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Abstract

Quantum communication provides a plethora of new possibilities compared to the realm of classical
communication. Since the channels used are noisy, losses are unavoidable, and quantum repeaters
are needed to transmit a signal over longer distances to overcome these exponential losses. To
increase the performance of these repeaters, cutoff times can be introduced. These cutoffs limit
the amount of time a qubit can be stored in the quantum memory. Based on previous work done
by Avis et al., this work analyzes how a variation in the initial coherence time, called a drift in
coherence time, affects the optimal cutoff, the optimal secret key rate, and the loss in secret key
rate. The main conclusions are that the greater the coherence time, the less the need for accurate
cutoff times. This is due to losses in the secret key rate being inherently smaller at larger coherence
times. Furthermore, the loss in secret key rate can be approximated using the derivations found in
this thesis. Suggestions for further work is introduced; implementing these is beyond this thesis’s
scope.
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Chapter 1

Introduction

Almost forty years have passed since Feynman’s paper about simulating quantum physics by using
- quantum physics [1], and much has happened since then. Methods of breaking RSA using Shor’s
Algorithm were introduced [2], the quantum mechanical analogon to Shannons Information Theory
[3], the birth of Quantum Information Theory, and the development of a protocol that makes it
impossible for an attacker to eavesdrop - the BB84 protocol [4].

Parallel to this was the rapid expansion and adaption of a technology no one could have anticipated
being as globally impacting as it was, socially as well as economically - the Internet [5]. Connecting
many entities (nodes) with each other over vast distances relies on amplifying signals on midpoints.
The quantum mechanical counterpart, the Quantum Internet, aims to facilitate quantum commu-
nication between any two parties - achieving things classically impossible such as secure quantum
cloud computation [6, 7]. Contrary to the classical internet, copying quantum information for am-
plification is prohibited due to the no-cloning theorem [8]. To circumvent the no-cloning theorem,
the quantum repeater was proposed [9]. Albeit no physical realization has been achieved, a first
step into this direction has been reached by implementing the first entanglement-based three-node
network in 2021 at QuTech [10]. Even though entanglement swapping was accomplished, this node
did not improve transmission compared to direct transmission.

Outline: This thesis is structured as follows:

Background:

• In Chapter 2, we introduce the formalism used throughout this thesis. We introduce the
quantum mechanics needed, the BB84 protocol with a focus on the secret key rate. We
present simplified models of quantum memories as well as explain the notion of a cutoff time
and how it can improve the quality of a quantum state.

• Chapter 3 shows the model used to calculate the secret key rate for a single quantum repeater.
The equations to calculate this secret key rate are presented.
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New Research:

• Chapter 4 shows what is meant when discussing a drift in coherence time. To illustrate this,
we plot the secret key rate for different values of the coherence time. Next, the optimal cutoff
times are found numerically with respect to the coherence time. These optimal cutoff times
are used to calculate the improvement of using a secret key rate with a cutoff time compared
to the secret key rate without a cutoff time. Further, we formally introduce the condition
when the secret key rate is maximized with respect to a specific cutoff time. Using this, we
present a first-order approximation to the optimal cutoff time as a function of the coherence
time and analyze the sensitivity of the cutoff time with respect to changes in the coherence
time.

• Chapter 5 combines the previous chapters to introduce the notion of loss in secret key rate.
We explain what is meant by the loss and approximate it to second order in the coherence
time. We finalize this chapter by investigating the validity of this approach.

• Concluding with Chapter 6, we summarize the results and propose possible further improve-
ments and research.



Part I

Background
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Chapter 2

Theory

This chapter serves as a foundation on the theoretical background needed to understand the research
presented. Section 2.1 introduces the general quantum-mechanical formalism required as well the
notion of entanglement and applications thereof. The no-cloning theorem is presented as well
as quantum channels with a focus on the depolarizing channel. Section 2.2 introduces quantum
communication focusing on the BB84 protocol and the secret key rate. Section 2.3 shows the
problems associated with a quantum repeater, what the building blocks are, and an explanation of
what is meant when referring to a cutoff time.

2.1 Quantum mechanics

2.1.1 Quantum mechanics formalism

Definition 2.1.1 (Qubit). A qubit describes the simplest quantum system, which is an element of
the complex two-dimensional Hilbert space, |ψ⟩ ∈ H ∼= C2.

A qubit is the quantum mechanical analog to the classical bit, usually denoted as ”0” or ”1” [11].
This qubit can be written in Dirac notation as a complex linear combination of the basis states |k⟩
as,

|ψ⟩ =
∑
k∈Z2

ck |k⟩ , (2.1)

where the coefficients ck ∈ C obey the normalization |c0|+ |c1| = 1.

Definition 2.1.2 (Product state & Entanglement). A pure state |Ψ⟩ ∈ HAB = HA ⊗ HB of the
composite system is separable if it can be written as a tensor product of subsystems i.e.,

|Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ , with |ψ⟩ ∈ HA and |ϕ⟩ ∈ HB. (2.2)

4
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If this is not the case, it is entangled.

Entanglement is an essential resource in quantum information theory and the building block for
important applications - one of those applications being the quantum repeater. The simplest
example of entanglement, namely maximally entangled states, are the Bell states. These can be
written as

∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩) ,

∣∣Φ−〉 =
1√
2
(|00⟩ − |11⟩) , (2.3a)∣∣Ψ+

〉
=

1√
2
(|01⟩+ |10⟩) ,

∣∣Ψ−〉 =
1√
2
(|01⟩ − |10⟩) . (2.3b)

An important application of quantum entanglement is quantum teleportation. Two parties,
Alice and Bob, share an entangled pair |Φ⟩AB , and Alice wants to send a data qubit
|ψ⟩A′ . She performs a CNOTa

A→A′ , where the data qubit is the ”control” qubit, and the
entangled qubit on her side acts as the ”target”. She then applies an H gate on the data
qubit and measures both qubits in her possession, obtaining classical bits (a, b). Alice
sends the measurements to Bob, and he can apply the corrections ZaXb to his qubit [12, 13].

aThe effect of this gate is CNOT(|i⟩ |j⟩) 7→ |i⟩ |i+ j mod 2⟩ where we call i the control and j the target.

Many quantum systems are not perfectly closed. Therefore to be able to talk about open quantum
systems, it is important to introduce an additional Operator [12],

Definition 2.1.3 (Density operator). An operator ρ is called a density operator if it

1. is positive, ρ ≥ 0,

2. is self-adjoint, ρ† = ρ,

3. has trace 1, Tr{ρ} = 1.

Mixed states can be written in the density operator formalism as

ρ =
∑
k

pk |ψk⟩ ⟨ψk| , with
∑
k

pk = 1, (2.4)

and called pure if there is one state with p = 1. A pure state can then be represented as ρ = |ψ⟩ ⟨ψ|
[14].
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To be able to quantify the similarity between two arbitrary quantum states, we first need to intro-
duce the Fidelity of the two quantum states [12].

Definition 2.1.4 (Fidelity). Given two density matrices ρ and σ, the fidelity is defined as

F (ρ, σ) =

(
Tr

√√
ρσ

√
ρ

)2

. (2.5)

If σ = |ψ⟩ ⟨ψ| is a pure state, then the Fidelity can be written as F (ρ, σ) = ⟨ψ| ρ |ψ⟩.

A limiting factor in building large-scale quantum networks is the no-cloning theorem. This theorem
states that quantum mechanics forbids the copying of unknown quantum states [8]. Since this is
an important theorem, the proof will be outlined below.

Suppose there is a pure state |ψ⟩ to be copied, and |s⟩ a target state. Construct a unitary
U such that |Ψ⟩ = U(|ψ⟩ |s⟩) = |ψ⟩ |ψ⟩. Assuming this copying device works for any state,
doing the same for a state |ψ⟩ yields the state |Φ⟩ = U(|ϕ⟩ |s⟩) = |ϕ⟩ |ϕ⟩. Taking the inner
product for both cases leads to

⟨ψ|ϕ⟩ = ⟨ψ|ϕ⟩2. (2.6)

This holds for either ⟨ψ|ϕ⟩ = 0 or ⟨ψ|ϕ⟩ = 1, thus the states are either equal or orthogonal.

No device can copy any general quantum state [12].

2.1.2 Quantum noise and channels

Often encountered in quantum mechanics are the Hermitian and Unitary Pauli matrices.

σ0 = 1 :=

(
1 0
0 1

)
, σ1 = X =

(
0 1
1 0

)
, σ2 = Y :=

(
0 −i
i 0

)
, σ3 = Z :=

(
1 0
0 −1

)
. (2.7)

Since these form a basis for the Hilbert space of 2× 2 Hermitian matrices H2(C) they have found
wide use in quantum information and can be used to model quantum channels [14, 12].

We use these operators to introduce the computational basis (Z - basis) as the eigenstate of Z with
the eigenvalues Z |0⟩ = + |0⟩ and Z |1⟩ = − |1⟩. Similar to this we introduce the orthonormal conju-
gate basis (X - basis) as the eigenstates corresponding to X |+⟩ = + |=⟩ and X |−⟩ = − |−⟩1.

1Explicitly these states can be written down as

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, |+⟩ =

1
√
2
(|0⟩+ |1⟩), |−⟩ =

1
√
2
(|0⟩ − |1⟩).
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Just like classical systems, quantum systems suffer from noise. Since real systems are not perfectly
closed, they interact with their environment. This interaction manifests itself as noise. One way of
modeling this is to consider quantum operations. Take an initial state ρ and a final state ρ′, then a
quantum operation E(·) is the map such that ρ′ = E(ρ). These operations can be represented using
the operator-sum representation as [12]

E(ρ) =
∑
k

EkρE
†
k, (2.8)

with the operation elements Ek known as the Kraus operators and obey
∑

k E
†
kEk = 1.

Definition 2.1.5 (Quantum Channel). A quantum channel E : Hn 7→ Hn is a completely positive,
trace-preserving map (CPTP) that maps one density operator to another. Completely positive
meaning (1⊗ E)(ρ) ≥ 0 and trace-preserving Tr{E(ρ)} = Tr{ρ}.

Two examples of important quantum channels are the

1. Depolarizing channel:
A channel that depolarizes the qubit with probability p and leaves the state unchanged with prob-
ability 1− p. One can write the Kraus Operators as,

Ei ∈

{√
1− 3

4
p1,

√
p

2
X,

√
p

2
Y,

√
p

2
Z

}
.

2. Dephasing channel:
A channel that adds a phase of (−1) to the state |1⟩ with a probability of 1− p. One can write the
Kraus Operators as,

Ei ∈
{√

p1,
√
1− pZ

}
.
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2.2 Quantum communication

2.2.1 Stages of development and applications

We present a brief summary on the stages of development of the quantum internet and its applica-
tion. For a more thorough presentation refer to [6].

One can roughly break down the development into the following points:

1 Prepare and measure: This is the first stage to offer ”end-to-end quantum functionality”. It
enables QKD without needing to trust intermediary repeater nodes. Applications: Include
QKD and two-party cryptography.

2 Entanglement distribution: Enables end-to-end entanglement creation - either deterministi-
cally (succeeds with probability (almost) one) or in a heralded way (where we communicate
the success of entanglement generation). Applications: Device independence for QKD.

3 Quantum memory: End nodes have the ability to store a quantum state in memory. Can
now transfer unknown qubits from one node to another. Application: Able to perform blind
quantum computation.

4 Few-qubit fault-tolerant: Fault-tolerant execution of local operation on logical qubits. Enables
to extend storage time arbitrarily. Applications: Fault-tolerant gates enables distributed
quantum computing.

5 Quantum computing network: Final stage. Consists of quantum computers that can exchange
quantum communication as they please. Applications: In principle, all protocols can be
realized. A possibility in the future might be quantum cloud computing.

2.2.2 The BB84 protocol

When looking at the performance of a system, it is instructive to compare the initial and final states
in order to quantify the error the quantum system has undergone. The concept of the secret key
rate (SKR) is introduced on the basis of the BB84 protocol - the first QKD protocol introduced
by C. H. Bennett and G. Brassard [4].

The protocol itself is also known as a ”prepare and measure protocol.” [15] This protocol only uses
quantum properties in the first two steps, namely the preparation of a quantum state and subse-
quently in the delivery and measurement of said state. The following steps happen using classical
post-processing using an authenticated classical channel. Two parties, Alice and Bob, can exploit
a quantum channel to produce a secret key. In the presence of an Eavesdropper (Eve) trying to tap
this channel, it will cause disturbances to this channel, and Alice and Bob can learn of this attack
by seeing a change in the statistics [16].

The protocol consists of the following six steps [17, 18]:
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1 Prepare: Alice chooses N (where N is large) random classical bits Xc
i and encodes

these into qubits, either in the X− basis or the Z− basis.
2 Delivery + measurement: She then uses a quantum channel to send the qubits to Bob.
He measures them with a basis he chooses at random and gets a classical bit string
Y c
i .

3 Basis Sifting: They communicate via a classical, authenticated channel, the basis they
used for encoding/measurement. They discard all the bits where the bases do not
agree.

4 Parameter Estimation: Take a small subset chosen at random from the remaining bit
string and compare it with each other to obtain an estimate on the error rate (how much
disagreement there is between Xc

i and Y c
i ). If this error exceeds a certain threshold,

the protocol is aborted since this might indicate the presence of an Eavesdropper. If
successful, Alice and Bob hold a string of bits n ≤ N bits called the raw key.

5 Information reconciliation: Alice sends information such that Bob can correct the
remaining Bit string Y c

i .
6 Privacy Amplification: Having removed the errors, they can turn their partially secret
raw key into a fully secure key of length l ≤ n.

2.2.3 Secret fraction and secret key rate

When looking at infinitely long keys (N → ∞), one can define the secret key fraction as the fraction
of the length of the final secret key l and the length of the raw key

r = lim
N→∞

l/n. (2.9)

The extraction of a secret key from the raw key requires classical post-processing, where the focus
here will be on one-way post-processing. The formulas are instructive and do not cover the whole
depth but rather are intended to give a rough understanding of the quantities used.

This extractable secret key fraction is given by the Devetak-Winter bound [19, 20]

r = I(A : B)−min(IEA, IEB), (2.10)

where I(X : Y ) is the mutual Information between to Random Variables X and Y and IEA is given
by

IAE = max
Eve

χ(A : E). (2.11)

We will not derive the secret key fraction but will present the equation in the case of the BB84
Protocol as,

r = max{0, 1− h[eX ]− h[eZ ]}, (2.12)
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with h(p) = −p log2 p − (1 − p) log2(1 − p) the binary entropy and eX (eZ) the quantum bit error
rate (QBER) in the X (Z) basis [21].

The secret key fraction will decrease when increasing the QBER. Once it passes a critical threshold
the secret key fraction will drop to zero. In the example of depolarizing noise (where eX = eZ),
the Protocol can tolerate an error of up to 11%, and anything above that will yield a rate of zero [22].

Furthermore, one can compute the Secrete key rate SKR as the ratio between the secret key fraction
and the average distribution time ⟨DT ⟩ [21],

SKR =
r

⟨DT ⟩
. (2.13)

Finite key

The definitions and formulas presented hold in the asymptotic limit of infinitely long keys with
i.e., N → ∞. Naturally, the question that presents itself is what impact a finite key will have
on the secret key rate. Since this is out of the scope of this thesis, a brief summary of the main
points will be presented, and the interested reader is referred to additional work, such as [23, 24, 25].

When considering finite keys (in BB84), a reduction in the secret key fraction r is expected. This
can be (roughly) broken into two reasons. Firstly, Step 4. Parameter Estimation is now conducted
on a finite number of samples where one needs to consider the worst-case consistent with statistical
fluctuations. Secondly, Equation (2.10) contains terms that vanish in the asymptotic limit. The
rest of this work focuses on infinite keys since the main goal of the secret key rate is to work as a
measure of performance [18].

2.3 Quantum Repeaters

Telecommunication networks involve distances that are several hundreds or thousands of kilometers
long. Due to these long distances, the signals’ strength decreases. Akin to asking a friend to pass
on a message to a faraway living friend, classically, the issue of a weak signal can be circumvented.
To do this one breaks down one long link, connecting two nodes, into several smaller links with
repeater stations between these smaller links. These repeater stations copy, amplify and re-transmit
the incoming signal [12]. In order to send quantum information, or in the case of the BB84 protocol,
sending entangled states, copying these states is prohibited by Quantum mechanics. Quantum me-
chanics forbids copying quantum information due to the No-cloning theorem introduced in Chapter
2; thus, alternative approaches need to be found.

One way of doing this is to introduce a so-called quantum repeater. This repeater works analo-
gously to the classical system in the sense that one takes a link connecting two parties, Alice (A)
and Charlie (C), and breaks them down into smaller so-called elementary links. As illustrated in
Figure 2.1, A and C are connected to the repeater between them, Bob (B). The repeater does
not necessarily need to be located equidistant to the neighboring nodes. We consider the case of
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B consisting of two memories B1 and B2. Three generations of quantum repeaters exist. The first
generation using heralded entanglement generation as well as heralded entanglement purification.
The second and third generation both use quantum error correction to overcome larger distances
[26]. Quantum repeaters have not been realized experimentally yet, but many theoretical proposals
have been proposed [27, 28, 29]. The rest of this project will deal with the former, the so-called
first generation of quantum repeaters.

A B1 B2 C

Figure 2.1: Quantum repeater, with the end-nodes Alice (A) and Charlie (C). The repeater, Bob (B), is
denoted as the red circle consisting of two memories B1 and B2, and located between the end-nodes.

2.3.1 Mode of operation

A quantum repeater connecting two parties, where all nodes are connected by quantum and clas-
sical communication channels and allow for two-way signaling, can be broken up into the building
blocks of:

Entanglement generation: An entangled pair |Φ⟩ is created and shared between two adjacent
nodes A and B, this is the aforementioned elementary link. The probability of success of creating
such an entangled link of Length L in an optical fiber is p = e−L/L0 , where L0 is the attenuation
length [30, 31]. Since current link success probabilities are low, the qubits need to be stored in the
repeater while another link is created. Storage can be achieved by using a quantum memory. Once
both parties have established a link to the repeater, they can continue and perform an

Entanglement swap: As illustrated in Figure 2.2, Bob shares an entangled state with Alice |Φ⟩AB1

and an entangled state with Charlie |Φ⟩B2C
. Bob performs the teleportation protocol (Chapter 2)

as to entangle A and C and subsequently measures its qubits and delivers the results to the end-
nodes. This procedure, therefore, takes the initial state of the complete system and delivers the
final state

|Φ⟩AB1
|Φ⟩B2C

7→ |Φ⟩AC |Φ⟩B1B2
. (2.14)
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|Φ⟩AB1
|Φ⟩B2CA B1 B2 C

|Φ⟩AC

|Φ⟩B1B2

A

B1 B2

C

Figure 2.2: Entanglement swap, where B acts as repeater and A and C are the end-nodes. For readability,
the red circle from the previous figure for the repeater has been omitted.

Both processes (entanglement generation and swap) are noisy operations which degrade the fidelity
of the state. To counter this, one can employ so-called

Entanglement distillation: This works by consuming (multiple) lower quality states to establish
a higher quality state [32, 33, 34, 35].

2.3.2 Decoherence - characterizing coherence times

Quantum decoherence is the process whereby quantum information is lost due to interaction with
the environment [36, 37, 38]. Two quantities that characterize this quantum decoherence are the
relaxation time T1 and the dephasing time T2 [39, 40, 41].

Relaxation time T1: It measures the time for energy relaxation from the excited state |1⟩ to the
state |0⟩. This decay is exponential and is characterized by the probability of being in state |1⟩
such that Pr(|1⟩) = e−t/T1 . To evaluate this time, follow the protocol presented below.

Protocol 1 Probing the relaxation time T1.
Steps:

1. Initialize the qubit into the state |0⟩,
2. apply an X− Gate,
3. wait for time t,
4. measure the probability of being in state |1⟩,
5. Fit an exponential curve to the data points to obtain T1.
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Dephasing time T2: It measures the time for a superposed state to lose the phase information (i.e.
going from |+⟩ 7→ |0/1⟩). To evaluate T2, the following protocol can be used:

Protocol 2 Probing the dephasing time T2.
Steps:

1. initialize the qubit into the state |0⟩,
2. apply an H - Gate2,
3. wait for time t,
4. apply an H - Gate again,
5. measure the probability of being in state |0⟩,
6. Fit an exponential curve to the data points to obtain T2.

Coherence times of one qubit to another can vary due to a multitude of parameters, resulting in a
spread around a mean coherence time [42, 43]. Even for a single qubit, statistical errors introduce
an uncertainty in this coherence time.

2.3.3 Implementing a memory and simplifying models

Implementing a quantum repeater experimentally requires that a qubit can be stored while further
links are created and subsequently swapped. Several proposals have been brought forward, such
as trapped ions [44, 45], atomic ensembles [46, 47, 48] and nitrogen-vacancy centres [49, 50, 10].
Several models of quantum memories and ways to optimize these exist [51, 52, 53], and since the
exact physical realization of such a memory is not required for this project, two such simplified
models will be presented [27, 54].

The decoherence on the stored qubit can be modeled as the combination of a depolarizing - and a
dephasing- Channel introduced in Section 2.1.2. Instead of writing the depolarizing channel with its
Kraus operators, the equivalent channel is presented in its Werner form with dimension d as

Ddepol [ρ] = w1ρ+ (1− w1)
1d

d
, (2.15)

and the dephasing channel as,

Ddephase [ρ] = w2ρ+ (1− w2)ZρZ. (2.16)

Here, the Werner parameters w1 and w2 are assumed to have an exponential decay depending on the
time t spent in the memory and the coherence time T1, T2 introduced in the previous section,

2H |0⟩ = |+⟩ .
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w1 = e−t/T1 , (2.17)

w2 =
1

2

(
1 + e−t/2T2

)
. (2.18)

2.3.4 Introducing a cutoff time

Quantum repeaters suffer from noise. One of the sources of noise are quantum memories mentioned
above. To perform a swap, the link which has been created first needs to sit in the quantum mem-
ory, where it starts to decohere. This decoherence may lower the states’ quality than one is willing
to tolerate, and one way to address this decrease in quality is to introduce a cutoff time.

What is a cutoff

A cutoff time τ , is the maximal time the qubit is allowed to stay in the quantum memory. Once this
time has been reached, the qubit in the memory is discarded, and the end-node and the repeater
need to re-start the process of generating a link. We also define the extreme cases of having no
quantum memory (τ = 0) or using no cutoff (τ = ∞).

Benefit of a cutoff time

Once a link has been created between an end-node and a repeater, i.e., a link between A and B,
the qubit needs to wait in the memory until the second link has been created and can then sub-
sequently be swapped. The qubit idling in the quantum memory starts to decohere while waiting
on the second entangled qubit. This decoherence leads to a reduction in the states’ quality. To
illustrate this example, assume we have exponential noise on our quantum memory and the Bell
state |Φ+⟩ as an initial state. Then the resulting fidelity can be expressed as

F =
1

4

(
1 + 3 · e−t/T

)
, (2.19)

where t is the time the qubit spends in the memory.

When looking at the same setup but now using a cutoff, we limit the maximal reduction in the states’
quality. In the case of the fidelity, the cutoff assures that the lowest delivered fidelity is

F =
1

4

(
1 + 3 · e−τ/T

)
. (2.20)

The benefit of using a cutoff is a higher quality of the delivered state, as illustrated in Figure
2.3, where the red curve denotes the fidelity when using a cutoff, which is higher than the case of
using no cutoff in blue. Using a cutoff comes at the cost of longer waiting times until end-to-end
entanglement is established. Increasing the state’s quality reduces our QBER and thus improves
our secret key fraction r, while at the same time increasing the average distribution time ⟨DT ⟩.
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Thus, there is a trade-off between a higher fractional key rate and a higher distribution time, i.e.,
what error we allow vs. how long we want to wait.

Figure 2.3: Fidelity of a state ρ, using a cutoff in red and no cutoff in blue. The values chosen are to
illustrate the fidelity decrease and were chosen as T = 3s for the coherence time, and τ = 0.39s for the
cutoff time.

Optimal cutoff time

When using such a cutoff as described above when looking at the secret key rate, this secret key rate
attains a maximal value for a certain cutoff time [27]. We call this the optimal cutoff τ∗, denoted
by an asterisk. This optimal cutoff thus obeys the equation

τ∗ = argmax
τ

SKR(τ). (2.21)

We introduce three variables necessary to analyze the model in the next chapter. These variables
are the

• Cutoff time τ : This is the maximal time (in seconds) the qubit is stored in the memory.
Once this time is reached, the memory discards the qubit.

• Cutoff ξ = τ/∆t: Gives the relationship between the cutoff time and the round time
∆t introduced in the next chapter. Used in the subsequent analytical derivations.

• Cutoff rounds ncut = ⌊ξ⌋: This is the number of rounds that can succeed before the
qubit is discarded. It is used for deriving the equations in Chapter 3.
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For completeness, all three variables are introduced. The most important two are the cutoff time τ
and the cutoff ξ. The cutoff is used later for analytical derivations. In contrast, the cutoff time is
used in plots to facilitate the understanding of the relationship of a cutoff time with respect to the
coherence time.



Chapter 3

The secret key rate for a single
quantum repeater

As explained in the previous chapter, creating long-distance entanglement between two parties is
a non-trivial task. This chapter elaborates on the setup of a three-node network, i.e., two parties
and one repeater between them, and emphasizes the derived equations [55]. These equations form
the basis of the rest of this thesis.

Section 3.1 introduces the problem statement, the parameters, and the assumptions taken. Section
3.2 elaborates on the protocol used when no cutoff time is used and introduces the equations for the
average distribution time and the QBER derived from this. The last section, Section 3.3, describes
the protocol used when using a cutoff and introduces the equations for the average distribution
time and the QBER when using a cutoff.

3.1 Problem statement and the model description

We will consider a three-node network consisting of the end-nodes Alice (A) and Charlie (C), as
well as the repeater Bob (B). To be able to verify the performance of the repeater, we will be
using entanglement-based QKD (Chapter 2). Similar to [27], entanglement generation will proceed
sequentially. Meaning Bob can only create entanglement one link at a time, and thus the scheme
needs to succeed independently on Alice and Charlie. Alice and Charlie measure their respective
qubit as soon as a link is established. The repeater, Bob, can store the qubit in its quantum mem-
ory and waits until both links have been established. He performs a swap and joins both links
as soon as this succeeds - establishing end-to-end entanglement. Throughout this work, for ease
of calculations, we neglect classical communications between the nodes as well as the time gate
operations take.

17
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Following setup will be considered,

• swap is instantaneous and deterministic (succeeds with pSWAP = 1),
• an elementary link has length L,
• entanglement generation takes time ∆t and succeeds with probability p,
• symmetric setup: L, p,∆t is the same for A−B and B − C,
• sequential repeater: B can only create a link with one neighbor at a time, i.e., he can
either create a link A−B or B − C, but not both at the same time.

As a model of the quantum memory, we will be considering a depolarizing channel with exponential
noise and a joint coherence time of T (Chapter 2). Thus a state Bell State ρ idling in the quantum
memory for a time t will be mapped to,

ρ 7→ e−t/T ρ+
(
1− e−t/T

)
1

4
. (3.1)

When sending a signal over an optical fiber, the signal strength decreases exponentially as a function
of the length of the fiber, here denoted as the link length L. This decrease in the signal strength is
called attenuation [56]. Thus we model the success probability of creating a link of length L during
entanglement generation as [27]

p = 0.5 · e−L/L0 = 0.5 · 10−αL/10, (3.2)

where L0 is the attenuation length and α the attenuation coefficient [57]. Since creating one link
takes time ∆t, we call this the round time, given by [58]

∆t = L/cfiber, (3.3)

Where cfiber is the speed of light in the fiber.

3.2 Analysis in the absence of a cutoff time

Before examining how the cutoff time affects the secret key rate, we investigate the average distri-
bution time and the QBER when not using a cutoff. The exact derivations can be found in [55].
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Protocol 3 End-to-end entanglement generation
Setup: No cutoff (τ = ∞).

Goal: Create Entanglement between A and C via a Repeater node B.

Steps:
1 Generate link L1 between A and B.
2 A measures the qubit immediately, B stores the qubit in memory.
3 Generate link L2 between B and C.
4 Measure qubit of C immediately.
5 Swap is performed by B on the new and stored qubit.
6 → End-to-End entanglement is achieved.

LAB

A B C

LAB LBC

A B C

LAC

A B C

Figure 3.1: Establishment of end-to-end entanglement between A and C following Protocol 3 in the absence
of a cutoff time τ .

Using the above protocol, B first creates a link with A, as seen in Figure 3.1. Generating a link
between them succeeds after n1 attempts, and generating a link between B and C succeeds after
n2 attempts. Since generating a link in this setup is probabilistic, the number of attempts ni is a
geometrically distributed random variable with probability p. A random variable X that is geomet-
rically distributed is characterized by its probability mass function Pr(X = k) = (1−p)k−1p, where
k = {1, 2, . . . } is the number of trials and p the probability of success at each trial. Its expectation
value is ⟨X⟩ = 1/p.

Since B can only create a link with one end-node after another (sequentially), the random variables
n1 and n2 are independent of each other. Thus the distribution time DT∞ when not using a cutoff
(τ = ∞) for creating end-to-end entanglement is the summation of the time it takes to generate a
link between A−B and B − C,

DT∞ = DT∞
AB +DT∞

BC = n1∆t+ n2∆t = ∆t (n1 + n2) = ∆tn, (3.4)

with the random variable n = n1 + n2. The average distribution time needed to establish the
connection between A− C is the expectation value of Equation (3.4),



CHAPTER 3. THE SECRET KEY RATE FOR A SINGLE QUANTUM REPEATER 20

⟨DT∞⟩ = ∆t ⟨n⟩ = ∆t (⟨n1⟩+ ⟨n2⟩) =
2∆t

p
, (3.5)

where we used the linearity of the expectation as well as the independence of n1 and n2.

While waiting for the second link to be created, the qubit in the memory undergoes depolarization
for a time t = ni∆t, thus leaving the final state,

ρ 7→ e−ni∆t/T ρ+
(
1− e−ni∆t/T

)
1

4
. (3.6)

Using this state, we find the average QBER given by the equation

⟨eZ⟩ =
1

2
− 1

2

〈
e−ni∆t/T

〉
=

1

2
− 1

2

p

p+ e∆t/T − 1
. (3.7)

Where we used the expectation value of an exponential calculated in the Appendix.

3.3 Analysis in the presence of a cutoff time

In the presence of a cutoff time τ , the protocol below proceeds equal to the previous section up to
the point where the first link is created. We will be using the definitions for a cutoff introduced in
Section 2.3.4.

Protocol 4 End-to-end entanglement generation
Setup: Cutoff (τ ̸= ∞).

Goal: Create Entanglement between A and C via a Repeater node B, while guaranteeing that the
maximal time spent in memory is not greater than the cutoff τ .
Steps:

1. Generate link L1 between A and B.
2. A measures the qubit immediately; B stores the qubit in memory.
3. Generate link L2 between B and C.

(a) Cutoff: If L2 is delivered in time t > τ → discard link L1,
⇒ Start at Step 1, with the Roles reversed.

(b) Cutoff: If L2 is delivered in time t ≤ τ → keep link.
4. Measure qubit of C immediately.
5. BSM is performed by B on the new and stored qubit.
6. → End-to-End entanglement is achieved.

As an example, seen in Figure 3.2, a link between A and B has been created, and the qubit is stored
in B. The time spent in the memory exceeds the threshold of τ , and thus the qubit is discarded.
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LAB

t > τ

A B C

LBC

A B C

LAB
LBC

t ≤ τ

A B C

✓

LAC

A
B

C

Figure 3.2: Establishment of end-to-end entanglement between A and C following Protocol 4 in the
presence of a cutoff time τ .

Now a link between B and C is established, and a link between A and B can be created while
the qubit idles in the memory. As soon as both links are established and the idling qubit does not
exceed τ , B swaps both links and establishes end-to-end entanglement.

Calculating the average distribution time in the presence of a cutoff is more intricate, and for the
sake of brevity, the resulting equations will be presented. For a derivation of the distribution time,
we refer to [55] and for a derivation of the QBER we refer to [54].

The average distribution time for a cutoff time is

⟨DT ⟩ = ∆t

p

(
1 +

1

1− (1− p)ncut

)
, (3.8)

where ncut = ⌊τ/∆t⌋ is the maximum number of rounds of entanglement generation before the
cutoff time is exceeded and ⌊·⌋ the flooring operator.

The resulting QBER, using the same definitions as above, is

⟨eZ⟩ =
1

2
− pe−∆t/T

2 (1− (1− p)ncut)

1− [e−∆t/T (1− p)]ncut

1− e−∆t/T (1− p)
. (3.9)



Part II

Influence of coherence time drift on the
secret key rate

The main contributions of this thesis are:

We numerically evaluate the optimal cutoff time for different coherence times.
Using this, we assess the factor of improvement of using an optimal cutoff time
in the secret key rate compared to abstaining from using one while varying the
coherence time. Previous work investigated the secret key rate as a function
of the distance using an optimal cutoff [54] or the secret key rate as a function
of the cutoff for different schemes [27].

We introduce the first-order approximation to the cutoff to establish a func-
tional relationship between the cutoff and the coherence time.

We introduce the notion of loss in secret key rate. Given the maximal devia-
tions in coherence time from a mean and the optimal cutoff time of that mean
coherence time, one can now calculate the approximate loss in secret key rate
- where the loss is the difference between the secret key rate with the cutoff
optimized to the deviated coherence time, and the secret key rate optimized
for the mean coherence time.

22



Chapter 4

Understanding drift in the
coherence time

As seen in the chapters before, creating a working quantum repeater is still in its
infancy - a factor limiting its performance being the quality of memory. One way
of improving the fidelity, or rather in the case of QKD, the secret key rate, is to
implement a cutoff as introduced in chapter 2. This cutoff time is a timer on your
quantum memory and discards the qubit once the time runs out.

Section 4.1 presents the parameters we fix throughout this project, defines what we
mean by a drift in coherence time, and introduces bounds on the cutoff. Section
4.2 explains the effect of the drift on the secret key rate using different coherence
times to illustrate it further. Section 4.3 follows with introducing an algorithm to
calculate the optimal cutoff times as a function of the coherence times and uses these
to calculate a factor of improvement for the secret key rate when using an optimal
cutoff time compared to no cutoff time.

Section 4.4 introduces the conditions for an optimal secret key rate and elaborates
on the problems associated with finding an optimal cutoff. Section 4.5 delves deeper
into how to quantify the change in cutoff when the coherence time drifts. Section
4.6 concludes with a relationship between the difference in cutoff and a difference in
the coherence time.

23



CHAPTER 4. UNDERSTANDING DRIFT IN THE COHERENCE TIME 24

4.1 Important parameters and definitions

To understand how to find an optimal cutoff time, we first proceed by fixing param-
eters that we do not wish to vary, such as the link length. Further, we explain what
is meant by a drift in coherence time.

4.1.1 Fixing the link length

Parameter Symbol Value Unit

Link Length L 100 [km]
speed cfiber 2 · 105

[
km
s

]
attenuation coefficient α 0.25 [ dB

km
]

success probability p 0.5 · 10−5/2 [1]
round time ∆t 5 · 10−4 [s]

Table 4.1: Parameters that are being kept fixed throughout the whole calculations.

In [54] the secret key rate as a function of the elementary link length was investigated
as well as the role of the cutoff rounds on the secret key rate for different protocols
proposed. Therefore, we will fix the link length in this work and accordingly fix the
success probability of link creation p as well as the round time ∆t.

To fully fix the parameters mentioned above, we need to specify further the attenu-
ation losses and the speed of light in the fiber introduced in Chapter 3. Attenuation
losses vary depending on the fiber used, with values for the attenuation coefficient
ranging from 0.14dB/km to 0.4dB/km [54]. We will choose a value of α = 0.25 as a
value that lies between them. Furthermore, we set the speed of light in glass fiber as
cfiber = 2 · 105m/s [58]. Thus, according to Equation 3.2 for the success probability
and Equation 3.3 for the round time, we can calculate the values shown in Table 4.1.
Fixing the values from the table above, our secret key rate is a function of coherence
time T and the cutoff time τ introduced in the previous chapter.

4.1.2 A drift in coherence time

To understand why we want to vary the coherence time, we first need to introduce
what a drift in coherence time means. This means that the coherence time starts
changing from the mean coherence time T0, or drifting, with maximal deviations given
by δT . Therefore the coherence time experience drift will be an element of
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T ∈ [T0 − δT, T0 + δT ] . (4.1)

This is inspired by the statistical uncertainty inherent when measuring the coher-
ence time, where one fits a predefined function to the experimentally obtained data,
whether it may it be an exponential function, as in the case for Chapter 2, or a
Gaussian distribution with mean coherence time T0 as in [43].

The optimal cutoff introduced in Section 2.3.4 is the cutoff that maximizes the secret
key rate for a coherence time T0. Thus a cutoff optimized for a coherence time T0

might not be the optimal cutoff for a drifted coherence time T0 ± δT .

4.1.3 Bounding the cutoff time

The optimal cutoff time τ ∗, is the cutoff that maximizes the secret key rate for a
given coherence time. Before continuing, we will explain the limits we impose on our
cutoff - this aids when numerically looking for optimal cutoff times later.

Chapter 3 introduces the cutoff rounds as ncut = ⌊τ/∆t⌋. Any cutoff time lower than
the round time will floor to zero, therefore imposing a lower limit on our cutoff time
as τ = ∆t. On the other hand, the coherence time is the time our state maintains
its quantum properties. Thus we impose the maximal cutoff time to be not greater
than the coherence time T . We can conclude that our cutoff time should lay in the
interval

τ ∈ (∆t, T ]. (4.2)

Two extreme cases are the case of τ = 0, corresponding to the case of not having
a quantum memory, and the case of τ = ∞, which corresponds to the case of not
using a cutoff time. When using superscripts for functions of the form X∞ we always
understand a cutoff time using the latter extreme case.

4.2 The evolution of the secret key rate for different coher-
ence times

In Chapter 3, we explained the optimal secret key rate as the maximal secret key
rate obtained when varying the cutoff time. In this section, we plot the secret key
rate as a function of the cutoff time τ for different coherence times. We will inves-
tigate coherence times of the same order as the average generation time of one link
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(T ∼ ∆t/p ≈ 0.3s), and the cases of one and two orders of magnitude greater. Thus,
we will plot the coherence times T0 ∈ {0.3, 3, 30}s with maximal deviations of
δT = 2

3
T0. The maximal deviations were picked large to illustrate better the change

in secret key rate for different coherence times.

When observing the secret key rates plotted in Figure 4.1 as functions of the cutoff
time, we can make the following statements,

• For coherence times T ∼ ∆t/p using a cutoff time yields not only an improve-
ment but is necessary to achieve a non-zero secret key. When looking at a
specific coherence time (i.e., 0.3s) even small deviations from the optimal
cutoff lead to a significant decrease in the secret key rate. The QBER
keeps increasing and passes the maximal tolerable error threshold of 11%. This
is due to the fact that the coherence times are similar to the generation time for
one link, not using a cutoff lets the qubit decohere before it can be distributed.
The generation duration, or the average distribution time, increases rapidly for
short cutoff times and is independent of the chosen coherence time. Variations
in this cutoff transfer to bigger variations in the resulting secret key rate.

• For coherence times T ∼ 10 ·∆t/p the cutoff yields an improvement, though it
is not strictly necessary to use one for non-zero keys. Deviations from the
optimal cutoff lead to a more subtle change in secret key rate than
before. The QBER starts saturating earlier.

• For coherence times T ∼ 100 · ∆t/p the optimal secret key rate is difficult to
identify graphically from Figure 4.1c. An optimal cutoff can be obtained when
analyzing the data, even though the optimal secret key rate approaches the
value for the secret key rate in the absence of a cutoff. Deviations from the
optimal cutoff seem to lead to barely noticeable changes in the secret
key rate.

These initial findings provide a good basis and motivation to delve deeper into the
next chapter, making it clear that the optimal secret key rate changes for different
coherence times. However, it is yet unclear how sensitive this optimum is to changes
(drifts) in the coherence time.
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(a) The lowest order of magnitude for coherence times T ∈ {0.1, 0.3, 0.5}. High sensitivity is observed with
respect to variations in the cutoff, secret key rate goes to zero for higher values of τ .

(b) Order of magnitude higher than (a) for coherence times T ∈ {1, 3, 5}. Sensitivity is lower, nonetheless,
a clear optimal cutoff can be found.
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(c) Highest order of magnitude for coherence times T ∈ {10, 30, 50}. No apparent sensitivity can be
observed, cutoffs seem to have a small impact.

Figure 4.1: The Secret key rate (left), the QBER (middle), and the Generation duration (right) for different
coherence times T s when varying the cutoff time τ . Generation duration is independent of the coherence
time and thus equal for all three plots.

4.3 Maximal achievable gain

As seen in the previous section as well as in [54, 27], using a cutoff leads to higher
secret key rates compared to not using cutoffs. Before continuing with the question
of how to express this sensitivity to drifts, we want to elaborate on the question

How much do we gain when using an optimal cutoff vs. not using a cutoff as a
function of the coherence time?

In analogy to classical electronics [59] we define the maximal achievable gain G, as
the ratio between the secret key rate using the optimal cutoff (SKR∗) and the secret
key rate in the absence of such a cutoff (SKR∞)
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G =

{
0 SKR∗ = 0,
SKR∗

SKR∞ SKR∗ ̸= 0.
(4.3)

Therefore yielding the explicit formula of

G = 2 · 1− qτ/∆t

2− qτ/∆t
· 1− 2h(e∗z)

1− 2h(e∞z )
, (4.4)

whenever SKR∗ ̸= 0 and the QBER e∗z (e∞z ) for the optimal (no-cutoff) case.

We use Algorithm 1 to calculate the optimal cutoff times τ ∗ as a function of the co-
herence time. As seen in Figure 4.2, a coherence time of T ≤ 1.12s ≈ 4∆t/p means
that no secret key can be produced without a cutoff. The gain (Figure 4.2) rapidly
decreases to unity for coherence times T ≥ 3 ≈ 10∆t/p. Using this numerical ap-
proach, we can conclude that for coherence times below 10∆t/p a cutoff is important
for achieving higher secret key rates.

Algorithm 1: Obtaining optimal cutoff.

Data: List: coherence times T ,
cutoffs with τ ∈ (∆t, T ],
secret key rates SKR

Result: List: optimal cutoffs τ∗.
for Ti in T do

for τi in τ do
SKR(Ti, τi)
Add SKR(Ti, τi) to SKR ; /* Add the value to the SKR list */

end
τ∗i = argmaxτ SKR ; /* Find the tau where SKR has the maximal value */

Add τ∗i to τ∗

end
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Figure 4.2: Factor of improvement when using an optimal cutoff vs. not using a cutoff for the secret key
rate. In blue the Gain G and in red the first value of the coherence time where the secret key rate goes to
zero

4.4 The conditions for an optimum

Being interested in finding a cutoff that maximizes the secret key rate, several mod-
ifications need to be implemented to make secret key rate differentiable with respect
to our cutoff time.

In Chapter 3 we introduced the cutoff ξ = τ/∆t ∈ R. We take this cutoff as the
analytic continuation of ncut = ⌊ξ⌋, since we are assuming small round times. Thus,
finding the optimum with respect to τ is the same as finding an optimum with re-
spect to ξ up to a multiplicative constant. Next, one relaxes the constraint on the
secret key fraction and writes it as r = 1 − 2h(eZ) (omitting the max{·}), since for
depolarizing noise, the QBER in the X - basis and in the Z - basis are the same.
Lastly, for the sake of simplicity, the ⟨·⟩ of the QBER will be dropped. Whenever
we write eZ the average QBER will be implied.

We can further define an optimal secret key rate as the unique solution to the equa-
tion
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∂ξSKR =
∂ξr⟨DT ⟩ − r∂ξ⟨DT ⟩

⟨DT ⟩2
= 0 (4.5)

∂ξr

r
=

∂ξ⟨DT ⟩
⟨DT ⟩

, (4.6)

2

ln 2
· ∂ξeZ · ln eθ
1− 2h(eZ)

= ln q
qξ

(2− qξ)(1− qξ)
(4.7)

for eθ = eZ
1−eZ

and ∂ξeZ derived in the Appendix. The condition of non-zero rate

(r > 0) is implied, and ⟨DT ⟩ is the average distribution time (generation time).
Therefore, the goal is to find the cutoff that obeys the above condition, making it
a function of the coherence time, effectively finding a relationship for the optimal
cutoff of the form ξ∗ = ξ(T ).

Due to the highly non-trivial nature of h(·) in Equation 4.7, we were unable to solve
this equation for an optimal cutoff ξ∗. Nonetheless, this condition is going to be
valuable for later, even though, for the optimal cutoff, we must rely on the cutoffs
found numerically in Chapter 4.

Figure 4.3: The optimal cutoff time τ as a function over the coherence time T .

As seen in Figure 4.3 the cutoff τ behaves approximately linear for higher coherence
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times but loses much of this linearity as the coherence times gets smaller.

4.5 Quantifying the effect on the optimal cutoff when vary-
ing the coherence time

Having found these cutoffs numerically, the question that arises is how sensitive these
cutoffs are to deviations in the coherence time. From the previous chapter we de-
ducted that the cutoff is more sensitive the smaller the coherence time. Calculating
this sensitivity might help us in understanding if this is really the case, and if not,
we could proceed to investigate why not.

Calculating this sensitivity can be done by defining the condition for the optimum
as an implicit function, R(T, ξ) = ∂ξSKR = 0. We use that the optimal cutoff a
function of the coherence time is and use the chain rule to differentiate with respect
to T to arrive at

∂TR · dT
dT

+ ∂ξR · dξ
dT

= 0. (4.8)

Solving for dξ/dT and plugging in R = ∂ξSKR we arrive at the expression

dξ

dT
= −∂T∂ξSKR

∂2
ξSKR

. (4.9)

Using the previously found optimal cutoffs ξ∗ and the relationship dτ/dt = ∆t·dξ/dT
the derivative is evaluated in Figure 4.4 with respect to a varying coherence time T .
Doing this serves two purposes. First, analyzing the magnitude gives information
about how quickly the optimal cutoff changes. Second, the sign gives information
about the behavior of the derivative.
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Figure 4.4: The derivative of the cutoff dτ/dT versus the coherence time T , evaluated for the numerically
evaluated optimal cutoff times τ∗ in Chapter 4

Since the derivative in Figure 4.4 is positive for all coherence times the cutoff keeps
increasing, even though the rate at which it does keeps decreasing.

4.6 Approximating the optimal cutoff time using leading or-
der expansions

Anticipating the next chapter, we want to establish a relationship between a change
in cutoff and a change in coherence time. To achieve this we want to approximate the
optimal cutoff to first-order for the mean coherence time T0 and its associated optimal
cutoff ξ0. We proceed similar to the previous section and use ∂ξSKR = R(T, ξ) and
arrive at

R(ξ, T ) = R(T0, ξ0) + (∂T R)|T0,ξ0
∆T + (∂ξ R)|T0,ξ0

∆ξ +O(∆T 2,∆ξ2) = 0. (4.10)

where ∆T = T − T0, with the mean coherence time T0 (fixed) and T (variable) and
∆ξ = ξ − ξ0, with the associated optimal cutoff ξ0 (fixed) and ξ (variable). By
construction we have R(T0, ξ0) = 0. Solving for ∆ξ we can write to first-order
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∆ξ = − ∂T∂ξSKR

∂2
ξSKR

∣∣∣∣∣
T0,ξ0

∆T. (4.11)

We have found a relationship of the form ∆ξ = A · ∆T , where we identify A =
∂T ∂ξSKR

∂2
ξSKR

. We can use the equation above and solve it for ξ to get the linear approxi-

mation to the optimal cutoff (neglecting higher-order terms),

ξ(T ) = − ∂T∂ξSKR

∂2
ξSKR

∣∣∣∣∣
T0,ξ0

(T − T0) + ξ0, (4.12)

ξ(T ) = A (T0, ξ0) · (T − T0) + ξ0. (4.13)

To verify this approximation, the numerically evaluated cutoff and the linearization
are plotted with respect to a varying coherence time. We use a mean coherence time
of T0 = 3s, a maximal deviation of T0 ± 1

3
T0 = 3s ± 1s, and an associated optimal

cutoff time of τ0 = 0.396s. The derivatives for the secret key rate, derived in the
Appendix, are evaluated at the mean coherence time T0 and the associated cutoff τ0.
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Figure 4.5: Linearization of the cutoff τ as a function of the coherence time T , around the mean coherence
time T0 = 3s, τ0 = 0.396s. The range is limited to T0 ± 1

3
T0.

As seen in Figure 4.5 the approximation resembles the true cutoff in the provided
range, with a maximal error e of 2%, as shown in Appendix C. For small devia-
tions around the mean coherence time, the cutoff can be approximated by a linear
function.



Chapter 5

Quantifying the sensitivity

The previous chapter introduced the meaning of drift in the coherence time and
showed a functional relationship between the cutoff and the coherence time. Both
these results will be used throughout this Chapter to motivate and quantify the re-
sulting loss in secret key rate due to drift.

Section 5.1 explains how to quantify this loss and derives the second-order approxi-
mation. Section 5.2 presents the sensitivity parameter derived and its interpretation.
Section 5.3 presents an analysis of the validity of the approximations introduced. Fi-
nally, Section 5.4 compares the two regimes of low and high sensitivity.

5.1 Quantifying the loss in secret key rate

Throughout this work, we have seen

1 that using a cutoff improves the secret key rate,

2 what the factor of improvement is when using a cutoff compared to the absence
of one.

A continuation of this poses the question: What is the secret key rate we lose when
the coherence time starts drifting?

To elaborate on what is meant by losing secret key rate, consider the following sce-
nario: As presented in Chapter 4, we have the mean coherence time T0 and deviations
around the mean such that the coherence time is bound to the region T ∈ [T0 ± δT ].

36
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Next, we find the optimal cutoff for our expected coherence time ξ0 = ξ(T0). If our
coherence time starts trailing to a new value T1 = T0 ± δT , the optimal cutoff will
start to shift as well to a new cutoff ξ1 = ξ(T1). The resulting secret key rate, initially
optimized to ξ0, will thus be lower than the optimal secret key rate using ξ1.

This can be seen in Figure 5.1, where the two secret key rates as functions of the
cutoff time τ 1 are plotted for different coherence times. Assuming the expected co-
herence time is T0 = 3s (red), we can find a cutoff time as τ0 = 0.39s, rounded to
two decimal points for readability. If we now start decreasing the coherence time, we
arrive at the maximal deviation where T1 = 1s, we can see that the optimal cutoff
for this curve (blue) would be in fact lower, τ1 =. The intersection of the magenta
line with the blue curve is the secret key rate we observe when using the cutoff or
the expected coherence time τ0, which is lower than we could get maximally. This
reduction is what we term a loss in secret key rate.

Figure 5.1: Secret key rate for a coherence time T0 = 3s (red) and a coherence time T1 = 1s (blue). The
optimal cutoff time is τ0(T = 3) = 0.39s (vertical magenta line).

More generally, this loss in secret key rate can be understood as the difference be-
tween the optimal secret key rate for every coherence time SKR(T, ξ(T )), where

1To go from a cutoff time to the cutoff use τ = ξ ·∆t.
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ξ(T ) is the optimal cutoff as a function of the coherence time T and the secret key
rate SKR(T, ξ0) that uses a cutoff ξ0 = ξ(T0) optimized for a specific coherence time
T0,

∆SKR = SKR(T, ξ(T ))− SKR(T, ξ0). (5.1)

By construction ∆SKR ≥ 0, since the optimized secret key rate for every coherence
time is never lower than a sub-optimal one.

To better understand what the loss is for small deviations around the expected
coherence time T0, and since we were unable to find a closed-form for ξ(T ), we
proceed similarly as when approximating the cutoff and expand the loss to first-
order around (T0, ξ0),

SKR(T, ξ) = SKR(T0, ξ0) + ∂ξ SKR|T0,ξ0
∆ξ + ∂T SKR|T0,ξ0

∆T,

SKR(T, ξ0) = SKR(T0, ξ0) + ∂T SKR|T0,ξ0
∆T,

∆SKR = ∂ξ SKR|T0,ξ0
∆ξ,

with ∆T = T − T0, ∆ξ = ξ − ξ0. In the linear expansion, the loss of secret key rate
is ∆SKR = ∂ξ SKR|T0,ξ0

∆ξ = 0 - coming from the flatness around the maximum2.
To calculate the resulting loss, we extend this approximation to second-order and
employ the functional relationship between a difference in cutoff and a difference
in coherence time introduced in Equation 4.11, termed A. This way our loss will
only be a function of the maximum deviation from our expected coherence time, the
expected coherence time T0 and the associated optimal cutoff ξ0,

∆SKR(T, ξ) =
1

2
∂2
ξ SKR|T0,ξ0

∆ξ2 + ∂T∂ξ SKR|T0,ξ0
∆T∆ξ

=

[
1

2
A∂T∂ξ SKR|T0,ξ0

]
∆T 2

(5.2)

with ∆T = T − T0, ∆ξ = ξ − ξ0 from above.

2This is akin to using the method of steepest descent where a function is approximated around its maximum/min-
imum and a constant term and its second derivative are left.
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Computationally it would be feasible to calculate the exact losses for two points. On
the other hand, this approach gives a way to better understand how the loss evolves
as a single function of the deviation from the expected coherence time, ∆T .

5.2 Deriving and understanding the sensitivity parameter

The loss in Equation 5.3 yields an absolute value in bits/second. We can (with a
little algebra) rewrite our expression as the loss with respect to a certain secret key
rate, the relative deviation around T0 and a prefactor B such that

∆SKR(T, ξ) =

[
1

2
A∂T∂ξ SKR|T0,ξ0

]
∆T 2

∆SKR(T, ξ)

SKR∗ =
1

2

[
T 2
0

SKR∗ · A∂T∂ξ SKR|T0,ξ0

](
∆T

T0

)2

= B ·
(
∆T

T0

)2

.

(5.3)

As before SKR∗ = SKR(T0, ξ0) is the optimal secret key rate for the expected
coherence time T0 and the associated cutoff ξ0. The factor B = B(T0, ξ0) is evaluated
at the cutoff and coherence time and a non-zero secret key rate and a non-zero
coherence time are assumed. Using Equation 5.3, one can

1 calculate the loss relative to a reference key rate SKR∗ for a given range ∆T ,

2 interpret the prefactor B as a form of sensitivity parameter.

Focusing on the second point, the B - value influences the shape of the parabola
of the quadratic approximation. A large value means that per unit change of the
coherence time T , the resulting change in ∆SKR is large. A smaller value means
smaller ∆SKR per unit change of T . We can, therefore, interpret this prefactor as
a form of sensitivity factor. To understand how this value changes depending on
the expected coherence time, we use the numerically found cutoff times and evaluate
B for every coherence time and its associated cutoff time. This is done to better
understand B, the computational costs can be kept lower if computing the cutoff
ξ(T ) first and then using them in all subsequent steps for B.

Next, we start varying our optimal coherence time from T0 = 0.001s to T0 = 10s.
These values were chosen to give a great enough range to give us insights (range
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∼ 30 · ∆t/p) but not too great as to be computationally unfeasible. Consequently,
evaluating this sensitivity factor for all coherence times and the optimal cutoffs
T0, ξ(T ) yields how strong the magnitude of the loss decreases.

Figure 5.2: Sensitivity Parameter B as a function of the coherence time T0, where for every coherence
time the optimal cutoff ξ0 has to be used.

Doing this, we can see in Figure 5.2 that similar to the sensitivity of the cutoff to
the coherence time, the B - value decreases rapidly for higher coherence times and
is greatest for small coherence times, i.e., in the vicinity of T ∼ ∆t/p. Thus when
the relative deviations ∆T/T0 are equal throughout all coherence times, we see that
small coherence times lead to a comparatively higher loss,

⇒ Relative deviation around T0 is important and absolute value of T0.

5.3 Analysing the validity of the approximation

When approximating a function, the question arises of how good this approximation
to the original function is. To do this we use Equation 5.3 and compare it to a
numerical evaluation of ∆SKR/SKR∗ as a function of the coherence time. Using
a coherence time of T0 = 3s and the associated optimal cutoff time of τ = 0.39s as
seen in Figure 5.3 below.
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Figure 5.3: Loss in secret key rate relative to an optimal secret key rate SKR∗ for a drift in coherence
time. We plot the quadratic fit (blue), the numerically evaluated loss (red) and the chosen mean coherence
time T0 for the quadratic fit (magenta vertical line).

Since the second-order approximation loses all information about asymmetries, it
weighs lower and higher coherence times equally - whereas shown before the optimal
cutoff, and therefore the secret key rate is more sensitive to deviations when the
coherence time is low as opposed to when the coherence times are high. Since for
higher coherence times (i.e. when using coherence times of the order T = 10s) the
sensitivity is lower, and thus a lower loss, the approximation is more accurate as the
deviations become more symmetrical around T0.

To evaluate the accuracy of the approximation, introduce the accuracy score

δ =
∆SKRnum

SKR∗ −B ·
(
∆T

T0

)2

, (5.4)

where the first term ∆SKRnum/SKR∗ is the difference in loss evaluated numerically
with respect to SKR∗ and the second term is the second-order approximation. This
accuracy score gives information on how accurate the approximation compared to the
real value is.
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Figure 5.4: Accuracy score δ as a function of the coherence change ∆T . We choose error thresholds ε
indicated by the red and yellow horizontal line intersecting the accuracy score (blue). The chosen mean
coherence time T0 in magenta.

Doing this for the coherence time T0 = 3s, we set a maximal error threshold ε, in
this case, ε = 0.4 · 10−2. Figure 5.4 shows the accuracy δ in blue, with the ma-
genta line the chosen T0 where δ = 0. Finding the intersection of the error threshold
with our blue curve (red and yellow line), one can find two ranges for the coherence
time, ∆T1 (red) and ∆T2 (yellow). Thus the range of validity in this given example is

⇒ T0 ±min(∆T1,∆T2) = T0 ± 0.26 · T0. (5.5)
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5.4 Comparing high and low sensitivity regimes

Thus, so far, we can state the following points:

• Given Equation 5.3 we can calculate the approximate loss in secret key
rate when having a drift in coherence time.

• With Equation 5.4 we introduce an accuracy score to investigate how
good our second-order approximation is to the numerical loss in secret
key rate.

• From this accuracy score, and by setting a certain error threshold, we can
get a range of validity where our approximation is below this threshold.

We can thus make statements about the approximate loss in secret key rate. Now,
in Figure 5.2, we can see that decreasing the coherence time increases the sensi-
tivity, and therefore the loss also increases, whereas increasing the coherence time
decreases the sensitivity and the loss.

We can see this when plotting the loss in secret key rate in Figure 5.4, where the
numerically evaluated loss has an asymmetry around the mean T0, whereas our
quadratic fit is symmetric around T0.

Comparing these higher and lower sensitivity regimes, we conclude that it might
be possible to argue that the second-order approximation is a lower bound when
drifting towards lower coherence times and an upper bound when drifting towards
higher coherence times. If it is indeed a bound needs to be proven mathematically,
to be able to make such statements and therefore further research is necessary.



Chapter 6

Conclusions and outlook

We summarize the results obtained in this thesis and conclude with ideas that might
extend on the work done so far.

6.1 Summary and conclusions

The aim of this thesis was to gain an understanding on what effect a drift in coher-
ence time might have on a system with two end-nodes and one quantum repeater
using cutoff times. We achieved this by considering depolarizing noise for the mem-
ory to keep the results independent of the specific physical implementation.

In Chapter 4, we introduce two things: First, what is meant by a drift in the coher-
ence time - a fluctuation around a coherence time T0 with maximal deviations ±δT .
To gain a deeper insight into how fluctuations around a coherence time impact the
secret key rate, we plot the secret key rate for a coherence time T0 as well as a lower
and higher coherence time. We consider coherence times T0 ∼ ∆t/p as well as for
the cases where T0 ≫ ∆t/p, where ∆t/p is the average time it takes for one link to
be created. The cutoff has the most significant impact whenever the coherence time
is close to ∆t/p. Having seen the differences in cutoff times for different coherence
times motivates us to delve into the second point, to numerically evaluate the op-
timal cutoff as a function of the coherence time. Using these cutoffs, the maximal
gain one can achieve for the secret key rate when using a cutoff time is compared to
the secret key rate in the absence of such a cutoff time. In the vicinity of T ∼ ∆t/p
the gain is the greatest and keeps decreasing rapidly towards zero.
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Chapter 4 also introduces the analytical condition of finding the cutoff time that
maximizes the secret key rate. We were unable to analytically express the cutoff
time as a function of the coherence time. Nonetheless, this condition was further
used to express the first-order approximation to the cutoff as a function of the co-
herence time, ∆ξ = A ·∆T . This allows us to find a relationship between the cutoff
and the coherence time. Additionally, we analyzed how sensitive the cutoff is to
variations in the coherence time by calculating the derivative of the cutoff time with
respect to the coherence time, dτ/dT . Calculating this derivative, is equal to cal-
culating the first-order approximation and then evaluating A for all coherence times
and associated optimal cutoffs. Evaluating the derivative of the cutoff time showed
that the cutoff is very sensitive whenever the coherence time is of the same order as
∆t/p.

Finally, Chapter 5 introduces what is meant by the loss in secret key rate when
experiencing a drift in coherence time. It was defined as the difference in secret key
rate for the case when the cutoff was optimized for the maximal drift (ξ(T0±δT )) and
the case where the cutoff was optimized for the mean value (ξ0). The loss in secret
key rate was approximated to second-order in ∆T , for the expected coherence time
T0 and the cutoff ξ0. The second-order approximation yields a concise expression for
the loss as a function of ∆T . This approximation is less accurate the smaller the
coherence time gets. Still, due to the asymmetry in the loss, it empirically seems it
could be used as a lower bound when the deviation is negative (T0 − δT ) and as an
upper bound when the deviation is positive (T0 + δT ).

6.2 Future outlook

Many approaches were considered and investigated during this project, yet not all
were fruitful. Nevertheless, they might inspire further work on understanding how a
drift in coherence time might affect the secret key rate.

A closed-form solution of the optimal cutoff as a function of the coherence time is
useful in delivering more precise statements about the loss in secret key rate as well
as the sensitivity. Due to the complicated nature of Equation 4.7 it is not easy to
explicitly solve this for a cutoff ξ. A possible approach might be to try and find
an approximate closed-form of the cutoff as a function of the coherence time. The
following points might also help as a starting point,
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Approximating equations:
We were unable to explicitly solve the equations for the optimal secret key rate for
a specific cutoff ξ. Following approximations might yield a solution:

• Approximating the binary entropy function could yield a solvable model in the
sense that ln(1− x) ≈ −x for small x could be used. Another solution might
be to use an alternate function that approximates the binary function.

• Approximating terms involving exponentials. Terms containing ξ ·β = τ
T
might

be approximated by e−βξ ≈ 1− βξ. For the values used for p and ∆t (Chapter
4), ξ ·β empirically does not seem to exceed a value of 0.4 thus keeping the error
of this approximation to ≈ 10%.

• Approximating terms containing qξ = (1 − p)ξ ≈ e−ξ·p, for small values of p,
similar to [60]. Taylor approximating this seems to only hold for small values
of the cutoff ξ, and the more this increases, the more significant the error.

Exponential distribution:
Instead of using the geometric distribution as a probability mass function, one could
replace this with an exponential distribution similar to [60, 61]. For small values
of p, this is again a useful approximation and might help find a closed-form expres-
sion for the cutoff as a function of the coherence time. The ideal route would be
to find this closed-form expression using the exponential distribution and then using
it as the optimal cutoff for the model presented here using the geometric distribution.

Fitting a function:
Given the numerically found cutoff times, one can fit a function using a least-squares
method. Given the function’s form, this might help figure out which terms in Equa-
tion 4.7 might be negligible or could be simplified.

Using the optimal cutoff times for the loss:
Assuming a closed-form of the cutoff ξ is found, one could then calculate the loss in
secret key rate (Chapter 5) directly. Whether doing this will lead to a more accurate
result depends on the accuracy of the closed-form expression.

New parameter:
An interesting idea might be to introduce a new parameter that is a function of both
the coherence time and the cutoff time, i.e., involving τ

T
= ξβ. This would reduce

the space of parameters and might help simplify the search for an optimal secret key
rate. Nonetheless, terms containing either the coherence time or the cutoff will need
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to be replaced accordingly as this might raise issues.

Multiple nodes:
Using numerical simulations (Netsquid) to verify how the loss in secret key rate
scales for multiple nodes. Having found an expression for the loss in secret key rate
in the case of the three node network, it might be possible to extend the loss to larger
networks using Netsquid. Since we are dealing with a depolarizing channel, we would
expect the maximal noise to scale exponentially with the number of nodes. Using a
swap-asap scheme [62] we might be able to perform better than this when looking at
the loss in secret key rate with drift. The problem that might arise here is the long
time it takes to optimize a cutoff time for a coherence time in Netsquid.
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Appendix A

Proofs

A.1 Expectation values for the QBER

No cutoff: Given a random variable ni that follows a geometric distribution with
parameter p, we can then calculate the expectation value of the exponential with
some parameter a as,

〈
e−a·ni

〉
=

∞∑
j=1

p(1− p)j−1 · e−aj (A.1)

= pe−a

∞∑
k=0

(e−a(1− p))k (A.2)

=
pe−a

1− e−a(1− p)
(A.3)

=
p

p+ ea − 1
(A.4)

Using a cutoff: Given a random variable ni that follows a geometric distribution
with parameter p, we can then calculate the expectation value of the exponential
with some parameter a for the first trials until the cutoff rounds ncut are reached as
[54],
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〈
e−a·ni

〉
=

∑ncut

j=1 p(1− p)j−1 · e−aj∑ncut

j=1 p(1− p)j−1
(A.5)

=
pe−a

1− (1− p)ncut

1− ((1− p)e−a)
ncut

1− e−a(1− p)
(A.6)

A.2 Bell states in X - Basis

Using the states in basis states, we can rewrite the Bell states as

∣∣Φ+
〉
=

1√
2
(|++⟩+ |−−⟩) ,

∣∣Φ−〉 =
1√
2
(|+−⟩ − |−+⟩) , (A.7a)∣∣Ψ+

〉
=

1√
2
(|++⟩ − |−−⟩) ,

∣∣Ψ−〉 = 1√
2
(|+−⟩ − |−+⟩) . (A.7b)

A.3 Symmetry of the Werner state ρ(w)

For simplicity, assuming our state is in Werner form with the Bell state |ϕ+⟩,

ρ(w) = w
∣∣ϕ+

〉 〈
ϕ+

∣∣+ (1− w)
1

4
. (A.8)

We want to show that our QBER in the X - and Z - basis is equal.
Proof: We can write eZ(w) in the Z - Basis as

eZ(w) = ⟨01| ρ(w) |01⟩+ ⟨10| ρ(w) |10⟩

= w
〈
01
∣∣ϕ+

〉 〈
ϕ+

∣∣01〉+ (1− w) ⟨01| 1
4
|01⟩+ w

〈
10
∣∣ϕ+

〉 〈
ϕ+

∣∣10〉+ (1− w) ⟨10| 1
4
|10⟩

= w
(∣∣〈01∣∣ϕ+

〉∣∣2 + ∣∣〈10∣∣ϕ+
〉∣∣2)+

1− w

2

=
1− w

2

and in the X - basis as
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eX(w) = ⟨+−| ρ(w) |+−⟩+ ⟨−+| ρ(w) |−+⟩

= w
〈
+−

∣∣ϕ+
〉 〈

ϕ+
∣∣+−

〉
+ (1− w) ⟨+−| 1

4
|+−⟩+ w

〈
−+

∣∣ϕ+
〉 〈

ϕ+
∣∣−+

〉
+ (1− w) ⟨−+| 1

4
|−+⟩

= w
(∣∣〈+−

∣∣ϕ+
〉∣∣2 + ∣∣〈−+

∣∣ϕ+
〉∣∣2)+

1− w

2

=
1− w

2

since we can write our Bell state in X - basis as |ϕ+⟩ ∝ |++⟩+ |−−⟩.



Appendix B

Derivatives

Throughout this work we used the derivative of the secret key rate but did not
explicitly write out every term. This appendix will serve to show the derivatives
used. To aid in readability, we will introduce a few abbreviations:

q = 1− p, probability of failure. (B.1a)

β =
∆t

T
, decay factor. (B.1b)

µ = qe−β, decayed probability of failure. (B.1c)

eθ =
ez

1− ez
. (B.1d)

B.1 Derivatives of the rate, distribution time and the secret
key rate

Finding the partial derivatives leads to
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∂ξSKR =
⟨DT ⟩ ∂ξr − ∂ξ ⟨DT ⟩ r

⟨DT ⟩2
, (B.2)

∂T∂ξSKR =
⟨DT ⟩ ∂T∂ξr − ∂ξ ⟨DT ⟩ ∂T r

⟨DT ⟩2
, (B.3)

∂2
ξSKR =

∂2
ξ r ⟨DT ⟩+ ∂ξr∂ξ ⟨DT ⟩ − ∂ξr∂ξ ⟨DT ⟩ − r∂2

ξ ⟨DT ⟩
⟨DT ⟩4

− ∂ξSKR · ∂ξ ⟨DT ⟩
⟨DT ⟩

,

=
∂2
ξ r ⟨DT ⟩ − r∂2

ξ ⟨DT ⟩
⟨DT ⟩4

− ∂ξSKR · ∂ξ ⟨DT ⟩
⟨DT ⟩

,

=
∂2
ξ r ⟨DT ⟩ − r∂2

ξ ⟨DT ⟩
⟨DT ⟩4

. (B.4)

In the last step we used, the partial derivative of the secret key rate vanishes if eval-
uated at the optimal cutoff i.e. ∂ξSKR = 0 evaluated at ξ0.

As a next step, we will find the partial derivatives with respect to the cutoff and
the coherence time. We note that the distribution time is only explicitly a function
of the cutoff and not the coherence time, ⟨DT ⟩ = ⟨DT ⟩ (ξ). The rate is explicitly
dependent on the cutoff as well as the coherence time r = r(T, ξ). Thus, the partial
derivatives of the rate can be found to be

∂jr =
2

ln 2
[∂jez · ln eθ] , For j ∈ {T, ξ}, (B.5)

∂j∂ir =
2

ln 2

[
∂j∂iez · ln eθ +

∂iez∂jez
ez(1− ez)

]
, (B.6)

∂T∂ξr =
2

ln 2

[
∂T∂ξez · ln eθ +

∂ξez∂T ez
ez(1− ez)

]
, (B.7)

∂2
ξ r =

2

ln 2

[
∂2
ξ ez ln eθ +

(∂ξez)
2

ez(1− ez)

]
, (B.8)

∂2
T r =

2

ln 2

[
∂2
T ez ln eθ +

(∂T ez)
2

ez(1− ez)

]
. (B.9)

Similar to the rate r, we find the derivatives of the distribution time ⟨DT ⟩ with
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respect to the cutoff ξ and rewrite them as functions of the distribution time,

∂ξ ⟨DT ⟩ = ∆t

p
ln(q)

qξ

[1− qξ]2
= ln(q)

qξ

(2− qξ)(1− qξ)
· ⟨DT ⟩ , (B.10)

∂2
ξ ⟨DT ⟩ = ∆t

p

(
qξ(qξ + 1) ln2 q

(1− qξ)3

)
=

(
qξ(qξ + 1) ln2 q

(2− qξ)(1− qξ)2

)
· ⟨DT ⟩ . (B.11)

B.2 Derivatives for the QBER

The main difficulty, both in terms of finding the derivatives as well as in writing the
equations in a concise form, lies in the QBER. The QBER can be rewritten as

ez =
1

2
− 1

2

pe−β

1− qξ
1− µξ

1− µ
=

1

2
− ω · (1− µξ), (B.12)

where we introduce ω = pe−β

2(1−µ)(1−qξ)
, for conciseness. This factor appears in the

derivatives as well, making the formulas shorter. Next, we need to use the deriva-
tives for the formerly introduced factor as well as the decay factor β and the decayed
probability of failure µ.

These derivatives can be found to be

∂Tβ = −β

T
,

∂ξµ
ξ = µξ(ln q − β) = µξ lnµ, ∂Tµ

ξ =
β

T
ξµξ,

∂ξω = ω · qξ

1− qξ
ln q, ∂Tω = ω · β

T

1

1− µ
.
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∂ξez = ω ·
[
ln q

qξ − µξ

qξ − 1
− βµξ

]
(B.13)

∂2
ξ ez = −ω

{
2β ln qµξ

1− qξ
+

(qξ + 1) ln2 q(qξ − µξ)

(1− qξ)2
− β2µξ

}
(B.14)

∂T eZ =
β

T
ω

(
ξµξ − 1− µξ

1− µ

)
(B.15)

∂T∂ξez = − β

2T

pe−β

(1− qξ)2
1

1− µ

{
µξ[(1− βξ)(1− qξ) + ξ ln(q)] +

ln(q)(qξ − µξ) + βµξ(1− qξ))

1− µ

}
= −β

T

ω

1− qξ

{
µξ[(1− βξ)(1− qξ) + ξ ln(q)] +

ln(q)(qξ − µξ) + βµξ(1− qξ))

1− µ

}
(B.16)



Appendix C

Optimal cutoff time as function of
the coherence time

To find the optimal cutoff time, we use Algorithm 1. We will show a few examples
for the measured run-time. This algorithm may be optimized as to improve the speed.

We use the algorithm from Chapter 4 to find the optimal cutoff for different ranges
of the coherence time. Seen in Table C.1, are the different run times, where NT is
the number of elements the coherence time list has, Nτ is the number of elements of
the optimal cutoff time list, T is the range of the coherence times, and trun run is the
run time.

T [s] NT Nτ trun [s]

[0.01, 4] 104 103 866
[2, 4] 5 · 103 5 · 103 2002

[7.9, 12.1] 5 · 103 5 · 103 1978
[0.1, 0.5] 5 · 103 5 · 103 1998

Table C.1: Run-time of Algorithm 1

Inspired by [63], we define the normalized residual e, which is the difference between
the numerical value of the optimal cutoff time τnum and the estimated, or rather
linearized value for the cutoff time τ lin
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e =
τnum − τ lin

τnum
. (C.1)

As seen in the figures below, we can linearize the cutoff times up to an error of a
few percent for all three mean coherence times. The parabolic form of the residuals
indicate a non-linear relationship of the optimal cutoff to the coherence time. As
seen from Figure 4.4, the smaller the coherence time, the greater the change in cutoff
time with respect to the coherence time. The plots below indicate similar residu-
als for the different mean coherence times, which could be because the accuracy of
the optimal cutoff found numerically is too low. To verify this, we would need to
run the algorithm with higher accuracy, which becomes prohibitively expensive for
higher coherence times since the relative deviation δT = T0/n, where n is an integer,
increases rapidly for greater mean coherence times.

If the accuracy is not the problem, it might be that the cutoff changes rapidly for
small mean coherence times; however, since we consider relative deviations, this
might cancel each other out. Since we did not come to a conclusion, this discussion
was excluded from the main part.

Figure C.1: (a) Numerically found optimal cutoff (dashed blue) and the linearized cutoff (red) for a
coherence time T0 = 0.3s and an associated cutoff time τ0 = 0.060s. (b) Normalized residuals as a function
of the coherence time.
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Figure C.2: (a) Numerically found optimal cutoff (dashed blue) and the linearized cutoff (red) for a
coherence time T0 = 3s and an associated cutoff time τ0 = 0.396s. (b) Normalized residuals as a function
of the coherence time.

Figure C.3: (a) Numerically found optimal cutoff (dashed blue) and the linearized cutoff (red) for a
coherence time T0 = 9s and an associated cutoff time τ0 = s. (b) Normalized residuals as a function of the
coherence time.
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