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Thrust Vector Control for Flexible Launch Vehicles: An
H∞ Open Loop Shaping Approach

João T. Diz∗

Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Spilios Theodoulis †

Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Pedro Simplício‡

European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands.

This paper continues previous work on the application of H∞ Open Loop Shaping (OLS) to
the design of thrust vector control (TVC) systems for launch vehicles (LVs). The contributions
are threefold: first, further insight is provided into the selection and role of weighting filters
within the loop shaping step; second, through two examples, it is shown that H∞ OLS and
H∞ Closed Loop Shaping (CLS) result in equivalent controllers for rigid LVs, with neither
approach outperforming the other; third, the H∞ OLS methodology is extended to flexible LVs,
introducing a simultaneous attitude controller and bending filter design strategy. Compared
to H∞ CLS, H∞ OLS simplifies the design process by avoiding the simultaneous tuning of
multiple closed loop transfer functions and ensuring robustness at the plant input and output.
These advantages, combined with the demonstrated performance parity, support the use of
H∞ OLS for LV control applications. The flexible OLS framework was also benchmarked
against the traditional separate design method, yielding similar results with reduced workload.
Additionally, using the integrated approach in combination with a multi-model framework, a
controller was developed and validated through linear simulations under both nominal and
dispersed conditions, satisfying all TVC system performance and robustness requirements.
Future work will address sloshing dynamics and develop a full-envelope controller for nonlinear
simulation to further consolidate the methodology’s applicability.

I. Introduction

Launch vehicles (LVs) are the cornerstone of space exploration, satellite deployment, scientific research, and national
security operations. Access to space is not only crucial for expanding our understanding of the universe, but also for

driving technological innovation, promoting economic development, and strengthening international cooperation. As
the demand for space access increases—driven by the rise of satellite constellations, commercial space ventures, and
global collaboration—the need for more frequent and reliable launch services becomes increasingly evident.

A critical subsystem of LVs is the Thrust Vector Control (TVC) system, part of the Guidance, Navigation, and
Control (GNC) architecture. The TVC system adjusts the direction of engine thrust to control the vehicle’s attitude,
ensuring stability, tracking guidance commands, and rejecting disturbances from atmospheric uncertainties and structural
dynamics. Designing the TVC control system is a complex task: most launch vehicles are aerodynamically unstable [1];
the controller must address multiple competing requirements, such as attitude tracking, load alleviation, and actuation
minimization [2]; the vehicle exhibits non-negligible structural flexibility [3]; and the system is highly time-varying [1].

The traditional approach to designing the TVC control system — which is composed of a rigid body controller
(attitude controller) and a bending filter — has proven effective in managing these challenges. However, it presents
several limitations [1]: the design process is time-consuming, it struggles to address multivariable problems, and
possesses no explicit way to address uncertainty - stability robustness is enforced only through gain and phase margins.

Over time, advancements in TVC system design have moved beyond the classical approach to include modern
control approaches. Early efforts incorporated optimal control techniques, such as the use of the Linear Quadratic
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Gaussian (LQG) method in the development of Ariane V’s initial rigid body controller [4]. While optimal control
improved the handling of multivariable systems and reduced design time, it suffered from notable drawbacks, including
the absence of guaranteed stability margins at the plant’s input and output [5].

These limitations motivated the adoption of robust control, a framework well-suited to aerospace applications
due to its inherent ability to manage system uncertainties, support multivariable design, and streamline the synthesis
process. Among the various robust control methods, H∞ Closed Loop Shaping (CLS) has received considerable
attention in the context of launch vehicle TVC system design. This method focuses on shaping the system’s closed-loop
transfer functions (CLTFs) to achieve performance and robustness objectives. Compared to earlier approaches, H∞
CLS provides a more systematic way to incorporate design specifications, as demonstrated in studies such as [1].

However, as discussed in [6], H∞ CLS is not without limitations. Achieving robustness at both the plant input and
output requires the simultaneous shaping of multiple CLTFs, a process that can become cumbersome and complex.
Moreover, conflicting performance objectives often arise while shaping the CLTFs, making the tuning process challenging
and increasing the overall design complexity.

In [6], the authors proposed the use of H∞ Open Loop Shaping (OLS), a method within the robust control framework,
as an alternative to H∞ CLS for the design of launch vehicle attitude controllers. This work systematized the use of
H∞ OLS, simplifying its application to the selection of five weighting filters (three first-order filters and two gains)
for the initial controller design, and to setting two gains for subsequent flight points. This methodology not only
automatically achieves robustness at both the plant input and output, but also eliminated the need to simultaneously
shape multiple transfer functions. Preliminary results in [6] showed that H∞ OLS and H∞ CLS produced nearly
identical controllers, with H∞ OLS offering the simpler approach.

This paper builds upon the work presented in [6]. The contributions of this paper are threefold: first, it provides
further insights into the weighting filter parametrization described in the previous work; second, it extends the comparison
between H∞ CLS and H∞ OLS, providing two examples that illustrate how one method does not outperform the
other; and third, it extends the H∞ OLS methodology to account for the flexible launch vehicle case, resulting in a
Simultaneous Attitude Controller/Bending Filter H∞ OLS design strategy.

The paper is structured as follows. In Section II, the open loop model used in this study is described, along with
the requirements used for the flight control system. Section III outlines the general H∞ Open Loop Shaping strategy.
Section IV revisits the weighting filter parametrization from [6] and provides further insights into the role of each
weighting filter. Section V presents two comparison examples between H∞ CLS and H∞ OLS. Section VI details
the Simultaneous Attitude Controller/Bending Filter design strategy, compares it to the separate design approach,
describes the computation of a multi-model-based controller using the simultaneous design strategy, and presents
frequency-domain and time-domain results for the simultaneous design controllers. Finally, Section VII provides the
conclusions of this work.

II. Launch Vehicle Model and Attitude Control Requirements
The flexible launch vehicle open loop model is constructed by combining the Linear-Time-Invariant (LTI) system,

which describes the flexible motion of the LV, with a delay model that captures the time delay introduced by the on-board
digital units, and an actuator model. These components are detailed in Subsections II.A, II.B, and II.C. Having described
the LV model, the requirements for attitude control are described in Subsection II.D.

It should be noted that all the models are populated using data representative of Europe’s small launcher (VEGA),
corresponding to the flight point at which the dynamic pressure is highest. The uncertainty ranges for the flexible
parameters are also representative of this launcher. For the non-flexible parameters, uncertainty levels were defined
following the approach in [7]: 20% for aerodynamic parameters, 2% for mass, inertia, and center of mass, and 10% for
the rest.

A. Launch Vehicle LTI Model
The LTI model of the flexible launch vehicle is derived under the assumptions of axial symmetry and negligible roll

rate effects. These assumptions enable the decoupling of the yaw and pitch axes, which are also considered identical.
As a result, the analysis can be restricted to the pitch plane, eliminating yaw and lateral motion in the yaw plane as
degrees of freedom. Furthermore, by neglecting the longitudinal dynamics—since they are minimally influenced by
small perturbations [8]—and assuming the use of a gravity-turn manoeuvre, an LTI system can be constructed and
linearized around the local trajectory reference frame.
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Fig. 1 LV - Rigid body diagram - pitch plane.

In this work, thrust, gravity, aerodynamic forces, engine inertia, and LV bending motion are considered significant
to the vehicle’s motion. Accordingly, the translational and rotational equations are formulated as follows:

𝑚 ¥𝑧 = − (𝑇 − 𝐷)𝜃 + 𝑁
(
𝜃 + ¤𝑧

𝑉
+ 𝑣𝑤
𝑉

−
¤𝜃
𝑉
𝑙𝐶𝑃

)
− 𝑇𝛿𝑝𝑖𝑡𝑐ℎ − 𝑚𝑛𝑙𝑛 ¥𝛿𝑝𝑖𝑡𝑐ℎ + 𝐹 𝑓 𝑙𝑒𝑥

𝐼𝑦𝑦 ¥𝜃 =𝑁𝑙𝐶𝑃

(
𝜃 + ¤𝑧

𝑉
+ 𝑣𝑤
𝑉

−
¤𝜃
𝑉
𝑙𝐶𝑃

)
− 𝑇𝛿𝑝𝑖𝑡𝑐ℎ𝑙𝐶𝐺 − (𝑚𝑛𝑙𝑛𝑙𝐶𝐺 + 𝐼𝑛) ¥𝛿𝑝𝑖𝑡𝑐ℎ + 𝑀 𝑓 𝑙𝑒𝑥

(1)

where 𝑇 is the thrust force, 𝐷 is the drag force, 𝐹 𝑓 𝑙𝑒𝑥 , and 𝑀 𝑓 𝑙𝑒𝑥 represent the contributions from the LV’s bending
modes, and 𝑉 is the vehicle velocity with respect to ground. 𝜃, ¤𝜃, 𝑧, and ¤𝑧 represent pitch angle, pitch rate, drift, and
drift rate, respectively. 𝑚𝑛 and 𝑙𝑛 represent the mass of the nozzle and the distance between the nozzle’s center of mass
and the center of thrust, respectively. 𝛿𝑝𝑖𝑡𝑐ℎ denotes the deflection of the nozzle. 𝑚 and 𝐼𝑦𝑦 are the mass and moment of
inertia of the LV, respectively. 𝑥𝐶𝑀 , 𝑥𝐶𝑃 , and 𝑥𝐶𝑇 denote the distances from the bottom edge of the LV to the center of
mass, center of pressure, and center of thrust, respectively. The distances 𝑙𝐶𝑀 = 𝑥𝐶𝑀 − 𝑥𝐶𝑇 and 𝑙𝐶𝑃 = 𝑥𝐶𝑃 − 𝑥𝐶𝑇 are
the lever arms from the center of thrust to the center of mass and center of pressure, respectively, and can be visualized
in Figure 1. In this figure, 𝑆𝑑0 and 𝑆𝑑3 represent the local trajectory reference frame and body frame, respectively.

The contribution from the bending modes can be described by the following equations:

𝐹 𝑓 = 𝑇
∑︁
𝑖=1

𝜕Ψ𝑖 (𝑥𝐶𝑇 )
𝜕𝑥

𝑞𝑖

𝑀 𝑓 = −𝑇
(
(𝑥𝐶𝑀 − 𝑥𝐶𝑇 ))

𝑘∑︁
𝑖=1

𝜕Ψ𝑖 (𝑥𝐶𝑇 )
𝜕𝑥

𝑞𝑖 +
𝑘∑︁
𝑖=1

Ψ𝑖 (𝑥𝐶𝑇 )𝑞𝑖

) (2)

where Ψ𝑖 represents the Translational Length of the ith bending mode; Ψ′
𝑖
(𝑥) = 𝜕Ψ𝑖

𝜕𝑥
is the Rotational Length of the

ith bending mode, and 𝑞𝑖 is the generalized coordinate of the ith bending mode (it can represent displacement, elastic
torsion, etc).

Considering only the first order effects (for simplicity), the ith bending mode is mainly excited by the LV engine, as
stated by [9]. Its dynamics are described by the following equation:

¥𝑞𝑖 + 2𝜁𝑖𝜔𝑖 ¤𝑞𝑖 + 𝜔2
𝑖 𝑞𝑖 =

(
−𝑇𝛿 − 𝑚𝑁 𝑙𝑁 ¥𝛿

)
Ψ𝑖 (𝑥𝐶𝑇 ) + 𝐼𝑛 ¥𝛿

𝜕Ψ(𝑥𝐶𝑇 ))
𝜕𝑥

(3)

where 𝜔𝑖 is the frequency of the ith bending mode; 𝜁 is the damping of the ith bending mode.
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Finally, the effect of the Inertial Measurement Unit (IMU) on the system must be taken into account. On one hand,
its location influences the sensor readings; on the other hand, bending motion affects its actual position. These effects
are described by the following equations:

𝜃𝐼𝑀𝑈 = 𝜃 −
∑︁
𝑖

𝑞𝑖Ψ
′
𝑖 (𝑥𝐼𝑀𝑈) (4)

¤𝜃𝐼𝑀𝑈 = ¤𝜃 −
∑︁
𝑖

¤𝑞𝑖Ψ′
𝑖 (𝑥𝐼𝑀𝑈) (5)

𝑧𝐼𝑀𝑈 = 𝑧 − (𝑥𝐼𝑀𝑈 − 𝑥𝐶𝑀 )𝜃 +
𝑘∑︁
𝑖=1

𝑞𝑖Ψ𝑖 (𝑥𝐼𝑀𝑈) (6)

¤𝑧𝐼𝑀𝑈 = ¤𝑧 − (𝑥𝐼𝑀𝑈 − 𝑥𝐶𝑀 ) ¤𝜃 +
𝑘∑︁
𝑖=1

¤𝑞𝑖Ψ𝑖 (𝑥𝐼𝑀𝑈) (7)

where 𝑥𝐼𝑀𝑈 represents the position of the IMU sensor.
Integrating eq. 1-7, it is possible to compute the following flexible LV LTI model:

¤𝜃
¥𝜃
¤𝑧
¥𝑧
¤𝑞
¥𝑞


=

©­­­­­­­­­­«

0 1 0 0 01𝑏 01𝑏

𝜇𝛼 − (𝑥𝐶𝑃−𝑥𝐶𝑀 )𝜇𝛼

𝑉𝑟𝑒𝑙
0 𝜇𝛼

𝑉𝑟𝑒𝑙
𝑓𝜃 01𝑏

0 0 0 1 01𝑏 01𝑏

− 𝑁𝑧

𝑚0
+ 𝑎0

𝜇𝛼 𝐼𝑦𝑦

𝑚0𝑉𝑟𝑒𝑙
0 −𝑁𝑧

𝑚0𝑉𝑟𝑒𝑙
𝑓𝑧 01𝑏

0𝑏1 0𝑏1 0𝑏1 0𝑏1 0𝑏𝑏 𝐼𝑏

0𝑏1 0𝑏1 0𝑏1 0𝑏1 𝑓𝑞 ¥𝑞 𝑓 ¤𝑞 ¥𝑞

ª®®®®®®®®®®¬



𝜃

¤𝜃
𝑧

¤𝑧
𝑞

¤𝑞


+

©­­­­­­­­­«

0 0
𝜇𝑐 𝜇′𝑐
0 0

− 𝑇
𝑚0

−𝑚𝑁 𝑙𝑁
𝑚0

0𝑏1 0𝑏1

𝑓𝛿 ¥𝑞 𝑓 ¥𝛿 ¥𝑞

ª®®®®®®®®®¬

[
𝛿𝑝𝑖𝑡𝑐ℎ
¥𝛿𝑝𝑖𝑡𝑐ℎ

]
+

©­­­­­­­­­«

0
− 𝜇𝛼

𝑉𝑟𝑒𝑙

0
𝑁𝑧

𝑚0𝑉𝑟𝑒𝑙

0𝑏1

0𝑏1

ª®®®®®®®®®¬
[𝑣𝑤]



𝑞𝛼

𝑧𝐼𝑀𝑈

¤𝑧𝐼𝑀𝑈

𝜃𝐼𝑀𝑈

¤𝜃𝐼𝑀𝑈


=

©­­­­­­­«

𝑞 0 0 𝑞̃

𝑉𝑟𝑒𝑙
01𝑏 01𝑏

−(𝑥𝐼𝑀𝑈 − 𝑥𝐶𝑀 ) 0 1 0 𝑓𝑞𝑧 01𝑏

0 −(𝑥𝐼𝑀𝑈 − 𝑥𝐶𝑀 ) 0 1 01𝑏 𝑓𝑞𝑧

1 0 0 0 𝑓𝑞𝜃 01𝑏

0 1 0 0 01𝑏 𝑓𝑞𝜃

ª®®®®®®®¬



𝜃

¤𝜃
𝑧

¤𝑧
𝑞

¤𝑞


+

©­­­­­­­«

0 0
0 0
0 0
0 0
0 0

ª®®®®®®®¬
[
𝛿𝑝𝑖𝑡𝑐ℎ
¥𝛿𝑝𝑖𝑡𝑐ℎ

]
+

©­­­­­­­«

− 𝑞̃

𝑉𝑟𝑒𝑙

0
0
0
0

ª®®®®®®®¬
[𝑣𝑤]

(8)

where
𝑓𝜃 = [ 𝑓𝜃1, ..., 𝑓𝜃𝑏] with 𝑓𝜃𝑖 =

𝑇

𝐼𝑦𝑦

(
Ψ′
𝑖 (𝑥𝐶𝑇 ) (𝑥𝐶𝑃 − 𝑥𝐶𝑀 ) + Ψ𝑖 (𝑥𝐶𝑇 )

)
𝑓𝑧 = [ 𝑓𝑧1, ..., 𝑓𝑧𝑏] with 𝑓𝑧𝑖 =

𝑇

𝑚0
(Ψ′

𝑖 (𝑥𝐶𝑇 ))

𝑓𝑞 ¥𝑞 = diag( 𝑓𝑞 ¥𝑞1, ..., 𝑓𝑞 ¥𝑞𝑏) with 𝑓𝑞 ¥𝑞𝑖 = −𝜔𝑖
2

𝑓 ¤𝑞 ¥𝑞 = diag( 𝑓 ¤𝑞 ¥𝑞1, ..., 𝑓 ¤𝑞 ¥𝑞𝑏) with 𝑓 ¤𝑞 ¥𝑞𝑖 = −2𝜔𝑖𝜁𝑖

𝑓𝛿 ¥𝑞 = [ 𝑓𝛿 ¥𝑞1, ..., 𝑓𝛿 ¥𝑞𝑏]𝑇 with 𝑓𝛿 ¥𝑞𝑖 = −𝑇Ψ𝑖 (𝑥𝐶𝑇 )
𝑓 ¥𝛿 ¥𝑞 = [ 𝑓 ¥𝛿 ¥𝑞1, ..., 𝑓 ¥𝛿 ¥𝑞𝑏]𝑇 with 𝑓 ¥𝛿 ¥𝑞𝑖 = 𝐼𝑁Ψ

′
𝑖 (𝑥𝐶𝑇 ) − 𝑚𝑁 𝑙𝑁Ψ𝑖 (𝑥𝐶𝑇 )

𝑓𝑞𝑧 = [ 𝑓𝑞𝑧1, ..., 𝑓𝑞𝑧𝑏] with 𝑓𝑞𝑧𝑖 = Ψ𝑖 (𝑥𝐼𝑀𝑈)
𝑓𝑞𝜃 = [ 𝑓𝑞𝜃1, ..., 𝑓𝑞𝜃𝑏] with 𝑓𝑞𝜃𝑖 = −Ψ′

𝑖 (𝑥𝐼𝑀𝑈)

(9)

Additionally, 𝑏 represents the number of bending modes, and the rigid lines were used to separate the rigid and flexible
contributions.

With the state-space model described in equation 8, and by incorporating sufficient bending modes, it is possible to
simulate both the displacement caused by flexible behavior in the IMU position and the flexible forces experienced by
the launch vehicle. Following the approach outlined in [1], only the first two bending modes will be included in the
model.
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B. Delay Model
Launch vehicles experience time delays due to the processing performed by on-board digital units. To account for

these delays, a delay model can be employed. The delay model that will be used in this work was retrieved from [1] and
is presented below:

𝛿𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝛿𝑐𝑚𝑑

=
𝑠2𝜏2 − 𝑠6𝜏 + 12
𝑠2𝜏2 + 𝑠6𝜏 + 12

(10)

where 𝜏 is the time delay.

C. Actuator Model
For this paper, a second order model will be used to represent the actuators. The equation that describes the second

order model is shown next:
𝛿𝑝𝑖𝑡𝑐ℎ

𝛿𝑐𝑚𝑑

=
𝜔𝑎

2

𝑠2 + 2𝜁𝑎𝜔𝑎𝑠 + 𝜔2
𝑎

(11)

where 𝜔𝑎 is the natural frequency, and where 𝜁𝑎 is the damping ratio.

D. Requirement Definition
The typical requirements for a launch vehicle’s TVC system during atmospheric ascent are well documented in the

literature (e.g. [1], [2] and [3]). In this work, the requirements for the TVC system are based on the aforementioned
works and are outlined in Table 1, where the tracking and disturbance rejection requirements are the defined as follows:

TR1 - The controller must be capable of tracking pitch angle commands, achieving zero steady-state error while
constraining the transient response in terms of overshoot and maximum rate.

DR1 - The controller must be able to reject external disturbances (e.g. wind gusts) and internal dynamics (bending
modes).

The requirements in Table 1 can be further categorized into stability and performance criteria. The stability
requirements address both rigid and flexible body behavior, incorporating classical stability margins (gain and phase)
for nominal and perturbed conditions.

Table 1 Stability and performance requirements for the TVC control system.

Requirements Criterions Bounds

Stability

Rigid body margins

Low Frequency (LF) Gain Margin (GM) Nominal ≥ 6 dB
Dispersed ≥ 0.5 dB

High Frequency (HF) GM Nominal ≤ −6 dB
Dispersed ≤ −3 dB

Phase Margin (PM) Nominal ≥ 30 deg
Dispersed ≥ 20 deg

Flexible body margins

GM 𝑓 Nominal ≤ −3 dB
Dispersed ≤ −3 dB

PM 𝑓 Nominal ≥ 30 deg
Dispersed ≥ 20 deg

Performance

Load 𝑞𝛼 < 2.75 · 105

Lateral
𝑧

¤𝑧
< 167 m
< 15 m/s

Actuation
𝛿𝑝𝑖𝑡𝑐ℎ

Actuator usage should be minimized
< 6.5 deg

Tracking TR1 (See above)
Disturbance
Rejection

DR1 (See above)
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Fig. 2 Launch vehicle stability margins requirements.

Following [1], the controller is deemed to fulfill the stability requirements if the stability margins at the plant input
meet the specified metrics. These metrics are most effectively visualized through a Nichols plot, as illustrated in Figure
2.

The performance requirements for the launch vehicle TVC system are divided into five categories. The first one,
the load requirement, ensures that the loads applied to the LV remain below the maximum allowable value. This
requirement is expressed as a function of 𝑞𝛼, which is hereafter referred to as the load performance metric (LPM). As
seen in [1], the angle of attack is particularly sensitive to wind disturbances, highlighting the need for the control system
to be robust against wind gusts in order to fulfill the load requirement.

Lateral requirements aim to bound the drift (𝑧) and drift rate ( ¤𝑧) of the LV, which is especially critical due to the
assumption that the LV employs open loop guidance. Actuation requirements, on the other hand, focus on limiting the
maximum deflection angle (𝛿𝑝𝑖𝑡𝑐ℎ) and minimizing actuator usage. Tracking requirements ensure the controller can
effectively track attitude commands while maintaining control over specific transient response parameters.

Finally, the controller must be capable of rejecting disturbances, with a primary emphasis on external disturbances
such as wind gusts and bending modes.

III. H∞ Open Loop Shaping - General Strategy
The H∞ Open Loop Shaping design procedure originates from the early contributions of Vidyasagar (see for instance

[10]). Subsequently, it was extensively detailed in [11], further refined in [12], [13], and in [14]. Finally, in [15] a
systematic framework and practical application of the method is provided.

H∞ Open Loop Shaping is a combination of an H∞ optimization problem with classic open loop shaping methods.
The open loop shaping methods aim at giving the open loop singular values the desired shape, while the H∞ optimization
aims at robustly stabilizing the shaped plant against normalized coprime factor (NCF) uncertainty.

The main advantages of this method stem from its ability to directly shape the open loop and robustify the system
against NCF uncertainty, both of which address the challenges inherent to the H∞ CLS method. Next, the steps required
to apply H∞ Open Loop Shaping will be outlined. The first step, explained in Subsection III.A, involves shaping the
open loop singular values. The second step, covered in Subsection III.B, is the computation of the NCF robustifying
controller. The third and final step, discussed in Subsection III.C, focuses on implementing the controller and the
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Fig. 3 Shaped plant.

weighting filters. This subsection will also provide guidance on how to integrate and apply each step within the overall
design process.

A. Open Loop Shaping
The first step in the H∞ Open Loop Shaping procedure is to shape the singular values of the open loop transfer

functions (𝐿𝑂 = 𝐺𝐾 and 𝐿𝐼 = 𝐾𝐺). This is done so as to achieve achieve the desired performance and robustness goals.
For the purpose of shaping the open loop transfer functions, two (generally diagonal) compensators are used: 𝑊1

and𝑊2, which correspond to the pre-compensator and post-compensator, respectively. The full assembly, consisting of
𝑊1(𝑠),𝑊2(𝑠), and 𝐺 (𝑠), represents the shaped plant 𝐺𝑠 (𝑠), as illustrated in Figure 3.

According to the guidelines established in [16], 𝑊1 is used to add integral action and reasonable roll-off rates
for the open loop singular values, resulting in zero steady-state error while tracking commands, disturbance rejection
and output decoupling. Additionally, proportional action can be added to𝑊1 to decrease the phase-lag at crossover,
resulting in higher stability. The choosing of the proportional gain, and therefore the PI’s zero, results directly from the
trade-off between bandwidth and robustness. Meanwhile,𝑊2 is used for noise rejection (low-pass filter), and usually
also contains lead-lag filters to adjust the crossover frequency, and reduce phase lag at crossover.

B. Robustifying Controller
The second step in H∞ Open Loop Shaping is to compute a controller 𝐾 which robustly stabilizes the shaped

plant against normalized coprime factor uncertainty. Consider the shaped plant 𝐺𝑠, with a normalized left coprime

Fig. 4 NCF robustification scheme.
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factorization 𝐺𝑠 = 𝑀
−1𝑁 . An uncertain plant model can be written using the NCF specification as:

𝐺 𝑝 = (𝑀 + Δ𝑀 )−1 (𝑁 + Δ𝑁 ) (12)

where the Δ’s are stable and proper. The aim of the robust stabilization is to compute a controller which will robustly
stabilize the class of perturbed plants defined by:

𝐺 𝑝 =
{
(𝑀 + Δ𝑀 )−1 (𝑁 + Δ𝑁 ) : ∥ [Δ𝑁Δ𝑀 ] ∥∞ < 𝜖

}
(13)

The problem to be solved is to find the controller that maximizes (or nearly maximizes) the allowable coprime factor
uncertainty (𝜖).

In [13] this problem is solved, and an analytical solution to compute a sub-optimal controller is found. This solution
however, is only capable of generating full-order controllers. In this work, the controller used in the NCF robustification
process will consist of four gains (a discussion on this is given later), therefore a full-order solution is not ideal.

In [15], it is shown that the process of finding a controller which maximizes 𝜖 is equivalent to finding a controller
which minimizes the H∞ norm of a specific four-block transfer function. So, combining that knowledge with systune, it
is possible to compute a structured robustifying controller which maximizes the allowable coprime factor uncertainty.
Figure 4 illustrates the diagram of the transfer function that must be minimized to compute the robustifying controller.

Finally, one useful mathematical formula is given. The greatest achievable robustness margin (𝛾𝑚𝑖𝑛) can be
computed analytically through the following formula [15]:

𝛾𝑚𝑖𝑛 = 𝜖−1
𝑚𝑎𝑥 =

{
1 −




[ 𝑁 𝑀

]


2

𝐻

}− 1
2

(14)

where | |.| |𝐻 is the Hankel norm. The Hankel norm of a system 𝐺 (𝑠) is defined as [17]:

∥𝐺 (𝑠)∥𝐻 =
√︁
𝜌(𝑃𝑄) (15)

where 𝜌 is the spectral radius, P is the controllability Gramian and Q is the observability Gramian (the formulas for P
and Q can be found in pages 133 and 136 of [17], respectively).

C. H∞ Open Loop Shaping Design Process and Implementation
The process of applying H∞ Open Loop Shaping consists of three steps. The first step involves shaping the open

loop singular values, as described in Subsection III.A. However, this alone does not guarantee a robustly stable closed
loop system.

The second step involves computing the robustifying controller to ensure closed loop robust stability. This step is
divided into two sub-steps. The first sub-step involves using equation 14 to compute the maximum attainable stability
margin. If 𝛾𝑚𝑖𝑛 > 4, the designer should revisit step one and adjust the weighting filters. If 𝛾𝑚𝑖𝑛 < 4, the loop shaping
is considered successful, and the designer can proceed to the second sub-step. It is important to note that when 𝛾𝑚𝑖𝑛 < 4,
implementing the robustifying controller will not significantly alter the shape of the open loop singular values (see [15]).

Fig. 5 H∞ OLS tracker implementation.
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Thus, robust stability is achieved without significantly degrading the performance characteristics specified by the open
loop shaping.

The second sub-step involves designing the robustifying controller. This is accomplished by implementing the setup
shown in figure 4 in SIMULINK and defining the controller 𝐾 (𝑠) as a tunable parameter in systune. Then, 𝐾 (𝑠) is
computed by finding the stabilizing controller which minimizes the H∞ norm of the transfer function pertaining the
setup of figure 4.

The final step is to implement the H∞ OLS robustifying controller and weighting filters. This can be achieved in
various ways, including the regulator implementation, tracker implementation, and observer implementation. For this
particular work, only a specific tracker implementation is relevant. The launch vehicle must be capable of tracking
references, which makes the regulator implementation unsuitable. Additionally, the observer implementation would
result in a controller of full order, which is impractical for this application. The tracker implementation in question is
discussed in page 408 of [17], and is illustrated by Figure 5.

In the implementation of Figure 5, a command pre-filter is used to ensure zero steady-state tracking error, and
the robust controller consists of the weighting filters and the NCF robustifying controller. It is important to note that
this implementation avoids the direct excitation of the robustifying controller’s dynamics by the reference commands,
effectively preventing significant overshoot.

IV. H∞ Open Loop Shaping - Application to Launch Vehicles
The application of H∞ Open Loop Shaping (OLS) to aerospace vehicles is not always straightforward, as determining

suitable weighting filters can be a cumbersome task. The first systematic application of H∞ OLS to launch vehicles was
presented in [6]. In this section, the weighting filter parametrization, as described in the referenced work, is reiterated
for convenience, and a more detailed examination of the role of each weighting filter is provided, offering additional
insight beyond previous treatments. A final note is given: in the following discussion the (often) mentioned desired loop
shape, is the loop shape discussed and detailed in [6].

A. Weighting Filter Parametrization
The set of filters described in [6] follows the guidelines established by [16] for H∞ Open Loop Shaping, which

recommend placing proportional-integral action in the pre-compensator and lead-lag action in the post-compensator.
The weighting filter parametrization is as follows:

𝑊1 = 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 − 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙
𝑊2−𝑧 = 𝐺𝑎𝑖𝑛

𝑊2− ¤𝑧 = 𝐿𝑒𝑎𝑑 − 𝐿𝑎𝑔
𝑊2−𝜃 = 𝐺𝑎𝑖𝑛

𝑊2− ¤𝜃 = 𝐿𝑒𝑎𝑑 − 𝐿𝑎𝑔

(16)

As it can be seen, the pre-compensator is used to add proportional integral (PI) action on all channels. This is crucial as,
in the LV case, all channels benefit from PI action (this will be further discussed later on). Moreover, this also ensures
that the robust controller has a (desired) integrator-like shape. The post-compensator contains two gains: the drift gain
is used to adjust the open loop singular values (SV) at low frequency (LF), whilst the pitch angle channel gain, is used to
adjust the SV in the critical frequency (CF) range∗. The two lead-lag (LL) filters in the post-compensator are used to
delay the crossover and smoothen the curve around it.

In order to explain the effects and benefits of applying PI action on the pre-compensator, the reader must first
understand the frequency dependency of the shaped plant’s SV on each of the shaped plant’s outputs. For that purpose,
consider Figure 6, which compares the singular values of the open loop system, compensated with weighting filters
according to the parametrization, to the singular values of the individual input-output channels of the same compensated
system.

From the figure, it is evident that initially, the drift channel defines the open loop system response. As the frequency
increases, the drift rate channel becomes dominant, until the effects of the non-minimum phase zero take place.
Following this, the pitch channel takes over, and eventually the pitch rate becomes dominant for the rest of the frequency

∗Frequency range identified in [6] to be most relevant for load relief.
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Fig. 6 SV of compensated open loop vs SV of compensated individual input-output channels.

domain. It should be noted, that after the transition from pitch to pitch rate, and up until shortly after crossover, the drift
rate channel has an influence on the response.

Having understood that each output channel is dominant at a certain frequency range, it is now possible to discuss
the importance of the PI pre-compensator. Additionally, the role of the LL filters will also be discussed.

Consider Figure 7, which shows the singular value plots of the weighted system’s individual input-output channels.
Each subplot presents singular values for a specific input-output pair, illustrating the effect of progressively applied filter
sets:

• Blue: SVs of the plant shaped with only static gains.
• Red: SVs of the shaped plant when a PI controller is included in the pre-compensator, and static gains are kept

equal to those of the blue curve.
• Yellow: SVs of the shaped plant when a PI controller is included in the pre-compensator, lead-lag filters are added

to the output rate channels, and static gains are kept equal to those of the blue curve.
This layered approach — from gains only, to PI control, to the full parametrization — highlights the frequency

response modifications introduced by each filter set across the different input-output channels. It is now easier to look at
each individual channel and explain the contributions of the weighting filters.

Adding integral action to the drift channel ensures a high low frequency gain and a steeper roll-off at low frequencies.
As this output is dominant at low frequencies, the integral action guarantees that the open loop response achieves the
desired shape in this frequency range.

Adding integral action to the drift rate channel achieves the same results as the drift channel. Moreover, it ensures
that the open loop gain maintains an integrator-like shape as the drift rate channel becomes dominant. Additionally,
the integral action decreases the gain after the non-minimum phase zero, which is beneficial, as it allows to further
increase drift rate gain without delaying the crossover. This adjustment results in improved load relief while maintaining
actuation levels, as the increased drift rate gain raises the open loop singular value in the critical frequency range.

In the pitch channel, adding integral action results in a steep SV slope, allowing for an increase of the pitch channel
gain, whilst maintaining crossover. Once again, enabling better load relief.

Adding integral action to the pitch rate channel results in a steeper SV slope, enabling an increase in gain while
maintaining the crossover frequency. While this does not directly contribute to load relief, it facilitates a smoother
transition from the pitch-dominated region to the pitch rate-dominated region.

The role of the PI in the pitch and pitch rate channel is particularly important due to the non-minimum phase (NMP)
zero in the drift rate channel. The NMP zero causes a sudden decrease in the open loop SV at a frequency critical
for load relief. This could only be solved through an increase in pitch/pitch rate output channel gains, as these are
the channels active in the relevant frequency range. Without the integral action, the increase in gain would cause a
tremendous increase in crossover frequency, leading to unacceptable actuation levels.

Finally, the lead-lag action allows for the adjustment of both crossovers in the output rate channels. As shown in
Figure 6, these are the dominant channels near the crossover. Testing has shown that both lead-lag filters are necessary
to achieve the desired open loop specifications. It should be noted, that the lead lags are only required, due to the low
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Fig. 7 PI filter and LL filter effect on the individual channels.

order of the robustifying controller in this work (only four gains). In essence, the lead lags are aiding the robustifying
controller in performing the NCF robustification.

V. H∞ Closed Loop Shaping vs H∞ Open Loop Shaping
As discussed in [6], preliminary results indicated that H∞ OLS and H∞ CLS yield identical controllers for launch

vehicles. This result is further confirmed through two examples presented in Subsection V.A. An important remark must
be made: the analysis of these examples relies on the insights provided in [6] regarding the most relevant frequency
ranges for each LV performance objective, as well as the correspondence between performance goals and open-loop
specifications. Readers unfamiliar with these concepts are encouraged to consult Section 4 of the aforementioned work.

A. H∞ CLS vs H∞ OLS - Examples
In [6] it was shown that H∞ CLS could be used to reproduce the controller produced with H∞ OLS. For this purpose,

six closed loop constraints were utilized: one to limit the allowable load, one to limit the allowable drift motion, one to
limit the allowable TVC deflection, one to limit the peak SV of the pitch angle’s sensitivity transfer function, one to
shape the maximum SV of the plant’s input sensitivity transfer function and one to enforce minimum input stability
margins. The produced controllers consisted of five weighting filters (as parametrized in Subsection IV.A) and two
Proportional-Derivative controllers applied on pitch angle and drift† (consider Figure VI.A to visualize the control
implementation scheme, for the case where a flexible LV is considered). Using the same controller order and structure,
the same closed loop constraints (retuned), and considering only rigid-body dynamics (i.e., neglecting bending mode
contributions from the model in Section II), two examples are presented to illustrate that H∞ CLS cannot outperform
H∞ OLS.

In the first example, the goal was to improve load relief and drift rejection. This was achieved through tightening

†These act as the robustifying controller for the H∞ OLS controllers.
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Fig. 8 Output open loop (on the left) and input open loop (on the right) SV comparison - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀 vs 1st
improvement attempt with H∞ CLS.

the load and the drift constraints and loosening the pitch angle sensitivity and actuation constraints. Note that the
constraints had to be loosened so as to ensure that all optimization constraints were complied with. In Figure 8, the 𝐿𝐼

and 𝐿𝑂 of the resulting controller are compared to those of H∞ OLS controller (coined 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀 ). As it can be seen,
not only the load relief and the drift/drift rate rejection were improved, but the 𝐿𝐼 shape was also improved: the new
controller has essentially the same 𝐿𝐼 crossover, with higher 𝐿𝐼 SV prior to crossover and slightly lower 𝐿𝐼 SV post
crossover. However, these improvements come at the cost of a significantly later crossover in the 𝐿𝑂 SV plot, as well as
much higher 𝐿𝑂 SVs at higher frequencies. This results in a controller with worse robustness to output multiplicative
uncertainty, as well as worse noise attenuation.

In the second example, the goal was, again, to improve load relief, drift rejection, whilst maintaining high frequency
𝐿𝑂 gain low. This was achieved through tightening the load and drift constraints, loosening the sensitivity and actuation
constraints, and replacing the constraint applied to the plants input sensitivity transfer function with a constraint limiting
the H∞ norm of the transfer function from the noise input to all of the outputs. In Figure 9, the 𝐿𝐼 and 𝐿𝑂 of the new
controller are compared to those of nominal H∞ OLS controller. As shown, the new controller demonstrates a clear
improvement in the 𝐿𝑂 shape. Its 𝐿𝑂 achieves the same crossover frequency as the 𝐿𝑂 of the H∞ OLS controller,
but displays equal or higher gain at frequencies prior crossover and essentially the same gain afterward. However,
the 𝐿𝐼 transfer function of the new controller exhibits significantly lower gain at low frequencies, while maintaining
comparable gain to 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀 around and beyond the crossover frequency. Overall, the new controller has improved

Fig. 9 Output open loop (on the left) and input open loop (on the right) SV comparison - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀 vs 2nd
improvement attempt with H∞ CLS.
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load relief and drift/rate rejection, but reduced attenuation of input disturbances at the plant input.
Both examples help to convey that any improvement in the loop gain of the H∞ OLS controller is always offset

with worsening of the loop gain somewhere else. This is further evidenced by the fact that to tighten any closed
loop constraint, other closed loop constraints need to be loosened. These results further confirm the findings of [6]
and support the conclusion that H∞ Closed Loop Shaping and H∞ Open Loop Shaping can yield (almost) identical
controllers, with neither method offering a clear performance advantage over the other. However, as discussed in [6], the
complexity involved in applying each method differs significantly. H∞ OLS reduces the number of transfer functions that
require shaping, automatically ensures robustness at both the plant input and output, and offers greater reproducibility
across different flight points. These advantages—combined with the observation that H∞ CLS and H∞ OLS produce
similar results—make a compelling case for preferring H∞ OLS in the design of launch vehicle attitude controllers.

VI. H∞ Open Loop Shaping for Flexible Launch Vehicles
In the traditional approach to TVC control, the design of the rigid body controller and the bending filter for the

flexible modes is treated separately. The design process has three steps: firstly, the rigid body controller is designed;
secondly, the flexible interactions are added to the model and the bending filter is tuned; thirdly, the rigid body controller
and bending filter are manually re-tuned to ensure proper integration and compliance with all requirements.

As described in [1], efforts have been made to streamline this process. In particular, [1] developed and implemented
a method that allows for the simultaneous design of both the rigid body controller and the bending filter using H∞ Closed
Loop Shaping. Building on this concept, the current work will develop an integrated approach for designing the
Rigid/Flexible body controller using the H∞ Open Loop Shaping method.

And so, this section is structured as follows: Subsection VI.A covers the parametrization and implementation of
the bending filter; Subsection VI.B presents the rigid controller and bending filter design using the separate design
approach; Subsection VI.C describes and implements the integrated design approach; Subsection VI.D compares the
results from both approaches; Subsection VI.E combines the multi-model approach and the integrated approach to
produce a robustly tuned controller; Subsection VI.F shows selected time and frequency-domain simulation results of
the two H∞ OLS integrated controllers. It should be noted that both for the separate and integrated approaches, the loop
shaping filters are chosen using the guidelines and insight given in [6].

A. Bending Filter Parametrization and Implementation
For this work, the bending filter parametrization that will be used is the one outlined in [1]. This parametrization,

which is detailed in eq. 17, was developed to enable the application of structured H∞ design, while preserving the
legacy knowledge of the original bending filter used by the VEGA GNC team.

𝐻𝐵𝐹 (𝑠) =
4∏
𝑖=1

𝑠2 + 𝜂𝑖𝑠 + (𝜔𝑖)2

𝑠2 + 𝜂𝑖/𝜖𝑖𝑠 + (𝜔𝑖)2 ·
(
𝜖𝐿𝑃𝑠

2 + 𝜂𝐿𝑃𝑠 +
(
0.6𝜔𝑞2

)2

𝑠2 + 𝜂𝐿𝑃𝑠 +
(
0.6𝜔𝑞2

)2

)3

(17)

This bending filter consists of four notch filters and a low-pass filter. The notch filters are centered around the
minimum expected frequency of the 1st bending mode (BM), the nominal frequency of the 1st BM, the maximum
expected frequency of the 1st BM and the minimum expected frequency of the 2nd BM, respectively. These filters aim
at notching the first and second BM, whilst the low-pass filter aims at attenuating the upper BMs.

Table 2 Fixed and tunable Variables of the bending filter parametrization.

Fixed Variables Tunable Variables
Variable Value Variable Min Max
𝜁1 2 𝜖1 −25 dB −10 dB
𝜁2 5 𝜖2 −10 dB −4 dB
𝜁3 2 𝜖3 −25 dB −10 dB
𝜁4 12 𝜖4 −20 dB −15 dB
𝜂𝐿𝑃 40
𝜖𝐿𝑃 −8.3 dB
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Fig. 10 Tracker implementation scheme for the rigid/flexible body H∞ OLS controllers.
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Each notch filter is parameterized by two variables, 𝜖𝑖 and 𝜂𝑖 . The first parameter is tunable and corresponds to the
attenuation at the center frequency of the notch filter, while the second is fixed and describes the width of the filter. The
low-pass filter is fixed as well, with 𝜖𝐿𝑃 representing the attenuation at high frequencies, and 𝜂𝐿𝑃 being defined as in eq.
18.

𝜂𝐿𝑃 = 2 𝜁 (0.6𝜔𝑞2 ) (18)

where 𝜁 is the low pass filter’s damping factor, and 𝜔𝑞2 is the nominal frequency of the second BM.
In this work, both the fixed and tunable variables are set according to the values and limits specified in [1]. These

can be seen in Table 2. With this in mind, the implementation of the bending filter can be seen in Figure 10. In this
scheme the output gains convert signals from radians to degrees, while the input gains convert signals from degrees to
radians. The one exception is the command input gain, which has two functions: to convert degrees to radians, and to
act as the prefilter. Finally, the plant input/output scaling was defined according to the guidelines described in [17].

B. Separate Rigid/Flexible Body Controller Design
The goal of the separate rigid/flexible body controller design is to serve as baseline for the comparison. In this

step, the rigid body controller will still be designed with H∞ Open Loop Shaping, whilst the bending filter is tuned by
hand. In addition to ensuring that the final controller meets all the requirements defined in Subsection II.D, another
key objective is to ensure that the 1st BM peak gain in the input open loop gain was similar to that of the controller
developed in [1]. Achieving the latter condition is expected to ensure proper damping of the 1st BM, as the strong
performance of this reference controller has already been validated through nonlinear simulation.

Figure 11 illustrates the design process for the separate rigid/flexible body controller. This process is divided into
three main phases: initial, intermediate, and final. Several important remarks need to be made regarding each phase.

In the first step of the initial phase, a loose rigid body shape was employed (i.e., 𝑊2−𝜃 = 0.01, 𝑊2−𝑧 = 0.01,
𝑊1 = 4

(
𝑠+11.5

𝑠

)
), as experimental observations revealed that the introduction of the bending filter required lower loop

gain specifications to achieve a sufficiently large robustness margin. It should be noted that for the first step of the initial
phase, only rigid body behavior was considered.

In the second step of the initial phase, the bending filter was incorporated, with the 𝜖𝑖 parameter of each notch filter
initially set to the midpoint of its allowable range. For this step and all subsequent steps, the flexible behavior of the LV
was taken into account.

In the intermediate phase, fine-tuning the bending filter to achieve the desired flexible stability margins and 1st BM
peak gain involved minor trial and error. The condition 𝛾 ≤ 4 was applied to ensure that the lead-lags were appropriately
selected, minimizing the need for significant adjustments in the final phase.

In the final phase, selecting the bending filter and determining the drift and pitch angle post-compensator gains
(𝑊2−𝜃 and 𝑊2−𝑧) proved to be a non-trivial task, requiring extensive experimentation. Adjusting the drift and pitch
angle post-compensator gains impacted the loop gain at the 1st BM frequencies, creating the need for additional notching
at those frequencies. This adjustment process was particularly challenging, as excessive notching led to an overly steep
slope near the crossover frequency. Moreover, finding the optimal combination of drift and pitch angle post-compensator
gains added complexity, as multiple configurations were possible.

Through testing various controllers, it was concluded that the drift post-compensator gain should be set to 0.21,
and the pitch angle post-compensator gain increased as much as possible, while maintaining 𝛾 ≤ 4. This drift post-
compensator gain is the smallest which allowed for sufficient drift rejection (as demonstrated by Monte Carlo time domain
simulations). Therefore, by selecting this drift post-compensator gain and increasing pitch angle post-compensator gain
as much as possible, while maintaining 𝛾 ≤ 4, it will be possible to maximize load relief while attaining sufficient drift
rejection (according to the considerations given in [6]). With this in mind, extensive trial and error was carried out, and
the final bending filter configuration was determined: 𝜖2 and 𝜖4 were set to their minimum values, while 𝜖1 and 𝜖3 were
adjusted to −21.3 dB and −11.9 dB, respectively. This configuration was selected because it supported the chosen drift
post-compensator gain, and allowed for the highest possible pitch angle post-compensator gain, while ensuring that the
1st BM peak gain and the nominal flexible stability margins were as desired.

Finally, one important remark is made regarding the rationale of maintaining 𝛾 ≤ 4. From the rigid body design
performed both in this work and in [6], it was known that stability requirements for the LV were generally easy to
meet, while the load relief and drift rejection requirements were the most likely to be infringed. Moreover, using the
H∞ OLS methodology described in [6] and targeting a robustness margin smaller or equal to four typically resulted in
fulfilling the LV stability margins requirements. Testing showed this to be true for the rigid/flexible body controller
design as well. Therefore, by ensuring the robustness margin remained below four and maximizing the drift and pitch
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Fig. 11 Workflow of the separate rigid/flexible body
controller design.

Fig. 12 Workflow of the integrated rigid/flexible
body controller design.

16

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

12
, 2

02
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

6-
27

16
 



angle post-compensator gains (which are directly related to improving drift and load rejection as discussed in [6]) it was
possible to achieve a controller with sufficiently large stability margins and optimal load/drift rejection. This controller
is coined 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝑆𝐸𝑃 and will be shown in Subsection VI.D. However, before that, the integrated design approach
will be discussed in the following subsection.

C. Integrated Rigid/Flexible Body Nominal Design
This section discusses a process for designing an integrated rigid/flexible body controller, with the primary goal of

simultaneously tuning the robustifying controller and bending filter.
For all steps, the LV is considered to have unneglectable flexible behavior. Furthermore, to achieve the simultaneous

tuning of the robustifying controller and bending filter, two optimization objectives are employed during the use of
systune: NCF robustification and maximum allowable loop gain. The last objective is only applied at bending mode
frequencies and is formally defined in eq. 19.

𝜎̄(𝐿𝐼 (𝜔)) < 𝑊𝐵𝑀 , ∀𝜔 ∈ 𝜔𝑅 (19)

where𝑊𝐵𝑀 is a static filter and where 𝜔𝑅 is a frequency range spanning from 20 rad/s (slightly before the first BM), to
infinity. It should be noted that this constraint was applied on 𝐿𝐼 , as the requirement for the 1st BM peak gain pertains
to the input open loop gain.

The step-by-step procedure for designing the integrated controller is detailed in Figure 12. As it can be seen, there
are once again three phases (initial, intermediate and final) during the design. Some important remarks regarding the
intermediate and final design phases are given next.

In the intermediate design phase, the goal is to select the static filter (𝑊𝐵𝑀 ) used for the maximum allowable loop
gain constraint. If done properly (i.e. fulfilling the conditions given in the workflow of Figure 12), the flexible stability
margins and 1st BM peak gain will be as desired during the rest of the design. Subsequently, the designer can move on
to the final phase, and focus solely on optimizing the performance of the controller.

In the final phase, the drift post-compensator gain was set to 0.21, as testing showed it to be the minimum drift
post-compensator gain that provided adequate drift rejection (as found in Monte Carlo time domain simulations).
Subsequently, pitch post-compensator gain was increased as much as possible, while maintaining 𝛾 < 4, for the same
reasons as in the separate design.

Finally, it is important to mention that it is possible to tune the lead-lag filters simultaneously with the bending filter
and robustifying controller. To do so, in the intermediate and final phase of the integrated design, the designer must set
the lead-lags, bending filters and robustifying controller as tunable parameters in systune. Subsequently, all of them can
be computed simultaneously, utilizing as optimization goals the NCF robustification and the aforementioned maximum
allowable loop gain. Care should be taken when opting for this design approach, as the lead-lags must be properly
parametrized and constrained.

With the integrated approach it was possible to design a rigid body controller and bending filter in a much simpler
way than with the separate approach. In fact, it should be noted that the application of the integrated design methodology
took far less time than the separate design methodology. This is mainly a result of the simultaneous robustifying
controller/bending filter tuning, which not only eliminates the need for manual bending filter adjustments, but also
enables a smoother and automatic integration of the two components. The controller computed with this method is
coined 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 and will be shown in the next subsection.

D. Comparison of the Results
First, both the computed rigid body controllers and bending filters are presented in Table 3. As shown, all the filters

and robustifying controllers are quite similar. However, several key observations should be made.
In both designs, the pre-compensator was initialized with the same value and remained unchanged throughout the

process. Additionally, the drift post-compensator gains were selected based on testing controllers produced by each
respective approach, ensuring they did not influence the choice of one another. The pitch angle post-compensator gains
were maximized independently for each design, with no interaction between them, as the objective was to achieve the
highest possible gains in each approach.

Furthermore, although the lead-lag compensators were manually tuned in both approaches — potentially raising
concerns that the results of the integrated design were influenced by the separate design — testing in the integrated
design confirmed that they were the optimal choice for fulfilling the tuning requirements. Notably, when the lead-lags
were simultaneously tuned with the bending filter and robustifying controller in the integrated approach, they naturally
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Table 3 Robustifying controller, bending filter and weighting filters comparison - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝑆𝐸𝑃 vs
𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 .

𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝑆𝐸𝑃 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇

𝑊1
4(𝑠+11.5)

𝑠

4(𝑠+11.5)
𝑠

𝑊2−𝑧 0.21 0.21
𝑊2− ¤𝑧

30(𝑠+0.23)
(𝑠+14.49)

30(𝑠+0.24)
(𝑠+14.95)

𝑊2−𝜃 0.12 0.12
𝑊2− ¤𝜃

0.21(𝑠+1.92)
(𝑠+10.07)

0.21(𝑠+1.91)
(𝑠+10.08)

𝐾𝑝𝜃
−0.2928 −0.3007

𝐾𝑑𝜃
−1.1526 −1.1532

𝐾𝑝𝑧 0.4253 0.4255
𝐾𝑑𝑧

0.5451 0.5422
𝜖1 −21.3 −21.3407
𝜖2 −10 −10
𝜖3 −11.9 −11.9035
𝜖4 −20 −20

converged to nearly the same values as those determined during the manual tuning. This convergence highlights that
their selection and tuning were driven by the design objectives, rather than by any prior knowledge from the separate
design process. With this discussion in mind, it becomes clear that the experience from the first design did not influence
the second design.

Despite the differences in design approach, both methods produced nearly identical results. Figure 13 highlights this
by comparing the open loop gains of the two controllers, which are shown to be identical. Furthermore, Figure 14
presents two comparisons: the first compares the input Nichols plots of each controller, while the second compares the
Bode plots of the bending filters of each controller. Both comparisons show indistinguishable results, further validating
the consistency of the design approaches.

In essence, both methods yield the same results, which is a crucial finding given that the integrated design method is
significantly simpler and faster to implement.

Fig. 13 Output and input open loop (𝐿𝑂 on the left and 𝐿𝐼 on the right) SV comparison - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝑆𝐸𝑃 vs
𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 .
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Fig. 14 Input Nichols plot (on the left) and Bode plot of the bending filters (on the right) - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝑆𝐸𝑃 vs
𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 .

E. Integrated Rigid/Flexible Body Multi-model Controller Design
The objective of the Multi-model design approach was to ensure that the bending filter and rigid body controller

were robustly tuned, meeting stability and performance requirements even under uncertainty. To accomplish this, the
design process accounted for both the nominal model and the corner cases defined by five uncertain parameters. These
parameters included the frequencies of the first two bending modes, as well as the three rigid body parameters with the
highest mu-sensitivity (for a description of this concept see [18]): 𝐶𝑛𝛼, 𝑞 and 𝑥𝑐𝑝 .

After defining the models to be used for the design, the integrated rigid/flexible body controller design approach was
applied, resulting in the controller labeled 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 . The weighting filters, robustifying controller, and bending
filter of 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 are compared with those of 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 in Table 4.

It should be noted that, for the Multi-model design, the pre-compensator and lead-lags were adjusted to ensure 𝛾 = 4.
The drift post-compensator gain was set equal to that of the nominal integrated controller, as testing has shown this
ensures sufficient drift rejection. Additionally, the pitch angle post-compensator gain was slightly reduced compared to

Table 4 Robustifying controller, bending filter and weighting filters comparison - 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 vs
𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 .

𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇

𝑊1
6.26(𝑠+10.2)

𝑠

4(𝑠+11.5)
𝑠

𝑊2−𝑧 0.21 0.21
𝑊2− ¤𝑧

30(𝑠+0.30)
(𝑠+19.09)

30(𝑠+0.24)
(𝑠+14.95)

𝑊2−𝜃 0.1 0.12
𝑊2− ¤𝜃

0.12(𝑠+1.8)
(𝑠+5.78)

0.21(𝑠+1.91)
(𝑠+10.08)

𝐾𝑝𝜃
−0.3000 −0.3007

𝐾𝑑𝜃
−0.9864 −1.1532

𝐾𝑝𝑧 0.3441 0.4255
𝐾𝑑𝑧

0.4556 0.5422
𝜖1 −16.52 −21.3407
𝜖2 −10 −10
𝜖3 −10 −11.9035
𝜖4 −17.91 −20
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Fig. 15 Input Nichols - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 vs 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 .

the nominal controller in order to satisfy the desired stability margin requirements.

F. Results
In the following analysis, dispersed condition testing refers to results obtained from 1000 Monte Carlo simulations.

Two specific tests are presented: input stability margins, which illustrate the controller’s robust stability; and time-domain
simulation of a low frequency, high amplitude (higher than the maximum expected) wind gust applied to the LV, to
showcase robust performance.

1. Input Stability Margins
The input Nichols plot (Figure 15) contains three lines, one representing the nominal Nichols (blue line), one

representing the Nichols corresponding to the worst-sampled rigid disk margin (red line), one representing the Nichols
corresponding to the worst-sampled (WS) flexible disk margin (black line). The blue disks represents the nominal disk
margins, while the red and purple disks represent the worst-sampled rigid/flexible disk margins, respectively. The
worst-sampled disk margins are the regions in which, according to the testing, the Nichols plot is not expected to enter.

As shown in Figure 15, the nominal controller exhibits good nominal rigid and flexible margins, as well as strong
worst-sampled case flexible margins. However, its rigid margins in the worst-sampled cases are smaller and unacceptable
according to the requirements (smaller than 3 dB and 20 deg). In contrast, the Multi-model controller has slightly
smaller nominal margins, but significantly larger rigid and flexible margins in the worst-sampled cases. In fact, while
both controllers meet the stability requirements for nominal rigid and flexible margins as well as dispersed flexible
margins, only 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 achieves sufficient rigid margins under dispersed conditions.

Fig. 16 Color code for time domain analysis - 𝐾𝑂𝐿𝑆−𝑁𝑂𝑀−𝐼𝑁𝑇 vs 𝐾𝑂𝐿𝑆−𝑀𝑀5−𝐼𝑁𝑇 .
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Fig. 17 Wind gust input signal for LFHA simulation.

2. Time Domain Analysis
The following figures show the time-domain simulation results of relevant LV quantities when the vehicle is subjected

to a low frequency high amplitude (LFHA) wind gust. The wind input signal is shown in Figure 17‡. The color coding
for the integrated controllers corresponds to the scheme defined in Figure 16. Additionally, shaded regions in the plots
indicate the range of outcomes under dispersed conditions.

In terms of load performance metric (LPM), drift, and drift rate (Figures 18, 19, and 20, respectively), both
controllers exhibit very similar responses under nominal and dispersed conditions, with the nominal controller showing
a slight advantage. This difference can be attributed to the multi-model controller’s marginally improved pitch angle
performance in both nominal and dispersed conditions (see Figure 21). The Multi-model controller also exhibits a
smaller pitch rate peak value, as illustrated in Figure 22, and nearly indistinguishable nominal and dispersed conditions
results in actuation, as shown in Figure 23.

Overall, all plots demonstrate results well within the performance requirements for nominal and dispersed conditions:
drift rate remains below one-third of its requirement, drift stays under one-fifth, the load performance metric (LPM)
remains below 80% of its limit, and TVC deflection remains below one-third of its allowable value.

Fig. 18 LFHA Wind - Load performance metric
(LPM), normalized by the nominal dynamic pressure.

Fig. 19 LFHA Wind - Drift.

‡This wind input signal follows a commonly used shape for LV testing, as discussed in [7].
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Fig. 20 LFHA Wind - Drift rate. Fig. 21 LFHA Wind - Pitch angle.

VII. Conclusion
In this work, the use of H∞ Open Loop Shaping (OLS) for the design of launch vehicle (LV) thrust vector control

(TVC) systems has been further investigated and extended. Building upon previous work [6], where H∞ OLS was
proposed as a simpler and more systematic alternative to H∞ Closed Loop Shaping (CLS), this paper has provided
additional insights into the weighting filter parametrization and expanded the comparison between both approaches.
Through two rigid-body examples, it was shown that H∞ OLS and H∞ CLS result in nearly identical controllers, with
neither method offering a performance advantage over the other. However, the reduced complexity and improved
reproducibility of H∞ OLS across flight points, make it a more practical choice for LV control system design.

The H∞ OLS methodology was extended to the flexible launch vehicle case, resulting in a Simultaneous Attitude
Controller/Bending Filter H∞ OLS design strategy. This new approach was compared to the traditional separate design
method, showing that both yield equivalent controllers, with the simultaneous strategy substantially reducing the design
effort. Subsequently, a multi-model integrated controller was developed using the integrated approach and tested under
both nominal and dispersed conditions. In the (linear) simulations, the controller satisfies all performance and robustness
requirements: drift, drift rate and actuation remain well below their limits, the load performance metric stays within
acceptable bounds and sufficient stability margins were attained.

These findings indicate that the integrated H∞ OLS methodology not only simplifies the controller design process
but also yields robust and effective results. The successful performance of the multi-model controller in the evaluated
test cases is a strong indicator of the method’s potential. Future work will focus on extending the integrated H∞ OLS

Fig. 22 LFHA Wind - Pitch rate. Fig. 23 LFHA Wind - TVC deflection.
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methodology to accommodate launch vehicles with sloshing dynamics, and on developing a full-envelope controller to
enable nonlinear simulations, aimed at further strengthening the validity of the proposed approach.
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