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Abstract We obtain new universal statistical properties of heavy-particle trajectories in three-dimensional, statisticallysteady, homoge-
neous, and isotropic turbulent flows by direct numerical simulations. We show that the probability distribution functions (PDFs)P (φ),
of the angleφ between the Eulerian velocityu and the particle velocityv, at a point and time, scales asP (φ) ∼ φ−γ , with a new
universal exponentγ ≃ 4. The PDFs of the trajectory curvatureκ and modulusθ of the torsionϑ scale, respectively, asP (κ) ∼ κ−hκ ,
asκ → ∞, andP (θ) ∼ θ−hθ , asθ → ∞, with exponentshκ ≃ 2.5 andhθ ≃ 3 that do not depend on the Stokes numberSt. We also
show thatγ, hκ andhθ can be obtained by using simple stochastic models. We show that the numberNI(t,St) of points (up until time
t), at whichϑ changes sign, is such thatnI(St) ≡ limt→∞

NI(t,St)
t

∼ St−∆, with ∆ ≃ 0.4 a universal exponent.

INTRODUCTION

The elucidation of the statistical properties of inertial particles in turbulent flows is an important problem of great inter-
est [1, 2]. We study the statistical properties of the geometries of heavy-inertial-particle trajectories; such inertial-particle-
trajectory statistics have not received much attention hitherto in homogeneous, isotropic, three-dimensional (3D) fluid
turbulence.

RESULTS AND CONCLUSIONS
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Figure 1. Cumulative PDFs of (a) the angleφ betweenu andv (Q(α) ≡ P (φ ≥ α)), for St = 0.2 (blue circles),St = 0.5 (green
triangles),St = 0.7 (brown squares),St = 1.0 (red pluses), andSt = 1.4 (purple stars); the slope of the black dashed line is−3, (b)
the curvatureκ and (c) the magnitude of the torsionθ of the trajectories of heavy inertial particles, forSt = 0.2 (in blue) and1.0 (in
red), obtained using rank order method. Inset: the values ofthe local slope of the tail, forSt = 1.0.

Our direct-numerical-simulation (DNS) studies of these statistical properties yield new and universal scaling exponents
that characterize heavy-particle trajectories. We calculate the probability distribution functions (PDFs) of the angle φ

between the Eulerian velocityu(x, t), at the pointx and timet, and the velocityv of an inertial particle at this point and
time, PDFs of the curvatureκ and torsionϑ of inertial-particle trajectories, and several joint PDFs. In particular, we find
that the PDFP (φ) shows a power-law region in whichP (φ) ∼ φ−γ , with an exponentγ ≃ 4, which has never been
considered so far; the extent of this power-law regime decreases asSt increases Fig. 1 (a); we find good power-law fits
if 0 < St . 0.7; in this rangeγ is universal, in as much as it does not depend onSt and the fluid Reynolds numberRe
(given our error bars). The PDFs ofκ Fig. 1 (b) andθ = |ϑ| Fig. 1 (c) show power-law tails for largeκ andθ, respectively,
with power-law exponentshκ andhθ that are also universal. We calculate the number of points, per unit time, at which
the torsionϑ changes sign along a particle trajectory Fig. 2 ; this numbernI(St) ∼ St−∆, asSt → 0, with ∆ ≃ 0.4
another universal exponent. We show how simple stochastic models can be used to obtain the exponentsγ, hκ, andhθ;
however, the evaluation of∆ requires the velocity field from the Navier-Stokes equation[3].
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Figure 2. Number of inflection points per unit time as a function of dimensionless timet/Teddy, for St = 0.2, (red curve), and
St = 1.4, (blue curve); the inset shows the plot of the number of inflection points per unit timenI , as a function ofSt.
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