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Abstract

The railway timetable rescheduling problem is a challenging problem in both industry and
academia. It is required to calculate a feasible and relatively good timetable within a limited
time to reduce the negative impact of disturbances or disruptions. The railway timetable
rescheduling problem is typically formulated as a mixed integer linear programming (MILP)
problem, which is di�cult to solve due to the existence of the integer variables. To address
this problem, many optimization-based studies have been conducted. The main advantage
of using optimization-based methods is that they are easy to implement and more straight-
forward. However, the main disadvantage is that most optimization-based methods cannot
reach the time requirements for large railway timetable rescheduling problems. There are
also some researches using reinforcement learning techniques to solve this problem. By using
reinforcement learning, the time requirement could be fulfilled.

In this thesis, an algorithm that combines both reinforcement learning and optimization ap-
proaches is proposed to solve the railway timetable rescheduling problem. In the beginning,
the reinforcement learning environment is constructed from the railway timetable reschedul-
ing problem. By selecting the independent integer variables as the action, the constraints
involving the integer variables are satisfied. After that, a value-based reinforcement learn-
ing algorithm is implemented to determine the independent integer variables of the MILP
problem. Then, the complete solution of the integer variables could be derived from these in-
dependent integer variables. With the solution of integer variables, the MILP problem could
be transformed into a linear programming problem, which could be solved e�ciently.

Several case studies are conducted in this thesis based on part of the Dutch railway network
from Utrecht to ’s-Hertogenbosch. The simulation results show that the proposed method
makes a great improvement compared with the baseline regarding reducing the total delay
of the system. Meanwhile, the reinforcement learning-based method also has an obvious
advantage in terms of running time.
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Chapter 1

Introduction

1-1 Background

Railway plays an important role in the modern transportation system. Until 2022, 147 coun-
tries or regions in the world are operating railway transportation systems. In many countries,
railway transport performs a lot of duties such as daily commuting, long-distance travel, and
cargo transportation. In the Netherlands, the main train company Nederlandse Spoorwegen
(NS) operated 623080 trips every day during 2021 according to its annual report (Nederlandse-
Spoorwegen, 2021). However, it also had 4874 disruptions in 2021, which means about 13
times every day. There could be many reasons for railway disturbances and disruptions, such
as extreme weather, worker strikes, and system failures. Railway disruptions normally require
timetable rescheduling in real time to reduce initial delays and prevent further propagation
of delays. This is the so-called railway timetable rescheduling problem (Luan et al., 2018).
An e�cient rescheduling algorithm should minimize the influence of disruption and improve
the punctuality of trains. Therefore, developing e�ective rescheduling algorithms is critical
to the operation of the railway system.

Nowadays, train dispatchers are responsible for timetable rescheduling. Their operations
are normally made according to their experiences and skills with a certain level of computer
assistance. In practice, most dispatching decisions are still made by human dispatchers, which
generally results in sub-optimal decisions (Luan et al., 2020). During recent decades, with
the development of computation hardware and relevant algorithms, many optimization ap-
proaches proposed in the literature are able to solve the rescheduling problem (Cacchiani et al.,
2014). Nowadays, there exist many models for the railway timetable rescheduling problem.
Most of them result in a mixed-integer linear programming (MILP) problem. For small-scale
problems, most algorithms have excellent performance, and the optimal solution could be
obtained within acceptable time and computation resources. For large-scale problems, the
computation time to obtain the optimal solution is typically not acceptable. There is a trade-
o� between solution precision and time limitation. Meeting the solution time requirement
will necessarily sacrifice some precision at the local level (Luan et al., 2020). Generally, the
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2 Introduction

computation complexity of the railway timetable rescheduling problem grows exponentially
with the increase in problem size, which makes it di�cult to implement in practice.

Compared with optimization-based approaches, well-trained machine learning approaches are
always considered to be able to solve a problem in a limited time, regardless of the problem
size. However, the main disadvantage of machine learning methods is that the optimality of
solutions cannot be guaranteed and they are also less robust (Tang et al., 2022). Meanwhile,
the constraint satisfaction is also a potential problem. The main reason is that the training
dataset is usually a subset or part of the original problem. Same as many other machine
learning applications, the test performance is always worse than the training result (Good-
fellow et al., 2016). Also, the safety constraints are di�cult to implement explicitly in the
machine learning framework. In the last decade, the emergence of deep learning has greatly
improved the applicability and performance of machine learning methods in many research
areas. For the railway timetable rescheduling problem, implementations of deep learning
approaches are also regarded as an e�cient way to realize real-time timetable scheduling.
Among various machine learning techniques, reinforcement learning is distinguished by its
independence of pre-obtained training dataset and unique interaction with the environment.
Following the success of AlphaGo, reinforcement learning has been applied to many di�erent
research fields, including railway timetable rescheduling problems (äemrov et al., 2016; Zhu
et al., 2020; Tang et al., 2022). The aim of this thesis is to combine reinforcement learning
methods with optimization-based approaches to solve the railway tra�c management problem
in real time.

1-2 Problem Description

The railway timetable rescheduling problem is commonly formulated as an MILP problem.
Compared with linear programming, the MILP problem usually takes much more time to
solve due to the existence of integer variables. In this thesis, an algorithm that combines
both reinforcement learning and optimization approaches will be proposed to solve this prob-
lem.

Specifically, a value-based reinforcement learning model will take the parameters from the
MILP problem as the state and determine the integer solutions of the MILP problem as ac-
tion. With these solutions, the MILP problem will become a linear programming problem,
which could be solved e�ciently. After obtaining the complete solution to the MILP prob-
lem, the railway model could be updated to the next time step. The entire procedure can be
described in the following figure:

Hengkai Zhang Master of Science Thesis



1-3 Thesis Outline 3

Figure 1-1: Research Problem Formulation

The main challenge of this thesis would be to train the reinforcement learning model, which
can be divided into the following research questions:

• How to define a proper state representation

• How to design an e�cient reward function

• How to find a suitable reinforcement learning framework

The expected contribution of this thesis can be summarized as follows:

• Develop a proper railway timetable rescheduling model and formulate the corresponding
MILP problem

• Apply reinforcement learning algorithm to solve the integer variables of MILP problems
that are inherently connected

• Propose a framework that combines both reinforcement learning and optimization tech-
niques to solve the railway timetable rescheduling problem e�ciently

1-3 Thesis Outline

The outline of this thesis is given as follows:

• Chapter 1 provides some background information on the main topic of this thesis. Then
the research problem formulation and thesis outline are presented.

• Chapter 2 introduces the necessary background knowledge of this thesis, mainly con-
taining two aspects: the railway timetable rescheduling problem and reinforcement
learning.
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4 Introduction

• Chapter 3 thoroughly discussed the reinforcement learning-based solution to the railway
timetable rescheduling problem proposed in this thesis.

• Chapter 4 provides three case studies conducted by this thesis and their experiment
results.

• Chapter 5 concludes this thesis and makes an outlook for the future work.
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Chapter 2

Background Knowledge

This chapter presents the necessary background knowledge for the thesis, organized into
three sections. The first section provides an overview of the railway timetable rescheduling
problem, including its modeling and solution methods. The second section provides a concise
discussion of the fundamental concepts and principles of reinforcement learning. Lastly, the
chapter concludes by summarizing the key points and emphasizing their relevance to the
subsequent chapters’ analyses and methodologies.

2-1 Railway Timetable Rescheduling

In this section, the basic knowledge of the railway timetable rescheduling problem is given.
The first part focuses on the details of the general railway systems and some key concepts in
the railway network. In the second part, several methods of modeling the railway timetable
rescheduling problem are introduced. Finally, some solution methods for railway timetable
rescheduling problem in current research are discussed.

2-1-1 Railway System Details

In many countries, the railway system is an important part of transportation. It has significant
advantages in terms of capacity, speed, and applicability. Unlike other transport modes, a
train can only run on a given track with strict limitations on the route, speed, and driver
operations. A railway operation system includes several basic components: trains, stations,
tracks, block sections, and signal systems. The introduction of these components is given as
follows (Fang et al., 2015):

• Train: Di�erent types of trains may run in the railway system simultaneously, such as
long-distance passenger trains, short-distance commuter trains, light cargo and heavy
cargo trains. They all have di�erent operating properties and limits that need to be
considered when making dispatching operations.
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6 Background Knowledge

• Station: A station normally consists of multiple tracks and platforms that allow passen-
gers or cargo to board and alight the train. Some stations may also have independent
places to store and repair the train.

• Track: There are also di�erent kinds of railway tracks in a railway system. For the
direction, The track could be unidirectional or bi-directional. For the track number, it
could be single, double or multiple. Di�erent tracks may only allow certain kinds of
trains to run.

• Block Section: A block section is defined between two block signals as a specific part of
the track, in which only one train can run at the same time. A railway track could be
regarded as a combination of multiple block sections.

• Signal System: The signal system of a railway system is used to control the tra�c of
the railway network and avoid any potential collision. The working mechanism of the
signal system varies in di�erent countries.

In addition to the components of the system described above, there are specific definitions of
railway systems to describe the operating state and constraints of the system (Pachl, 2002):

• Blocking Time: The blocking time is a period in which a block section is exclusively
assigned to a train. It starts from the moment that the signal system gives the autho-
rization for the train to pass the section, and ends at the moment that the signal system
becomes possible to assign this section to another train. Normally, the blocking time
would be longer than the actual time that a train physically occupies the block section.

• Safety Headway: The safety headway time is the time interval between two consecutive
trains. The minimum headway is exactly the blocking time.

In general, the railway system physically consists of trains, stations, tracks, and the signal
system. Each railway track is artificially divided into block sections, and the signal system is
designed to ensure that there is only one train in a block section at any given time. At the
same time, the movement of trains is operated in each block section. Multiple consecutive
block sections of the same train form the route of the train, and multiple routes of di�erent
trains form the operation of the railway network. In order to guarantee safety, multiple
constraints are considered during railway scheduling, such as speed limits, blocking time, and
safety headway.

2-1-2 Modeling of Railway Timetable Rescheduling

The railway timetable rescheduling problem refers to the task of dynamically adjusting the
schedules of trains in a railway network in response to disturbances or disruptions. It involves
rearranging the departure and arrival times of trains, as well as determining the optimal
allocation of resources such as platforms and tracks. The goal is to minimize the impact of
delays and disruptions, enhance system e�ciency, and improve passenger satisfaction. Dif-
ferent studies may have their own problem settings and focus on di�erent objectives. Before
discussing the modeling methods of the railway timetable rescheduling problem, there are
several concepts that need to be further introduced.

Hengkai Zhang Master of Science Thesis



2-1 Railway Timetable Rescheduling 7

Disturbances and Disruptions In principle, a timetable should always be conflict free, which
means that if everything goes well, there is no need for rescheduling. However, in practice,
disturbances and disruptions are unavoidable. According to Cacchiani et al. (2014), distur-
bances refer to relatively small perturbations influencing the railway system, and disruptions
are relatively large incidents that result in canceling some trips from the timetable. The key
di�erence between these two concepts is whether there exists cancellation of trips. A distur-
bance is a fact that some railway operations take longer time than expected in the timetable.
Common causes of disturbances include excessive crowds, slow loading, and unloading, un-
expected medical or safety events, etc. A delay caused directly by the disturbance is called
the primary delay. A primary delay may easily propagate from one train to another. In this
case, the second train’s delay is called the secondary delay. Compared with disturbances, dis-
ruptions usually cause large delays and cancellations of trips. Typical reasons for disruptions
consist of extreme weather, worker strikes, and signal system failures. Similar to the delay
propagation, the cancellation of certain trains may also cause more cancellations due to the
lack of trains and manpower. In this thesis, only disturbances are considered for the railway
timetable rescheduling problem.

Operator-centric and Passenger-centric The objective of the railway timetable reschedul-
ing problem is to minimize the secondary delay caused by disturbances or disruptions. De-
pending on the di�erent emphases, railway tra�c management problems could be divided
into two categories: operator-centric problems and passenger-centric problems. The operator-
centric railway timetable rescheduling problems focus on minimizing the delay of trains or
the number of canceled trains. While the passenger-centric railway timetable rescheduling
problem focuses on minimizing the negative e�ects on passengers or freights. Apparently,
the passenger-centric problem is more related to the satisfaction of passengers and also more
complex than the operator-centric problem since it adds an additional factor. Currently,
most studies consider the operator-centric problem. However, there is an increase of papers
in the passenger-centric field (Cacchiani et al., 2014; Binder et al., 2017). Compared with
the operator-centric problem, the main challenge of the passenger-centric railway timetable
rescheduling problem is to accurately model the passenger flow, which is also called timetable-
dependent passenger behavior (Zhu and Goverde, 2019). In this thesis, the passenger-centric
railway timetable rescheduling is studied. However, a simplification of the passenger flow is
applied to simplify the problem.

Rescheduling Decisions When a disturbance or disruption happens, the timetable has to
be rescheduled. Compared with timetable planning, rescheduling must be done in a short
time period. Normally, the decision is expected within minutes. When a disturbance occurs,
only the timetable itself needs to be adjusted. However, when a disruption happens, the
railway tra�c manager has to consider more issues, such as the type and number of di�erent
rolling stocks, the deployment of crews and their working qualifications, and also the possible
maintenance. The common decisions for rescheduling include:

• Retiming: Retiming refers to the change of departure and arrival times of the train in
a block section. Since the departure time from a station cannot be earlier than the
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8 Background Knowledge

scheduled time, retiming usually causes the delay of trains. The retiming decision may
not only consider the situation of the current block section but also the availability of
the following block sections on the route.

• Rerouting: Rerouting means changing the assigned route of the train. In general, rerout-
ing can be divided into two categories: local and global. Local rerouting is performed
by using parallel block sections during the trip. It will have the same destination and
normally no delay. Global rerouting usually considers a totally di�erent route in the
railway network. It may also add some extra stops or stations. Global rerouting usually
results in certain delays.

• Reordering: Reordering changes the passing order of trains on their common block
sections. The main reason for reordering is related to the delay of the front train. By
reordering, the successive train may be able to run on time. In this way, the secondary
delay could be e�ectively reduced. In fact, reordering could be regarded as a special
kind of retiming.

• Cancellation: Normally cancellation is only used when a disruption happens. A certain
number of trips will not depart from the station.

The following figure gives an illustration of these rescheduling approaches:

Figure 2-1: Common Rescheduling Decisions

In this thesis, only retiming and reordering are considered for the rescheduling.

In order to solve the railway timetable rescheduling problem in an e�ective way, an accurate
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2-1 Railway Timetable Rescheduling 9

mathematical model is required. Currently, there are several di�erent problem formulations
for the railway timetable rescheduling problem, such as mixed logical dynamical (MLD) sys-
tems, alternative graph (AG), fuzzy petri net (FPN) and expert system (ES), discrete event
model and simulation model, etc (Fang et al., 2015). Among all these models, MLD, and AG
are the most used formulations to describe the rescheduling problem in the railway network.
With the same problem setting, di�erent modeling methods do not change the nature or the
complexity of the railway management problem. These modeling approaches are mainly used
to formulate the problem in an easily understandable form. In fact, most railway timetable
rescheduling problems will be formulated as an integer programming (IP) problem or a mixed-
integer linear programming (MILP) problem (D’Ariano et al., 2007; Corman et al., 2011; Luan
et al., 2018). In this thesis, the railway tra�c management problem will be formalized as a
mixed logical dynamical system and solved by mixed-integer linear programming (MILP).
Therefore, a brief introduction to MILP is given as follows.

The MILP problem is a kind of optimization problem that involves both integer-valued and
real-valued parameters (Schrijver, 1998). It could be written as:

min
x

cTx

s.t. Ax Æ b

where x =
C
xr

xi

D

xr œ Rnr , xi œ Rni

(2-1)

A basic solution approach for the MILP problem is the branch-and-bound algorithm. In each
node, the MILP is relaxed to a linear programming problem by relaxing the integer values to
be continuous. One may also use heuristic search techniques, such as random search, genetic
algorithms, simulated annealing, etc, to solve the MILP problem. Nowadays, there also exist
commercial solvers to solve the MILP problem. Most commercial solvers are able to solve
small-scale problems e�ciently. However, they typically su�er from computational complex-
ity issues when encountering large-scale problems. The fundamental reason for that is that
the MILP problem is regarded as an NP-hard problem.

The key to transforming the railway timetable rescheduling problem into MILP is to properly
define binary and continuous variables. Depending on di�erent focuses, problem settings, and
application backgrounds, the definition of variables varies among existing studies. A compre-
hensive survey given by Fang et al. (2015) o�ers a very detailed summary to compare these
choices of decision variables and also the number of constraints.

For the binary decision variables, one of the commonly-used definitions is to indicate whether
or not a block section or route is assigned or occupied to a train (Törnquist and Persson,
2007; Min et al., 2011; Pellegrini et al., 2014). This kind of binary variable is used to indicate
the status of the tracks and stations in the railway network. Another type of binary variable
represents the order of trains in certain situations. In van den Boom et al. (2011), the binary
variables indicate the order of two trains. In Acuna-Agost et al. (2011), the binary variable
compares whether a given train passes before another train or not. There are also other def-
initions of the binary variable, but the common intention of all these studies is to accurately
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10 Background Knowledge

and e�ectively represent the status of the railway network under certain problem settings.
The definitions of binary variables in this thesis will be discussed in Chapter 3.

For the continuous decision variables, the most common choice is the operation time of trains,
such as the departure and arrival times of a train with respect to a block section or a station
(Min et al., 2011; Mu and Dessouky, 2011). Many studies also include the delay of a train or
an event as the continuous variable (Acuna-Agost et al., 2011; Pellegrini et al., 2014). Another
choice is related to the time di�erences, such as the di�erence between the original arrival
time and actual arrival time (Min et al., 2011) and the time di�erence between the end of an
event for a train (Törnquist and Persson, 2005). In general, most continuous variables focus
on the time property of the railway network.

As mentioned above, the objective of the railway timetable rescheduling problem depends
on the type of the problem. In an MILP formulation, the objective function could be easily
defined as the sum of delays of all trains or all passengers’ delays. The block section rules,
safety headways, and station capacities are often considered as di�erent constraints by most
studies. The passenger-centric problem may also include some constraints related to passen-
ger satisfaction. In practice, most studies will simplify the railway timetable rescheduling
problem according to their own needs.

2-1-3 Solution Methods for Railway Timetable Rescheduling

As discussed in the previous part, the key to solving the railway timetable rescheduling prob-
lem is to solve the corresponding MILP problem. There are two main threads of solving
the MILP problem: one is the branch and bound algorithm, which is widely used by com-
mercial solvers; the other is using the heuristic, which is actually a sub-optimal method and
has various algorithms. Both methods have their own advantages and disadvantages. In the
remainder of this part, these two solving methods will be described in detail.

Basic Methods for Railway Timetable Rescheduling

For the railway timetable rescheduling problem, the branch and bound algorithm is widely
used to solve the AG-based MILP problem. D’Ariano et al. (2007) used a truncated branch
and bound algorithm, which includes two implication rules: First-Come-First-Served (FCFS)
and First-Leave-First-Served (FLFS) to speed up the computation. Corman et al. (2010)
combined the branch and bound algorithm with a heuristic tabu search to minimize the
maximum consecutive delay on the Utrecht Den Bosch railway. Specifically, the branch and
bound algorithm is used for reordering and tabu search is used for rerouting. Another paper
by Corman et al. (2011) considered di�erent priorities of running tra�c within the branch and
bound framework. In Kecman et al. (2013), the impact of di�erent detail levels is investigated
with respect to the solution quality and computational e�ciency.

As mentioned in the previous part, there exist several commercial solvers that are able to
solve small-scale MILP problems e�ciently. However, these solvers usually become very slow
when dealing with large-scale problems. For the railway tra�c management problem, the
most commonly used solver is CPLEX developed by IBM (Fang et al., 2015). The CPLEX
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2-1 Railway Timetable Rescheduling 11

solver uses the branch and cut algorithm to optimize the mixed integer programming problem
(Cplex, 2021), which is considered as a general and robust method. In practice, some studies
also implement the branch and cut algorithms by themselves to solve the railway reschedul-
ing problem (Lamorgese et al., 2016). Addressing the railway timetable rescheduling problem
with commercial solvers has several advantages. First, it is easy to implement and tune.
Nowadays, most commercial solvers could be implemented with di�erent programming lan-
guages. Second, using commercial solvers makes researchers focus more on how to derive a
representative MILP problem instead of how to solve the MILP problem quickly. The latter
question should be considered by optimization research. Third, commercial solvers provide a
benchmark that allows the results of studies to be compared with each other.

Unlike self-implementation of branch and bound algorithms, which are mostly used for solving
AG-based MILP problems, commercial solvers are commonly implemented for MILP prob-
lems based on di�erent models (Luan et al., 2018). Törnquist and Persson (2007) directly
formulated the railway timetable rescheduling problem as a MILP problem, whose objec-
tive is to minimize the consequences of a single disturbance. The CPLEX solver was used
in this paper with di�erent rescheduling strategies, such as track change or order modifica-
tion. Dollevoet et al. (2012) proposed an event-activity-based model to describe the railway
timetable rescheduling problem by rerouting passengers. It combined the CPLEX solver with
a modified Dijkstra’s algorithm to solve the MILP problem. In Pellegrini et al. (2014), the
railway tra�c management problem is directly formulated as an MILP problem, where the
infrastructure is represented with fine granularity. The paper studied both simple junctions
and complex networks. Similarly, the CPLEX solver is used to solve the MILP problem. In
Xu et al. (2017), a MILP formulation based on the alternative graph is proposed to resched-
ule the timetable after a disruption in the high-speed railway system with a quasi-moving
signaling system.

In summary, the basic approach to solving the MILP-based railway tra�c management prob-
lem is using the branch and bound algorithm. Some studies implement the algorithm by
themselves, while others use commercial solvers that are also based on the branch and bound
algorithm. The main advantage of this method is that it is easy to implement and could also
be used as a benchmark. The main disadvantage is that when the problem size increases, the
computation time becomes unacceptable.

Heuristics for Railway Timetable Rescheduling

A heuristic algorithm or simply heuristic is defined as a suboptimal technique that is able
to find relatively good solutions with acceptable computation time (Gendreau et al., 2010).
There is no guarantee of optimality or even feasibility when using heuristic methods. In many
cases, they are also not able to indicate how close to optimality a particular feasible solution
is. Most heuristics first generate candidate solutions and then use a simulation to evaluate
the criterion function and the feasibility. Some commonly used heuristic algorithms include
random search (MladenoviÊ and Hansen, 1997), tabu search (Glover and Laguna, 1997), ge-
netic algorithm (Davis, 1991), greedy algorithm, and ant colony (Dorigo et al., 2006).

Heuristic algorithms are broadly applied to solve the MILP-based railway timetable reschedul-
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ing problem due to the feature that this kind of algorithm could obtain relatively good results
in a short time. In fact, some simple rule-based heuristics are also widely used (Luan et al.,
2018), such as First-Come-First-Served (FCFS), First-Leave-First-Served (FLFS), First-Scheduled-
First-Served (FSFS), First-Rescheduled-First-Served (FRFS). In D’Ariano et al. (2007), re-
searchers solved the AG-based MILP problem by combining the branch and bound algorithm
with FCFS and FLFS.

In addition to the rule-based heuristic algorithms mentioned above, other types of heuris-
tics have also been applied to solve the railway timetable rescheduling problem. Some studies
only use heuristics to solve the problem. For instance, in Mu and Dessouky (2011), a freight
train scheduling problem was formulated as an MILP problem, which was solved by the greedy
algorithm and neighborhood search algorithm. In Krasemann (2012), a greedy heuristic was
developed to further improve the computation e�ciency, using the same problem formulation
as in Törnquist and Persson (2007). Meanwhile, some studies also designed heuristics for the
railway timetable rescheduling problem. In Pellegrini et al. (2015), a special heuristic method
called RECIFE-MILP was developed based on the MILP formulation given in Pellegrini et al.
(2014).

Some studies focus on combining numerical approaches with heuristics. In the beginning,
heuristic algorithms are implemented to obtain a relatively good result in a short time. After
that, the optimization method will find the final optimum. In Corman et al. (2010), the
tabu search and the branch and bound algorithm are alternatively used to solve the railway
rescheduling problem. The final result saved more than 80% computation time and also have
15% better results. In Corman et al. (2011), the priority rule-based heuristic was added to
the branch and bound algorithm, which considered multi classes of trains. Corman et al.
(2012) tried to achieve two objectives simultaneously: reducing the delay and maintaining
as many connections as possible by combining the branch and bound with Pareto frontier
technique. In äama et al. (2016), the ant colony was applied to select the best train routes
from all candidates.

Compared with the two approaches mentioned previously, heuristics are more complicated
to implement. However, they can always obtain a near-optimal result within a limited time,
when dealing with large-scale problems. This important feature makes them widely stud-
ied. In fact, since the MILP problem is typically regarded as an NP-hard problem, heuristic
approaches are the most commonly used algorithms to solve the MILP-based railway tra�c
management problem (Fang et al., 2015). Also, it is noticed that most studies combine the
heuristic methods with numerical approaches, which results in good performance (D’Ariano
et al., 2007; Corman et al., 2010; äama et al., 2016).

2-2 Reinforcement Learning

In this section, the general introduction to the definition of reinforcement learning and some
key concepts will be first given. Then a more detailed description of value-based methods will
be provided. After that, the last part will summarize the current applications of reinforcement
learning in railway timetable rescheduling problems.
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2-2-1 Basic Knowledge of Reinforcement Learning

The early history of reinforcement learning has two main threads. One focused on learning
by trial and error while the other concerned the optimal control problem and dynamical pro-
gramming (Sutton and Barto, 2018). In the 1990s, the first wave of reinforcement learning
raised and combined two main threads above into modern reinforcement learning techniques.
A large number of classical algorithms were developed in this period, including Q-Learning
by Watkins and Dayan (1992), REINFORCE by Williams (1992), and SARSA by Rummery
and Niranjan (1994).

Over the past decade, reinforcement learning has once again gained tremendous attention
from both academia and industry. With the growth of hardware and computing power, deep
reinforcement learning has become the hot spot of this second wave. During this period,
some remarkable algorithms have been proposed, like Deep Q-Network (DQN) by Mnih et al.
(2015), DDPG by Lillicrap et al. (2015), and A3C by Mnih et al. (2016).

In this part, the definition of reinforcement learning and some key concepts will be given
first, which will be followed by an introduction to the value function and Bellman equation.
Finally, a brief classification of existing reinforcement learning algorithms will be provided.

Definition of Reinforcement Learning

According to the widely accepted description in Sutton and Barto (2018), reinforcement
learning refers to a problem that an agent learns how to map states to actions, so as to
maximize a numerical reward signal. The reinforcement learning problem is always described
by a Markov Decision Process (MDP), which means that the next state will only be determined
by the current state and current action. Specifically, in each time step, the agent first measures
the states of the environment and then takes the corresponding action according to its current
policy. Depending on di�erent settings, the reward signal may be given at each time step or
at the end of the game. The learning target of the agent is to learn an appropriate strategy
so that it can maximize the final reward. Here, some formal definitions of these key elements
are given according to Sutton and Barto (2018) as follows:

• State is the set of information regarding the environment that the agent can get at every
time step

• Action is the behavior that the agent takes according to its policy when it senses current
states

• Policy is a mapping from perceived states of the environment to actions to be taken
when in those states

• Reward is a signal that implicitly specifies the goal of the task

Value Function and Bellman Equation

The value function is an important concept in almost all reinforcement learning algorithms.
There are two kinds of value functions: the value function of states and the value function of
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state-action pairs. Both of them are trying to estimate the expected final rewards from the
current situation. Specifically, the value function of states measures how good the given state
is for the agent, while the value function of state-action pairs measures how good it is to take
the given action in this given state. Normally, value functions are defined with respect to a
particular policy. For a reinforcement problem defined by an MDP, the value of state ⁄ under
policy fi could be defined as:

vfi(⁄) = Efi[Gt | �t = ⁄] = Efi

C Œÿ

k=0

·k�t+k+1 | �t = ⁄

D

(2-2)

where Efi[·] denotes the expectation of a random variable given policy fi, Gt is the cumulative
future reward at t, �t and �t are the reward and state at t, respectively. The function vfi(·)
is called the state value function of policy fi.

Similarly, the value of taking action Ê in state ⁄ under policy fi could be written as:

qfi(⁄, Ê) = Efi[Gt | �t = ⁄, �t = Ê] = Efi

C Œÿ

k=0

·k�t+k+1 | �t = ⁄, �t = Ê

D

(2-3)

where �t is the action at t, and · is the discount factor. The function qfi(·, ·) is called the
action value function of policy fi.

From these two definitions, there exists a substitution for both value functions. For the
state value function:

vfi(⁄) =
ÿ

Ê

fi(Ê|⁄)qfi(⁄, Ê) (2-4)

where fi(Ê|⁄) represents the probability of taking action Ê in state ⁄ under policy fi, and
clearly

q
Ê

fi(Ê|⁄) = 1. This equation represents that the value of state ⁄ is the expectation
of all feasible actions’ value in this state and under current policy.

Similarly, the action value function could be written as:

qfi(⁄, Ê) =
ÿ

⁄Õ,Â

p(⁄Õ, Â|⁄, Ê)
#
Â + ·vfi(⁄Õ)

$
(2-5)

where p(⁄Õ, Â|⁄, Ê) represents the probability of transitioning to ⁄Õ with reward Â, from state
⁄ and taking action Ê, also

q
⁄Õ,Â p(⁄Õ, Â|⁄, Ê) = 1. Here the reward Â of current time step

depends on the next state ⁄Õ. This equation represents that the value of taking action Ê
in state ⁄ is the expectation of all possible next states’ value and transition rewards under
current policy.

Further more, the recursive relationship of state value function is given by substituting equa-
tion (2-5) into (2-4):

vfi(⁄) =
ÿ

Ê

fi(Ê|⁄)qfi(⁄, Ê)

=
ÿ

Ê

fi(Ê|⁄)
ÿ

⁄Õ,Â

p(⁄Õ, Â|⁄, Ê)
#
Â + ·vfi(⁄Õ)

$ (2-6)
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Equation (2-6) is called Bellman equation for vfi, which shows that the value of a state is
equal to the discounted expectation of next state’s value, plus the expected reward along
the transition. The action value function could also be calculated recursively by substituting
(2-4) into (2-5):

qfi(⁄, Ê) =
ÿ

⁄Õ,Â

p(⁄Õ, Â|⁄, Ê)
#
Â + ·vfi(⁄Õ)

$

=
ÿ

⁄Õ,Â

p(⁄Õ, Â|⁄, Ê)
C

Â + ·
ÿ

ÊÕ
fi(ÊÕ|⁄Õ)qfi(⁄Õ, ÊÕ)

D (2-7)

Equation (2-7) is called Bellman equation for qfi. These two Bellman equations build the re-
cursive relationship of state values and state-action values. Almost all reinforcement learning
algorithms use this recursive property to estimate the values and determine the action.

2-2-2 Value-based Methods

One of the most important branching points of a reinforcement learning algorithm lies in
its ability to access information about the model. Here, the word "model" refers to the
dynamic model of the environment. Normally, model-based algorithms are expected to have
better performance than model-free algorithms, since they have extra information about the
environment. Algorithms that do not use a model of the environment are called model-free.
Although some sample e�ciency is lost, this kind of algorithm is usually easier to implement
and tune, which also makes it a more popular choice compared with model-based algorithms.
For the model-free algorithms, there are two di�erent things to learn: one is the action
value function (Q-function), and the other is the policy itself. Here, a non-exhaustive but
useful taxonomy is presented to highlight some fundamental di�erences among reinforcement
learning algorithms (Achiam, 2018).

Figure 2-2: A Taxonomy of Reinforcement Learning Algorithms
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For value-based algorithms, as mentioned in the last part, the action value function measures
how good to take given action in the current state. Therefore, after learning the action
value function, the agent would be able to determine the value of all actions and then simply
choose the action with the highest value to execute. The key idea to this kind of algorithm
is fitting the action value function given in (2-3). Value-based algorithms gain the advantage
of sampling e�ciency since during the update, they can use all the data collected before.
However, compared with policy-based methods, there are still two main limitations: first is
that most value-based methods can only deal with discrete and relatively small action space
since they need to calculate all possible actions’ values at each time step. Large or continuous
would bring high calculation requirements for value-based algorithms. Another disadvantage
is that value-based methods are always considered less "direct" on the optimization target,
which may cause unstable performance. The second section of this chapter will provide a
more detailed description of value-based methods. In this thesis project, the action space
will be discrete. Therefore, the thesis is going to mainly consider value-based reinforcement
algorithms. Here, this part will give a brief introduction to the Q-Learning and Deep Q-
Network (DQN) algorithms, which are two basic algorithms of all value-based methods in
principle.

Q-Learning

Proposed by Watkins and Dayan (1992), Q-Learning is regarded as one of the most important
breakthrough of reinforcement learning and also the starting point of value-based methods.
The basic one-step Q-Learning is defined as follows:

Q(�t, �t) Ω Q(�t, �t) + ’
Ë
�t+1 + · max

Ê
Q(�t+1, Ê) ≠ Q(�t, �t)

È
(2-8)

where ’ is the learning rate. In this case, the learned action value function Q directly ap-
proximates the optimal action value function despite the policy. It can be proved that Q will
converge to the optimal action value function with probability 100% under the assumption
that the value of all state-action pairs continues to be updated (Sutton and Barto, 2018).
The Q-Learning algorithm is shown as follows:

Algorithm 1 Q-Learning
1: Initialize Q(⁄, Ê)
2: Repeat:

3: Initialize �
4: Repeat:

5: Choose � from � using policy derived from Q (e.g. ‘-greedy)
6: Take action �, observe �, �Õ

7: Q(�t, �t) Ω Q(�t, �t) + ’ [�t+1 + · maxÊ Q(�t+1, Ê) ≠ Q(�t, �t)]
8: � Ω �Õ

9: until � is terminal
10: until End of the episode

The Q-Learning algorithm is widely used for reinforcement problems due to its small require-
ment of computation power. It has great performance on small-scale problems. However, for
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problems with large state or action space, it may take quite long time to converge since some
state-action pairs may be di�cult to explore and update.

Deep Q-Network (DQN)

In order to solve the updating problem for Q-Learning, the DQN algorithm was proposed in
2015 (Mnih et al., 2015). The key idea of DQN is to use a deep convolutional neural network
to approximate the following optimal action-value function:

Qú(⁄, Ê) = max
fi

E
Ë
�t + ·�t+1 + ·2�t+2 + . . . |�t = ⁄, �t = Ê, fi

È
(2-9)

In the original paper (Mnih et al., 2015), the neural network model consists of a data prepro-
cessing layer „, three convolutional layers, followed by two fully connected layers and a single
output layer for all actions. Each hidden layer is followed by a rectifier non-linearity layer.
The main reason for designing such a neural network model is that the input to Atari 2600 is
image information. The structure of the neural network could be redesigned according to the
need of di�erent problems. In this thesis, since the input does not contain image information,
the neural network will not use the convolutional layer. Besides the special neural network
structure, there are two main ideas that benefit the convergence of the reinforcement learning
model: experience replay and the target network.

Specifically, experience replay builds a dataset Et = {e1, . . . , et} to store the agent’s ex-
perience et = (�t, �t, �t, �t+1) at each time step. By using the experience replay, there are
several advantages for convergence compared with normal Q-Learning methods. First, data
e�ciency is improved, since each data point can be used for many weight updates. Second,
randomizing samples breaks the correlation between consecutive samples. Third, experience
replay will make the behavior distribution more averaged and more smoothing. Notably, this
uniform sampling gives equal importance to every sample, one may also design other sampling
strategies to emphasize some particular data points.

Another modification is a separate target network Q̂ that is used to generate targets yj

in the Q-learning update. Every C updates, the target network Q̂ will be replaced by the
current network Q. In this way, the stability of the algorithm is further improved since the
correlation between action values and target values is reduced. The detailed algorithm is
given as follows:
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Algorithm 2 Deep Q-Learning with Experience Replay
1: Initialize replay memory E with capacity N
2: Initialize action value function Q with random weights ÷
3: Initialize target action value function Q̂ with weights ÷≠ = ÷
4: for episode= 1, M do

5: Initialize state sequence �1 = Èx1Í and preprocessed sequence „1 = „(�1)
6: for t = 1, T do

7: With probability ‘ select and action �t

8: otherwise select �t = arg maxÊ Q(„(�t), Ê; ◊)
9: Execute action �t and observe reward �t and image xt+1

10: Set �t+1 = �t, �t, xt+1 and preprocess „t+1 = „(�t+1)
11: Store transition („t, �t, �t, „t+1) in E
12: Sample random minibatch of transitions („t, At, Rt, „t+1) from E

13: Set yt =
I

Âj , if episode terminates at step j + 1
Âj + · maxÊÕ Q̂(„j+1, ÊÕ; ÷≠), otherwise

14: Perform a gradient descent step on (yt ≠ Q(„j , Êj ; ÷))2 with respect to the network
parameters ÷

15: Every C steps reset Q̂ = Q
16: end for

17: end for

Comparing the algorithm of DQN with the standard Q-Learning, there are three main im-
provements. First, DQN uses a convolutional neural network to represent the action value
function (Q function). Second, an experience replay pool is introduced to improve data ef-
ficiency. Third, a separate target network is used to generate targets during training, which
breaks the correlation between targets and action values. By using these techniques, the
convergence and performance are significantly improved. The DQN method also indicates
that the same algorithm, network architecture, and hyperparameters can successfully learn
the control policy of many di�erent tasks through extensive experiments in Atari 2600 games.

2-2-3 Application of Reinforcement Learning in Railway Timetable Rescheduling

This part will introduce several studies that use reinforcement learning to solve the rail-
way timetable rescheduling problem. As discussed in the first section, solving the railway
timetable rescheduling problem by optimization methods has been extensively developed.
However, only a few studies have addressed this problem using reinforcement learning tech-
niques. Most literature considers a tra�c controller as the agent that directly takes actions
to control the railway tra�c system, which is regarded as the environment. The choice of
states and actions could be quite di�erent according to the di�erent focus and setting of the
research. The following table lists the state, action, and algorithm of current research.

From Table 2-1, it is noticed that these studies’ selections of state and action are rather
diverse. These variations are related to their di�erent focuses and problem settings. For
instance, in Ghasempour and Heydecker (2019), only one junction is considered, so trains
waiting for passing through becomes the state of the environment and the sequence of trains
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is the action. While in Khadilkar (2019), the agent only operates one particular train at one
time step, using the availability of close resources as the state. From the experiment result
in Zhu et al. (2020), it is shown that larger state space leads to better solution quality but
also slower convergence. Meanwhile, including some crucial information may bring significant
improvement to the final performance. The experiment result shows that broader represen-
tativity of state choice is even more important than a larger state space (Zhu et al., 2020).

Most existing research chooses to use value-based, model-free reinforcement learning algo-
rithms, like Q-Learning and DQN. Only Ghasempour and Heydecker (2019) implements the
approximate dynamic programming (ADP), which could be regarded as a model-based re-
inforcement learning method. The main reason for using value-based reinforcement learning
algorithms, especially Q-Learning, is that they are easy to implement and tune. Also, the
state space and action space of railway timetable rescheduling problems considered in these
studies are both discrete and relatively small.

The major limitation of all research mentioned above is that only microscopic problem is
considered in their case studies. Specifically, the existing studies only concentrate on the
individual railway line instead of a railway network. In äemrov et al. (2016) and Ning et al.
(2019), only a single-track railway line is considered. While Zhu et al. (2020) focuses on a
double-track railway line and Khadilkar (2019) studies both single and double-track railway
lines. While paper Ghasempour and Heydecker (2019) concentrates on one isolated junc-
tion. An improvement is made in Ghasempour et al. (2019) to operate multiple independent
junctions simultaneously, that have no tra�c coordination. Understandably, as using rein-
forcement learning to solve the railway timetable rescheduling problem is still in its early
stages, most of the available results have been generated from smaller scale experiments.
However, as the size of the problem grows, it will become more di�cult to implement a value-
based algorithm due to the large computation requirement. Future work may consider solving
networked macroscopic problems.

In addition to this common limitation, these studies also have some individual problems. In
Ning et al. (2019), the state representation is closely related to the training railway structure,
which means that the agent cannot be used in other railway networks. Research in Khadilkar
(2019) makes an assumption that a segment can only be occupied by one train at a time,
which is not applicable in real-world scenarios. In Zhu et al. (2020), one open track is allowed
to be occupied simultaneously by several trains as long as the safety requirements are fulfilled.

Overall, until now there have been several studies using reinforcement learning methods to
solve railway timetable rescheduling problems. Most of these studies have implemented value-
based algorithms on small-scale problems, but they still have many limitations and drawbacks.
Compared with the widely studied optimization methods, reinforcement learning-based meth-
ods still have many directions to be explored and extended. Examples of possible future work
include applying reinforcement learning methods on larger-scale railway network problems,
the selection and e�ective representation of state and action, and the possible application of
policy-based reinforcement algorithms.
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2-3 Conclusions

The railway timetable rescheduling problem is a real-time rescheduling problem, which is
usually caused by a disturbance or a disruption. To accurately model the railway timetable
rescheduling problem, a railway way model must be given first. The railway system physi-
cally consists of several kinds of components. The proper operation of it depends on many
constraints in both space and time. The movement of a train is defined on a specific block
section at a certain time instant. Some consecutive block sections form the route of a train.
Many routes together establish the railway network.

In fact, the railway timetable rescheduling problem could be modeled with di�erent ap-
proaches. Most of these modeling techniques typically result in an MILP problem. To solve
the MILP problem, one may choose the branch and bound algorithm or heuristic methods.
There also exist several commercial solvers that are able to optimize the MILP problem. De-
pending on di�erent focuses, the objective of the problem is also di�erent. There also exist
di�erent rescheduling techniques applied in time or space.

For the MILP-based railway tra�c management problem, the basic solution is using the
branch and bound algorithm (B&B). Some studies implement the algorithm by themselves,
while others use commercial solvers. The common advantage of these two approaches is that
they are relatively easy to implement and could be used as a benchmark. By using B&B,
researchers could focus more on the problem formulation instead of solving the problem. At
the same time, the main disadvantage of these two methods is that they both su�er from
the issues of computation time when dealing with large-scale problems. Heuristic is a kind
of suboptimal algorithm that could find relatively good solutions within a limited time. This
property makes it suitable for solving large-scale railway rescheduling problems. However, the
disadvantage is also obvious. In most cases, heuristic methods cannot reach the global opti-
mum of the problem. Currently, both directions have been widely studied, more researchers
tend to combine two kinds of algorithms to obtain better results. In summary, most of the
existing studies are unable to balance the requirements in terms of optimality and computa-
tion time. For this reason, a method that combines reinforcement learning with optimization
techniques will be proposed in this thesis project.

Reinforcement learning is a special kind of machine learning. It refers to a problem that
an agent learns how to map states to actions, so as to maximize a numerical reward signal.
By introducing the concepts of the state value function and action value function, the im-
portance of di�erent states and actions is represented. Meanwhile, depending on di�erent
learning methodologies, the model-free reinforcement learning algorithms could be divided
into value-based and policy-based algorithms. In this thesis, only value-based reinforcement
learning methods are considered.

Compared with the traditional optimization-based methods, addressing the railway timetable
rescheduling problem with reinforcement learning is still in a very early stage. Most stud-
ies are still using relatively simple value-based algorithms, such as Q-Learning and DQN to
solve small scale problems with certain limitations and constraints. Future research could be
conducted from both algorithm and problem scale.
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Chapter 3

Reinforcement Learning-based Railway
Timetable Rescheduling

In this chapter, the reinforcement learning-based solution method will be proposed to solve
the railway timetable rescheduling problem. As discussed in Chapter 2, the railway timetable
rescheduling problem is usually formulated as a mixed-integer linear programming (MILP)
problem by existing research. In the first section of this chapter, the formulation of the MILP
problem will be given. After that, the second section will first introduce how to formulate
the railway timetable rescheduling and MILP problem together as the environment of the
reinforcement learning model. Then the reinforcement learning algorithm used in this thesis
will be presented. In the third section, the complete reinforcement learning-based solution
approaches to the railway timetable rescheduling problem will be presented. In the end, a
short conclusion will summarize this chapter.

3-1 Formulation of MILP Problem

In this section, the railway timetable rescheduling problem will be formulated as an MILP
problem. As discussed in Chapter 2, the MILP problem is a special kind of optimization
problem, some of whose variables are constrained to be integer or binary. Depending on
di�erent problem settings and objectives, the choice of both integer and continuous variables
of the railway timetable rescheduling problem is various. The selection of these variables in
this thesis will be presented first. After that, the introduction of the objective function and
constraints will be given.

3-1-1 Variables

According to di�erent focuses and problem setting of the railway timetable rescheduling prob-
lem, the definition of variables will naturally be various (Fang et al., 2015). In this thesis,
the main objective of the railway timetable rescheduling problem is to minimize the total
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delay for all passengers. The rescheduling decisions are limited to reordering and retiming.
Therefore, the continuous variables are related to the operational times of the train, and the
integer variables are given as the order between di�erent trains. Detailed definitions are given
as follows:

Continuous Variables

In a railway network, there are several di�erent times regarding the operation of trains. In
this thesis, they are defined as continuous variables as follows:

• ai,s: the arrival time of train i at station s

• di,s: the departure time of train i from station s

• “i,s: the dwelling time of train i in station s

• ri,u,s: the running time of train i between station u and s

These time-related continuous variables have di�erent properties. The arrival time and de-
parture time are points of time while the running time and dwelling time are periods of time.
The constraints between them will be further introduced in the third part of this section. In
this thesis, the unit of time is minutes.

Integer Variables

As mentioned above, another rescheduling measure used in this thesis is reordering. The
order between di�erent trains can be represented as the integer variable. First, the departure
order is defined as follows:

”i,j,s =
I

1, if di,s ≠ dj,s Ø 0
0, otherwise ,

(3-1)

where ”i,j,s represents the departure order between train i and train j at station s. If ”i,j,s = 1,
it means that train i departs later than j. Otherwise if ”i,j,s = 0, train j departs later than
train i. Then, the arrival order could also be defined as:

–i,j,s =
I

1, if ai,s ≠ aj,s Ø 0
0, otherwise ,

(3-2)

where –i,j,s represents the arrival order between train i and train j at station s. If –i,j,s = 1,
it means that train i arrives later than j. Otherwise if –i,j,s = 0, train j arrives later than
train i.

3-1-2 Objective Function

In this thesis, the objective is to minimize delays for all passengers at all stations. The
objective function of the railway timetable rescheduling problem is given as follows:

min
ÿ

sœS

ÿ

iœT
pi,s(ai,s ≠ Ai,s) , (3-3)
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where S and T are sets of all stations and all trains respectively. Since the passenger delay
is considered, it is necessary to multiply the passenger number pi,s with the delay of the
corresponding train and station. Here, pi,s represents the number of passengers on train i
with the destination of station s. The Ai,s represents the ideal arrival time of train i at station
s from the pre-defined timetable.

3-1-3 Constraints

In order to formulate the railway timetable rescheduling problem into the MILP problem,
there are several kinds of constraints that need to be considered. Some typical constraints are
related to the operation of the railway system, the safety requirements between trains, the
availability of platforms, tracks, and trains, the limitation of train speed, etc. In this thesis,
we mainly consider constraints of train operation, safety headways, and the availability of
platforms in all stations.

Train Operation Constraints

For a train i in the railway system, the train operation should satisfy the following two basic
constraints:

di,s = ai,s + “i,s , (3-4)
ai,s = d

i,s
≠
i

+ r
i,s

≠
i ,s

, (3-5)

Here, equation (3-4) represents that the departure time of the train i at the station s is the
sum of its arrival time and dwelling time at this station. This constraint actually describes
the operation of train i within the station s.

In equation (3-5), s≠
i

represents the preceding station of station s on the route of train i.
This constraint described the operation of train i between two stations s≠

i
and s. Specifically,

it means that the arrival time of train i at the station s is the sum of its departure time in the
last station and the running time between them. Both (3-4) and (3-5) should be satisfied by
all trains at all stations. These two constraints form the basic operation of the railway system.

Besides the constraints above, there are also some lower bounds regarding the continuous
decision variables. For the departure time di,s and the arrival time ai,s, the train cannot be
earlier than the original time from the timetable. The running time ri,u,s and dwelling time
“i,s could be shorter than the original time indicated on the timetable, but they also need to
have a minimum value to guarantee the operation safety. These lower bounds are given by
inequalities as follows:

di,s Ø Di,s (3-6)
ai,s Ø Ai,s (3-7)
ri,u,s Ø Rmin

i,u,s (3-8)
“i,s Ø �min

i,s , (3-9)
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where Di,s and Ai,s represent the ideal departure time and arrival time of train i at station
s from the timetable, respectively. Rmin

i,u,s
is the minimum running time of train i between

station u and s. By applying constraint (3-8), an upper bound for the train speed is added.
Also, �min

i,s
represents the minimum dwelling time of train i at station s. Constrain (3-9)

requires a minimal operation time within the station.

Safety Headway Constraints

In the railway timetable rescheduling problem, safety headway constraints require that there
must be a certain distance or time slot between two trains on the same track to guarantee the
safe operation of the railway system. However, it is not necessary to consider the constraint
of safety distance between any two trains. Suppose that two trains are not operating on the
same platform or on the same track, then there is no need to consider the safety headway
between them. Without losing generality, some assumptions are made in this thesis:

• One platform can only be occupied by one train at a time.

• The connection between platforms and tracks is fixed.

• All tracks and platforms are unidirectional.

Then, in order to investigate the headway constraint, some binary parameters need to be
defined. First, the parameter indicating the departure situation is defined as follows:

—i,j,s =
I

1, if train i and train j depart from the same platform or to the same track at station s

0, otherwise ,
(3-10)

From the definition above, when —i,j,s is 0, there is no need to consider the departure order
of train i and train j at station s, since they will not run on the same track nor from the
same platform. In other words, the departure safety headway constraint between train i and
j at station s will only need to be considered when —i,j,s = 1. An illustration figure of —i,j,s

is given as follows:

Figure 3-1: Illustration Figure of the Departure Situation Parameter —i,j,s
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Similarly, the parameter indicating the arrival situation is defined as follows:

◊i,j,s =
I

1, if train i and train j arrive from the same track or to the same platform at station s

0, otherwise ,
(3-11)

Similar to —i,j,s, the definition of ◊i,j,s also indicates that the arrival safety headway constraint
only needs to be considered when ◊i,j,s = 1. An illustration figure of ◊i,j,s is given as follows:

Figure 3-2: Illustration Figure of the Arrival Situation Parameter ◊i,j,s

Given definitions of the departure order in (3-1) and the departure situation parameter in
(3-10), the departure safety headway constraint between any trains i and j at station s could
be written as follows:

di,s ≠ dj,s Ø h ≠ M(2 ≠ —i,j,s ≠ ”i,j,s) , (3-12)

where h is a time constant, representing the required minimum safety headway in the railway
system, and M is a large positive constant.

It is noticed that when —i,j,s = 0, constraint (3-12) will hold automatically due to the large
positive constant M , i.e. when train i and train j do not depart from the same platform
or to the same track at station s, there is no need to consider the departure safety headway
between train i and train j.

Only when —i,j,s = 1, does the departure headway between train i and train j need to be
considered. Then, if ”i,j,s = 0, constraint (3-12) will also hold automatically. According to
the definition of the departure order in (3-1), ”i,j,s = 0 represents that train i departs earlier
than train j. In this situation, constraint (3-12) still does not guarantee the safety headway.

When —i,j,s = 1 and ”i,j,s = 1, train i departs later than train j, and these two trains
depart from the same platform or to the same track. Then, the constraint (3-12) become:

di,s ≠ dj,s Ø h (3-13)
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In such case, this constraint requires that the departure time of train i should be h minutes
later than the departure time of train j at station s. From the analysis above, it is noticed
that constraint (3-12) could only demand the safety headway when the train i departs later
than train j. In other words, both departure order ”i,j,s and ”j,i,s need to be determined in
the MILP problem. Naturally, it requires the following constraint:

”i,j,s + ”j,i,s = 1 (3-14)

Constraint (3-14) requires that there must be a departure order between train i and train j
from station s. Similar to constraints (3-12) and (3-14), the arrival headway constraints are
defined as follows:

ai,s ≠ aj,s Ø h ≠ M(2 ≠ ◊i,j,s ≠ –i,j,s) (3-15)
–i,j,s + –j,i,s = 1 (3-16)

Similar to the analysis of departure safety headway above, only when ◊i,j,s = 1 and –i,j,s = 1,
will constraint (3-15) guarantee the arrival safety headway.

Platform Flexibility and Station Connection Constraints

As mentioned before, in this thesis, the rescheduling decisions considered are reordering and
retiming. On the same track, it is impossible for the train behind to overtake the train in front.
On di�erent tracks, reordering is achieved automatically by retiming without influencing
other trains’ operations. Therefore, only the reordering happened within the station requires
determining the binary variables. However, not all stations can achieve reordering. For
example, suppose a station s only has one platform, then it is obvious that the departure
order of trains from this station must be the same as their arrival order. Clearly, the flexibility
of doing reordering is very related to the number of platforms in the station. Therefore, the
number of platforms in station s is defined as a positive integer parameter ›s. After that, the
constraint of platform flexibility could be written as:

ÿ

jœT (s)\{i}
(–i,j,s ≠ ”i,j,s) Æ ›s ≠ 1 , (3-17)

where T (s) is the set of all trains that pass the station s. From the definitions of departure
order ”i,j,s in (3-1) and arrival order –i,j,s in (3-2), –i,j,s = 1 means that train j arrives earlier
than train i at station s. Therefore, the number of trains that arrive earlier than train i at
station s could be calculated as:

n– =
ÿ

jœT (s)\{i}
–i,j,s (3-18)

Similarly, the number of trains that depart earlier than train i at station s could be calculated
as:

n”

ÿ

jœT (s)\{i}
”i,j,s (3-19)

Therefore, the left part of the constraint (3-17) represents the number of trains that train i
overtakes at station s. Since there are only ›s platforms in station s, and train i also need to
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take 1 platform to operate, the maximal number of trains that could be overtaken by train i
at station s is ›s ≠ 1.

In fact, constraint (3-17) reflects the relationship between arrival orders and departure orders
within a station. Naturally, it is also necessary to consider the relationship between arrival
orders and departure orders between two connected stations. Using the definitions of depar-
ture and arrival parameters in (3-10) and (3-11), the constraint of train orders between two
connected stations is written as:

—
i,j,s

≠
i

◊i,j,s–i,j,s = —
i,j,s

≠
i

◊i,j,s”
i,j,s

≠
i

(3-20)

From the constraint above, it can be easily known that if any of —
i,j,s

≠
i

= 0 or ◊i,j,s = 0, the
constraint will always hold. This property indicates that if train i and train j depart to dif-
ferent tracks at station s≠

i
or arrive from di�erent tracks to station s, there are no restrictions

between their departure order and arrival order. Conversely, if and only if train i and train
j use the same track to travel from station s≠

i
to station s, their arrival order –i,j,s must be

as same as their departure order ”
i,j,s

≠
i

.

Now, all constraints considered in this thesis are presented. Combining them with the objec-
tive function in (3-3), the railway timetable rescheduling problem could be given as:

min
ÿ

sœS

ÿ

iœT
pi,s(ai,s ≠ Ai,s)

s.t. di,s = ai,s + “i,s

ai,s = d
i,s

≠
i

+ r
i,s

≠
i ,s

di,s Ø Di,s

ai,s Ø Ai,s

ri,u,s Ø Rm

i,u,s

“i,s Ø �m

i,s

di,s ≠ dj,s Ø h ≠ M(2 ≠ —i,j,s ≠ ”i,j,s)
”i,j,s + ”j,i,s = 1
ai,s ≠ aj,s Ø h ≠ M(2 ≠ ◊i,j,s ≠ –i,j,s)
–i,j,s + –j,i,s = 1

ÿ

jœT (s)\{i}
(–i,j,s ≠ ”i,j,s) Æ ›s ≠ 1

—
i,j,s

≠
i

◊i,j,s–i,j,s = —
i,j,s

≠
i

◊i,j,s”
i,j,s

≠
i

(3-21)

which is an MILP problem. Suppose that all trains will pass all stations, then the largest
possible numbers of variables and constraints are summarized in the following table:
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Table 3-1: Largest Possible Numbers of Variables and Constraints

Variables or constraints Number

Continuous Variables 4|S|(|T | ≠ 1)
Binary Variables 2|T |(|T | ≠ 1)(|S| ≠ 1)

Train Operation Constraints 6|S|(|T | ≠ 1)
Safety Headway Constraints 3|T |(|T | ≠ 1)(|S| ≠ 1)

Platform Flexibility Constraints |T |(|S| ≠ 1)
Train Orders Constraints between Two Connected Stations |T |(|T | ≠ 1)(|S| ≠ 1)

3-2 Reinforcement Learning Model

In this thesis, as described in the problem overview, the environment is a combination of
the railway system and the resulting MILP problem. In the first part of this section, the
environment setup will be introduced. Specifically, there are three main components of the
reinforcement learning environment: state, action, and reward. The selection of state needs to
consider the availability and validity of environmental information together (Zhu et al., 2020).
However, the selection of actions should take into account the need of the environment while
reducing its dimension as much as possible for training. For the reward function, the design of
the reward function should be able to reflect the objective directly. Di�erent reward functions
may have significant influence on the performance of agent (Sutton and Barto, 2018). In the
second part of this section, the reinforcement learning algorithm used in this thesis and its
concrete implementation will be introduced.

3-2-1 Environment Settings

From the figure of the problem overview, it can be noticed that in this thesis, the reinforcement
learning environment has two main parts: the railway system and its resulting optimization
problem, which is an MILP problem as formulated in the last section. Specifically, the railway
model is responsible for formulating the MILP problem and making the transformation to
the next step after receiving the complete solution to the MILP problem. While the MILP
problem forms states to the reinforcement learning agent and takes its action as the integer
solutions, so as to transform the MILP problem into a linear programming problem, which
could be solved e�ciently. In the following parts of this section, the details of the environment
will be discussed, including the update of the environment, the selection of state representation
and action, and the reward function.

Railway System Update

In this thesis, the railway system is designed as an event-triggered, time-based system, whose
each time step is mathematically described by the MILP problem outlined in the previous
section. In practice, trains are operated with a pre-defined, conflict-free timetable. Ideally,
if there is no disturbance or disruption at all, trains are able to run smoothly according to
the timetable. However, disturbances and even disruptions are inevitable in every railway

Hengkai Zhang Master of Science Thesis



3-2 Reinforcement Learning Model 31

system. When a disturbance or disruption happens, rescheduling measures are required to
reduce the negative impact of disturbances and disruptions. This thesis focuses specifically
on studying disturbances and does not address severe disruptions.

As discussed in the previous section, the rescheduling decisions in this thesis focus on re-
ordering and retiming. In the context of the MILP problem, reordering is accomplished
through binary variables, which represent the departure and arrival orders in equation (3-1)
and (3-2). On the other hand, retiming is achieved using continuous variables. It is widely
known that the MILP problem is much more challenging to solve than addressing linear pro-
gramming problems due to the involvement of integer variables.

Suppose a station only has one platform, which means that reordering is impossible. In
such cases, the MILP problem is simplified to a linear programming problem and has no need
to be solved using the reinforcement learning model. Therefore, the starting point of the
railway timetable rescheduling problem in this thesis is that a disturbance happened in the
railway system and it requires reordering in a station. Since the system is active only when
such an event occurs, it is described as an event-triggered system. For a train i arriving at
station s, this event becomes the initial event of the railway timetable rescheduling problem
if and only if the following condition holds true:

(ri,s + ai,s Ø Ri,s + Ai,s) · (›s > 1) (3-22)

The condition above makes two requirements: one is that train i is delayed when it arrives
at the station s, and the other is that station s has more than 1 platform, which makes
it possible for reordering. Then the initial delay µ0 of the railway timetable rescheduling
problem is given as:

µ0 = ri,s + ai,s ≠ Ri,s ≠ Ai,s (3-23)

After the initial delay happened, a crucial question is to determine the duration of the rail-
way timetable rescheduling problem. Given that most railway timetables follow a periodic
pattern, this question could also be described as determining the number of trains to be
considered in the timetable rescheduling process. The total number of trains included in the
railway timetable rescheduling problem cannot be too little, otherwise it may not be enough
to eliminate the impact of delays. In this thesis, since only disturbances are considered, the
number of trains is chosen to be large enough to eliminate the influence of the delay.

After the total time is determined, the next question is to decide the time of each step when
updating the railway network. Including all trains in one step may yield two problems: the
first is that there may be subsequent delays following the initial delay, causing the previously
obtained solution suboptimal. Second, the complete railway timetable rescheduling problem
will also formulate a larger MILP problem, which is di�cult to solve. Therefore, dividing
the complete railway timetable rescheduling problem into multiple consecutive steps is nec-
essary. If the number of trains considered in one step is too small, the feasible solution space
may become restricted, making it more challenging to find a satisfactory solution. On the
other hand, including too many trains will raise the complexity and size of the optimization
problem, which will also increase the di�culty of the learning process for the reinforcement
learning agent. In summary, finding the appropriate number of trains considered in one step
is vital for achieving a good solution while maintaining computational feasibility.
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In order to build the connection between consecutive steps, the concept of T 0 is introduced
as follows: T 0 is a set of trains, which includes the most recent departed trains on each track
from the initial station s0. An illustration figure is given as follows:

Figure 3-3: Illustration of the Concept of T 0

The figure above represents a station with 3 platforms and 4 departure tracks. Four trains
represented by red rectangles on di�erent tracks form the group of T 0 in this situation. In-
troducing the concept of T 0 is necessary for the reinforcement learning environment to build
the connection between steps. Using T 0, the current step could obtain su�cient information
about the previous step. From the definition of T 0, it can be seen that the operations of trains
belonging to T 0 have already occurred, which means that the departure orders and times re-
lated to trains in T 0 cannot be changed. Therefore, for the optimization-based method, some
extra constraints are needed to fulfill this requirement.

At the beginning step, trains in T 0 could be selected as the last trains departed on time
on each track. The reason for this choice is that the optimal timetable rescheduling solution
obviously cannot adjust trains not a�ected by delays. In another word, it is impossible to
change previous trains to reduce the impact of the subsequent train delay. In other steps,
trains in T 0 are chosen as the latest departed trains on each track from the last step. In this
way, the number of trains in T 0 remains the same across di�erent steps. Consequently, the
total number of trains considered in each time step is also the same, which will formulate
MILP problems with the same size. This property is very crucial for the reinforcement learn-
ing model to learn.

After determining T 0, the subsequent updates of the railway system become straightfor-
ward. In this thesis, a single central controller is implemented, which implies that in each
step, the action taken by the agent, along with its corresponding continuous solutions will
determine the complete operation of the trains involved in this step. Then for the next step,
these operations are considered immutable, even though in reality, they may not have taken
place yet.

In a short summary, the railway system in the reinforcement learning environment is triggered
by a disturbance at the beginning and updated periodically. The number of trains included
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at each time step and for the entire problem should be determined carefully, with consider-
ation of railway network structure, timetable details, calculation resources, etc. Finally, the
connection between di�erent steps is based on the special setting of T 0.

State Selection

In principle, the state of a reinforcement learning environment should be able to provide
all necessary information for the agent to make suitable decisions. However, it is always a
challenging task to determine what information is actually "necessary" for the reinforcement
learning agent.

In this thesis, the objective of the reinforcement learning agent is to generate accurate integer
solutions to the MILP problem derived from the railway timetable rescheduling problem. One
natural choice is to consider all parameters in the MILP problem as the state. Theoretically,
since these parameters encompass the complete solution of the MILP problem, they should
also provide su�cient information for the reinforcement learning agent to learn the integer
solutions. However, there are two potential problems with incorporating all parameters of the
MILP problem. First, including all parameters may increase the computational burden for
the reinforcement learning agent. Although a broader range of states can o�er more informa-
tion to the agent, it also runs the risk of diluting the key factors. Second, some parameters
remain constant in di�erent MILP problems. For instance, consider the right sides of con-
straint (3-14) and (3-16), which consistently have the value of 1 no matter how the MILP
problem varies. These kinds of parameters cannot provide much information for the agent.
Therefore, including all parameters of the MILP problem as the state for the reinforcement
learning model may not be a proper choice.

According to the above considerations, the state of the reinforcement learning model of this
thesis will mainly include those parameters that vary when updating the MILP problem.
Specifically, the state includes the following parameters:

• Passenger number pi,s: From the objective function given in (3-3), it could be known that
di�erent passenger numbers represent di�erent weights of trains at their destinations.
It is apparent that these passenger numbers will change across the di�erent MILP
problems and also have an influence on the integer solutions. Here, the vector p is used
to represent all passenger numbers.

• Initial arrival time ai,s0 : As described in the previous part, the starting point of the
railway timetable rescheduling problem is that a delay happened at a station where
reordering is possible. This specific station is denoted as s0. Obviously, the arrival time
ai,s0 at this station must be known so that the MILP problem could have a solution.
In di�erent MILP problems, the initial arrival time will vary. Furthermore, it is also
crucial for the entire solution to the MILP problem. The vector as0 is used to represent
the arrival time vector of all trains at the initial station s0.

• Initial arrival order –i,j,s0 : The initial arrival order could be derived from the initial
arrival time ai,s0 using the definition in (3-2). While the arrival order information can be
obtained directly from the arrival time, explicitly including it in the state representation
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can still be immensely beneficial. This is primarily due to its direct connection with
the integer component of the solution, making its inclusion instrumental in capturing
essential characteristics. Similarly, the vector –s0 represents the vector of all arrival
orders at the initial station s0.

Besides these parameters from the MILP problem, some other information is also included in
the state representation to help the agent learn. First, the existing delays µ will be explicitly
given in the state representation. Second, the numbers of T 0 for all trains are also provided
to the agent. Theoretically, this information is not part of the MILP problem’s parameters.
However, both of them are crucial for the agent to understand the environment and its
connection between steps. In summary, the state representation is given as follows:

� = (p, as0 , –s0 , µ, T 0) (3-24)

Action Selection

From the problem overview, the reinforcement learning agent should give the integer solutions
of the MILP problem as its action. Similar to state selection, a natural choice would be to
simply add all integer variables in the action space. However, this may introduce several
problems:

• Large action space: In the MILP problem, integer variables consist of the arrival order
–i,j,s and departure order ”i,j,s for any two trains i and j at any station s. Suppose there
are n trains considered for m stations. For simplicity, it is assumed that all trains will
go through all stations. Then, the total number of all integer variables will be about
n ◊ n ◊ m ◊ 2. However, this is only the number of variables. Since all integer variables
are binary in the MILP problem, the actual size of the action space is 22mn

2 . Suppose
10 trains are considered for 5 stations, then the size of action space will be 21000, which
is obviously impossible for any reinforcement learning model to learn.

• Infeasible action space: In the MILP problem given in the first section, there are sev-
eral constraints related to the integer variables, such as constraint (3-14), (3-16) and
(3-20). These constraints significantly limit the size of feasible action space. For the re-
inforcement learning model, it is impractical to strictly adhere to these constraints. The
only possible approach is to incorporate a penalty term in the reward function for the
constraint violation. However, since these infeasible solutions cannot be taken by the
MILP problem, the updating of the environment cannot be executed as well. To solve
this problem, one possible way is to simply stop when an infeasible action is given by
the agent. Nevertheless, given the scale of the feasible action space versus the complete
action space, it may be very challenging for the agent to find any feasible solution in a
short time. Another approach is to keep the state unchanged when the environment re-
ceived an infeasible action. However, this setting actually requires that the agent needs
to give di�erent actions when facing the same state. Although this could be achieved
by giving a very high exploration rate, it still makes this entire problem very ill-posed.

From the analysis above, including all integer variables in the action is not a feasible choice.
Therefore, reducing the size of action space and consequently increasing the ratio of feasible
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action space is necessary and critical for the success of the reinforcement learning model.
The ideal scenario is that the action space is completely feasible for the MILP problem. This
means that the action can only involve independent integer variables. Denote the independent
integer variables as ‡ œ {0, 1}n‡ , it can be given as:

‡ = f(–, ”; fl) (3-25)

where fl represents the parameters of the MILP problem, – and ” are the arrival and departure
orders for all trains at all stations, respectively. The independence of these binary variables is
highly related to the layout of the railway network considered. It is noticed that the selection
of independent variables may not be unique. Sometimes it may not even be defined among
the integer variables of the MILP problem. Even so, it is still possible to prune some binary
variables according to explicit constraints. Three basic principles are given as follows:

• The order between two trains on the same track cannot be changed.

• At the intersection point where multiple tracks merge to one track, the order between
the train which has already passed this intersection and trains that have not yet passed
cannot be changed.

• The conjugate orders are always dependent on each other.

After the reinforcement learning agent gives the independent integer variables, the complete
departure and arrival orders could be expressed as:

” = g1(‡)
– = g2(‡)

(3-26)

where ” and – represent all departure and arrival orders, respectively. Function g1(·) and g2(·)
are two encoding functions that encode the independent binary variable ‡ into these orders in
the railway timetable rescheduling problem. The specific selection approach of independent
binary variables and corresponding encoding functions used in this thesis will be introduced
in the case study chapter together with the railway network in detail.

Reward Function

For the reinforcement learning agent, the reward function should provide a clear evaluation of
its action under the current state. From the perspective of the MILP problem, the objective
function is a very natural choice. In fact, the target of the reinforcement learning agent is
to give a satisfactory solution of integer variables so as to minimize the objective function
of the MILP problem. To some extent, the reinforcement learning agent could be seen as
a solver, which is specially designed for solving the MILP problem derived from the railway
timetable rescheduling problem. Since in the MILP problem, the objective is to minimize the
total delay, for the reward function, the negative value of the objective function given in (3-3)
is used. Specifically, the reward function is given as follows:

r = ≠K
ÿ

sœS

ÿ

iœT
pi,s(ai,s ≠ Ai,s) (3-27)

where K is a scaling constant.
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3-2-2 Reinforcement Learning Algorithm

As discussed in the last part, the action space for the reinforcement learning environment is
discrete in this thesis. From the introduction of reinforcement learning in Chapter 2, it is
known that the value-based method is easy to implement and e�ective for tasks with discrete
action space. However, one of the challenges encountered by the original DQN and other
value-based methods is the tendency to overestimate certain action values. To address this
issue, the Double DQN (Van Hasselt et al., 2016) technique was introduced. The primary
cause of overestimation in DQN arises from utilizing the same Q values for action evaluation
and selection. Consequently, there is an increased likelihood of selecting overestimated values,
leading to overly optimistic value estimates. The target employed by DQN is defined as
follows:

yt = �t+1 + · max
Ê

Q̂(�t+1, Ê; ÷≠
t ) (3-28)

where ÷≠
t represents the parameters of the target Q network for DQN. For a clear comparison,

the target equation can be rewritten as:

yt = �t+1 + ·Q̂(�t+1, arg max
Ê

Q̂(�t+1, Ê; ÷≠
t ); ÷≠

t ) (3-29)

It is easy to notice that the selection of action Ê, is still parameterized by the same ÷≠
t as

the evaluation Q.

Therefore, the Double DQN method uses two di�erent convolutional neural networks to se-
lect and evaluate the action. In this context, the existing online network of DQN would be a
natural choice. As mentioned in the last part, DQN uses the target network Q̂ parameterized
by ÷≠

t to calculate targets and another online network Q parameterized by ÷t to get updated.
The target network will be updated periodically by assigning Q̂ = Q. Here, Double DQN
uses the online network Q to select the action and keeps the target network Q̂ to evaluate.
Then the target equation could be written as:

yt = �t+1 + ·Q̂(�t+1, arg max
Ê

Q(�t+1, Ê, ÷t); ÷≠
t ) (3-30)

Here, two networks for selection and evaluation in Double DQN are not fully decoupled, since
the target network Q̂ remains a periodic copy from the online network Q. This version of
Double DQN is considered as the minimal change of DQN towards Double Q-learning.

As mentioned above, in this thesis, the structure of the Q network is designed according to
the state feature. Since there is no image information in the railway timetable rescheduling
problem, the convolutional layer used in the original paper is not implemented. Specifically,
the Q network used in this thesis consists of the following layers:

• Input layer: the same dimension as the state input, used to take the state signal

• Fully connected layer 1, followed by a rectifier non-linearity (ReLU) layer

• Fully connected layer 2, followed by a ReLU layer

• Fully connected layer 3, followed by a ReLU layer
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• Output layer, output all action values

An illustration figure for the neural network structure is given as follows:

Figure 3-4: Structure of Q-Network

3-3 Complete Solution

In section 3-1, the MILP problem derived from the railway timetable rescheduling is thor-
oughly explained. Then, section 3-2 explains the dynamics of the environment of reinforce-
ment learning, which includes the update of the railway system, state and action selection,
and the reward function. After that, details of the reinforcement learning algorithm imple-
mented in this thesis, Double DQN, are discussed. In this section, all contents mentioned
above will be merged together to form the complete reinforcement learning-based solution to
the railway timetable rescheduling problem.

From the perspective of the reinforcement learning agent, the complete procedure for solving
the railway timetable rescheduling problem could be described as follows:
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38 Reinforcement Learning-based Railway Timetable Rescheduling

Figure 3-5: Procedure for Solving the Railway Timetable Rescheduling Problem

The following algorithm provides a procedure overview of the proposed solution in this thesis.
In the beginning, the railway system and reinforcement learning model are initialized. Then,
when a qualified initial delay happens, the railway timetable rescheduling problem starts.
First, the MILP problem and T 0 are formulated from the railway system and the initial
delay. Then in line 4, the initial state is derived from the MILP problem. After that, from
line 5 to the end, the railway timetable rescheduling problem is solved in multiple time steps.
In each step, the reinforcement learning model first takes the state � and provides the action,
which is also the independent binary variable ‡. Then, the complete binary variables can be
obtained by using g– and g” functions. With – and ” solved, the MILP problem becomes a
linear programming problem, which could be solved e�ciently. After that, the corresponding
reward for this step can also be obtained according to equation (3-27). Then, in lines 11 and
12, the railway model could be updated to the next step. New MILP problem and T 0 can also
be formulated from the railway system. After that, the new state �Õ is derived from the new
MILP problem. Then, if the procedure happens during the training process, the experience
of this step, (�, �, �, �Õ) will be put in the experience replay bu�er. Then, the agent will be
updated according to the Double DQN method mentioned in section 3-2. Finally, no matter
training or testing, the state � will be updated to the new state �Õ, and then move to the
next step until the maximum step number is reached.

Hengkai Zhang Master of Science Thesis



3-4 Conclusions 39

Algorithm 3 Reinforcement Learning-based Solution to Railway Timetable Rescheduling
Input: Railway system, reinforcement learning agent, initial delay, flag

1: Formulate the MILP problem and T 0

2: Formulate the initial state � Ω �0 from the MILP problem
3: for Step = 1, MaxSteps do

4: Take the state �, return action ‡ from the reinforcement learning agent

5: Encode ‡:
I

– Ω g–(‡)
” Ω g”(‡)

6: Transform the MILP problem into linear programming problem using – and ”
7: Solve the linear programming problem
8: Calculate the reward �
9: Give the complete solution to the railway model

10: Update the railway model
11: Formulate new MILP problem as (3-21) and T 0

12: Formulate new state �Õ as (3-24) from the MILP problem
13: if flag == Training then

14: Store (�, �, �, �Õ) in the experience replay bu�er
15: Update the agent using Double DQN method
16: end if

17: � Ω �Õ

18: end for

3-4 Conclusions

In this chapter, the reinforcement learning-based solution is proposed to solve the railway
timetable rescheduling problem, which is formulated as an MILP problem. The objective of
the MILP problem is to minimize the total delay of all passengers. Two di�erent kinds of
rescheduling decisions are considered in this thesis: reordering and retiming. In the MILP
problem, the reordering is completed by the binary variables, which include the arrival order
and departure order. Meanwhile, the retiming is achieved by the continuous variables, which
are related to di�erent operation times of trains. The MILP problem also considers multiple
constraints, which include train operation constraints, safety headway constraints, and train
order constraints.

For the reinforcement learning environment, the railway system is designed as an event-
triggered, time-driven system. It starts from a disturbance that fulfills certain conditions.
After that, it is updated periodically until the final time is reached. The time step update
of the railway system is based on a special group of trains T 0, which is defined as the set of
most recent departed trains on each track. Using T 0, the connection between two consecutive
steps is conducted.

The state of the reinforcement learning model is selected from the crucial parameters of the
MILP problem, which include passenger number, initial arriving time and order, etc. This
information from the MILP problem is expected to be enough for the reinforcement learning
agent to learn the integer solutions. For the action, not all binary variables are included as the

Master of Science Thesis Hengkai Zhang
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action. Only independent binary variables formulate the action for the model. Selecting these
independent integer variables is strongly correlated with the layout of the railway network,
pre-defined timetable, etc. The reward function is simply chosen as the objective function of
the MILP problem, multiplied by a constant.

Since the action space of the reinforcement learning environment is discrete, a value-based
reinforcement learning algorithm: Double DQN is implemented to train the agent. Com-
pared with the normal DQN algorithm, the Double DQN method can address the problem
of overestimation. Because there is no image information in this task, the Q network of the
reinforcement learning agent does not use the convolutional layer from the original paper. It
is formed as a fully connected neural network, with ReLU layers as non-linear activation.

In the last section, the complete reinforcement learning-based solution is illustrated in both
figure 3-5 and algorithm 3. The solution divides the complete railway timetable rescheduling
problem into multiple steps and solves each step using the reinforcement learning agent for
integer variables and subsequently linear programming for continuous variables. The solution
could be used for both training and testing.
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Chapter 4

Case Study

The reinforcement learning-based railway timetable rescheduling algorithm is proposed in
Chapter 3. In this chapter, the experiment results in this thesis are presented and discussed.
As mentioned in Chapter 3, the layout of the railway network has a significant influence on
the MILP problem, environment setting, action selection, etc. Therefore, in the first section of
this chapter, the railway network used for this thesis and some relevant settings will be given.
After that, two case studies with di�erent settings will follow. In the end, the conclusion of
case studies is provided.

4-1 Setup

In this section, the basic setup for case studies is introduced. The details of the railway net-
work are presented in the first part. Then, some parameters of the MILP problem formulated
from the railway timetable rescheduling problem are given. In the last part, the environment
settings of reinforcement learning are discussed and determined.

4-1-1 Railway System

In this thesis, part of the Dutch railway network from Utrecht (Ut) to ’s-Hertogenbosch (Ht) is
used for the case study. Between Ut and Ht, there are six stations considered: Utrecht Lunet-
ten (Utl), Houten (Htn), Houten Castellum (Htnc), Culemborg (Cl), Geldermalsen (Gdm),
and Zaltbommel (Zbm). Among these stations, only stations Htnc and Gdm are available for
reordering.

Every half hour there are five trains, including three Intercity trains and two Sprinter trains,
operating on the railway lines with a given timetable, and the routes of these trains are given
in Figure 4-2. Specifically, the train names are Intercity 8xx, Sprinter 60xx, Intercity 39xx,
Sprinter 69xx, and Intercity 35xx, where the last two digits of the train number depend on the
specific time. Among these trains, all Intercity (IC) trains only stop at the final destination
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Ht. Sprinter 60xx’s destination is also Ht, but it will stop at every station. For Sprinter 69xx,
the destination is Gdm, and it will also have an intermediate stop at every station between
Ut and Gdm. The layout of the railway network and the operation route of these trains are
given in Figure 4-2. The details of the timetable are obtained from the real-life timetable
of Nederlandse Spoorwegen (NS). An example of the detailed timetable for trains departing
from station Ut between 8:00 to 8:30 is given in Table 4-1. In the timetable, Dep refers to
the departure time, and Arr is the arrival time.

From the railway network given in Figure 4-2, it can be noticed that reordering is only
possible at stations Htnc and Gdm. For other stations, only retiming is possible. Therefore,
the initial station s0 for the railway system is given as station Htnc. The following figure
shows the operation of the pre-defined timetable when there is no delay.

8:00 8:10 8:20 8:30 8:40 8:50 9:00 9:10

time

Ut

Utl

Htn

Htnc

Cl

Gdm

Zbm

Ht

st
a

tio
n

Intercity 8xx
Sprinter 60xx
Intercity 39xx
Sprinter 69xx
Intercity 35xx

Figure 4-1: Operation of Pre-defined Timetable
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4-1-2 MILP Problem

Given the layout of the railway system in figure 4-2 and the timetable in table 4-1, several
parameters of the MILP problem in equation (3-21) could be determined. First, it is obvious
that after the Htnc station, there is only one track to operate, which indicates that the arrival
order of any station after Htnc should be the same as the departure order from its previous
station. Meanwhile, it also requires that the safety headway constraint should be applied
to any two consecutive trains. Second, since Cl and Zbm stations only have one platform,
reordering is also impossible. Therefore, the departure order should be the same as the arrival
order at these two stations.

From the analysis above, some parameters of the MILP problem could be determined as
follows:

Table 4-3: Some Parameters of the MILP Problem

Parameter Notation Value Applicable Stations

Departure Situation —i,j,s 1 Htnc, Cl, Gdm, Zbm
Arrival Situation ◊i,j,s 1 Cl, Gdm, Zbm, Ht

Minimum Safety Headway h 1.5 /
Minimum Running Time Rmin

i,u,s
0.93Ri,u,s All stations

Minimum Dwelling Time �min
i,s

0.93�i,s Htnc, Cl, Gdm, Zbm

Number of Platforms ›s

1 Cl, Zbm
2 Htnc, Gdm

In the table above, Ri,u,s represents the original running time of train i between station u and
s from the timetable, and �i,s is the original dwelling time of train i at station s. Ri,u,s, �i,s

and other parameters, such as Di,s and Ai,s could be obtained from the pre-defined timetable
given in Table 4-1.

4-1-3 Reinforcement Learning Setting

For the reinforcement learning model, some details of the environment settings will be given
in this part. First, as discussed in Chapter 3, the selection of T 0 is crucial to the update of
the railway system. Since the railway network used in this thesis only has one track after the
Htnc station, the T 0 only includes one train at each time step. According to the timetable
given in Table 4-1, the operation of trains considered in this thesis has a period of half an
hour, which has five trains in total. Therefore, it is natural to take half an hour as the step
length for the reinforcement learning algorithm. In this way, the railway timetable reschedul-
ing problem in each step involves five trains. Since T 0 only has one train, for every step four
new trains need to be included.

After determining the number of trains for each step, the state of the reinforcement learning
model could also be further presented as follows:
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• Passenger number pi,s: Since the initial station s0 is Htnc station, only four stations after
that need to be considered. Therefore, 5◊4 = 20 passenger numbers will be included in
the state. Here, for those stations where the train does not stop, the passenger number
is simply set to be 0. In particular, for Sprinter 69xx, since its destination is Gdm, the
numbers of passengers arriving at Zbm and Ht are also given as 0.

• Initial arrival time ai,s0 : Since at each step, five trains are considered for the railway
timetable rescheduling problem, the initial arrival time should also have five entries in
the state representation.

• Initial arrival order –i,j,s0 : Similar to the initial arrival time, the initial arrival order
between each pair of all fives trains should be put into the state, which makes it 5◊5 = 25
entries.

• Initial delay µ: As mentioned in Chapter 3, the initial delay is also explicitly given to
the reinforcement learning agent in order to provide more information. The dimension
of µ depends on the di�erent settings of the following case studies.

• The ID of trains in T 0: To strengthen the connection between two consecutive steps,
the ID of T 0 in the small timetable with five trains for one single step is also included
in the representation. Since T 0 only consists of one train, the following contents of this
thesis directly use T0 to represent the corresponding train.

In summary, the state � could be given as follows:

� = (p, as0 , –s0 , µ,T0) (4-1)

For the action of the reinforcement learning model, it is chosen as the independent binary
variables as discussed in Chapter 3. For the railway timetable rescheduling problem, all bi-
nary variables are related to the reordering decisions. Therefore, the degree of freedom for
reordering should be the same as the degree of freedom for the binary variables. From the
layout of the railway network given in 4-2, it can be easily noticed that only the Htnc and
Gdm stations can be used for reordering.

For the Htnc station, since it is assumed that T0 has already departed from Htnc, there
are only four trains whose orders need to be determined. It is plain to see that for four trains
on two tracks, three binary variables would be enough to determine the entire order. Each
binary variable could be used to determine which of the two consecutive trains will depart
first. The detailed definition of the independent binary variable ‡k is given as follows:

‡k =
I

1, the train arrives first will depart first
0, the train arrives later will depart first

(4-2)

where k represents the order between these independent binary variables. It is obvious to see
that ‡k is closely related to the arrival and departure orders. Suppose that ‡k will determine
the order between two trains i and j, it is easy to notice that ‡k is one if and only if the
departure order between train i and train j is as same as their arrival order. Mathematically,
this relationship can be written as:

I
–i,j,s = ”i,j,s, if ‡ = 1
–i,j,s ”= ”i,j,s, if ‡ = 0

(4-3)
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In this thesis, the assignment of tracks is ignored to simplify the problem. The selection of
independent binary variables at the Gdm station is similar to the Htnc station. It should be
noticed that for T 0, it is assumed that it has already departed from the Htnc station, but
there is no assumption or constraint about its relationship with the Gdm station. Therefore,
at the Gdm station, all five trains need to be considered for reordering. Therefore, four inde-
pendent binary variables are needed to completely determine the orders of five trains at the
Gdm station. The definition of independent binary variables is the same as above.

In total, there are seven independent binary variables for the railway timetable reschedul-
ing problem at one single step. Then, since they are all independent, the size of action space
is given as 27 = 128. In order to reduce the dimension of the action space, these seven in-
dependent variables are encoded as one decimal integer, which is used as the final action �
and has a range from 0 ≥ 127. Here, the seven independent binary variables are given as
{‡1, · · · , ‡7}. Among these variables, ‡1, ‡2 and ‡3 are related to the orders at the Htnc
station, where ‡1 is used to determine the order of first two trains, and the other two follow
in turn. Similarly, ‡4, · · · , ‡7 are used to determine the departure order at the Gdm station.
Here, ‡4 will be used first, then ‡5, ‡6 and ‡7.

For the training of the reinforcement learning agent, the ‘≠greedy algorithm is implemented
to encourage the exploration. The Adam optimizer is used to optimize the Q network of the
agent. Specifically, some training parameters for the reinforcement learning agent are given
as follows:

Table 4-4: Some Parameters of Reinforcement Learning Agent Training

Parameter Notation Value

Size of Hidden Layer 1 in the Q Network / State Size ◊ 256
Size of Hidden Layer 2, 3 in the Q Network / 256 ◊ 256

Size of Output Layer in the Q Network / 256 ◊ Action Size
Experience Bu�er Length N 10000

Batch Size / 128
Learning Rate ’ 0.001

Initial Exploration Rate ‘0 0.8
Epsilon Decay Rate / 0.001

Discount Factor · 0.99
Regularization Factor / 0.0001

Reward Scaling Constant K 10≠4

4-1-4 Hardware and Software

In this thesis, all case studies are completed on the author’s personal laptop. Some hardware
and software configurations are given as follows:

• Laptop: Apple MacBook Pro 14.2 2017

• CPU: 3.1 GHz Intel i5

Hengkai Zhang Master of Science Thesis



4-2 Case Study A: Open-loop Control 47

• RAM: 8 GB

• Software: MATLAB R2022b Update 4 (9.13.0.2166757)

• Optimizer: Gurobi Optimizer (v10.0.1rc0 (mac64[x86])) based on YALMIP (20210331)

4-2 Case Study A: Open-loop Control

In this case, the railway timetable rescheduling problem is considered an open-loop control
problem. The initial delay of the railway system is given as µ0 = 8 + 4 ú U(0, 1). Specifically,
there are no subsequent delays after the initial disturbance. The delay item µ in the state
representation will be the secondary departure delay of T0 at station Htnc. Therefore, the aim
of the timetable rescheduling is to eliminate the influence of the initial delay. It is expected
that the timetable will become normal within 2 hours.

4-2-1 Training Result

In this case study, the agent is trained for 2000 epochs, which take about 2 hours based on
previously mentioned configurations. The figure of episode reward during the training process
is presented as follows:
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Figure 4-2: Episode Reward during Training Process for Case A
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In figure 4-2, the light blue curve is the reward signal for each episode, and the dark blue
curve represents the average reward with an average window of 30 episodes. From the figure
above, it can be noticed that the curve of average reward becomes stable after about 1200
episodes. The total average reward after 1600 episodes is -0.25.

From the training results above, it can be noticed that the agent learned well in this task.
Although there are still some outliers in the curve of episode reward, the average reward is
quite stable after 1600 episodes, which shows that the learning result should be satisfactory.

4-2-2 Testing Result

The testing of the trained agent has 30 episodes, which have the exact same setting as the
training environment, except that the agent will not be updated anymore. To further study
and compare the performance of the reinforcement learning agent, two other methods for
solving the railway timetable rescheduling problem are also implemented as the baseline and
the global optimal solution.

Baseline: First-In-First-Out (FIFO)

The key point of the FIFO method is that it keeps the original order of trains. Therefore,
with these orders determined, the railway timetable rescheduling problem will become a linear
programming problem. In reality, the FIFO method is widely applied by train dispatchers
since it is easy to implement. Compared with the FIFO method, the improvement of the
reinforcement learning-based method is defined as:

zRL =
----
ŸRL ≠ ŸF

ŸF

---- ◊ 100% , (4-4)

where zRL is the improvement rate of the reinforcement learning-based method compared
with the FIFO method, ŸF and ŸRL are the corresponding total delay of the FIFO method
and the reinforcement learning-based method, respectively.

Global Optimal Solution

Since this case study is an open-loop control problem, the global optimal solution could
be obtained by solving the MILP problem which is formulated from the complete railway
timetable rescheduling problem with 20 trains. Since it is globally optimal, the result of
the reinforcement learning agent cannot be better. Compared with the FIFO method, the
improvement of the global optimal solution is defined as:

zMILP =
----
ŸMILP ≠ ŸF

ŸF

---- ◊ 100% , (4-5)

where zMILP is the percentage of the reinforcement learning-based method’s performance com-
pared with the global optimal solution, ŸMILP represents the total delay calculated using the
global optimal solution.
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The testing results of the reinforcement learning agent after 30 rounds are given as follows:

Table 4-5: Testing Results for Case A

Method Average Delay Improvement Running Time [s]

Baseline (FIFO) 12290 0% 5.07
Reinforcement Learning-based Method 2157 83.49% 1.42

Global Optimal Solution 1699 86.78% 9.19

From the test results above, it is noticed that compared with the baseline, the reinforcement
learning-based agent makes a great improvement, which proves that this method’s perfor-
mance is satisfactory. Compared with the global optimal solution, the reinforcement learning
agent only has a gap of about 3%. In fact, in 19 out of 30 rounds, the reinforcement learning-
based method actually obtained the global optimal solution.

Although the performance of the reinforcement learning-based approach is not as good as
the optimization-based method in this case study, it has an advantage regarding the calcula-
tion time. For the reinforcement learning-based method, obtaining the binary variables takes
very little time, since they are calculated by the agent. After that, there is only one linear
programming problem to solve, which is much easier than the original MILP problem. From
the table above, the reinforcement learning-based method took about 1.42 seconds to solve
one episode on average, while the MILP solver needs about 9.19 seconds. The reinforcement
learning-based method saved about 85% of calculation time. Although for this case study,
9.19 seconds is still acceptable, for the larger railway network, the time advantage of the
reinforcement learning-based method will be more significant.

4-3 Case Study B: Closed-loop Control

The main shortcoming of the previous case study is that it does not consider the possible
subsequent delays during the timetable rescheduling process. Therefore, in this section, a
closed-loop control case is further studied. In this case study, after the initial delay, there is
still a probability that some extra disturbances occur in the following steps. It is assumed that
in this case study, every step will have at most one extra delay. Therefore, the reinforcement
learning agent needs to control the system in a closed-loop scheme.

The delay item µ in the state representation is given as µ = (µ1, µ2), where µ1 represents the
initial delay or extra delay, and µ2 is the secondary delay from the last step. The value of the
initial delay and the calculation of the secondary delay is as same as in Case A. The value
of the extra delay is given as µex = 6 + 4 ú U(0, 1), and the probability of adding this extra
delay is 50% for every step. The extra delay may be added to an arbitrary train except T0.
For the closed-loop control problem, since the extra delay may be added at any step, the agent
needs to control the system until the end of the railway timetable rescheduling problem. In
this case study, the total time of the railway timetable rescheduling problem is set to 6 hours,
which includes 60 trains in total. There is no other stop condition except the agent reaches
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the end of the problem. For a single step, the number of trains included remains the same as
in the previous case study. Thus, there are 15 steps for each episode.

4-3-1 Training Result

For the closed-loop control case, the agent is trained for 5000 epochs, which takes about 10
hours. Other training settings are as same as the last case study. The figure for the episode
and average reward during the training process is given as follows:
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Figure 4-3: Episode and Average Reward during Training Process for Case B

From the training result above, it is noticed that the agent learns quite fast at the beginning.
After about 300 epochs, the increase of rewards becomes slower. From about 4000 epochs, the
learning curve becomes stable. The average reward after 4000 epochs is -2.3259. Compared
with the curve of average reward, the episode rewards have some large outliers. The overall
training performance of the reinforcement learning agent in the closed-loop control case is
still satisfactory.
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4-3-2 Testing Result

For the closed-loop control case, obtaining the global optimal solutions is not realistic any-
more, since it is impossible for any algorithms to predict the possible extra delays in the
future. In this case study, the baseline is still the FIFO method. Instead of the global op-
timal solution, a local optimization-based method is introduced to be compared with the
reinforcement learning-based approach.

The main idea of this local optimization-based method is simple: an MILP solver will be
implemented to solve the exact same MILP problem as the reinforcement learning agent
faced, and then use the local optimal solution to control the railway system. Compared with
the FIFO method, the improvement of this local optimization-based method could be defined
as:

zLO =
----
ŸLO ≠ ŸLO

ŸLO

---- ◊ 100% , (4-6)

where ŸLO is the total delay after 15 steps of the local optimization-based method. Higher
zLO indicates that the performance of this local optimization-based approach is better.

The testing results for these two methods after 30 rounds are given as follows:

Table 4-6: Testing Results for Case B

Method Average Delay [min] Improvement Running Time [s]

Baseline (FIFO) 42903 0% 36.21
Reinforcement Learning-based Method 16858 61.23% 7.18

Local Optimization-based Method 9740 77.50% 10.98

From the testing results above, it is known that compared with the baseline, both algorithms
make significant improvements. However, compared with case A, it can be noticed that the
performance of both algorithms drops due to the extra delay. The gap between the improve-
ment of these two approaches is 16.23%.

Similar to the first case study, the reinforcement learning-based method still has the advan-
tage in terms of operation time. From the testing results, the reinforcement learning-based
method needs about 7.18 seconds to solve on average. The local optimization-based method
used 10.98 seconds to complete one testing round. The reinforcement learning-based approach
saves about 34.6% of time in this case. Compared with the last case study, the reinforcement
learning-based method still has time advantages, but the size of this advantage is decreasing.
The main reason is that in this closed-loop control case study, the optimization-based method
is supposed to solve multiple small MILP problems instead of one large MILP problem, which
saves a lot of time here. Specifically, the size of the MILP problem in the first case study is
roughly 4 times larger than the MILP problem for one step in this case study (according to the
number of trains they included), while the time di�erence is about 12.5 times, which shows
that for the optimization-based method, the solving time increases quadratically compared
with the increase of the problem size.
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4-4 Case Study C: Closed-loop Control with Multiple Extra Delays

In the last case study, there is only one extra delay added to every step with a probability of
50%. In this section, the influence of multiple extra delays will be studied. The reinforcement
learning agent is still dealing with a closed-loop control problem, the only di�erence is that
in every step, each new train may get an extra delay simultaneously.

According to the description above, it is clear that all trains except T0 may have new delays.
Therefore, the delay item µ is given as µ = (µ1, µ2, µ3, µ4, µ5), where µ1 is used to represent
the secondary delay of T0 after the initial step, µ2, µ3, µ4 and µ5 are the delays added to the
corresponding trains. The IDs of trains are determined according to their original arrival time
at the Htnc station except T0. The probability of adding extra delays is 50%. The definitions
of these delays are given as follows:

Table 4-7: Delay Definitions for Case C

Delay Initial Step Other Steps

µ1 0 dT0,Htnc ≠ DT0,Htnc

µ2 8 + 4 ú U(0, 1) 1 + 2 ú U(0, 1)
µ3 4 + 4 ú U(0, 1) 2 + U(0, 1)
µ4 5 + 3 ú U(0, 1) 2 + 2 ú U(0, 1)
µ5 5 + 4 ú U(0, 1) 1 + U(0, 1)

The extra delays µ2, · · · , µ5 after the initial step are specially designed so that the sum of
their expectations (2 + 2.5 + 2 + 1.5 = 8) is exactly the same as the expectation of the
extra delay in case B. In this way, the influence of multiple delays could be better compared.
Other settings, such as the total length and each time step’s length of the railway timetable
rescheduling problem are as same as in case B.

4-4-1 Training Result

In this case study, the agent is trained for 3500 epochs, which takes about 7 hours. Other
training parameters are as same as previously described. The figure for the episode and
average reward during the training process is given as follows:
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Figure 4-4: Episode and Average Reward during Training Process for Case C

From the figure above, it is noticed that the overall learning performance is good. It can
be seen that the agent learned very fast in the first 500 epochs. After about 800 episodes,
the learning curve has already become very stable. The average reward after 3000 epochs is
-1.1636.

4-4-2 Testing Result

Since this case study is still a closed-loop control problem, the metrics used to show the per-
formance of the reinforcement learning agent are as same as in the last case study. Meanwhile,
the local optimization-based method introduced in the last section is also implemented here
as a comparison. The testing results are given as follows:

Table 4-8: Testing Results for Case C

Method Average Delay [min] Improvement Running Time [s]

Baseline (FIFO) 38751 0% 41.26
Reinforcement Learning-based Method 9582 75.08% 8.17

Local Optimization-based Method 7139 81.95% 12.54
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From the results above, it is noticed that compared with the baseline, both reinforcement
learning-based and local optimization-based approaches make a great improvement, which
shows the e�ectiveness of these two algorithms.

Compared with the open-loop control case, both methods’ performances dropped, which
indicates that the extra delays still have negative influences on the rescheduling performance
as in the last case study.

However, compared with the closed-loop control problem with only one extra delay, both
methods’ performances raise. Specifically, the reinforcement learning-based method increases
by about 14%, while the optimization-based approach improves by about 4.5%. Although the
performance of the reinforcement learning-based method is still worse than the optimization-
based method, the gap between these two approaches is reducing. This property indicates that
the reinforcement learning agent learns better when there are multiple small delays instead
of one large delay. One possible reason could be that although the extra delays in these two
case studies have the same expectations, multiple small delays tend to change the timetable in
a more holistic way, while one large delay may cause that the timetable become more unstable.

The running time of these two algorithms is close to the second case study. For 15 epochs,
the reinforcement learning-based method takes about 8.17 seconds on average, while the lo-
cal optimization-based method takes about 12.53 seconds. The reinforcement learning-based
method saves about 34.8% of running time.

4-5 Conclusions

In this chapter, the relevant settings for the case study are introduced first, including the
details of the railway system, some parameters of the MILP problem, reinforcement learning
agent training and implementation, and some configurations of hardware and software used
in this thesis. After that, three case studies are presented and discussed. Case study A is
an open-loop problem, where the objective is to eliminate the negative influence of the initial
delay. Case study B is a closed-loop control problem, which has an extra delay added with a
probability. The main di�erence between the open-loop and closed-loop control problems is
that for the closed-loop control problem, the reinforcement learning agent needs to control the
system until the end of the railway timetable rescheduling problem, while for the open-loop
problem, the agent can stop when the negative influence of the initial delay is eliminated.
Case study C is also a closed-loop control problem. Instead of adding only one extra delay
after the initial step, multiple delays could be added in a probabilistic way.

In all three cases, the FIFO method is used as the baseline. For better comparison, some
optimization-based are also implemented with the same testing environment. For the first
case, since it is an open-loop problem, the global optimal solution could be obtained. For case
studies B and C, since they are closed-loop control problems, obtaining the global optimal
solution is not practical. Therefore, a local optimization-based method is implemented, which
solves the same MILP as the reinforcement learning agent in every step.

Compared with the baseline, the reinforcement learning-based approach makes great im-
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provements in all three case studies. However, the performance of the closed-loop control
problem is generally lower than the open-loop control problem. It is understandable that the
closed-loop control is more di�cult to solve than the open-loop control problem.

Compared with the optimization-based method, the reinforcement learning-based method’s
performance is lower in all three cases but still satisfactory. However, the reinforcement
learning-based approach shows an advantage in terms of running time. From the comparison
given in Section 4-3, it can be seen that this advantage will become more significant for larger
MILP problems.

In case studies B and C, the influence of di�erent numbers of extra delays is studied. The
results indicate that compared with one large delay, the reinforcement learning-based method
performs much better with multiple small delays, although they may have the same expecta-
tions.
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Chapter 5

Conclusions and Outlook

In this thesis, a reinforcement learning-based method is proposed to solve the railway timetable
rescheduling problem. The main contribution of the proposed method is to combine reinforce-
ment learning with optimization techniques in the railway timetable rescheduling problem.
Specifically, a value-based reinforcement learning agent takes the parameters from the MILP
problem as the state and determines the binary variables of the problem as the action. With
these integer solutions, the MILP problem is transformed into a linear programming problem,
which could be easily solved. After solving the linear programming problem, it is equivalent
to solving the MILP problem derived from the railway timetable rescheduling problem. Then,
the railway system could be updated to the next step, and start this procedure again until
the end of the problem. In this chapter, Section 5-1 will conclude the ideas and results of this
thesis in detail. Section 5-2 will discuss some potential future work.

5-1 Conclusions

The railway timetable rescheduling problem refers to a problem that requires calculating a
feasible and relatively good timetable to reduce the negative influence of disturbance and dis-
ruptions as much as possible. The rescheduling of the timetable is achieved by retiming and
reordering of trains. In this thesis, the railway timetable rescheduling problem is formulated
as an MILP problem, which is a special kind of optimization problem, part of whose variables
are set to be integers. Compared with linear programming problems, the MILP problem is
much more di�cult to solve due to these integer variables. In this thesis, the integer variables
are given as departure and arrival orders of trains considered, and continuous variables in-
clude the operation times of all trains, such as the departure time, arrival time, running time,
and dwelling time. The objective of the MILP problem is to minimize the total arrival delay
of all passengers on all trains. Meanwhile, several di�erent constraints are considered for
the MILP problem, including train operation constraints, safety headway constraints, station
connection constraints, and platform flexibility constraints.
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As introduced above, the main idea of this thesis is to implement a reinforcement learn-
ing agent to determine the integer variables of the MILP problem, then it will become a
linear programming problem, which could be solved e�ciently. Therefore, from the perspec-
tive of the reinforcement learning agent, both the railway system and its corresponding MILP
problem together form the environment for the reinforcement learning task. In this environ-
ment, the updating is completed by the update of the railway system, which is designed as an
event-triggered, time-based system. To build the connection between two consecutive steps,
the concept of T 0 is introduced. The state of the reinforcement learning agent is mainly
selected from the parameters of the MILP problem, while the action is determined as all
independent binary variables of the MILP problem. In this way, the constraints involving
the integer variables in the MILP problem are satisfied. Finding these independent binary
variables of the MILP problem is highly dependent on the layout of the railway network con-
sidered. Given these independent binary variables, an encoding process is still required to
transfer them to the complete binary variables of the MILP problem. Choosing the actions
as the independent binary variables not only makes the entire action space feasible but also
reduce the size of the action space as much as possible. The reward function is simply given
as the negative value of the objective function of the MILP problem. After constructing the
environment of this reinforcement learning task, a value-based reinforcement learning algo-
rithm: Double DQN is implemented to train the agent.

In this thesis, three case studies with di�erent problem settings are presented and discussed.
Case A is an open-loop problem, which only has one delay at the initial step, the target of
the reinforcement learning agent is to eliminate the negative influence of this initial delay.
Case B and C are closed-loop control problems, in which there may be extra delays in every
step, which require the agent to control the railway system until the end of the entire rail-
way timetable rescheduling problem. Compared the testing results of these three cases, some
conclusions can be drawn:

• Compared with the baseline (FIFO), the performances of the reinforcement learning-
based method are largely improved in all three cases. In the open-loop control, the
reinforcement learning agent shows better performance than in the closed-loop control.

• Compared with the optimization-based methods, the reinforcement learning-based ap-
proach cannot reach their performances. Overall, the reinforcement learning-based
method can achieve about 60% to 80% of the performance of the optimization-based
method under the same problem settings.

• In terms of running time, the reinforcement learning-based approach has an obvious
advantage compared with both baseline and optimization-based methods. The larger
the railway timetable rescheduling problem size is, the greater the advantage of the
reinforcement learning-based algorithm in saving running time.

• For the closed-loop control problems, the proposed method performs better with mul-
tiple small delays.

Overall, the reinforcement learning-based approach performs well in the railway timetable
rescheduling problem. Especially, it shows an advantage regarding the running time. Now in
practice, one of the main reasons that the optimization-based method cannot be implemented
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is that it cannot achieve the running time requirement. Therefore, the reinforcement learning-
based algorithm may be a potential choice for further implementation.

5-2 Future Work

Although the reinforcement learning-based method achieves satisfactory performance in this
thesis, there are still some possible directions for future work:

Larger Railway Network

In this thesis, the railway network used in the case study is a small part of the Dutch rail-
way network. As mentioned above, increasing the size of the railway timetable rescheduling
problem may strengthen the advantage of the reinforcement learning-based method in terms
of running time. However, a larger railway network may also bring new challenges, such as
the larger state and action space, more computation resources required for the training, and
more di�culty to model the railway system.

New Reinforcement Learning Algorithms

In this thesis, the Double DQN algorithm is implemented. However, there are many di�erent
choices for value-based reinforcement learning algorithms. Most of them could also be used
to train the agent for this task. Comparing the results using di�erent reinforcement learning
algorithms may also be a potential topic.

More Detailed Passenger Demands

In this thesis, the passenger number pi,s is set as a known parameter. In some countries’
railway systems, it is possible to obtain the number of passengers with their destination in
real time. However, in other countries like the Netherlands, the destinations of passengers are
not available. Therefore, this parameter may only be approximated from the historical data.
It is also possible to fit the passenger demand with certain functions. However, it should be
noticed that this may change the class of the optimization problem.

Other Applications

In general, the main idea proposed in this thesis could also be applied to other problems, which
are formulated as the MILP problem. The only di�erence is the updating of the environment.
As long as the problem is inherently connected through di�erent steps, the reinforcement
learning-based method may be implemented.
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Appendix A

Paper Draft

In this appendix, a paper that summarizes the main contents of this thesis is provided. The
draft is written in the format of IEEE Control Systems Letters.
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Integrate Reinforcement Learning and
Optimization for Real-time Railway Timetable

Rescheduling
Hengkai Zhanga, Xiaoyu Liua, Azita Dabiria, Bart De Schuttera

Abstract— The railway timetable rescheduling problem
refers to a problem that requires calculating a feasible
and relatively good timetable within a limited time to re-
duce the negative impact of disturbances or disruptions.
A mixed integer linear programming (MILP) problem is
typically used to describe the railway timetable reschedul-
ing problem. In this paper, an algorithm that combines
both reinforcement learning and optimization approaches
is proposed to solve the railway timetable rescheduling
problem. Specifically, a value-based reinforcement learning
algorithm is implemented to determine the independent
integer variables of the MILP problem. Then, the complete
solution of the integer variables could be derived from
these independent integer variables. With the solution of
integer variables, the MILP problem could be transformed
into a linear programming problem, which could be solved
efficiently. The simulation results show that the proposed
method makes a great improvement compared with the
baseline regarding reducing the total delay and also gains
an obvious advantage regarding time efficiency.

Index Terms— Railway timetable rescheduling, MILP
problem, reinforcement learning

I. INTRODUCTION

RAILWAY plays an important role in the modern trans-
portation system. In many countries, railway transport

performs a lot of duties such as daily commuting, long-
distance travel, and cargo transportation. However, the normal
operation of trains is easily affected by disturbances or disrup-
tions. There could be many reasons for railway disturbances
and disruptions, such as extreme weather, worker strikes,
and system failures. Railway disturbances and disruptions
normally require timetable rescheduling in real time to reduce
initial delays and prevent further propagation of these delays.
This is the so-called railway timetable rescheduling problem
[1]. An efficient rescheduling algorithm should minimize the
influence of disruption and improve the punctuality of trains.
Therefore, developing effective rescheduling algorithms is
critical to the operation of the railway system.

Currently, there are several different problem formulations
for the railway timetable rescheduling problem, such as mixed
logical dynamical (MLD) systems, alternative graph (AG),
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versity of Technology, 2628 CD Delft, The Netherlands;
h.zhang-39@student.tudelft.nl; x.liu-20@tudelft.nl;
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fuzzy petri net (FPN) and expert system (ES), discrete event
model and simulation model, etc [2]. Among all these models,
MLD, and AG are the most used formulations to describe
the rescheduling problem in the railway network. In fact,
most railway timetable rescheduling problems will result in an
integer programming (IP) problem or an MILP problem [1],
[3]. In this paper, the railway timetable rescheduling problem
is formulated as an MILP problem. To address this problem,
many optimization-based studies have been conducted. The
main advantage of using optimization-based methods is that
they are easy to implement and more straightforward. How-
ever, the main disadvantage is that most optimization-based
methods cannot reach the time requirements for large railway
timetable rescheduling problems.

Reinforcement learning (RL) is a special kind of machine
learning technique. It refers to a problem that an agent
learns how to map states to actions, so as to maximize a
numerical reward signal [4]. Specifically, in each time step,
the agent first measures the states of the environment and
then takes the corresponding action according to its current
policy. Depending on different settings, the reward signal may
be given at each time step or at the end of the game. The
learning target of the agent is to learn an appropriate strategy
so that it can maximize the final reward.

There are also a few studies that use reinforcement learning
to solve the railway timetable rescheduling problem. Most
literature considers a traffic controller as the agent that di-
rectly takes actions to control the railway system, which
is regarded as the environment. Currently, most existing re-
search chooses to use value-based, model-free reinforcement
learning algorithms, like Q-Learning [5]–[7] and Deep Q-
Network (DQN) [8]. By using reinforcement learning, the
railway timetable rescheduling problem could be solved in
a limited time, regardless of the problem size. However, the
main disadvantage of machine learning methods is that the
optimality of solutions cannot be guaranteed and they are also
less robust [9]. Meanwhile, the constraint satisfaction is also
a potential problem.

In this paper, our main contribution is that we propose a
method that combines both reinforcement learning and opti-
mization techniques to solve the railway timetable reschedul-
ing problem. By selecting the independent integer variables as
the action, the constraints involving the integer variables are
satisfied.



This paper is structured as follows. The first section provides
a brief introduction and some background knowledge of the
topic. In the second section, the formulation of the railway
timetable rescheduling problem is presented. The third section
introduces the reinforcement learning-based railway timetable
rescheduling method we proposed. In the fourth section, three
case studies are presented and discussed. The last section
concludes this paper.

II. RAILWAY TIMETABLE RESCHEDULING PROBLEM

In this paper, the railway timetable rescheduling problem is
formulated as an MILP problem. The decision variables, the
model of the railway timetable rescheduling problem and the
complete MILP problem are provided in this section.

A. Decision Variables

In this paper, the rescheduling decisions are limited to
reordering and retiming. Therefore, the continuous variables
are related to the operation times of the train, and the integer
variables are given as the order between different trains.
Specifically, the continuous variables are defined as follows:

• ai,s: arrival time of train i at station s
• di,s: departure time of train i from station s
• �i,s: dwelling time of train i in station s
• ri,u,s: running time of train i between station u and s

Then, the integer variables consist of the departure and arrival
orders between trains. The departure order is defined as
follows:

�i,j,s =

(
1, if di,s � dj,s � 0

0, otherwise ,
(1)

where �i,j,s represents the departure order between train i and
j at station s. Then, the arrival order is defined as:

↵i,j,s =

(
1, if ai,s � aj,s � 0

0, otherwise ,
(2)

where ↵i,j,s represents the arrival order between train i and j
at station s.

B. Model of the Railway Timetable Rescheduling

Problem

There are several constraints considered by the railway
timetable rescheduling problem, including constraints of train
operation, safety headways, and the availability of platforms
in all stations, etc. For a train i in the railway system, the train
operation should satisfy the following two basic constraints:

di,s = ai,s + �i,s , (3)
ai,s = di,s�i

+ ri,s�i ,s , (4)

where s�i represents the preceding station of station s on the
route of train i. Constraint (3) described the operation of train
i within station s, and constraint (4) described the operation
of train i between two consecutive stations.

Besides the constraints above, there are also some lower
bounds regarding the continuous decision variables. For the
departure time di,s and the arrival time ai,s, the train cannot be

earlier than the original time from the timetable. The running
time ri,u,s and dwelling time �i,s could be shorter than the
original time indicated on the timetable, but they also need to
have a minimum value to guarantee operation safety. These
lower bounds are given by inequalities as follows:

di,s � Di,s ai,s � Ai,s

ri,u,s � Rmin
i,u,s �i,s � �min

i,s ,
(5)

where Di,s and Ai,s represent the ideal departure time and
arrival time of train i at station s from the timetable, respec-
tively. Rmin

i,u,s is the minimum running time of train i between
station u and s, and �min

i,s is the minimum dwelling time of
train i at station s.

In the railway timetable rescheduling problem, safety head-
way constraints require that there must be a certain distance or
time slot between two trains on the same track to guarantee the
safe operation of the railway system. In order to investigate
the headway constraint, some binary parameters need to be
defined. First, the parameter indicating the departure situation
is defined as follows:

�i,j,s =

8
><

>:

1, if train i and train j depart from the same
platform or to the same track at station s

0, otherwise ,
(6)

An illustration figure of �i,j,s is given as:

Fig. 1. Illustration Figure of the Departure Situation Parameter �i,j,s

Similarly, the parameter indicating the arrival situation is
defined as follows:

✓i,j,s =

8
><

>:

1, if train i and train j arrive from the same
track or to the same platform at station s

0, otherwise ,
(7)

An illustration figure of ✓i,j,s is given as follows:

Fig. 2. Illustration Figure of the Arrival Situation Parameter ✓i,j,s



The definitions above indicate that the departure and arrival
safety headway constraint between train i and j at station s
will only need to be considered when �i,j,s = 1 and ✓i,j,s = 1,
respectively.

Given definitions of the departure order in (1) and the
departure situation parameter in (6), the departure safety
headway constraint between any trains i and j at station s
could be written as follows:

di,s � dj,s � h�M(2� �i,j,s � �i,j,s) , (8)

where h is a time constant, representing the required minimum
safety headway in the railway system, and M is a large
positive constant. It is noticed that only when �i,j,s = 1, does
the departure headway between train i and train j need to
be considered. Then, if �i,j,s = 0, constraint (8) will also
hold automatically. Only when �i,j,s = 1 and �i,j,s = 1, the
constraint above is applied to guarantee the departure safety
headway between train i and j at station s.

From the analysis above, it is noticed that constraint (8)
could only demand the safety headway when the train i
departs later than train j. In other words, both departure order
�i,j,s and �j,i,s need to be determined in the MILP problem.
Naturally, it requires the following constraint:

�i,j,s + �j,i,s = 1 (9)

Similar to constraints (8) and (9), the arrival headway con-
straints are defined as follows:

ai,s � aj,s � h�M(2� ✓i,j,s � ↵i,j,s) (10)
↵i,j,s + ↵j,i,s = 1 (11)

Similar to the analysis of departure safety headway above, only
when ✓i,j,s = 1 and ↵i,j,s = 1, will constraint (10) guarantee
the arrival safety headway.

As mentioned before, in this paper, the rescheduling deci-
sions considered are reordering and retiming. On the same
track, it is impossible for the train behind to overtake the
train in front. On different tracks, reordering is achieved
automatically by retiming without influencing other trains’
operations. Therefore, only the reordering happening within
the station requires determining the binary variables. However,
not all stations can achieve reordering. Define the number of
platforms in station s as a positive integer parameter ⇠s, then
the constraint of platform flexibility could be written as:

X

j2T (s)\{i}

(↵i,j,s � �i,j,s)  ⇠s � 1 , (12)

where T (s) is the set of all trains that pass the station s.
The left part of the constraint (12) represents the number of
trains that train i overtakes at station s. Since there are only
⇠s platforms in station s, the maximal number of trains that
could be overtaken by train i at station s is ⇠s � 1. In fact,
constraint (12) reflects the relationship between arrival orders
and departure orders within a station. The constraint between
arrival orders and departure orders between two connected
stations is defined as follows:

�i,j,s�i
✓i,j,s↵i,j,s = �i,j,s�i

✓i,j,s�i,j,s�i
(13)

The constraint above shows that if and only if train i and train
j use the same track to travel from station s�i to station s, their
arrival order ↵i,j,s must be as same as their departure order
�i,j,s�i

.

C. Complete MILP Problem

In this paper, the objective is to minimize delays for all
passengers at all stations. The objective function of the railway
timetable rescheduling problem is given as follows:

min
X

s2S

X

i2T
pi,s(ai,s �Ai,s) , (14)

where S and T are sets of all stations and all trains respec-
tively. Here, pi,s represents the number of passengers on train
i with the destination of station s. The Ai,s is the ideal arrival
time of train i at station s from the pre-defined timetable. The
railway timetable rescheduling problem is given as:

min
X

s2S

X

i2T
pi,s(ai,s �Ai,s)

s.t. di,s = ai,s + �i,s

ai,s = di,s�i
+ ri,s�i ,s

di,s � Di,s

ai,s � Ai,s

ri,u,s � Rmin
i,u,s

�i,s � �min
i,s

di,s � dj,s � h�M(2� �i,j,s � �i,j,s)

�i,j,s + �j,i,s = 1

ai,s � aj,s � h�M(2� ✓i,j,s � ↵i,j,s)

↵i,j,s + ↵j,i,s = 1
X

j2T (s)\{i}

(↵i,j,s � �i,j,s)  ⇠s � 1

�i,j,s�i
✓i,j,s↵i,j,s = �i,j,s�i

✓i,j,s�i,j,s�i

(15)

The optimization problem above is an MILP problem.

III. REINFORCEMENT LEARNING-BASED RAILWAY
TIMETABLE RESCHEDULING

As discussed in the introduction part, the reinforcement
learning process consists of two main components: the envi-
ronment and the agent. In this section, the construction of the
environment will be introduced first. Then the reinforcement
learning agent will be presented.

A. Environment Settings

In this paper, the environment is a combination of the rail-
way system and the MILP problem. Specifically, the railway
system is responsible for formulating the MILP problem and
making the transformation to the next step after receiving the
complete solution. The MILP problem forms states to the rein-
forcement learning agent and encodes its action to the integer
solutions, so as to transform the MILP problem into a linear
programming problem. After the linear programming problem
is solved, the complete solution, i.e. the new timetable, could
be given to the railway system.



1) Environment Update: In this paper, the railway system is
formulated as an event-triggered, time-based system, whose
each time step is mathematically described by the MILP
problem outlined in the previous section. For a train i arriving
at station s, the railway timetable rescheduling problem is
triggered if and only if the following condition holds true:

(ri,s + ai,s � Ri,s +Ai,s) ^ (⇠s > 1). (16)

The condition above makes two requirements: one is that train
i is delayed when it arrives at station s, and the other is that
station s has more than 1 platform, which makes it possible
for reordering.

To build the connection between consecutive steps, the
concept of T 0 is introduced as follows: T 0 is a set of trains,
which includes the most recent departed trains on each track
from the initial station s0. Using T 0, the current step could
obtain sufficient information about the previous step.

After the new T 0 is determined, the subsequent updates
of the railway system become straightforward. In the new
step, several new trains are added to the railway timetable
rescheduling problem. These trains will formulate the new
railway timetable rescheduling problem. Since the number of
trains in T 0 remains the same in different steps, the number
of new trains should also be the same.

2) State: After introducing the update of the environment,
the state representation of the reinforcement learning environ-
ment is given as follows:

⇤ = (p,as0 ,↵s0 , µ, T 0), (17)

where p is the vector of all passenger numbers, as0 is the
arrival time vector of all trains at the initial station s0, ↵s0

represents the vector of all arrival orders at the initial station
s0, the existing delays µ will also be explicitly given in the
state representation, and T 0 represents the numbers of trains
in T 0.

3) Action with Constraint Satisfication: The action of the
reinforcement learning agent is selected as the independent
integer variables of the MILP problem. There are two main
reasons for not selecting all integer variables as the action.
First, the action space may become too large to learn. Second,
the action space may not be fully feasible, which will cause
further problems with reward design and environment updates.
The independent integer variables � could be given as follows:

� = f(↵, �; ⇢), (18)

where ⇢ is the parameters of the MILP problem, � and ↵ are
all departure and arrival orders, respectively. Although finding
the independent integer variables is highly related to the layout
of the railway network, it is still possible to prune some binary
variables according to the following principles:

• The order between two trains on the same track cannot
be changed.

• At the intersection point where multiple tracks merge to
one track, the order between the train which has already
passed this intersection and trains that have not yet passed
cannot be changed.

• The conjugate orders are always dependent on each other.

After the independent integer variables are given, the complete
departure and arrival orders could be expressed as:

� = g1(�) ↵ = g2(�), (19)

where function g1(·) and g2(·) are two encoding functions.
4) Reward Function: For the reward function, the negative

value of the objective function given in (14) is used as follows:

r = �K
X

s2S

X

i2T
pi,s(ai,s �Ai,s), (20)

where K is a scaling constant.

B. Reinforcement Learning Algorithm

In this paper, the Double DQN [10] algorithm is imple-
mented to train the agent. As a variant of DQN method
[11], the Double DQN uses two different networks to select
and evaluate the action in order to address the problem of
overestimation. Specifically, the Double DQN uses the target
network to evaluate and the online network to select the action.
In this way, the Q values for action evaluation and selection
become different.

The target employed by DQN is defined as follows:

yt =  t+1 + ⌧ max
!

Q̂(⇤t+1,!;⌘
�
t ), (21)

where ⌘�
t represents the parameters of the target Q network

for DQN. For a clear comparison, the target equation can be
rewritten as:

yt =  t+1 + ⌧Q̂(⇤t+1, argmax
!

Q̂(⇤t+1,!;⌘
�
t );⌘�

t ). (22)

It is easy to notice that the selection of action !, is still
parameterized by the same ⌘�

t as the evaluation Q.
Therefore, the Double DQN method uses two different

convolutional neural networks to select and evaluate the action.
In this context, the existing online network of DQN would be a
natural choice. Here, Double DQN uses the online network Q
to select the action and keeps the target network Q̂ to evaluate.
Then the target equation could be written as:

yt =  t+1 + ⌧Q̂(⇤t+1, argmax
!

Q(⇤t+1,!,⌘t);⌘
�
t ), (23)

where two networks for selection and evaluation in Double
DQN are not fully decoupled, since the target network Q̂
remains a periodic copy from the online network Q. This
version of Double DQN is considered as the minimal change
of DQN towards Double Q-learning.

In this paper, the Q network consists of the following layers:
the first layer is a fully connected input layer with an output
dimension of 256, followed by a ReLU layer for non-linearity.
After that, two fully connected layers of 256 ⇥ 256 with
ReLU activation after each of them are added. In the end,
an output layer whose input dimension is also 256 finishes
this Q network. An illustration figure for the neural network
structure is given as follows:



Fig. 3. Structure of the Q-Network

The following algorithm provides a procedure overview of
the proposed solution in this paper.

Algorithm 1 Reinforcement Learning-based Solution to Rail-
way Timetable Rescheduling Problem
Input: Railway system, reinforcement learning agent, initial

delay, flag
1: Formulate the MILP problem and T 0

2: Formulate the initial state ⇤  ⇤0 from the MILP
problem

3: for Step = 1, MaxSteps do
4: Take the state ⇤, return action � from the reinforcement

learning agent

5: Encode �:

(
↵ g↵(�)

�  g�(�)
6: Transform the MILP problem into linear programming

problem using ↵ and �
7: Solve the linear programming problem
8: Calculate the reward  
9: Give the complete solution to the railway model

10: Update the railway model
11: Formulate new MILP problem as (15) and T 0

12: Formulate new state ⇤0 as (17) from the MILP problem
13: if flag == Training then
14: Store (⇤,⌦, ,⇤0) in the experience replay buffer
15: Update the agent using Double DQN method
16: end if
17: ⇤ ⇤0

18: end for

The complete reinforcement learning-based algorithm for
the railway timetable rescheduling problem could be described
as follows:

Fig. 4. Procedure for Solving the Railway Timetable Rescheduling
Problem

IV. CASE STUDY

In this paper, three case studies are presented, where
part of the Dutch railway network from Utrecht (Ut) to ’s-
Hertogenbosch (Ht) is used for the simulation. The layout of
the railway network is given as follows:

Fig. 5. Layout of the Railway Network

For the timetable, every half hour there are five trains
considered. Among these trains, three are Intercity trains, and
two are Sprinter trains. From the layout figure above, it can
be seen that the initial station s0 of the railway timetable
rescheduling problem is set to be the Htnc station. Therefore,
in the following case studies, there are only five stations to be
considered: Htnc, Cl, Gdm, Zbm, and Ht.

In the MILP problem, some parameters are defined as
follows. All departure parameters �i,j,s = 1 and all arrival
parameters ✓i,j,s = 1. The minimum safety headway h = 1.5.
Only Htnc and Gdm stations have two platforms, for all other
stations ⇠s = 1. In this paper, a margin of 7% is accepted
for the running time and dwelling time. These parameters are
calculated as follows:

Rmin
i,u,s = 0.93Ri,u,s �min

i,s = 0.93�i,s , (24)

where Ri,u,s represents the original running time of train
i between station u and s from the timetable, and �i,s is
the original dwelling time of train i at station s. These two
parameters and other original times, such as Di,s and Ai,s,
could be obtained from the pre-defined timetable.

Since there is only one track after the Htnc station, T 0

only consists of one train, which is denoted as T0. For every
step, five trains are considered. From the layout of the railway
network, it is clear that reordering is only possible at the
Htnc and Gdm stations. For the Htnc station, since T0 has
already departed, there are only four trains’ orders that need
to be decided. Since there are two tracks, 3 independent
binary variables could determine the orders of these four trains.
Similarly, for the Gdm station, there are five trains and still



two platforms, 4 independent binary variables are enough. In
total, there are seven independent binary variables for the
railway timetable rescheduling problem at one single step.
Since they are all independent, the size of action space is
given as 27 = 128. To reduce the dimension of the action
space, these seven independent variables are encoded as one
decimal integer, which is used as the final action ⌦ and has a
range from 0 ⇠ 127. For the reward function, the constant K
is set to be 10�4.

A. Open-loop Control

In the first case study, the railway timetable reschedul-
ing problem is considered as an open-loop control problem.
Specifically, there are no subsequent delays after the initial
disturbance. Therefore, the agent only needs to eliminate the
influence of the initial delay, which is given as µ0 = 8 +
4 ⇤ U(0, 1), where U(0, 1) represents a uniformly distributed
random variable on [0, 1]. The delay item µ in the state
representation is defined as µ0 at the initial step, and becomes
the departure delay of T0 at the Htnc station afterward.

The figure of episode reward during the training process is
presented as follows:
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Fig. 6. Episode Reward during Training Process for Case A

From the training results above, it can be noticed that the
agent learned well in this task. The total average reward after
1600 episodes is -0.25.

The testing of the trained agent has 30 episodes, which have
the exact same setting as the training environment, except that
the agent will not be updated anymore. For better comparison,
the First-In-First-Out (FIFO) method is used as the baseline.
Compared with the FIFO method, the improvement of the
reinforcement learning-based method is defined as:

zRL =

����
RL � F

F

����⇥ 100% , (25)

where F and RL are the corresponding total delay of the
FIFO method and the RL-based method, respectively. Since
this case is an open-loop problem, the global optimal result
could also be obtained. Similarly, the improvement of the
global optimal solution is defined as

zMILP =

����
MILP � F

F

����⇥ 100% , (26)

MILP is the total delay of the global optimal solution.

The testing results of the reinforcement learning agent after
30 rounds are given as follows:

TABLE I
TESTING RESULTS FOR CASE A

Method Average Delay Improvement Running Time [s]

Baseline (FIFO) 12290 0% 5.07
RL-based Method 2157 83.49% 1.42
Optimal Solution 1699 86.78% 9.19

In 19 out of 30 testing rounds, the reinforcement learning
agent obtained the global optimal solution. Compared with
the baseline, the reinforcement learning agent makes a great
improvement of more than 80%. Compared with the global
optimal solution, the RL-based solution has a gap of about
3%.

During testing, the RL-based method took about 1.42 sec-
onds to solve one episode on average, while the MILP solver
needs about 9.19 seconds. The RL-based method saved about
85% of calculation time.

B. Closed-loop Control

The main shortcoming of the previous case study is that
it does not consider the possible subsequent delays during
the timetable rescheduling process. In this case study, after
the initial delay, there is still a probability that some extra
disturbances occur in the following steps. It is assumed that
every step will have at most one extra delay.

The delay item µ is given as µ = (µ1, µ2), where µ1 is
the initial delay or the extra delay in different steps, and µ2

is the secondary departure delay of T0 at the Htnc station
from the last step. The possible extra delay is given as µex =
6 + 4 ⇤ U(0, 1). The probability of adding this delay is 50%.

The figure of episode reward during the training process is
presented as follows:
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Fig. 7. Episode Reward during Training Process for Case B

From the figure above, the training result is satisfactory. The
average reward after 4000 epochs is -2.3259.

Since this case is a closed-loop control problem, obtaining
the global optimal solution is not practical. Therefore, a
local optimization-based method is also introduced for better
comparison. The main idea of this local optimization-based
method is that an MILP solver will be implemented to solve



the exact same MILP problem as the reinforcement learning
agent faced at every step, and then use the local optimal
solution to control the railway system. Compared with the
FIFO method, the improvement of this local optimization-
based method is defined as:

zLO =

����
LO � LO

LO

����⇥ 100% , (27)

where LO is the total delay after 15 steps of the local
optimization-based method. The testing results for these two
methods after 30 rounds are given as follows:

TABLE II
TESTING RESULTS FOR CASE B

Method Average Delay Improvement Running Time [s]

Baseline (FIFO) 12290 0% 36.21
RL-based Method 16858 61.23% 7.18

Optimization Method 9740 77.50% 10.98

From the testing results above, it is known that compared
with the baseline, both algorithms make significant improve-
ments. However, compared with Case A, the performance of
both algorithms drops due to the extra delay. The gap between
the improvement of these two approaches is 16.23%. Similar
to the first case study, the RL-based method still has the
advantage in terms of operation time. For one epoch, the RL-
based method needs about 7.18 seconds to solve on average.
The local optimization-based method used 10.98 seconds. The
RL-based approach saves about 34.6% of time in this case.

C. Closed-loop Control with Multiple Extra Delays

In this case study, the influence of multiple extra delays
will be studied. Every new train may get an extra delay in
the new step. The delay item µ in the state should be a
five-dimensional vector as µ = (µ1, µ2, µ3, µ4, µ5), where
µ1 is used to represent the secondary delay of T0 after the
initial step, µ2, µ3, µ4 and µ5 are the delays added to the
corresponding trains. The probability of adding extra delay
for each train is 50%.

The figure for the episode and average reward during the
training process is given as follows:
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Fig. 8. Episode Reward during Training Process for Case C

From the figure above, it is noticed that the overall learning
performance is good. It can be seen that the agent learned

very fast in the first 500 epochs. After about 800 episodes, the
learning curve has already become very stable. The average
reward after 3000 epochs is -1.1636.

The test settings in this section are as same as in the last
case study. The testing results are given as follows:

TABLE III
TESTING RESULTS FOR CASE C

Method Average Delay Improvement Running Time [s]

Baseline (FIFO) 38751 0% 41.26
RL-based Method 9582 75.08% 8.17

Optimization Method 7139 81.95% 12.54

Compared with the baseline, both approaches make a great
improvement. Also, compared with Case B, both methods’
performances raise. Specifically, the RL-based method in-
creases by about 14%, while the optimization-based approach
improves by about 4.5%. Although the performance of the
RL-based method is still worse than the optimization-based
method, the gap between these two approaches is reducing.
This property indicates that the reinforcement learning agent
learns better when there are multiple small delays instead of
one large delay. For one epoch, the RL-based method takes
about 8.17 seconds on average, while the local optimization-
based method takes about 12.53 seconds. The RL-based
method saves about 34.8% of running time.

V. CONCLUSION

In this paper, a reinforcement learning-based method is
proposed to solve the railway timetable rescheduling prob-
lem. The main idea of the proposed method is to combine
reinforcement learning with optimization techniques to solve
the MILP problem efficiently. The simulation results in three
different settings show that the proposed method improves
the performance a lot compared with the baseline. Also, the
reinforcement learning method has an obvious advantage in
saving running time.
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Z. Lin, R. Liu, T. Tang, V. Vittorini, and Z. Wang, “A literature review
of artificial intelligence applications in railway systems,” Transportation

Research Part C: Emerging Technologies, vol. 140, p. 103679, 2022.
[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double q-learning,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 30, no. 1, 2016.
[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.



70 Paper Draft

Hengkai Zhang Master of Science Thesis



Appendix B

Experiment Results without the
Margin for Running and Dwelling Time

In the main context of the thesis, the running and dwelling time have a margin of 7% when
there is a disturbance happening. This number is obtained from the practical operation of NS.
In this appendix, some experiment results without this margin are presented for comparison.
The only di�erence between these experiments and the experiments in the main context is
that constraint (3-8) and (3-9) are given as follows:

ri,u,s Ø Ri,u,s (B-1)
“i,s Ø �i,s (B-2)

All other training and testing settings remain the same.

Master of Science Thesis Hengkai Zhang



72 Experiment Results without the Margin for Running and Dwelling Time

B-1 Case Study A: Open-loop Control

The figure of episode reward during the training process is presented as follows:
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Figure B-1: Episode Reward during Training Process for Case A

The average reward after 1600 epochs is -0.2921.

The testing results of the reinforcement learning agent after 30 rounds are given as follows:

Table B-1: Testing Results for Case A

Method Average Delay Improvement Running Time [s]

Reinforcement Learning-based Method 2399 81.85% 1.19
Global Optimal Solution 2043 84.32% 7.27
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B-2 Case Study B: Closed-loop Control 73

B-2 Case Study B: Closed-loop Control

The figure of episode reward during the training process is presented as follows:
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Figure B-2: Episode Reward during Training Process for Case B

The average reward after 4000 epochs is -2.7607.

The testing results of the reinforcement learning agent after 30 rounds are given as follows:

Table B-2: Testing Results for Case B

Method Average Delay Improvement Running Time [s]

Reinforcement Learning-based Method 20567 54.26% 7.22
Local Optimization-based method 15764 67.11% 10.63
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74 Experiment Results without the Margin for Running and Dwelling Time

B-3 Case Study C: Closed-loop Control with Multiple Delays

The figure of episode reward during the training process is presented as follows:
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Figure B-3: Episode Reward during Training Process for Case C

The average reward after 3000 epochs is -2.0707.

The testing results of the reinforcement learning agent after 30 rounds are given as follows:

Table B-3: Testing Results for Case C

Method Average Delay Improvement Running Time [s]

Reinforcement Learning-based Method 20428 57.36% 9.27
Local Optimization-based method 11973 73.63% 12.19

From the experiments above, it is noticed that introducing the margin of running time and
dwelling time could significantly reduce the total delay. Meanwhile, the gap between the
reinforcement learning-based method and the optimization-based method is also decreasing
due to this margin. One possible reason is that the margin provides more fault tolerance for
the reinforcement learning-based method.
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Glossary

List of Acronyms

AG alternative graph
ADP approximate dynamic programming
B&B branch and bound algorithm
DQN deep Q network
ES expert system
FCFS first come first served
FIFO first in first out
FLFS first leave first served
FPN fuzzy patri net
FRFS first rescheduled first served
FSFS first scheduled first served
MDP Markov decision process
MILP mixed integer linear programming
MLD mixed logical dynamical systems
NS Nederlandse Spoorwegen
ReLU rectified linear unit
RL reinforcement learning

List of Symbols

Ai,s arrival time of train i at station s from the timetable
C updating steps
Di,s departure time of train i at station s from the timetable
E dataset of experience
Gt cumulative future reward at time step t
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80 Glossary

M large positive constant for the safety headway constraint
N capacity of the experience replay bu�er
Q action value function, Q-network
Qú optimal action value function
Ri,u,s running time of train i between station u and s

Rm

i,u,s
minimum running time of train i between station u and s

�i,s dwelling time of train i at station s from the timetable
�m

i,s
minimum dwelling time of train i at station s from the timetable

�t state at time step t

�t action at time step t

�t reward at time step t

–̨s0 arrival order vector of trains at the initial station s0

ąs0 arrival time vector of trains at the initial station s0

p̨ vector of the number of passengers
–i,j,s arrival order between train i and train j at station s

—i,j,s departure relationship between train i and j at station s

”i,j,s departure order between train i and train j at station s

‘ probability of taking random actions
÷ weights of the Q network
÷≠ weights of the target Q network
“i,s dwelling time of train i at station s

Q̂ target Q network
⁄ state
S set of stations
T (s) set of all trains that pass station s

T 0 set of trains, which includes the most recent departed trains on each track from
the initial station s0

µ delay for each step
µ0 initial delay
Ê action
„ data preprocessing layer
fi policy
Â reward
fl parameters of the MILP problem
‡ independent integer variables of the MILP problem
· discount factor
◊i,j,s arrival relationship between train i and j at station s

›s number of platforms at station s

’ learning rate
ai,s arrival time of train i at station s

di,s departure time of train i at station s
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et experience of state transformation at time step t

h minimum safety headway
i, j train
k constant for the reward function
pi,s number of passengers on train i with destination of station s

qfi(⁄, Ê) the value of taking action Ê in state ⁄ under policy fi

ri,u,s running time of train i between station u and s

s station
s0 initial station
s≠

i
the preceding station of station s on the route of train i

vfi(⁄) the value of state ⁄ under policy fi

yt target at time step t
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