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Abstract. The paper presents a computational study of acoustic scattering from a cylin-
drical duct into uniform flow. The sound source is a fan inside the duct responsible for
generating a spinning acoustic mode. The sound pressure scattering behaviour as func-
tion of the fan tip speed and mean flow velocity, as well as the acoustic modes propagation
inside the duct are investigated. A direct collocation boundary integral equation method
(BIEM) is employed for calculating the acoustic propagation in incompressible and com-
pressible flows. The BIEM is based on the equations of linearised acoustics with uniform
inflow and has the advantage of taking into account wake effects.

1 INTRODUCTION

Duct acoustics is of special importance both in aerospace and built environment appli-
cations. Aeroengine noise generation is one of the most popular subjects in aeroacoustics.
In a simplified form, an aeroengine can be modelled as a duct with a rotor inside and the
interest lies in examining sound propagation inside the duct as well as its radiation in the
atmosphere. The rotor consists a sound source, which depending on the angular speed of
the blades, propagates or decays exponentially in time.

One could describe sound pressure as a sequence of harmonics or spinning modes, which
fluctuate as function of the distance from the rotor. The pressure is associated with the
rotor angular velocity 2 = 27v, where v is the angular frequency. Since it is a periodic
function, it can be written in a Fourier series':

P6,t) = Z A, cos(nB(6 — Qt) + @,,), (1)

n=0
where B is the number of blades; n is the nth harmonic; 6 is the angular coordinate
of pressure and A,, and ®,, are amplitude and phase variables, respectively. Equation 1
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implies that the pressure distribution is a superposition of patterns, which are generated
at a specific time, t, and at different angles, 6. For the sound to be radiated in the field,
the acoustic pressure should be ‘strong’ enough to propagate through a cylindrical duct
and then to be released in the atmosphere. The ‘cut-off” frequency is different for each
mode of each harmonic as the wavelength is different depending on the mode number. If
the mode frequency is less than the ‘cut-off’ frequency, then sound attenuates and does
not radiate. Hence, it becomes apparent that there are certain modes that are of great
interest as they generate a radiation field around the the duct.

Sound radiation from an unflanged cylindrical duct was first calculated using the
Wiener-Hopf technique by Levine and Schwinger?. Their work concentrated on non-
spinning modes. They obtained an explicit solution for the sound radiation of an un-
flanged circular pipe assuming that only plane waves can propagate in the pipe. Because
of the complexity of the Wiener-Hopf method, simpler approximate methods were found.
Tyler and Sofrin! in their study of duct propagation and radiation, proposed a formula
for calculating the acoustic radiation field due to propagation modes from a semi-infinite
flanged duct with no flow. They used the Kirchhoff approximation, in which an estimated
acoustic source strength at the duct face is inserted in the radiation integral. This study
still remains as one of the most classical and detailed works on compressor noise. Among
the researchers who have studied ducted fan noise, is Dunn et. al>*® who have combined
the linearised equations of acoustics with the Helmholtz integral equation and developed
computer codes for the prediction of the sound field around engines. The method is valid
for a wide range of inflow Mach numbers and for engines with liners fitted. It is an indirect
boundary element method where the surface unknown variables are related to the jumps
of the acoustic pressure and its radial derivative across the duct wall. The fan is modelled
as a superposition of monopoles or dipoles placed at the corresponding blade location.

Hamdi and Ville® introduced a new variational formulation based on integral equations
in order to solve Helmholtz’s equation. More recently” the investigation was extended by
discretising this formulation using boundary finite elements. The latter leads to symmet-
rical matrices of a smaller range compared to those obtained by classical finite element
methods that require the discretisation of the fluid domain. The method was valid for
finite length ducts with arbitrary shapes and was validated against experimental data.
Hwang® introduced a rather different computational method for computing the Helmholtz
integral equation for acoustic radiation and scattering problems. Unlike previous stud-
ies, Hwang’s method allowed the surface integral to be integrated directly and globally.
The accuracy of the numerical integration was increased by using high-order Gaussian
quadrature formula. To date, there are many studies of sound radiation from ducts, pipes
or similar shape bodies but most of them do not include flow effects. Moreover, methods
have been developed which are applicable to axisymmetric bodies® 0111213 Jike ducts,
which simplify the implementation of the integral formulation.

'The term ‘strong’ means that the driving frequency of the harmonic is above a critical value, the
‘cut-off” frequency. In this case, the sound will be transmitted through the duct.
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Apart from BEMs, there are also analytical expressions for the prediction of sound.
In Chapman® the ray structure of a spinning acoustic mode propagating inside a semi-
infinite circular cylindrical duct was calculated, thereby determining the field radiated
from the end of the duct. Inside the duct, the rays are helices striking the rim of the
end-face of the duct; these rays produce cones called ‘Keller cones’ of diffracted rays. The
cones determine the structure of the radiated field. Hocter!® extended Chapman’s work
by using the analytical expressions for the mode angles to further derive three formulae for
the calculation of the sound radiated from a cylindrical duct and compared the directivity
patterns. Firstly, he considered the behaviour of the Kirchhoff approximation, which is
simple to use and does not require any extensive computation. The U-approximation,
which is another analytical approximation, performs very well and is remarkably accurate
for non-spinning modes. The only drawback of this method is a slight discontinuity at the
sideline. In conclusion, the exact Wiener-Hopf solution for radiation from a cylindrical
pipe is very complicated and numerically intensive. Peake!® investigated the radiation
properties of an asymmetric cylinder. The results of his analysis suggested that scarfing
can be used to modify the radiation directivity.

In recent years Keith and Peake extended Peake’s work to high-wavenumber acoustic
radiation from a thin-walled axisymmetric cylinder!” and from a thin-walled scarfed cylin-
der'®. Both studies are based on the Geometrical Theory of Diffraction and on uniform
asymptotics. As far as scarfing is concerned, the preliminary indications show that scarf-
ing appears to decrease the radiation directed downwards at the expense of an increase in
radiation directed upwards. The scarfed cylinder is used as a model for a novel technique
of noise reduction in modern aeroengines in which the intake is diverted a little upwards
in order to radiate noise away from the ground.

Many boundary element methods have been focused on the direct derivation of the
acoustic variables and the acoustic mode propagation inside the duct!®. The acoustic
field is actually split into two fields, one inside the duct and another outside. The two
boundary value problems are related through the duct’s inlet and outlet surfaces. Most of
the research has been done on axisymmetric problems for the sake of mathematical and
geometrical simplicity. An attempts to extend axisymmetric problems to non-symmetric
ones has been presented with success in relation to acoustic propagation from ducts?.

In this paper, we present a BIE for a finite duct, which is based on the linearised
equations of acoustics in conjunction with a uniform flow field. This technique has the
advantage of solving a simple asymmetric problem, where recent developments in the
Gaussian quadrature are used to numerically deal with the singularities in Green’s function
and its normal derivative'®. The problem in question is an asymmetric problem for a
finite duct in uniform flow with open both ends, which is mainly focused on the pressure
radiation field around the duct. We investigated how the sound is propagating in the
near and the far field when a rotor is spinning inside the duct. The computations were
validated against analytical results for a spinning rotor in uniform flow.
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1.1 Integral representation of the incident field

The sound pressure field of a rotating rotor inside a duct in forward flight is investigated.
The analysis is carried out by replacing the normal pressure distribution over the rotor
with a distribution of acoustic doublets acting at the rotor disc while in uniform motion.
The sound field is obtained by integration over the rotor disc. The spinning propeller is
simulated by a uniformly moving concentrated force and the acoustic pressure is calculated
for an observer in the field moving along with the duct. The incident pressure for the disc

source?!, is given by:
1(kcr+m€1
m d@ 2
=1 / 4r2y? b )

rotor

where m is the azimuthal order, #; is the angle on the disk source and the source
co-ordinates are:
X1 = T1, Y1 = Trotor sin 917 21 = Trotor COS 917 (3)

where 7,0 is the rotor radius and the subscript 1 denotes the source position.

2 THEORETICAL ASPECTS

The wave equation in uniform irrotational flow in the z direction is given by??

9 209
- M

Ox Ox?

Let the undisturbed mean flow be specified by mean velocity u in the x direction. The
acoustic velocity and the pressure perturbations are given by

V2 + k*¢ — 2ik M —= = 0. (4)

v=-Vo¢, (5)
and Do
b= PE ) (6)
where p is the mean density and D¢/ Dt is the material derivative,
D¢ 0o
Dr = iwo + Uz (7)

Let us consider a finite duct with a spinning rotor in uniform mean flow. Figure 1
shows the duct and the position of the rotor.

The sound field radiation from a duct inlet can be decomposed into a set of acoustic
modes. Each of these modes has a specific directivity pattern that varies with frequency.
Investigation of the important modes propagating and radiating in the domain is of inter-
est for understanding the noise generation mechanisms. The pressure fluctuation at any
position #, is a sum of harmonics and can be expanded in Fourier series,
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Figure 1: Side view of a cylindrical duct with a rotor inside.

[e.9] [e.9]

p(0,t) = Z Z Pmn; (8)

n=1m=—o0
where p,,,, is:
DPmn = Amn cos(mb — nwt + G ). 9)

Equation (8) can be written as a sinusoidal azimuthal variation and a Bessel function
radial variation. Thus, the total pressure is made up of modes of the form

pmn<ra 9) = Z Z Aanm<kmnr>€im€7 (10)

where m is the circumferential mode and A,,, is the amplitude or the mode coefficient.
The latter can be found by applying the Hankel transform??®, where k17, kpmat, kmar, . . .
are the positive zeros of:

/

I (kmnt), (11)

m

where J, is the first derivative of the Bessel function of order m and 7 is the duct radius.
For describing the mode, a system of cylindrical co-ordinates (r, 6, x) is used (Figure 2).
An acoustic mode denoted by A,,, can be written as

p = poe' —wt +mb + kyx gy, (k7). (12)

In Equation 12, p denotes the pressure; t is the time; and the modal parameters are:
w the frequency, m the azimuthal order, k, the axial wavenumber and k, the radial
wavenumber. The duct wall is assumed to be hard, so from the boundary condition
Op/0x = 0 we obtain J'(k,74.e) = 0. The axial wavenumber is given by

e (13)

bt
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¥

Figure 2: Geometry of a cylindrical duct.

where k = w/c, is the free space wavenumber. This equation is very important as it
determines which modes propagate and which modes attenuate for a given frequency.
When k£ < k,, k, is imaginary and the corresponding frequency is called ‘cut-off’ frequency,
while for £ > k, it is called ‘cut-on’. The noise source in the duct is assumed to be a
rotor of radius 7,4 Which spins with angular velocity Q (w = m£2) and tip speed (Mach
number), My = Qr,p0r/c. The speed with which the azimuthally varying pressure can
propagate inside the duct is Mgy = wrauer/c. A specific mode of order m can propagate
(i.e. to be ‘cut-on’) if the condition M; > My, is satisfied.

3 INTEGRAL FORMULATION

The differential equation in the time domain that gives the velocity potential for a
body in inviscid compressible flow is written?*

V- oo =%, (14)

where Y represents the non-linear terms arising in transonic flow regimes. These terms
are not included in the present work. Assuming that the problem is linear we obtain
1 0o
Vi — —— =0. 15
0= Zam (15)

Converting (4) to an integral equation, a formulation both for compressible and incom-
pressible potential flows can be introduced?!. Additionally, the formulation is valid for
bodies which produce lift including the wake surface behind the trailing edge.

The boundary integral formulation is given by2:

0
¢(x,t)=/r{8¢G—¢aG+G8¢ <89+2E)} ar

on on ot \ on 2
1 B b oG
where 9 9 )
=———u-nu-V (17)
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and [...]? denotes evaluation at time 7 =t — 0, where 6 is the time elapsed for the sound
to travel from the source to the observer; x denotes position and ¢(x,t) is the value of
the velocity potential at x. The above equation is the full boundary integral equation in
a compressible flow based on the potential formulation. In the present paper the equation
is simplified by eliminating the second integral term because the velocity of the body is
constant and does not involve any relative motion with respect to the free motion of the
body. The reduced equation is written as

gb(x,t):/r Bﬁ gf (aA 4ol )rdr—/rw [AqﬁaG} dly.  (18)

The total velocity potential is obtained by using the integral equation including both
steady and unsteady terms. When the observer is located on the boundary I', then 18
can be used to evaluate the velocity potential, ¢ on I

The Green’s function G represents the potential field associated with a uniformly mov-
ing acoustic source. For compressible potential flow in the positive x direction the Green’s
function is?!

eiko
Gop =~ (19)
where

S = V@—21)2+ 3y — 1)+ (z — 21)?, (20)
ﬁ - 1- M27

M(ZL’ — 1’1) + S
o = 72 ,
M o= 2

c

is the flow Mach number.

Once ¢ is obtained, the same equation is used to get the velocity potential, ¢(x, )
anywhere in the field in terms of the values of ¢ and d¢/dn on the surface of the body
and A¢ on the wake. With ¢ known on the surface, the acoustic pressure can be calculated
by 6.

4 SINGULARITIES

The velocity potential on the surface is calculated on grid nodes and this poses numer-
ical problems (singularities). These singularities have logarithmic identity due to Green’s
function: the Green’s function is of the form 1/S and the first derivative is of the form
1/S?, which in the integral equation are both improper integrals. Since the integra-
tion over the surface is carried out numerically, to overcome the singularities problem a
generalised Gaussian quadrature?® is employed, which integrates exactly the logarithmic
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singularities on any of the nodes of the elements using a single formula. All the inte-
gral equations of the boundary element method are evaluated using either (i) a regular
Gaussian quadrature or (ii) a combination of regular and logarithmic Gaussian quadra-
tures. The regular Gaussian quadrature is used to evaluate most of the integrals along the
boundary, and the combined scheme is employed for integrals that are singular. All the
integrals containing non-singular functions are evaluated using a regular form of Gaussian
quadrature. The advantage of this scheme is that the same set of quadrature points can
be used for constant, linear or higher order elements. This is very convenient from a
computational point of view as there is no need for selection when it comes to different
types of singularities.

5 NUMERICAL VALIDATION

An analytical formula for the far pressure field generated by a propeller in forward
flight is available?!:

mim™t - 2 kyr
P = — —ik(So+Mz)/8 Jm rotor 91
th 271'507’2 ¢ SO ’ ( )

rotor
where Sy = /22 + ($%y? and J,, is the Bessel function of first kind and order m. Figure 3
shows the results both for the computed and analytical pressure in the far field (R/r = 9)
around a propeller in forward flight. Analytical and computed results agree very well for
a wide range of mean flow Mach numbers.

Validation was also obtained for an acoustic source placed inside the boundary so as
to obtain the surface pressure and the sound radiated from the surface being identical to
the sound radiated directly from the source. Figure 4 shows the error of the unsteady
pressure for M = 0.3 for different number of nodes around the circle; there is very good
agreement between computed and theoretical results.

6 RESULTS

Figures 6, 7 and 8 show the pressure contour plots around a duct with a rotor inside
(Figure 1) for different mean flow Mach numbers and frequencies. Three tip Mach numbers
where chosen; 0.9, 1.2 and 1.5. The azimuthal order is m = 6. For all the above speeds
there are ‘cut-on’ modes and, therefore, the sound propagation in the outer field becomes
more apparent. Figures 6, 7 and 8 show that the pressure distribution is symmetrical
about the x axis, due to the flow in the streamwise direction. In the y direction the
velocity is mirrored and the sound radiation becomes identical above and below the x
axis of the duct.

Comparing Figures 8a, 6a and 7a with Figures 8b, 60 and 7b the shielding effect can
be detected according to which a higher amplitude region occurs at the front side of the
engine compared to the rear. The frequency perceived by the observer is the same with
the one of the source as the observer is moving along with the duct at the same speed.
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R/r=6,ka=9

R/r=6,ka=9

M =0.3 M =0.5

Figure 3: Sound pressure directivities in the far field of a rotor inside a duct for various mean flow Mach
numbers; — analytical, * computed results.

The streamwise component of the wavenumber k, changes by a factor which is dependent
on the flow Mach number. The results also reveal the dominant role of the mean flow
in the sound radiation, which becomes more important at higher Mach numbers as the
Prandtl-Glauert factor, 8 = (1 — M?)'/2, which is involved in the pressure expression,
decreases with the Mach number. This results in changing the streamwise component of
the wave number thus causing a stronger sound field for an observer standing in the front
of the duct compared to the rear.

The cylindrical duct has an elliptical cross section (Figure 5) with a curved edge, which
prevents a non-uniform sound-radiation pattern arising from sharp edges.
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Figure 4: Error in unsteady pressure around a circle for N = 200, N = 300 and N = 400.

< —

Figure 5: Duct geometry generator.

At higher frequencies, where more modes propagate, the difference in the radiation
field can be noticed; compare Figure 7 with Figure 8. Also the Mach number effects
become more important at high frequencies; compare Figure 7 (M = 0.1) with Figure 7

(M = 0.6).

10
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Figure 6: Total acoustic pressure (real part) around a duct with a rotor; contour levels
41071, £1072,+1073; solid and dashed lines denote positive and negative values, respectively.

11
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M =06

Figure 7: Total acoustic pressure (real part) around a duct with a rotor; contour levels
41071, £1072,+1073; solid and dashed lines denote positive and negative values, respectively.

12
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M =0.3

Figure 8: Total acoustic pressure (real part) around a duct with a rotor; contour levels
41071, £1072,+1073; solid and dashed lines denote positive and negative values, respectively.

7 CONCLUSIONS

A study of the sound field generated by a rotor inside a cylindrical duct using a bound-
ary integral scheme based on the linearised potential flow equations, was presented. The
method can be used both for axisymmetric and asymmetric geometries. The computa-
tional efficiency is improved by treating numerical singularities using recent developments
in Gaussian quadrature. Validation was performed against analytical results. The ef-
fects of the mean flow velocity and frequencies on the sound radiation were discussed for
different mean flow and rotor tip Mach numbers.
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