<]
TUDelft

Delft University of Technology

Isogeometric analysis of linear free-surface potential flow

Akkerman, |.; Meijer, J. H.A.; Eikelder, M. F.P.ten

DOI
10.1016/j.oceaneng.2020.107114

Publication date
2020

Document Version
Accepted author manuscript

Published in
Ocean Engineering

Citation (APA)
Akkerman, |., Meijer, J. H. A., & Eikelder, M. F. P. T. (2020). Isogeometric analysis of linear free-surface
potential flow. Ocean Engineering, 201, Article 107114. https://doi.org/10.1016/j.oceaneng.2020.107114

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.oceaneng.2020.107114
https://doi.org/10.1016/j.oceaneng.2020.107114

Isogeometric analysis of linear free-surface potential flow

I. Akkerman, J.H.A. Meijer, M.F.P. ten Eikelder

Mechanical, Maritime and Materials Engineering Department
Delft University of Technology

Abstract

This paper presents a novel variational formulation to simulate linear free-surface flow. The variational formulation is
suitable for higher-order finite elements and higher-order and higher-continuity shape functions as employed in Isogeo-
metric Analysis (IGA).

The novel formulation combines the interior and free-surface problems in one monolithic formulation. This leads
to exact energy conservation and superior performance in terms of accuracy when compared to a traditional segre-
gated formulation. This is confirmed by the numerical computation of traveling waves in a periodic domain and a
three-dimensional sloshing problem. The isogeometric approach shows significant improved performance compared to

traditional finite elements. Even on very coarse quadratic NURBS meshes the dispersion error is virtually absent.
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1. Introduction

In maritime and offshore applications potential flow is
often a very useful model for prescribing relevant design
scenarios. This is particularly the case when waves, which
are dominated by inertia effects, are of main concern.

Numerical methods for predicting potential flow are
often based on boundary integral formulations, referred to
as boundary element methods (BEM) or panel methods.
Examples of successful application of the BEM are (i) wave
drift forces [I], (ii) ship wave resistance [2] and (iii) ship
motion and maneuvering [3]. These references indicate the
starting point of the development of BEM and numerous
works have been published to improve these methods.

All these methods exploit the Greens functions and
only require the boundary to be discretized. This leads to
very low degree-of-freedom counts, however, the resulting
matrices are dense and expensive to assemble. Moreover,
straightforward implementations have a very unfavorable
scaling in terms of computational time versus degree-of-
freedom.

One way to circumvent this scaling issue is the use of
the fast multipole method [4]. An alternative approach,
which is explored in this paper, is to forgo the boundary
integral approach. Instead variational methods discretiz-
ing the entire volume are used, this encompasses the clas-
sical finite element method (FEM) as well as the novel
Isogeometric Analysis (IGA) approach [B], [6]. IGA uses
splines as shape functions as opposed to the more stan-
dard polynomials in FEM. These spline functions are also
used in CAD. One of the main goals of IGA is to create
a seamless integration of analysis into design processes by
using the same geometry description. It turns out that

Preprint submitted to Elsevier

the spline shape functions have several other benefits, in
terms of efficiency and accuracy [7, 8, 9].

Linear finite elements are used for the simulation of
water waves by for instance Wu and Eatock-Taylor [10],
Kim and Bai et ol [11], and Westhuis [I2], just to name a
few. In the first two publications it is the starting point of a
large body of work. An important issue in these methods is
the coupling of the interior Laplace problem with the free-
surface evolution, in particular the horizontal velocity at
the free-surface. The mentioned bodies of work deal with
this issue in different manners. In Wu and Eatock-Taylor
[10] the recovered velocity is a projection on a new finite
element space. This is referred to as Galerkin projection
and results in a mixed formulation. Kim and Bai [I1]
employ a similar potential-velocity mixed formulation but
employ the Hamiltonian formalism. In Westhuis [I2] the
vertical velocity at the free-surface is reconstructed using
finite differences. Zienkiewicz and Zhu [I3] have used other
reconstruction methods leading to adequate results.

The previous works do allow for nonlinear waves. In
this work we take a step back and limit ourselves to linear
waves. However, we perform a thorough investigation of
the numerical behavior of the methods considered with a
particular focus on the coupling between the interior and
free-surface problem. We investigate several weak formu-
lations that deal with the coupling in different manners.
Moreover, we establish the well-posedness of these formu-
lations. In the discrete case, we derive accuracy estimates
and analyze the energy behavior. Using an appropriate
time integrator for some weak formulations provides exact
energy conservation. The spatial discretization employs
higher order elements.

The outline of the paper is as follows. In section
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the strong formulation of the problem is introduced. In
section [3] several corresponding weak formulations are pre-
sented and their energy conservation properties are ana-
lyzed. Energy conservation is only guaranteed when an
appropriate time integrator is used. In section ] midpoint
time integration is shown to achieve this. After the tem-
poral discretisation, we will focus on the spatial discreti-
sation in section In this section particular attention
is given to Isogeometric analysis. In section [f] the energy
conservation and dispersion properties of the methods are
investigated. This reveals the superiority of the monolithic
approach over the segregated approach. In section[7]and|g]
the convergence of monolithic formulation is analyzed and
verified, respectively. Finally, the paper ends with a 3D
show case problem in section 9} and conclusions in section

1a

2. Strong forms of the free-surface problem

In this section we introduce three different sets of gov-
erning equations describing potential waves. We start off
with the nonlinear equations, which are then linearized
and condensed to arrive at two alternative formulations.

2.1. Non-linear strong form

The governing equations read:

Ap=0 in Q, (1a)
¢35V -Vo+gn=0 on Iy,  (1b)
e+ VéVn —¢. =0 on I}, (1c)

where ¢ : Q@ — R is the potential, n : I, — R is the
water height, and V is the gradient restricted to exclude
the vertical direction. Here I'ys denotes the free-surface.

The Laplace problem is a consequence of the con-
servation of mass for a constant density fluid,

V-u=0 inQ (2)

in conjunction with the assumption of an inviscid and ir-
rotational fluid, for which we can write

u = Vo. (3)

The dynamic boundary condition is a condition on
the pressure, whereas the kinematic condition ensures
that the surface moves with the water.

The problem needs to be augmented with boundary
conditions on the remaining boundaries. In this work we
will assume either periodic boundary conditions or no-
penetration boundary conditions. In the first case no bound-
ary term is present, as such no boundary condition needs
to be enforced. In case of the no-penetration boundary
conditions, we get a Neumann boundary condition

u-n=n-Vo¢=0 on I'/T. (4)

The problem is completed by specifying appropriate initial
conditions for ¢ and 7 at the free-surface. Note that in the
fully non-linear problem, the location of the free-surface,
denoted with Iy, is part of the solution as it is determined
by z =n.

2.2. Linear strong form

The nonlinear equations (1) can be simplified by as-
suming small disturbances. By neglecting the quadratic
terms we arrive at

Ap=0 in Q, (5a)
¢t +gn=20 on I, (5b)
b, = N on I}, (5¢)
n-Vo=0 on I' /Ty, (5d)

where I}, is now assumed frozen on the undisturbed loca-
tion.

By combining the dynamic and kinematic boundary
condition, and , we can eliminate the water height
71 from the problem. The problem reduces to:

Ap=0 in Q, (6a)
b+ 9¢. =0 on I, (6b)
n-Vo=0 on I' /Ty, (6¢)

where the problem is now second order in time. This
means that the initial condition for 7 at the free-surface is
replaced by an initial condition for ¢; at the free-surface.

3. Weak forms of the linear free-surface problem

In this section we present several weak formulations of
the linear wave problem. We start with a weak form of @,
and subsequently propose several formulations for problem
(5). These later formulations of mixed character are more
amiable in the nonlinear case or in situations with currents
present. Furthermore, we analyze the energy conservation
of the solution for each of the formulations. An analysis of
the existence and accuracy of the solution for each of the
formulations, is postponed to section [7}

We introduce the notation

(w,v)q :/Qwv dQ, (7a)
(w,v)r, :/F wo dT, (7b)

s

to denote the innerproduct over the entire domain and
free-surface, respectively. The corresponding norms are
denoted with

[wlfé, = (w,w)q, (8a)
lwlfg, = (w, w)r, (8b)




3.1. Weak formulation of the reduced problem

A weak form of @ follows when multiplying with
an arbitrary function and integrating over the domain.
The order of the required derivatives can be reduced by
using Green’s identities and the resulting boundary terms

can be simplified by using and . Let W= HY(Q)
denote the function-space. The variational formulation of
the reduced problem reads:

Find ¢ € W such that for all w € W:
B (w,¢) =0 (9)
where

By (w,¢) = (Vu, Vo)q + é(w,@t)rfs. (10)

An energy conservation statement for the reduced form
can be derived by choosing w = ¢; in @D This selection
gives

1
B?"((bh ¢) :(v¢t7 v¢) + g(qsta d)tt)rfs
Aoz L2
— IO+ SR, =0 ()

Realizing that the definition for kinetic and potential are

Eyin =3 lull® = 3V¢ll*, (12a)
1
Epot =301nll* = - ll4ll5, (12b)
g
we arrive at the following statement
d d
&Ekin + EEpot =0. (13)

Consequently, the reduced weak form is exactly energy
conservative assuming appropriate time integration.

3.2. Weak formulations of the segregated problem

Here we present a segregated weak formulation serving
as a reference method based on the work of Wu and Taylor
[10] and Wu et al. [I4], Westhuis [12], Kyoung et al. [15],
Bai et al. [I6] and Kim et al. [I7]. It is based on the strong
form and decouples the interior and surface parts of the
problem.

The interior problem in strong form reads:

A¢ =0 in Q, (14a)
¢=¢  only, (14b)
n- V¢ =0 on I' /Ty, (14c)
where dg is input from the free—surface problem:
br + gn =0 on Ij,, (15a)
m =¢, on T¥. (15b)

Here is ¢, is given by the interior problem. As such the
two problems are artificially decoupled.

Let Wy and W; denote the subspaces of H(Q) sat-
isfying homogeneous Dirichlet boundary condition, ¢ = 0
on I}, and the homogeneous Dirichlet boundary condition
¢ = ¢3 on I, respectively. Furthermore let Wr,, denote the
trace space of W. The associated weak formulation for the
interior problem reads:

Find ¢ € Wd3 such that for all w € Wy:
where
Bini(w, ¢) := (Vw, Vo). (17)

For the free-surface the weak form reads:
Find (¢,m) € Wr xWr such that for all (w,v) € Wr X Wr:

By ({w, v} {6,n}) = L (0,021, (18)

2
where

2
By({w, v} {6,n}) = (w,6¢ + gn)rs, + 25 (v, ) (19)

Here « is a parameter, that eventually will be chosen to
depend on the time integrator.

3.2.1. Energy conservation of the segregated formulation

To arrive and an energy statement we would like to
select w = ¢; in both the interior problem and free-
surface problem . However, due to the Dirichlet bound-
ary condition on I} this is not allowed for the interior
problem. To remedy this, the weak form is written in
an equivalent Lagrange multiplier formulation. from which
yields exactly the same solution if the Lagrange multiplier
space is constructed appropriately. This Lagrange multi-
plier formulation reads as follows:

Find (¢, \) € W x Wr such that for all (w,q) € W x
WF N

(vw, v¢)ﬂ + (w7 )\)Ffs + (C], ¢)Ffe = (qu ¢)Ffe (20)

The new formulation allows the selection of w = ¢; and
additionally we set ¢ = 0. This yields:

(Vor, Vo) + (¢, A) =0, (21)

which can be rewritten as:

d

— Exin = — (¢, A). 22

53 Bin = ~(01.) (22)
For the free-surface problem we select w = ¢, and



v = na? /g which results in:

0 =(¢s, bt + gty + 9, me — ¢2)13,

=(¢z, Pe)1y, + 90, M0)13, - (23)
This can be rewritten as:
d
T ot = —(¢z, e), - (24)

Combining the interior and boundary problem we ar-
rive at the following energy statement:

d d

— FEyin + —FEpot = — (¢, A 2 2

g Bhin + 37 Bpot = (e, A+ ¢:) (25)
which results in conservation of energy if A = —¢,. Un-

fortunately this relation only holds on sufficiently smooth
meshes, where the solution is converged. This means con-
servation of energy can not be guaranteed.

In the following two subsections two alternative ap-
proaches to remedy this energy error are discussed. The
first approach is to reconstruct the Lagrange multiplier
and use this as a forcing in the boundary formulation.
The other approach is to solve the boundary and interior
problem in one monolithic formulation.

3.8. Segregated formulation, with LM reconstruction

The Lagrange multiplier from equation can be re-
constructed by selecting ¢ = 0, which results in
(w, g, = =(Vw, Vo) (26)

for all w e W.

Energy conservation can be recovered if this Lagrange
multiplier is directly used in the weak form for the free-
surface problem given in . The right-hand side would
need to be modified to:

9 9 g9
g(vv¢z)f}s = _g(vv)‘)rfs = J(VMV(M) (27)
where in the last integral the functions v need to be arbi-
trarily extended into the domain.

For the modified free-surface problem we again select
w = ¢, and v = na?/g which results in:

d

EEpOt = ()‘7 ¢t)rfs' (28)
This can be combined with already obtained kinetic energy

statement to yield:

d d
7Ekin + 7Epot = O,

2
dt dt (29)

and as such recovering the energy conservation.

Remark 1. Note that in the work of Westhuis [12] a higher-
order reconstruction of ¢, is used. This reconstruction
does not provide exact energy conservation.

3.4. Monolithic weak formulation

Here we present a monolithic formulation that bypasses
the need of the Lagrange multiplier construction. When
the divergence theorem on the interior problem creates
boundary terms the kinematic boundary condition can be
substituted in, this eliminates the problematic derivative.
The dynamic boundary condition is added to the weak
form in a way that guarantees coercivity.

We propose the weak formulation:

Find (¢,m) € W x W such that for all (w,v) € W x W,

B({w,v};{¢,n}) =0, (30)
with
B({w,v};{¢,n}) =(Vw,Vé)a — (w,n)r,
+ 50+ 2w, ¢+ g, (31)

Again « is a parameter that eventually will be chosen
based on the time integrator.

8.4.1. Conservation of energy of the monolithic form

To establish an energy statement we select w = ¢, and
v=2n — %qﬁt and substitute this in which gives:

B({ot,ne}: {6, n}) =(Vor, Vo) — (¢, )13,
+ 5 (2 — SoL+ G, b+ 9N,

From this it follows directly that
d d
Bl 3 Bl R
dt kin + dt pot 0; (33)

which indicates that the total energy is conserved.

4. Time integration

In sections[3.I)and B:4.1]it was proven for the respective
weak forms that the total energy is conserved. This is
stated as

d d

—Fyin + —FEpot = 0. 34

qp + qz Pt (34)
When defining the energies as

17<Lin _%((bn7 ¢n)7 (353*)

El =59(n™.n"), (35b)

and assuming the time-integrator has the correct behavior
the time continous statement can be translated to a time
discrete conservation statement, namely

E’I’L+1 + En+1 :Eil'I{Lln +En

kin pot pot*

(36)



This translation holds when the time integrator satisfies
the following relations,

(¢n+1’¢n+1) _ (¢n’¢n) ~

QAt :(¢7 ét% (37&)
n+1 n+1y _ n n
9(77 o1 2A)t ", 7") =9(7, 7it)- (37b)

Here the tilde denotes the value used by the time integrator
to evaluate the weak formulation.

In this paper midpoint time integration is adopted for
both the first and second-order problems. In both cases
the required translation is valid, as will be shown, while
having second-order convergence.

Note, that as shown in [I8] generalized midpoint time

integration almost satisfies . In addition to it also
features a diffusion that scales with O(At).

4.1. Midpoint time integration for a first-order problem

For problems with first-order time derivatives the mid-
point time-integration is determined by the following rela-
tions.

e The ordinary differential equation:
T2 gm0 2) = 0. (38)
e The interpolation relation:
oI =4 (o™ 4 o"). (39)
e The kinematic relation:

¢" T =g + Atg," 2, (40)

This results in three relations for three unknowns that are
in principle solvable.

In[7.3] and it will be shown that using

_ 9

a=—

o

results in favourable properties of the formulations. For
the midpoint time-integration this results in:

B 8¢?+1/2 B 6¢n+1 a¢n+1/2 -1 _i (42)
8¢"+1/2 6¢?+1/2 a¢n+1

(41)

o = A
4.1.1. Kinetic and potential energy behavior

To see whether the kinetic energy requirement (37a)
holds, we rewrite the kinematic relation as:

1

¢tn+1/2 :Kt (¢n+l _ (bn) ) (43)

Using this relation we find that:

(¢:L+1/2’¢n+1/2) _ <A1t (¢n+1 o ¢n) , %((ﬁn + ¢n+1)>
1
:TAt ((¢n+1’¢n+1) - (¢n,¢n)) : (44)

This demonstrates that the kinetic energy requirement is
satisfied. The potential energy relation goes analogously.

4.2. Midpoint time-integration for a 2nd order problem

For problems with 2nd order time derivatives the mid-
point time-integration is determined by the following rela-
tions.

e The ordinary differential equation
A e E N C5)

e Two interpolation relations,

G =L (g" 4 ), (462)

¢ T2 =2(¢" + o). (46b)
e Two kinematic relations,

ot =g" + At /2, (472)

BT =" + Atgy T2 (47D)

This results in five relations for five unknowns that are in
principle solvable.

4.2.1. Kinetic energy behavior

Again, to see whether the kinetic energy requirement
(37a) holds we rewrite the kinematic relation (47a) as

1

¢tn+1/2 :E (¢n+1 _ ¢n) . (48)

Using this relation we again find that

n+1/2 n+1/2y _ i
((bt ad) ) <At
1

T2A¢

(¢7z+1 _ (Z)n) , %<¢n + ¢n+1)>
((¢" " 0" 1) = (97, 0")), (49)

demonstrating that the kinetic energy requirement is sat-
isfied.

4.2.2. Potential energy behavior

For the potential energy we need to make the following
substitution,

n:—é@ (50)



which is justified by the dynamics boundary condi-

tion . The potential energy requirement ((37b]) holds,
namely,

9(0”+¢/2,Uf+1/2)::;(Zit(¢tn+1—'¢&n)’§(¢¥1*‘¢tn+l))
Zﬁ (o™, ™) — (6™, ¢™))

=ﬁ (™9™ ) = (™ 9™)) . (51)

5. Spatial discretization

In this section the spatial discretisation is discussed.
For the spatial discretisation both finite elements (FE) and
NURBS based Isogeometric analysis (IGA) are used. IGA
can be seen as an extension of FE. Both methods will be
explained separately. But first the commonalities are dis-
cussed. Both approaches approximate the unknown exact
solution, denoted as ¢(x), by a weighted sum of known
shape functions Ny(x):

Ndo f

¢(@) ~ ¢"(x) = Y _ ¢ Ny(). (52)
b=1

Here ¢, are the unknown parameters that need to be de-
termined. To convert the weak form in a set of equations
we select:

w(x) = Ny(x) a=1,2,...,Ngos- (53)
Using these approximations the terms in the weak form
can be determined. For instance, a term in the weak form
such as (w, @) results in:

(VN,, Vo) = / VN, - (Z %vzvb) do
b=1

:Z/VNa~VNb dQ ¢y =3 Kap ¢,
b=1 b=1
(54)

where we dropped the argument « to simplify the notation.
The matrix is defined as:

Nel

Kap := / VN, - VN, dQ2 =" / VN, - VN, d9, (55)
e=1 Qe

Here €, denotes the element domain,of which the union
covers the entire domain, viz. = U.Q.. The element in-
tegral is approximated using Gauss quadrature. Both the
domain of the integral and gradients incorporate the map-
ping between the physical and reference domain, following
the isoparametric paradigm.

Note that in contrast to the boundary element method
the global matrices in FE and IGA are usually very sparse
due to the compact support of the shape functions. An

entry in M,y is only non-zero if the associated shape func-
tions N, and N, share at least one element where both
functions are non-zero.

5.1. Finite elements

In the case of finite elements the shape functions are
often simple piecewise polynomials that are continuous at
element interfaces. The simplest example being the 1D

0.8 | \ 4

0.6 - ’ . 4

0.4 - ’ 4

02k ’ v oA

Figure 1: Linear shape functions

linear shape functions as depicted in figure [I]
Higher-order shape functions, such as the quadratic

Lagrangian shape functions depicted in figure [2, are also

available. The expected convergence of the overall nu-

Figure 2: Quadratic Lagrangian shape functions

merical method is often directly related to the polynomial
order of the shapefunctions used. Note that the functions
are still continuous at element interfaces, but that higher
order derivatives are not.

5.2. Isogeometric analysis

Isogeometric analysis is an extension of finite elements
attempting to bridge the gap between design (CAD) and
analysis (FE). The idea is to use the same NURBS (Non-
Uniform Rational B-Splines) of CAD for the analysis. This
results in an exact representation of CAD geometries, such
as circles and ellipses. These shape functions allow for



higher-order continuity at element interfaces, see Figure

Bl

-0.2 L L

Figure 3: Quadratic NURBS shape functions

The higher-order continuity leads to additional con-
straints, resulting in higher-order approximations with lim-
ited degrees-of-freedom. Additionally, the higher-order con
tinuity allows a strict tailoring of approximations spaces.
For the incompressible Navier-Stokes equations this can be
exploited to create velocity-pressure approximations that
result in exactly solenoidal solutions [19]. In [20, 2] this
exact divergence is essential for getting correct energy be-
havior of the single and two-fluid Navier-Stokes problem,
respectively. In the current context the improved approx-
imation and spectral properties are of paramount impor-
tance.

In [7] it is demonstrated that the extra resolution pro-
vided by the element kinks are not beneficial. Evans et
al. [9) show that these kinks lead to bad performance of
higher-order finite elements in wave propagation problems.
Cotrell et al. []] formally prove that NURBS have opti-
mal approximation properties. This superior behavior is
noticed in numerous application areas.

Due to the success of IGA on the one hand and the
specific requirements on the other hand, a multitude of al-
ternative spline technologies have emerged. Examples are
T-Splines [22], LR-Splines [23], U-Splines [24] and many
others. These approaches all allow higher-order continuity
at element interfaces but avoid the rigid tensorial construc-
tion required for NURBS. Assuring the shape functions
are linearly independent and the resulting system matrices
are solvable is one of the main issues of these alternative
splines.

6. Numerical comparison of the formulations

In this section the different weak formulations are nu-
merically investigated. To this purpose we present a trav-
eling wave case. We compare the energy behavior and
assess convergence under mesh refinement.

6.1. Two-dimensional traveling wave

The performance of the different formulations is as-
sesses using a simple traveling wave in a two-dimensional
periodic domain.

Figure 4: Problem setup for simple traveling wave

Periodic boundary conditions are enforced on the sides
(I'; and T,.), no penetration on the bottom (I';) and a
free-surface on the top (I}), as depicted in figure

The initial condition is specified to be an airy wave.
For a given wave height ¢ the water elevation and flow
potential are given as:

¢ cos (kx — wt),

w  cosh (k(z+ H))

0= 3¢ sinh (k H)

n = (56a)

sin (kx — wt), (56b)

with z and z representing the spatial coordinates in hori-
zontal and vertical direction. The wavenumber k = 27w /A
with wavelength A\, and angular frequency w are related
through the dispersion relation:

w? = gk tanh(k H), (57)
where H is the water depth. Snapshots for the solution
of an airy-wave with a wavelength equal to the size of the
domain are given in Figure [f]

- )

- @

Figure 5: Snapshots of the traveling wave problem
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6.2. Mesh convergence of energy traces

The simulation are done on a unit size square. The
time step is chosen in alignment with the mesh resolution:

h  10At

A T

(58)

where T, is the theoretically expected period of the wave.
A straightforward computation reveals that the rela-
tions for the wave energy in this domain are:

1
Eyin = iHvéf’H?z = 19¢%, (59a)
g
Bpor = L, = o€ (59b)
Eioy = Eyin + Epot = %952 (59C)

Figures [6] and [7] show the convergence of the energy
time trace for linear finite elements when employing the
segregated and monolithic formulation.

The energy traces for the reduced formulation are vir-
tually identical to those of the monolithic formulation and
are therefore not plotted. The segregated formulation dis-
plays quite severe fluctuations in the energy components
and the sum of both does not remain constant. These
fluctuations disappear with mesh refinement indicating the
method is in principle valid. The monolithic formulation
gives much better results on the same mesh when com-
pared with the segregated formulation. The fluctuations
of the kinetic and potential energy are significantly less
than for the segregated formulation. On the 12 x 12 mesh
the fluctuations are barely visible and on the 24 x 24 mesh
they are essentially gone. Moreover, the total energy stays
perfectly conserved, even on the coarsest mesh. Note that
on the coarser meshes the total energy is underestimated.
This is due to the loss of energy in projecting the initial
condition on to the discrete space. This mismatch disap-
pears under mesh refinement.

Figures [§ and [0] show a similar comparison but for
quadratic finite elements. To account for the additional
degrees-of-freedom the timestep half compared with the
linear cases. The results are much better owing to the
improved resolution from the quadratic elements, even for
similar degree-of-freedom counts. The fluctuations of ki-
netic and potential energy are significantly reduced, for
the monolithic formulation they are virtually non-existent
even on the coarsest mesh. As a consequence, the total
energy mismatch for the monolithic formulation is also vir-
tually absent. The monolithic formulation already has a
converged energy behavior on the coarsest mesh of only 3
x 3 quadratic elements.

6.3. Verification: Mesh convergence of period

Here we focus on the prediction of the period of the
wave. In practice this can be of major importance as it
determines when wave groups or wave crests arrive at cer-
tain points. In the study of wave interference the exact
timing of the arrival of each wave becomes critical.

10

Here we use the same setup as in the previous section.
The simulation is performed for 10 periods. The first 2
zero crossings are discarded and the period is computed
based on the following 18 zero crossings.

In figure [10| we present the convergence for the differ-
ent formulations for linear finite elements (figure and
quadratic finite elements (figure . The reduced and
monolithic formulations have virtually the same behavior.
In both cases the segregated formulation performs worse.
All formulations benefit from the use of quadratic over
linear finite elements.
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Figure 10: Convergence of the period for different formulations

Figure [11] shows the period convergence of the mono-
lithic formulation using different basis functions. Increas-
ing the order and continuity of the shape functions clearly
demonstrates improved behavior.

Figure illustrates the benefit of the higher-order
higher-order continuity NURBS basis functions over the
standard linear finite elements. In both cases the horizon-
tal discretization consists of only 6 degrees-of-freedom. For
the linear finite element case this leads to a rough estimate
and it results in a bad approximation of the period. In case
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Figure 11: Convergence of the period for different discretisations

of cubic NURBS, the spatial representation seems nearly
perfect. The consequence is that the period is predicted
very accurately (an error of less than 0.015%).

) Cubic NURBS

) Linear FE

Figure 12: A visualization of the wave profile for different discretiza-
tions.

Given that the monolithic and reduced formulations

are nearly indistinguishable and show superior performance,

we will focus on the monolithic formulation in the follow-
ing.

7. Analysis of the weak formulations

In this section we analyze the existence, uniqueness
and accuracy of the solution for the monolithic weak for-
mulation. For completeness the analysis for the reduced
and staggered formulations are given in and
respectively. Before we perform the analysis

we will shortly introduce the required mathematical tools.

7.1. Preliminaries

To facilitate the analysis of the existence, uniqueness
and accuracy of the approximate solutions we first intro-

duce some essential technical concepts in this section. Ex-
istence and uniqueness of the solutions of the weak formu-
lations are guaranteed by the Lax-Milgram theorem. See
for instance [25] or other standard works on finite element
theory.

Theorem 1 (Lax-Milgram). Let V' be a Hilbert space,
V' its dual space, and B(-,-) a bilinear form on V that is
both bounded and coercive:

B(v,4) < Coly[ ol
B(,4) > Ce|y)?,

where | - | is norm on V' and Cy, C. are positive scalars.
Then, for any f € V', there is a unique solution 1 € V to
the equation

B(v,¢) = f(v)
The solution 1p € V satisfies the a-priori estimate:

N0
Cc vev ol

The weak formulations can be converted into a semi-
discrete formulation by straightforwardly approximating
the infinite-dimensional function space by a conforming
subspace. This is called the Galerkin method. Existence
and uniqueness of solutions obtained with the Galerkin
method are automatically inherited from the continuous
formulations. The approximate error of the Galerkin so-
lution is given by Cea’s lemma.

(60a)
(60b)

for all veV. (61)

[l <

(62)

Lemma 2 (Cea). Given a bounded and coercive bilinear
operator B(-,-) and linear operator f € V', and finite di-
mensional space V" approzimating V. There is a unique
solution Y™ € V" to the equation

B(o", ") = f(v")

The error of the approximate solution is bounded:

for all v" e VM. (63)

Cp .
[p =t < & jnf o —o"|  forall " €V, (64)

where Cy and C, are the constants in (@)

Let us assume that we have a decomposition of the do-
main into a mesh M = {Q.}"< with Q@ = U.Q.. The
element size is denote by h. with maximum A = max, he.
The boundary I' is partitioned as I' = U;I'y. The bound-
ary element size is denote by h; with maximum h, =
max; hy. In the finite element case the decomposition rep-
resents the finite element mesh, whereas in the IGA case
it represents the NURBS mesh.

Assuming sufficient regularity of the solution 1, a clas-
sical convergence analysis provides the a-priori interpola-



tion estimates: For o« = 2/At the coercivity estimate is sharp:

jnf [|Vy — Vo'|la < Coh?|[¢|lp.0. (65a) B, (W, W) = [W]|2,, (70)
vheVh
1 .
inf [ —o"|lp < CrhPT 2|40, (65b)  Where the norm is defined as,
vheVvh ’
; _h +1 2 g
AL, 19 ="lle < Coh” gl (65¢) W5, = IVel* + S lwllg, + 5I0lE,. (7
where Cq, Cr and Cr are constants, p is the minimum Next, we consider boundedness. We write:
degree of the shape functions and || - ||, and || - ||, r are
the norms of the p'" derivative over  and T, respectively. B, (W; ) <||Vuwl||[|Ve]|
Note that for simplicity we assume h > hy, the validity of g )
this assumption depends on the definition of the element + §||U| 5. [l + At2g Jwlln, 1Al
and face sizes h. and hy. For more details see for instance 1
[26, 27]. + 5z el g, + el lollg,). - (72)
7.2. Time-discrete monolithic weak formulation By defining the following shorthand notation
Let the test function pair be W := (w,v) € V and v v
the trial function pair denote @ := (¢,n) € V. The time- 1 = [V, y1 = [IVel,
. . a @
discrete weak formulation then becomes: Ty = 7||w||rfs7 Yy = 7H¢||Ffs7
V29 V29
. n+1/2 . 1 1
Find & €V such that for all W € V: T3 = 5\/ 2g||7‘}||1—}'s’ Y3 = 5V 2g]n I s (73)
n+1/2\ n+1/2
(Vw, Ve ) = (w,m, ), we can write,
«a n+1/2 n+1/2 _
+ g+ —w, ¢ g ) =0 (66)
2 g ! ! Bs(W; @) < x1y1 + T2y2 + T3y3
We combine the relations ([46)-(47) to arrive at: +22ys +asye = - Ay. (74)
) Here A is a symmetric matrix:
;1"!‘1/2 :Kt (¢n+1/2 _ ¢n> , (67&)
s 2 L 1 0 0
T e— (n"+ /2 _ 77") . (67Db) A= 0 1 1 (75)
At
01 1
Employing these relations we arrive at the time-discrete
problem: with maximum eigenvalue Apax = 2. Using this Ayax and
Given ¢™, 0", find "% €V such that for all W € V: applying Cauchy-Schwarz on we arrive at the follow-
ing boundedness estimate:
By (W, 8" /%) = F, (W), (68a)
By (W3 @) < Amazllz|l2]lyll2
where <2[[Wll,,, Bl (76)
2 . .
By (W, 8" 11/2) .= (Vw, V) — E(wm)rﬂ* (68b) mgﬁfe we used the identities ||z||2 = [|[W]|,, and [|y|l2 =
m’*
+ 1 (v + gw, i(j) + 977> , Using Cea’s lemma we arrive at the following, accuracy
2 g At T estimate:
2 1 a 2 N N
Fn(W) = — (g, +5 (vt —w on ) ‘H@—@ H‘ <2 inf |l&-w H‘ .
g I m Wheyn m
(68¢)

Using the definition of the norm and the interpolation
7.8. Emistence and accuracy of the monolithic form estimates this yields:

The coercivity estimate is

2 C2 2h
h T 272 2
2, © 2, 9.2 H‘¢_¢ H‘m S4<1+C29At2> Coh™llllp.0
Bn(W, W) = Vol + S fwlf, + 2o, hoat?) o
g +29Cch = Inll5 g, - (78)
!
+ (2 B At) (w, V), (69) This indicates that depending on the relative importance

12



of the terms we could pick an additional full order of con-
vergence order.

8. V&V of the monolithic formulation

8.1. Verification: Error convergence

Here we present the error convergence for the mono-
lithic formulation. We measure the error in the norm .
Note that this norm includes the timestep size At. There-
fore we choose to perform the mesh convergence study with
a fixed timestep. In this way the definition of the norm
does not change when refining the mesh. The timestep
is chosen as At = T/1000, with end time T, leading to
negligible time stepping errors. The convergence of the

E T~T 1T TT T T T

T T
Linear
Quadratic
8\13(1 NURBS

T
_'_
- -
—e—

ube NURBS —5—

01 |

Error

0.01
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2 3

111
4 56

Figure 13: Convergence of error for the monolithic formulation. The
1
dashed lines indicate convergence of the orders O(h?), O(h3§) and

1
O(h*2) respectively.

error is shown in figure Note that the theoretical con-
vergence rates are O(h?) and O(hP*!), with p the order
of the basis functions, for the volumetric and boundary
term. This indicates that for all discretizations, except for
linear finite elements, the potential boundary term is the
dominant term. Remark that obtained convergence rates
are larger than the theoretical values, which confirms the
viability of the formulation.

8.2. Validation: Dispersion relation

To show the adequacy of the monolithic formulation we
will perform a validation case which consists of predicting
the phase velocity of the wave for different heights. The
theoretical solution is:

cp =1/ % tanh(kH),

with phase velocity c,. The numerical approximation is
obtained on a mesh with 8 x 8 cubic NURBS elements
resulting in a 10 x 11 degrees-of-freedom resolution. The
time step is taken such that 80 periods fit in the time
domain.

(79)
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Figure 14: Dispersion relation

The phase speed is computed from the wave period in
the same manner as in the previous subsections. Figure
shows that the numerical method gives a near perfect
prediction of the wave speed over a wide range of water
depths. This demonstrates that the monolithic formula-
tion produces the correct physical answer.

9. Showcase: Sloshing in closed 3D container

Here we consider a sloshing case in a three-dimensional
container with a circular obstruction in the middle of the
domain. The domain is represented with a 32x32x32-mesh
with no penetration boundary conditions on all bound-
aries. Note that IGA offers the ability to represent circles
exactly. A picture of the setup is presented in figure [T5}
The water surface is given an initial perturbation in one

Figure 15: Mesh of the 3D sloshing problem

quarter of the domain. Some snapshots of the resulting
water surface using the monolithic formulation are shown
in figure The resulting traces of kinetic, potential and
total energy are depicted in figure[I7] It shows that kinetic
and potential energy are exchanged in an erratic fashion
due to the bouncing waves between the cylinder and the
outer boundaries. Just as in the 2D cases the total energy
is perfectly conserved.
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Figure 16: Snapshots of standing waves
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10. Conclusion

This paper presents a novel variational formulation to
simulate linear free-surface flow. Similar to formulations
found in literature the potential and water height are the
primary variables. This should facilitate the extension to
non-linear cases and situations with forward speed.

The novelty of the formulation is that the interior prob-
lem and kinetic and dynamic boundary conditions are com-
bined in one formulation. This monolithic formulation
results in provable energy conservation, if a proper time
integrator is selected. Additional to the superior energy
behavior, the monolithic formulation exhibits significantly
reduced dispersion errors.

The dispersion properties of the numerical method are
further improved by the adoption of Isogeometric analysis.
Isogeometric analysis is a discretization approach that at

the same time allows for higher-order finite elements and
higher-order and higher-continuity basis functions. This
later feature results in more efficient and improved behav-
ior of the numerical solutions.

We demonstrate that the benefit of employing Isogeo-
metric analysis over traditional finite elements is substan-
tial. The error in the kinetic and potential energy is very
small for quadratic NURBS on very coarse meshes. More-
over, on very coarse discretizations (4 to 6 degrees-of free-
dom per wavelength) the dispersion error is negligible.

The analysis of numerical results is performed for a
two-dimensional linear wave problem. A simple sloshing
case demonstrates that the results directly translate to
three-dimensions. Possible further work entails the exten-
sion to nonlinear cases with forward speed.
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Appendix A. Analysis of the reduced form

To analyze the properties of this variational form, we
first discretize in time. Approximating ¢ by ¢"+1/2 and

¢4t by ¢?t+1/2

Given ¢", ¢}, %, find ¢"H/2 € W such that for all
w e W:

gives:

1 n
<Vw,v¢"+1/2>g+§<w7 L, = 0. (A1)

In order to prove existence, uniqueness and accuracy
estimates, we use Lax-Milgram and Cea’s lemma. To that
purpose we establish coercivity and boundedness of the
weak form.

We combine the relations — and get:

(¢n+1/2 ¢n) B

Using this relation we arrive at the following weak form:

ntij2 _ 4

n+1/2
tt Atz .

(A.2)

Given ¢, dF,¢%, find ¢"t/2 € W such that for all

w e W:
By (w,¢" /%) = Fy(w), (A.3a)
where
4
B.(w,¢) == (Vw,Vo)g + —— AZg (w 7¢)I}s’ (A.3b)
4 2
F’r(w) = Ath (UJ, d)n)l“f, At (U} ¢t )Ffs (A3C)
By defining a problem-dependent norm as
9 4
llwll; = VWl + o5 AZg lwll,, (A.4)

the coercivity and boundedness estimates are sharp in this
norm:

B, (w,w) = |||u/H|i for all w e W (A.5a)
By (w,¢) <[[VwlalVéla + -

<[lwll.lll,

wllg, 9l (A.5b)

4
A7 [[w
for all w e W, ¢ € W.

The coercivity follows directly from the definition of the
norm, while the boundedness estimate requires the Cauchy-
Schwarz inequality.
Using Cea’s lemma we arrive at the following, accuracy
estimate:
inf
wheWwh

lle—o"Ill. < ¢ ="l (A.6)

Using the definition of the norm (A.4) and the interpola-



tion estimates this yields:

V6 - Vol + o — 617,
C2 212 2
(1+402 so ) G0l (&)

This indicates that depending on the relative importance
of the terms we could pick an additional half order of con-
vergence order.

Appendix B. Analysis of the segregated form

Appendiz B.1. Interior problem
The weak form is trivially coercive:

Bint(w,w) = ||[Vw|3, for all w € W. (B.1)

Boundedness of the weak form follows directly from Cauchy-
Schwartz:

Bint(w, ¢) < [[Vwlla[Vélla

for all w € Wy, € W5, (B.2)

in the standard H'(Q)-norm.
Using Cea’s lemma the accuracy is estimate to be:

Ve —Ve'lo< inf [Vo—Vu'la. (B3
whewp
Using the interpolation estimates this yields:
IV — Vo[la < Cah?(|¢]|,0- (B.4)

This is the standard optimal estimate for standard Poisson
problems.

Appendiz B.2. Boundary problem

To analyze the properties of this variational form, we
first discretize in time. Substitution of the relations (67))

into gives:

Given ¢™, @, n"™,ni and ¢, find P"t1/2 ¢ Vr, such that
Jor all W € Vr, :

B (W; 8" T1/2) = Fr (W) (B.5a)
where
2 g% 2
st<WvdS) = wa&¢+977 +72E<v7n)r}s7

(B.5b)

2 n 92

Frg(W) := Kt(w’¢ ., + gﬂ(v»ﬂ )L
g2

+ ?(Uvqsz)l}s~ (B5C)
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Coercivity of the boundary problem follows via:

2 g% 2
By (Wi W) =l + g(w,0) + L2 ol (B6)
2 g* 2 g 2
> 2= 2 .
> (2= 2) 1ol + (Ga - L) i,
Selecting o = 2/ At yields:
2
Bps(W; W) = |[W];, (B.7)
with the norm defined as:
2 g*At
Wl = H wlig, + == lllz. (B.8)

Next, we prove boundedness. Applying Cauchy-Schwartz
we get:

¢l

ul

Bps(W: @) < w9l + gllwly, 9],
+ L2 o, il (B.9)
By defining the following shorthand notation:
1 1
T = waHFf@,a Y1 = f”ébHrfs,
© ng ol v grnnnrf&, (B.10)
we can write,
B (W; D) < 2z1y1 + 220y + 221y2 = ¢ - Ay. (B.11)
Here A is a symmetric matrix:
A= ( : ) (B.12)

with maximum eigenvalue A\ . = 2. Using this A\pax and
applying Cauchy-Schwarz on (B.11]) we arrive at:

Bys(W; @) < Amax ][ yl2

<2[Wl NIl (B.13)
where we used the identities |||z = [[|W]||, and [|y[]2 =
lilll,-

Using Cea’s lemma the accuracy is estimated as:
‘H@Lsph <2 inf ‘difWh (B.14)
s Whepn s

Using the definition of the norm (B.7)) and the interpola-
tion estimates this yields:

n||I? 2 9 opt2) 42
T v

gAt

+ =—CER*P*2||n

|;D,Pfs (B-15)
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