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We derive explicit formulas for the mean profiles of temperature (modeled as a passive scalar) in forced
turbulent convection, as a function of the Reynolds and Prandtl numbers. The derivation leverages on the
observed universality of the inner-layer thermal eddy diffusivity with respect to Reynolds and Prandtl number
variations and across different flows, and on universality of the passive scalar defect in the core flow. Matching
of the inner- and outer-layer expression yields a smooth compound mean temperature profile. We find excellent
agreement of the analytical profile with data from direct numerical simulations of pipe and channel flows under
various thermal forcing conditions, and over a wide range of Reynolds and Prandtl numbers.

1. Introduction

The exploration of passive scalars within turbulent flows bounded
by walls holds significant practical implications. It plays a crucial role
in comprehending the behavior of diluted contaminants and serves
as a model for temperature distribution assuming low Mach num-
bers and minimal temperature disparities (Monin and Yaglom, 1971;
Cebeci and Bradshaw, 1984). Nonetheless, quantifying minute tem-
perature differences and the concentration of passive tracers poses
formidable challenges, leading to restricted insights into fundamen-
tal passive scalar statistics (Gowen and Smith, 1967; Kader, 1981;
Subramanian and Antonia, 1981; Nagano and Tagawa, 1988).

The investigation of passive scalars in turbulent flows predomi-
nantly centers on scenarios where the Prandtl number (Pr) approaches
unity, representing the ratio of kinematic viscosity to thermal diffusiv-
ity (Pr = v/a). Numerous studies have discussed the close similarities
between the passive scalar field and the streamwise velocity field
under these conditions (Kim et al., 1987; Abe and Antonia, 2009;
Antonia et al., 2009). However, various fluids, including water, engine
oils, glycerol, and polymer melts, exhibit Prandtl numbers significantly
exceeding unity, while liquid metals and molten salts have markedly
lower Prandtl numbers.

For the diffusion of contaminants, the role of the Prandtl number is
replaced by the Schmidt number, which denotes the ratio of kinematic
viscosity to mass diffusivity. In practical applications, the Schmidt
number typically far exceeds unity (Levich, 1962). In such instances,
the resemblance between velocity and passive scalar fluctuations is
significantly compromised, rendering predictions of even fundamental
flow properties notably challenging.
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Regarding wall fluxes, the most robust framework established to
date is attributed to the work by Kader and Yaglom (1972). Drawing
upon universality arguments, these authors derived a predictive law for
the nondimensional flux (Nusselt number) as a function of the Prandtl
number. This framework primarily involves modeling the logarithmic
offset function, which represents the Prandtl-dependent additive con-
stant in the overlap-layer mean passive scalar profiles. Despite the
solidity of this framework, semi-empirical power-law correlations (Dit-
tus and Boelter, 1933; Kays et al., 1980) continue to find widespread
usage in engineering design. As for the mean profiles of passive scalars,
the most comprehensive study available can be traced back to the work
of Kader (1981). In this study, an empirical interpolation formula was
derived, connecting the universal near-wall conductive layer with the
outer logarithmic layer. This interpolation formula was observed to
reasonably align with the temperature profile behavior observed in
experiments available at the time.

Pirozzoli (2023a) studied the statistics of passive scalars in pipe flow
in the range of Prandtl numbers from Pr = 0.00625 to Pr = 16, using
direct numerical simulation (DNS) of the Navier-Stokes equations, and
introduced an eddy-viscosity model to obtain fully explicit predictions
of the mean passive scalar profiles in the inner layer, and for the
corresponding logarithmic offset function. Asymptotic scaling formulas
were also derived for the thickness of the diffusive sub-layer, and for
the heat transfer coefficient, which were found to accurately represent
variations of both the Reynolds and the Prandtl number, for Pr >
0.00625. A similar study of turbulent heat transfer in plane channel
flows based on DNS data was carried out by Pirozzoli and Modesti
(2023), who also reported predictive formulas for the heat transfer
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coefficients under various thermal forcing conditions. In this paper, we
use the pipe and channel flow DNS database to derive fully explicit an-
alytical representations of the mean passive scalar profiles throughout
the wall layer including the wake region, as a function of the Reynolds
and Prandtl numbers, thus expanding on the work of Pirozzoli (2023a).
This information is of outstanding practical importance as it can be
used as a benchmark for low-order fidelity models like RANS, and it
allows implementation of techniques of modal analysis (Taira et al.,
2017). Although, as previously pointed out, the study of passive scalars
is relevant in several contexts, one of the primary fields of application
is heat transfer, and therefore from now on we will refer to the passive
scalar field as the temperature field (denoted as T), and passive scalar
fluxes will be interpreted as heat fluxes.

2. Predictive formulas
2.1. The inner layer

The starting point for the analysis of the mean temperature profile in
the inner layer is the mean thermal balance equation, which in internal
flows reads

1 dot

B 0t =1 ™

where § = T — T, expresses the temperature difference with respect
to the wall, v is the wall-normal velocity, n = y/é,, with y the wall
distance, and 6, a suitable measure of the thickness of the thermal
layer, to be identified from case to case as later explained. Here and
in the following, capital symbols are used to denote Reynolds averaged
quantities, whereas lowercase symbols are used to denote fluctuations
thereof, and angle brackets denote the averaging operator. In Eq. (1)
the + superscript denotes normalization in wall units, whereby the
friction velocity (u, = (z,,/p)!/?) is used for velocities, the viscous
length scale (5, = v/u,) is used for lengths, and the friction temperature
(T, = a/u,(d(T)/dy),) is used for temperature. The mean wall shear
stress is z,,, and p and v and the fluid density and viscosity, respectively.

Modeling the turbulent heat flux (v6) in (1) requires closure with
respect to the mean temperature gradient (see, e.g. Cebeci and Brad-
shaw, 1984), through the introduction of a thermal eddy diffusivity,
defined as

—(v6)
= .
de/dy
Asymptotic consistency at the wall (Kader and Yaglom, 1972) requires
that the turbulent flux scales as —(v8)* ~ 3, and Eq. (1) implies
% ~ Pr+ O(y+2 /Re,). Hence, the leading-order behavior of the
thermal eddy diffusivity at the wall is
(l+ — - <U6>+ o 43
t T det/dyt

As noted by Pirozzoli (2023a), the thermal eddy diffusivity in the
inner layer of wall-bounded flows has a relatively simple behavior, and
it is very nearly universal with respect to variations of the Reynolds
number. The thermal eddy diffusivity is also very much insensitive to
variations of the Prandtl number, with exception of vanishingly small
Prandtl numbers, in which limit ¢, must vanish as conduction takes
over. This is well portrayed in Figs. 1 and 4, which we will comment
later on. The occurrence of a logarithmic layer in the mean temperature
profile also implies a, ~ y away from the wall, hence Pirozzoli (2023a)
suggested the following functional expression to model the thermal
eddy viscosity throughout the inner layer

b (k)
" (kg2 4 C2

(2)

3

a 4
Eq. (4) is inspired by the work of Musker (1979), who used a similar
function to model the eddy viscosity in turbulent boundary layers.
In Eq. (4) the thermal Karman constant was determined to be k4 =
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0.459 (Pirozzoli et al., 2022), and C, = 10.0 was found based on scrutiny
of DNS data for pipe flow. Whereas alternative functional expressions
are possible, equation (4) bears the substantial advantage of being
amenable to further analytical developments.

Starting from Eq. (1) and under the near-wall approximation (n <
1), one can infer the distribution of the mean temperature in the inner
layer from knowledge of the eddy thermal diffusivity, by integrating

do+ _ Pr
dyt 1+Pra:"

(5)

with @, given in Eq. (4). The result of the integration yields the mean
temperature profile in the inner layer

O+ Pr) = 1 { 2 (2 +3Pr*CL¢y + Pr(C} +2¢3))
d 2koCo(2 + 3Prey) A
[ <1+Pr§0> <1+Pr(2C+§0)>]
X |arctan [ ——— — arctan (| ——mm8
A A
+2Pr (C* +¢5) log(1 - gﬁ)
0
SR Pre? + (1+ Prg)C + &)
+ (Pr2g; — Cp) +24) log LT Prey) }
(6)

where ¢ = kyyt, 4 = (3Pr2g§ +2Prf, — 1)'/2, and ¢, is the single
(negative) real root of the cubic equation

Prid+ 7+ CE =0, %)
whose exact solution is

1 1
- L (c1sta),
% 3Pr( +z+z

1 2 1/3
z= [5 (—2—27Pr2C92 + \/—4+ (2+27PrC3) )] . (8)

The temperature profiles given in Eq. (6) exhibit logarithmic behav-
ior at y* > 1, namely

o = ki log y* + B(PP), ©
0

where the log-law offset function is given by the following asymptotic
expression (Pirozzoli, 2023a)

2/3
2zC
B(Pr) = k—lg [—3 “’3 P 4 % log Pr
11 2 oy
-5 + —2 - + 3 logCy —logky || + OPr==/°). (10)

Other synthetic profiles for the mean temperature in the inner layer
are available in the literature. A notable example is the approach
described by Cebeci and Bradshaw (1984), where the authors used the
eddy-diffusivity and eddy-viscosity formulas from classical turbulence
models to derive temperature profiles at arbitrary Prandtl numbers.
Another example is the empirical correlations based on experimental-
data fitting proposed by Kader (1981), which we use as reference in
this study. The main advantage of the present framework compared to
existing formulas is that Eq. (6) provides an explicit analytical expres-
sion for the mean temperature profiles based on a simple expression
for the eddy diffusivity, which embeds the correct asymptotic behavior
both close to the wall and in the logarithmic layer.

2.2. The core layer

The behavior of the mean temperature in the core (wake) region
of wall-bounded flows was studied in terms of the temperature defect
function by Pirozzoli et al. (2016) and Pirozzoli et al. (2021). The
key finding was that the temperature defect profile (with respect to
the peak value) is very nearly universal with respect to both Reynolds
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Fig. 1. Distributions of inferred eddy thermal diffusivity («,) as a function of wall distance for pipe flow with uniform internal heating (a) and constant heat flux (b), at various
Pr, for Re, = 1138. The dash-dotted line denotes the fit given in Eq. (4). Color codes are as in Table 2. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

and Prandtl number variations, and the universal region encompasses a
wide part of the flow thickness. Departures from outer-layer universal-
ity were only observed at Pr < 0.025, below which the similarity region
becomes progressively confined to the outermost part of the thermal
wall layer. As suggested by Pirozzoli et al. (2016, 2022), the core
temperature profiles in internal flows can be closely approximated with
simple universal quadratic distributions, which one can derive from
(1) under the assumption of constant eddy thermal diffusivity. This
assumption is analogous to the hypothesis of constant eddy viscosity
proposed by Clauser (1956), also leading to a parabolic outer layer
velocity distribution. A convenient analytical representation for the
core mean temperature profile ©, is then

0r-0f=C,(1-n7, an

where O is the value of the mean temperature at the edge of the
thermal wall layer.

2.3. Patching

An explicit approximation for the mean temperature profile through-
out the thermal wall layer is then obtained by patching the inner-layer
profile (6) with the core profile (11). Smooth patching is obtained by
setting the transition point at the wall distance where the asymptotic
logarithmic profile (9) and the core temperature profile (11) match and
have equal first derivative. It is easy to show that continuity of the
first derivatives is achieved provided the patching point is placed at
the coordinate

2
s=1-4f1- 2,

whereas matching the values of the inner-layer and core temperature
profiles implies that

(12)

0r =07 ("5t Pr+C, (1-1%)°, 13)

to be used in Eq. (11).
3. Results
3.1. Pipe flow

Results of DNS of thermal pipe flow are reported for the two
canonical cases of uniform internal heating (UIH), and constant heat
flux (CHF). In the former case the energy equation is forced with a
spatially uniform internal heating term, in such a way that the bulk
temperature is kept constant in time (Kim and Moin, 1989; Pirozzoli
et al.,, 2016). In the latter case, the forcing term varies from point

Table 1

Parameters for compound mean temperature profiles obtained by patching Egs. (6) and
(11). §, is the assumed thickness of the thermal layer, with R the pipe radius and & the
channel half-thickness. C, is the inner-layer constant to be used in (4), C,, is the core
profile constant to use in (11), and »* is the outer-scaled coordinate of the patching
point between the inner and the core temperature profiles.

Flow Heating 8 C, C, n*

Pipe UIH R 10.0 6.00 0.238
Pipe CHF R 10.0 7.00 0.193
Channel UIH-sym h 10.0 5.48 0.274
Channel UIH-asym 2h 10.0 12.3 0.0982

to point proportionally to u/u,, such that the bulk temperature is
also constant (Kawamura et al., 1999; Abe et al.,, 2004; Alcantara-
Avila et al., 2021). This second approach more precisely mimics the
physical case of thermally developed flow in a duct with spatially
and temporally uniform wall heating (Cebeci and Bradshaw, 1984).
As discussed by Abe et al. (2004), Alcéantara-Avila et al. (2021), the
thermal forcing strategy has small, but non-negligible effect on the
temperature statistics. In both cases, the maximum temperature is
attained at the pipe centerline, hence we assume the thermal wall layer
thickness to be the pipe radius, and accordingly set 6, = R.

A wide range of Reynolds and Prandtl numbers has been explored,
spahnning Prandtl numbers from 0.0025 to 16 and friction Reynolds
numbers Re_ (= Ru,/v) ranging from 180 to 6000 (Pirozzoli et al., 2022;
Pirozzoli, 2023b). A full scan of Prandtl numbers is here reported, for
fixed bulk Reynolds number Re, = 44000, corresponding to friction
Reynolds number Re,_ ~ 1138. The corresponding computational param-
eters are reported for reference in Table 2. In the table we also report
some key global parameters as the friction Péclet number, Pe, = PrRe_,
and the Nusselt number,

Nu = Re, PrSt, 14
with St the Stanton number, defined as

«(%)
St = N\ w (15)

up (Tm - Tw) '
where u, is the bulk velocity and 7,, is the mixed mean tempera-
ture (Kays et al., 1980). The table supports the generally accepted
notion that the specific thermal forcing has little effect of the global
thermal performance at Prandtl number of order unity or higher,
however percent differences in the Nusselt number become significant
at low Prandtl numbers.
The inferred eddy thermal diffusivities for all cases at Re, = 1138 are
reported in Fig. 1. The agreement with the fit given in Eq. (4) is quite
good in the inner layer, with deviations occurring only at Pr < 0.025.
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Table 2
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Flow parameters for DNS of pipe flow at various Prandtl number. N,, N,, N, denote the number of grid points
in the axial, radial, and azimuthal directions, respectively; Pe, = Pr Re, is the friction Péclet number; Nu is
the Nusselt number (as defined in Eq. (14)), for cases with uniform internal heating (UIH), and constant heat
flux (CHF). All DNS are carried out in a computational domain with length L, = 15R, at bulk Reynolds number
Re;, = 44000, corresponding to friction Reynolds number Re, ~ 1138.

Pr Mesh (N, x N, x Ny) Pe, Nuyip Nucyr Line style
0.00625 1792 x 164 x 1793 7.11 8.02 7.35 —
0.0125 1792 x 164 x 1793 14.2 9.41 8.68 —
0.025 1792 x 164 x 1793 28.5 12.6 11.6 —
0.0625 1792 x 164 x 1793 71.1 21.5 20.2

0.125 1792 x 164 x 1793 142.2 342 325 E—
0.25 1792 x 164 x 1793 284.4 53.8 51.4 —
0.5 1792 x 164 x 1793 568.8 81.7 79.0 —
1 1792 x 164 x 1793 1137.6 119.9 116.6 —
2 3584 x 269 x 3584 2275.2 168.0 165.0

4 3584 x 269 x 3584 4550.4 2333 229.7 —
16 7168 x 441 X 7168 18201.6 421.2 419.4 —

n=yR

(b)

0 0.2 04 0.6 0.8 ] 1
n=yR

Fig. 2. Mean temperature defect profiles for pipe flow with uniform internal heating (a) and constant heat flux (b), at various Pr, for Re, = 1138. The dot-dashed line marks a
parabolic fit of the DNS data (0% - ©F = C,,(1 —n)?), with values of C,, given in Table 1. Color codes are as in Table 2. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Slight deviations from the DNS are found at y* < 10, where in any
case the eddy diffusivity is much less than the molecular one. Notably,
the influence of the thermal forcing (compare the two panels) seems
to be entirely negligible. Universality with respect to Reynolds number
variations has also been verified, but figures are omitted.

As for the temperature distribution in the core flow, in Fig. 2 we
show the mean temperature profiles in defect form, referred to the
pipe centerline properties. Again, the temperature profiles at fixed
Re, are shown at various Prandtl numbers. As claimed in previous
studies (Pirozzoli, 2023b), the figure supports close universality of the
defect temperature profiles, for = y/R 2 0.2. Furthermore, the
figure confirms that the DNS data can be accurately fitted with the
quadratic relationship (11). The fitting constant C,,, reported in Table 1
is a bit larger for the case of CHF forcing, on account of a stronger
temperature defect. The universality of defect temperature profiles
concerning variations in Reynolds number has been corroborated in
prior literature (Pirozzoli et al., 2022), and is not reiterated here.

Based on the observed universality of the inner and outer layers
with respect to Reynolds and Prandtl number variations, we proceed
to apply the patching procedure outlined in Section 2.3, with fitting
parameters listed in Table 1. The resulting temperature profiles are
reported in Fig. 3, which confirms that the quality of the resulting
patched temperature profiles is generally very good. Visible deviations
are only evident at extremely low Prandtl numbers, as anticipated due
to the absence of a genuine overlap layer. Discrepancies from the pre-
dicted trends are observed specifically at the lowest Prandtl numbers,
which, as previously noted, deviate from the universal trend of «,. In
panel (b), we additionally present a comparison with the thermal law-
of-the-wall proposed by Kays et al. (1980, Eqn.(14-4)) and the empirical
correlation proposed by Kader (1981). To maintain clarity, only cases

with Pr > 1 are depicted. The figure purports substantial overprediction
of O from the log-law formula of Kays et al. (1980). As for Kader’s
correlation, the general quality of the fit is more satisfactory, however
an anomalous behavior is noticed in the buffer layer, and the shift in
the log-law is somewhat overestimated at high Pr.

3.2. Channel flow

A similar analysis is herein reported for thermal channel flow, based
on the DNS data of Pirozzoli and Modesti (2023). Two cases of thermal
forcing are considered with uniform internal heating, whereby the two
walls of the channel are either kept at the same temperature, hence
heat is allowed to flow away through both walls, or one of the two
walls is kept adiabatic. In the first case, referred to as symmetric
heating (SYM), the maximum temperature is attained at the channel
centerline, hence we assume the thermal wall layer thickness to be
the channel half-thickness, 6, = h. In the second case, referred to as
asymmetric heating (ASYM), the maximum temperature is attained at
the adiabatic wall, hence we assume the thermal wall layer thickness to
be the full channel thickness, 6, = 2h. Just as for pipe flow, a relatively
wide range of Reynolds and Prandtl numbers has been explored, with
Re_ (= hu,/v) from 180 to 2000, and Pr from 0.025 to 4. A full scan
of Prandtl numbers is here reported, for fixed bulk Reynolds number
Re,(= 2hu,/v) = 40000, corresponding to friction Reynolds number
Re, ~ 1002. The key parameters for the DNS of channel flow are listed
in Table 3.

Fig. 4 confirms that the inner-scaled thermal eddy diffusivity is
universal across the range of Prandtl numbers under scrutiny, the only
outlier being the case at the lowest Pr. In agreement with pipe flow, we
find that Eq. (4) provides an excellent fit of the DNS data in the inner
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Fig. 3. Comparison of mean temperature profiles obtained from DNS (solid lines) with the prediction of the compound fitting function given by (6) and (11), with fitting parameters
listed in Table 1 (dashed lines), for pipe flow with uniform internal heating (a) and with constant heat flux (b), at Re, = 1138. In panel (b) the circles denote the empirical
predictions put forth by Kader (1981), and the thin lines the thermal law-of-the-wall of Kays et al. (1980). Color codes are as in Table 2. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Flow parameters for DNS of channel flow at various Prandtl number. N,, N,, N,
denote the number of grid points in the streamwise, wall-normal, and spanwise
directions, respectively; Pe, = Pr Re, is the friction Péclet number; Nu is the Nusselt
number (as defined in Eq. (14)), for cases with symmetric heating (SYM), and
asymmetric heating with one adiabatic wall (ASYM). All DNS are carried out in a
computational domain with size 6xhx2hx2zh, at bulk Reynolds number Re, = 40000,
corresponding to friction Reynolds number Re, ~ 1002.

Pr Mesh (N, x N, x N.) Pe,
0.025 1536 x 298 x 2304 247

0.25 1536 x 298 x 2304 247.3

0.5 1536 x 298 x 2304 494.4
1 1536 x 298 x 2304 1002.1
2 3072 x 485 x 4608 2010.4
4 3072 x 485 x 4608 4019.6

Nugy Nuygyn Line style
10.0 5.88 —
44.6 32.7 E—
68.5 53.3 —
101.7 86.3 —
148.7 128.9 E—
207.9 187.8 —

0.1 1 10 100 1000

(a) '

1000

0.1 1 10 100

(b) '

Fig. 4. Distributions of inferred eddy thermal diffusivity (a,) as a function of wall distance, for plane channel flow with symmetric heating (a), and with asymmetric heating (b),
at various Pr, for Re, = 1002. The dash-dotted line denotes the fit given in Eq. (4). Color codes are as in Table 3. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

layer, corroborating universality of the model for the temperature log-
law shift function introduced by Pirozzoli (2023a), and whose validity
was also proved for turbulent boundary layers (Balasubramanian et al.,
2023).

The mean temperature defect profiles are shown in Fig. 5. In this
respect, we note that the reference value is the mean temperature
at the channel centerline in the case with symmetric heating (left
panel), and the mean temperature at the adiabatic wall in the case
of asymmetric heating (right panel). Just like the case of pipe flow,
the simple quadratic fit (11), with suitably adjusted wake strength
constants as given in Table 1 yields an excellent approximation for the
temperature defect, the only outlier being the case at the lowest Pr.
It is especially noteworthy that in the case of asymmetric heating the

quadratic approximation fits accurately the DNS data in about 90% of
the channel thickness.

Application of the patching procedure outlined in Section 2.3 yields
the temperature profiles depicted in Fig. 6. In the case of symmetric
heating (left), deviations from a logarithmic behavior are small, and
the compound temperature law fits well the DNS up to the channel
centerline. Deviations from the logarithmic behavior are on the other
hand quite strong in the case of asymmetric heating. Again, the agree-
ment with the DNS data is quite good, with observable deviations
limited to the lowest Prandtl number case. The correlation provided
by Kader (1981) also demonstrates reasonable performance in this
scenario. However, it exhibits unnatural behavior in the buffer layer
and tends to overpredict the strength of the wake.
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Fig. 5. Mean temperature defect profiles for channel flow with symmetric heating (a), and with asymmetric heating (b), at various Pr, for Re, = 1002. The dot-dashed line marks
a parabolic fit of the DNS data (6* -0 = C,(1 - n)?), with values of C, given in Table 1. Color codes are as in Table 3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Comparison of mean temperature profiles obtained from DNS (solid lines) with the prediction of the compound fitting function given by (6) and (11), with fitting parameters
listed in Table 1 (dashed lines), for channel flow with symmetric heating (a) and with asymmetric heating (b), at Re, = 1002. The circles depicted in panel (a) represent the
empirical predictions put forth by Kader (1981). Color codes are as in Table 3. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 7. Comparison of mean temperature profiles obtained from DNS (solid lines) with the prediction of the compound fitting function given by (6) and (11), with fitting parameters
listed in Table 1 (dashed lines), for pipe flow with uniform internal heating (a) and with constant heat flux (b), at Pr = 1, for Re, = 495,1132,1979,3031,6019, from bottom to top,
with offset of five wall units between consecutive values.
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3.3. Reynolds number effects

Assessment of the Reynolds number dependence of our predictions
is carried out in this section for the case of pipe flow, for which a wide
range of Reynolds numbers has been explored (Pirozzoli et al., 2022),
at unit value of the Prandtl number. The DNS data are compared with
the analytical predictions herein developed in Fig. 7. Good agreement
of the two distributions is generally found, which further supports
universality of our predictions. However, some deviations are observed
especially for cases with the lowest Reynolds number, and especially
for the case of constant heat flux (panel (b)). This is not unexpected,
as the logarithmic law of the wall for the mean temperature, which
we leverage on, is known to apply only at sufficiently high Reynolds
number that a sizeable overlap emerges between the inner and the
outer part of the thermal layer. Further validation of our prediction
would involve considering simultaneous Reynolds and Prandtl number
variations. To date, no DNS database exists which densely covers the
Re — Pr parameter space. However, having established universality of
the inner layer with respect to Reynolds number variations, and univer-
sality of the outer layer with respect to Prandtl number variations, we
see no reason why significant deviations from what herein observed for
fixed value of the Reynolds number (Section 3.1) and for fixed value
of the Prandtl number (present Section) should not apply to arbitrary
combinations of the two parameters.

4. Conclusions

We have presented fully explicit approximations for the mean tem-
perature (or concentration) profiles for forced convection in internal
flows. The model relies on universality of the inner-scaled mean tem-
perature profile in the inner wall layer with respect to Reynolds number
variations, and universality of the mean defect temperature profile in
the core layer with respect to both Reynolds and Prandtl variations.
The explicit representation of the temperature profile (6) is used for
the inner layer, which effectively incorporates effects from Prandtl
number variation. A simple quadratic profile (11) is then used for
the core temperature profile, which includes a single flow-adjustable
constant, which accounts for geometric and/or thermal forcing effects
of the temperature field away from the wall. A patching condition is
derived which guarantees smooth transition between the inner and the
core layer. Comparison with the DNS results shows excellent predictive
capability of the model, in a wide range of Prandtl numbers, deviations
becoming visible only at Pr < 0.1. As for the effects of Reynolds
number variation, we find that the model predictions are accurate as
long as a sensible logarithmic layer is present, which occurs when
Pe_. = PrRe, 2 11 (Pirozzoli, 2023b). We find that the present model
constitutes a significant improvement over previous models developed
for the prediction of the mean temperature distributions (Kader, 1981),
as it yields much more realistic distributions within the wall layer as
well as more accurate prediction of the shift of the log law with the
Prandtl number. Given its modularity, the model lends itself to straight-
forward extension to cases with different flow geometry (e.g. boundary
layers), and/or different heating conditions.
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