close to 
2�A�. The maximum modularity has been computed
by the approximate algorithm described in �27�. For increas-
ing assortativity, the maximum modularity seems to increase
faster than 
1�M�. Apart from the extent in assortativity
range, the rewired Barabási-Albert scale-free graph �Fig. 2�
and the rewired Erdős-Rényi random graph �Fig. 3�, both
with same number of nodes and almost same number of
links, behave surprisingly similarly, in spite of their different
degree vectors.

For three instances of the rewired Barabási-Albert scale-
free graph, Fig. 4 draws each term v j
 j�M� in the spectral
form �13� of the modularity, as well as each weight v j and
eigenvalue 
 j�M� for 1� j�500. The inset in Fig. 4 shows
that the weights v j vary irregularly, as a noisy signal around
the mean 1, and that a very high peak �on a logarithmic
scale� is observed corresponding to 
q�M�=0, which has in-
spired us to the general bound �18�. Apart from that peak
corresponding to the eigenvector wq= u

�N
, the weights roughly

decrease with the component or eigenvector j. Apart from a
few values, the resulting product v j
 j�M� is decreasing in j.
Although only shown for the Barabási-Albert scale-free
graph, these observations are generally observed: the first
term v1
1�M� contributes dominantly to the modularity �19�
and illustrates that bound �18� can be sharp. The other terms

� �

� �

� �

� �

�
��
�	


��

��

� � �� � �� � �� � � �� � � �

� � 	 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 � �

� � �

� � �

� � �

� � �

� � �

�
��
��


�

�
�
�

����� 

�
�
! " #

�
�
! " #

�
�
! � #

� � � � �  � � � �  � � � � �  

FIG. 2. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the Barabási-Albert graph with N=500 nodes and L=1960
links. The right-hand side axis shows the corresponding maximum
modularity.
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FIG. 3. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the Erdős-Rényi random graph Gp�N� with N=500 nodes
L=1955 links and �D�−0.01. Thus, the link density p=L / � N

2 �
equals p�1.25pc, where pc
 log N

N is the critical disconnectivity
threshold. The right-hand side axis shows the corresponding maxi-
mum modularity.
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FIG. 4. �Color online� The product v j
 j�M� for each component
j for three instances: the original BA graph �red�, the maximum
assortativity rewired version �black�, and the maximum disassorta-
tive rewired graph �green�. The sum over all j equals 2Lm accord-
ing to Eq. �13�. The inset shows the weights v j �at the left on
logarithmic scale� and the eigenvalues 
 j�M� �at the right in bold
dashed lines�.
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j�1 are initially positive, but then negative �because the
eigenvalues become negative�, and the whole sum is needed
to compute the modularity. Remarkably, a huge cancellation
in the sum occurs because we found that sum �13� is close to
its first term.

“Shifting-the-weights” principle

Since the eigenvalues of M are ordered as usual,

1�M��
2�M�� ¯ �
N�M�, the maximum modularity is
achieved by shifting in Eq. �13� as much weight as possible
to the larger eigenvalues, which we call the shifting-the-
weights principle. Figure 4 supports this principle: fewer
eigenvalues in Eq. �13� imply that the individual weights v j
are higher on average due to condition �16�. Furthermore,
Fig. 4 illustrates that, especially in the high assortativity re-
gime, the first c eigenvalues are clearly dominant, as argued
in Sec. II C.

When the largest eigenvalues are close to each other, in-
corporating additional eigenvalues may increase the weights
on the largest eigenvalues, which leads to a larger modular-
ity. As the assortativity increases, the largest eigenvalues of
matrix M seem to be dispelled from each other �see Fig. 1�.
In other words, spacing 
1�M�−
2�M� ,
2�M�−
3�M� , . . .
between the largest eigenvalues of the matrix M seems to
grow as the assortativity increases. For large �D, the maximal
modularity includes a minimum amount4 of eigenvalues in
Eq. �13�. The chance to increase the modularity m by incor-
porating more eigenvalues is small because �a� the average
weight is reduced due to condition �16� and �b� the extra
eigenvalues included are far smaller when the spacings of the
leading eigenvalues are large. As a result, the modularity
increases with increasing assortativity �D faster than 
1�M�
as shown in Figs. 2 and 3, because v1 also increases with �D.
Since the smallest number of eigenvalues that play a role in
the maximum modularity is c−1, the “shifting-the-weights”
principle also implies that the number of clusters c decreases
with increasing assortativity, which is also observed in
Fig. 5.

B. Number and size of clusters when maximizing
the modularity

Figure 5 illustrates that the number of clusters as a func-
tion of �D in the rewired Erdős-Rényi random graph is
roughly a stretch-out version of that in the rewired Barabási-
Albert scale-free graph. We also observe that the number of
clusters “inversely” correlates with the maximum modularity
in Figs. 2 and 3: a high maximum modularity seems to cor-
respond to a low number of clusters �and conversely�. Fi-
nally, Fig. 5 also shows the cluster estimate c�=2�2L /D�C in
Eq. �7�.

Figures 6 and 7 show details per cluster of the rewired
Barabási-Albert scale-free graph and Erdős-Rényi random
graph for the extreme assortativity and disassortativity and
two intermediate values of �D. The cluster sizes are ranked
from largest to smallest. Apart from the extreme assortative
graphs, the cluster sizes are about the size order of magni-
tude, as well as the average degree of nodes in each cluster,
which is drawn in the inset. The larger the assortativity, the
fewer the number of clusters �Fig. 5� and the larger the dif-
ferences in cluster size and average degree per cluster.

We mention that community sizes in real-world networks
have been reported to follow a power law �5�. Our graph
instances are far too small �N=500� to see a power-law be-
havior. However, only in highly assortative graphs we expect
a power law assuming that our results can be scaled to larger
sizes of N. In disassortative graphs, the sizes of the clusters

4This observation is consistent with what we can deduce from the
modularity bound �A1� expressed in terms of the eigenvalue spac-
ings: when the spacing is generally large, including an extra eigen-
value �i.e., c→c+1 in Eq. �A1� in Appendix A�, will cause a de-
crease in the last term N
c+1�M� of Eq. �A1�, which is hardly
exceeded by the increase in the first sum, due to the large weight N
in that last term and condition �16�.

� �

� �

� �

� �

� �

� �

�

�
�
�
	

�

�

��
�
��

�
�

� � �� � �� � � �

� � � 
 � � � 
 � � 
 
 � � � � 
 � � � � � � � � 
   � � � 
 � � �

� � � � � � �

�  � � � � �

� � 
 � � � � � � 
 �
�  
 � � � � � � 
 �

FIG. 5. �Color online� The number of clusters for both the
Barabási-Albert scale-free graph �corresponding to Fig. 2� and the
Erdős-Rényi random graph �corresponding to Fig. 3� as a function
of the linear degree correlation coefficient �D. For both graphs, also
the estimate in Eq. �7� is drawn in dotted line.
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FIG. 6. �Color online� The cluster size of the jth largest cluster
for four values of �D of the Barabási-Albert scale-free graph �cor-
responding to Fig. 2�. The inset shows the average degree for each
cluster j.

SPECTRAL GRAPH ANALYSIS OF MODULARITY AND… PHYSICAL REVIEW E 82, 056113 �2010�

056113-7



of the maximized modularity are roughly the same, as well
as the number of links �or average degree�. For these graphs
where Var�nC��0, the spectral upper bound �18� seems
promising.

C. Hop count and the assortativity

The hop count H is the number of links in an arbitrary
shortest path in the graph. The average hop count E�H� is a
measure for the distance between nodes in the graph and
reflects the efficiency of transport in the graph: a short hop
count means that transport only requires a few links and that
the end-to-end delay is likely small �provided it is a sum over
the number of hops in a path�.

Figure 8 shows how the average hop count E�H� plus or
minus one standard deviation H=�Var�H� changes with the

linear degree correlation coefficient �D. In both realizations,
we observe from Fig. 8 that the standard deviation H is
smaller than the average, except for the extreme assortativity
in the Barabási-Albert scale-free graph that has a broad bell-
shaped hop count distribution �see Fig. 1�. In addition, we
observe that E�H�+D correlates well with the maximum
modularity. An increase in average hop count E�H� with in-
creasing assortativity agrees with the increase in the largest
eigenvalue 
1�A� of the adjacency matrix as function of �D.
For example, virus or information spread �see, e.g., �28�� is
mainly possible when the effective spreading strength ex-
ceeds a threshold �c=1 /
1�A�. Thus, when 
1�A� is large
�corresponding to a large �D�, virus spread is easy, although
the hop count is large, while the opposite holds for the dis-
assortative region. The increase in the largest eigenvalue

1�A� suggests that virus or information spread over a part of
the network becomes easier. Actually, it is easy to spread
over the high-degree nodes which are well interconnected in
an assortative network. However, the spread over the entire
network, especially over the low-degree nodes can be diffi-
cult, as implied by the increased average hop count.

For sparse large graphs, the average hop count is approxi-
mately �see �29�, pp. 343–345�

E�H� �
log N

log �
,

where � is the average degree minus 1. Assuming that the
number of nodes of each cluster is more or less the same �see
Figs. 6 and 7�, the average hop count in a modular or hier-
archical graph approximately consists of the average number
of intercommunity hops multiplied by the average number of
intracommunity hops,

E�H� �
log c

log �inter

log N/c
log �intra

,

from which we deduce that the minimum average hop count
occurs, ignoring the integer nature of c, when c=�N. This
asymptotic and approximate estimate agrees reasonably well
with Figs. 5 and 8, where �N�22. This square-root law c
=O��N� is remarkable, because earlier Fortunato �10� has
constructed an example that maximizes the modularity from
which he found that c=�L. We can indeed show, more gen-
erally, that a maximization of the modularity with respect to
the number of clusters c results in c=�L+r, where the
smaller terms are r=O�1�. Hence, when the modularity is
maximized for sufficiently large graphs, it seems likely that
the size of the clusters scales as O��N�, whereas the number
of links in a cluster scales as O��L�, and that this holds for
sparse graphs where L=O�N�, as follows from c=O��N�
=�L.

For both graphs, E�H� increases as the assortative mod-
ules are forming in the graphs. Within the modules, the hop
counts are lowered, but between the modules, the hop counts
are increased, resulting in the observed increase in variance.
For the rewired Barabási-Albert scale-free graph, the group-
ing of the highest-degree nodes causes several hop counts to
increase as the efficient transport �originally, E�H��3� that
is associated with scale-free graphs is lost. Thus, although
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FIG. 7. �Color online� The cluster size of the jth largest cluster
for four values of �D of the Erdős-Rényi random graph �correspond-
ing to Fig. 3�. The inset shows the average degree for each cluster j.
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FIG. 8. �Color online� The average hop count E�H� plus or
minus one standard deviation H=�Var�H� for both the Barabási-
Albert scale-free graph �corresponding to Fig. 2� and the Erdős-
Rényi random graph �corresponding to Fig. 3� as a function of the
linear degree correlation coefficient �D.
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the grouping of nodes with similar degrees does produce
several short paths within the groups, the loss of the hubs as
transport facilitators reduces the number of short paths. In
spite of the large difference in the degree distributions �albeit
the average degree E�D�= 2L

N is the same�, Fig. 8 shows that
the average hop count E�H� plus or minus one standard de-
viation H=�Var�H� is surprisingly similar in these both
graphs.

D. Effective graph resistance

The effective graph resistance RG is defined �see, e.g.,
�22�� by

RG = N�
k=1

N−1
1

�k
,

where �k is the kth largest eigenvalue of the Laplacian of the
graph. The effective graph resistance RG measures the ease
of communication in a graph. It can be shown �22� that

E�H� �
RG

�N

2
� .

Figure 9 shows the normalized effective graph resistance
RG / � N

2 � as a function of the assortativity. While the average
hop count of the rewired Barabási-Albert scale-free graph
can be smaller than that of the rewired Erdős-Rényi random
graph �Fig. 8�, its corresponding effective graph resistance is
always larger.

Just as the average hop count E�H�, the normalized effec-
tive graph resistance RG / � N

2 � of a graph seems to correlate
highly with the modularity as a function of �D. In addition,
the sharp increase toward the maximum value of �D indicates
that disconnectivity �characterized by RG→�� is likely to
occur when �D would be further increased.

IV. REAL-WORLD GRAPHS

Figures 10–13 illustrate that similar phenomena, deduced
above from instances of the Erdős-Rényi random graph and
the Barabási-Albert scale-free graph, also occur in real-world
networks. The details of these networks are found for the air
transportation network of the USA in �26�, for the peer-to-
peer network Gnutella in �30�, for the coappearance network
of characters in the novel Les Miserables of Victor Hugo in
�31�, and for the protein residue network of the immunoglo-
bulin 1A4J in �32�.

We observe the general trend that �a� the largest eigen-
value 
1�M� of the modularity matrix is close to 
2�A�, ex-
cept for extreme values of �D, and �b� the maximum modu-
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FIG. 9. �Color online� The normalized effective graph resistance
RG / � N

2 � for both the Barabási-Albert scale-free graph �correspond-
ing to Fig. 2� and the Erdős-Rényi random graph �corresponding to
Fig. 3� versus the linear degree correlation coefficient �D.
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FIG. 10. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the air transportation network with N=2179 nodes, L
=31 326 links, and E�D��28.8. The right-hand side axis shows the
corresponding maximum modularity.
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FIG. 11. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the Gnutella network with N=77 nodes, L=254 links, and
E�D��6.5. The right-hand side axis shows the corresponding maxi-
mum modularity.
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larity increases with sufficiently large �D and faster than

1�M�. That the trend is not universal is demonstrated in Fig.
13, where part �b� of the trend is not followed. This observed
trend restricts the hypothesis in �7� that modularity seems to
increase in evolutionary processes; it mainly does if these
processes are assortative in nature. As explained in �26�,
degree-preserving rewiring may be regarded as a �simplified�
evolutionary process and most complex networks are not as-
sortative �which is in agreement with the data in �15��, be-
cause highly assortative networks are likely disconnected
and lack synergy or diversity in their connection pattern.

V. CONCLUSION

Several expressions �3�, �9�, and �10� and bounds �4�, �5�,
and �18� for Newman’s modularity are derived. These results

reveal conditions for or properties of the maximum modular-
ity of a network and provide proofs of earlier claims. The
influence of the spectrum of the modularity matrix on the
maximum modularity is discussed from which we deduce a
spectral bound �18�.

The second part of the paper investigates how the maxi-
mum modularity, the number of clusters, and the hop count
of the shortest paths vary when the assortativity of the graph
is changed via degree-preserving rewiring. Simulations sug-
gests that, apart from the heavy assortative regime, the maxi-
mum modularity behaves as 
1�M�, which—in turn—closely
follows the second largest eigenvalue 
2�A� of the adjacency
matrix A. Extensive simulations on several real-world com-
plex networks show that the maximum modularity increases,
the number of clusters decreases, and the average hop count
and the effective graph resistance increase with increasing
assortativity. The major driver to study the influence of
degree-preserved rewiring on modularity is to shed light on
evolutionary processes in nature. If degree-preserved rewir-
ing can be regarded as a simplified model for an evolutionary
process, then we show that networks, close to their assorta-
tive bounds, generally possess a clear modular structure.
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APPENDIX A: ALTERNATIVE FORM
OF THE MODULARITY IN TERMS
OF THE EIGENVALUE SPACING

The partial �or Abel� summation,

�
k=1

n

akbk = �
k=1

n−1 ��
l=1

k

al��bk − bk+1� + bn��
l=1

n

al� ,

of m�= �2L�m=� j=1
N v j
 j�M� equals

m� = �
j=1

N−1 ��
k=1

j

vk��
 j�M� − 
 j+1�M�� + 
N�M��
k=1

N

vk

= �
j=1

N−1 ��
k=1

j

vk��
 j�M� − 
 j+1�M�� + N
N�M� ,

and only the last term is negative, while all others are posi-
tive. Further, using condition �16� such that �k=1

j vk
+�k=j+1

N vk=N, we can write

m� = �
j=1

c ��
k=1

j

vk��
 j�M� − 
 j+1�M�� + �
j=c+1

N−1 �N − �
k=j+1

N

vk�
	�
 j�M� − 
 j+1�M�� + N
N�M�

= �
j=1

c ��
k=1

j

vk��
 j�M� − 
 j+1�M�� + N
c+1�M�

− �
j=c+1

N−1 � �
k=j+1

N

vk��
 j�M� − 
 j+1�M�� .
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FIG. 12. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the network Les Miserables with N=737 nodes, L=803
links, and E�D��2.2. The right-hand side axis shows the corre-
sponding maximum modularity.
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FIG. 13. �Color online� The largest and second largest eigenval-
ues of the adjacency matrix A and the largest eigenvalues of the
modularity matrix M versus the linear degree correlation coefficient
�D for the protein network of immunoglobulin 1A4J with N=95
nodes, L=213 links, and E�D��4.5. The right-hand side axis
shows the corresponding maximum modularity.
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Again, by shifting all the weight to the first c clusters such
that 
c+1�M��0 and vk=0 for k�c+1, an upper bound of
the modularity can be written in terms of the spacings

 j�M�−
 j+1�M� as

m� � �
j=1

c ��
k=1

j

vk��
 j�M� − 
 j+1�M�� + N
c+1�M� .

�A1�

This expression shows that the larger indices of j are more
heavily weighted. Recall that the spacing �
 j =
 j�M�
−
 j+1�M��0 is not necessarily decreasing with j.

The number of positive eigenvalues of M is, due to inter-
lacing, less �by 1 of 0� than the number of positive eigenval-
ues of A. The latter is larger than the independence number
�see �22��, which is equal to the largest coclique. Thus, when
maximizing the modularity �such that 
c+1�M��0�, the num-
ber of clusters c should be smaller than the independence
number of the graph.

APPENDIX B: ALTERNATIVE MATRIX FORM
FOR THE MODULARITY

Identities �8� and �9� also offer a matrix representation of
the modularity as

m =
1

�2L�2uT�DCDC
T − diag�DCi

2 ��u −
Linter

L
, �B1�

where DC is the c	1 vector of community degree sums,
which equals

DC = STd .

Using that relation gives

m =
1

�2L�2uTDCDC
Tu −

1

�2L�2DC
TDC −

Linter

L

=
1

�2L�2uTSTddTSu −
1

�2L�2dTSSTd −
Linter

L
.

With Suc	1=uN	1 and uTd=2L, we arrive at

m = 1 −
Linter

L
−

1

�2L�2dTSSTd ,

which equals Eq. �2�.
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