
 
 

Delft University of Technology

Performance study of single-query motion planning for grasp execution using various
manipulators

Meijer, Jonathan; Lei, Qujiang; Wisse, Martijn

Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the18th International Conference on Advanced Robotics

Citation (APA)
Meijer, J., Lei, Q., & Wisse, M. (2017). Performance study of single-query motion planning for grasp
execution using various manipulators. In M. Q. H. Meng, H. Ren, & S. Song (Eds.), Proceedings of the18th
International Conference on Advanced Robotics : ICAR 2017 (pp. 450-457). IEEE.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Performance Study of Single-Query Motion Planning for
Grasp Execution Using Various Manipulators

Jonathan Meijer
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

j.g.j.meijer@student.tudelft.nl

Qujiang Lei
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

q.lei@tudelft.nl

Martijn Wisse
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

m.wisse@tudelft.nl

Abstract— This paper identifies high performing motion
planners among three manipulators when carrying out grasp
executions. Simultaneously, this paper presents useful bench-
marking data. Sampling-based motion planners of OMPL
available for use in MoveIt! are compared by performing
several grasping-related motion planning problems. The per-
formance of the planners is measured by means of solved
runs, computing time and path length. Based on the results,
recommendations are made for planner choice that shows
high performance for the used manipulators.

I. INTRODUCTION

Currently, 23 sampling-based motion planners of OMPL
(Open Motion Planning Library) [1] are available for
use in MoveIt! [2], a robot manipulation framework for
ROS. OMPL is the default and most supported motion
planning library in MoveIt!. Support for picking a planner
is not provided. In the literature, no research about planner
performance can be found when performing grasp execu-
tions. Moreover, performance information for 12 planners
is scarce, since they have just been released (Decemeber
2016). This leaves the user to perform time-consuming
benchmarks in order to find the right planner.

This paper aims to identify high performing OMPL
motion planners available in MoveIt! when carrying out
grasp executions. Simultaneously, it aims to present useful
benchmarking data for all the 23 planners. By conducting
several grasp executions for three different manipulators,
we hope to find planners that consistently show high
performance. We will use three manipulators that have
different geometry but have similar specifications. These
are Universal Robots UR5, KUKA LWR 4+ and Kinova
JACO. To resemble a real-world grasping problem, the
manipulators are fitted with a gripper. In this study, we
only consider sampling-based motion planners of OMPL
available in MoveIt!, listed in Tab. I. This includes so-called
multi-query planning methods. However, only single-query
performance is measured. We have designed a virtual
environment that resembles a shelf in which objects can
be picked or placed. Planner choice is investigated by
considering geometry constraints for two motion planning
problems. For the third problem we add a path constraint.

Due to randomization of sampling-based motion plan-
ners, motion planning problems have to be run multiple

∗The work leading to these results has received funding from the
European Communitys Seventh Framework Programme (FP7/2007-2013)
under grant agreement n 609206.

times to provide saturated results on the performance. The
performance of the planners is measured in terms of solved
runs, computing time and path length. The metric solved
runs can be expressed as a percentage of the total motion
planning runs that finish correctly. Barplots are used to
visualize the difference. For every run, computing time
and path length can change due to the randomization in
sampling-based motion planners. Boxplots and tables are
used to analyze the planners with respect to computing
time and path length. Performance depends on the need
of the user, high performance for one metric can result in
low performance for an other metric. By analyzing each
metric separately, we can elaborate on right planners for
each metric.

Tab. I shows there are optimizing OMPL planners avail-
able in MoveIt! that have a time-invariant goal. This means
they stop computing as soon as a path is found that is
considered to be more optimal. However, compared to non-
optimizing planners, computing effort is increased which
can result in an increase in computing time. For optimizing
planners is expected that they will produce shorter path
lengths. This study can clarify if extra computing time
of optimizing planners will considerably decrease the path
length compared to non-optimizing planners.

II. BACKGROUND

A. Manipulators

Universal Robots UR5 [3]: Universal Robots aims to
provide easily programmable, safe and flexible industrial
robots. The UR5 manipulator is designed to be lightweight,
flexible and collaborative. The manipulator has 6 degrees of
freedom (DOF). Joint limits are max 2π in both directions.
The manipulator has a maximum payload of 5kg and a
span of 850mm. A model of the UR5 fitted with a gripper
is shown in Fig. 1.

KUKA LWR 4+ [4]: KUKA supplies intelligent au-
tomation solutions and is currently one of the top brands
in this field. The 7-DOF LWR 4+ is a lightweight collab-
orative manipulator. Its furthest reach is 1178.5mm and it
can lift up to 7kg. The manipulator is made for universal
purpose, meaning it can be used for many applications. The
upper and lower limits are ±170 degrees for four joints
and ±120 degrees for the remaining joints. A model of the
LWR 4+ is shown in Fig. 2.



TABLE I: SUMMARY OF AVAILABLE PLANNERS OF OMPL IN

MOVEIT!

Planner name & Reference Optimizing
planners

Multi-
query

Time-invariant
goal

SBL [6] X
EST Based on [7] X
BiEST [7] X
ProjEST Based on [7] X
KPIECE [8] X
BKPIECE Based on [8] X
LBKPIECE Based on [8][9] X
RRT [10] X
RRTConnect [11] X
PDST [12] X
STRIDE [13] X
PRM [14] X
LazyPRM [9] X
RRTstar [15] X
PRMstar Based on [14][15] X X
LazyPRMstar Based on [9][15] X X
FMT [16] X X
BFMT [17] X X
LBTRRT [18] X X
TRRT [19] X X
BiTRRT [20] X X
SPARS [21] X X
SPARStwo [22] X X

Kinova JACO1 and JACO2 [5]: Kinova has developed
two JACO versions, the JACO1 and the JACO2. They are
lightweight and geometrically identical. The manipulators
have a maximum reach of 900mm. Other than the UR5 and
LWR 4+, which have straight links, this manipulator has
two links which have a curve. Both versions have three
joints that can rotate continuously, remaining joints have
limits due to the geometry. The maximum payload is 1.5kg
for the JACO1 and 2.6kg for the JACO2. The manipulator
has 6 degrees of freedom. A model is shown in Fig. 3.

B. Software

The open-source Robot Operating System (ROS) is a
suite of software libraries and was created to encourage
collaborative robotics software development. Inside ROS,
the MoveIt! framework deals with the manipulation of
robotic hardware. Several motion planner libraries can be
configured with MoveIt! to help solve a motion planning
problem. OMPL (Open Motion Planning Library) is the
most supported motion planner library and is the default
library for MoveIt!. The library consists of state of the art
sampling-based motion planners.

Using MoveIt!, OMPL creates a path to solve the motion
planning problem. By default, OMPL tries to perform path
simplification. These are routines that shorten the path.
The smoothness of the path may not be affected by this
simplification.

C. Overview of planners

Sampling-based motion planners are proven to be proba-
bilistic complete [14], which implicates that the probability
of not finding a feasible path in an unbounded setting
approaches zero. Therefore, these planners are widely used
to find feasible paths in high-dimensional and geometri-
cally constraint environments. Optimizing sampling-based
motion planners can refrain from potential high-cost paths
and rough motions [15]. However, computing effort for
finding an optimized path is increased.

One of the most common is sampling-based motion
planner is the Probabilistic RoadMap (PRM) [14]. The
planner makes a roadmap by sampling random states in
the configuration space and mark them as nodes (vertices).
Nodes are connected to other nearby nodes if this path
segment (edge) is collision-free. Once the construction of
the roadmap is finished a graph search is performed in order
to find a connection from the initial state towards the goal
state. The roadmap of the PRM planner attempts to cover
the total free configuration space, making it suitable to
reuse the roadmap for a different motion planning problem
in the same configuration space. This is referred to as
a multi-query planning method. Among the 23 motion
planners in Tab. I, six can be considered as multi-query
planning methods.

The LazyPRM [9] planner is different from the PRM
method, since it initially accepts invalid configuration
states to construct a roadmap. After the graph search is
performed, the invalid parts of the candidate solution are
altered to make the path collision-free. PRMstar [15] is
the asymptotically optimal variant of the PRM planner.
It rewires nodes to other near nodes if this minimizes
cost towards the node. LazyPRMstar [15] combines the
LazyPRM and PRMstar.

The remaining planners in Tab. I are refered to as single-
query planning methods. These create a roadmap every
time a new planning query has to be solved. A common
single-query planner is the Rapidly-exploring Random Tree
(RRT) method [10]. It grows a tree structure from the initial
configuration state in the direction of the unexplored areas
of the bounded free space. This is realized by randomly
sampling nodes in the free configuration space, sampled
nodes that can be are within a certain distance of tree nodes
are added to the tree by edges. The process of adding nodes
and edges is repeated until the tree reaches the goal node.
The RRTConnect method [11] is a bi-directional version of
the RRT method, meaning that two trees are grown. Two
processes of RRT are started, one in the start node and one
in the goal node. At every iteration or edge addition, it is
checked whether the trees can be connected to each other,
which solves the the motion planning problem.

The RRT with an optimizing step is the RRTstar [15]
planner. This variant of RRT checks whether the new
sampled node can be connected to other near nodes so
that the state space is more locally refined, similar to
PRMstar. The Lower Bound Tree-RRT (LBT-RRT) [18]
planner is another optimizing planner. It uses a so-called
lower bound graph which is an auxiliary graph. To maintain
the tree, a similar method as RRTstar is used. Transition-
based RRT or TRRT [19] is a combination of the RRT
method and a stochastic optimization method for global
minima. It performs transition tests to accept new states to
the tree. The Bi-TRRT [20] is a bi-directional version of
this planner.

The EST method [7] stands for Expansive Space Trees.
The planner tries to determine the direction of the tree by
checking the density of nodes in the configuration space.



The tree will expand towards the less explored space.
Bi-directional EST (BiEST) [7] grows two trees, similar
to RRTConnect. Projection EST (ProjEST), based on [7],
detects the less explored area of the configuration space
by using a grid. This grid serves as a projection of the
configuration space. Single-query Bi-directional probabilis-
tic roadmap planner with Lazy collision checking, also
called SBL [6], grows two trees, which expand in the same
manner as EST. The planner differentiates from EST by the
lazy collision-checking.

KPIECE (Kinodynamic motion Planning by Interior-
Exterior Cell Exploration) [8] is a tree-based planner that
uses layers of discretization to help estimate the coverage
of the state space. There also exists a bi-directional variant
called BKPIECE and a variant which incorporates lazy
collision checking, this is the LBKPIECE.

Fast Marching Tree (FMT) [16] is an asymptotically
optimal planner which marches a tree forward in the cost-
to-come space on a specified amount of samples. The
BFMT [17] planner is a bi-directional variant of this
planner.

PDST (Path-Directed Subdivision Tree) [12] represents
samples as path segments instead of configuration states. It
uses non-uniform subdivisions to explore the state space.

STRIDE (Search Tree with Resolution Independent Den-
sity Estimation) [13] uses a Geometric Nearneighbor Ac-
cess Tree (GNAT) to estimate the density of the config-
uration space. This helps to guide the tree into the less
explored area.

III. PROBLEM FORMULATION

The available planners consist of non-optimizing and
optimizing planners. The problem formulation follows the
work of Karaman and Frazzoli [15]. Non-optimizing plan-
ners attempt to find a feasible path in the bounded d-
dimensional configuration space C = [0, 1]d. The free
configuration space is defined by Cfree = cl(C \ Cobs),
in which cl(·) denotes the closure of a set and in which
Cobs denotes the obstacle space. A path p is called feasible
when:

p(0) = xinit, p(1) = xgoal (1)
p(x) ∈ Cfree for all x ∈ [0, 1]

Optimizing planners that are given a motion planning
problem (Cfree, xinit, xgoal) and a cost function c, find a
optimized path p∗ such that:

c(p∗) = min{c(p) : p is feasible } (2)

For the implementation of motion constraints, the free
configuration space is reduced. Only configurations that
satisfy the motion constraint can be valid configurations.
This can result increase the amount of narrow passages,
which are known to cause issues for sampling-based motion
planners [23].

Problem implementation. Grasp executions will be
simulated in geometry constrained scenes inside the

MoveIt! framework to retrieve data on planner perfor-
mance. Non-optimizing planners are instructed to produce
feasible paths. The optimizing planners are instructed to
produce optimized paths. The motion constraint problem
is defined to keep the gripper horizontal. Rotation of
the gripper in the horizontal plane is allowed (max 2π),
other rotations are limited to 0.1rad. Path simplification
by OMPL for all the motion planning problems is turned
on. Multi-query planners are being used as single-query
planners.

Performance metric. Solved runs, computing time and
path length are used as metrics in our experiments. We
analyze the metrics outcome individually to provide the
best performing planners in each of the metrics. Solved
runs is expressed in terms of the percentage of total runs
resulting in feasible or optimized paths. High solved runs
is considered as high performance. Computing time is
measured for the time it takes for planners to produce
feasible paths or optimized paths. Planners with a low
computing time are considered as high performance. Path
length is measured by the length of the sum of motions
for a produced path. Planners with short path length
are considered as high performance. Mean and standard
deviation values of computing time and path length can
provide extra information on the performance. Low mean
and small standard deviations values are considered as high
performance.

Parameters. For 20 of the 23 OMPL planners in
MoveIt!, parameters have to be set in order for the planner
to solve a motion planning problem. Choosing right param-
eter values can improve the performance of the planner.
To aim for maximum performance an extensive parameter
selection was conducted, since no automatic optimization
process is available to this date.

IV. DEFINED MOTION PLANNING PROBLEMS

Three grasp execution motions have been defined to
measure the performance of the planners. They are defined
in the same environment that consists of a simplified shelf
and obstacles.

A. Benchmark 1: Place grasp

Benchmark 1 initial end-effector position is located at
the end of a shelf, shown as the orange colored robot
state in Fig. 1,2,3. The goal position is a stretched arm
configuration in front of the shelf (gray robot state). The
motion planning problem starts a in a narrow passage, the
goal is situated in a less constrained space. This would
identify which planner is able to produce the best results
when moving out of a constrained space.

B. Benchmark 2: Pick grasp

Benchmark 2 is attempting to resemble a picking motion
from a narrow shelf, shown as the gray robot state in Fig.
1,2,3. The goal of the problem is to achieve a specific
gripper orientation at the end of this shelf (orange robot
state). The planner will have to produce a motion plan with
high accuracy to reach the end of the shelf. The motion



Fig. 1. Pick and place benchmark for UR5.

Fig. 2. Pick and place benchmark for KUKA LWR 4+.

Fig. 3. Pick and place benchmark for Kinova JACO.

planning problem starts in a less constrained space, the goal
is situated in a narrow passage. This would identify which
planner is able to produce the best results when moving
into a constrained space.

C. Benchmark 3: Place grasp with motion constraints

For benchmark 3, the same motion planning problem as
benchmark 1 is defined. However, for this problem motion
constraints are added to keep the gripper horizontally
leveled within a small margin. This resembles placing a
glass of water from the shelf on the table, without spilling.
This would identify which planner is able to produce the
best results when having a constrained free configuration
space.

V. RESULTS

A. Methodology

The benchmarking experiments are performed using one
thread on a system with an Intel i5 2.70GHz processor
and 8Gb of memory. Parameter estimation for the plan-
ners is conducted using an extensive iterative process to

achieve maximum performance of the planners with re-
spect to the manipulator, these planner specific parameters
are presented in Tab. II. The global OMPL parameter
longest valid segment fraction is set to 0.005. To give
reliable data on the solved runs, computing time and
path length, each algorithm was run 50 times for the
given motion planning problem. The planners were given
a maximum computing time 10s for benchmarks 1 and 2.
Due to the increased limitation of the free configuration
space of motion constraint planning, benchmark 3 was
given 20s maximum computing time. The time is kept low
since most robotics applications need to operate quickly.

B. Simulation results
Results of benchmark 1 are shown in Fig. 4 and Tab.

III. Considering all manipulators, solved runs of 80% and
higher were found for all single-query planners, except for
FMT. Since multi-query planners do not focus on one spe-
cific motion planning problem, the roadmap construction
needs to cover the whole Cfree. A demerit of this is the extra
needed computing effort. Single-query planners do not
need to cover the total free configuration space. Heuristics
of these planners help propagating a path outwards of a
constrained space. Lowest computing times were retrieved
with EST, ProjEST, KPIECE and STRIDE, which are all
mono-directional planners with a goal bias property. Since
the goal configuration is located in a large free space, the
probability of finding a solution with the goal configuration
as sample increases. The fastest planners also use heuristics
to quickly cover the configuration space. EST and STRIDE
do this by looking at the density of present samples.
KPIECE uses a discretization layer which coarsely covers
the configuration space. With goal bias in an open space,
short paths can be found with EST, ProjEST and KPIECE.

When considering the results of manipulators in bench-
mark 1 separately, it can be noted that the JACO manipu-
lator was able to generate higher solved runs for multi-
query planners. This manipulator does not incorporate
any restrictions on joint limits, which helps to find more
connections in the free configuration space between nodes,
increasing the solved runs. Moreover, a solution faster is
found faster and with a shorter path length. Computing
times for the UR5 manipulator were lowest with KPIECE,
RRT and RRTConnect. Computing times for the LWR
4+ were lower than the UR5 with SBL, EST, KPIECE,
BKPIECE, LBKPIECE and STRIDE. In addition to those
planners, RRTConnect also had low computing times for
the JACO. For the UR5, short path lengths are found
with BiEST, ProjEST, KPIECE, RRTConnect, TRRT and
BiTRRT. For the LWR 4+, these are EST, KPIECE,
BKPIECE, LBKPIECE and LazyPRMstar. Planners EST,
BiEST, ProjEST, KPIECE, LazyPRMstar and BiTRRT
found short paths for the JACO manipulator.

Results of benchmark 2 are shown in Fig. 5 and Tab.
IV. Considering all manipulators, solved runs of 80% and
higher were retrieved with SBL, BKPIECE, LBKPIECE,
RRTConnect and BiTRRT. These are all bi-directional tree-
based planners. Because of this property path planning is



TABLE II: PLANNER PARAMETERS FOR UR5 (U), LWR 4+ (L) AND JACO (J)

SBL U L J EST U L J BiEST U L J ProjEST U L J RRT U L J RRTConnect U L J
range 0.5250.6 0.6 range 0.6 0.6 0.6 range 0.6 0.6 0.6 range 0.45 0.6 0.6 range 0.75 1.2 1.8 range 0.2 0.6 0.6

goal bias 0.05 0.05 0.075 goal bias 0.075 0.025 0.075 goal bias 0.075 0.075 0.025

PRM U L J LazyPRM U L J RRTstar U L J KPIECE U L J BKPIECE U L J LBKPIECE U L J
max n.n. 10 10 10 range 0.525 0.6 0.6 range 0.75 1.2 0.6 range 0.525 0.3 0.225 range 0.525 0.3 0.225 range 0.6 0.225 0.3

goal bias 0.075 0.05 0.05 goal bias 0.075 0.05 0.075 border f. 0.9 0.9 0.8 border f. 0.9 0.8 0.8
delay c.c. 1 1 1 border f. 0.9 0.9 0.8 exp. s.f. 0.7 0.5 0.5 valid p.f. 0.5 1 0.5

exp. s.f. 0.7 0.5 0.5 valid p.f. 0.5 0.5 0.5
valid p.f. 0.5 0.5 0.5

STRIDE U L J FMT U L J TRRT U L J BiTRRT U L J SPARS U L J SPARStwo U L J
range 0.6 0.45 0.45 num samp. 1000 1000 1000 range 1.35 1.2 1.8 range 0.6 0.9 0.6 stretch f. 3 2.6 2.6 stretch f. 3 3 3
goal bias 0.05 0.05 0.075 rad. Mult. 1.15 1.15 1.15 goal bias 0.075 0.05 0.025 temp c.f. 0.3 0.3 0.3 sparse d.f. 0.25 0.25 0.25 sparse d.f. 0.25 0.25 0.25
use proj d. 0 0 0 Nearest k 1 1 1 max state f. 5 5 5 init temp 75 75 75 dense d.f. 0.001 0.001 0.001 dense d.f. 0.001 0.001 0.001
degree 24 8 8 cache cc 1 1 1 temp c.f. 2.5 2 2 frountier 1 1 1 max fail. 1000 1000 1000 max fail. 5000 5000 5000
max deg. 28 12 12 heuristics 1 1 1 min temp 1e-

9
1e-
9

1e-9 frountierN.r. 0.1 0.1 0.1

min deg. 12 6 6 ext. fmt 1 1 1 init temp 125 125 125 cost thres. 1000 1000 1000
max p.p.l. 6 3 3 frountier 2.25 2.5 2.5
est. dim. 0 0 0 frountierN.r. 0.1 0.1 0.1
valid p.f. 0.1 0.1 0.1 k constant 0 0 0

Fig. 4. Results for benchmark 1. (a) Solved runs; higher is better. (b) Computing time; lower is better, small interquartile range is better. (c) Path
length; lower is better, small interquartile range is better.

also started in the goal state, which acts similar to the
benchmark 1 moving out of a constrained space. SBL and
LBKPIECE showed the lowest computing times. These
planners use lazy collision-checking. Collision-checking is
only performed on a candidate path instead on all vertices,
which can lower the computing time. Shortest paths are
found with SBL and LBKPIECE, however, standard devia-

tions are higher for the SBL planner. Using a discretization
layer to cover the configuration space coarsely helps finding
more consistent results (lower standard deviations from the
mean).

When considering the results of manipulators in bench-
mark 2 separately, it can be noted that the UR5 and LWR
4+ also managed to produce solved runs of 80% and



Fig. 5. Results for benchmark 2. (a) Solved runs; higher is better. (b) Computing time; lower is better, small interquartile range is better. (c) Path
length; lower is better, small interquartile range is better.

higher for the BiEST planner. This planner is also a bi-
directional planner. The expanded configuration space of
the JACO manipulator helps to produce solved runs of 80%
and higher for planners PRM, PRMstar and LazyPRMstar.
However, computing times are considerably higher since
these planners keep optimizing the roadmap until the time-
limit is reached. RRTConnect is the fastest planner for the
UR5 and LBKPIECE is the fastest for LWR 4+ and JACO.
For all three manipulators, LBKPIECE is able to compute
feasible paths within 1.5s. Considering high solved runs:
BiTRRT finds the shortest paths for the UR5, SBL for the
LWR 4+ and FMT for the JACO respectively.

Results of benchmark 3, incorporating motion con-
straints, are shown in Fig. 6 and Tab. V. The extra con-
straint limits the free configuration space. Considering all
manipulators, only the BiEST planner was able to produce
solved runs of 80% and higher. The planner looks at the
density of samples in its neighbourhood to help its expan-
sion. In the case of planning with motion constraints, this
shows to be effective compared to the other 20 planners.
The bi-directional property helps finding a solution within

the time limit, since the mono-directional EST planner is
not able to find a feasible path with a maximum computing
time of 20s.

Depending on the manipulator, the highest performing
planner differs, which indicates that there is less consis-
tency in planner performance when incorporating extra mo-
tion constraints. SBL, BKPIECE and RRTConnect also had
solved runs of 80% and higher for the UR5 manipulator.
For the JACO manipulator the KPIECE planner manages
to get solved runs of 100%.

C. Discussion

The motivation of this work is to help users pick high-
performing motion planners for grasp executions. Short-
comings of this work will be discussed.

Computing time. This paper only showed results for
motion planning with a time-constraint of 10s or 20s. This
was chosen to select high-performing motion planners that
find a solution in a timely manner. Selecting a higher time-
limit could show increased performance in solved runs and
path length. However, this is not covered in this work.



TABLE III: MEAN VALUES FOR BENCHMARK 1

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 2.42 (1.68) 14.24 (4.11) 0.31 (0.11) 13.38 (3.23) 0.21 (0.09) 15.93 (19.85)
EST 1.54 (1.26) 14.57 (7.50) 0.12 (0.06) 11.82 (2.00) 0.16 (0.15) 10.55 (2.41)
BiEST 4.71 (2.25) 13.73 (4.93) 2.55 (1.77) 13.02 (3.21) 2.98 (2.04) 10.63 (5.47)
ProjEST 1.22 (0.89) 13.70 (3.73) 0.15 (0.08) 14.31 (9.77) 0.12 (0.07) 10.71 (5.77)
KPIECE 0.97 (0.73) 13.72 (3.07) 0.10 (0.03) 11.91 (2.86) 0.09 (0.06) 10.73 (3.62)
BKPIECE 2.31 (1.94) 16.55 (7.70) 0.21 (0.11) 11.92 (1.47) 0.23 (0.16) 11.22 (3.39)
LBKPIECE 1.51 (1.30) 14.45 (4.16) 0.23 (0.09) 11.48 (1.08) 0.13 (0.05) 12.17 (5.20)
RRT 1.59 (2.04) 14.39 (9.07) 1.94 (1.12) 18.68 (6.05) 0.83 (1.59) 12.14 (5.10)
RRTConnect 0.89 (0.35) 13.06 (3.98) 4.49 (2.06) 21.34 (10.20) 0.13 (0.06) 13.88 (12.11)
PDST 1.88 (1.62) 16.27 (17.34) 1.25 (0.61) 25.74 (36.23) 0.20 (0.11) 16.18 (5.22)
STRIDE 1.46 (1.13) 16.36 (15.01) 0.16 (0.14) 12.35 (2.51) 0.16 (0.13) 14.66 (20.43)
PRM 10.02 (0.00) 29.82 (0.00) 10.01 (0.00) 18.73 (4.55)
LazyPRM 10.05 (0.00) 23.66 (0.00) 10.02 (0.01) 10.11 (2.17)
RRTstar 10.02 (0.01) 14.32 (4.15) 10.03 (0.02) 19.06 (5.04) 10.02 (0.01) 10.66 (2.73)
PRMstar 10.04 (0.00) 24.11 (0.00) 10.02 (0.01) 16.65 (3.28)
LazyPRMstar 10.02 (0.00) 11.13 (0.50) 10.02 (0.01) 9.79 (1.86)
FMT 6.17 (2.57) 16.71 (2.88) 6.06 (1.92) 18.29 (4.32) 1.39 (0.25) 11.30 (2.98)
TRRT 1.76 (1.68) 13.40 (4.31) 1.63 (0.93) 20.47 (12.40) 0.41 (0.51) 13.48 (8.55)
BiTRRT 1.31 (0.60) 13.79 (11.02) 3.61 (1.84) 21.05 (8.62) 0.20 (0.10) 10.77 (3.19)
SPARS 10.04 (0.03) 25.52 (6.04)
SPARStwo 10.00 (0.00) 27.83 (1.84)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

TABLE IV: MEAN VALUES FOR BENCHMARK 2

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 2.30 (1.36) 35.21 (99.24) 0.36 (0.22) 20.66 (37.57) 0.33 (0.16) 19.85 (18.23)
EST 4.40 (2.94) 12.41 (1.20)
BiEST 5.82 (2.52) 20.99 (39.61) 1.99 (0.95) 26.90 (35.64) 6.37 (2.26) 24.80 (20.19)
ProjEST 5.13 (3.25) 18.57 (10.76)
KPIECE 1.37 (1.38) 22.36 (20.44)
BKPIECE 2.83 (2.34) 16.55 (17.33) 0.29 (0.21) 37.36 (73.78) 0.45 (0.25) 24.45 (20.39)
LBKPIECE 1.34 (0.95) 19.01 (23.57) 0.28 (0.15) 21.24 (31.19) 0.20 (0.08) 21.46 (18.29)
RRT 0.24 (0.00) 61.77 (0.00)
RRTConnect 0.81 (0.36) 26.84 (63.29) 3.62 (1.89) 72.72 (112.46) 0.21 (0.14) 20.70 (30.91)
PDST 5.02 (3.42) 15.83 (4.94)
STRIDE 2.96 (0.24) 18.69 (9.38) 2.75 (2.54) 17.40 (10.26)
PRM 10.01 (0.00) 23.00 (0.00) 10.01 (0.00) 19.93 (2.99)
LazyPRM 10.03 (0.00) 13.43 (0.40) 10.02 (0.01) 13.97 (2.58)
RRTstar 10.02 (0.00) 10.48 (0.00)
PRMstar 10.02 (0.00) 18.28 (0.00) 10.03 (0.02) 20.68 (3.62)
LazyPRMstar 10.03 (0.05) 14.29 (3.88)
FMT 5.82 (2.92) 19.01 (4.71) 2.87 (0.83) 17.15 (12.78)
TRRT 1.11 (1.10) 22.31 (17.58)
BiTRRT 1.45 (0.70) 14.49 (13.19) 4.47 (2.57) 65.18 (125.80) 0.33 (0.17) 25.30 (23.12)
SPARS 10.15 (0.00) 23.39 (0.00) 10.03 (0.02) 23.24 (4.76)
SPARStwo 10.00 (0.00) 31.47 (7.23)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

TABLE V: MEAN VALUES FOR BENCHMARK 3

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 8.88 (4.19) 20.66 (8.09) 12.44 (0.00) 13.55 (0.00)
EST 8.99 (7.49) 18.03 (4.03) 9.08 (0.00) 67.08 (0.00) 11.06 (4.46) 12.25 (1.48)
BiEST 2.81 (1.21) 21.18 (10.97) 8.77 (4.36) 35.71 (26.06) 8.72 (6.00) 27.84 (16.28)
ProjEST 10.06 (5.40) 13.41 (1.25)
KPIECE 9.08 (3.45) 26.58 (12.90) 9.50 (6.58) 41.99 (39.29) 3.84 (2.70) 15.10 (4.43)
BKPIECE 5.72 (4.82) 24.92 (13.76) 9.92 (4.51) 40.82 (30.96) 9.78 (7.12) 44.91 (24.50)
LBKPIECE 15.21 (4.39) 25.39 (13.22) 9.88 (0.00) 12.85 (0.00)
RRT 9.06 (5.63) 29.45 (24.11) 12.32 (5.71) 43.74 (42.21) 12.10 (5.65) 12.28 (1.80)
RRTConnect 4.86 (3.63) 27.92 (23.82) 13.03 (4.00) 65.97 (55.08) 10.74 (5.79) 26.76 (16.25)
PDST 9.23 (0.00) 11.77 (0.00) 12.42 (5.30) 41.06 (39.27) 8.86 (6.06) 51.48 (32.37)
STRIDE 9.98 (10.20) 58.23 (60.47) 12.64 (0.00) 13.15 (0.00) 12.45 (7.28) 23.87 (15.41)
PRM 20.12 (0.04) 65.88 (12.16) 20.14 (0.05) 43.60 (7.56) 20.09 (0.05) 55.03 (20.03)
RRTstar 20.07 (0.04) 22.89 (13.78) 20.03 (0.01) 25.18 (11.74) 20.05 (0.03) 14.97 (3.80)
PRMstar 20.15 (0.13) 41.66 (36.26) 20.18 (0.18) 41.76 (14.76) 20.09 (0.05) 48.12 (27.74)
LazyPRMstar 20.04 (0.01) 46.70 (7.36) 20.87 (1.52) 37.99 (12.06) 21.91 (6.20) 30.31 (13.98)
FMT 19.34 (1.27) 18.54 (8.12) 15.21 (2.42) 15.31 (8.70)
TRRT 13.14 (5.03) 33.26 (30.84) 7.21 (5.60) 17.36 (2.33) 8.27 (5.15) 13.00 (2.45)
BiTRRT 14.47 (5.82) 29.01 (18.58) 8.46 (8.52) 11.54 (0.48)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

Parameter selection. Since parameter values have to
be set for a planner to operate, the aim was to achieve
maximum performance of the planners. By manually con-
ducting the iterative process explained before, a guarantee
of maximum performance cannot be given. We executed
the iterative process to the best of our abilities in order
to achieve maximum performance. For planners with an
exposed range parameter, the distance has to be low enough
to provide dense coverage of the configuration space.

Multi-query. For this paper, we only considered single-
query motion planning performance. This paper fails to
show the potential benefit of lower computing times when
using the same roadmap multiple times. For benchmark 1
and 2, we do notice that planners single-query planners
are able to compute feasible paths in short amount of time.
We therefore argue the need for multi-query planners for
online grasp executions similar to benchmarks 1 and 2. The

use of multi-query planners can be beneficial when motion
constraints have to be used all the time. Computing paths
for these motion planning problems can consume more
time, as shown in the results. Using the same roadmap
again will decrease computing time. However, this map
needs to be detailed and the environment needs to be static.

Optimization with time-invariant goal. BiTRRT is the
fastest optimizing planner. However, compared to non-
optimizing planners, the path length is not consistently
shorter. More research needs to be conducted to show the
real potential of optimizing planners.

Manipulators. The manipulators studied in this paper
have similar specifications. The effect of different manip-
ulator on planner performance cannot be verified with the
presented benchmark data. We believe similarly shaped
manipulators will yield a similar planner choice. Best
overall planner performance, with respect to solved runs,
can be obtained with a JACO manipulator.

BFMT and LBTRRT. These planners resulted in errors
for the defined motion planning problems. We were unable
to provide reliable results to present in this paper. More
effort is needed to make these planners work more reliable.

VI. CONCLUSION

This paper presented benchmark data for 21 of the
current 23 OMPL planners in MoveIt! for three different
manipulators. This data can be useful when performing
similar grasp executions. Simultaneously, this paper se-
lected high-performing planners for different motion plan-
ning problems, resembling a grasp execution. Planner per-
formance was studied by means of solved runs, computing
time and path length. The results showed that the mono-
directional KPIECE planner was highest performing when
initiating motion planning from a constrained configura-
tion towards a less constrained space. Bi-directional plan-
ners with lazy collision-checking (SBL and LBKPIECE)
showed fastest performance when the goal configuration
is located within a constrained space. Shorter paths were
found with LBKPIECE. For motion planning problems
incorporating a motion constraints, consistent high per-
formance over the three manipulators was retrieved with
BiEST. Considering all the grasp executions presented in
this work, RRTConnect was the most reliable planner due
to high solved runs. For future work, we would like to
investigate the option to implement a faster, easier and more
robust method to select parameter values for the planners

REFERENCES

[1] I. Sucan, M. Moll, and L. Kavraki, “Open Motion Planning Library:
A Primer,” 2014.

[2] I. A. Sucan and S. Chitta, “MoveIt!” 2013.
[3] Universal Robots, “Technical Specifications UR5,” accessed 2017-

03-13. [Online]. Available: https://www.universal-robots.com/
[4] KUKA, “KUKA LWR,” accessed 2017-03-13. [Online]. Available:

http://www.kukakore.com/
[5] Kinova Robotics, “Technical Specifications,” accessed 2017-03-13.

[Online]. Available: http://www.kinovarobotics.com/
[6] G. Sánchez and J.-C. Latombe, “A Single-Query Bi-Directional

Probabilistic Roadmap Planner with Lazy Collision Checking,” in
Robotics Research. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 403–417.



Fig. 6. Results for benchmark 3. (a) Solved runs; higher is better. (b) Computing time; lower is better, small interquartile range is better. (c) Path
length; lower is better, small interquartile range is better.

[7] D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of Int. Conf. on Robotics and
Automation, vol. 3, 1997, pp. 2719–2726 vol.3.

[8] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in In Workshop on the Algorithmic
Foundation of Robotics, 2008.

[9] R. Bohlin and L. E. Kavraki, “Path Planning Using Lazy PRM,” in
In IEEE Int. Conf. Robot. & Autom, 2000, pp. 521–528.

[10] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[11] J. J. Kuffner Jr. and S. M. Lavalle, “RRT-Connect: An efficient
approach to single-query path planning,” in Proc. IEEE Intl Conf.
on Robotics and Automation, 2000, pp. 995–1001.

[12] A. M. Ladd, R. Unversity, L. E. Kavraki, and R. Unversity, “Motion
planning in the presence of drift, underactuation and discrete system
changes,” in In Robotics: Science and Systems I. MIT Press, 2005,
pp. 233–241.

[13] B. Gipson, M. Moll, and L. E. Kavraki, “Resolution Indepen-
dent Density Estimation for motion planning in high-dimensional
spaces,” in 2013 IEEE Int. Conf. on Robotics and Automation.
IEEE, may 2013, pp. 2437–2443.

[14] L. Kavraki, P. Svestka, J. claude Latombe, and M. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” in IEEE Int. Conf. on Robotics and Automation,
1996, pp. 566–580.

[15] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” CoRR, vol. abs/1105.1186, 2011.

[16] L. Janson and M. Pavone, “Fast marching trees: a fast marching
sampling-based method for optimal motion planning in many di-
mensions - extended version,” CoRR, vol. abs/1306.3532, 2013.

[17] J. A. Starek, J. V. Gómez, E. Schmerling, L. Janson, L. Moreno, and
M. Pavone, “An asymptotically-optimal sampling-based algorithm
for bi-directional motion planning,” CoRR, vol. abs/1507.07602,
2015.

[18] O. Salzman and D. Halperin, “Asymptotically near-optimal RRT
for fast, high-quality, motion planning,” CoRR, vol. abs/1308.0189,
2013. [Online]. Available: http://arxiv.org/abs/1308.0189

[19] L. Jaillet, J. Corts, and T. Simon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Transactions on Robotics,
pp. 635–646, 2010.

[20] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-
based rrt to deal with complex cost spaces,” in IEEE Int. Conf. on
Robotics and Automation, ICRA ’13, Karlsruhe, Germany, 2013, pp.
4105–4110.

[21] A. Dobson, A. Krontiris, and K. E. Bekris, Sparse Roadmap
Spanners. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 279–296.

[22] A. Dobson and K. E. Bekris, “Improving sparse roadmap spanners,”
Karlsruhe, Germany, 2013.

[23] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin,
“On finding narrow passages with probabilistic roadmap planners,”
1998.


