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Introduction
Due to the coronavirus pandemic, air travel passengers decreased rapidly between March and April
2020 as travel bans and stay at home orders were imposed. As a result, airlines were forced to heavily
reduce their flight schedule, or even temporarily cease flight operations completely for several weeks.
This rises the question of how to park these aircraft efficiently, minimising valuable airport space used.

This problem is different from the well researched gate/stand allocation problem, as for the purpose
of long term parking aircraft can be parked anywhere on a given surface at any orientation without the
need for using fixed aircraft infrastructure (e.g. passenger boarding bridge) or requiring large margins
for service personnel and equipment (e.g. baggage handling or galley service trucks). While the re­
search presented in this document is focused on aircraft parking for the purpose of long term parking,
the concepts could also be applied to aircraft parking optimisation within in a (maintenance) hangar, or
in the broader scope for general cutting and packing problems.

This report consists of three parts and is structured as follows. The first part contains the scientific
paper, which is the main deliverable of the master thesis. The second part consists of supporting work,
where some parts of the thesis are explained in more detail and supporting material is presented.
Finally, in part three the literature study that was carried out for this thesis is included.
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A Tabu Search Algorithm for the Optimisation of the Long Term

Parking of Aircraft

Victor O’Callaghan

Air Transport and Operations, Aerospace Engineering

Delft University of Technology

Delft, the Netherlands

Abstract

The 2020 coronavirus pandemic lead to a virtual standstill of air passenger tra�c in the spring of that same year.

While some travel restrictions have since been lifted, passenger air travel is not expected to return to pre-coronavirus

levels for several years. Then the question arises of how to park the large amounts of grounded aircraft e�ciently,

minimising valuable airport space used. While aircraft parking for this purpose is a largely unexplored area in academic

literature, the problem shows similarities with cutting and packing problems which have been researched for many

years. Hence, the proposed model in the paper is modelled similar to that of the irregular strip packing model, where

a fixed width is used and the length of the parking layout is to be minimised. Aircraft are represented as non-convex

polygons and are allowed to rotate in discrete intervals. The concept of the no-fit polygon (NFP) is used in order to

prevent overlap between aircraft. A tabu search algorithm with an adaptive tabu list is proposed in order to optimise

the sequence and orientations in which the aircraft are placed onto the placement area using a bottom-left (BL)

placement strategy. In order to evaluate the e↵ectiveness of the proposed algorithm, several instances are created and

tested using computational experiments.

Keywords: aircraft long term parking, tabu search, no-fit polygon

1 Introduction

During the 2020 global crisis due to the outbreak of
the COVID-19 coronavirus, governments throughout the
world imposed lock downs or stay at home orders, ban-
ning all non-essential travel. As a result, air travel de-
mand decreased rapidly and airlines had to significantly
reduce capacity, with some airlines even grounding their
entire fleet for several weeks. According to IATA (2020),
in April 2020 the amount of tra�c (in terms of revenue
passenger kilometres) decreased by 94% and capacity (in
terms of available seat kilometres) decreased by 87% com-
pared to the same period in the previous year. In order
to accommodate all the grounded aircraft, airlines and
airports creatively parked the aircraft on runways, taxi-
ways, and/or unused gates and stands. Although travel
restrictions are gradually being lifted, it is expected that
air travel demand will not return to pre-coronavirus lev-
els for several years (REUTERS, 2020). Consequently,
aircraft will need to remain parked for quite some time
and the challenge for airlines and airports then becomes
to how to park these aircraft e�ciently.

During normal airport operations aircraft are parked
at fixed airport infrastructure such as gates and stands,
where large margins are necessary to allow for air-
craft servicing (such as the passenger boarding bridge,
cargo/luggage loading, galley service trucks, etc). How-
ever, for the purpose of long term parking, such margins
are not needed and aircraft can be parked anywhere on
a given surface at any arbitrary orientation and close
to each other. Aircraft could even be parked in non-
conventional ways, with their wings overlapping.

To the best of the author’s knowledge, no literature
exists on the topic of optimising the long term parking
layout of aircraft, or any instance for that matter where
aircraft can be parked on a large scale at any arbitrary
position and orientation within the given placement area.
Although the gate/stand allocation problem has been re-
searched extensively (see e.g. Guépeta et al. (2015)), it
is not relevant for the reasons mentioned earlier. Lim-
ited research has been carried out recently on the some-
what related problem of optimising the parking of aircraft
within a maintenance hangar (e.g. Qin et al. (2018); Li
et al. (2019)), however the problem size is naturally lim-
ited due to limited space available within a hangar. Ad-
ditionally, due to manoeuvrability constraints within a
hangar, aircraft are usually parked tail or nose first into
the hangar and are thus limited to a maximum of two
orientations. Due to these limitations, such problems
do not relate well to the long term parking of aircraft.
Another similar but more general problem of generating
tight layouts is found in the field of cutting and packing
problems, where e.g. shapes must be cut from a sheet
of metal or items must be packed close together in order
to minimise wasted material or space. When irregular
shapes such as aircraft are involved, this problem is also
referred to as the nesting problem. While many papers
have been published on cutting and packing of regular
shapes without or only a limited amount of possible ori-
entations, the nesting problem that allows many or even
continuous rotations in combination with large problem
instances has not been researched extensively. The nest-
ing problem is known to be NP-hard (Fowler et al., 1981)
and therefore solutions approaches are mainly based on

5



heuristic methods in order to obtain good solutions in a
timely manner.
As airports usually have long rectangular paved areas

such as runways, taxiways and remote stands where air-
craft could be parked, the objective in this paper is to
minimise the total length of such a rectangular area with
fixed width for a given set of aircraft, which is similar to
the irregular strip packing problem. A tabu search algo-
rithm for optimising the long term parking layout of air-
craft is proposed, using a bottom-left placement strategy
based on the no-fit polygon (NFP). Aircraft are allowed
to rotate in discrete intervals, although more orientations
are considered than only the 2 or 4 orientations com-
monly used for the nesting problem in literature. While
this paper focuses on the long term parking of aircraft
(on outdoor surfaces), the results could possibly also be
beneficial for the purpose of maintenance hangar space
optimisation or in the broader scope for nesting problems
in general.
The structure of the remainder of the paper is as fol-

lows. First, relevant literature is discussed in section 2.
In section 3 the formal problem description is given, fol-
lowed by the solution approach methodology in section 4.
The results are presented in section 5. Finally, the con-
clusion and recommendations for future research are dis-
cussed in section 6.

2 Literature Review

The purpose of this section is to provide an overview
of the existing literature relevant to the optimisation of
the long term parking of aircraft. As was mentioned in
section 1, to the best of the author’s knowledge, no liter-
ature exists on the topic of the optimisation of the long
term parking of aircraft. Therefore, the literature review
focuses on general geometric modelling techniques com-
monly used for similar problems (subsection 2.1), a brief
overview of common metaheuristics (subsection 2.2), the
related problem of aircraft parking within a hangar (sub-
section 2.3), and finally the more general case of cutting
and packing problems, where the focus will be on irregu-
larly shaped items, also known as nesting problems (sub-
section 2.4).

2.1 Geometric tools

The first obstacle in the aircraft parking problem, and
more generally in cutting and packing problems, is re-
lated to the geometry: how does one determine if two
shapes are overlapping? This question becomes more
complex when irregular shapes, such as representations
of aircraft, are involved (Leao et al., 2020). Bennell and
Oliveira (2008) noted that this geometric problem is not
a trivial task and provided a tutorial for the geometry of
the nesting problem. They found that the four most com-
mon modelling approaches applied to the nesting prob-
lem are the raster method, direct trigonometry, the no-fit
polygon (NFP), and the phi-functions.
Using a raster representation the continuous placement

area is represented by a discrete grid. However, due

to the discretisation, objects cannot be represented pre-
cisely. Using direct trigonometry, objects can be repre-
sented accurately although the computational cost of de-
termining overlap in such approaches is expensive. The
no-fit polygon (NFP) represents the relative position of
two objects overlapping. Since the NFP is constructed
from the original edges of the two objects, overlap can
be determined accurately while being more e�cient than
direct trigonometry approaches. For each orientation a
new NFP must be created, hence only a discrete set of
rotations ca be considered. Stoyan et al. (2001) intro-
duced the concept of phi-functions, which are used to
define the relation between two objects. Although phi-
functions allow for continuous rotations, there is no al-
gorithmic approach to obtain the phi-functions and they
must be derived by hand.

2.2 Metaheuristics

Some problems can be so complex that it might not be re-
alistically possible to solve for an optimal solution. When
exact methods are not able to solve a problem to an
optimal solution (within a reasonable amount of time),
heuristics are commonly applied to find a good feasible
solution, approximating an optimal solution. A heuris-
tic algorithm is based on common sense ideas tailored
to a specific problem and is usually an iterative process,
searching for a new, possibly better, solution each iter-
ation. Such improvement procedures can, however, get
stuck in a local optimum when a problem has multiple
local optima. Metaheuristic are general solution methods
that have the ability to escape local optima, and thereby
directing the search towards the global optimal solution.
The three most common metaheuristics according to

Hillier and Lieberman (2015) are the tabu search, simu-
lated annealing, and the genetic algorithm. The key char-
acteristic of a tabu search algorithm is that it continues
the search when a local optimum is found by temporar-
ily accepting solutions which are worse than the current
solution, and a tabu list temporarily forbids moves in
the direction of a previous solution. The simulated an-
nealing approach moves in random directions initially.
At the beginning of the search, downwards moves have
higher probabilities of being accepted, while this proba-
bility gradually decreases throughout the search and as
a result mostly only upward moves are accepted in later
stages. The genetic algorithm is based on the survival of
the fittest principle, where each iteration a pool of solu-
tions is considered. Features of “fit” (i.e. good) solutions
are combined in order to create a new pool of solutions
and resulting in better solutions each iteration.

2.3 Aircraft hangar parking

A problem related to the long term parking problem is
that of the aircraft placement in a maintenance hangar.
By optimising the parking positions of aircraft within
the hangar, a larger number of aircraft could be ser-
viced simultaneously, benefiting the maintenance service
providers. The problem is similar in the sense that a cer-
tain number of aircraft have to be parked within a limited
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space as e�ciently as possible. However, the problem dif-
fers from the long term parking problem in certain key
aspects: the problem size is automatically constraint due
to the maximum amount of aircraft that can be placed
in the hangar, and due to manoeuvrability constraints
within a hangar aircraft are parked nose or tail first and
therefore limiting the amount of orientations.
The existing literature on hangar space optimisation

is rather limited, and two main approaches have been
proposed. Qin et al. (2018) proposed a two-stage MIP
(mixed integer programming) method, based on the con-
cept of horizontal partitioning (Alvarez-Valdes et al.
(2013)) of the NFP to ensure aircraft do not overlap.
No rotations of aircraft were considered, and this exact
approach was able to solve small instances (up to 11 air-
craft) to optimality. The work was improved by Qin et al.
(2019) by allowing the wing of larger aircraft to extend
over the wing of smaller aircraft if the height di↵erence
is su�cient, introducing a revised NFP in such cases.
Li et al. (2019) developed a genetic algorithm for air-

craft parking optimisation within a hangar. In contrast
to Qin et al. (2018), the aircraft are allowed to be placed
tail-in or head-in, i.e. allowing two orientations. An air-
craft is placed along a reference line selected from a set
of predetermined lines superimposed onto the placement
area, and moved iteratively along that line until no over-
lap is present. Such a placement strategy e↵ectively dis-
cretises the placement area.
Although these approaches have their limitations, for

each method it was concluded that it was an improve-
ment over manual parking planning practices.

2.4 Cutting and packing of irregular

shapes

In this subsection the existing approaches for solving cut-
ting and packing problems are discussed. More specifi-
cally, problems that involve irregular shapes (such as air-
craft) are considered, which are also known as nesting
problems. Irregular problems are much harder to solve
than problems where e.g. only rectangles are considered,
due to the geometric complexities it involves (Leao et al.,
2020). Allowing the shapes to rotate adds to this com-
plexity even further. The problem is known to be NP-
hard (B lażewicz et al., 1993; Stoyan et al., 2016) which
results in the solution approaches mainly using heuris-
tic methods in literature, though some exact approaches
have been researched. The main focus in this section is
on 2D nesting problems, since for the purpose of long
term parking of aircraft, the aircraft are parked on the
same surface and then the aircraft’s projected 2D shape
can be used. Nevertheless, 3D elements could be incorpo-
rated, such as the wing of larger aircraft extending over
the wing of smaller aircraft, as was already discussed in
subsection 2.3.
Several exacts methods were proposed for solving the

nesting problem. Alvarez-Valdes et al. (2013) proposed
a MIP model where the NFP is divided into horizontal
partitions, however no rotations were considered and only
instances with at most 10 pieces could be solved to opti-
mality. Toledo et al. (2013) introduced the dotted-board

model which discretises the placement area into grid of
potential placement points and the corresponding MIP
model is solved. The discretatistion allows instances up
to 56 pieces to be solved to optimality, although no ro-
tations were considered. Cherri et al. (2016) included
(discrete, predetermined) rotations in their MIP model
by duplicating the piece as many times as there are al-
lowed orientations, rotated with the respective orienta-
tion amount. At most two di↵erent orientations were
considered and instances up to 12 pieces could be solved
to optimality. Although allowing more orientations re-
sults in better solutions, it comes at the expense of com-
putational time. Larger instances, or instances where
more orientations are allowed, can therefore not be realis-
tically solved to optimality. Stoyan et al. (2016) proposed
a non-linear programming (NLP) model which considers
continuous rotations using the phi-functions representa-
tion, however the model cannot be solved to optimality
and therefore heuristic methods were applied.
Therefore, it is concluded that exact methods are not

suited for long term parking problem, as larger problem
instances and more orientations are allowed for the long
term parking problem. The remainder of this section is
therefore focused on (meta)heuristic approaches.
Metaheuristic approaches usually represent the prob-

lem either as a sequence of pieces to be placed where the
sequence is altered in order to find improved solutions,
or as a complete physical layout where pieces are moved
within the actual layout in order to find improved solu-
tions. The sequence representation is decoded through a
placement algorithm in order to obtain the actual layout.
A placement algorithm is also used in order to generate a
initial layout in the physical layout representation. The
bottom-left placement heuristic has been a widely used
placement algorithm in literature, which places a piece
at the most bottom left feasible position on the place-
ment area. The algorithm can be implemented by su-
perimposing a grid onto the placement area and moving
the piece in a stepwise manner along the grid until it
cannot be moved anymore and reaches its final position
(Mundim et al., 2017). Gomes and Oliveira (2002) de-
rived candidate placement points from the NFPs, where
the feasible placement area is outside all NFPs and then
the bottom left point of the feasible area is chosen. They
observed that this results in placing the piece on one of
the vertices of the NFPs, or on the edge intersections
of two NFPs. Alternative placement algorithms include
TOPOS (Oliveira et al., 2000), which uses a floating ori-
gin and pieces can be added from any side, and Liu and
He (2006) proposed a placement algorithm based on the
principle of lowest potential energy. Rotations can either
be considered by the sequence manipulation algorithm,
or the placement algorithm can determine the best (lo-
cal) orientation during placement.
Typical moves in the sequence representation in the

search for improved solutions are insert moves, swap
moves, or orientation changes. The metaheuristics tabu
search (Burke et al., 2006; Ramakrishnan et al., 2008)
and genetic algorithms (Liu and He, 2006; Mundim et al.,
2017) have been applied to guide the search for prob-
lems using the sequence representation. The bottom left
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placement algorithm was used to decode the sequence
into a layout in all approaches except (Liu and He, 2006),
who used the lowest gravity principle. Abeysooriya et al.
(2018) proposed an innovative jostle heuristic, which al-
ternates between packing from left to right and right to
left and where the x-coordinate of the previous iteration
is used to determine the packing sequence of the current
iteration.
When the search is over the actual physical layout,

overlap is usually allowed during the search process. The
algorithm then attempts to resolve the overlap and once
no overlap is present (i.e. a local optimum is found),
the length of the placement area is reduced by a cer-
tain margin or percentage. The reduction is likely to
introduce overlap again, and the process is repeated un-
til the algorithm is unable to find a feasible solution and
the best solution found is reported as final solution. Ra-
makrishnan et al. (2008) proposed a tabu search method,
selecting the piece with the most overlap and placing it in
a position with least amount of overlap, where the NFP
approach is used to generate candidate placement points.
Egeblad et al. (2007) finds the position of minimal over-
lap of a piece by translating the piece either horizontally
or vertically using the intersection area theorem and the
guided local search is used to guide the search. A similar
approach was taken by Umetani et al. (2009), but used
the penetration depth as measure of overlap. Sato et al.
(2019) proposed a guided local search approach based
on a discrete raster placement area and introduced the
novel concept of the raster penetration map, which is de-
rived from the NFP and represents the raster penetration
depth between two pieces. Although the solution space
is discretised, the method matched or improved 9 out of
the 15 benchmark data sets tested.
There is no consensus in literature as to which repre-

sentation is superior, as with both representations re-
searchers continue to publish good results. However,
Ramakrishnan et al. (2008) compared both representa-
tions and observed that the layout representation could
get stuck resolving overlap. The sequence representation
does not su↵er from this problem, since the sequence has
to be decoded through a placement algorithm and there-
fore the final layout will always be a feasible solution.

3 Problem description

The long term aircraft parking problem is modelled sim-
ilar to that of the two dimensional irregular strip pack-
ing problem. The rectangular placement area considered
(representing e.g. (part of) a runway) has a fixed width
W and the objective is to minimise the total length L of
the parking layout, as can be seen in Figure 1.
Aircraft are allowed to extend over the area outside the

paved surface area which is not suitable for bearing the
load of an aircraft (e.g. grass next to the runway), while
the landing gears must remain within the load-bearing
area. In addition, the maximum allowed length of the
wings extending over the non load-bearing placement sur-
face can be specified for each side of the placement area
individually (�upper, �lower, �side), which can be useful if

Figure 1: Problem layout.

one side must remain clear because of e.g. an adjacent
active taxiway. The solid line in Figure 1 thus represents
the loading-bearing placement area and the gears of all
aircraft must remain within that area, while the dashed
line represents the allowed overhang area and all aircraft
must remain within that area.

Aircraft are represented as non convex polygons en-
closing the aircraft as can be seen in Figure 2 (dotted
line). For tail mounted engines, the polygon points for
the engine are omitted as the engines will be included
in the tail section. Conversely, additional polygon points
are introduced for quad engine aircraft. The reference
position of the aircraft is pointing upwards, with its ref-
erence point at its left trailing edge tail, and a positive
rotation results in a counter clockwise aircraft rotation.
The aircraft are allowed to rotate in discrete intervals.
The wing of a larger aircraft can be allowed to extend
over the wing of smaller aircraft, if the di↵erence in wing
height allows for such a placement. In order to ensure the
gear remains on the load bearing area, a polygon around
the gear is defined (dashed line in Figure 2).

A set of aircraft parameters are given as input to gen-
erate the aircraft and gear polygons, which are derived
from aircraft airport planning manuals provided by air-
craft manufactures (e.g. Airbus (2005))

Figure 2: Aircraft (dotted) and gear (dashed) representation

and its reference point (adapted from (Airbus, 2005))
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4 Methodology

In this section the theoretical concepts for the construc-
tion of the optimisation algorithm are explained. A com-
mon strategy for solving similar problems, such as cut-
ting and packing problems, is to search over the sequence
(and rotations) of items to be placed. This sequence with
the corresponding orientations is then decoded through
a placement algorithm to obtain an actual layout, and
new sequences with corresponding (new) orientations are
found through a heuristic algorithm. The advantage of
such an approach is that layout is guaranteed to be fea-
sible because the placement rules of the placement algo-
rithm ensure items are placed at a feasible location, i.e.
within the placement area and with no overlap. In con-
trast, solution approaches searching over the actual phys-
ical layout allow for items to overlap during the search
and hence the algorithm could potentially get stuck in
resolving overlap, resulting in an infeasible solution (Ra-
makrishnan et al., 2008). For that reason, the algorithm
proposed in this paper follows the former approach as the
general solution strategy.
First, the concept of the no-fit polygon (NFP) as a ge-

ometric tool is introduced in subsection 4.1. Next, the
placement algorithm is described in subsection 4.2. Fi-
nally, the tabu search algorithm is described in subsec-
tion 4.3.

4.1 No-fit Polygon (NFP)

The no-fit polygon (NFP) is a geometric tool commonly
used for similar problems such as the cutting and packing
problems, and has also been applied to aircraft parking
optimisation within a maintenance hangar. The bound-
ary of the NFP represents the relative position of the
reference points of the two items where the two items
touch each other. If the reference point of the item placed
within the NFP, the two items overlap; if it is placed out-
side the NFP no overlap is present (and the two items
do not touch). The NFP can be understood as sliding an
item (i.e. the orbiting piece) around the other item (i.e.
the fixed piece) and tracing its reference point, where the
resulting line is the NFP.
The method used to construct the NFP between two

items used in this paper is based on the approach origi-
nally proposed by Cuninghame-Green (1989) for the case
of two convex polygons and works as follows. First, the
edges of polygons i and j are oriented in a clockwise and
counterclockwise manner respectively, where i is the fixed
polygon and j is orbiting polygon (Figure 3a). Next, the
edges are translated to start at a single point (Figure 3b).
In the final step the translated edges from Figure 3b are
linked together in a clockwise manner, resulting in the
NFPij (Figure 3c).
Although the aircraft representation introduced in sec-

tion 3 is not a convex polygon, it can easily be decom-
posed into several smaller, convex sections (namely a nose
section, mid/wing section, and tail section). The NFP is
then generated for each of the sections individually, and
by recombining the separate section NFPs, the full NFP
for two aircraft can be obtained. An example of the NFP

(a) Pieces i and
j clockwise and
counterclockwise
oriented respec-
tively

(b) Edge transla-
tion to single point

(c) Concatenate
edges clockwise to
create NFPij

Figure 3: Cuninghame-Green (1989) method for no-fit poly-

gon generation (Cherri et al., 2016).

between two aircraft is shown in Figure 4, where ACi is
the fixed polygon and ACj is the orbiting polygon.

Figure 4: Example of the NFP (dotted line) for aircraft ACi

and aircraft ACj . Aircraft ACj is plotted multiple times at

various arbitrary locations to show its relative position with

respect to ACi.

In instances were the wing height di↵erence between
aircraft types allows for overlap, the NFP is modified.
The wing of the higher wing aircraft can extend over the
lower winged aircraft, but cannot protrude its fuselage.
In addition, the position of the engines of the higher wing
aircraft should be considered such that the lower wing
aircraft’s wing is not protruding the engines. Therefore,
in order to take into account those two conditions, two
NFPs are generated: one for the the full lower wing air-
craft and the higher wing aircraft where the outer wing
is cut-o↵ after the (outer) engines, and a second for the
lower wing aircraft’s fuselage (and including its tail) and
the full higher wing aircraft. The aircraft representations
used to generate these two NFPs are shown in Figure 5a
and Figure 5b, respectively. The two resulting NFPs are
combined to obtain the complete modified NFP and an
example is shown in Figure 6. The hatched area of the
wing of ACj can be placed underneath the part of the
wing of ACi extending beyond its engines, marked by
the grey area.

9



(a) (b)

Figure 5: Modified aircraft representations for NFP gener-

ation such that lower wing aircraft ACj can be placed un-

derneath the higher wing aircraft ACi without overlapping

the fuselage or engines. Figure 5a prevents overlap between

ACj and the fuselage and engines of ACi, Figure 5b prevents

overlap between ACi and the fuselage of ACj .

Figure 6: Example of the modified NFP (dotted line) for air-

craft ACi and aircraft ACj , where the wing of ACj can be

placed underneath the wing of ACi.

In reality, aircraft are not placed touching each other
and therefore a safety margin is desired between aircraft.
A safety margin can be imposed by extending the bound-
ary of the aircraft with the desired margin (Figure 8a).
By definition of the NFP, when the reference point of the
orbiting aircraft ACj is placed on the boundary of the
NFP, the two aircraft touch. Hence moving the edges of
the NFP outwards is equivalent to adding a safety mar-
gin around the aircraft (Qin et al., 2019) (blue region
in Figure 8b). Therefore, in order to add a safety mar-
gin sf between aircraft, the edges of the NFP are moved
outwards by distance sf resulting in the revised NFP
(Figure 8c).
Using concept similar to the NFP, the inner-fit poly-

gon, or IFP, can be created. Instead of sliding around a
fixed item as is done with the NFP, the item slides within

Figure 7: Example of the IFP (dotted line) for an aircraft and

the placement area (solid line).

the other item (Figure 7). The NFP is used to verify an
item remains within the placement area. Since the wing
is allowed to extend over non-load bearing surfaces, one
IFP is generated for the landing gear and the load bear-
ing placement area, and a second IFP is generated for
the entire aircraft and the overhang area. The final IFP
is then the limiting side of each individual IFP, such that
the landing gear and the entire aircraft remain within
their respective boundaries.
The NFPs and IFPs are generated in a preprocessing

phase, where for each aircraft type and for each orienta-
tion combination a NFP (IFP) is generated and stored
in the computer’s memory. The placement algorithm is
then able to retrieve the NFPs (IFPs) during the place-
ment process in the optimisation phase.

4.2 Placement Algorithm

In order to place a sequence of aircraft with their corre-
sponding orientations onto the placement area, the single
pass bottom-left (BL) placement algorithm is used.While
originally proposed by Art (1966), it has become a widely
used placement strategy and is still relevant today (see
e.g. Abeysooriya et al. (2018); Mundim et al. (2017)).
In the context of the current problem of parking aircraft,
illustrated in Figure 1, the BL algorithm is equivalent
to placing an aircraft as far to the left as possible (i.e.
lowest feasible x-coordinate) and in case there are mul-
tiple such positions possible, the aircraft is placed at the
bottom most position (i.e. of the positions with lowest
x-coordinate, the position with the lowest y-coordinate
is chosen).
As the placement area is a continuous space, the NFPs

and IFPs are used to obtain a feasible placement area for
an aircraft, also known as the collision free region (CFR),
from which a set of placement points can be derived and
the bottom-left position is then easily selected from those
points. While the CFR still is a continuous region, when
looking to place an item at its BL position on the place-
ment area, only the vertices of the boundary of the CFR
can be considered (Gomes and Oliveira, 2002). The CFR
for the current aircraft to be placed is obtained by sub-
tracting the NFPs for each aircraft already placed from
the IFP of the current aircraft.
The process of placing an aircraft sequence and their

corresponding orientations is illustrated in Figure 10. For
the first piece, only the corresponding IFP is retrieved,
since no other aircraft have been placed onto the lay-
out yet. The CFR is then simply equal to the IFP and
hence the aircraft is placed at the BL coordinate of the
IFP (Figure 10a). For the second aircraft to be placed,
in addition to its IFP, the NFP between the aircraft al-
ready placed and the aircraft to be placed is retrieved
(Figure 10b). By subtracting the NFP from the IFP, the
CFR is obtained from which the BL coordinate of its ver-
tices is selected to place the aircraft (Figure 10c). This
process is repeated until all aircraft for a given sequence
are placed onto the placement area. Note that this ap-
proach can place smaller aircraft into empty spaces in the
partial layout when placing a sequence, as can be seen in
Figure 10c, which otherwise would not be filled using e.g.
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(a) (b) (c)

Figure 8: Safety margin around aircraft (a) and revised NFP (b,c)

a sliding or translate approach.

4.3 Tabu Search

In order to search over the sequence and aircraft ori-
entations, the tabu search (TS) metaheuristic is used.
A tabu search includes a local search procedure which
aims to improve the current solution. A key feature of
the tabu search is that when no improving moves can
be found (i.e. a local optimum is reached), the search is
allowed to continue by accepting non-improving moves
and is therefore able to escape local optima. To avoid
immediately circling back to the same local optimum,
a tabu list temporarily stores recent moves. Moves on
the tabu list are not allowed, unless that move would
result in a better solution than the best (global) solution
found in any of the previous iterations (also known as
the aspiration criterion).

Problem encoding
For the tabu search the aircraft sequence and orientations
are encoded as a binary string. The first part of the bit-
string represents the sequence, and the second part repre-
sents the orientation for each aircraft. The sequence part
of the bitstring, bits are used to point to each aircraft in
their initial sorting, which is the sequence in which air-

(a)

(b)

Figure 9: Aircraft sequence

craft are sorted by non-increasing area and all bits are
set to zero. For the orientations part of the bitstring
the possible orientations for each aircraft is given by the
variable orient bit size resulting in 360�

2orient bit size orienta-
tions. Their zero position is pointing upwards and orien-
tations are defined counterclockwise as was described in
section 3.
The concept is best illustrated using an example. Con-

sider the case for five aircraft, which are sorted by non-
increasing area as described above and are given the fol-
lowing numbering: AC1, AC2, AC3, AC4, AC5 ( Fig-
ure 9a). Consider the sequence bitstring 010 11 10 1; in
order to point to any of the 5 aircraft in the initial list,
3 bits are needed (log2(5), rounded up). Hence, in this
case the first three bits in the bitstring (010) are used to
select the first aircraft to be placed. The binary number
010 represents the number 2 (0⇤22+1⇤21+0⇤20), add 1
to account for bits numbering starting at zero, and thus
points to the third aircraft in the initial list, AC3. Air-
craft AC3 is therefore selected to be placed first, and the
remaining aircraft are AC1, AC2, AC4, AC5 (Figure 9b).
In order to point to any of the 4 aircraft in the remain-
ing list of aircraft (Figure 9b), now only two (log2(4))
bits are needed. Therefore, the next two bits in the bit-
string (11) represent the number 3, add 1 to account for
bits numbering starting at zero, and thus point to the
fourth aircraft in the remaining aircraft list, AC5. The
process is repeated until all aircraft are placed. The full
sequence bitstring 010 11 10 1 for example therefore rep-
resents the sequence of aircraft to be placed in the order
AC3, AC5, AC4, AC2, AC1.
Note that in order to select the first aircraft, 3 bits were

needed. However, 3 bits gives 23 = 8 possibilities, while
there are only 5 aircraft. Bits pointing to an aircraft
number greater than the remaining amount of aircraft
(5 in this case) would not result in a meaningful aircraft
selection (e.g. if the first 3 bits were 111, it would refer
to the (nonexistent) eighth aircraft in the initial list).
In order to obtain a meaningful result in such cases, the
total amount of remaining aircraft is subtracted from the
binary number. Hence, 111 would point to the eighth
aircraft, subtracting the total remaining aircraft (i.e. 5 in
this case), results in the third aircraft AC3 being selected
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(a) IFP=CFR for AC1 (b) NFP and IFP for AC2

(c) CFR for AC2

Figure 10: Placement process

for placement.

The orientation for each aircraft is described by a
certain amount of bits (orient bit size). The amount
of bits dictate the amount of discrete orientations
possible and their increments. E.g. a 5 bit orientation
representation results in 25 = 32 possible orientations
in 360�

25 = 11.25� increments. The total amount of bits
needed to encode the orientations of all aircraft is equal
to the amount of aircraft times number of bits per
orientation.

Basic tabu tools
Using the binary sequence and orientation encoding, the
local search method used for the tabu search is done by
flipping bits. A move is defined as flipping one bit in
the current bitstring, and each iteration each bit in the
current bitstring is flipped to obtain new candidate bit-
strings. The neighbourhood size is therefore automat-
ically dependent on the length of the bitstring, which
in turn is dependent on the amount of aircraft to be
placed and the bitsize used for representing the orien-
tations. The bitstring is decoded into a layout through
the placement algorithm described in subsection 4.2 to
obtain corresponding length layout L. The bitstring cor-
responding to the layout with the lowest length where
none of the bits are tabu is chosen as the new current
bitstring. If two bitstrings result in the same objective
value, a bitstring is chosen by evaluating the bitstring’s
binary numerical value and the binary string with the
lowest numerical value is selected as the current bitstring.

The tabu list size in an ordinary tabu search is set at a
fixed value. As will become clear in subsection 5.1, a fixed
tabu list size might not always yield good results. There-
fore a reactive tabu search (RTS) is proposed, based on
the method described by Battiti and Tecchiolli (1994),
which can automatically adapt the tabu list size to the
problem and the progression of the search. While a sim-
ple adapting tabu list could avoid cycling of the search,
it can still become trapped in a region of the solution.
Therefore, a diversifying escape mechanism is included
when the former mechanism is inadequate.

Reactive Tabu Search (RTS)
Each bitstring bit str that is encountered during the
search is saved, together with the iteration number it
was last encountered ⇧(bit str) and how many times
it has been encountered (�(bit str)). If a bitstring
is encountered a value greater than REP times, the
counter chaotic is increased by 1 (chaotic = chaotic+1)
which counts the number of often repeated bitstrings.
If the value of chaotic is greater than the threshold
CHAOS, a diversifying mechanism is triggered. INC
and DEC determine by how much the ts list size is in-
creased or decreased and are constant throughout the
search. A moving average of the detected cycle length
is stored in moving avg and steps since last ts change
records when the ts list size was last changed. If
the detected cycle length (=iter count � ⇧(bit str))
is lower than cycle max, the ts list size is increased
(ts list size = INC ⇥ ts list size). The search is
stopped after max non improve iterations and the bit-
string corresponding to the best so far solution is re-
turned.

While the algorithm limits cycling between the same
bitstrings, the algorithm can still be trapped in a region
of the solution space. Therefore, the diversification pro-
cedure is also triggered in the following cases. When the
of rep count exceeds 100 consecutive repeating objective
value functions, and when there has not been an improve-
ment in the best so far in the past 500 iterations.

The diversification strategy adds a penalty to the
candidate objective value and is based on the flip fre-
quency of the bits. The (candidate) bitstrings are gener-
ated by a bit flipping procedure; if the bit flipped cor-
responding to the (candidate) bitstring is flipped fre-
quently, a higher penalty is associated with that bit-
string. The penalty for a given bitstring is defined as
penalty = bit flip count

max bit flip count ⇥ div param ⇥ best so far,
wheremax bit flip count is the value of the bit flip count
of the bit which is flipped most often. The exception is
in the case where the objective value associated with a
candidate bitstring is lower than best so far. In that
case, the penalty is set to 0 and the value best so far is
updated. The main RTS algorithm is shown in pseudo
code in algorithm 1 and the reaction procedure is shown
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in algorithm 2
The initial bitstring can be a zero bitstring (all bits

are set to zero when aircraft are sorted by non-increasing
area and pointing upwards), a random bitstring, or can
be generated by a greedy best fit heuristic. The greedy
heuristic used in this paper first sorts all aircraft by non-
increasing area. Then for each aircraft each admissible
orientation is tested and the orientation resulting in the
lowest partial layout length is chosen. The process is re-
peated until all aircraft in the sorted listed are placed.
The corresponding orientations can then be translated
into bits to obtain the initial bitstring (the sequence
parts is set to zero since the aircraft are sorted by non-
increasing area, as was mentioned earlier).

Algorithm 1 Reactive Tabu Search pseudo code
Sort aircraft by non-increasing area

iter count = 0
non improve count = 0
steps since last size change = 0
ts list size = 1

while non improve count < max non improve do
Find and evaluate candidate bitstrings
DIV = Check for repeating bitstrings(bitstring)

if DIV is False then
Choose best non tabu bitstring
Update count, last observed, bit flip count

else Diversify:
for i in moving avg do

for i in Candidate bitstrings do
if obj val(candidate bitstring) < best so far then

obj val = obj val(candidate bitstring)
else

obj val = obj val(candidate bitstring)

⇥ bit flip count
max bit flip count ⇥ div param ⇥ best so far

end if
end for
Choose best non tabu bitstring
Update count, last observed, bit flip count

end for
end if

if obj val < best so far then
non improve count = 0
best so far = obj val

else
non improve count += 1

end if
end while
Return best solution found best so far

5 Results

In this section the results of computational experiments
are presented. The methods described in the previous
sections are coded in Python, relying heavily on the
Shapely library for the geometric calculations. Parallel
processing is used in order to evaluate multiple moves
simultaneously. The experiments are run on a computer
with a 3 GHz 6-Core Intel Core i5-8500B processor with
32GB of RAM. Unless explicitly mentioned otherwise,
the algorithm settings shown in Table 1 are used.

5.1 Tabu List Size

A key element of a tabu search is of course the tabu list.
The length of the tabu list (also known as tabu tenure) is

Algorithm 2 Reaction and diversification mechanism
procedure check for repeating bitstrings(bit str)

DIV = False
steps since last size change += 1
Check for bitstring in memory

if bitstring found previously then
cycle length = iter count - ⇧(bit str)
⇧(bit str) = iter count
�(bit str) += 1
if �(bit str) > REP then

chaotic += 1
if chaotic > CHAOS then

DIV = True
chaotic =0

end if
end if
if cycle length < cycle max then

moving avg = 0.1 ⇥ cycle length + 0.9 ⇥ moving avg
ts list size = ts list size ⇥ INC
steps since last size change = 0

end if
else

Store bit str and ⇧(bit str) in memory
end if

if steps since last size change > moving avg then
ts list size = ts list size ⇥ DEC
steps since last size change = 0

end if

if non improve count > max non improve or of rep count >
max of rep then

DIV = True
non improve count = 0
of rep count = 0

end if
end procedure
return DIV

Table 1: Default input values and algorithm settings

Parameter Value
init bit str zero bitstring

orient bit size 5
W 60

�upper 20
�lower 20
�side 10

wing overlap True
max non improve 1000

INC 1.3
DEC 0.9

CHAOS 3
REP 3

cycle max 250
max of rep 100
div param 1

usually determined early on through experimental anal-
ysis. In order to find an appropriate tabu list length
for the aircraft parking problem, several instances with
di↵erent problem sizes and varying tabu list lengths are
tested (while all other parameters remain the same). 4
di↵erent instances, with 4, 8, 12, and 16 Airbus A350-
900s, are tested for this purpose. A 5 bit representation
was used for the orientations, the width of the place-
ment area was W = 60, overhang values of �upper = 20,
�lower = 20, �side = 10 were used, and no diversification
strategies were applied during the search at this stage.
The results are shown in Figure 11, and are expressed
as relative percentages in order to compare each problem
instance.
As is expected, at the extreme ends of the di↵erent
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Figure 11: Relative layout length for varying tabu list size

expressed as percentage of the total bits for that problem

instance

tabu list lengths tested the worst results are observed.
If the tabu list is too short, the search will simply cycle
back and forth between the same solutions. When the
list is too long, it is likely the search does not reach an
area with good solutions. However, no clear optimum is
observed in the middle tabu list length values and there is
a high degree of variability between adjacent data points.
Most notably, in the instance of 12 A359 aircraft, the
length of the final layout increases 25% from its minimum
value when the tabu list sizes increases from 16 to 18
(Figure 11). This indicates a hilly solution space which
is di�cult to navigate and the algorithm is sensitive to
its parameter settings. Hence, using a fixed tabu list may
result sub optimal results for specific problem instances,
while other instances may yield good results. Therefore,
the reactive tabu search with a variable tabu list size is
used in the remainder of this paper.
Using this strategy, the best solutions found for each

problem instance with fixed tabu list length from Fig-
ure 11 were matched in initial experimental analysis. As
this removes the need to define a fixed tabu list length,
it is concluded an adaptive tabu list is likely the better
strategy to be adopted for the aircraft parking problem.

5.2 Orientation bits

The orientation bits define the discrete set of orienta-
tions an aircraft is allowed to rotate. More orientations
could lead to better solutions, however, more orientations
could also increase the complexity of the solution space
and lead to longer run times (when not using a fixed time
limit) or to search can become trapped. In this subsec-
tion, the e↵ect of varying the orientation bit represen-
tation is investigated. All other parameters equal, the
orientation bits are varied from two bits (i.e. 22 = 4 ori-
entations) up to six bits (i.e. 26 = 64 orientations). Two
instances were tested, one consists of 12 Airbus A350-
900 aircraft (Figure 12b), the second problem includes a
mix of aircraft types namely 3 Airbus 350-900, 4 Airbus
A320neo, and 6 Bombardier CRJ200 (Figure 12a).
From Figure 12 the general trend is that the layout

length decreases as the orientation bits resolution in-

(a)

(b)

Figure 12: Variation in orientation bits and resulting layout

lengths and algorithm run time.

creases, while computational time increases.

There are some exceptions though, the run with 4bits
for the instance with multiple aircraft types in Figure 12a
results in a longer layout compared to 3bit run. Since
the computational time is also longer, it appears that
the search did not reach a favourable region of the search
space when the stopping criterion was met. The 12 A359s
instances in Figure 12b show a peak in run time at 4bits.
This indicates the search only reached favourable solu-
tions later in the search. The corresponding length how-
ever is in line with expectations (i.e. lower than 3 bits,
higher than 5 bits).

The layouts resulting from the test runs in Figure 12b
are plotted in Figure 13 in order to visually understand
how the orientation bit resolution a↵ects the layout. The
benefits of using more orientations than typically found
in literature (i.e. none or two orientations) is clear, as
the worst results are consistently found at lower bits res-
olutions. It is up to the user to determine the trade-
o↵ between orientation bits resolution and computational
complexity.

5.3 Safety Margin

The safety margin is used in order to maintain a safe
distance between aircraft and gives some margin when
manoeuvring aircraft into their position. In this section
it is investigated what the e↵ect on the final layout is
when the safety margin is increased. In this instance
2 CRJ200s, 2 A320neos, 2 A359s are considered with
safety margins of 0, 1, 3, 5, 10 meters. The resulting
layouts are shown in Figure 14. As is expected, the length
of the resulting layouts increase as the safety margin is
increased.
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Figure 13: Resulting layout for varying orientation bits, starting from the same initial layout

Figure 14: Results for increasing safety margins

5.4 Initial Solutions

A tabu search can be sensitive to the initial solution used
for starting the search. In the previous experiments the
zero bitstring was used for all problems, in this subsection
the e↵ect of using other starting solutions is investigated.
The results from selected instances from the previous sec-
tions are compared to the results when started from an
initial solution generated by the greedy best fit heuristic
(see subsection 4.3 for a description of the heuristic).
It is not immediately clear which initial solution is bet-

Table 2: Resulting layout lengths for starting from zero bit-

string or greedy initial solution

Instance Zero bitstring Greedy

[3 A359, 4 A320neo,
6 CRJ200], 5bit

130.03 128.82

[12 A359], 5bit 307.41 336.90

[3 A359, 2 A320neo,
2 CRJ200], sf = 0

75.39 75.72

[8 A380] 239.97 239.87

ter. Although the results are within roughly < 1% of
each other, the notable exception here is the [12 A359]
instance, where the greedy initial solution results in a
10% longer layout. One possible explanation for this be-
haviour when starting from a seemingly promising initial
solution is that the search becomes trapped in that region
of the solution space (and the diversification strategies
are not powerful enough to escape). These results show
that the model is indeed sensitive to its input solution.

5.5 Case study

In this subsection the model is applied to a real-world
scenario. Here, 8 Airbus A380-800 (among others) are
parked at the Southern California Logistics Airport, near
the beautifully named city Victorville, USA (Figure 15).
The aircraft can be enclosed by a rectangle measuring
approximately 345m ⇥ 160m. For the purpose of this
analysis, the shorter edge 160m is assumed as the fixed
width of the placement area, no overhang is allowed and a
safety margin of 5m is chosen in order to resemble similar
conditions.
The result from the RTS algorithm can be seen in Fig-

ure 16. The length of the layout is 239.97m, which is a
reduction of roughly 30% compared to Figure 15.

Figure 15: A380s parked at the Southern California Logistics

Airport (Google, 2021)
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Figure 16: Resulting layout for A380 parking

5.6 Results Summarisation

In this section the results are summarised in the form of
a table (Table 3), in the same order as they appeared in
the text. The instance is described in the first column
together with the variable of interest for that specific ex-
periment, all other settings are equal to the values given
in Table 1. In addition, the result of the greedy initial
placement strategy described in subsection 4.3 for each
instance is given in the last columns as a reference bench-
mark for the results obtained by the tabu search. In all
cases, the final length from the tabu search were better
than the greedy heuristic. Note that the total time and
greedy time columns are excluding the pre-processing
stage for creating the NFPs(and IFPs), which is shown
separately in the column NFP time.

6 Conclusion & Recommenda-

tions

In this paper a tabu search algorithm was proposed,
where the search was over the sequence and orientations
of aircraft to be placed using a bottom-left placement
strategy. The no-fit polygon was used as a geometric
tool to ensure aircraft do not overlap. An adaptive tabu
list was adopted in order to automatically adjust the
tabu size to the problem and progression of the search.
The results of computational experiments showed that
the algorithm is highly sensitive to input variables and
algorithm settings, indicating a hilly solution landscape.
Nevertheless, the layouts generated show a tight place-
ment of aircraft and are guaranteed to be feasible. The
results show an improvement over greedy single-pass
placement heuristics. Furthermore, a case study showed
a decrease in layout length compared to the real-world
scenario.

Recommendations
As the long term aircraft parking problem is an unex-
plored research area (expect for the tangential but dif-
ferent problem of aircraft hangar parking optimisation),
there are many avenues for future research. In the pro-
posed tabu search the search was over the sequence and
orientations of aircraft to be placed, using a bottom-left
placement heuristic. However, di↵erent local search pro-
cedures, metaheuristics or matheuristics, and placement
strategies could be explored or developed for the pur-
pose of long term aircraft parking. Since the model has
been shown to be sensitive to its input and settings, more

Table 3: Results table
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[3 A359, 4 A320neo, 6 CRJ200], 2bit 63 0.54 146.14 2240 1451.35 0.65 160.48 0.01 -8.94

[3 A359, 4 A320neo, 6 CRJ200], 3bit 76 1.88 133.16 2096 1757.49 0.84 169.21 0.01 -21.30

[3 A359, 4 A320neo, 6 CRJ200], 4bit 89 6.93 138.02 1854 1649.74 0.89 166.57 0.02 -17.14

[3 A359, 4 A320neo, 6 CRJ200], 5bit 102 27.89 130.03 2218 2331.25 1.05 141.55 0.04 -8.14

[3 A359, 4 A320neo, 6 CRJ200], 6bit 115 110.91 131.68 2760 3164.11 1.15 140.51 0.07 -6.28

[12 A359], 2bit 57 0.13 405.19 1058 567.06 0.54 409.07 0.00 -0.95

[12 A359], 3bit 69 0.24 377.99 1362 798.16 0.59 437.31 0.00 -13.56

[12 A359], 4bit 81 0.56 366.82 3086 2213.80 0.72 437.31 0.01 -16.11

[12 A359], 5bit 93 2.28 307.41 1320 1037.00 0.78 336.90 0.01 -8.75

[12 A359], 6bit 105 8.45 307.41 1931 1675.52 0.87 336.90 0.02 -8.75

[3 A359, 2 A320neo, 2 CRJ200], sf = 0m 41 26.53 75.39 2278 396.86 0.17 88.46 0.04 -14.76

[3 A359, 2 A320neo, 2 CRJ200], sf = 1m 41 28.58 77.93 1767 318.52 0.18 90.17 0.04 -13.57

[3 A359, 2 A320neo, 2 CRJ200], sf = 3m 41 28.99 84.00 2872 483.28 0.17 112.43 0.04 -25.29

[3 A359, 2 A320neo, 2 CRJ200], sf = 5m 41 27.38 88.16 2983 478.65 0.16 117.24 0.04 -24.80

[3 A359, 2 A320neo, 2 CRJ200], sf = 8m 41 27.63 96.98 1568 251.05 0.16 132.79 0.04 -26.97

[3 A359, 2 A320neo, 2 CRJ200], sf = 10m 41 27.43 109.44 1791 299.44 0.17 143.66 0.04 -23.82

[8 A380] 57 3.01 239.97 2971 933.05 0.31 253.00 0.01 -5.51
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robust procedures should be investigated. Furthermore,
the proposed algorithm assumes a placement area with
a fixed width and infinite length. The algorithm could
be extended by considering a placement area with fixed
dimensions, and selecting which aircraft of a given set
should be parked and which aircraft remain unparked to
obtain the highest space utilisation. Or even multiple
di↵erent areas with fixed dimensions can be considered
(similar to bin packing problems).
From a practical perspective, some layouts generated

by the proposed algorithm might not be possible in prac-
tice due to aircraft tugs unable to move aircraft into the
required position. In addition, maintenance requirements
may require aircraft to be moved to avoid tyre deforma-
tion, or engines to be run periodically such that aircraft
cannot be placed in the neighbourhood of the exhaust
area (and which could require stairs access to the air-
craft). Such requirements are not taken into account
in the presented algorithm. Within the broader scope
of cutting and packing problems, the irregular shape
cutting/packing (also known as nesting) problem with
many (or continuous) rotations remains a challenging and
under-researched topic.
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1
Aircraft representation data

In order to obtain the measurements necessary for representing an aircraft in that way, airport planning
documents were consulted. Such documents are issued by aircraft manufactures for each aircraft
(sub)type for airport planning purposes and provide the general aircraft dimension parameters (see
e.g. Airbus, 2005).

Not all dimensions necessary are given in airport planning documents; in such cases the dimensions
are derived from a similar dimension given or derived from the drawings using the scale bar. In addition,
the exact wing height varies depending on both the actual aircraft weight and the aircraft’s centre of
gravity and therefore aircraft manufactures provide a range of values. For the purpose of this thesis, a
middle value is selected from those provided ranges.

The dimensions are used to generate a 2D aircraft representation for each aircraft (sub)type, de­
scribed in a local x­y coordinate system. As depending on the aircraft type the amount of points used
to describe an aircraft and its landing gear (2 or 4 engine aircraft, wing or tail mounted engine, landing
gear configuration), the coordinates refer to the aircraft points as can be seen in their corresponding
figures.
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Airbus A320neo

Figure 1.1: Airbus A320neo representation

Table 1.1: Airbus A320neo representation coordinates

Point Coordinates (x,y) [m]

N1 (15.925, 37.57)
N2 (19.875, 37.57)
F1 (15.925, 26.43)
F2 (19.875, 26.43)
E1 (9.6, 26.43)
E2 (26.2, 26.43)
W1 (0.0, 17.34)
W2 (0.0, 14.12)
W3 (11.675, 14.12)
W4 (24.125, 14.12)
W5 (35.8, 14.12)
W6 (35.8, 17.34)
T1 (11.675, 0.0)
T2 (24.125, 0.0)

NLG1 (17.54, 32.881)
NLG2 (18.26, 32.881)
MLG1 (13.425, 20.444)
MLG2 (13.425, 19.276)
MLG3 (22.375, 19.276)
MLG4 (22.375, 20.444)

Airbus A350­900

Figure 1.2: Airbus A350­900 representation

Table 1.2: Airbus A350­900 representation
coordinates

Point Coordinates (x,y) [m]

N1 (29.395, 66.8)
N2 (35.355, 66.8)
F1 (29.395, 44.83)
F2 (35.355, 44.83)
E1 (19.905, 44.83)
E2 (44.845, 44.83)
W1 (0.0, 25.3)
W2 (0.0, 20.12)
W3 (22.98, 20.12)
W4 (41.77, 20.12)
W5 (64.75, 20.12)
W6 (64.75, 25.3)
T1 (22.98, 0.0)
T2 (41.77, 0.0)

NLG1 (31.8, 62.695)
NLG2 (32.95, 62.695)
MLG1 (25.94, 35.23)
MLG2 (25.94, 31.79)
MLG3 (38.81, 31.79)
MLG4 (38.81, 35.23)
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Bombardier CRJ200

Figure 1.3: Bombardier CRJ200 representation

Table 1.3: Bombardier CRJ200 representation
coordinates

Point Coordinates (x,y) [m]

N1 (9.27, 26.77)
N2 (11.96, 26.77)
F1 (9.27, 16.21)
F2 (11.96, 16.21)
W1 (0.0, 10.38)
W2 (0.0, 9.01)
W3 (7.515, 9.01)
W4 (13.715, 9.01)
W5 (21.23, 9.01)
W6 (21.23, 10.38)
T1 (7.515, 0.0)
T2 (13.715, 0.0)

NLG1 (10.415, 24.8686)
NLG2 (10.815, 24.8686)
MLG1 (8.61, 13.6083)
MLG2 (8.61, 12.8717)
MLG3 (12.62, 12.8717)
MLG4 (12.62, 13.6083)

Airbus A380

Figure 1.4: Airbus A380 representation

Table 1.4: Airbus A380 representation coordinates

Point Coordinates (x,y) [m]

N1 (36.305, 72.73)
N2 (43.445, 72.73)
F1 (36.305, 54.73)
F2 (43.445, 54.73)
E1 (12.275, 42.79)
E2 (23.175, 50.5)
E3 (56.575, 50.5)
E4 (67.475, 42.79)
W1 (0.0, 25.76)
W2 (0.0, 20.66)
W3 (24.69, 20.66)
W4 (55.06, 20.66)
W5 (79.75, 20.66)
W6 (79.75, 25.76)
T1 (24.69, 0.0)
T2 (55.06, 0.0)

NLG1 (39.1225, 68.395)
NLG2 (40.6275, 68.395)
MLG1 (32.707, 40.7)
MLG2 (32.707, 37.6)
MLG3 (47.043, 37.6)
MLG4 (47.043, 40.7)
BLG1 (36.203, 33.48)
BLG2 (43.547, 33.48)
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2
Placement Strategies

In this chapter the placement strategies explored are discussed. Initially, another placement strategy
was explored than was explained in Part 1 (scientific paper) in order to decode the sequence of aircraft
into a actual physical layout. For completeness this alternative method, referred to as the “translate­
rotate” method, is explained here in section 2.1. Furthermore, some components of the no­fit polygon
(NFP) method used in the final algorithm presented in Part 1 (scientific paper) are discussed in further
detail in section 2.2

2.1. Translate­rotate method
The translate­rotate strategy is based on a direct geometry method, while using a similar sequence

The main principle is that an aircraft is introduced at some distance far away form the current partial
layout at an angle relative to the last placed aircraft, is then translated towards the partial layout until
(at least) one point of contact, and is subsequently rotated towards the partial layout until (at least) two
points of contact with the aircraft already placed. The angle at which an aircraft is placed relative to
the previous aircraft is referred to as the placement angle and is shown in Figure 2.1. The placement
angle is obtained from the tabu search and therefore the length of the bitstring increases by the amount
of bits representing an angle times the amount of aircraft ­ 1, since the first aircraft will be fixed to the
corner of the placement area. This placement process is illustrated in Figure 2.2. The rotation direction
is determined by the moment resulting from applying an imaginary force from the centroid of the aircraft
to be placed in the direction of the placement angle + 180deg (Figure 2.2b).

Figure 2.1: Placement angle
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(a) (b) (c)
(d)

Figure 2.2: (a) translate step, (b) determine rotate direction, (c) rotate step, (d) final position of
the aircraft.

The layouts obtained through this method of decoding the bitstring are not guaranteed to be within
the placement area. Therefore, soft constraints were introduced by assigning penalties proportional to
the distance the final parking layout is exceeding the boundary of the placement area.

The geometric calculations are handled by the Python library shapely. The amount of calculations
necessary increases with the amount of aircraft placed and the amount of points used to represent the
aircraft’s geometry. In addition, during the tabu search itself more solutions must be evaluated each
iteration due to the increased amount of bits needed for representing the placement angles.

In contrast to the NFP method, the geometric calculations cannot be performed in a pre­processing
phase and must be done online during the tabu search. In order to decrease the amount of geometric
calculations, several optimisations were implemented. During the translation step, only aircraft directly
along the translation path are considered in order to calculate the maximum translation distance in
order to place the aircraft as close as possible to the current partial layout. Similarly, in the rotate step
only aircraft in the immediate neighbourhood of the rotating aircraft are considered for calculating the
maximum rotation before touching a neighbouring aircraft. Furthermore, partial and complete layouts
are stored and can be retrieved later in the search; the placement algorithm can then start from that
partial solution instead of decoding the sequence (and the corresponding geometric calculations) from
scratch.

Initial experiments showed this method to be slower and struggling to converge to a tight parking
layout. An example is shown in Figure 2.3 and corresponding key algorithm performance metrics are
shown in Table 2.1. The initial bitstring for both methods is the same (zero bitstring), however, due
to the difference in placement algorithm the resulting initial layout is different for each method. All
other settings are the same, the tabu list length was set at 62 and the search is stopped after 1000
non­improving iterations.

Even without model parameter tuning, the NFP method is able to generate a tighter layout, in less
iterations and less time. There are several explanations as to why this is the case. The longer average
iteration time for the translate­rotate method is due to a combination of 1) the geometric calculations
necessary for placing aircraft and 2) the placement angle bits simply introducing more solutions to
evaluate each iteration. In addition, the placement angle bits introduces more complexity in the search
and might lead to the tabu search unable to find regions in the solutions space with good solutions.
Furthermore, the soft constraints used for the boundaries of the placement area introduce humps in
the solution space making it more difficult for the tabu search to navigate the solution space.

Table 2.1: Translate­rotate (TR) vs. NFP method comparison results

Result TR NFP

Layout length [m] 239.84 159.38
Average iteration time [s] 7.55 0.60
Total iterations 2330 1367
Total optimisation time 04h:53m:02s 00h:13m:43s
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(a) Translate­rotate method (b) NFP method

Figure 2.3: Placement algorithm comparison
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2.2. NFP method
As was mentioned in Part 1 (scientific paper), the NFP is constructed by using the Cuninghame­Green
(1989) method by decomposing the aircraft in three convex sections. In this section the NFP generation
and recombination step is explained in more detail.

While the method generates the NFP for two objects, it does not give the position of the NFP in
relation to the fixed polygon. The NFP constructed using this method adds the edges (translated to the
origin) of the two polygons in their ascending slope order, but the starting vertex is arbitrary. Hence,
the NFP must be translated in order to obtain a meaningful result. As explained by Bennell and olive
2008, when the bottom left corner of the enclosing rectangles of both polygons are taken as reference
point, the reference point of the NFP is found by placing the orbiting polygon at the bottom left corner
of the enclosing rectangle of the NFP. Then, the reference point of the NFP is the top right corner of the
enclosing rectangle of that translated orbiting polygon. The (reference point of) the NFP is subsequently
translated to the origin and the NFP is stored at that position. During the optimisation stage, the NFP
can then by retrieved and

An example of this process is shown in Figure 2.4. Consider fixed polygon A and orbiting polygon
B, where their bottom left corners of their enclosing rectangles are taken as reference points: (3, 3)
and (1.5, 2) respectively (Figure 2.4a). The NFP construction algorithm, presented in Part 1 (scientific
paper), results in 𝑁𝐹𝑃𝐴𝐵 where the bottom left corner of its enclosing rectangle is found at (0, −2).
(Figure 2.4b). Translating the orbiting polygon B from (1.5, 2) to the NFP’s bottom left corner (0, −2),
the reference point of 𝑁𝐹𝑃𝐴𝐵 is found at the top right corner of the (translated) orbiting polygon B at
(1, −1) marked by the cross in Figure 2.4c. During the optimisation stage, the reference point of the
NFP is translated to match the reference point of the fixed polygon A (Figure 2.4d). The boundary of the
NFP then represents the actual possible positions where (the reference point of) the orbiting polygon
B can be placed with respect to fixed polygon A in order for the two polygons to touch.

(a) (b) (c) (d)

Figure 2.4: (a) fixed polygon A and orbiting polygon B and their respective enclosing rectangles, (b) the resulting 𝑁𝐹𝑃𝐴𝐵 and
its enclosing rectangle, (c) translating orbiting polygon B to match the bottom­left corner of its enclosing rectangle with that of

the NFP to find the reference point of the NFP, (d) the NFP translated to match the fixed polygon A.
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3
Geometric representations and tools

The first obstacle in the aircraft parking problem, and more generally the cutting and packing problem,
is related to the geometry: how does one determine if two shapes are overlapping? This question
becomes much more complex when irregular shapes, such as representations of aircraft, are involved
(Leao et al., 2020). Bennell and Oliveira (2008) noted that this geometric problem is not a trivial task
and provided a tutorial for the geometry of the nesting problem. They found that the four most common
modelling approaches applied to the nesting problem are the raster method, direct trigonometry, the
no­fit polygon (NFP), and the phi function. Each one of these approaches will be discussed in the next
sections, respectively.

3.1. Raster method
When a raster representation is used, the continuous placement area is represented by a discrete grid.
An example in its most basic form can be seen in Figure 3.1. Here, the piece is represented by 1s in the
grid, and empty cells are assigned 0. Checking overlap between pieces then simply becomes a matter
of adding the values for each cell in the grid; whenever the cell’s value is greater than one, overlap is
present in that cell. An advantage of the raster approach is that it is easy to implement and no complex
calculations are required. A disadvantage is that pieces cannot be represented precisely (as is clear
from Figure 3.1). Though accuracy can somewhat be improved by increasing the grid resolution, it
comes at the expense of an increased computational time (Bennell and Oliveira, 2008).

Figure 3.1: Example of raster representation (Bennell and Oliveira, 2008).

3.2. Direct trigonometry
Direct trigonometry methods can be used to more accurately represent the pieces compared to the
raster method. Though the methods are more precise, the run times for feasibility checks will be slower
(Bennell and Oliveira, 2008). Leao et al. (2020) identified three direct trigonometry approaches, namely
the D­function, circle covering method, and the separation lines approach.

The D­function originally proposed by Konopasek (1981), where the pieces are represented as
polygons, has been a popular direct trigonometry tool applied to the nesting problem (Leao et al.,
2020). The method is based on the distance from a point to a straight line and efficiently determines
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the relative position between two edges of different pieces and can be used to check if the two edges
intersect. Ferreira et al. (1998) improved the method by first determining whether the bounding boxes
of pieces intersect, and if true subsequently identifies whether overlap is present between the bounding
boxes of the edges of those pieces. The principle is shown in Figure 3.2. The procedure showed a
significant reduction in the amount of direct edge intersection tests between two polygons (Bennell and
Oliveira, 2009).

Figure 3.2: Bounding box overlap for complete polygon (left) and individual edges (right) (Bennell and Oliveira, 2008).

Rocha et al. (2014) proposed a circle covering approach to represent a piece by a set of circles
covering the piece in a nonlinear model. The main idea behind this approach is that operations with
circles are simple, and therefore the approach allows for straightforward overlap calculations and it
can take into account continuous rotations of pieces. They compared three types of circle covering
representations. In the inner covering representation all the circles lie within the piece (Figure 3.3a).
In the complete circle covering representation, the circles cover the piece entirely (Figure 3.3b). In the
partial circle covering, the circles do not completely contain the piece, but also do not lie entirely within
in the piece.

A benefit of the circle covering approach is that continuous rotations of pieces can easily be con­
sidered, whereas usually in literature the orientation is fixed or only a discrete set of orientations is
allowed. A drawback of the approach is that the pieces are not precisely represented, and a balance
between the amount of circles representing the piece and the precision must be found. As a result,
the imprecision could lead to infeasible solutions when the inner circle covering representation is used,
and in complete circle covering representations it could result in gaps between the actual pieces in the
final layout (Rocha et al., 2014).

(a) Inner circle representation (b) Complete circle representation

Figure 3.3: Circle covering representation (Leao et al., 2020).

Recently Peralta et al. (2018) used the concept of separation lines for the packing of irregular pieces
problem in their nonlinear model. Separation lines are used to ensure that two polygons do not overlap
and a straight line is a separation line when all vertices of one polygon are on or on one side of that
line, and all vertices of the other polygon are on or on the other side of that line. Separation lines can
rotate and translate, as long as the aforementioned definition remains valid. Non­convex polygons are
decomposed into a set of convex polygons, and each polygon in the convex set has its own separation
line with other polygons not belonging the set.

The benefit of the method is that it allows for continuous rotations and in contrast to the circle
covering method proposed by Rocha et al. (2014) discussed earlier, the polygons are used directly
and therefore does not suffer from the imprecision caused by the circle covering approach. The results
were found to be slightly worse than the approach by Stoyan et al. (2016), who used the phi function
(described in section 3.4) to determine overlap and they too allowed for continuous rotation of pieces.
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3.3. No­fit polygon
The concept of the no­fit polygon (NFP) was first introduced by Art (1966) and has become a widely
used tool to handle the geometry of nesting problems. Since the NFP is constructed from the original
edges of the polygons, it represents the pieces accurately while the method is more efficient than the
direct trigonometry approach, especially benefiting iterative search methods for finding solutions to the
nesting problem (Bennell and Song, 2008).

The boundary of the NFP can be viewed as the relative position of the two polygons that represents
the two pieces touching. Any point within the NFP represents overlap, and any point outside the NFP
represents that the pieces do not overlap (or touch). An example of the NFP is shown in Figure 3.4.
Here, piece 𝑖 is fixed and piece 𝑗 slides around piece 𝑖 in such a way that piece 𝑗 always touches piece 𝑖,
and its reference point (top of the triangle piece 𝑗) is traced during the procedure. The resulting polygon
𝑁𝐹𝑃𝑖𝑗 is shown in Figure 3.4c. The inner­fit polygon (IFP) is a concept related to the NFP. Here, the
piece slides within (instead of around) the fixed polygon and remains enclosed by it. The IFP is used
to verify that a piece remains within the physical boundaries of the problem (e.g. aircraft placements
do not exceed the allocated taxiway dimensions) (Bennell and Oliveira, 2009).

(a) Pieces 𝑖 and 𝑗 (b) NFP construction (c) 𝑁𝐹𝑃𝑖𝑗

Figure 3.4: No­fit polygon example (Leao et al., 2020).

The benefit of the NFP approach is that it reduces the overlap test to a simpler point in polygon test
and the NFPs for all pairs of pieces can be calculated in a pre­processing phase, both reducing the
computational cost in the optimisation phase. However, for each orientation of a piece a new NFP must
be calculated and therefore only a discrete set of orientations can be used, not allowing for continuous
rotations. In addition, NFP generation for non­convex shapes is not a straightforward task (Bennell and
Oliveira, 2009).

The method proposed by Cuninghame­Green (1989) generates a NFP for the simplest case of two
convex polygons. It provides a simple, easy to understand algorithm illustrating the NFP generation
and the principle is shown in Figure 3.5. First, the edges of polygons 𝑖 and 𝑗 are oriented in a clock­
wise and counterclockwise manner respectively, where 𝑖 is the fixed polygon and 𝑗 is moving polygon
(Figure 3.5a). Next, the edges are translated to start at a single point (Figure 3.5b). In the final step
the translated edges from Figure 3.5b are linked together in a clockwise manner, resulting in the 𝑁𝐹𝑃𝑖𝑗
(Figure 3.5c).

(a) Pieces 𝑖 and 𝑗 clockwise and counter­
clockwise oriented respectively

(b) Edge translation to single point
(c) Concatenate edges clockwise to create
𝑁𝐹𝑃𝑖𝑗

Figure 3.5: Cuninghame­Green (1989) method for no­fit polygon generation (Cherri et al., 2016).

As mentioned earlier, constructing an algorithm for NFP generation for non­convex polygons, such
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as aircraft representations, is not trivial. Bennell and Oliveira (2008) identified three main approaches,
namely the sliding approach, the method using Minkowski sums, and the decomposition of polygons
into simpler convex polygons.

The sliding approach, also known as the orbital approach, was first introduced by Mahadevan
(1984). The method is based on physically sliding the orbiting piece around the fixed polygon by
finding the feasible translation vector. Each translation creates an edge of the NFP and the process
is repeated until the starting point is reached again. However, the approach cannot deal with special
cases such as concavities within a polygon. More recently, Burke et al. (2007) improved the method
to correctly handle degenerate cases (e.g. holes, concavities, exact fits), by finding additional starting
points along the edges of the polygon, from where the sliding approach is used once again to generate
the remaining NFP sections.

The second approach is based on a form of vector addition, namely the Minkowski sums. Bennell
et al. (2001) and Bennell and Song (2008) provide a detailed method to obtain the NFP using Minkowski
sums. The Minkowski sum is defined as follows in Equation 3.1, where 𝐴 and 𝐵 are two sets of points:

𝐴⊕ 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (3.1)

It can be shown that the Minkowski difference, defined as 𝐴 ⊕ −𝐵, is equal to the NFP of A and
B (𝑁𝐹𝑃𝐴𝐵) (Bennell et al., 2001). This is equivalent to orienting the edges of the pieces in opposing
directions (Figure 3.5a), as is done in the Cuninghame­Green (1989) method discussed earlier. In fact,
the Cuninghame­Green (1989) method is identical to the Minkowski sum in its simplest form where
both polygons are convex. The detailed approach for constructing the NFP using Minkowski sums by
Bennell and Song (2008) improves the work by Bennell et al. (2001), by properly handling degenerate
cases, and provides a robust procedure for generating the NFP for irregular and non­convex polygons
using Minkowski sums.

The third method is to decompose the non­convex polygons into simpler convex polygons for which
the NFP can be generated easily by using for example the Cuninghame­Green (1989) approach dis­
cussed earlier. Bennell and Oliveira (2008) noted however that decomposing and recombining the
several sub NFPs into one NFP is a complex process. Although an optimal set of sub NFPs reduces
the Minkowski sum computation times, the computation times for generating an optimal set of sub NFPs
are costly and do not justify the obtained benefit, hence heuristic methods to create a set of (sub opti­
mal) sub NFPs are preferred. Furthermore, some degenerate cases cannot be handled and additional
direct tests must be applied to find those cases.

3.4. Phi­function
Stoyan et al. (2001) introduced the concept of phi­functions, which are used to define the relation
between two objects. If the value of the phi­functions is smaller than zero, the two objects overlap, if
the value is greater than zero, the two objects do not overlap. If the value is exactly zero, the two objects
touch and the phi­function is equal to the boundary of the NFP. When the phi­function is normalised, the
Euclidean distance between the objects is equal to the value of the phi­function. Stoyan et al. (2001)
derived the phi­functions for so called primary objects, which are circles, rectangles, regular polygons,
and convex polygons. More complex objects can be represented by combining primary objects, using
their unions and/or intersections.

A simple example with two circles is shown in Figure 3.6, where 𝑟1 is the radius of circle 1 (positioned
at (𝑥1, 𝑦1)) and 𝑟2 the radius of circle 2 (positioned at (𝑥2, 𝑦2)). In order for the circles not to overlap, the
distance between their centres must be at least the sum of their radii. Hence, the equation describing all
the positions of circle 2 where it would be touching circle 1 is given by√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 = 𝑟1+𝑟2.
As mentioned earlier, when the objects touch the value of the phi­function is zero. Hence the phi­
function, when 𝜙(𝑥1, 𝑦1; 𝑥2, 𝑦2) = 0, is then defined as (Equation 3.2):

𝜙(𝑥1, 𝑦1; 𝑥2, 𝑦2) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 − (𝑟1 + 𝑟2) (3.2)
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Figure 3.6: Two circles touching (Bennell and Oliveira, 2008).

The example in Figure 3.6 with two circles is the simplest case, where the phi­function can be
defined as a single equation. Other objects require multiple functions, and the dominating function is
determined by whether the function is either the maximum or minimum, depending on the shape and
position. For example, in Figure 3.7, consider the case where 𝜙(𝑥, 𝑦) = 0 (i.e. the NFP), then four phi­
functions must be defined, one for each edge. If the orbiting square is placed e.g. on the bottom edge of
the NFP, and thus 𝜙(𝑥, 𝑦) = 0 is for the equation describing the bottom edge of the NFP. Consequently,
the equations describing the other three edges will then result in a negative value (𝜙(𝑥, 𝑦) < 0) for
those edges. Therefore, selecting the maximum of the four functions will give the dominating function,
correctly describing the NFP.

When the orbiting square is moved further away, additional functions must be defined, taking into
account the curved corners for instances where 𝜙(𝑥, 𝑦) > 0. The reader is referred to Stoyan et al.
(2001) for the derivation of such instances, and their paper also includes phi­function derivations of
other primary objects.

Figure 3.7: Two cases of phi­functions (Bennell and Oliveira, 2008).

A benefit of the of the phi function method is that continuous rotations can be considered such as
presented by Stoyan et al. (2016). A drawback of the phi­function method is that there is no algorithmic
approach to obtain functions for arbitrary shapes and the functions must be derived by hand. Bennell
and Oliveira (2008) suggest that that might be the reason why the phi­functions have not been widely
adopted by researchers, despite it being a potentially powerful tool. Indeed, a recent review of nesting
problems by Leao et al. (2020) showed that phi­function approach is still mostly used in work (co­
)authored by Stoyan.
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4
Metaheuristics

Some problems can be so complex that it might not be realistically possible to solve for an optimal so­
lution. When exact methods are not able to solve a problem to an optimal solution (within a reasonable
amount of time), heuristics are commonly applied to find a good feasible solution, approximating an
optimal solution. A heuristic algorithm is based on common sense ideas tailored to a specific problem
and is usually an iterative process, searching for a new, possibly better, solution each iteration. Such
improvement procedures can, however, get stuck in a local optimum when a problem has multiple local
optima. Metaheuristic are general solution methods that have the ability to escape local optima, and
thereby directing the search towards the global optimal solution. In this section the main principles
of the most common metaheuristics according to Hillier and Lieberman (2015) are briefly discussed,
namely the tabu search in section 4.1, simulated annealing (section 4.2), and the genetic algorithm in
section 4.3.

4.1. Tabu search
A tabu search algorithm uses a local search procedure to find a local optimal solution, iteratively im­
proving the solution during the search. When a local optimum is reached, the search then continues
by allowing moves which do not improve the solution in order to escape the local optimum. To avoid
circling back to the same local optimum, a tabu list temporarily stores moves which would otherwise
lead back to the same local optimum. Moves on the tabu list are not allowed, unless the move would
result in a better feasible solution than the best solution found in any of the previous iterations. Longer
term memory is used in diversification strategies, which force the search process into a new unseen
part of the solution space, and intensification strategies, which search a particular part of the solution
space in more detail (Hillier and Lieberman, 2015).

4.2. Simulated annealing
Using the analogy of hill climbing, the tabu search climbs to the top of a hill and then descends in search
for another hill to climb, whereas the simulated annealing approach tries to find the tallest hill by initially
moving in random directions. This is done by selecting one of the neighbouring solutions randomly, and
comparing it to the current solution. If the randomly selected solution is better or equal, it will always
become the new solution in the next iteration. If it is worse, than the solution is only accepted according
to the following probability (in case the objective is maximisation), where 𝑍𝑐 is the objective function
value of the current solution, and 𝑍𝑛 is the objective function value of the potential next solution under
consideration (Equation 4.1, Hillier and Lieberman (2015)):

𝑃𝑟𝑜𝑏{𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒} = 𝑒𝑥 where 𝑥 =
𝑍𝑛 − 𝑍𝑐
𝑇

(4.1)

Slight downward moves therefore have higher probabilities of becoming the next solution, while
moves producing solutions which are much worse have lower probabilities of becoming the next solu­
tion. Obviously, the probability also depends on the value of 𝑇. At the start of the search, the value of
𝑇 is (relatively) high, resulting in higher acceptance probabilities of downward moves. Throughout the
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search the value of 𝑇 is lowered, decreasing the probability of accepting a downwards move and con­
sequently mostly upwards moves will be accepted in the later stages of the search process. Hence the
name simulated annealing, which is based on the physical annealing process, where a melted metal
with a high temperature is slowly cooled during the process. The values of 𝑇 throughout the searchmust
be chosen carefully for a successful implementation of the algorithm (Hillier and Lieberman, 2015).

4.3. Genetic algorithm
The genetic algorithm is based on the analogy with the evolutionary principle of the survival of the
fittest in nature. Instead of improving one solution each iteration, a set of solutions (the population)
is considered each iteration. The fitness is determined to select the best solutions, and the fittest
members (i.e. best solutions) have better chances to become parents, which are paired randomly.
Children are generated, i.e. new solutions which have features of both parents. During the process of
generating children, mutations can occur so that children obtain features that do not belong to any two
of the parents. Mutations allow for diversification of the search into unexplored areas of the solution
space, possibly generating better solutions. If a generated child with potential mutations results in
an infeasible solution, a new solution is created until a feasible solution is obtained. The principle of
survival of the fittest results in improving populations each iteration, and tends to lead to a near optimal
solution (Hillier and Lieberman, 2015).
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5
Hangar aircraft placement optimisation

A problem related to the long term parking problem is that of the aircraft placement in a maintenance
hangar. By optimising the parking positions of aircraft within the hangar, a greater number of aircraft
could potentially be serviced simultaneously, benefiting the maintenance service providers. Although
the problem is different in certain aspects (which will become clear at the end of this section), it is similar
in that a certain number of aircraft have to be parked within a limited amount of space as efficiently as
possible.

The hangar aircraft parking problem in existing literature can essentially be seen as a variation of
the cutting and packing or nesting problem, discussed in chapter 6. Because of their relevance to
and similarity with the long term parking problem, the papers incorporating the hangar aircraft parking
problem are discussed here separately in detail.

The existing literature on this topic is rather limited, and the papers on this topic will therefore be
discussed in chronological order in this chapter. Qin et al. (2018) proposed a two­stage MIP strategy
for the hangar parking problem, minimising unused hangar space in the first stage and maximising
the safety spacing between aircraft in the second stage. Their work is discussed in section 5.1. In
section 5.2 the quasi 3D parking arrangement of Qin et al. (2019) is discussed briefly, who incorporated
the hangar layout planning problem into the maintenance scheduling problem of aircraft. Li et al. (2019)
developed a genetic algorithm for optimising space utilisation in an irregular hangar which is discussed
in section 5.3. Finally, some differences with regard to the long term parking problem are highlighted
in section 5.4.

5.1. A two­stage MIP approach (Qin et al., 2018)
Qin et al. (2018) studied the aircraft hangar parking problem from the perspective of an independent
maintenance service provider. In contrast to a maintenance facility owned and used by an airline itself,
where usually fixed parking stands are designed because of the limited amount of aircraft types within
the airline, an independent maintenance provider may receive maintenance requests from different
customers with different aircraft types and sizes, requiring a flexible solution of parking the aircraft in
the hangar. In this particular problem it is assumed that the aircraft selected for maintenance are rolled
into the hangar at the same time as a batch and maintenance starts when all aircraft are in their respec­
tive position. During maintenance, the aircraft are not moved and are rolled out only when maintenance
of the complete batch is finished. Furthermore, aircraft are moved in and out of the hangar in a straight
line and no rotations are allowed; all aircraft face in the same forward direction. The hangar space
considered is a rectangular area which can be fully utilised for aircraft placement, there is no space
reserved for other facilities (e.g. offices, equipment storage, maintenance vehicles, etc). As noted by
the authors, although the scheduling of maintenance has been a topic of research in the literature for
many years, no research was available for the optimisation of hangar space utilisation.

Methodology
The aircraft are modelled as non­convex polygons, roughly following their 2D outline in the horizontal
plane. In order to detect overlap between two aircraft, the no­fit polygon (NFP) approach is used to find
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the region where an aircraft cannot be placed. More precisely, the Minkowski sum method (Bennell
et al., 2001; Bennell and Song, 2008) was applied to construct the NFP between the two non­convex
polygons representing the aircraft.

In order to incorporate the NFP into the MIP model, a horizontal partitioning approach is adopted
as proposed by Alvarez­Valdes et al. (2013). For each edge of the NFP, two horizontal lines, one from
each vertex, are drawn outwards away from the NFP, representing the horizontal slice. Each horizontal
slice is associated with a binary decision variable, taking a value of 1 when the reference point of the
aircraft to be positioned is placed within that particular slice and 0 otherwise. The horizontal slice is
a polygon and defined by a set of linear inequalities, ensuring that the exact position of the reference
point of the aircraft to be positioned is placed within that particular slice. This principle can be seen in
Figure 5.1 for the NFP between two aircraft.

Figure 5.1: Concept of horizon slices for the NFP between two aircraft (Qin et al., 2018).

A two­stage MIP model was proposed. In the first stage the objective is to maximise overall profit by
selecting the aircraft maintenance requests which can be parked within the hangar without overlapping
each other. Under the assumption that larger aircraft (measured by their area) yield higher profits, the
problem is equivalent to minimising the unused space and the latter is used as objective function for
the MIP. However, the solution from the first stage might result in aircraft being placed closed to each
other, even while part of the hangar remains empty and all non­overlapping constraints are satisfied,
as can be seen in the left side of Figure 5.2.

In order to spread the aircraft more evenly across the hangar (right side of Figure 5.2), in the second
stage, the aircraft selection found from the first stage is taken and the safety margins between the
aircraft are maximised according to a specified lower and upper bound for each aircraft type. A higher
risk of collision is associated with larger aircraft as they are less manoeuvrable, and hence larger
margins are assigned to larger aircraft. The margin is incorporated into the model by enlarging the
NFP outwards by the safety margin, creating a buffer area around the aircraft. Imposing the lower
bound of the safety margin in the second stage might result in an infeasible solution and implies that
not all aircraft from the first stage can be placed inside the hangar. In that case, the first stage is
rerun but with revised NFPs, including the lower bound safety margin, resulting in a feasible solution
satisfying the minimal (lower bound) safety margin.
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Figure 5.2: Layout of first stage (left) and layout after second stage (right) (Qin et al., 2018).

In the second stage the MIP is adapted to maximise the safety margin between aircraft. For im­
proved efficiency, a heuristic algorithm is used to tighten the upper bound and the principle of the
algorithm is as follows. First, the safety margin of all aircraft are augmented until no feasible solution
can be produced anymore. Then the next step is to decrease the safety margin of individual aircraft,
starting with the aircraft having the lowest area. This process is repeated until a feasible solution is
found. If the lower bound of the safety margin of an individual aircraft is reached, then the next smallest
aircraft is taken. Subsequently, when a feasible solution is found, the safety margin of the aircraft with
the largest area is increased. If this results in an infeasible solution, the aircraft is removed from future
safety margin augmentation consideration and the next largest aircraft is selected.

Results
40 instances were tested with different combinations of aircraft types and the MIPs were solved using
CPLEX. Of the 40 instances, 6 could not be solved optimally in the first stage. All of these instances
included larger number of aircraft and after inspection of the best known solution for each instance it
was found that the hangar space was almost fully utilised and provided a satisfactory solution. It was
concluded that because of the non convex shape of the aircraft, the partitioning of the NFP between two
aircraft into horizontal slices results in many binary variables. Therefore, visiting all relative positions
of aircraft before updating the bounds and thus the optimality gap is a difficult process.

In the second stage the number of binary variables depends on the number of aircraft from stage
one and the range of the safety margin. Since this leads to an even greater amount of binary variables,
this problem becomes much more difficult than stage one and large optimality gaps are observed in
certain instances, although the solutions given are considered satisfactory from a practical perspective,
as was the case in the first stage. Nevertheless, in many instances the solution from the initial heuristic
solution was demonstrated by the exact branch and bound algorithm (CPLEX) to be the optimal so­
lution. Though in certain cases a better solution was found by the branch and bound algorithm, the
computational time was much longer in comparison to the heuristic solution. In addition, the heuris­
tic solution showed significantly improved layout plans regarding safety margins compared to manual
planning. Therefore, it was concluded by the authors that the heuristic solution gives a good solution
for all practical purposes, balancing computational time and solution quality.

5.2. 3D parking arrangement (Qin et al., 2019)
Qin et al. (2019) incorporated the hangar layout problem into the scheduling of the maintenance, gen­
erating a series of parking plans at different times which are aligned with the maintenance schedule
planning horizon. Although their research encompasses more than the hangar parking problem, for
the purpose of this literature study, the focus is on the hangar parking layout problem part only.

The research by Qin et al. (2019) with regard to the parking layout is an extension of their earlier
work (Qin et al., 2018). With the aim of more efficiently using the available space, the wing of a smaller
aircraft could be placed under the wing of a larger aircraft. In order to incorporate this idea into the
models, when the wing height difference between the two aircraft allows placement under the wing, the
NFP for the aircraft is split into two parts; the main body of the aircraft, and the wings. The main aircraft
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body NFP ensures separation between two aircraft bodies, while the wing NFP allows for overlap within
a certain safety margin. This concept is illustrated in Figure 5.3.

Figure 5.3: 3D parking problem (Qin et al., 2019).

5.3. Genetic algorithm for optimising space utilisation (Li et al.,
2019)

Li et al. (2019) proposed a genetic algorithm to solve the (2D) hangar parking problem. Similar to
Qin et al. (2018), it was assumed that aircraft are rolled in (and out) in a straight line and aircraft of
different types and sizes are considered. Differences are that Li et al. (2019) allowed the aircraft to
be placed tail­in or head­in, and an irregularly shaped hangar was considered instead of a rectangular
hangar area (Figure 5.4). A safety margin of onemetre was used between aircraft and the hangar walls.

44



Methodology
The aircraft are represented by non­convex polygons as can be seen in Figure 5.4, which is similar to
Qin et al. (2018), and the hangar space is represented as a 2D Cartesian coordinate system (origin in
the left bottom corner). The reference point for placement is taken as the intersection of the centre line
of the aircraft and the edge of the polygon representing the tail. In order to place the aircraft, a set of
main references lines are drawn as shown in Figure 5.4 indicated by the square brackets. Each main
set consists of a further amount of equidistant lines, which coincide with the x­value in the Cartesian
coordinate system (the dotted lines around and including reference line [6] in Figure 5.4).

Each chromosome consists of the same amount of parts as there are main sets of reference lines,
where each part of the chromosome corresponds directly to that set. In each part also the position of
the reference line (i.e. the x­value), its orientation, and the aircraft type is recorded. For example, in
Figure 5.4, for the L900LX aircraft, it will be in part 6 of the chromosome (i.e. the set of references lines
indexed [6]) and is placed on the 4th reference line within that set. It is directed upward (i.e. tail­in) and
the type is a F900LX aircraft.

Figure 5.4: Reference lines for aircraft placement (Li et al., 2019).

In order to place an aircraft, the algorithm starts by placing the aircraft at the lowest y­value possible.
If conflicts occur, the aircraft is moved upwards along the chosen reference line until no conflicts are
present. This process is shown in Figure 5.5. If the aircraft cannot be placed along the reference line,
the chromosome is deemed not fit and a new chromosome is generated.
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Figure 5.5: Vertical positioning along the reference line (Li et al., 2019).

To create an initial set of solutions, chromosomes are generated randomly. At initialisation, only
a small number of aircraft are placed in each chromosome and therefore feasible (fit) solutions are
easily obtained. A crossover operation randomly pairs two chromosomes and the purpose is to place
an aircraft from one chromosome to the same position in the other chromosome in order to obtain new
chromosomes, provided that that position in the other chromosome is empty and the aircraft is not
already placed in that chromosome.

Three mutation operators, which are executed sequentially, are defined: swapping, moving line,
and turning head. First, a swapping operation randomly selects an occupied line set and is swapped
with another randomly select line set. The moving line operator then randomly selects an occupied line
set, and the occupied reference line within that set is moved to another (empty) reference line within
that line set. Finally, in the turning head operator an aircraft already placed is randomly selected and its
orientation is changed from tail­in to head­in or vice versa. Furthermore, after each mutation operation,
an insertion operation is executed attempting to place the aircraft not yet placed on one of the empty
reference lines.

In order to select the better chromosomes for the next generation, a roulette wheel approach is
used. In such an approach, better chromosomes have a higher chance proportional to their value of
being selected.

Results
The experiment was run 10 times with an average computational time of 50 minutes and a standard
deviation of 12 minutes. For the case studied, it was found that by using the proposed algorithm one
additional aircraft could be park when compared to manual planning.

However, the research does not incorporate other hangar layouts and does not discuss the placing
of the reference lines. The placement of the (set of) references lines could possibly influence the
outcome of the solution. In addition, each line can only be used once, therefore placing (the reference
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point of) two aircraft on the same line immediately after each other is not possible; an offset will always
be present. Furthermore, using such reference lines effectively discretises the solution space and
potential feasible solutions are therefore missed. Finally, aircraft are limited to two orientations (i.e.
head­in or tail­on), allowing more rotation angles could possibly result in better solutions.

5.4. Differences with the long term parking problem
The hangar aircraft parking problem is the problem closest related to that of the long term parking
problem. As noted by Qin et al. (2018) and Li et al. (2019), the literature on the topic is rather limited
but the hangar parking problem could be a starting point for the long term parking problem. However,
some clear differences between the hangar parking problem and the long term parking problem can be
identified.

First, aircraft are rolled in and out of the hangar in straight lines due to manoeuvrability constraints
within the hangar, leaving only two orientations possible (i.e. tail­in or head­in). In contrast, for the long
term parking problem, the aircraft are placed in an open space such as a runway or taxiway where
such restrictions are not present and therefore any orientation is possible. A second difference is that
aircraft placed on a runway are not confined to the dimensions of the runway itself, as for example the
wing or tail could be allowed to overhang the grass next to the runway. Furthermore, the aircraft do
not allow for any overlap in the hangar problem researched by Qin et al. (2018) and Li et al. (2019).
As certain maintenance tasks perhaps do not allow for such overlap, the layout with wing overhang
proposed by Qin et al. (2019) could be used more aggressively in the long term parking problem. In
addition, several maintenance tasks must be performed regularly during the long term parking to keep
the aircraft in good condition, such as idle engine runs, tire rotation, and operational system checks
(Ackert, 2010). Finally, the problem size for long term parking is expected to be larger because more
aircraft can be parked on an outside surface than within a hangar and therefore also more types of
aircraft could be present compared to the hangar problem, possibly influencing the results. These
additional requirements should be taken into account when positioning aircraft for long term parking.
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6
Cutting and packing of irregular shapes

problems
In this section the existing approaches for solving cutting and problems are discussed. Since little
research exists on the optimisation of aircraft parking positions outside the context of using fixed airport
infrastructure, commonly known as the gate or stand allocation problem, see e.g. Guépeta et al. (2015),
approaches for solving cutting and packing problems could be a source of inspiration for the optimisation
of the long term parking of aircraft. More specifically, problems that involve irregular shapes (such as
aircraft) are considered, which are also known as nesting problems. Irregular problems aremuch harder
to solve than problems where e.g. only rectangles are considered, due to the geometric complexities
it involves (Leao et al., 2020). Allowing the shapes to rotate adds to this complexity even further.
The problem is known to be NP­hard (Błażewicz et al., 1993; Stoyan et al., 2016) which results in
the solution approaches mainly using heuristic methods in literature, though some exact approaches
have been researched. The main focus in this section is on 2D nesting problems problems, since for
the purpose of long term parking of aircraft, the aircraft are parked on the same surface and then the
aircraft’s projected 2D shape can be used. Some 3D elements could be incorporated, such as wing
overhang, as was already discussed in section 5.2. There are several variants of the nesting problem,
the most common ones discussed in this section are: packing items into a single container with fixed
dimensions, packing items into a rectangular piece with fixed width and infinite length (strip packing),
or bin packing where items are divided and packed into several containers. The focus in this section is
not on either of the variants, rather the main interest is to review the typical packing strategies used.

First, exact approaches that have been proposed in literature will discussed in section 6.1. Next,
in section 6.2, heuristic approaches will be discussed. The section is concluded in section 6.3 with a
short summary of the main approaches discussed.

6.1. Exact methods
Although some exact methods have been proposed, such approaches can only realistically solve to
optimality for small instances, and with no or only a very limited amount of rotations. For example,
Alvarez­Valdes et al. (2013) proposed a branch and bound algorithm and used a horizontal partitioning
approach dividing the NFP into horizontal slices in order to incorporate the NFP into their MIP model.
No rotations were considered, and only the instances with 10 pieces could all be solved to optimality
within one hour. Some, but not all, instances up to 16 pieces could be solved to optimality when the
time limit was increased to ten hours. They concluded that the complexity of the problem increases
with the amount of pieces, and the amount of edges each piece has (i.e. the complexity of the piece
itself). Some of the complexity can be eliminated by introducing the Dotted­Board Model (Toledo et al.,
2013), which discretises the continuous placement area into a grid of points, and the corresponding
MIP is solved using a commercial solver. The discretisation allowed them to solve problem instances
up to 56 pieces to optimality (in the discrete solution space for a certain discretisation step), however no
rotations were considered. In order to solve instances with more pieces or where rotations are allowed
using the dotted board model, pieces can be pairwise clustered by joining them into a single piece
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(Sato et al., 2018). Although clustering will not improve the quality of the solution, computations will be
faster. Cherri et al. (2016) proposed a MIP model where the pieces are decomposed and represented
as convex polygons, allowing for easy NFP generation, and the D­function is used to impose the non­
overlapping constraints between a piece and the corresponding NFP. Discrete rotations can be included
by reproducing the piece with the corresponding amount rotations and adding additional constraints so
that only one of the reproduced pieces is used in the layout of the model. Two orientations were
considered for instances up to 12 pieces, and although better results were found when rotations were
allowed, it comes at the expensive of increased computational time and it is not possible to solve to
optimality for larger problems.

Several non­linear programming (NLP) approaches were proposed (Peralta et al., 2018; Rocha
et al., 2014; Stoyan et al., 2016), allowing for continuous rotations in the mathematical model (this
in contrast to MIP formulations, which only allow discrete rotations). However, Peralta et al. (2018)
and Rocha et al. (2014) their solution methods using existing solvers only solve to local optima, and
Stoyan et al. (2016) stated that it is not realistic to solve the NLP problem to optimality and proposed
an algorithm to find good local optimal solutions.

Cherri et al. (2018) proposed a novel mixed integer quadratically constrained programming model
with continuous rotations and used off­the­shelf global optimisation solvers to find the optimal solution.
However, most instances with 4 or more pieces could not be solved to proven optimality as either the
computational time limit of 7 hours was reached or the computer system with 16 gigabytes of memory
ran out of memory.

Cherri et al. (2016) concluded that approaches using mathematical models are only able to solve
small instances with no or very limited rotations to proven optimality. The lower bounds were found to
be of poor quality, and therefore feasible solutions generated during the search are not better than the
solutions (meta)heuristic approaches can achieve in the same amount of time.

It is therefore concluded that exact methods are not suitable for the purpose of long term aircraft
parking optimisation, as aircraft can be placed at any arbitrary orientation and instances with larger
amounts of aircraft should be considered than the amount of pieces that were considered in the exact
methods described above. Hence, the remainder of this section will be focused on heuristic methods
to solve the irregular cutting and packing problem.

6.2. Heuristic methods
Improvement heuristics improve complete solutions by e.g. moving and swapping pieces, and thereby
creating neighbouring solutions. As was mentioned in chapter 4, heuristics tend to converge to a local
optimum and hence are combined with a higher­level metaheuristic in order to escape local optima.
Bennell and Oliveira (2009) divided the improvement heuristics into two main categories, based on their
representation. In the first representation the layout is a sequence of pieces, which is decoded into the
final layout through a set of placement rules, also known as a constructive algorithm or placement
heuristic. The search for a new solution is therefore over the sequence in which the pieces are placed.
The second approach is working with the physical layout directly, and moving/swapping/rotating pieces
within the actual layout itself instead of the sequence. In this approach overlap is usually permitted
in order the search the solution space, and the overlap is then penalised in the objective function. In
both cases a constructive algorithm is used; in the sequence representation the sequence is decoded
through the constructive algorithm as a subroutine to generate and evaluate the actual layout, while
with the physical layout a constructive algorithm is used to generate an initial feasible solution.

In this section the same division between improvements heuristics will be used. First, common con­
structive algorithms will be discussed in subsection 6.2.1. This is then followed by solution approaches
searching over the sequence, and approaches searching over the physical layout in subsection 6.2.2
and 6.2.3, respectively.

6.2.1. Constructive algorithms
Two main aspects must be considered when developing a constructive heuristic (also known as place­
ment heuristic): the placement rules must be established (i.e. where to place the next piece) and the
initial placement sequence of the pieces must be determined (i.e. which piece to place next). A popu­
lar placement rule is the bottom left placement rule (Bennell and Oliveira, 2009). An intuitive example
is shown in Figure 6.1. Here the piece is iteratively moved horizontally as much as possible, then
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continues down vertically until its position allows it to move horizontally again. When the piece is not
able to move left or down anymore, the procedure is stopped. The concept was first proposed by Art
(1966) for the nesting problem, and the principle is still used in more recent solution methods. For
example, Abeysooriya et al. (2018), Burke et al. (2006), Gomes and Oliveira (2002), and Mundim et al.
(2017) all proposed solution methods which searched over the sequence and decoded their generated
sequences through a bottom left algorithm, and Egeblad et al. (2007) and Elkeran (2013) used the
bottom left principle to create an initial solution which is then subsequently improved by searching over
the physical layout directly.

Figure 6.1: Bottom left placement strategy principle (Bennell and Oliveira, 2009).

The exact implementation of the bottom left placement rule is dependent on the geometric repre­
sentation used. If a discrete raster representation is used for both the piece and the placement area,
the piece is moved horizontally from raster point to raster point until an unfeasible location is reached.
The piece is then returned to the previous feasible location and moves one grid unit downwards, if pos­
sible. The algorithm then repeats and tries moving horizontally again. If both options would result in an
infeasible solution, i.e. overlap is detected or the piece moves outside the boundaries of the placement
area, the piece remains at its current grid position and becomes its final position. When the pieces are
represented by polygons and the placement area is continuous, the infinite amount of feasible place­
ment points must be reduced to a discrete, finite set. Several methods have been proposed to achieve
this reduction. For example, Mundim et al. (2017) superimposed a grid onto the placement area and
moved the pieces stepwise along the grid, similar to the raster representation but the pieces remain
represented as polygons. Burke et al. (2006) proposed a method where the x­axis is discretised similar
to the previous approaches, but the y­axis is continuous, therefore producing more compact layouts.
Geometric functions are then used in order to determine the vertical displacement needed for a feasi­
ble placement along the continuous y­axis. The concept of the NFP was used by Gomes and Oliveira
(2002) to determine a feasible placement set. The (reference point of the) piece that is placed next
must be outside all NFPs and within the IFP (inner­fit polygon), which represents the feasible place­
ment region. By selecting the left most (lowest) x­coordinate of that region, and then, given that left
most x­coordinate, selecting the bottom most (lowest) y­coordinate, the placement position is found.
The authors observed that this procedure would always result in placing the piece on a vertex of the
feasible region; namely, a vertex of a NFP, a vertex of the IFP, the intersection of two edges of two
NFPs, or the intersection of a NFP edge and an IFP edge.

Holes might be present in the layout of the pieces already placed, and a pure bottom left algorithm
will not be able to fill these holes since the pieces are introduced from the right (relative to Figure 6.1).
Burke et al. (2006) therefore proposed the new bottom left fill algorithm, which starts searching from
the left side, through the infeasible regions first. In this manner holes will be encountered first and fill up
first before reaching the empty right side of the placement area. The constructive algorithm proposed
by Abeysooriya et al. (2018) overcomes the hole filling issue by first comparing the area of the hole to
the area of the piece to be placed next. If the hole has a smaller area than the piece, the piece will
certainly not fit in the hole. Otherwise, if the area of the piece is smaller than the hole, the piece could
potentially fit and a procedure is started to generate an IFP of the hole and the piece. The piece is then
placed at the most bottom left position of this IFP. If the IFP does not exist, the piece will not fit and
then the algorithm will continue with the regular bottom left rule. The bottom left rule based on the NFP
method by Gomes and Oliveira (2002) discussed earlier automatically takes into account holes, since
the holes will be part of the feasible placement set.
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Oliveira et al. (2000) introduced a new constructive algorithm named TOPOS and the core principle
is illustrated in Figure 6.2. Pieces are added to the layout one by one, growing the partial solution with
each piece placement. The pieces already placed (i.e. the partial solution) are (is) represented by the
external contour of the pieces and the contour can be treated as one piece. Hence, any enclosed gaps
cannot be used anymore for future placement. The origin is not fixed and hence pieces can be added
at any side of the partial solution, as long the generated new solution does not exceed the maximum
dimensions of the actual placement area. The concept of the NFP is used to determine the feasible
placement points when placing the next piece. Three placement rules were proposed for adding a piece
to the partial layout: 1) minimising the area of the rectangular enclosure of the generated new partial
solution; 2) minimising the length of the rectangular enclosure of the generated new partial solution; or
3) maximising the overlap between the rectangular enclosures of the current partial solution and the
piece to be placed, while the pieces themselves do not overlap. The TOPOS algorithm was revised
by Bennell and Song (2010) to allow for filling holes by merging the NFPs of the original individual
polygons rather than representing the layout by its external contour and generating the NFP for the
external contour. Abeysooriya et al. (2018) used another variant of TOPOS by fixing the origin and
closing any gaps in the partial layout smaller than the smallest still to be placed piece.

Figure 6.2: TOPOS principle. The pieces to be placed (left) are placed according to the placement rules into a layout (middle)
and then pieces are merged and represented by their external contour (right) (Bennell and Song, 2010).

A novel placement principle based on the lowest­gravity­centre principle was introduced by Liu and
He (2006). First, the gravity centre of the piece to be placed next is calculated and is used as the piece’s
reference point for constructing the IFP. The lowest point on the IFP will than become the placement
point with the lowest­gravity­centre since the gravity centre is used as reference point for the IFP. The
placed piece is subtracted from the placement area in order to generate an artificial new boundary of
the placement area. Therefore only the IFP has to be calculated when placing a piece. This way, the
method aims at pushing the piece to be placed as close as possible to the pieces already placed. In
order to reduce the amount of holes, when a piece is placed the biggest hole between the piece and the
boundary is tested to fit other pieces. If another piece fits, that piece must be placed first. A somewhat
similar approach was proposed by Liu and Ye (2011), who introduced the HAPE algorithm. It aims to
minimise the total potential energy by keeping the centre of gravity as low as possible. However, the
method avoids the use of the NFP by discretising the placement area by superimposing a grid. The
piece is moved over all the grid points and at each grid point its gravity centre is calculated provided
there is no infeasibility (i.e. the piece does not overlap with other pieces and remains within the bound­
ary of the placement area). The grid point where the piece’s gravity centre is the lowest is chosen as
the placement point for the piece. Because calculating NFPs is a resource intensive task, the HAPE is
much faster than traditional NFP methods. However, the increase in computation times comes at the
expensive of solution quality as the solution space is discretised.

Besides the placement rules, the second aspect of a constructive algorithm is the placement se­
quence. For both solution approaches an initial placement sequence must be determined to generate
an initial solution. Gomes and Oliveira (2002) proposed several sorting criteria, namely: random order,
decreasing area, decreasing length, decreasing width, decreasing irregularity, increasing rectangular­
ity. Irregularity is measured as the difference between the area of the piece and the area of its convex
hull, and rectangularity is measured as the difference between the area of the piece and the area of
its enclosing rectangle. Except random sorting, all sorting criteria aim to place larger or more compli­
cated piece first, since its easier to place them first and the smaller pieces can then be used to fill any
holes present in the layout. The choice of initial sorting method can influence the final layout, and the
best initial sorting is dependant on the problem’s data set. (Gomes and Oliveira, 2002). Hence, the
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initial sorting strategy for a specific data set should be chosen based on experimental analysis. When
the constructive algorithm is used as a subroutine, decoding the placement sequence in approaches
searching over the sequence, the subsequent sequences generated during the search are used.

A constructive algorithm is capable of quickly generating a feasible solution. However, in order
to achieve higher quality solutions, an improvement heuristic must be used, by either searching over
the sequence of placement (subsection 6.2.2), or searching over the actual physical layout (subsec­
tion 6.2.3). The choice for either option is not trivial, since researchers continue to present competitive
solutions of good quality and improve results using benchmark data sets for both approaches. There
does not seem to be a consensus in literature as to which method is preferred. For example, Bennell
and Dowsland (2001) stated that the method allowing overlap in the physical layout is more efficient
than searching over the sequence, while Ramakrishnan et al. (2008) concluded that searching over
the sequence has several key benefits. Ramakrishnan et al. (2008) argued that researchers might be
improving algorithms to suit the benchmark data sets specifically, adding problem specific features into
the algorithm, which makes determining which solution approach performs best difficult. They therefore
ran a set of computational experiments comparing the core principles of both solutions approaches,
without any problem specific features, and used the metaheuristic tabu search to guide the search over
the solution space in both cases. It was found that searching over the sequence has several benefits
compared to searching over the physical layout. Good solutions were found in short time spans consis­
tently and due to the constructive algorithm decoding the sequence a feasible solution was guaranteed
each iteration. In contrast, approaches searching over the layout cannot guarantee a feasible solution
as overlap is allowed when moving between solutions and the algorithm can potentially get stuck re­
solving the overlap. Nevertheless, excellent results have been achieved by approaches searching over
the physical layout (Egeblad et al., 2007; Sato et al., 2019) and are therefore worth considering. It must
also be noted though that Ramakrishnan et al. (2008) only considered 2 admissible orientations for the
pieces. Allowing more rotations, as required for the aircraft parking problem, could possibly influence
the results as for each rotation the sequence must be decoded again for solution evaluation, which is
a computational expensive process (Bennell and Oliveira, 2009) and therefore potentially leading to
greater run times.

6.2.2. Searching over the sequence
When the problem is represented as a sequence of pieces which are then decoded through a construc­
tive algorithm to arrive at the actual layout, the search for finding better solutions is over the sequence
(such an algorithm is sometimes also known as an iterative constructive heuristic). A key advantage
of this approach is that feasibility is guaranteed by the placement rules of the constructive algorithm.

Common strategies to move from one solution to a neighbouring solution during the search are swap
moves, insert moves, and orientation changes (Bennell and Oliveira, 2009). A swap moves swaps the
position of two pieces in the sequence, an insert move moves the piece from its current position to
another position in the sequence, and an orientation change changes the piece’s orientation at its
present position. The three moves are illustrated in Figure 6.3, where the bottom left algorithm is used
to decode the sequence into a layout. Here it can be clearly seen that each moves results in a vastly
different layout. Generally, an insert move tends to result in bigger changes to the layout than a swap
moves because all pieces after the removed piece will now have changed position in the sequence.
Solution approaches can use a combination of these moves during the search, or simply only move
can be applied.
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Figure 6.3: Neighbourhood moves and their respective resulting layouts using the bottom left algorithm (Bennell and Oliveira,
2009).

Because of the amount of pieces to be placed in a typical nesting problem, the size of the neigh­
bourhood must be limited. This can for example by done by selecting one piece and include all possible
moves as the neighbourhood, or include all pieces but restrict the amount of allowed moves (Bennell
and Oliveira, 2009).

Gomes and Oliveira (2002) proposed an algorithm which exchanges two pieces in the sequence
(i.e. a swapmove) and restricted the neighbourhood size by setting amaximum swap distance between
the pieces. A bottom left algorithm is used to decode the sequence into a layout and the predefined
admissible orientations (0 or 180 degrees) are tested during the placement to find the most bottom
left placement of the piece. Several swap distances were evaluated, ranging from one to three, and
three strategies were considered to select the next solution. The first strategy is to select the first
solution that is better than the current solution, with the purpose of changing solutions quickly. The
second is to select the best solution (within the restricted neighbourhood) by an exhaustive search of
the neighbourhood. The third proposed strategy randomly selects a solution among all better solutions
in the neighbourhood, each with equal probability. The algorithm is stopped when no better solution
is found and thus has reached a local optimum. Each combination of swap distance and solution
selection strategy results in a total of nine algorithm variants, and the best results were found with the
probabilistic solution selection strategy in combination with a maximum swap distance of 3. In four of
the five benchmark data sets tested, their work produced the best known solution published at that
time.

Burke et al. (2006) proposed a tabu search based method and restricts the neighbourhood to five
solutions. One of the following five operators are used to generate a neighbouring solution: an insert
move, swap move, swapping three pieces, swapping four pieces, and swapping a random number
of pieces. In each case the pieces to be swapped are chosen randomly, however the pieces cannot
be of the same type as otherwise the resulting layout would be the same. In the case of the insert
move the piece and its new location are chosen randomly. The operator to generate a neighbouring
solution is chosen randomly with a bias towards the less disruptive operators (i.e. an insert move has a
higher chance of being selected while the operator swapping a random number of pieces has a lower
chance of being selected). The best solution within the neighbourhood is chosen and the tabu list
avoids visiting recent solutions. The tabu list length was set at 200 after initial experimentation, and
the bottom­left­fill algorithm, which uses a discrete x­axis but allows for continuous vertical placement,
was applied to decode the sequence into a layout. The orientation of a piece is determined by the
placement algorithm, choosing the orientation resulting in the most bottom left piece placement for all
allowed orientations. Out of the 26 data sets tested, the authors produced the best known results for
25 of them with the proposed algorithm.

In the computational experiments by Ramakrishnan et al. (2008) a tabu search strategy was adopted
as well. Five different neighbourhood types were tested. The first type swaps each piece in the se­
quence with each of the five next items in the sequence. The second type is similar to first type,
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however, only each of the first five pieces (instead of the whole sequence) are swapped with each of
the next five items. The third follows the same principle as the second, however now the first 10 pieces
of the sequence are swapped, and the maximum swap distance is 10, instead of 5. The fourth type
is similar to first type, but restricts its size by randomly sampling 10% of the possible moves. The fifth
type is similar to the fourth, however the swap distance here is increased to 10. Hence, the second
type results in the smallest neighbourhood size, and the first type in the largest. Experiments showed
that the fifth type consistently produced good results. The bottom left algorithm is used to decode the
sequence into a layout. Several tabu list lengths were considered ranging from 5 to 100, though it was
concluded the best tabu list length is problem dependant. Using this approach, solutions were close to
or matched the best known results of the data sets tested and it was concluded that the tabu search is
an excellent search method for the nesting problem.

Several approaches are based on the genetic algorithm. Jakobs (1996) proposed a genetic algo­
rithm, where the chromosome directly represents the sequence. A bottom left strategy was used to
translate the sequence into a layout which physically slides the pieces into their most bottom left po­
sition. The fitness function is defined as the contiguous remainder, i.e. the area where no items have
been placed yet but excluding holes. Solutions are selected to become parents with a probability pro­
portional to their fitness value. A random place in the sequence of one parent is chosen and a random
number of pieces starting from that place are copied to be the beginning of the new sequence. The
remainder of the pieces are then added to the back of the new solution in the same order as in the other
parent. A mutation operator rotates the piece 90 degrees, which has been set at a low probability of
being selected. The approach is based on rectangular shapes, though an algorithm variant is proposed
taking into account irregular shapes by using the pieces’ their respective bounding rectangular boxes
and by applying a shrinking algorithm. When the bottom left algorithm based on the no­fit polygon is
used, the bounding box restriction for irregular shapes can be removed (Junior et al., 2013).

The genetic algorithm was combined with the lowest gravity centre principle placement algorithm
by Liu and He (2006). The chromosome represents the placement sequence, and the initial population
is generated by sorting the pieces by decreasing area and creating several mutations thereof. The
fitness function is defined as the remaining space in the container. Children are generated by randomly
selecting part of the sequence of the first parent, and the remainder of the sequence is filled with
the remaining pieces based on their positions in the second parent. A mutation operator with a low
probability is added to randomly swap two pieces in the sequence. The orientation in the layout is
determined by the placement algorithm, without a predefined set of fixed orientations to try. Because
each orientation requires a new NFP, first several orientations with larger, fixed intervals are evaluated.
Then, the rotation resulting in the lowest gravity centre and its two neighbouring orientations are divided
into smaller fixed steps to obtain amore precise orientation. Although not fully continuous, this approach
allows many more orientations to be explored than the traditional fixed set of orientations. By allowing
this many orientations, better results can be obtained than the best known results that used a fixed,
small number of orientations.

Mundim et al. (2017) proposed a newer variant of the genetic algorithm for the nesting problem,
namely the biased random­key genetic algorithm. In the algorithm the sequence of pieces is repre­
sented by a sequence of random­keys in the [0,1) interval. One of the parents is always chosen from
an elite group of members (i.e. the most fit), and there is a bias towards selecting characteristics from
the fitter parent during the crossover operation. The resulting child is sorted on the random keys in
increasing order, which then becomes the placement sequence for the pieces corresponding to the
keys. The dotted­board model (discrete raster) representation was adopted and the sequence is de­
coded into a layout using the bottom left principle where overlap is avoided using the no­fit polygon
concept. The algorithm was able to match or outperform (in terms of solution quality) the exact model
proposed by Toledo et al. (2013) and the bottom left fill algorithm by Burke et al. (2006). Although the
authors mention that the algorithm can be adapted to include piece rotations, it is not clear how it affects
the solution or computational time.

Abeysooriya et al. (2018) proposed a new solution approach for the bin packing problem based on
the jostle algorithm. The principle is based on the idea of shaking a container with pieces, a process
where pieces naturally tend to pack closely together. This is implemented by iteratively alternating
packing the pieces from left to right and then right to left, where the sequence of the pieces to be packed
next is sorted on the pieces’ current x­positions. The concept is illustrated in Figure 6.4. A variant of
the TOPOS algorithm is used as placement algorithm, where the origin is fixed and holes within the
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partial remain available for placement of subsequent pieces. For problems that allow pieces to rotate at
a fixed set of angles, the NFP is simply generated for each orientation and the best is selected. When
arbitrary rotations are considered, the piece is first placed similar to the discrete orientation approach to
obtain a first orientation. Then the piece is rotated based on the angles the edges of the polygons make
with each other at the touching point, a procedure which aims to align the edges of the two polygons.

Figure 6.4: Jostle principle (Bennell and Oliveira, 2009).

6.2.3. Searching over the physical layout
When the search is over the layout rather than the sequence, pieces are moved within the actual phys­
ical layout. A common characteristic of such approaches is that usually overlap is allowed during the
search, which is then penalised in the objective function. The benefit is that this results in a smoother
solution landscape, improving search algorithm efficiency (Bennell and Oliveira, 2009). Another ad­
vantage is that it is not required to decode the sequence each iteration, which is a computationally
expensive step (Egeblad et al., 2007). However, resolving overlap can be problematic and the algo­
rithm can get stuck in the overlap minimisation stage, resulting in an infeasible solution (Ramakrishnan
et al., 2008). Two main approaches are considered in the literature when searching over the layout.
In the first approach, known as local search approach, a single piece or small number of pieces can
moved within the layout, by either removing it from its current position and inserting it in a new posi­
tion on the placement area, or swapping the positions of two (or more) pieces. Rotations can also be
considered as a move. The second approach, known as compaction and separation, moves all pieces
simultaneously although the search space is heavily restricted.

Local search approaches
The same problem of reducing the continuous search space to a set of discrete points discussed sub­
section 6.2.1 with regard to constructive algorithms arises in local search approaches when moving
pieces. Methods commonly use the raster representation (and therefore possibly eliminate good so­
lutions), or the concept of the no­fit polygon is used to obtain a set of promising placement points
(Elkeran, 2013). The method proposed by Błażewicz et al. (1993) first generates a initial using the
bottom left algorithm where the pieces are sorted by decreasing area. The method then attempts to
move fill holes in the layout by moving the right most pieces into the holes, or if that is not possible the
other (internal) pieces are considered. A feasible placement region within the hole is determined, and
the most bottom left position of that region is chosen as placement point. If none of the pieces fits into
a hole, the piece is placed to the right of the current layout in the unused area, again according to the
bottom left principle. A tabu list prevents pieces that have recently been moved to move again during
the tabu search process. This method does not allow for overlap, although many other approaches
searching over the layout do allow overlap in the search process.

For example, Ramakrishnan et al. (2008) proposed a tabu search method where the piece which
has the most amount of overlap is selected to be moved and that piece is then placed in a position
that results in the least amount of overlap. The overlap is measured as the sum of the maximum
horizontal and vertical penetration depth between pieces. The possible placement points are found
based on the vertices of the no­fit and inner­fit polygon and their intersections, a method originally
proposed by Gomes and Oliveira (2002) (discussed in subsection 6.2.1). Again, the piece that was
moved is added to the tabu list. Rotation can be considered by generating the NFPs for each admissible
orientation of the pieces. An initial solution is generated by the bottom left algorithm where the pieces
are sorted by decreasing area. The length of the initial solution is then taken and the length of the
boundary is reduced by one unit. Pieces which are not within the reduced boundary anymore, are
translated back into the reduced boundary, resulting in overlap in the layout. The reduction step is
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repeated every time a feasible solution is found during the search, until the algorithm is unable to find
a feasible solution within the set time limit and the best solution is reported as final solution. Such an
approach therefore separates the strip minimisation problem and the overlap minimisation problem into
two separate parts. This approach of separating the two problems was also applied by Egeblad et al.
(2007), although they proposed a different method to resolve overlap. Each iteration the selected piece
is restricted to a horizontal or vertical translation in order to minimise overlap, and the intersection area
theorem proposed by Nielsen and Odgaard (2003) is used to calculate the overlap. The main idea of
the theorem is to express the overlap of a piece with all other pieces as a function of the horizontal (or
vertical) position of the piece. The obtained overlap function is piecewise quadratic, and the placement
position of the piece being moved is then moved to the same position as where the overlap function is
minimal. The principle can be extended to included piece rotations (Nielsen and Odgaard, 2003). In
order to avoid the overlap minimisation algorithm getting trapped in a local optimum, the metaheuristic
guided local search is applied. In a guided local search penalties are applied to unwanted features and
the objective function for the overlap minimisation process is adjust to incorporate those penalties. The
approach was proven to be remarkably efficient compared to other approaches in literature, obtaining
better solutions within 10 minutes of run time for certain instances and low standard deviations of the
solutions between runs of the same data set.

In fact, the approach of separating the problem into two separate parts, namely length minimisation
and overlapminimisation where the length is reduced and overlap is subsequently resolved, is a popular
method in literature and all of the following methods adopted this principle. Umetani et al. (2009) also
proposed a guided local search method, however the overlap was measured using the directional
penetration depth and the piece is translated alternately in the vertical and horizontal directions until no
better placement can be found. Leung et al. (2012) proposed a method which resolves overlap based
on the penetration depths by solving a nonlinear model (to a local optimum). An initial bottom left layout
is generated and two pieces within the layout are then swapped to generate neighbouring solutions.
Resulting overlap is resolved by the nonlinear model. The metaheuristic tabu search is used to guide
the search and the pieces recently move are stored in the tabu list. In addition, a second tabu list is
created to record the piece type in order to forbid the next moves to be made with a piece of the same
shape. This is important to note for the aircraft parking problem since aircraft fleet usually consists of
only several (sub)types.

Elkeran (2013) proposed an approach based on the cuckoo search in combination with the guided
local search algorithm. The cuckoo search is a nature inspired algorithm based on cuckoos, which are
known to lay their eggs in nests of other birds. The algorithm firsts generates an initial pool of solutions
randomly. One solution is chosen randomly and the algorithm then randomly alters this solution by
Lévy flights (random walks with the steps drawn from a Lévy distribution). Another solution is chosen
from the pool of solutions, and if the overlap of the newly generated solution is less, the new solution
is adopted. In addition, pieces can be pairwise clustered in order to improve algorithm run time.

Recently, Sato et al. (2019) proposed an overlap minimisation approach where the placement area
was reduced to a discrete set of placement points by rasterisation. The novel concept of the raster
penetration map was introduced, which is constructed from the no­fit polygon and represents the raster
penetration depth (in grid space) between two pieces. For a given piece, the penetration maps with all
other pieces can be added to obtain the obstruction map, which can be thought of as some sort of heat
map. Large values indicate that a lot overlap is present, while zero values indicate no overlap. Each
admissible orientation results in a different NFP and thus a different penetration map and obstruction
map. For a given piece, the whole space is searched and the predetermined fixed discrete orientations
are tested to obtain the position with minimum overlap given by the obstruction map. The guided local
search method is used to avoid local optima. A two stage multi­resolution is proposed. First, a lower
resolution grid is used the search the whole space (within in the grid) and the position with minimum
overlap is selected. In the second stage this position then becomes the centre of a new local grid with
a higher resolution, restricted to a small space of the original resolution. Despite the discretisation, the
approach was shown to be very competitive, matching or improving best known results for 9 out of the
15 benchmark data sets tested with 20 minutes of run time.

Compaction and separation
Another class of approaches for searching over the physical layout is known as compaction and sepa­
ration approaches. However, these approaches appear to have lost popularity in recent years in favour
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of the local search methods described above. Nevertheless, the principles of the approach are briefly
discussed here. In such approaches, the problem is solved as a linear program which moves all pieces
simultaneously. The objective function minimises length and the constraints ensure that the pieces
remain with the boundaries of the placement area and do not overlap. Overlap constraints however
can be relaxed and penalised in the objective function to allow for a more efficient search. The linear
program model is highly constrained and restricts the solution space to only a small area. Bennell and
Dowsland (2001) combined the linear program with a tabu search. The non­overlapping constraints
are derived from the no­fit polygon concept, where the closest edge, or series of edges, of the NFP
is (are) used as constraints in the LP model and restricts the piece’s movement to a small, feasible
area. It might therefore be necessary to run the LP model multiple times to completely resolve overlap
as polygon are only allowed to move in small steps. Gomes and Oliveira (2006) proposed a similar
approach, but combined linear programming with the metaheuristic simulated annealing.

6.3. Summarising cutting and packing problems
In short, this section can be summarised as follows. Exact approaches are not suitable for the pur­
pose of long term parking of aircraft as only small instances with no or very limited rotations can be
solved within a realistic amount of time. The problem is NP­hard and therefore heuristic approaches
are commonly applied to the nesting problem. Heuristic approaches can be divided into two methods:
searching over the sequence, and searching over the physical layout. In the former, the algorithm
changes the sequence of the pieces in search for a better layout and the sequence is decoded into a
layout by a constructive algorithm (also known as placement algorithm), following a fixed set of place­
ment rules. The search procedure is often combined with the metaheuristics tabu search and genetic
algorithm to guide the search over the solution space. Approaches searching over the physical layout
move pieces within the physical layout during the search for better solutions, where a placement algo­
rithm is used to generate an initial solution. Usually overlap is permitted in the search process when
searching over the layout and the sub problem of overlap minimisation is solved separately from the
layout length minimisation problem. Tabu search and guided local search are popular metaheuristics
when searching over the layout. The bottom left algorithm is a common placement algorithm for both
approaches. Both approaches achieve excellent results and provide promising starting points for the
long term parking optimisation problem. An overview of the different heuristic based approaches is
given in Table 6.1 in the same order as they were discussed in this section.
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Table 6.1: Overview heuristic methods for the nesting problem. BL = bottom left, GC = gravity centre, TS = tabu search, GA =
genetic algorithm, GLS = guided local search, SA = simulated annealing.

Author (Year) Se
qu

en
ce

La
yo

ut

Pl
ac
em

en
t

A
lg
or
ith

m

M
et
ah

eu
ris

tic

Gomes and Oliveira (2002) X BL ­

Burke et al. (2006) X BL TS

Ramakrishnan et al. (2008) X BL TS

Jakobs (1996) X BL GA

Liu and He (2006) X GC GA

Mundim et al. (2017) X BL GA

Abeysooriya et al. (2018) X TOPOS JOSTLE

Błażewicz et al. (1993) X BL TS

Ramakrishnan et al. (2008) X BL TS

Egeblad et al. (2007) X BL GLS

Umetani et al. (2009) X BL GLS

Leung et al. (2012) X BL TS

Elkeran (2013) X BL GLS

Sato et al. (2019) X BL TS

Bennell and Dowsland (2001) X BL TS

Gomes and Oliveira (2006) X BL SA

59





7
Conclusion literature study & research

questions

The purpose of the is this report was to provide an overview of the existing literature relevant to the
optimisation of the long term parking of aircraft, and to identify the research gap which presents a
research opportunity. First, geometric tools used to solve the problem were reviewed. In order to
represent the placement area and the pieces, and to facilitate overlap calculations, four geometric
modelling techniques are commonly used in literature: the raster representation, direct geometry, the
no­fit polygon (NFP), and the phi­functions. Furthermore, the main principles of several metaheuristics
were explained. Next, approaches to a similar problem, namely that of aircraft parking in a maintenance
hangar, were discussed. Several key differences were identified: in contrast to the hangar parking
problem, for the purpose of long term parking, aircraft can be parked at any orientation, the amount of
aircraft to be parked is larger, and wing and tail could be allowed to overhang other aircraft or unpaved
surfaces. Finally, methods to solve the irregular cutting and packing problems, also know as nesting
problems, were discussed. Exact approaches were found to be unsuitable as they are not capable
of solving large data sets. Heuristic approaches can be divided into methods that search over the
sequence, and methods that search over the physical layout. Excellent results have been produced
by both heuristic based approaches and there is no consensus in literature as to which approach is
superior. Hence, both heuristic approaches provide promising starting points for the optimisation of
long term parking of aircraft.

To the best of the author’s knowledge, the existing literature does not address the issue of the
optimisation of the long term parking of aircraft. Although the gate assignment problem has been
studied extensively in literature, in such problems aircraft are placed at fixed airport infrastructure gates
(or stands) with large margins to allow for access of personnel and equipment during service. The
maintenance hangar aircraft parking problem is related to the long term parking, although it differs in
several key aspects (mentioned above).

Hence, the research gap is clear, which leads to the following research objective and research
questions presented next.

7.1. Research questions
The proposed research objective of the proposed research is to optimise the long term parking of air­
craft by using metaheuristic approaches. The research (sub)questions to be answered are defined as
follows:
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How to optimise the long term parking of aircraft by using metaheuristic algorithms?

1. Which solution algorithm provides the best results?
(a) How to evaluate the performance of the algorithm?
(b) How does the optimisation perform compared to current (manual) prac­
tices?

2. Which geometric modelling technique provides the best result?

3. How does the fleet composition influence the performance of the model?
(a)What is the effect of varying the fleet size?
(b)What is the effect of diversifying the aircraft types?
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