
Camera Positioning and
Vision-based Fall Detection

Jerom van der Sar, Arjan Seijs,
Ivo Nelissen, and Robin Cromjongh

Bachelor End Project
For the Bachelor Computer Science and Engineering

Camera Positioning and
Vision-based Fall Detection

by

Jerom van der Sar, Arjan Seijs,
Ivo Nelissen, and Robin Cromjongh

Project duration: April 23, 2019 – July 2, 2019
Thesis committee: Ir. O. Visser, TU Delft, Course Coordinator

Dr. C. C. S. Liem, TU Delft, Coach
K. Rassels MSc, Eya Solutions & TU Delft, Client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Executive Summary

Elderly care residences often have falling incidents, sometimes with dire consequences. This project aims
to implement a method for detecting when people fall, an issue that has seen much research and practical
implementations already. In contrast to other work, this project aims to create a non-intrusive, non-wearable
solution through the use of cameras. It extends an existing patient monitoring system developed by Eya
Solutions, a start-up in the medical field. Their system monitors patients and is composed of embedded sys-
tems (clients), a back-end with a database, and a web-based dashboard (the front-end) for administrators,
caretakers and users. Our client wants to extend their system by introducing: (i) a video processing compo-
nent which performs face recognition, (ii) functionality for indoor positioning of people, (iii) functionality to
automatically determine near-optimal placement of cameras, and (iv) automatic detection of fall incidents.

To understand the relevant research, we survey the field investigating five key research topics: (i) object
detection, (ii) fall detection, (iii) facial recognition, (iv) floor plan modelling, and (v) camera placement opti-
misation. Research shows that in object detection and fall detection, first using background subtraction and
then fitting ellipses around objects is a common method for tracking pedestrians. Because this method is
also intuitive, we employ this method in our approach. Facial recognition proved to be very challenging in
our setting, and the relevant research confirms this. Because of this reason and time constraints, our project
does not implement this functionality. Automatic floor plan modelling is possible, but difficult, and was thus
also decided to keep as future work. Research into camera placement optimisation revealed that using a dis-
cretised representation is best suited for our purpose and that a genetic algorithm is a common and effective
method of optimising. Our project implements both.

The first part of the project is detecting fall incidents in video footage. By means of image processing (in
particular, subsequent frame subtraction), our system detects objects in the foreground and tracks these be-
tween frames. Based on the properties of such objects, namely size and shape, we detect fall incidents.

The second part of the project is the floor plan editor. This editor is integrated into the existing dash-
board, where administrators can model the building. Eya Solutions wishes to provide the product to cus-
tomers as a complete package, including (i) showing where fall incidents have occurred, and (ii) how and
where to place cameras. Our system allows administrators to edit the floor while allowing caretakers to see
the modelled floor and see where falls are detected. Considering (ii), it is desirable to generate a config-
uration where the number of cameras is low while the view coverage is high. Our contribution includes
a genetic algorithm which can generate automatically a suitable configuration. Alternatively, cameras can
be placed manually by the administrator.

This system can be considered privacy sensitive because elderly are filmed throughout the day and in the
deployment building. This is, however, acceptable, considering caretakers have to be able to see the video
feeds in order to provide proper care, and because only caretakers can see the feed.

All main aspects of the system have been tested. The fall detection was tested on accuracy, showing an
accuracy of 33% and a false positive rate of 0.5 false notifications per minute. The floor plan editor is tested
by means of user tests and unit tests. Our optimisation algorithm was tested on speed and bottlenecks.

In order to complete this project, we employed a loose variant of the SCRUM development methodology,
with sprint lengths of one week. The team was split among the two main projects, but communication was
still fluent within the entire team. Challenges in the process of this project were the high amount of requested
functionality and a lack of available data. To resolve this, we cut in what functionality we were going to im-
plement and worked with the limited data sets that was publicly available. Splitting the team in two was a
limitation to the overall achievements, but a reasonable solution to the diverse challenges from the client.

Our system functions as expected and serves as a minimal viable product for the given functionality. As
such, it is a good starting point for further development to more complete software. For the fall detection
algorithms, finding or creating more representative data could be used to train the fall detection so that the
detection accuracy can be improved. The floor plan editor could use improved user friendliness. The system
could also be extended to use facial recognition on tracked objects.

iii

Preface

This project was the final stepping stone to achieving our Bachelor of Science degrees. For us, this project
was challenging for a multitude of reasons, not firstly because the stakes were high: we worked with a client
outside the domain of computer science, we continued work on a pre-existing code base, which was both
large in scale and complex in design, and we were tasked to implement an open-ended product with limited
assistance. Essentially, we were allowed to tackle the entire process of investigating, research, design, imple-
menting, and testing on our own. Now that our Bachelor is coming to a close, we must note that we did not
succeed without help, and a thank-you is most certainly in place.

Firstly, we would like to thank our client, Kianoush Rassels, for the opportunities he has granted us in
working on this project. You have made this project a true learning experience.

Secondly, we would like to thank our supervisor, Cynthia Liem, her guidance and support. As an expert
on computer vision, her insight into pedestrian detection algorithms have truly been useful. Thank you for
your guidance! We have enjoyed our journey through this project.

Thirdly, we would like to thank all professors, teachers, teaching assistants, coordinators, and support-
ing staff who have taught us much in the past years. Now we are much more knowledgeable on Computer
Science and you were certainly essential.

Lastly, we would like to thank a multitude of other individuals who have helped in the process. Thank
you, family and friends, of which there are too many to name. We have had a blast going through this process
with you! Thank you, participants of our user tests, for your time and feedback which we have incorporated
into this report. Finally, thank you, public transport, for being on time every now and then.

Jerom van der Sar, Arjan Seijs,
Ivo Nelissen, and Robin Cromjongh

Delft, June 2019

v

Contents

List of Figures ix
List of Tables ix
List of Algorithms ix
1 Introduction 1
2 ProblemDefinition 3

2.1 System Overview . 3
2.2 Project Goal . 3

3 RelatedWork 5
3.1 Object Detection . 5
3.2 Fall detection . 6
3.3 Facial Recognition . 8
3.4 Floor Plan Modelling . 8
3.5 Camera Placement Optimisation . 9
3.6 Research Conclusion . 11

4 SystemDesign 13
4.1 Object Detection, Tracking, and Fall Detection . 13
4.2 Floor Plan Management . 13

5 System Implementation 15
5.1 Implementation Overview . 15
5.2 Object Detection . 15
5.3 Object Tracking and Fall Detection . 17
5.4 Floor Plan Management . 17
5.5 Camera Coverage Optimisation . 19
5.6 Feedback from Software Improvement Group . 21

6 Ethical Implications 23
7 Evaluation 25

7.1 Fall Detection . 25
7.2 Dashboard User Test . 26
7.3 Floor Coverage Optimisation . 27

8 Process 31
8.1 Overview . 31
8.2 Challenges . 31
8.3 Reflection . 32

9 Conclusion 33
10 FutureWork 35
A Project Description 41
B Requirements Analysis 43

B.1 Functional Requirements . 43
B.2 Non-functional Requirements . 44

vii

C Feedback from SIG 45
C.1 Feedback week six . 45
C.2 Feedback week nine. 46

D Info sheet 47
D.1 Description . 47
D.2 Contributors . 48
D.3 Contact . 48

E UserManual 49

List of Figures

2.1 Conceptual overview of the system provided by the project client. 4

4.1 Conceptual design of our system. 14
4.2 State diagram indicating the states of our tracker object. 14

5.1 The class diagram for the video processing module . 16
5.2 The UML class diagram of the floor plan module. 18
5.3 Four stages in grid generation: from a grid to a finer grid. 20

7.1 The user cheat sheet. Each icon represents a tool in the tool bar. 26
7.2 The floor plan used for view coverage optimisation experiments. 28
7.3 Two stages of performance optimisation: from 27 cameras to 16. 29

8.1 The project road map. 32

List of Tables

3.1 Falling activities identified by Noury et al. [38]. 7
3.2 Results of relevant platforms presented by other researchers. 9

5.1 Overview of hyperparameters of our genetic algorithm. 21

7.1 Performance results for view coverage optimisation of our genetic algorithm 29
7.2 Performance profiling data of our genetic algorithm . 30

List of Algorithms

5.1 Computes the fitness of a given individual. 20
5.2 Approximates the view coverage of a given individual with < 1% accuracy. 20
5.3 Calculates the points for the grid for a given outer polygon, depth, and zero-depth grid size. . . 21

ix

1
Introduction

In elderly care, there is a continuous and serious concern for fall incidents. Elderly are more sensitive to
falling and have increased risk to serious injury [1]. Often, they cannot get up or call for help, though it is
often essential for them to receive timely aid. Current solutions, such as a help button worn around the
neck, do offer some help, are inadequate if the person is incapacitated. For example if the person is in shock,
unconscious, cannot find the button, forgot how or why to use the button, or took it off in a state of confusion.

In this project, we aim to create a non wearable-based, intuitive, and non-intrusive solution. Instead, we
employ cameras to monitor the residents (i.e., the elderly in care). A workable product can increase resident
comfort and safety while reducing confusion. Our contribution is split into two parts: (i) detecting when
people fall in camera footage, thereby helping staff locate fallen people, and (ii) placing cameras such that the
configuration has a suitable trade-off between low cameras (meaning low cost), and high viewing coverage.

In this report, we describe the goals, process and results of the design and implementation of this system.
We present an overview of the original system in Chapter 2. In Chapter 3, we examine relevant research
on a per-topic basis. We present our system design and subsequent implementation in Chapters 4 and 5.
In Chapter 6, we consider and justify some ethical concerns with our solution. Our performance and user
evaluations are presented in Chapter 7. In Chapter 8, we describe and reflect on the process of the project.
Finally, Chapters 9 and 10 form our conclusion and discussion.

1

2
Problem Definition

In this section, we present an overview of the current system and describe the project goal. The project de-
scription as presented on BEPSys is listed in Appendix A and our derived requirements analysis is presented
in MoSCoW form in Appendix B.

2.1. System Overview
The system provided by the project client is designed for use in resident care facilities for monitoring pur-
poses. A resident is someone who receives care in a care facility, for example elderly people in a elderly home.
The system consists of three main modules, a front-end web application, a back-end server and database, and
a embedded device (the client). We make a distinction here between the project client (i.e., Eya So-
lutions), and the client (i.e., the embedded device). An overview of the entire system is provided in Figure 2.1.

The front-end is a multi-platform web application . .
.

.
.

.
.

.
.

.
.

.

1. . .
.

2.
3.

The client is a embedded system. The client is connected over the on-site locations through
ethernet or Wi-Fi, but may be behind a firewall. The software on the client and the project
client has provided our group with configurations to cross-compile the software for use on the embedded
platform. .

.

2.2. Project Goal
The goal of the BEP is to extend on a distributed information dashboard used in hospitals and elderly homes.
The project requirements are described in more detail in Appendix B in MoSCoW-form. Our client requests
that we extend this product by introducing: (i) a video processing component which performs face recogni-
tion, (ii) functionality for indoor positioning of people, (iii) functionality to automatically determine near-op-
timal placement of cameras, and (iv) automatic detection of fall incidents.

3

4 2. Problem Definition

Figure 2.1: Conceptual overview of the system provided by the project client.
Boxes indicate components and arrows indicate communication streams.

The end-goal of the project as a whole is to protect vulnerable residents by quickly alerting caregivers
when residents have fallen. The finished product should identify users through facial recognition, perform
pose estimation, and subsequently use pose estimation to determine when a fall incident has occurred. This
three-phase process should occur automatically and in real-time. Moreover, the project client requests the
system to be accurate and performant. Finally, the project client indicates the project should be easy to
extend and should introduce a minimal number of new technologies.

3
Related Work

In this chapter, we address the related research pertinent to our Bachelor End Project. We investigate five
distinct categories: (i) object detection through video streams, (ii) human fall detection based on video pro-
cessing, (iii) facial recognition and authentication, (iv) modelling 2D building floor plans, (v) near-optimal
placement of the camera objects. We discuss each category individually and conclude in Section 3.6.

3.1. Object Detection
In general, object detection concerns processing images and video material such that pixel-locations of dis-
played objects can be extracted [39, 52]. An additional challenge is the subsequent classification of the ob-
jects. In this analysis, we will focus on the first challenge, as our interest lies with detection of humans and
human poses. Broadly speaking, there are two approaches to object detection: learning-based methods and
rule-based methods. We discuss each category individually. Subsequently, we also discuss multi-camera
object tracking in Section 3.1.3.

3.1.1. Rule-based Approaches
Rule-based approaches use data-set-independent decisioning to perform detection. Such approaches in-
clude image fragment feature matching and, more holistically, template matching [54]. In practice, feature
matching approaches algorithmically pair object textural features of to the image fragment such that a prob-
abilistic prediction can be made [30, 13]. In contrast, template matching perform matching on the whole
image, suffering reduced accuracy in favour of robustness to foreground occlusion [47, 22, 23].

Manen, Guillaumin, and Van Gool propose a different method, which uses a randomised version of Prim’s
algorithm [36]. Prim’s algorithm, in turn finds minimum spanning trees provided a a graph as input. Their
approach has increased accuracy and speed in contrast to methods based on super-pixel groupings.

There are many other rule-based approaches, mostly focused on subtraction of two subsequent frames
in video streams. These are further discussed in Section 3.2.

3.1.2. Learning-based Approaches
Learning-based approaches mostly focus on detection on image fragments which together form a coherent
model of the world [52]. In contrast to rule-based approaches, the accuracy of the detection algorithm is
grounded almost entirely in the quality of the training data. Moreover, training data is not always generalis-
able such that an accurate detection can be made in cross domain applications [16, 41].

Sliding-window approaches employ classifiers to scan over scaled image snippets and detect objects
problematically [13, 56]. This type of approach is aimed mostly at the classification task but not at the locali-
sation task [9]. Dollar, Belongie, and Perona propose a hybrid approach of sparsely sampled image pyramids
computing object features [15, 16]. These features are computed through gradient histograms and together
compose the detector at the full image scale. They gain an order of magnitude speedup compared to the base-
line.

Gall, Razavi, and Van Gool present one mathematical approach to object detection on still images through
random forests [19]. This method employs decision trees that are optimised with training data. Random
trees are effective in regression, classification, or a combination. Each random forests consists of multiple

5

6 3. Related Work

decision trees that map an image patch (i.e., an area of the image) to probability distributions for the target
variables (for instance, class probability). The authors have tested their frameworks experimentally and con-
clude that their approach is comparably effective in contrast with the state of the art, while striking a balance
between accuracy and training efficiency [20]. Tejani et al. have expanded on this work [52], introducing la-
tent class Hough trees for RGB-D images (i.e, those with a depth dimension). By introducing latent variables
derived from the input data, such as the depth gradient, the authors find their work can generate effective
clutter occlusion masks. Subsequently, their approach is more resistant to cluttered environments.

Tang, Liu, and Kim propose a pedestrian detection framework which also employs Hough forests, but
employ a novel node split function which reduces loss of discriminative information [50]. Their approach
attains similar accuracy while gaining a performance increase. Similarly, Xiang et al. propose a pedestrian
detection method which employs weak classifiers specified by image fragment templates. Hence, the learning
element of each node is restricted solely to local features. Each weak classifier minimises the global loss
individually by tweaking the sample weights.

Okada propose a discriminative model for part-based object detection [39]. Similar to Gall, Razavi, and
Van Gool and Tejani et al., their approach uses randomised trees aiming to perform probabilistic discrimi-
nation of local features. However, Okada employs a novel training method, by splitting each node based on
scores determined by discrimination power of the regression. Their approach yields improved accuracy.

One-class classification classification, originally proposed by Tax, is a method of machine-learning based
classification focusing solely on positive instances [51]. In principle, the goal is to perform conservative classi-
fication such that potential negative instances are omitted. This technique has been subsequently expanded
on [26].

Felzenszwalb et al. propose a model which incorporates deformable parts (e.g., hands and arms for hu-
mans) [17]. Similar to Tejani et al., their approach uses latent variables, but their method now also matches
deformable models to images, which increases accuracy for non-static objects.

Bourdev and Brandt propose a method for addressing cascading problems (i.e., the loss of information at
each processing stage) [10]. At each stage of the classifier optimisation, the classifier is calibrated such that a
specific detection rate is reached. Their approach more quickly generates accurate detectors which are easier
to train and more compact. Moreover, their architecture has tunable a speed-accuracy trade-off.

3.1.3. Multi-camera Tracking
Khan and Shah have proposed one of the more popular tracking algorithms [25]. In essence, their resolve oc-
clusions and localise moving objects on scene planes (i.e., the floor) with introduced occupancy constraints.
For example, the direction and location of people in an area.

Sato et al. load 3D-CAD floor plan models of buildings and subsequently perform multi-camera tracking
of moving objects [45]. Using position estimation, they can estimate object locations for objects moving
through rooms. They claim their model can realise “an accurate and wide area of object tracking for building
security purposes.”. Their approach is independent of the object detection algorithm.

Sternig et al. use generalised Hough trees as developed by Gall, Razavi, and Van Gool and expand the
method to multi-camera setups [48] . Their input data thus gains an extra dimension, and each input ten-
sor requires more voting. As a result, there are fewer projection errors and the system gains increased tracking
performance.

3.2. Fall detection
In this section, we address human falling behaviour, and how it can be captured through video streams. To
detect falling, we need to know which types of falls there are, and which activities could look like falls, but
should not be detected as such. Noury et al. [38] identified the actions presented in Table 3.1, where a positive
outcome means that fall detector should detect it as a fall, and a negative outcome means that it should not.

There has been a lot of research in the field of fall detection. Mubashir, Shao, and Seed [37] surveyed fall
detection techniques that used either wearable sensors, vision, or ambient methods and further classified
them. We will focus on techniques that use vision, as that is what will be used in our system. These techniques
were then categorised into the following groups:

1. Body shape change and inactivity are are often used together, and generally follow the assumption
that a fall is a quick change of body shape as seen by the camera, followed by a period of inactivity.
One method used quite often is fitting an ellipse around the body. A fall might have occurred when
this ellipse changes from a tall into a wide ellipse in a short period of time. Sitting or lying down would

3.2. Fall detection 7

Table 3.1: Falling activities identified by Noury et al. [38].

Category Name Outcome

Backward fall
(both legs straight
or with knee flexion)

Ending sitting Positive
Ending lying Positive
Ending in lateral position Positive
With recovery Negative

Forward fall

On the knees Positive
With forward arm protection Positive
Ending lying flat Positive
With rotation, ending in the lateral right position Positive
With rotation, ending in the lateral left position Positive
With recovery Negative

Lateral fall to the right
Ending lying flat Positive
With recovery Negative

Lateral fall to the left
Ending lying flat Positive
With recovery Negative

Syncope Vertical slipping against a wall finishing in sitting position Negative

Neutral

To sit on a chair then to stand up (consider the height of the chair) Negative
To lie on the bed then to rise up Negative
Walk a few meters Negative
To bend down, catch something on the floor, then to rise up Negative
To cough or sneeze Negative

be slower changes of this ellipse, whereas tying shoes or picking something up would not be followed
by inactivity. The basis of this technique is quite simple but can be improved using machine learn-
ing [5, 6, 8, 29, 33, 43, 63, 64].

2. Posture techniques try to detect which posture someone is in. For example, a sudden change from
standing to a lying posture would imply a fall. These techniques often use neural networks to clas-
sify the posture and, as such, will require training data. This approach is used in many different
works [14, 24, 32, 34] [53, 55, 62, 63].

3. 3D head change technique is similar to the previously mentioned ones, but tracks the head rather than
the entire body. A 3D ellipse is fitted around a head, which is then used to determine motion and
velocity. This technique often requires multiple (calibrated) cameras. Used in [7] [44] [46] [61].

4. Spatiotemporal techniques use changes in lighting to detect motion, which then can be used to detect
falls. This does not explicitly track the body or head, which makes it different from all other techniques.
This technique is infrequently [18, 40].

Ideally, the fall detection system would meet the following requirements:

1. Work in any lighting condition;
2. Work on any skin colour;
3. Work on people of varying age;
4. Work on people that do not stand up straight (e.g. walking with a stick or walker);
5. Work on all types of falling
6. Does not detect non-falling events as fallin;
7. Does not require special cameras (i.e. depth, or very wide-angle);
8. Does not require multiple cameras per room (to reduce costs);
9. Does not require camera calibration;

10. Can be run on a Pine A64, potentially with multiple cameras;
11. Implementable within the project period.

Of all these techniques, we think either body shape change or posture techniques are best suited to meet
these requirements, as these can work with regular cameras and should work reasonably well regardless of

8 3. Related Work

lighting or skin colour. The other methods often require calibration or specific camera setups, which would
increase costs and set-up time.

We decided to use OpenCV to process video and perform fall detection. OpenCV is a free, open source
computer vision library used in many different projects, including some of our own. There are other com-
puter vision libraries available with similar (or less) capabilities, but we have no experience with those, and
we do not think that OpenCV lacks any functionality that other libraries might have.

3.3. Facial Recognition
In this section we focus on aspects of facial recognition that can be difficult in our situation. There are many
aspects influencing the accuracy of facial recognition, some possibilities we can think of are the angle and
distance of the camera, camera quality, whether the video is in colour or grey-scale, skin colour and age of
individuals. The last two are dependent on the facial recognition algorithm used and the data used to train
that algorithm. The most important factor we have is distance, since a few cameras mounted on walls will
have to oversee entire rooms.

The further away the person is from the camera, the smaller his/her face on the video. This means the soft-
ware has less pixels to work with to determine the person’s identity, resulting in a lower recognition accuracy
[31]. Wheeler, Weiss, and Tu solve this problem by finding individuals in view of a stationary camera and then
use a pan-tilt-zoom (PTZ) camera to zoom in on their faces to get a high resolution image to work with [57].

Lin et al. try to solve the problem without special camera setups, by working purely on the obtained video
material [31]. By processing several consecutive frames, they attempt to create a higher resolution image to
work on. They report better results than interpolation methods and other algorithms, but the accuracy on
180×144px images is still only 50 to 70%, while participants look straight into the camera. This goes to show
how important an initial resolution is to recognition accuracy.

Since cameras are generally mounted high on the wall to have a better overall coverage and elderly are
often looking down, we should also consider what this viewing angle does to the ability to recognise faces.
Zheng and Yao discuss several papers that attempt facial recognition at different angles than the usual frontal
one [65]. They conclude that these approaches still give many false results. They themselves suggest a
new approach to recognise faces in different kinds of angles. They report an improved true positive rate
of 71.87%, but this is over different kinds of rotations and it is unclear what the recognition rate for the
downward looking angle is.

This all combines to show that in a simple, general coverage setup of cameras, accurate facial recogni-
tion is a hard thing to achieve. The distance of the camera to faces to recognise decreases the accuracy. We
did not find any conclusive articles on the viewing angle, but since rotation of the head in general is consid-
ered a negative impact, we are convinced that this also holds for our situation [65]. One approach to solve
possibly this problem is to train an algorithm specifically for this situation, but for that you need a lot of
training data, which we do not have.

3.4. Floor Plan Modelling
In order to determine to the optimal camera placement (Section 3.5) in a building we first need to have a
model of the floors of this building. We will use a floor plan to create this model. For the modelling of the
floor it is essential that we can determine where walls, doors and windows are. Ideally, we want to divide the
floor plan in to different rooms using this information so that we can use this information later in the camera
placement. This process can can be done manually, by loading in a floor plan and indicating where walls,
doors, and windows are through the input from a user, or by an automated system.

3.4.1. Manual

Our proposal for manual modelling the floor plan is as follows: The users can load an existing floor plan into
a web-interface. Then the user can indicate manually on the plan corners of a room to create a model of
where the walls are. The interface will then show these walls. Then the user has a possibility to add doors
and windows to the walls. The user also needs to able to indicate the scale of the image. This model could

3.5. Camera Placement Optimisation 9

Table 3.2: Results of relevant platforms presented by other researchers.

Work Metric Detection Rate [%] Rec. [%]

Ahmed et al. [2].
Without semantic division 89 79
With semantic division 85 82

Macé et al. [35]
Average 85 69
Standard deviation 1.6 1.8

be extended by also modelling the different regions that make up a room. There are various tools for creating
floor plans.12345 The tools that support importing images use a similar approach.

3.4.2. Automatic
Macé et al. describe an system to detect rooms in a variety of architectural floor plan images [35]. It consist of
two steps: extracting the primitives, (i.e. walls) and recursively decomposing the room to get almost convex
regions. Wall detection is done through a combination of classical Hough transforms (line detection) and
image vectorization. Image vectorization is used to divide the images in segments to generate hints about the
lines of the image. These hints are used for the Hough transforms to detect lines. To deal with the architectural
plans, which often contain wide lines for walls, the line detection is applied on the contours of the walls.
Determining rooms consist of determining the walls that make up its outer boundary. Macé et al. uses a
top-down approach that consist of recursively separating rooms by linking gaps between walls.

The accuracy of the system was measured in detection rate and recognition accuracy.“The detection rate
is roughly, the percentage of ground truth entities that are detected by the recognition system.”[42] and the
“Recognition Accuracy indicates, roughly, the percentage of detected entities within the result file that have
their match in the ground-truth entities.” [42] The result are shown in Table 3.2.

Ahmed et al. propose an automated analysis of floor that extracts both structural and semantic data from
the floor plan [2] . The flow of the program is as follows:

1. The input is an image of the floor plan.
2. The text is extracted from the image
3. Thick lines are extracted from the image these form the external walls.
4. Medium lines are extracted from the image, forming the inner walls.
5. Thin lines are extracted from the image, forming the symbols
6. The thick and medium lines are combined to form a wall image
7. Wall detection is performed on the wall image using the method described in [49]
8. Gaps between walls are closed.
9. The outer boundary of the floor plan is detected

10. The boundary image is combined with the walls
11. Symbol detection is applied on the thin lines
12. Using the symbols gaps are closed at door locations
13. Rooms are detected by checking closed of areas.
14. The extracted text is used to label the rooms
15. The rooms are divided based on the labels.

The results of the system are shown in Table 3.2.

3.5. Camera Placement Optimisation
Camera placement can be optimised for different goals. This results in some very different approaches to
solving the problem and because of that, there is no good benchmark to compare different algorithms for

1https://planner.roomsketcher.com/
2https://www.floorplantool.com/
3https://www.floorplanner.com/
4https://www.gliffy.com/examples/floor-plans
5https://www.smartdraw.com/floor-plan/floor-plan-designer.htm

https://ezblueprint.com/

10 3. Related Work

optimal camera placement [28]. The best way to choose then, is to consider what you need and which so-
lutions fits those requirements the best.

When discretising the search space to reduce the problem size and thus the computation time, one arrives
at the underlying NP-hard problem Set Cover, since you need to pick camera locations that cover all (or most)
of the grid points [28]. This shows the infeasibility of achieving the global optimal solution.

3.5.1. Optimisation Approaches
Albahri and Hammad [4] give a pipeline for finding a very educated optimum placement for security cameras.
This placement keeps in mind obstacles in the building and places where you should not place cameras,
as well as priorities for covering certain areas. The drawback of this method is that you need very specific
building information, in this case the Building Information Model (BIM), which is only available for some
modern buildings. Additionally, the entire process is quite computationally heavy and will thus take long.

[12] uses a bee colony algorithm to find an optimal solution. Here, scouting ‘bees’ are send out to random
locations. Each location is evaluated and other locations near good locations are explored more, to find the
optimal locations. The algorithm can be applied the cases where you have a set amount of cameras and want
the optimal coverage, or finding the lowest cost solution given a minimum coverage percentage. The paper
describes a 2D map, but it could easily be adapted to a 3D situation.

Given the underlying NP-hard problem Set Cover (SC), Kritter et al. consider a myriad of proposed solu-
tions to solving SC to solve the Optimal Camera Placement problem [28]. Considering the benchmark per-
formance of these algorithms, they conclude that the solution proposed by Gao et al. [21] is the most efficient
algorithm for solving the SC problem with equal weights for subsets (cameras), which they consider most
analogous to Optimal Camera Placement. In the case where you want to use cameras that all cost the same,
or if the costs of the cameras do not matter, the unicost version of SC is indeed a direct representation of the
problem. Gao et al. show that the unicost versions of SC problems are harder to solve than their differing cost
versions [21]. Their algorithm, which was marked as the best by [28], finds 100% coverage with as few cameras
as possible. The reported results outperform several other good algorithms in the optimality of the solution,
if not always in computation time. This algorithm does not take into account regions with higher priority nor
does it consider solutions with high but not complete coverage, but could possibly be adapted to do either.

Aissaoui et al. describe an algorithm to optimise camera placement in a room to capture certain move-
ments [3]. These movements need to be modelled to be inputted in the algorithm, so this algorithm needs a
lot of preparation. Because of this, this algorithm is less suited for our goal.

Many approaches to target tracking use mobile cameras to find and keep the targets) in view [28]. This
might not be the optimal solution in the scenarios posed by our problem, where you are interested in tracking
(almost) everyone in the building and people (we assume) are generally spread about the building.

3.5.2. General Observations
The goal of the camera placement influences what requirements the placement has [28]. That is, in terms of
resolution or distance from the target. The requirements should address at least the following issues:

1. Obstacles occluding the view [4];
2. Vibrations and heat locations where you should not put cameras, since they lower the camera’s life

expectancy [4];
3. Reflecting surfaces like windows which affect visibility [4];
4. Areas with higher priority [4, 28];
5. Areas where you should not place cameras, like bathrooms [4];
6. The properties of different camera types [4, 12, 28], such as (i) cost, (ii) viewing angle, (iii) pan, tilt and

zoom abilities (PTZ cameras), and (iv) resolution;
7. Runtime constraints of the algorithm.

Kritter et al. describe a general series of actions to take in the process of designing a camera placement
optimisation algorithm [28], which we can follow for our own design:

1. Decide how to model the area/building. 2D or 3D? Do you discretise or keep it continuous? Does it
include objects that could cause occlusion?

2. Choose a sensor representation. How do you model the location and orientation of the camera? How
do you model its field of view? For example, a triangle is easy to work with, but hides a blind spot
directly below the camera, while a circle or cone is less representative of the real situation.

3.6. Research Conclusion 11

3. How do you check what can be seen by which cameras? Simple point-in-triangle and similar techniques
do not take into account occlusion.

4. How do you generate and evaluate different solutions?

3.6. Research Conclusion
In this section, we conclude each of our research topics.

.
.

.
. .

.
.

.
.

.
.

.

.
.

.
. .
.

.

.
.

.

.
.

4
System Design

This chapter details the design of our system, which is comprised of two new modules extending the existing
system.

1. The floor plan editor, which runs on the front-end. This allows administrators to design a floor plan,
place cameras, and optimise camera positions. Caretakers can then see the floor plan and track resident
locations.

2. The client program, which inputs video feeds and performs object detection, person tracking, and fall
detection based on these videos.

The complete system with our contributions can be seen in Figure 4.1. Our contributions are highlighted in
green.

4.1. Object Detection, Tracking, and Fall Detection
Object detection is done in three phases. The first phase consists of separating the foreground from the back-
ground, this process is called background subtraction. This background subtraction returns an image where
black pixels represent background and white pixels represent foreground. The next phase uses morphology
operations to remove small sections and connect larger contiguous sections. The last step of object detection
detects the contours of the remaining foreground sections.

This object detection is performed per frame, resulting in a list of contours every frame. Objects need to
be coupled to one of these contours to track them and get properties such as speed or the location history.
This is done by comparing bounding boxes of known objects to bounding boxes around the newly found
contours. When a bounding box is close in size and location to the last seen bounding box of an object, it is
considered the same object, and it is added to the object’s history.

The fall detection is based on the properties of the tracked object. Each tracked object has a state, either
normal, falling or fallen. Based on the properties of the tracked object, it is determined whether the object
is falling, lying or acting normal. Based on these activities, the state of the object changes. The transition
between states is shown in Figure 4.2.

Once a tracked object has been in the fallen state for a certain time, we can be sure the person has ac-
tually fallen and is not getting up on their own. At this point, a notification is sent to the caretakers, spec-
ifying what room they need to check.

4.2. Floor Plan Management
The floor plan management will be integrated in the existing system provided by the client.

.

. We will add a a component in the front-end and a component in the
in the back-end as can be seen in figure 4.1. In the front-end we extend the existing web-application with
a graphical interface for modelling a floor plan.

The following features will be implemented in order to have the basic ability to model the floorplan:

13

14 4. System Design

Figure 4.1: Conceptual design of our system, with our contributions highlighted
in green. Arrows indicate communication between components.

Figure 4.2: State diagram indicating the states of our tracker object. The states and
transitions model the phyiscal states of how objects fall.

1. adding and removing walls,
2. adding and removing doors,
3. adding and removing cameras,
4. adding and removing wall obstructions,
5. labelling rooms,
6. tagging rooms as ‘forbidden’ so that camera’s will not be placed here, and
7. saving and Loading floor plans from the database.

The graphical interface will be added to a new page in the web-application.
. The editor will contain various tools that each will handle a specific part of the floor

plan functionality. For example we will have separate tools for adding walls and adding doors.
.

. We will follow the Model-View-Control principle in that we split the view
from the model. All the tools will be implemented using different implementation of a module interface that
contains methods for handling user input. These modules will then be able to be switched out by selecting
the corresponding tool to this module on the toolbar.

. .

5
System Implementation

5.1. Implementation Overview
In this chapter, we will elaborate on the implementation of the system.

Object tracking and fall detection are implemented in a standalone module for the .
For many of the image processing actions, the open-source library OpenCV1 is used. The class diagram for
this module can be found in Figure 5.1.

The floor plan editor and the optimisation of camera placement are implemented as a sep-
arate tab in the existing dashboard.

5.2. Object Detection
Object detection consists of three separate modules, which act upon the result of the previous module.
These three modules are background subtraction, morphology, and object tracking. Before these modules
are applied, there is a pre-processing step. The implementation of all of these models are explained in
the following subsections.

5.2.1. Pre-processing
The raw footage from the camera is often quite noisy. There is noise from the camera sensor itself, but also
from temporal changes such as shaking of the camera. First, the temporal noise is reduced by taking the
average of multiple frames. To this end, the stream has a buffer holding a set amount of frames. Next, other
noise is removed by applying a Gaussian blur filter over the whole frame.

5.2.2. Background subtraction
Background subtraction is used to separate the foreground from the background.

.

.
.

.

.
.

1.
2.
3.
4.

1https://opencv.org/

15

https://opencv.org/

16 5. System Implementation

Figure 5.1: The class diagram for the video processing module

5.
6.

.
.

.
.

.
.

. .
.

.

.
.

5.3. Object Tracking and Fall Detection 17

.

.
.

.
.

.
.

.

5.2.3. Morphology

The image produced by the background subtraction still contains much noise. Small changes in light cre-
ate small spots of pixels falsely detected as foreground and moving objects are not completely detected
if they locally look too much like the background. To get rid of this noise, some morphology is applied.
The process of closing attaches small objects close to each other, to properly detect whole objects that are
partly seen as background. In the next step, opening removes small objects in the image. At this point, we
are left with mostly just the moving object, but it is often still in several parts. To connect those, another
round of closing is applied.

5.3. Object Tracking and Fall Detection

The process of tracking and detecting has a lot of tunable parameters that together determine how suc-
cessful the system is. At the moment, these are tweaked manually. We provide a complete evaluation of
our system in Chapter 7.

After the object detection, the result is often one or multiple large blobs of objects on the foreground,
assuming there is an object to track. However, this is just for a single frame, and does not tell us anything about
the movement or history of an object. This is where object tracking comes in.

. .
.
.

.
. .

.

.
.

.

.

.
. .

.

. .

. .

5.4. Floor Plan Management

The floor plan editor supporting the camera optimisation was implemented in JavaScript and communicates
with the database. It was integrated in the existing system provided by the product

client. The UML for the front-end is provided in Figure 5.2.

18 5. System Implementation

Figure 5.2: The UML class diagram of the floor plan module.

The floor plan contains one Editor instance. The editor contains a list of modules, and a list of floors.
We use a decorator pattern to switch the functionality of the current editor by changing the current selected
module. The editor subscribes to events such as keyboard press and mouse press. These events are then

5.5. Camera Coverage Optimisation 19

propagated to the current selected module, the toolbar and the floor selector. The modules each have their
own functionality that interacts with the floors of the editor.

.
The toolbar handles the interaction of changing

out and displaying the selected module and the Floor Selector handles the traversal of different floors.
. The model contains information about location of walls, doors, and

cameras. The locations are converted to screen coordinates from an offset and scale stored in the editor, this
way the canvas can be moved and scaled. The editor automatically saves once the floor plan is edited.

.
. Once the page is loaded or the user goes to the next floor

then another request is made to load the latest version of the saved floor plan.

The floor plan is modelled using Multiple Floors. A floor consists of walls, and rooms. A room consists
of a polygon, an optional room label, and a Boolean that indicates if this area is ‘forbidden’ (for indicating
that no camera’s should be placed in this area). The polygon is a set of walls that make the outer boundary
of the polygon. A wall consists of two points that indicate the end points of the wall and a list of ‘features’.
A feature is an object on a wall like a door, camera or an obstruction. The obstruction is to indicate area’s
where camera’s cant be placed. In the model walls are never intersecting. When a new wall is placed it will
automatically split the walls into smaller walls that are non-intersecting. The splitting of the walls is done
by finding all the intersection points and then sorting the points in order. Then between all the consecutive
points a new wall is created. The existing walls that are intersected are split into two walls at the point of
existing sections. The features of this wall like doors and cameras will be copied to the one of the new walls.

When a wall is removed it will be checked if two walls can be merged into one wall. This will happen when
two walls: (i) are parallel, (ii) have a common end point, and (iii) no other wall is connected at the common
end point. Rooms are automatically detected when an user clicks on a room that was not detected yet. When
a room is clicked, the closest wall to the click will be found. Then to detect the room it will traverse from
the closest wall connected walls until it reaches the starting wall again. The next wall in the traversal will be
determined by the smallest angle between the current wall and the connected walls in opposite direction of
the traversal. For example, when the walls are traversed in a clockwise order, the next wall be the wall with
the smallest anti-clockwise angle between this wall and the current wall.

5.5. Camera Coverage Optimisation
In this section, we present our approach to optimising the localisation and direction of the virtual cameras
such that the viewing coverage is high and the total number of cameras is low. We employ a domain space
genetic algorithm which iteratively discovers new placement configurations with better fitness across gen-
erations. Our domain space is dynamically generated by the layout of a floor (i.e., the position and lengths
of the walls). The genetic algorithm tweaks only camera objects, including removing and adding cameras
where necessary to improve fitness. Furthermore, our implementation features tuned parameters for quick
convergence to an acceptable setting, as we have discovered that global maxima, while differing greatly in
parameter value, differ only little in fitness. We further describe our implementation and trade-offs below.
The performance of our genetic algorithm is analysed in Section 7.3.

5.5.1. Genetic Algorithm Fitness
In conversation, we have discovered our client desires a suitable trade-off between two optimisation goals:
(i) a minimal number of cameras, and (ii) a high coverage of the viewing area of the cameras. In turn, our
input domain is solely the placement and orientation of the cameras. Upon further investigation, the client
notes that the second goal may have a constrained lower bound for acceptable configurations. For example,
acceptable solutions must all have 75% viewing coverage. To this end, our fitness function has discontinuous
range, resulting in a two-phase optimisation process: (i) attaining a view coverage of 75%, and (ii) reducing
the number of cameras, while incrementally increasing view coverage.

Our fitness function is presented in Algorithm 5.1.
. Our fitness function solely

optimises for camera coverage so long as the coverage is less than 75% of the total floor area. Above 75%, the
fitness function gains a bonus for efficiency. In this case, the coverage over the camera utilisation in terms
of the maximal number of cameras. Hence, there is a point of discontinuity at a fitness value of 0.75. In
practice, the algorithm quickly attains a coverage of 75% within only a few generations, and then does not

20 5. System Implementation

Algorithm 5.1. Computes the fitness of a given individual.

procedure FITNESS(i)

Figure 5.3: Four stages in grid generation: from a grid to a finer grid.
Red dots indicate newly generated points in the grid stage. The origin
in this Cartesian system is the top-left corner and the y-axis is inverted.

,

.

trade to lower coverage in favour of fewer cameras. The weighing of the efficiency bonus ensures this does
not happen unless a significant advantage is found, which is unlikely given our optimisation strategy of quick
convergence in favour of attaining global maxima.

5.5.2. Determining the View Coverage
The fitness function depends on the determination of the view coverage of a given floor. In general, we have
identified two approaches, one exact algorithm and one approximation algorithm. Given our development
constraints (in particular, time), and our use case, our implementation employs the approximation algorithm,
which is presented in Algorithm 5.2 and 5.3. Our algorithm calculates the coverage by systematically selecting
points on a grid overlaying the floor plan. For each point, we subsequently perform a ray trace to each of
the cameras to determine its visibility. In particular, whether or not it is occluded by other walls. Then, we
approximate the coverage by the number of visible points divided by the total number of points.

One challenge of this approach is determining the grid scale. Should we compute the coverage with 100
units between each of the points, or 1? We tackle this issue by introducing arbitrary grid precision. Our algo-
rithm automatically increases grid density such that the approximation error is less than one percent. We im-
plement this mechanism by generating a more dense grid from any arbitrary grid.

.
. . We can repeat this process

until we reach the desired precision. An example of three iterations of this process can be found in Figure 5.3.
Given this process of generating an arbitrarily dense grid, we can achieve an arbitrary precise approxima-

tion by continuously increasing the grid density and refining the ratio between visible and occluded points.
This is the essence of Algorithm 5.2. We abort the process when the most recent phase has not altered the
approximate view coverage more than one percent.

5.5.3. Problem-space Genetic Algorithm
With the fitness function presented in Algorithm 5.1, we now describe our approach for view coverage optimi-
sation. Given that a floor plan may have any layout in number and lengths of walls, as well as fixed constraints
such as private rooms and glass walls where cameras may not be placed, calculating the optimal camera po-
sitioning is nontrivial. Hence, our approach employs a genetic algorithm which iteratively improves a subset
of possible configurations (the population consisting of individuals). Genetic algorithms typically represent
individuals as a fixed-length encoded bit strings in order to perform mutations and crossovers. One draw-
back of this approach is that it can not cleanly represent individuals with unbounded encoding length. Our

Algorithm 5.2. Approximates the view coverage of a given individual with < 1% accuracy.

procedure CALCULATECOVERAGE(i)

5.6. Feedback from Software Improvement Group 21

Algorithm 5.3. Calculates the points for the grid for a given outer polygon, depth, and zero-depth grid size.

procedure GENERATEGRID(o,d ,δ)

Table 5.1: Overview of hyperparameters of our genetic algorithm.

problem does indicate such individuals can exist, as there may theoretically be infinitely many cameras for
any given floor. Variable-length representations do exist, but implementation is more strenuous, employing
for example tree-like data structures (cf. [58]). More issues arise as we consider the encoding. To keep closely
related individuals grouped, genetic algorithms can use Gray encoding, but this approach does not work
with variable-length chromosomes. Regardless, typical genetic algorithms require encoding and decoding
of individuals from the problem space to gene space.

For these reasons, and to save valuable programming time, we instead use a problem-space genetic algo-
rithm. Our algorithm does not encode individuals in any particular form for mutation, but instead mutates
individuals in-place in the problem space. In particular, our implementation supports four mutations:

1.
2.
3.
4.

.

. Hence, our mutations covers the entire problem space, a necessity for a well-
functioning genetic algorithm.

Details on the hyperparameters for our implementation can be found in Table 5.1. Overall, the compu-
tation of each generation follows a four-step procedure:

1. Perform selection copy, effectively multiplying individuals with high fitness.
2. Perform mutations on each individual.
3. Calculate the fitness for each individual.
4. Sort the population from highest fitness to lowest.

5.6. Feedback from Software Improvement Group
We submitted our code to Software Improvement Group (SIG) for code review and evaluation during the
sixth week of our project. The verbatim feedback from SIG can be found in Appendix C. SIG evaluated our
code based on their quality model, which results in a score of 4.0/5.0. This indicates that the maintainability
of the project is comparable to the industrial average. The main points of improvements were unit inter-
facing and unit complexity.

Considering unit interfacing, we received the feedback that some methods have a high number of pa-
rameters. This may indicate a lack of abstraction and could cause unclarity when referring to these methods.
Parameters that are related to each other can be grouped together into one parameter object. For example
when you have a location on a plane that can be passed to an method, you could introduce an object which
contains the x and y coordinates instead of two separate parameters for both the x and y coordinates. We
identified several cases in our code base where it was appropriate to replace function parameters with com-
pound objects. For example, we found instances where we already had objects that contained both param-
eter types in conjunction. Instead of passing a compound object, we passed both parameters individually.

22 5. System Implementation

Vector objects are a prime example. The x-coordinate and y-coordinate of the vector were often passed to
a function instead of the vector object itself.

For unit complexity we received the feedback that some methods had too much embedded functionality;
these methods should be split into smaller functions. We identified that most of these functions were func-
tions that handled user input, such as key presses and mouse clicks. Depending on the event and the state
of the editor, a lot of computation needs to occur. We split those method into smaller methods that each
contain a smaller portion of the functionality of the original method.

The last remark was that no (unit-)tests were found. Although some tests were present, there was no
automated script that executed the test code, which could explain why their quality model did not detect it.
The primary reason why we did not have many automatic tests was that our code was made for in-browser
execution. We improved this through use of a library that mocks the browser and performs automated testing.
We also included a script that automatically runs all unit tests.

Our improved code was submitted in the ninth week of our project. The feedback we received on the
code submitted in week nine was that the feedback from week six was implemented as suggested and that
the maintainability of our code base improved as a result of this.

6
Ethical Implications

A major ethical concern about this application is the privacy of residents. Residents are filmed throughout
the day and often also in personal spaces. These concerns are addressed at multiple points in the application.
Firstly, the placement of cameras. The administrators that build the digital representation of the floor plan
can specify rooms where no cameras should be placed, such as bathrooms. Secondly, only caretakers and
administrators can see the video feed from the cameras. It is appropriate for them to see the video feeds,
since they need it to be able to provide proper care for the residents. Consider the event that the system
detects that someone has fallen. It can be argued that it is shameful to show elderly in such a compromising
situation, yet it is essential for the ability of the caretakers to help them. A caretaker can open the feed on
which the fall was detected to see how serious the injury is likely to be. Additionally, only caretakers can see
this, who will already have to see the see the situation in real life in order to help.

Care facilities using our system should make their own privacy agreements with residents or their legal
representatives, staff and visitors.

Another ethical concern is the effects of failures of the system. Our system is not perfect. If the sys-
tem reports a fall while there is none, not much harm is done. A caretaker can open the video feed of the
camera that reported the fall and conclude that there is nothing wrong. This costs a few minutes at most.
If the system would throw many false positives, the danger exists that caretakers will not take the incident
alarms as seriously as they should. The only real way to prevent this is by keeping the true positive / false
positive ratio as good as possible.

If a fall is not detected, implications could be a lot worse. This is why care facilities should not trust solely
on our system, but also take other measures. Other forms of detection should be in place, such as worn help
buttons, sensors on floors and caretakers checking up on people. This is the responsibility of the care facility.

23

7
Evaluation

7.1. Fall Detection
In order to be able to fairly evaluate the performance of the fall detection functionality, a section of 20% of the
video database was set aside for verification. These videos have not been used when tweaking parameters for
fall detection performance, and so simulate new data for the system.

We considered two options for evaluating the accuracy of the system. Firstly, we could look at the states
the system reported (see section 4.1) and compare those to the states of the ground truth. This would provide
overlap percentages. Secondly, we could look at when the system reports a fall (in the form of a notification)
and compare that to the ground truth. This would provide a count of true positives, false negatives and false
positives. We decided to opt for the second version, since this metric more closely resembles the goal of the
system. The goal is to accurately tell when someone falls, not the state each person is in at any point.

The product client requested that the system looks if a person is getting up by themselves before noti-
fying caretakers. To this end, we determined a specific period in which we want the notification to happen.
This period starts a set amount of seconds from the end of the fall and lasts for about a second. Any no-
tifications send before or after this period are regarded as false positives. For evaluating purposes, we set
the start of the period to 20 frames after the end of the fall. This is rather short, but our testing videos are
too short to allow for a longer period.

7.1.1. Results
The results for the training set, the set that the system was trained on, are as follows: 71.1% of falls recog-
nised, being 54 out of 76 falls. 28.9% of falls go undetected. On average, the system reports 0.6 false pos-
itives per minute on this data set.

The results for the test set are: 33.3% of falls recognised, being 6 out of 18 falls. 66.7% of falls go undetected.
On average, the system reports 0.5 false positives per minute on this data set.

7.1.2. Limitations of the Data Set
Unfortunately, we had to work with a rather small data set, published by Charfi et al. [11], because the client
did not have any data for us to work with. This data set is somewhat biased and is not the best fitting for
our use case. The most obvious limitation is that the videos only contain adults that imitate elderly, not
elderly themselves. Next to that, they are mostly white and male and do not use tools such as walking sticks
or walkers. Also absent are other moving objects, such as pets or television images. There is also an over-
representation of falls versus non falls in the data set, making the result metric a bit skewed.

Each video also only has one person in view. This might be realistic for private rooms most of the time,
but it is uncertain how the system will react to two people in the video. Additionally, almost all videos start
with the person in the video. Because of this, the first move can give off false positives because to the sys-
tem, the person seems to suddenly appear from the background. This is very unlikely to happen in a real
situation that this system is meant for. Lastly, almost all videos are fairly short and stop shortly after the
fall. This is unrealistic for our use case.

25

26 7. Evaluation

Figure 7.1: The user cheat sheet. Each icon represents a tool in the tool bar.

All in all, this data set is reasonable for giving an idea of the functionality of the system, but not very suited
for definitive results. Since this set was used for optimising variables, if a better data set was to be created,
this optimising has to be performed again.

7.1.3. Implications of results
The results our system achieves are not very reassuring. Nevertheless, it is still a good addition to existing de-
tection methods, since it might catch incidents that existing methods do not. However, our system is clearly
not perfect and should thus always be used in combination with other detection methods and caretakers
checking up on residents.

Some things to note about these results is that false positives in empty rooms are very unlikely. A caretaker
will thus almost never be send to check up on empty rooms, so any trips undertaken due to this system will
almost always be useful in some way, since they will still check up on residents.

7.2. Dashboard User Test
To evaluate the usability of the floor plan editor we asked someone who was not familiar with the system
to perform some tasks. We provided the users with a cheat sheet with descriptions of the functionality of
all the available tools as seen in figure 7.1.

The user was then asked to perform the following tasks:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

7.3. Floor Coverage Optimisation 27

14.

Once the task were completed the following questions about the system were asked:

1. Which task was the most difficult one and why?
2. Which task was the least difficult one and why?
3. Was the interface intuitive to use?
4. What would you want to see explained more explicitly?
5. What could be improved?
6. Additional remarks.

The results from the user test showed that it can be difficult at times to use the editor. Especially draw-
ing of the walls was difficult. It took multiple tries to draw the wall on the correct position, since it was not
clear to the user that you need to click on the two endpoints of the wall to create a wall instead of dragging
the mouse. Additionally, the user had trouble properly connecting walls, resulting in gaps left in the rooms.
Leaving those gaps resulted in that no room could be found, at which point the user didn’t notice that this
was because of the gaps in the walls. The task of uploading an floor plan image and then copying this floor
plan was the most difficult task because the floor plan contained a lot of small walls that needed to be added.
Additionally, it was not clear that obstruction should have been placed on walls, which resulted in the user
trying to draw obstructions in invalid locations. We used this feedback to update our system and improve
the user friendliness of the system.

7.3. Floor Coverage Optimisation
In this section, we present our performance testing experiments for the coverage optimisation algorithm
discussed in Section 5.5. We run two experiment sets: (i) overall performance experiments, composed of
ten optimisation runs while measuring total run-time, mutations, and generations, and (ii) in-depth perfor-
mance profiling experiments, which grants in-depth performance analysis and bottleneck identification. All
experiments are performed on Chrome version 75.0.3770.100 64-bit running on a HP ZBook Studio 15 G3.
This machine has 8GB RAM, an Intel Core i7-6700HQ clocking at 2.60GHz, and runs Microsoft Windows 10
Home. We now discuss each experiment set individually.

7.3.1. Performance Benchmarking
To test the overall performance of our system, we run ten optimisation runs on a predefined room (See Fig-
ure 7.2) until the genetic algorithm yields a coverage of 75 percent with sixteen cameras. Because our fitness
is dependent solely on the view coverage and the number of cameras (see Algorithm 5.1), the duration of
such an optimisation is indicative of how quickly our algorithm can achieve a certain fitness (i.e., the time-to-
fitness).

Figure 7.3 shows two key moments of an experiment: achieving 75 percent coverage, and achieving the
experiment goal. Our algorithm features a fitness function which causes two-phase optimisation (see Sec-
tion 5.5.1). Hence, our algorithm first rapidly mutates to a configuration with high coverage, high camera
count, but low camera efficiency. Subsequently, it iteratively mutates to remove cameras by optimising for
camera efficiency, while maintaining high coverage.

Our experiment results are presented in Table 7.1. On average, optimisation takes just under a minute
and a half, although the room may be optimised in a little as 33 seconds, or may take just under two and
half minutes. Considering that optimisation needs to occur just once for per building during the installation
phase of the product, an optimisation time in the order of minutes are clearly an acceptable result. Hence,
this high variance is not a limiting factor.

The algorithm considers around two generations of populations per second, which is relatively high. One
reason for this is the low number of individuals in our population, just 50. Indeed, when increasing the
population size to 150, the generation frequency drops below 1Hz. Our low population size may also be a hint
to the cause of the high run-time variance. Our algorithm hyperparameters are tuned for quick-convergence
in favour of avoiding local maxima (see Section 5.5). Hence, our algorithm may get stuck in local maxima for
extended periods, which causes a high run-time (e.g., in experiment 2).

7.3.2. Profiling and Performance Analysis
We now turn to the internal performance of our system. To measure component performance, our genetic
algorithm includes a high-resolution hierarchical profiler. We add profiler hooks to key processing steps of

28 7. Evaluation

Figure 7.2: The floor plan used for view coverage optimisation experiments. The
camera configuration has 75 percent coverage and 16 cameras in use. The editor
pane also shows key information: the total optimisation run-time, the generation,
the amount of cameras, the view coverage, and the total amount of mutations.

our algorithm (e.g., computing the outermost bounding box). Subsequently, the profiler captures the exe-
cution of these processing steps and composes a performance tree similar to a call tree. In particular, the
profiler captures total execution time and number of runs, which we use to compute the average execu-
tion time of each processing step.

We run our algorithm for 600 generations on an empty instance of the floor presented in Figure 7.2. The
results are presented in Table 7.2. Note that the number of executions is indicative of the variance; given
that the true average run-time is distributed normally, a higher number of runs decreases the variance of
the measured samples. Note also that the sort fragment executes only once and constitutes the initiali-
sation phase of our algorithm.

Our results indicate that ray tracing is the primary computational bottleneck for our genetic algorithm.
Throughout 600 generations the rayTrace fragment has been executed over twelve million times, totalling a
run-time of 242 seconds of our 284-second-long optimisation run. This constitutes 85.1% of the computa-
tion of a single generation. Indeed, ray tracing is not implemented efficiently in code. For each generation
and individual, the algorithm ray traces from each point to each camera. Moreover, ray tracing to a given
camera consists of iterating through each wall, although the intersection operation is constant time. For-
mally, given c cameras, p points in the outer bounding box, i individuals, w walls, and g generations, and
n = |input| = c +p + i +w + g , the algorithm has O(n5) run-time at minimum, solely considering ray tracing.
We address how to address this issue in Section 10.

7.3. Floor Coverage Optimisation 29

Figure 7.3: Two stages of performance optimisation: from 27 cameras to 16.

Table 7.1: Performance results for optimising coverage for a one-room floor until
the genetic algorithm yielded a coverage of 75 percent with sixteen cameras. For
each experiment, we capture total run-time, number of mutations, and number
of generations. We compute the relevant frequencies from the latter two in com-
bination with the run-time.

Experiment Time [s] Generations Mutations
Total Freq. [Hz] Total Freq. [Hz]

1 64.7 118 1.82 11527 178.16
2 154.6 328 2.12 32179 208.14
3 65.3 162 2.48 16035 245.56
4 49.7 117 2.35 11493 231.24
5 33.5 82 2.44 8060 240.60
6 55.7 132 2.37 12964 232.75
7 74.2 167 2.25 16375 220.68
8 112.5 254 2.26 24983 222.08
9 144.9 327 2.26 32192 222.16
10 100.7 171 1.70 17791 176.67

Average 86.7 187 2.21 18359 217.80

30 7. Evaluation

Table 7.2: Performance profiling data of our genetic algorithm. Each row indicates
a named core processing step (e.g., a call to a function) where the name is the ital-
icised suffix. The computation is described in a tree structure similar to a call hier-
archy, although processing steps need not represent an individual function calls.
Note that the sum of the processing time of each each child may not constitute the
total processing time of the parent (i.e., only key processing steps are captured).
Each row has zero or more percentages as a prefix, indicating the relative runtime
in comparison to the column parent’s run-time. For example, rayTrace takes
up 85.2% of the run-time of doGeneration. .The last two columns indicate the
number of executions of the row’s code fragment, and the average runtime of one
execution.

Run-time vis-a-vis parent step [%] Executions Average
T1 T2 T3 T4 T5 T6 T7 [ms]

sort 1 328.3
99.6 fitness 50 327.0
99.5 99.9 coverage 50 326.8

0.7 0.7 0.7 boundingBox 50 2.1
3.7 3.7 3.7 outerPolygon 50 12.2

93.8 94.2 94.2 doGrid 50 308.0
1.8 1.8 1.8 1.9 generateGrid 100 5.8

13.6 13.7 13.7 14.5 filter 100 44.7
78.0 78.3 78.4 83.1 addToGrid 100 256.1
63.3 63.6 63.6 67.5 81.2 rayTrace 20500 207.9
mainLoop 600 284770.8
99.9 doGeneration 600 284488.0

0.2 0.2 copy 600 525.7
0.2 0.2 mutate 600 683.7

97.5 97.6 sort 600 277553.9
97.4 97.5 99.9 fitness 29400 277372.6
97.3 97.4 99.9 99.9 coverage 29400 277185.2

0.0 0.0 0.0 0.0 0.0 boundingBox 29400 74.2
0.3 0.3 0.3 0.3 0.3 outerPolygon 29400 965.1

96.9 97.0 99.4 99.5 99.6 doGrid 29400 275945.8
0.2 0.2 0.2 0.2 0.2 0.2 generateGrid 58800 662.2
4.4 4.4 4.5 4.5 4.5 4.5 filter 58800 12480.4

92.1 92.2 94.5 94.6 94.6 95.1 addToGrid 58800 262338.0
85.1 85.2 87.3 87.3 87.4 87.8 92.4 rayTrace 12054000 242281.7

0.0 0.0 boundingBox 600 1.7
0.0 0.0 outerPolygon 600 24.2
2.0 2.0 doGrid 600 5684.6
0.0 0.0 0.2 generateGrid 1200 13.5
0.1 0.1 4.3 filter 1200 246.7
1.9 1.9 95.3 addToGrid 1200 5415.5
1.8 1.8 88.1 92.5 rayTrace 246000 5007.0
0.1 consoleMessage 600 152.4
0.0 postMessage 600 114.7

8
Process

In this chapter, we describe various elements of our process, acknowledge challenges we came across and
reflect on the whole process.

8.1. Overview
We divided the design and implementation of the system into three distinct phases. First, we dedicated two
weeks of research into relevant research, the results of which can be read in Chapter 3. In the second phase,
we designed an implemented our system over a period of five weeks. During these weeks, we used SCRUM
methodology to guide our process, with sprint length of one week. We chose this methodology because we
were already familiar with it and it allows to dynamically prioritise functionality over the duration of the
development, in collaboration with the client. This was especially useful in this project, since there was a
lot of functionality desired for, which we would not be able to all do. At the start of this period, a planned
road map was created, which can be seen in figure 8.1. Finally, there were two weeks of integration, eval-
uation and finishing this report.

The team had a very clear division of labour. Since the project has two distinct parts, the group was split
in two, each part of the team being responsible for a different part of the product. This does not mean the
parts of the team worked separately. Problems encountered were often discussed with members from the
other part as well and everyone did keep an eye at the others’ progress and merge requests.

The team has several ways of communicating, for different purposes. The team organised multiple meet-
ings each week to discuss problems and work together. Small issues encountered outside of these meetings
were discussed over WhatsApp1. There were weekly meetings with the client, at the end of the sprint. This
is where progress and new priorities were discussed and questions for the client were answered. Meeting
planning and some small questions where discussed over WhatsApp or phone calls. Communication with
the coach mostly happened over Mattermost2. Additionally, there were a few in person meetings to discuss
the progress and process and to get questions answered.

8.2. Challenges
There were a few challenges we encountered during the course of the project. Firstly, at the start of the project,
it became clear that the project client had a large amount of desired functionality and high, sometimes unre-
alistic expectations for the duration and complexity of this project. In addition to this, the client was unhappy
with certain features missing. This was hard for us to do anything about, since the client was present at all
sprint plannings and other functionality always had more priority. Working on those prioritised features, we
did not find the time to also implement those less prioritised features.

Another challenge was the lack of available data to work with. Some of the implications of this are dis-
cussed in section 7.1. This also meant that certain learning based solutions had to be ruled out for the single
fact that there is not enough data to train on.

1https://www.whatsapp.com/
2https://mattermost.com/

31

https://www.whatsapp.com/
https://mattermost.com/

32 8. Process

Figure 8.1: The project road map. Time runs from left to right. Each horizontal
section indicates a key component in our project. Blue bars indicate when the
component is under active development.

Finally, the fact that we are unfamiliar with certain factors of this development, such as GUI design or
working with , resulted in that these parts needed some additional attention. Our choice of in
combination with OpenCV and and our little experience with resulted in us not
being able to setup an automated testing framework. However this is not a large drawback since there is
a manual performance test written that can be used to evaluate the system and image processing already
not ideal is for unit testing.

8.3. Reflection
The focus of the project was split between the management of the floor plan and fall detection. The most
logical way to deal with this was to split the team into two. As a result of this, both projects received less
attention than we wished and the team felt a bit disjunct at times. Should we have had only one of the projects
to focus on, we would have been able to deliver a more complete version of that project and reached more
of a feeling of finishing something at the end.

In addition to this, having less time for the projects also meant we needed to focus more on the function-
ality and had less time for user testing. This resulted in that user testing was done in a later stage of the project
and therefore we did not have enough time to implement the user feedback to improve the system.

In addition to these functionality based problems, we neglected to work on the report at appropriate
times during the project. This resulted in that some sections might be less complete, since we most likely
forgot some small elements that we came across during the project.

On a positive note, the team spirit was high throughout the project and collaboration came easy. Many
issues were solved by discussing them with the entire team.

9
Conclusion

In this project, we were tasked with creating a program to detect when people have fallen, specifically the
elderly. Elderly people are more prone to fall, and have a greater chance of injury when they do. It is key
to detect these falls on time to prevent further injury or distress, as they might need immediate help. This
project uses cameras to detect falls rather than worn sensors or buttons, as elderly people might forget how
they work or take them off in a state of confusion. Since we are using cameras, we also need a floor plan to
know where to place the cameras and in which room someone has fallen. Ideally, camera placement into the
floor plan would be automatic to make it easier and faster to use, while also guaranteeing a certain coverage.

We decided to detect falls using the most common and, to us, most intuitive method that we found:

.
.

.
. .

.
. Using this algorithm, we can detect 33% of the falls, with a false-positive rate

of 0.5 notifications per minute. This can be further improved by using machine learning to detect falls, or
combining this fall detection with other sensors such as pressure-detecting floor mats.

To place cameras, we created an entire floor plan editor. This editor allows an administrator to

. Once the general floor plan has been made, the administrator can set certain rooms where cameras
should not be placed, such as bathrooms. The last step is to start the automatic camera placement. This
automatic camera placement is done by a genetic algorithm. This genetic algorithm starts with an initial
population where each individual has completely random placement of cameras. The individuals that give
the best coverage are selected and will be the basis for the next population. Every individual of the popula-
tion receives mutations such as adding, moving, or removing a camera, to try and get better coverage. This
process is repeated for optimal coverage until coverage is 75%, after which the algorithm tries to achieve 75%
coverage with the least amount of cameras.

33

10
Future Work

The solution we created in this project is a good start on solving two important aspects of the larger problem.
However, both are not at their optimal state yet. As shown in chapter 7, fall detection accuracy can and
should be much improved in the future, and the floor plan editor can and should be made more user friendly.
Additionally, there are many Should Have and Could Have requirements (see appendix B) that could not be
included. Unfortunately, due to time constraints, this will not be able to be included in this project, but many
issues should receive attention in the future.

Fall detection could see big improvements by first creating or finding a more representative and larger
annotated data set to train on and by applying a genetic algorithm or other automated optimisation method
to tweak parameters. The current optimisation is based on human trial and error and computers sometimes
find optimal solutions a human would not think of.

The floor plan could see improvements in the user friendliness of the system. The snapping could be
improved to a larger distance and could be modified to let the user to set their snapping preference. As
described in section 7.3 the performance of the ray tracing could be improved to improve the performance of
the optimal camera placement. This could be done by using memoization and by only ray tracing to points
in the same room as cameras. Some additional features could be implemented such as

. .
The larger system could be improved at several points. More work should be put into making facial recog-

nition work in this setting, so fall notifications can be person specific and more false positives can be elim-
inated because they are from non human objects. This would also allow for tracking residents and staff in
the building and show people’s locations on the floor plan. The system could combine the results of this
camera based fall detection with fall detection mats.

35

Bibliography

[1] T. Al-Aama. “Falls in the elderly”. In: Canadian Family Physician 57.7 (2011), pp. 771–776.

[2] S. Ahmed et al. “Automatic room detection and room labeling from architectural floor plans”. In: Proceedings - 10th
IAPR International Workshop on Document Analysis Systems, DAS 2012. IEEE, 2012, pp. 339–343.

[3] A. Aissaoui et al. “Designing a camera placement assistance system for human motion capture based on a guided
genetic algorithm”. In: Virtual Reality 22.1 (2018), pp. 13–23.

[4] A. H. Albahri and A. Hammad. “Simulation-Based Optimization of Surveillance Camera Types, Number, and Place-
ment in Buildings Using BIM”. In: Journal of Computing in Civil Engineering 31.6 (2017), p. 04017055.

[5] D. Anderson et al. “Linguistic summarization of video for fall detection using voxel person and fuzzy logic”. In:
Computer Vision and Image Understanding 113.1 (2009), pp. 80–89.

[6] D. Anderson et al. “Recognizing Falls from Silhouettes”. In: 2006 International Conference of the IEEE Engineering
in Medicine and Biology Society. 2006, pp. 6388–6391.

[7] E. Auvinet et al. “Fall Detection With Multiple Cameras: An Occlusion-Resistant Method Based on 3-D Silhouette
Vertical Distribution”. In: IEEE Transactions on Information Technology in Biomedicine 15.2 (2011), pp. 290–300.

[8] M. Belshaw et al. “Towards a Single Sensor Passive Solution for Automated Fall Detection”. In: Conference proceed-
ings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering
in Medicine and Biology Society. Conference 2011 (2011), pp. 1773–6.

[9] M. B. Blaschko and C. H. Lampert. “Learning to Localize Objects with Structured Output Regression”. en. In: Com-
puter Vision – ECCV 2008. Ed. by D. Forsyth, P. Torr, and A. Zisserman. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008, pp. 2–15.

[10] L. Bourdev and J. Brandt. “Robust object detection via soft cascade”. In: 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05). Vol. 2. 2005, 236–243 vol. 2.

[11] I. Charfi et al. “Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector
machine and Adaboost-based classification”. en. In: Journal of Electronic Imaging 22.4 (2013), p. 17.

[12] D. Chrysostomou and A. Gasteratos. “Optimum multi-camera arrangement using a bee colony algorithm”. In: IST
2012 - 2012 IEEE International Conference on Imaging Systems and Techniques, Proceedings. IEEE, 2012, pp. 387–
392.

[13] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”. en. In: 2005 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. San Diego, CA, USA: IEEE, 2005,
pp. 886–893.

[14] G. Diraco, A. Leone, and P. Siciliano. “An active vision system for fall detection and posture recognition in elderly
healthcare”. In: Proceedings of the Conference on Design, Automation and Test in Europe. EDAA, 2013, pp. 1536–
1541.

[15] P. Dollar, S. Belongie, and P. Perona. “The Fastest Pedestrian Detector in the West”. en. In: Procedings of the British
Machine Vision Conference 2010. Aberystwyth: British Machine Vision Association, 2010, pp. 68.1–68.11.

[16] P. Dollar et al. “Pedestrian Detection: A Benchmark”. en. In: (), p. 8.

[17] P. F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based Models”. en. In: (), p. 20.

[18] H. Foroughi, B. S. Aski, and H. Pourreza. “Intelligent video surveillance for monitoring fall detection of elderly
in home environments”. In: 2008 11th International Conference on Computer and Information Technology. 2008,
pp. 219–224.

[19] J. Gall, N. Razavi, and L. Van Gool. “An Introduction to Random Forests for Multi-class Object Detection”. en. In:
Outdoor and Large-Scale Real-World Scene Analysis. Ed. by F. Dellaert et al. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 243–263.

[20] J. Gall et al. “Hough Forests for Object Detection, Tracking, and Action Recognition”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 33.11 (2011), pp. 2188–2202.

[21] C. Gao et al. “An efficient local search heuristic with row weighting for the unicost set covering problem”. en. In:
European Journal of Operational Research 246.3 (2015), pp. 750–761.

37

38 Bibliography

[22] S. Hinterstoisser et al. “Multimodal templates for real-time detection of texture-less objects in heavily cluttered
scenes”. In: 2011 International Conference on Computer Vision. 2011, pp. 858–865.

[23] E. Hsiao and M. Hebert. “Occlusion reasoning for object detection under arbitrary viewpoint”. In: 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2012, pp. 3146–3153.

[24] C. Juang and C. Chang. “Human Body Posture Classification by a Neural Fuzzy Network and Home Care System
Application”. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 37.6 (2007),
pp. 984–994.

[25] S. M. Khan and M. Shah. “Tracking Multiple Occluding People by Localizing on Multiple Scene Planes”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 31.3 (2009), pp. 505–519.

[26] S. S. Khan and M. G. Madden. “One-Class Classification: Taxonomy of Study and Review of Techniques”. In: The
Knowledge Engineering Review 29.3 (2014). arXiv: 1312.0049, pp. 345–374.

[27] K. Kim et al. “Real-time Foreground-background Segmentation Using Codebook Model”. In: Real-Time Imaging
11.3 (2005), pp. 172–185.

[28] J. Kritter et al. “On the optimal placement of cameras for surveillance and the underlying set cover problem”. In:
Applied Soft Computing Journal 74 (2019), pp. 133–153.

[29] T. Lee and A. Mihailidis. “An Intelligent Emergency Response System: Preliminary Development and Testing of
Automated Fall Detection”. In: Journal of telemedicine and telecare 11 (2005), pp. 194–8.

[30] B. Leibe, A. Leonardis, and B. Schiele. “An Implicit Shape Model for Combined Object Categorization and Segmen-
tation”. en. In: Toward Category-Level Object Recognition. Ed. by J. Ponce et al. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 508–524.

[31] F. Lin et al. “Super-Resolved Faces for Improved Face Recognition from Surveillance Video”. en. In: Advances in
Biometrics. Ed. by S.-W. Lee and S. Z. Li. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007,
pp. 1–10.

[32] C.-L. Liu, C.-H. Lee, and P.-M. Lin. “A fall detection system using k-nearest neighbor classifier”. In: Expert Systems
with Applications 37.10 (2010), pp. 7174–7181.

[33] H. Liu and C. Zuo. “An Improved Algorithm of Automatic Fall Detection”. In: AASRI Procedia. AASRI Conference on
Computational Intelligence and Bioinformatics 1 (2012), pp. 353–358.

[34] H. Lu et al. “Intelligent Human Fall Detection for Home Surveillance”. In: 2014 IEEE 11th Intl Conf on Ubiquitous
Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE
14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops. 2014, pp. 672–676.

[35] S. Macé et al. “A system to detect rooms in architectural floor plan images”. In: Proceedings of the 8th IAPR Inter-
national Workshop on Document Analysis Systems - DAS ‘10. New York, New York, USA: ACM Press, 2010, pp. 167–
174.

[36] S. Manen, M. Guillaumin, and L. Van Gool. “Prime Object Proposals with Randomized Prim’s Algorithm”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2013, pp. 2536–2543.

[37] M. Mubashir, L. Shao, and L. Seed. “A survey on fall detection: Principles and approaches”. In: Neurocomputing.
Special issue: Behaviours in video 100 (2013), pp. 144–152.

[38] N. Noury et al. “Fall detection - Principles and Methods”. In: 2007 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 2007, pp. 1663–1666.

[39] R. Okada. “Discriminative generalized hough transform for object detection”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. Kyoto, Japan: IEEE, 2009, pp. 2000–2005.

[40] D. N. Olivieri, I. Gómez Conde, and X. A. Vila Sobrino. “Eigenspace-based fall detection and activity recognition
from motion templates and machine learning”. In: Expert Systems with Applications 39.5 (2012), pp. 5935–5945.

[41] F. Perronnin, J. Sénchez, and Y. L. Xerox. “Large-scale image categorization with explicit data embedding”. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010, pp. 2297–2304.

[42] I. T. Phillips and A. K. Chhabra. “Empirical performance evaluation of graphics recognition systems”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 21.9 (1999), pp. 849–870.

[43] C. Rougier et al. “Fall Detection from Human Shape and Motion History Using Video Surveillance”. In: 21st Inter-
national Conference on Advanced Information Networking and Applications Workshops (AINAW’07). Vol. 2. 2007,
pp. 875–880.

[44] C. Rougier et al. “Monocular 3D Head Tracking to Detect Falls of Elderly People”. In: 2006 International Conference
of the IEEE Engineering in Medicine and Biology Society. 2006, pp. 6384–6387.

[45] K. Sato et al. “CAD-based object tracking with distributed monocular camera for security monitoring”. In: Proceed-
ings of 1994 IEEE 2nd CAD-Based Vision Workshop. 1994, pp. 291–297.

Bibliography 39

[46] M. Shoaib, R. Dragon, and J. Ostermann. “View-invariant Fall Detection for Elderly in Real Home Environment”.
In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology. 2010, pp. 52–57.

[47] C. Steger. “Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition”. en. In: Pat-
tern Recognition. Ed. by B. Radig and S. Florczyk. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 148–154.

[48] S. Sternig et al. “Multi-camera multi-object tracking by robust hough-based homography projections”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. IEEE, 2011, pp. 1689–1696.

[49] S. Suzuki and K. be. “Topological structural analysis of digitized binary images by border following”. In: Computer
Vision, Graphics, and Image Processing 30.1 (1985), pp. 32–46.

[50] D. Tang, Y. Liu, and T.-k. Kim. “Fast Pedestrian Detection by Cascaded Random Forest with Dominant Orienta-
tion Templates”. en. In: Procedings of the British Machine Vision Conference 2012. Surrey: British Machine Vision
Association, 2012, pp. 58.1–58.11.

[51] D. Tax. “One-class classification”. PhD thesis. Delft University of Technology, 2001.

[52] A. Tejani et al. “Latent-class Hough forests for 3D object detection and pose estimation”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8694
LNCS.PART 6 (2014), pp. 462–477.

[53] N. Thome, S. Miguet, and S. Ambellouis. “A Real-Time, Multiview Fall Detection System: A LHMM-Based Ap-
proach”. In: IEEE Transactions on Circuits and Systems for Video Technology 18.11 (2008), pp. 1522–1532.

[54] M. Trajkovic. “Optimal multi-camera setup for computer-based visual surveillance”. EP1433326A1. 2004.

[55] P. Vallabh et al. “Fall detection using machine learning algorithms”. In: 2016 24th International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM). 2016, pp. 1–9.

[56] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple features”. en. In: Proceedings of
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. Kauai,
HI, USA: IEEE Comput. Soc, 2001, pp. I–511–I–518.

[57] F. W. Wheeler, R. L. Weiss, and P. H. Tu. “Face recognition at a distance system for surveillance applications”. In:
2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). 2010, pp. 1–8.

[58] D. Whitley. “A genetic algorithm tutorial”. en. In: Statistics and Computing 4.2 (1994), pp. 65–85.

[59] T. Xiang et al. Random Forest with Adaptive Local Template for Pedestrian Detection. en. Research article. 2015.

[60] G. Yao et al. “Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by
MWIR Sensors”. In: Sensors (Basel, Switzerland) 17.9 (2017).

[61] M. Yu, S. M. Naqvi, and J. Chambers. “A robust fall detection system for the elderly in a smart room”. In: ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. IEEE, 2010, pp. 1666–1669.

[62] M. Yu et al. “A posture recognition-based fall detection system for monitoring an elderly person in a smart home
environment”. In: IEEE Transactions on Information Technology in Biomedicine 16.6 (2012), pp. 1274–1286.

[63] X. Yu and Xinguo Yu. “Approaches and principles of fall detection for elderly and patient”. In: 2008 10th IEEE Intl.
Conf. on e-Health Networking, Applications and Service, HEALTHCOM 2008. IEEE, 2008, pp. 42–47.

[64] X. Yu et al. “Fall detection and alert for ageing-at-home of elderly”. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 5597 LNCS. Springer,
Berlin, Heidelberg, 2009, pp. 209–216.

[65] Y.-Y. Zheng and J. Yao. “Multi-angle face detection based on DP-Adaboost”. en. In: International Journal of Au-
tomation and Computing 12.4 (2015), pp. 421–431.

A
Project Description

This chapter lists the verbatim project description as presented on BEPSys.

Context
Do you want to be part of an innovation project and have a direct and tangible positive impact on
the society?

In collaboration with a startup in the medical field and as a small sub-project, we would like to
have a HTML 5 front-end (GUI) for our existing system to administrate the system users.

About Us
Do you want to be part of an innovation project and have a direct and tangible positive impact on
the society?

In collaboration with a startup in the medical field and as a small sub-project, we would like to
have a HTML 5 front-end (GUI) for our existing system to administrate the system users.

Assignment
In general, elderly people don’t like or refuse to carry any wearables on their body. However, for
indoor tracking or fall detection, they have to wear sensors and beacons.

In this project, you are being challenged to track and detect fall incidents of elderly in their home
or a care center without using any wearables. You will research and create a system that tracks
elderly and detects possible fall incident by means of an ONVIF supported camera in a dynamic
light environment.

An incident alert and indoor tracking position have to be sent to the caretakers using our current
frontend, middleware and backend (PHP). You may upgrade our push notification services to send
the alerts to the caretakers even the frontend is running on the background.

For tracking purposes, the frontend uses the floor or a building map as an input to interact and
show the position of the individuals, cameras or incidents. The users should be able to track and
localize their friends in the building and send messages to each other to make meet up.

The administrator should be able to add, remove or move camera objects on the map to have a
better field of view coverage. The cameras have to recognize people and trace them on the map in
real-time and send an alarm in case an individual is prohibited to enter a certain room (in case a
room has a NFC lock system, the door should locked or closed).

Beside the administrator, an automated camera positioning algorithm should be able to estimate
the best position of the cameras in the rooms and corridors for the best coverage and create a cover-
age map.

You will provide analytics about the individuals’ and groups’ locations, activities, incidents, amount
of active time extracted based on historical data.

41

42 A. Project Description

At the end, your work must be migrated into our system, which means you may use and upgrade
existing components to accomplish your assignment. Documentation of the code, deployment and
testing of the system are part of this assignment!

Nice to have: Investigate the concurrent connections and the response time of the push notifications
and the system with respect to server’s CPU load and the number of active connection with the
database.

B
Requirements Analysis

B.1. Functional Requirements
The functional requirements, prioritised with MoSCoW, are as follows:

Must Have
1.

.
2.

.
3.

.
4.

.
5.

.
6. .
7. .

Should Have
1. The application should show a video feed of clients’ locations to users with the ‘caretaker’ and ‘user’

roles.
2. ‘Caretaker’ users should receive a push notification through the frond end when their clients have had

an incident.
3. When the application detects that a client has fallen, video streaming should be turned off.

Could Have
1. The application could show users profiles of nearby people with whom they are connected.
2. The application could automatically create a floor plan model from a JPEG scan of a floor plan. This

functionality would automatically detect windows (cannot place cameras) and doors.
3. The application could keep track of the movement and direction of humans and persistently attach

profile data to an avatar moving between cameras.
4. The application could detect when unauthorised people are present in a room and subsequently send

caretakers a push notification.

Would Have
1. The application would open and close electronic doors for users based on their credentials and their

recognised faces.
2. The application would blur clients on video that have not given permission to be visible on video.

43

44 B. Requirements Analysis

B.2. Non-functional Requirements
The non-functional requirements consist of:

1. The project must integrate well with the existing platform.
2. The application must be well-documented. Non-trivial routines must have applicable documentation.
3. The application must be well-tested. A minimum of 60% code coverage is required with exception of

image processing components.
4. The project must be twice submitted to SIG for software quality review.

C
Feedback from SIG

This appendix lists the verbatim feedback received from SIG after submission of our code in the week six and
week nine of our project. We address the feedback in Section 5.6.

C.1. Feedback week six
De code van het systeem scoort 4.0 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code marktgemiddeld onderhoudbaar is. We zien Unit Interfacing en Unit Complexity vanwege de
lagere deelscores als mogelijke verbeterpunten.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld
aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan
abstractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen
van de methode en in de meeste gevallen ook tot langere en complexere methoden. Dit kan wor-
den opgelost door parameter-objecten te introduceren, waarbij een aantal logischerwijs bij elkaar
horende parameters in een nieuw object wordt ondergebracht. Dit geldt ook voor constructors met
een groot aantal parameters, dit kan een reden zijn om de datastructuur op te splitsen in een aan-
tal datastructuren. Als een constructor bijvoorbeeld acht parameters heeft die logischerwijs in twee
groepen van vier parameters bestaan, is het logisch om twee nieuwe objecten te introduceren.

Voorbeelden in jullie project:

- utils.js:roundRect

- walls.js:WallModule.getSnappedPoint

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld complex is.
Dit betekent overigens niet noodzakelijkerwijs dat de functionaliteit zelf complex is: vaak ontstaat
dit soort complexiteit per ongeluk omdat de methode te veel verantwoordelijkheden bevat, of door-
dat de implementatie van de logica onnodig complex is. Het opsplitsen van dit soort methodes in
kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, makkelijker te testen is, en
daardoor eenvoudiger te onderhouden wordt. Door elk van de functionaliteiten onder te brengen
in een aparte methode met een beschrijvende naam kan elk van de onderdelen apart getest worden,
en wordt de overall flow van de methode makkelijker te begrijpen. Bij grote en complexe methodes
kan dit gedaan worden door het probleem dat in de methode wordtd opgelost in deelproblemen te
splitsen, en elk deelprobleem in een eigen methode onder te brengen. De oorspronkelijke methode
kan vervolgens deze nieuwe methodes aanroepen, en de uitkomsten combineren tot het uiteindeli-
jke resultaat.

Voorbeelden in jullie project:

- floors.js:FloorSelector.onClick

- model.js:Floor.addWall

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk
aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische

45

46 C. Feedback from SIG

tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst
gedrag zorgen. Op lange termijn maakt de aanwezigheid van unit tests je code ook flexibeler, omdat
aanpassingen kunnen worden doorgevoerd zonder de stabiliteit in gevaar te brengen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest
van de ontwikkelfase te realiseren.

C.2. Feedback week nine
In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoud-
baarheid is gestegen.

We zien dat de verbeterpunten uit de feedback op de eerste upload zijn aangepast, en op deze ge-
bieden is dan ook een verbetering in de deelscores te zien. Dat is wel voornamelijk zo bij Unit
Interfacing, waar jullie echt een duidelijke sprong hebben gemaakt, en iets minder bij Unit Com-
plexity.

ook is het goed om te zien dat er naast nieuwe productiecode ook nieuwe testcode is geschreven.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn
meegenomen in het ontwikkeltraject.

D
Info sheet

Camera Positioning and Vision-based Fall Detection
Commissioned by Eya Solutions.
To be presented July 3, 2019.

D.1. Description
The setting of this project is care facilities where elderly are treated. This project aims to find a solution for
detecting when people fall. Detecting falls is an issue that has seen much research already and many different
approaches have been employed. This project aims to create a non-intrusive, non-wearable solution through
the use of cameras. It extends an existing patient monitoring system developed by Eya Solutions, a start-up in
the medical field. Their system monitors patients and is composed of embedded systems (clients), a back-end
with a database, and a web-based dashboard (the front-end) for administrators, caretakers and users.

One part of the project is detecting fall incidents in video footage. Relevant related work showed that
first using background subtraction and then fitting ellipses around objects is a common method for tracking
pedestrians. Because this method is also intuitive, we employ this method in our approach. By means of
image processing, our system detects objects in the image and subsequently tracks these between frames.
Based on the properties of such objects, we detect fall incidents. This detection has an accuracy of 33% and
a false positive rate of 0.5 false notifications per minute.

A second part of the project is the floor plan editor. This editor is integrated into the existing dashboard,
where administrators can model the building. Eya Solutions wishes to provide the product to customers
as a complete package, including (i) showing where fall incidents have occurred, and (ii) how and where
to place cameras. Our system allows administrators to edit the floor while allowing caretakers to see the
modelled floor and see where falls are detected. Our research showed that it was unfeasible to create the floor
plan automatically. Considering (ii), it is desirable to generate a configuration where the number of cameras
is low while the view coverage is high. Our contribution includes a genetic algorithm which can generate
automatically a suitable configuration. Alternatively, cameras can be placed manually by the administrator.

All main aspects of the system have been tested. The floor plan editor is tested by means of user tests. The
camera placement optimisation was tested on speed and bottlenecks. The fall detection was tested on accu-
racy. In order to complete this project, we employed a loose variant of the SCRUM development methodology,
with sprint lengths of one week. Challenges in the process of this project were the high amount of requested
functionality. To resolve this, we cut in what functionality we were going to implement.

This project needs more development to improve performance and user friendliness before it is taken
into production. The aim is to take the overall system into production in the future.

47

48 D. Info sheet

D.2. Contributors
Jerom van der Sar

Interests: Distributed systems, artificial intelligence, genetic algorithms, embedded systems.
Contributions: GUI design, floor plan editor tools, coverage calculator, genetic algorithm, hyperparameter
tuning.

Arjan Seijs
Interests: Artifical intelligence, genetic algorithms, machine Learning.
Contributions: Floor plan editor, user manual, dashboard tests.

Ivo Nelissen
Interests: Computer vision, computer graphics, algorithms, embedded software.
Contributions: Background subtraction, project setup (, OpenCV), startup service, camera manage-
ment and streaming in the front end.

Robin Cromjongh
Interests: Artificial intelligence, algorithms, human-computer interaction.
Contribution: Morphology, object tracking, fall detection, fall detection accuracy testing.

All of the team members contributed to the report.

D.3. Contact
Client: Kianoush Rassels MSc, Eya Solutions
Coach: Dr. Cynthia C. S. Liem, Intelligent Systems: Multimedia Computing Group
Contact: Kianoush Rassels — k.rassels@tudelft.nl
A digital version of this thesis can be found at http://repository.tudelft.nl.

mailto:k.rassels@tudelft.nl
http://repository.tudelft.nl

E
User Manual

49

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Definition
	System Overview
	Project Goal

	Related Work
	Object Detection
	Fall detection
	Facial Recognition
	Floor Plan Modelling
	Camera Placement Optimisation
	Research Conclusion

	System Design
	Object Detection, Tracking, and Fall Detection
	Floor Plan Management

	System Implementation
	Implementation Overview
	Object Detection
	Object Tracking and Fall Detection
	Floor Plan Management
	Camera Coverage Optimisation
	Feedback from Software Improvement Group

	Ethical Implications
	Evaluation
	Fall Detection
	Dashboard User Test
	Floor Coverage Optimisation

	Process
	Overview
	Challenges
	Reflection

	Conclusion
	Future Work
	Project Description
	Requirements Analysis
	Functional Requirements
	Non-functional Requirements

	Feedback from SIG
	Feedback week six
	Feedback week nine

	Info sheet
	Description
	Contributors
	Contact

	User Manual

