
/ 

Klu ~ 

PREDICTION OF TWO-DIMENSIONAL 

TIME-DEPENDENT GASDYNAMIC FLOWS 

March 1990 

I 

FOR HYPERSONIC STUDIES 

by 

D. F. Hawkent and J. J. Gottlieb 

tViatec Resource Systems Inc 
Toronto, Ontario 

UTIAS Report No. 335 
eN ISSN 0082-5255 



PREDICTION OF TWO-DIMENSIONAL 

TIME-DEPENDENT GASDYNAMIC FLOWS 

FOR HYPERSONIC STUDIES 

by 

D. F. Hawkent and J. J. Gottlieb 

tViatec Resource Systems Inc 
Toronto, Ontario 

Subrnitted January 1990 

March 1990 

©Institute for Aerospace Studies 

UTIAS Report No. 335 
eN ISSN 0082-5255 



Abstract 

Work on the development of an eflicient and accurate computer code 

for the prediction of hypersonic flows within model hypersonic inlets is re

ported, and numeri cal results for some test problems are presented. This 

report summarizes the finite-difference technique and total variation dimin

ishing (TVD) scheme with Roe's approximate Riemann solver, which are 

incorporated into the code, in order to predict nonstationary planar and ax

isymmetric flqws with steep shocks and thin slip streams on two-dimensional 

grids having multiple connected domains. 
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1.0 INTRODUCTION 

The purpose of this paper is to summarize work done on nonstationary two-dimensional 
computational fluid dynamics calculations within the joint hypersonic gasdynamics group 
(Viatec Resource Systems Inc, UTIAS, Ryerson Polytechnical Institute) at the University 
of Toronto Institute for Aerospace Studies (UTIAS). The aim of this CFD project is to 
eventually develop a code that .will have the capability of computing nonstationary viscous 
gas flow through or around the models of space-plane inlets that are being tested in the 
hypersonic impulse tunnellocated at UTIAS. 

2.0 CURRENT STATUS OF THE CFD CODE 

As a preliminary stage, a code has been developed that will compute inviscid planar and 
axisymmetric flows on two-dimensional grids. The code solves the Euler equations for calor
ically and thermally perfect gas flow, transformed from a physical domain having curved 
boundaries to a computational domain subdivided into square cells. Aigebraic stretching 
functions control the physical distribution of the grid lines. The code computes the ap
proximate solution of a Riemann problem as one stage in the solution of the transformed 
Euler equations. The algorithm of Roe [1] is used as the Riemann problem solver alld is 
implemented so as to compute first-order-accurate fluxes on a rectangular grid. A second
order-accurate flux-limited correction is added to the first-order-accurate flux. U se of the 
flux limiter to reduce the accuracy towards first order near steep transitions prevents devel
op ment of oscillations typical of conventional second-order-accurate calculations. Our early 
work was modelled af ter the TVD (total variation diminishing) scheme of Chakravarthy [2] 
and use was made of the work of Yee [3] during the later stages of code development. A 
description of TVD and related schemes will be given in the following sections. The paper 
is not intended to be a comprehensive survey of TVD methods, so emphasis will be placed 
on schemes which have proven ' useful during development of the TVD code. 

In order to predict the flows about model inlets inserted into the hypersonic impulse 
tunnel at UTIAS, it is necessary to solve problems on multiply-connected domaills. The 
code has been constructed so that the grid may be divided into several subgrids. Time
stepping is executed on each subgrid in turn. The highly vectorized algorithm is applied 
to an entire column of cells at a time. At present, it is possible to specify four types of 
boundary conditions at the edges of a subgrid. The boundary condition types are as follows: 
(1) symmetry of energy, density, and parallel gas flow, and antisymmetry of perpendicular 
gas flow (i.e., at the walls of an inlet); (2) reflectionless transmission of disturbances at the 
edge of the computed flow field; (3) supersonic inflow; and (4) continuation of the solution 
from an adjacent subgrid. 

The code has been implemented on the CRAY X-MP /24 at the Ontario Centre for 
Large Scale Computation, at the University of Toronto. A number of test problems have 
been solved using explicit or implicit time-stepping with good results. A detailed description 
of the construction and behaviour of the various versions of the code is contained in sections 
5.0 through 10.0. 

3.0 SOME CLASSICAL FINITE-DIFFERENCE TECHNIQUES 

TVD techniques are most simply introduced when applied to a one-dimensional scalar 
partial differential equation (PDE). Extension to a system of partial differential equations 
(the Euler equations) on a two-dimensional domain will be discussed in section 5.0. 
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It is illuminating to consider the application on a one-dimensional domain of a number 
of classical finite-difference techniques to a scalar partial difference equation of the form 

(1) 

where U is the solution, t is time, X is the spatial coordinate, and the flux I = I(U) is a 
function, possibly nonlinear, of U. If the PDE contains viscous terms then I is also a function 
of spatial derivatives of U. This PDE is in conservation-law form. The general definition 
of conservation-law form, applicable to systems of PDE's, is that coefficients extern al to 
the derivatives are constant, or, if they are variabie, their derÏvatives appear nowhere in 
the system of PDE's. This conservation-law form is, in fact, an expression, in differential 
format, ofthe conservation ofsome quantity (i.e., mass, momenturn, energy). In many cases 
(see the discussion on shock capturing in Anderson, Tannehill, and Pletcher [4]) it has been 
shown that conservation-law form will cause the solution of an inviscid 'equation, that was 
obtained by removing the second order derivatives from a (physically more accurate) viscid 
equation, to converge to the solution of the original viscid equation. 

It is of ten desirabie to use the conservation-Iaw form when applying a finite-difference 
algorithm. Assume that the domain has been subdivided into N equal intervals of size 
~x. The intervals (or celIs) are centered at X = i!::t.X - !!::t.X where i varies from 1 
to N. A conservation-Iaw finite-difference algorithm can be constructed by obtaining an 
approximation to I at the interface between each celI; that is, at X = i!::t.X where i varies 
from 0 to N. The interface between cell i and cell i + 1 will be labeled as interface i + ! in 
what follows. The boundary interfaces at the left-hand and right-hand sides of the domain 
will be designated as interface! and N + !' respectively. A difference equation for the 
solution in the centre of cell i may be written as 

Ur+1 = Ut - f3 [F~+l - P!~l] , 
• 2 • 2 

(2) 

where f3 = !::t.tj!::t.X is the ratio of the time-step size to the cell width, Ur is the numerical 
solution at node i af ter the nth time-step, and F~+l is an approximation to I at the interface 

• 2 
between cell i and ceU i + 1 af ter the nth time-step. Ftt ! is an estimate of the flux of U 

2 
across the interface. Because of the construction of the difference equation, the sum of the 
fluxes between all the cells is zero. Only the boundary-interface fluxes can contribute to 
the total flux. That is 

(3) 

In what folIows, equation (2) will be said to be in conservative-difference form. 

Application of the explicit central-difference method to an inviscid PDE yields an 
interface flux of the form 

F~+l = I(Ur+!) + I(Ur) . 
• 2 2 

(4) 

The boundary-interface fluxes may be handled by placing an extra (or image) ceU at each 
end of the domain and assigning a value to U within the extra cell. In some cases known 
behaviour of the solution outside the domain will supply the value. If this information is 
not available, imposition of symmetry or antisymmetry about the boundary may supply a 
suitable value of U or I(U) in the image cell. Extrapolation from the interior of the domain 
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with the application of analytical relationships is also used, but it can lead to instabilities. 
Implementation of boundary conditions will be discussed in greater detail at the end of this 
section and at the end of section 5.0. 

The spatial-truncation error of the explicit central-difference method is second-order 
while the time-truncation error is first-order. If the linear wave equation 

au = -c au 
at ax' (5) 

where C is a characteristic velocity of propagation, is to be solved, then I is equal to CU. It 
can be shown that the explicit central-difference method is unconditionally unstable when 
applied to the linear wave equation. That is, any error in the numerical estimate of U 
will grow from time-step to time-step. In general, the explicit central-difference method is 
unconditionally unstable wh en applied to a PDE that does not contain viscous terms. It 
does however form a useful basis for methods that add an artificial or numerical viscosity 
term to the explicit central-difference term. These methods include the TVD algorithms to 
be discussed later. 

An algorithm that is conditionally stabie, when applied to the linear wave equation, 
is the first-order upwind scheme. This method applied to an inviscid PDE results in an 
interface flux of the form 

F~ = I(Ul+1 ) + I(Ur) _ (Ti+! [/(U!l ) _ I(U!l)] 
I+t 2 2 1+1 I' (6) 

where (Ti+ 1 is the sign of the (scalar valued) Jacobian of the interface flux (i.e., derivative 
2 

of I with respect to U) evaluated at interface i +!. The Jacobian of the interface flux will 
be designated by \+1 in what follows. (Ti+ 1 is equal to + 1 if Ài+1 is positive, and it equals 

222 
-1 otherwise. In order to keep in mind the scalar nature of the present equations and to be 
consistent with the use of vect~r-valued fluxes in work to be described in section 5.0, Ài+! 
will also be called the interface-flux eigenvalue. 

In the case of the linear wave equation, the interface flux reduces to the form 

(7) 

In other words, backward differences are used if the "wind," C, is positive, and forward 
differences otherwise. The error will not grow with time if the CFL condition condition 
IC,BI ::; 1 is satisfied. Unfortunately, the spatial truncation error is only fint order. 

A method in which the truncation error is second order in both space and time, is the 
explicit algorithm of MacCormack [5]. This method consists of the predictor step 

ur = Ur - f3[J(Ur) - I(Ur-dJ , (8) 

followed by the corrector step 

(9) 

If the solution contains a shock wave, a slightly better result occurs if the predictor differ
encing is in the upwind directiqn followed by downwind differencing in the corrector. Thus, 
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in some cases there is an advantage to using forward differences in the predictor followed by 
backward differences in the corrector. In more complex cases, the direction of differencing 
is alternated from time-step to time-step in order to eliminate any bias. ExamÏnation of 
the corrector equation reveals that an interface flux can be written as 

(10) 

A method closely related to the algorithm of MacCormack is that of Lax-Wendroff [6]. 
The methods have the same truncation error in time and space. The methods are identical 
when applied to the linear wave equationj the solution is stabIe if the CFL condition IC.BI ::; 1 
is satisfied. The Lax-Wendroff method may be written in the form 

Ui+! = Ui - ~ [f(Uf+!) - f(Ui~l)] 

+ ~2 [ Ài+~ [J(Ui+1 ) - f(Uf) ] + Ài_! [f(Uf) - f(Ui~l) ] ] . (11) 

The last term is a thinly disguised central-difference approximation to a second-order spatial 
derivative and amounts to the inclusion of an artificial viscosity term. 

The interface flux for the Lax-Wendroff method may be written 

(12) 

In fact, this is just a first-order Taylor expansion about Ul+ 1 of the MacCormack interface 
flux. 

In the case of the linear wave equation, the interface flux reduces to the form 

F n _ C - f3C2 Un C + .BC2 Un 
i+! - 2 i+1 + 2 . i· (13) 

For the linear wave equation, it is evident that the Lax-Wendroff interface flux reduces to 
the first-order upwind interface flux when ICf31 is unity. If IC.BI is close to zero, the interface 
flux of the (unconditionally unstable) explicit central-difference method is approximated. 
Intermediate values of ICf31 yield a mixture of cent ral and first-order upwind differences. For 
nonlinear problems, the Lax-Wendroff and MacCormack methods give the most accurate 
results when .B is chosen so that the CFL limit of one is approachedj the leading coefficient 
of the truncation error approaches zero as IC.BI approaches unity. 

Examination of the interface fluxes for the first-order upwind, MacCormack, and Lax
Wendroff methods reveals that they consist of the interface flux for the explicit central
difference method plus some extra terms. These extra terms amount to the addition of 
artificial or numerical viscosity to the difference equations. There are many other difference 
methods which can also be wfitten in the form of the explicit central-difference method 
with additional artificial viscosity terms. 

The first-order up wind method is the most effective in eliminating oscillations near 
shocks; the solution of the linear wave equation is always monotone near a shock. However, 
the shock thickness is much larger than that obtained if a higher order method is used. 
Unfortunately, as proven by Harten, Hyman and Lax [7], no higher-order classical fini te
difference method can produce monotone shocks. 
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Many of the methods use extra information about the solution, obtained by examining 
the interface-flux Jacobian, to modify the interface fluxes. In the case of systems of PDE's, 
the solution characteristics (or eigenvalues ofthe Jacobian vector ofthe fluxes) are examined. 
Note that, if f is nonlinear, the Jacobian and therefore the coefficients of fin the expressions 
for the interface fluxes may vary from interface to interface. In one sense, the conservation
law form of equation (1) has been compromised. However, the closely related property of 
satisfying equation (3) has been retained. 

A commonly used spatially zero-order accurate means of imposing a transmission 
boundary condition is applied by requiring that the value of U in the image cen be set 
to the value of U in the real cen directly adjacent to the boundary (i.e., the first deriva
tive of U is set to zero at the boundary). This is denoted as "constant extrapolation" 
by Kamowitz [8]. Kamowitz has investigated the passage of a shock-like solution struc
tures through transmissive boundaries. He computed the numerical solution of a number of 
one-dimensional scalar test equations problems (in which U represented a velocity of prop
agation) using the MacCormack, Lax-Wendroff and similar schemes. Kamowitz showed 
that if constant extrapolation was used the shocks exited through the boundary without 
disturbing the solution within the domain of calculation. 

Since the Lax-Wendroff and MacCormack schemes are spatially second-order accurate, 
it is desirabIe to also use a transmission boundary condition of greater than zero-order 
accuracy. If higher order extrapolation of U was used (i.e., the second or third derivative of 
U is set to zero at the boundary) then the shock was properly transmitted if f was a linear 
function of U, but a nonlinear f resulted in the creation of boundary layers or reflected 
shocks. The combination of nonlinear f and higher-order extrapolation caused the value of 
U at the real cen adjacent to the boundary to remain zero or to have an inappropriate sign 
during the outward propagation of the shock. 

Kamowitz recommended the use of characteristic extrapolation as a means of obtaining 
both a first-order accurate boundary condition and acceptable transmission of shock waves. 
In the context of this report, the scheme involves the storage of image-cen values Uo and 
UN+1 which are updated before the start of each time-step using the relations 

Ulf+1 = ulf - f3[f(Uï) - f(Ulf)] (14) 

and 
(15) 

respectively. 

4.0 TVD METHODS APPLIED TO A SCALAR EQUATION 

Use of the solution characteristics has proven to be a desirabIe ingredient in improving 
solution quality. The TVD methods examine additional solution properties in order to 
modify the interface flux so that it re duces to the first-order upwind interface flux in regions 
of rapid solution variation but is of higher order accuracy elsewhere. A very simp Ie TVD 
interface flux may be written in the form 
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Using the notation O'~+l = [O'i~.l ± 1]/2, the quantity 
, 2 2 

(11) 

is equal to the flux difference at interface i + !' if the interface-flux eigenvalue is positive, 
and it is equal to zero otherwise. The closely related quantity 

(18) 

is equal to the flux difference at interface i + ! if the interface-flux eigenvalue is negative, 
and it is equal to zero otherwise. The function 'minmod', originally introduced by Roe and 
described in Sweby [9], is defined by 

minmod(a,b) = { : 

if ab < 0, 

if lal < Ibl, 
if Ibl < lal. 

(19) 

In ot her words, 'minmod' returns the argument of least magnitude unless the arguments 
are of different sign, in which case it is zero. 

The first two terms in equation (16) comprise the first-order accurate upwind interface 
flux at interface i +!. The last two terms will cancel the second term to yield the spatially 
second-order accurate explicit central-difference interface flux under the following condition: 
the flux difference at interface i +! does not exceed the flux difference at the interface in the 
upwind direction from interface i + ! and is of the same sign. If this condition is violated 
and the flux differences are of the same sign there is only a partial cancellation of the second 
term in equation (16). The first-order upwind interface flux is retained if the flux differences 
are of opposite sign. Only the upwind interface has an influence because of the design of 
the last two terms in equation (16). Many other "flux limiters" besides minmod have been 
designed and are discussed, for example, in Vee [3]. 

If the last three terms in equation (16) are linearized with respect to U and a few 
simplifying approximations are made, a nearly equivalent formulation may be written in 
terms of the differences of U across an interface. The result is 

where 

and (21) 

Use of equation (20) instead of equation (16) results in a smaller operation count since fewer 
flux functions need be evaluated. In this case, the degree of cancellation of the second term 
by the last two terms depends on the relative sizes of the difference of U across interface 
i + ! and the difference of U across the upwind interface. 
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Chakravarthy [2] has evolved a more flexible, but more complex, scheme in which the 
interface flux may he written in the form 

F!" = !(Ultl ) + !(Ut) _ IÀi+11 tJ.U':" 
,+! 2 2 ,+! 

_ À:-+ 1 (1 - (J minmod(tJ.U':"+~,WtJ.U':"+l) + 1 + (J minmod(wtJ.U,:,,+~,tJ.U':"+l)) 
'24 '2 '2 4 '2 '2 

+ X!+l. (1 +4 (J minmod(tJ.U':"+l,WtJ.U~l) + 1- (J minmod(wtJ.U':"+l,tJ.U~l)) (22) 
, 2 ' 2 ' 2 4 '.2 4 2 

Equation (22) is identical to equation (20) if the compression parameter, w, is set equal to 
unity, regardless of the value of (J. 

Steeper shocks are obtained if w is set to a value larger than unity. In suffieiently 
smooth regions, the last two terms cancel the second term so as to produce a higher-order 
interface flux. The specific difference scheme that results is determined by the value of (J, 

and it is stabie if w is within the limits given by 

(23) 

and if the time-step size is controlled such that the Courant number is less than 

4 
(24) 

5 - (J + w(1 + (J) • . 

A number of special cases have been analyzed by Chakravarthy [2]. If (J equals +1, the 
scheme is central differences and w has no limit. If the value of (J is -1 the scheme is fully 
upwind and w must he less than 2. A value of -i for (J yields the requirement that w he less 
than !' while a limit for w of 3 results if (J equals O. The smallest truncation error occurs if 
(J is set to !' in which case w must be smaller than 5 for stability. All the previously listed 
values of (J result in formally second-order accurate schemes. If (J is given the value of i a 
third-order accurate steady-state solution scheme is obtained, in which w is constrained to 
be less than four. It is usually better to use a value of w that is less than the permitted 
value, partIy because the resultant allowed Courant nu mb er is larger and partly beeause 
the limits on w were obtained by means of a linear analysis. 

The case (J = 1 warrants further study. The resultant interface flux is identical to that 
in equation (20) except for the presence of w. The condition for cancellation of the seeond 
term in equation (22) becomes: tJ.U at interface i +! does not exceed the product of w and 
tJ.U at the interface in the upwind direct ion from interface i + ~ and is of the same sign. 
If w exeeeds 1, the result is greater compression of transitions. Conversely, if wis less than 
one, the result is reduced compression of transitions and ultimately the first-order upwind 
method is reproduced for w equal to zero. 

A somewhat different TVD method based on the Lax-Wendroff differencing seheme 
was employed by Roe, described more clearly in Roe and Pike [10] and most clearly in 
Sweby [9]. It may be written as 

Ur+ 1 = ut - {3À:-+1 tJ.U':"+l - {3X! 1 tJ.U~l. - {3 [~~+l - ~~_1] , 
'2 '2 ,- 2 '2 '2 '2 

(25) 
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where ~~+~ is defined by 
, 2 

where in turn 

(27) 

H the solution is sufficiently smooth, the ~~±l terms will be non zero and will act, to some 
, 2 

degree, to convert the interface flux to that of the spatially and temporally second-order ac-
curate Lax-Wendroff method in linearized form. Otherwise, the first-order upwind interface 
flux is obtained. 

Inspection of the first line of equation (25) reveals that it is not in conservative
difference form. A closely related TVD method which is in conservative-difference form 
may be written if the interface flux is defined by 

(28) 

Here ~~+~ may be defined as above or may be simplified to yield the nearly equivalent 
. , 2 

expression 

(29) 

using the limiter term 

Vee [3] advocates an operator splitting approach that uses TVD differencing as a 
post-processor af ter application of the MacCormack scheme. She recommends the use of 
the MacCormack scheme as an efficient means of induding sou ree terms (Si = S(Ui,Xi», 
especially when the method is extended to the solution of multidimensional problems. The 
equations may be expressed as a predictor step 

(31) 

followed by the MacCormack corrector step 

(32) 

which in turn is followed by the TVD post-processor 

(33) 

where 

(34) 

The quantity within the final set of brackets is zero in regions where the solution is suffi
ciently smooth, owing to the action of the limiter term, Q~+~ which, to be consistent with 

, 2 
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the upwind weighting of previous equations may be defined as in equation (30). In regions 
where the solution is insufficiently smooth, i?rl tends to replace the Lax-Wendroff-like 

interface flux of the MacCormack method with the interface flux of the first-order upwind 
method. Vee [3] advocates the use of a symmetrie, or nonupwind weighted, limiter term in 
equation (33) (and in equation (29)), whieh in this case might take such forms as 

Cr+l = minmod(~Ü~+~,~Ü~+l) + minmod(~Ü~+l,~Ü~l) - ~Ü~+l (35) 
'2 '2 '2 '2 '2 '2 

or 

(36) 

Use of symmetrie limiter terms results in a lower operations count at the cost of a slight 
degeneration in quality. 

There are a large number of additional TVD formulations whieh cannot be discussed 
here, owing to lack of space. However, many are treated in detail by Vee [3] along with 
various forms of limiter terms. 

5.0 APPLICATION OF TVD METHOD TO EULER EQUATIONS 

It is convenient to write the inviscid equations of gasdynamies in terms of the time deriva
tives of four conserved quantities E, p, pU, and pV on a two-dimensional spatial domain 
with coordinates X and Y. Eis the tot al energy of the gas per unit volume, p is the gas den
sity, and U and Vare the gas velocities in the X and Y directions, respectively. The spatial 
domain is essentially rectangular in shape but may have curved or sloping boundaries. The 
inviscid gasdynamical equations in planar or axisymmetrie form may be expressed in vector 
form as follows: 

(37) 

Il. is a column vector which contains the four components of the solution and is defined by 

Il. = [E p pU pvf, (38) 

where T is the transpose operator. 1. and h. are the vector valued fluxes along the X and 
Y directions, respectively. They are defined as 

1. = [EU + PU pU pU2 + P pUV]T, 

h. = [EV + PV pV pUV pV2 + pr, 
where the pressure, P, may be computed from the components of Il. using the formula 

(39) 

(40) 

(41) 

for the case of a perfect gas, where ; is the specific heat ratio. s.. is a source term which is 
zero if the problem to be solved uses Cartesian coordinates. If an axisymmetric problem is 
to be solved, s.. is given by 

pV 
Y 

9 

pUV 
Y 

PV2jT 
Y . (42) 



In the above column vector, it is assumed that the X axis is the axis of symmetry and th at 
Y is the radius about the X axis. 

It is convenient to transform these equations from the spatial domain with coordinates 
X and Y, to a rectangular computational domain with coordinates ~ and 1]. The Jacobian 
of the transformation, J, which is a scalar function of the first-order partial derivatives of 
X and Y with respect ~ and 1], is defined by 

(43) 

It is also useful to introduce a notation wh ere Xe is the partial derivative of X with respect 
to ~ at constant 1] and t, and XI'} is the partial derivative of X with respect to 1] at constant 
~ and t. The partial derivatives Ye and YI'} have analogous definitions. 

The transformed Euler equations may be written 

(44) 

where any quantity with an overhead bar is a column vector that has the factor J in its 
denominator. More specifically, U = Il./J, 1 = i{xfJ + á~YfJ, h = l.1]x/J + á1]yfJ, and 
S = ,SfJ. The quantities ~x, ~y, 1]x, and 1]y are the partial derivatives of ~ and 1] with 
respect to X or Y. The identities ~xfJ = YI'}' ~y/J = -Xl'}' 1]xfJ = -Ye, and 1]y/J = Xe 
facilitate calculation of metrics in the computational frame. The transformed vector-valued 
equation originally contains the additional terms l[Yel'} - Yl'}e] and á[Xl'}e - Xel'}] but the extra 
terms are are identically zero ' because the second-order derivatives satisfy the identities 
Yel'} = Yl'}e and Xel'} = Xl'}e. As discussed in detail by Thomas and Lombard [11], it is crucial 
to select the differencing method 50 that the two identities still hold when the metrics are 
approximated by fini te differences. Violation of the two identities results in the effective 
introduction of an extra source term and would cause nonconservation of the free stream. 

The scalar TVD formulation must be modified to deal with the vector nature of the 
PDE's. Equation (44) without the source term may be linearized to obtain 

öU [öljöU [öhjöU at + öU ö~ + öU Ö1] = 0 . (45) 

[öl/öU] is a four by four matrix whose components are the derivatives of the components 
of 1 with respect to the components of U and will be called the Jacobian of f. Similarly, 
[öh/öu] will be denoted the Jacobian of h. The TVD fluxes are are expressed as weighted 
sums of the eigenvectors of the Jacobians. The size and sign of the weights depend on the 
smoothness of the solution and on the four eigenvalues of each Jacobian matrix, in a manner 
that will be detailed later. 

In order to discretize the transformed equations, the rectangular computational do
main is divided into square cells by vertical and horizontal lines with unit spacing. It is 
convenient to label the cells with the index pair i, k such that i equals one along the left
most column of cells and increases to the right, whereas k equals one along the bot tom row 
of cells and increases upwards. The values of ~ and 1] at the cent re of cen i,k are ~i,k = i and 
1]i,k = k, respectively. The four corners of cen i,k have numerical coordinates i ± !,k ± !. 
The square cens are mapped onto, possibly deformed, rectangles in the spatial coordinate 
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system. U sing the above definition of e and TJ the transformed equations are discretized at 
each cen i,k to obtain the difference equation 

where f3i,k is the value of J ilt evaluated at the centre of cen i,k and F~+.1 k is a numerical 
1 2' 

estimate of the flux through the right-hand interface of cen i, k evaluated at time level n 
and has the form 

Ox ~xfJ and Oy = ~YIJ evaluated at i + !' k (i.e., Ox = Yi+.1 k+.1 - Yi+l k-1 and 
2' 2 2' 2 

Oy = X,+.1 k-.1 - X.+.1 k+.1) incorporate the effect of the length and orientation of the 
1 2' 2 • 2' 2 

right-hand interface of cen i, k on the flux. 

If only the first two terms in the expres sion for the interface flux were present, the 
explicit central-difference method would be obtained. The last term adds numerical viscosity 
to the first two terms to produce the first-order upwind method except when the solution 
is sufficiently smooth. The last term is the weighted summation the four eigenvectors of 
the Jacobian of f~xfJ + h.~YfJ evaluated at the right-hand interface of cen i, k. After 
Chakravarthy [2l;it is convenient to define a four by four matrix [Rl whose columns are the 
eigenvectors. That is, 

Q2 C 
2C - Uc + 'Y - 1 

Q2 
2C + Vc 

Q2 
2C - Vc 

Q2 C 
2C + Uc + 'Y - 1 

1 1 1 1 

[Rl = 
C C C C (48) 

U U U U --!l --!l C +!ly C + !lx C x C y 
V V V V --!l C + !lx --!l C +!ly C y C x 

where !lx = Oxl JOxOx + OyOy, !ly = Oyl JOxOx + OyOy, C is the speed of sound, and 
Q2 = U2 + V 2, all evaluated at the right-hand interface of cen i, k. Uc = U!lx + V!ly is the 
flow speed perpendicular to the interface and Vc = V!lx - U!ly is the flow speed parallel 
to the interface. Jl'!l+1 k has components given by the mth column of [Rl. 

) 2' 

The weights in the summation of equation (47) have the form 

1;\~.1 I 
W

m _ 1+2,k m 
'+1 k - a, .1 k 
1 2' 2 1+ 2 ' 

\m- (1 -e. d('m m) 1 + e. d('m m)) + A,+.1 k -4-mmmo a ,+~ k,wa'+l k + -4-mmmo wai+~ k,ai+.1 k 
1 2' 1 2' 1 2' 2' 2' 

\ m+ (1 + e. d( m 'm) 1 -e. d( m 'm)) 
- A, .1 k --mmmo a,+.1 k,wa'_l k + --mmmo wa,+.1 k,a ,_.1 k ' 

1+ 2 ,4 1 2 ' 1 2 ,4 1 2' 1 2 ' 
(49) 

11 



where a~+l k is the projection of the difference in Il across interface i + !' k onto the m th 
, 2' 

eigenvector. The projection is calculated using 

(50) 

The projections of the difference in Il at the interfaces to each side of interface i + !' k are 
given by 

and a~~l k = L~+l k· [Ili k - Ili- 1 k]. (51) 
'2' -. 2' ' , 

The vector L~+l k is given by the m th row of the four by four matrix 
, 2' 

/-1 / - 1 2 /-1 /-1 +-- +""2CQ +Uc ---u-n ---v-n C C x C ti 

/-1 / - 1 2 /-1 /-1 --- ---Q - v, +C +c-u - ny +c-v + nx 1 C 2C c 
[L] =- (52) 

2 _/-1 /-1 /-1 /-1 _--u;Q2 + Vc + C +c-u + ntl +--v-n C C x 
/-1 / - 1 2 /-1 /-1 +-- +""2CQ -Uc ---u+n ---v+n C C x C y 

which is the inverse of [R]. Strictly speaking, Ili+l,k - Ili,k in equation (50) should be 
Ui+1,k - Ui,k, but the missing factor lfJ is included in ÀH-l k' which is the mth eigenvalue 

2 ' 

of [al/aU] divided by J evaluated at the right-hand interface of ceIl i,k. The values of 
À~+l k that correspond to R~+l k and .L.~+l k are given by 

, 2' • 2' • 2' 

À~+l k 
, 2'. 

À~+l k , 2' 
(53) 

À~+l k , 2' 

The eigenvalues correspond to characteristics of the system of PDE's. The signs of the 
eigenvalues at an interface determine the influence of the solution at one cell on the solution 
at adjacent ceIls. In what follows the "eigenvalues" will always contain a factor of J in the 
denominator . 

The first and fourth eigenvalues must be adjusted to prevent the development of aphys
ical shock-like structures in rarefaction waves ("rarefaction shocks") in regions where the 
flow velocity changes from subsonic to supersonic. A number of "sonic correction" tech
niques have been used. One of the simplest, described in Vee [3], has been used in this work. 
Let IÀmaxl be the absolute value of the eigenvalue with maximum magnitude at interface 

i +!' k (that is, IÀmaxl = [lUc I + C] Jnxnx + nyny). Then the first and fourth eigenvalues 
are adjusted using the formula 

À={ 
À 

À2 + IÀmax l2 62 

21Àmax l6 sign(À) 
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if IÀI > IÀ maxI 6 

if IÀI < IÀmax l6 
(54) 



wh ere 6 is a small number ranging from 0.01 to 0.15. 

In order to evaluate the eigenvectors and eigenvalues at the interface, an approximation 
to U must be obtained. A very simple approximation is to take the arithmetic average of U 
in the cells to each side. A number of more complex approximations have been used. The 
approach taken by Chakravarthy [2] and retained herein is to use the averages of Roe [1], 
which lead to particularly thin shocks. The average density, velocities, enthalpy, and speed 
of sound are expressed as 

lIi+lk 2 • 

Ui+1.k~ + Ui.k,ypt; 

J Pi+1.k + J Pi.k 

l'ï+1.k JPi+l,k + l'ï.k,ypt; 

JPi+1.k + Jpi.k 

êi+l.k~ + êi.k,ypt; 

Jpi+l.k + Jpi.k 

C"+lk = ~ , 2 • 

where êi.k = [Ei.k + Pi.k]/ Pi.k. 

(55) 

(56) 

(57) 

(58) 

2 
(59) 

Ïf7:"k+ l is a numeri cal estimate of the flux through the top interface of cell i, k evaluated 
J. 2 

at time level n. It may be calculated using equations (47) through (59) with i+ 1, k replaced 
by i,k+1, i + !,k replaced by i,k +!' nx equal to Yi_l Hl - Yi+l Hl, (TJx/J evaluated 

2' 2 2' 2 

at i, k + !) and ny equal to Xi+l Hl - Xi_l Hl (TJy/ J evaluated at i, k + !). 
2' 2 2' 2 

Af ter Chakravarthy [2], the value of 1fJ at the cent re of each cell is taken to be the 
area of the cello Thus the value of l/J in the cent re of cell j, k is given by 

(60) 

Note that it is the components of ij that are conserved. That is, the average of each 
component of IL times the area of the cell is conserved. The flux through an interface 
between two adjacent cells increases the value of ij in one cell by the same amount by 
which it decreases the value of IL in the adjacent cello However, if the area of the adjacent 
cells is different, then the valu~s of the change in IL in each cell will not be of equal size. 
Degradation of the solution will not occur if the cell sizes and shapes vary smoothly across 
the physical domain. That is, the most accurate numerical solutions are obtained when 1fJ 
varies smoothly across the domain. 

The explicit time-step size is either held constant or is set equal to the maximum 
allowed explicit time-step size (based on the maximum allowed Courant number) decreased 
by a problem-dependent multiplicative factor. The Courant number for cell i, k is taken to 

IÀmazl 
be the sum, over the four sides of the cell, of 2 f3i.k. 
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The grid may consist of several rectangular subgrids. Reflection or transmission bound
ary conditions may be specified at the left, right, bottom or top edge of a subgrid. Two 
additional boundary conditions may be specified at the left and right edge of a subgrid: su
personie inflow and continuation of the solution from an adjacent subgrid. It is convenient, 
in what follows, to discuss the implementation of boundary conditions at the left edge of 
a grid. The discussion is easily generalized to describe boundary conditions at the right, 
bottom, or top edge of a grid. 

A reflection boundary condition is implemented by ad ding two columns of virtual 
cells (designated outer- and inner-column) to ihe left of the boundary. The values of the 
components of Il.. in the virtual ceUs are assigned so that E, p, and parallel gas velocity 
are symmetric about the boundary while the gas velocity perpendieular to the boundary 
is antisymmetric. Since the Euler equations are inviscid, slippage is allowed along walis. 
In other words, it is assumed that the flow near the boundary approximates that which 
would occur if a stream of gas meets a parallel flowing stream in such a way that no matter 
crosses the boundary. Two rows of virtual ceUs are required to compute the interface flux 
at the boundary because of the method of construction of the flux-limiters. As a seldom 
used option, the compression parameter may be set to zero when computing the interface 
flux at a reflective boundary so that the data in the outer column of virtual ceUs does not 
effect the solution. 

Transmission boundary conditions were initially also implemented by simply adding 
two columns ofvirtual ceUs to the left ofthe boundary. The value of Il. in the virtual ceUs was 
assigned so that Il. would be symmetrie about the boundary. This simple scheme resulted in 
unsatisfactory transmission of rarefaction waves in a one-dimensional Euler problem solved 
using the TVD scheme. It was soon determined that rarefaction waves were transmitted 
without extraneous reflections if the first-order upwind method was employed instead. A 
great deal of further numerieal experimentation showed that much smaller .extraneous re
flections could be obtained for the TVD scheme if the compression parameter was set to 
zero wh en computing the interface flux at the boundary and at the interface just to the 
right of the boundary. The zero values of compression parameter at the two interfaces 
caused the value of the solution in the (real) cell just to the right of the boundary to be, in 
effect, computed using the first-order upwind method. The extraneous reflections were due 
to an unwitting attempt to use higher-order accuracy at a boundary and are related to the 
difficulties experienced by Kamowitz [8] when using greater than zero-order extrapolation 
of flow velocities for a transmission boundary condition. 

An alternative approach to transmission boundary conditions has been developed by 
extending the characteristic extrapolation scheme of Kamowitz for use in two-dimensional 
domains. The alternative approach gives equivalent quality in one-dimensional problems 
and reduces extraneous reflections in two-dimensional problems. An extra column of image 
eeUs is used along the left edge of the domain to store boundary data. (An extra column 
or row of image cells is placed along the right, top, and bottom edge of the domain to deal 
with transmissive left, upper, and lower boundaries.) The data in the column of image ceUs 
is used instead of an inner column of virtual ceUs. Before the TVD scheme is applied the 
value of !k,k for the image eeUs are updated using 

TJn+l = TTn _ a [1.(Il.~,k) - i.(JI:J,k) n + l1(Il.~,k) -l1(~,k) n 1 
""'-{),k ~,k iJI,k 2 r 2 y , (61) 

where Or = Yl. k+l. - Yl. k_l. and Oy = Xl. k-l. - Xl. k+l. incorporate the effect of the length 
2' 2 2' 2 2' 2 2' 2 
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and orientation of the boundary interface on the row-wise flux into ceIl O,k. It is convenient 
to evaluate f3 = J t:..t at the center of (real) ceIl 1, krather than (image) ceIl 0, k. The 
procedure amounts to application of characteristic extrapolation in the row-wise direction. 
Best results are produced when the solution in the outer column of virtual ceIls is set to 
the updated solution in the column of image eens. 

Characteristic extrapolation is also performed at the right edge of the domain if there 
is a transmission boundary there. The TVD scheme is th en applied to the entire grid 
including image columns but the row-wise TVD fluxes are set to zero when computing the 
TVD flux into an image-column een owing to the prior addition of the row-wise flux using 
characteristic extrapolation. 

A similar procedure is used to apply transmission boundary conditions at the top .and 
bottom of the domain. Since the TVD fluxes are computed one ceIl-column at a time, it is 
convenient compute the row-wise TVD fluxes within a ceIl-column, then apply column-wise 
characteristic extrapolation to update the solution in an image ceIl at the top or bottom 
of the een-column, finally followed by computation of column-wise TVD fluxes within the 
cell-column. Column-wise TVD fluxes are set to zero when computing the TVD flux into 
an image ceIl at the top or bottom of the cell-column, owing to the prior addition of the 
column-wise flux using characteristic extrapolation. 

Note that a ceIl which is at the intersection of a row and column of image cells is only 
updated using characteristic extrapolation. The difference in the order of application of 
TVD fluxes and of characteristic extrapolation in the row-wise and column-wise directions 
does not result in detectable degradation of the solution. 

Cell-columns are updated from left to right within a subgrid. Continuation boundary 
conditions are handled automaticaIly as long as the solution in a subgrid is not computed 
until the solution in all the subgrids to its left have been computed. A supersonic inflow 
left-boundary condition is handled by leaving two columns of ceIls at the left side of the 
domain who se values are never updated but are simply used to compute row-wise fluxes 
into the left boundary. 

The TVD time-stepping is applied one ceIl-column at a time by calling a highly vec
torized subroutine. The subroutine is supplied with the old values of the solution at the 
centers and the spatial coordinates at the corners of the cells in the column that is to be 
updated (designated column b). The old values of the solution within the cen-column to 
the left (column a) and within the two ceIl-columns to the right of column b (columns c 
and d) are also supplied. een columns a, b, c, or d may be given virtual values to aid in 
specifying reflection or transmission left or right boundary conditions. Two extra ceIls are 
appended to the top and bottom of all four cen columns and may be given virtual values 
to aid in the specification of transmission or reflection upper or lower boundary conditions. 
The values of row-wise interface flux into the left-hand sides of the ceIls in column b form 
part of the input into the subroutine. The subroutine returns the updated values of the 
solution within ceIl-column b along with the values of row-wise flux out of the right-hand 
sides of the ceIls. 

The flux limiter 'minmod' was used exclusively during the early stages of code de
velopment. As discussed by Vee [3], there are a number of alternative flux limiters that 
have been used by various authors. The very compressive limiter of Roe, 'superbee', as 
modified by Sweby [9], was introduced in the later stages of code development. This limiter 

15 



results in particularly thin contact surfaces. The function 'superbee( a,b)' is the maximum 
of 'minmod( a,wb)' and 'minmod( wa,b)'. 

Expressions ofthe form ! [1 ± 9]minmod( a, wb)+! [1 :r9]minmod( wa, b) in equation (49) 
are replaced by superbee( a, b) to yield 

m IÀH.! ,Ic I m 
W ·+1 Ic = a·+l Ic 

• 2' 2' 2' 

\m- \m+ 
.f\ · llc .f\·llc 
~ b ('m m · ) ~ b ( m 'm) + 2 super ee a ·+l Ic,a·+l Ic - 2 super ee a·+llc,a. llc • 

• 2 ' ':2 ' • 2 ' .- :2 • 

(62) 

The altered expressions are larger near transitions and hence cancel out a greater portion 
of the first term in W!"+l Ic. For a given value of w, the differencing has a smaller first-order 

• 2' upwind component when 'superbee' is used instead of 'minmod'. The maximum Courant 
number must not exceed 2/[2+w], and w must not exceed 2. As recommended in Vee [3] and 
Sweby [9], 'superbee' is only employed in computing the second and third weights (associated 
with characteristic velocity Uc ) in the sum of equation (47). If 'superbee' is used to compute 
the first and fourth weights (associated with characteristic velocities Uc :r C), oscillations 
occur in smooth regions for large Mach numbers. 

6.0 RESULTS OF EXPLICIT TVD CALCULATIONS 
The TVD code was initially developed on a Perkin Elmer 3250 at UTIAS. The initial 
installation of the TVD code on the Cray X-MP /24 at the Ontario Cent re for Large Scale 
Computation resulted in a lOO-foId increase in execution speed. Subsequent tailoring of 
the code to allow increased vectorization and more efficient output yielded an additional 
increase in execution speed by a factor of four. 

It is of interest to discuss a one-dimensional problem solved on a 200-cell grid. Figure 1 
illustrates density profiles at various times for a planar shock tube initiaJly having three 
regions with zero gas velocity and the same temperature but with the central region having 
one-tenth of the pressure of the outer regions. The three regions are separated by two 
bursting diaphragms. Shock waves proceed into the low-pressure region and reflect at the 
centre of the shock tube. Rarefaction waves propagate into the high-pressure regions and 
reflect 011' the closed ends of the shock tube. Contact surfaces between the gas cooled by a 

. rarefaction wave and the gas heated by a shock wave move with the flow towards the centre. 

U se of flux limiters to reduce the calculation to first order near steep transitions has 
prevented development of the oscillations near shocks typicaJ of conventional second-order 
accurate calculations. The compression parameter of 'minmod' was set to 1 and that of 
'superbee' was set to 1.25. Slightly larger vaJues of the compression parameters resulted in 
shocks that were not flat at the top. Somewhat larger values of the compression parameters 
could be used if the initial pressure ratio across the diaphragms was reduced to two. The 
value of 9 was set to ! since that gave the thinnest transitions. The above computation will 
be designated calculation ST1 (Shock Tube 1) in what follows. 

If the compression parameters are set to zero, then the first-order upwind method is 
obtained. The profiles infigure 2 were generated by a first-order upwind calculation and 
display much broader density transitions than are seen in figure 1, especially for the contact 
surface. 

It will have been noticed that there are small moving bumps in the reflecting rarefaction 
waves in figure 1. The bumps . quickly disappear af ter the rarefaction waves have been 
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completely reflected. The bumps do not appear if smaller compression parameters are 
used, but the transitions become thicker. The small fixed bumps that remain attached to 
each end of the shock tube do not disturb the rest of the flow field and may not be present 
depending on how the refl'ection boundary condition is enforced. The bumps do not appear 
if the initial pressure ratio across the bursting diaphragms is reduced to two. 

The TVD code was used to solve a two-dimensional test problem on a four-unit by 
four-unit square domain on which a three-unit by three-unit cent rally located square region 
initially had one-tenth the density of the surrounding region. This was the so-called 'shock
box' problem of Aki. The gas flow over one-quarter of the domain was modelled· on a 
200-cell by 200-cell grid with perpendicular reflection boundary conditions imposed on the 
bot tom and right-hand sides of the grid and transmission boundary conditions imposed on 
the other two sides. 

Figures 3a and 3b illustrate the resulting lines of constant density at times t = 0.375 
and t = 0.5625 if only the limiter 'minmod', with 0 = !' is used. A shock wave proceeds 
inwards, trailed by a contact surface, and a rarefaction wave moves outwards. The two legs 
of the rarefaction wave reflect at the corner to produce a very steep rarefaction. The entire 
computation required about 5 CPU minutes and will be designated calculation SQR1 in 
what follows. 

The compression parameter had to be set to 0.75 to suppress oscillations where the 
two legs of the rarefaction wave reflected. This adjustment resulted in thickening of the 
shock wave and contact surface. Note that reduction of the compression parameter to a 
value between zero and one is equivalent to maintaining a first-order upwind component of 
difference, over the entire flow field. 

Figure 4 illustrates the resulting lines of constant density at t = 0.5625 if 'superbee' is 
used for m equal to two and three in a computation that will be designated as calculation 
SQR2. The compression parameter of 'minmod' is set to 0.75 and that of 'superbee' is set 
to 1.25. The shock wave is slightly thinner and the contact surface is considerably reduced 
in thickness. There are a few sinall wiggles visible. Use of smaller compression parameters 
will suppress the wiggles but result in thicker transitions. It is dear that use of a TVD code 
involves selection of priorities that depend on the use to which the solution will be applied. 
Use of 'superbee' increases the execution time to about 6 minutes because of a reduction in 
the permitted Courant number. If 'minmod' is retained but with a compression parameter 
of 1.25 for m equal to two and three, the execution time, thickness of the transitions, 
and abundance wiggles are intermediate between that of calculation SQR1 and that of 
calculation SQR2. 

The accuracy of the code was tested by computing the flows resulting from aplanar 
shock with a Mach number of 3.72 incident from the right on a 40-degree wedge. The 
compression parameter of 'minmod' was set to 0.75 and that of 'superbee' was set to 1.25 
and 0 was set to one. The calculation required about 27 CPU minutes. 

The 500-cell by 1l0-cell grid grid and contours of constant density obtained by cal cu
lation 'WEDGE1' are illustrated in figure 5. The upper surface ofthe wedge lies along the 
bot tom edge of the grid. Hence, perpendicular reflection boundary conditions were imposed 
at the bottom edge. Transmission boundary conditions were imposed on the other three 
edges of the grid. The leftmost contour lines consist of a Mach stem (moving perpendicular 
to the surface of the wedge) and the remaining portion of the (vertical) incident shock that 
meet the reflected shock at a sharp angle. The reflected shock consists of a straight contour 
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joined to a curved contour at a point of inflection. A second Mach stem is attached at the 
point of inflection and extends towards the wedge surface. A slip stream is seen to extend 
from the top of the first Mach stem to near the base of the second Mach stem. All the flow 
structures are very weIl resolved, and the contours of constant density are a good match 
to contours computed by Glaz, Colella, Glass, and Deschambault [12] using experimental 
data. 

Calculation 'WEDGE2', in which the compression parameter for 'minmod' is increased 
to one, develops supersonic flow near the surface of the wedge that deforms the base of the 
leading Mach stem as shown in figure 6. The amount of deformation increases with the 
strength of the incident shock ~nd the size of compression parameter or time-step. Because 
the deformation decreases as the compression parameters are increased, it is conjectured that 
the deformation is a consequence of the absence of viscosity in a region that is experiencing 
large pressure changes due to shock reflection but which would be inside a boundary layer 
if the full N avier-Stokes equations were being solved. Similar behaviour has occurred for 0 
equal to !' zero, or minus one. 

The code has been tested on its ability to solve problems on multiply-connected do
mains having curved boundaries. Supersonic flow resulting from the impingement from the 
right of a shock with a Mach number of 6 on an inlet of more or less arbitrary shape has 
been modelled using a 388-cell by 80-eeIl grid. 

The grid and contours of constant density are illustrated in figure 7. Planar geometry 
is assumedj hence, the non-gridded regions with curved outlines at the bottom and interior 
of the grid represent a eowl and underbody of uniform cross section in the direction per
pendicular to the plane of the figure. The width of the celI columns was varied so that the 
ceIl height would be approximately equal to the cell width within the inlet. Transmission 
boundary conditions were imposed on the left, right, and top sides of the grid. Perpendic
ular reflection boundary eonditions are imposed at the surfaces of the cowl and underbody. 
The domain was broken into four subgrids, with continuation boundary conditions imposed 
at the interfaces. The compression parameters for 'minmod' and 'superbee' were both set 
to one, and 0 was set to !. This calculation took about 36 CPU minutes. 

In figure 7b, the solution has approached a near-steady state flow. The smalI horizontal 
gap in the contouring occurs because the con tours on the top 40 and bottom 40 rows of 
ceIls are computed separately and are based on density values at the centres of the cells. A 
bow shock remains attaehed to the leading edge of the underbody. A second shock remains 
detached from the leading edge of the cowl but merges with the bow shock to reinforce 
it. The incident shock passes through the inlet and the left-hand boundary, leaving shocks 
attached to the trailing edges of the inlet. The flow through the inlet undergoes compression 
and expansion as it proceeds towards the trailing shocks. The flow over the top of the cowl 
encounters a rarefaction wave attached to the cowl 's trailing edge. 

The code has been tested in its ability to solve flows through the inlet models placed 
in the hypersonic impulse tunnel located at UTIAS. Figure 8 illustrates the 476-cell by 
40-cell grid used to to compute the upper half of the flow field for a Prandtl-Meyer inlet 
and the resulting contours of constant density at t = 1.2, t = 4.2, and t = 4.8. The widths 
of the cells decrease from left to right in a linear manner. The leading edge of the inlet 
is four ceU-columns from the left-hand side of the grid. Reflection boundary conditions 
are imposed along the walls of the inlet and along the bottom of the grid. Transmission 
boundary conditions are imposed on all ot her edges of the grid. The area ratio of the inlet 
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was about 9.1 to one. The compression parameters for 'minmod' and 'superbee' were set 
to one and 1.15, respectively, and (J was set to!. Calculation 'PM1' took about 46 CPU 
minutes. 

At the start of the calculation the first two cell-columns in the grid contain gas flowing 
to the right at a Mach number of 8.4 towards the inlet in which the gas is stationary. The 
ratios of the temperature and density of the gas in the first two cell-columns to temperature 
and density of the gas in the rest of the domain are ~ and seventy, respectively. The 
ratios of the gasdynamical var~ables are losely based on some one-dimensional predictions 
of conditions in the test sec ti on of the impulse tunnel that were performed by Groth [13]. As 
illustrated in figure Sb, this initial discontinuity in the flow variables separates into a right
ward moving shock wave trailed by a contact surface and an upstream-facing rarefaction 
wave. 

The region in the vicinity of the throat of the Prandtl-Meyer inlet has been enlarged 
by a factor of five in figure 8d to display the time-asymptotic con tours of constant density. 
The flowencounters a compression fan produced by the curved wallof the leading portion 
of the inlet and eventually reaches a region of increased constant pressure adjacent to a 
portion of wall that is straight. The compression characteristics coalesce into a shock which 
is reflected off the cent re of symmetry along the bottom of the grid and strikes the wallof 
the inlet just downstream of the corner where the walls of the inlet become horizont al. The 
gas near the wall in the region of increased constant pressure encounters the corner before 
reaching the reflected shock and produces a rarefaction fan which crosses the reflected shock 
to produce an expansion in the throat of the inlet. 

The Courant number increased by a factor of three during one time-step. This did 
not lead to visible deterioration of the solution because the size of the next time-step was 
reduced by a factor of three to satisfy the limitation on Courant number. However, a more 
sophisticated time-step strategy, still based on the si ze of Courant nu mb er but allowing 
repetition of a time-step und~r certain conditions, would increase the reliability of the 
calculation. 

It is desirabie to use as large an initial density ratio as is possible to match experimental 
conditions for which the inlet is initially at vacuum pressures. The trailing contact surface 
and rarefaction wave in the numerical solution decrease in strength and eventually cease to 
be present as the density ratio is increased. Variant density ratios result in the same steady 
state solution since the rarefaction wave and contact surface are eventually swept out of the 
domain but small density ratios do result in less realistic unsteady flows. Unfortunately, if 
a density ratio of 140 is used in the numerical calculations the solution only proceeds to 
t = 2.4 before negative densities occur, presumably, because of a sudden increase in Courant 
number. 

7.0 IMPLICIT SOLUTION OF TVD EQUATIONS 
An implicit predictor-corrector method has been developed that is first-order accurate in 
time and requires the storage of ft (the first-order time-derivatives of IL) for each cello The 
time derivatives at time-level n, ft7 k, are used in the predictor equation , 

TTn+1(O) _ TTn + t1tirn 
~,k - ~,k ~,k , (63) 

to extrapolate the solution at time-level n to obtain Il.:t1
(O) , an initial approximation to the 

solution at time-level n + 1. Newton's method with si~plifications is applied to a modified 
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form of equation (46) to obtain a corrector equation. Development of the corrector equation 
is described in detail below. 

The interface flux, F,n+ I k', may be be written in the alternative forms 
1 2' 

and 

If f3i,4.F't+l k - Fi~l kj is evaluted using equations (64) and (65) the second lines in these 
2 t 2' 

equations give rise to the expression f3i,k1(Il~k)Yf)(, - f3i,kll(Il~k)Xf)(, where Y'f)(, and Xf)(, are 
approximations to Yf)e and Xf)(, evaluated using central differences in ceil i, k. In a similar 
manner, if f3i,,J..iI~k+l - fr:k_,d is evaluated using equations analogous to equations (64) 

It 2 It 2 

and (65), the expression -f3i,k1(Il..i,k)Yef) + f3i,kll(Il..i,k)X(,f) is obtained. The two expressions 
cancel because the differencing. method has been chosen so that Y(,f) = Y'f)(, and Xef) = Xf)e. 
Thus, for ceil i,k, all terms proportional to ,1(Il..ik) and ll(Ilik) within the expressions 
for the interface fluxes F,n+ 1 k' F~.! k' iI~k+l' and' iI~k_I may' be made to cancel. As a 

, 2' '2 ' I, 2 I , 2 

consequence, the right-hand side of equation (46) can be reformulated in terms of differences 
of 1, ll, and Il across cen interfaces. 

If the differences in 1. and II are linearized in terms of the differences in Il.., equation (46) 
without the source term may be approximated by 

4 
TTn+l Il..n _ f3 '" ..xm - m Dm + ..xm + m Dm 
~,k - i,k - - i,k L...J 1'+.1 kO i+ I k~i+I k '.1 ka i_ I k.ll:i_ 1 k 

2' 2' 2' 1- 2 , 2' 2' 
m=l 

4 

-f3i k '" ~~+I kE~+1 k - ~~I kB~.1 k , L.J '2' '2' '2" 2' 
m=l 

(66) 

where ~~ 1 k is simply -W~+1: k with the first term removed because of its incorporation 
1+2' 1 2' 

in ..x~ï k used in the first row of equation (66). The quantities ll~k+l' o~k+l' and ~;+1 
1+ 2' I, 2 I, 2 I, 2 

are computed at the upper interface of cen i, k using formulae analogous to those used 
for the right-hand interface. The relationship between equation (46) and equation (66) is 
similar to the relationship between equation (25) and equation (2) using the interface flux 
of equation (28). 
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Equation (66) has the disadvantage that it is not in conservative-difference form but 
has the advantage that it is simple to linearize for implicit ealeulations. The right-hand 
side of equation (66) is essentially a linear function of the eell-interface differences in IJ.. that 
are contained within the factors a~±.1 k and a~k±l; the quantities À~±l k' T.~±.1 k' E~±.1 k' 

I 2 ' I, 2 ' 2' ~ 2 ' t 2 t 

À~k±l' .L.~k±l' and Y~±l are relatively slowly ehanging functions of the components of IJ... 
I, 2 at 2 ~'2 

Chakravarthy [2] has derived the corrector equation 

-[A+] . 1 6TT~+I(Q) + (-ill... + [A+] . .1 - [A-]. 1 ) 6TT~+I(Q) + [A-]. 1 áIJ..~+l(Q) 1-2,k .lL.i-l,k 2f3j,lc 1- 2,k 1+2,k .lL.i,k 1+2,k I+l,k 

= __ 1_ [U~+I(Q-l) _ Uf! ] _ S~+I(Q-l) 
f3j,lc -----&,k -I,k I,k 

_ [pn+l(Q-l) _ pn+I(Q-l)] _ [Jr+1(Q-l) _ Jr+I(Q-l)] 
i+t,k i-t,k i,k+t i,k-t ' (67) 

where [I] is a 4 X 4 identity matrix, [A±]i k:rl is a 4 X 4 matrix giving the influence of a 
, T2 

differenee in components of IJ.. across interface i, k=F! on the value of eomponents of IJ..i,b 

rct1(Q) is the result of the Qth correct ion of the solution, p~\l(Q-l) and jf~+l~Q-l) are 
, 1+2,k l,k+2 

interface fluxes computed using the previous estimate of the solution, and áIJ..7t
1
(Q) = 

rc.t1(Q) - ~~tl(Q-l) is the residual of the solution (departure from the previous ~stimate 
of the solution) in each cello . The left-hand side of equation( 67) may be obtained by 
applying Newton's method to equation (66) with the last two lines disearded so as to 
retain only first-order aeeuraey and by treating the first two lines as linear functions of the 
eell-interfaee differences in IJ... The right-hand side of equation (67) uses the right-hand 
side of equation (46) so as to obtain the advantages of the conservative-difference form. 
Equation (67) for all i, kis assembied into a sparse matrix system whieh may be solved for 
all áICt1(Q). , 

The influence matrix, [A±]i k:rl, is computed using 
, T2 

where [À±] . kTl is a diagonal matrix whose diagonal elements are À~k± l' It is usually 
I, T2 I, =f 2 

convenient to evaluate [A ±]i k',-l in terms ofthe previous estimate of the solution, IJ..n+I(Q-l) , 
, T2 

in the appropriate eells. The matrix [A±]i=ft,k is computedin an analogous manner. 

An early version of the implicit algorithm which was developed for simplified prob
lems in which one spatial dimension was suppressed by using only one column of eells and 
computing column-wise fluxes only, will now be described. Time-step control was closely 
modelled af ter that of the predictor-corrector method of Gear [14]. The predictor equation 
is the same as given above. Thè corrector consists of a block-tridiagonal equation with rows 
given by 

-[A+] . .16U~+1(Q) + (.ill + [A+]. 1 - [A-]. 1) 6U~+I(Q) + [A-] . .16U~+1(Q) I,k- 2 -----&,k-l f3j,lc l,k- 2 I,k+2 -----&,k I,k+2 -----&,k+l 

= _-L [TT~+k l(Q-l) _ TTf!k] _ [jfn+l(Q-l) _ jfn+l(Q-l)] _ S~+l(Q-l) (69) 
f3.,lc .lL.i, J.4, i,k+! i,k-! I,k , 
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obtained by suppressing the terms with indices i ± !' k in equation (67). 

The residuals of density and total energy per unit volume are used to compute the 
quantity 

3 N E n+1(Q) _ E n+1(Q-l) n+1(Q) n+l(Q-l) _ L: i,k i,k + Pi,k - Pi,k 

2N k=l E~k Pi,k' 
(70) 

which is compared to a specified tolerance (denoted TOL in what follows) as a test for 
convergence af ter each application of the corrector. The time-step size is quartered if TOL 
is still exceeded af ter a specified number of corrections (usually 3) are performed. The 
accumulated residu als constitute the 'correction' to the solution at each cello 

If the convergence test is passed within the specified number of applications of the 
corrector, the corrections to E ·and pare used to compute the error estimate, 

1 N E~+1(Q) _ E~+1(O) n+1(Q) n+l(O) 
EST = - L: I,k n I,k + Pi,k - Pi,k 

4N k=l Ei,k Pi,k 
(71) 

The step fails if EST is larger than TOL. Regardless of success or failure of the error test, the 
maximum allowed size of time-step is estimated by multiplying the current size of time-step 
by the ratio 

1 
(72) 

1.2 [J ~~1 + 10-6] , 

but the size of time-step is only allowed to increase on every second time-step if the ratio 
has exceeded 1.2 on the last ten time-steps. . 

On the event of a successful step the corrections are also used to update stored values 
of fltiL for each cello If the convergence or error tests are not passed, the step is retried 
with the inrucated reduction of time-step size. The values of fltiL are adjusted for changes 
in the size of time-step. The explicit algorithm is used to compute the values of fltiL at the 
start of execution of the code and whenever the error test has failed three times in a row. 

It was soon determined that larger time-steps could be achieved if certain off-diagonal 
coefficients of [A±]i k-,-l were sèt to zero so as to make the matrix equation more diagonally 

, '2 

dominant. In a later development, inspired by the work of Vee [3], [À±]i k...- 1 was replaced 
, '2 

by a diagonal matrix w hose diagonals were all equal to À r.nkaxt wh ere À ':1k
ax 

1 was chosen 
I, T2 I, T2 

to be the value of Àm at interface i, k =f ! with maximum magnitude. Despite the use of 
the less accurate influence matrices time-step size was typically doubled because diagonal 
dominance was enhanced. The execution time devoted to computation of matrix coefficients 
was greatly reduced because [A±]i k"'-~ was simplified to Àr.nkaxi[I]. The execution time 

, '2 I, T2 
devoted to matrix inversion was also greatly reduced because the block-tridiagonal system 
was replaced by four tridiagonal systems, one for each component of 1L 

The implicit time-stepping strategy, des cri bed ab ove , exhibits an excellent ability to 
predict optimum time-step size and demonstrates a robust recovery from failure of corrector
convergence or error-size tests when applied to a number of one-dimensional problems. 
Owing to the fact that the left-hand side of equation (69) is only of first-order accuracy, 
shock waves and contact surfaces tend to be thicker for the implicit method than for the 
explicit method if the same values of compression parameters are used. Increasing the size 

22 



of the compression parameters for implicit calculations reduces the increase in thickness 
and gives more satisfactory results in some cases. 

Time-step size control based on the magnitude of EST gives good results for one
dimensional problems but is inconvenient to use in two dimensional problems because of 
the necessity of storing the corrections to ll. over the entire domain. The strategy that has 
been developed for two-dimensional problems is to set the implicit time-step size to the 
maximum allowed explicit time-step si ze enlarged by a problem-dependent multiplicative 
factor. 

Direct solution of equation (67) involves the inversion of a matrix that can have a very 
large bandwidth. Af ter Chakravarthy [2] the off-diagonal terms in the row-wise direction are 
discarded. The equations are further simplified by use of ),maX± in the influence matrices. 
The resultant tridiagonal-matrix equation, with rows given by 

_Nnax+óTT~+1(Q) + (_1_ + ),~ax+ _ ),~ax;-) ÓTT~+1(Q) + ),~ax-óTT~+1(Q) 
I k-1 ~,k-1 {J, k I k- 1 I k+- ~,k I k+l ~,k+1 , 2 ), 2 '2 t 2 

+ (),~ax+ _ ),~ax-) ÓTT~+1(Q) = __ 1 [TT~+1(Q-1) _ TT7!- ] _ S~+l(Q-l) 
,-t,k I+t,k ~,k {J"k ~,k ~,k I,k 

_ [pn+1(Q-1) _ pn+1(Q-1)] _ [nn+1(Q-1) _ nn+1(Q-1)] 
i+t,k i-t,k i,Ht i,k-t ' 

(73) 

is solved een-column by een-column to provide quick relaxation of the residuals along the 
column-wise direction. Note that the coefficients of óIL~t1(Q) are all positive and exceed 
the sum of the coefficients of the off-diagonal residuals so that the system of equations is 
diagonally dominant. The tridiagonal matrices associated with each of the components of 
ll. are identical if reflection or transmission boundary conditions at the top or bot tom of 
the cell-column are handled appropriately. Relaxation of the residuals along the row-wise 
direction is induced by application of the corrector in left to right sweeps across the domain 
as described below. 

At the start of each time-step the solution over the entire domain is predicted using 
equation (63). The tridiagonal corrector equation is then applied once within each cen
column in a preliminary sweep through the entire domain. On subsequent sweeps the 
corrector is only applied within een-columns that are adjacent to a continuation boundary, 
that failed the convergence test on a previous sweep, or that are within a margin of eight 
columns of a een-column which failed the convergence test. Sweeping is discontinued when 
all cell-columns have passed the convergence test. The number of sweeps required is typically 
less than ten. 

Attempts to allow use of more than one application of the corrector in each cell-column 
during a sweep increase the number of sweeps to more than 25 before all cell-columns pass 
the convergence test on the first application of the corrector. Use of only one application 
-of the corrector in each cell-column gives a more nearly equal propagation of information 
in the column-wise and row-wise directions. 

8.0 RESULTS OF IMPLICIT TVD CALCULATIONS 

The thickness of a moving shock-wave is doubled if calculation PMI is repeated with im
plicit time-stepping; despite this, the implicit and explicit calculations converge to the same 
steady-state solution. A larger initial density ratio may be used than in the explicit cal
culations. Figure 9 displays contours of constant density at t = 1.2 and t = 4.2, obtained 
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by repeating calculation PM1 with an initial density ratio of 140 and with the compression 
parameters for 'minmod' and 'superbee' set to one and 1.25, respectively. As shown in 
figure 9a, the strengths of the trailing contact surface and rarefaction wave are considerably 
reduced. Execution time was only increased by fifteen per cent because multiple applica
tion of the corrector was only required in the vicinity of the moving waves and because 
the specified limit on size of Courant number was 43 per cent larger than in the explicit 
calculation. 

Figure 10 illustrates the 500-cell by 48-cell grid for a spike inlet with the same area 
ratio as was used for the Prandtl-Meyer inlet. The bot tom of the grid conforms to the 
shape of the cylindrically symmetrical spike whose point is located four cell-columns from 
the left-hand side of the grid. There is a narrow slit in the right-hand side of the grid to 
accomadate a cowl. Reflection boundary condition are imposed along the bottom of the 
grid and on the surface of the cowl. Transmission boundary conditions are imposed on all 
ot her edges of the grid. The domain is broken up into three subgrids, with continuation 
boundary conditions imposed at the interfaces. The widths of the cells decrease from left to 
right in a linear manner and linear stretching of the cell heights was applied in the upper 24 
rows of cells. The same initial ratios of gasdynamical variables were used as in calculation 
PMl. The compression parameters for 'minmod' and 'superbee' were set to 0.75 and one, 
respectively, and () was set to one. The implicit calculation took about 88 CPU minutes. 

Con tours of constant density at t = 1.2 and at t = 4.8 and contours of constant pressure 
in the vicinity of the cowl with five times the resolution at t = 4.8 are shown in figure 11. 
Gas flowing at a Mach number of 8.4 approaches the inlet from the left and is compressed 
by the spike before entry into the annular space between the spike and cowl. The flow 
encounters a compression fan produced by the curved surface of the spike and eventually 
reaches a region of increased constant pressure near the (conical) base of the spike. The 
point of focus of the compression fan is not clearly illustrated in figure Hc because the 
pressure contours in the top 24 and bottom 24 cell-rows are computed separately, leaving 
a gap in the contour lines. However, the fact that there are only two contour lines over the 
top of the cowl indicates that there is little spillage of the flow. The compression fan reflects 
off the underside of the leading edge of the cowl as a shock. The shock crosses the expansion 
fan produced by flow about the corner at the base of the spike and is reflected back towards 
the cowl at a position downstream of the corner. The separate structures of the expansion 
fan and shock wave downstream of their point of intersection were not resolved in a plot of 
the contours of constant density. 

Attempts to use a larger initia! density ratio have failed thus far owing to the evolution 
of negative densities. If explicit time-stepping is employed, the solution only proceeds to 
t = 2.4 before the calculation fails owing to the evolution of negative densities. 

9.0 TVD EXPLICIT MACCORMACK BASED METHOD 
An alternate form of explicit TVD code, based on the work of Vee [3], has been developed in 
which the method of MacCormack is applied as the first half of a time-step. The two-stage 
MacCormack algorithm may be expressed as 

lL~k = Il.J,k - f3i,kö.F(Qn)i_t,k - f3i,kö.fI(Qn)i,k+t - f3i,kS(Qn)i,k (74) 

followed by 
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Here 

is the flux difference across interface i, k -- ! where Óx and Óy are TJx/ J and TJy/ J, respec

tiv~ly, evaluated at interface i, k -!. The flux-differences flF(t:t)i+~,k' flH(lln)i,k+~' and 

6.F(lln)i_~ k are computed using similar formulae. The resulting solution is spatially and 
2 ' 

temporally of second-order accuracy if the grid is uniform. The MacCormack equations can 
be applied cell-column by een-column from left to right across the domain in one sweep if 
i1.~k-l' the value of the inte~ediate solution in cell i, k - 1 in the previous een-column, is 
retained for use in computing the second-stage fluxes into een i, k. 

The post-processor 

(77) 

is then applied to obtain a TVD solution. Here 

(78) 

where f3i+t,k = [f3i+I,k + f3i,k]/2 and Q~t,k is a limiter term which for m equal to 1 or 4 is 
given by 

Q-m -m- (1-0. d(-'m -m) 1+0. d( -'m -m ») i+l k - (J'.+~ k --mmmo a .+~ k,wa'+l k + --mmmo wa.+~ k,a.+! k 
2' 1 2' 4 1 2' 1 2' 4 1 2' 1 2' 

-m+ (1+0. d(-m -'m) 1-0. d( -m -'m») (9) + (J"+1 k -4-mmmo a'+l k,wa '_1 k + -4-mmmo wa '+l k,a '_l k 7 
'I 2' 'I 2' 'I 2' t 2' 1 2' 

and for m equal to 2 or 3 is given by 

-m- -m+ (J' . 1 k (J' . 1 k 
Q-m _ 1+2' b (-'m -m ) ~ b (-m -'m) '+1 k - - 2 super ee a .+~ k,a'+l k + 2 super ee a '+l k,a '_l k . 

1 2' 1 2' 1 2' 1 2' 1 2' 
(80) 

Note that the quantity f3i+l k(X~+! k)2 is computed before the sonic correct ion is applied 
2' 1 2' 

to X~+l k since the post-processor must replace the Lax-Wendroff-like interface-flux of the 
1 2' 

MacCormack method with first-order upwind differences in regions of rapid change in the 
solution. i~k+l is calculated in a similar manner. 

I, 2 

Owing to the act ion of the post-processor, there is little need to alternate between 
backward and forward flux differences in equations (74) and (75) from time-step to time
step as would be required if the MacCormack method was used by itself. However, such 
alternation is left as an option in the code for the column-wise flux differences, 6.Hi k±l. 

, 2 
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10.0 RESULTS OF EXPLICIT TVD-MACCORMACK CALCULATIONS 

Figure 12 illustrates the results of repeating calculation STRI with identical parameters 
but using the TVD-MacCormack scheme. The density transitions are slightly thicker and 
there is a small bump at the top of the shocks. Note the absence of bumps in the reflected 
rarefaction wave. The positions of the various wave fronts corresponds to those obtained in 
calculation STI but there is a small difference in some of the wave forms. 

Calculation SQ2 was repeated using the TVD-MacCormack scheme. As shown in 
figure 13, the density transitions resulting from calculation SQR3 are only slightly thicker 
than those from calculation SQR2. Execution time was increased by about 14 per cent, 
despite the use of an identical number of time-steps, because of the two-stage nature of the 
MacCormack scheme. 

Calculation WEDGEI has also been repeated using the TVD-MacCormack scheme. As 
shown in figure 14 there is areasonabie correspondence in the contours of constant density 
except near the base of the leading Mach stem where deformation is evident. Execution 
time was increased by about 26 per cent because of the two-stage nature of the MacCormack 
scheme and because of a slight increase in the number of time-steps. Experimentation with 
the sizes of the compression parameters or time-step would reduce the deformation but not 
the execution time. 

Figure 15 illustrates the 424-cell by 40-cell grid and the contours of constant density at 
t = 1.2 and t = 4.2, for the Prandtl-Meyer inlet obtained by using the TVD-MacCormack 
scheme with the compression parameters for 'minmod' and 'superbee' both set one and with 
() set to t. The contours of cOIistant density at t = 4.2 obtained by calculation PM3 are in 
reasonable agreement with those obtained by calculation PMI even though a different grid 
was used. At t = 1.2 the trailing rarefaction wave and contact surface are weaker than in 
calculation PMI (the same strength as in calculation PM2) because it was possible to use 
a density ratio of 140 without encountering numerical difficulties. 

11.0 CONCLUSIONS 

The quality of the calculations is sensitive to the time-step size, the method of flux limiting, 
and the value of compression parameter. Nonetheless, with a little attention to selection 
of parameters, it is currently possible to obtain excellent results with the TVD code on 
domains of complex configuration using explicit time-stepping. Some improvement could 
be made in the strategy for selection of si ze of time-step based on Courant number. 

Owing to the use of selective solution predictor-corrector procedures, the execution 
times for inviscid two-dimensional problems using implicit time-stepping are only slightly 
greater than the execution times required for explicit time-steps. Both implicit and explicit 
time-stepping converge to the same steady-state solution. The relative efficiency of implicit 
time-stepping would be much greater for viscid flows. In some cases an implicit calculation 
will run to completion for conditions that cause the failure of an explicit calculation. 

The TVD-MacCormack code requires greater execution times than the originally im
plemented explicit method and has not yet given better quality solutions in most cases. It 
may prove to have increased value if converted to use implicit time-stepping. 

As it stands now, the TVD code in its various versions forms an excellent basis for 
extension to the solution of viscid flows through domains of complex configuration using the 
real gas-equation of state. Extension to the use of three-dimensional domains is straight
forward although computationally expensive. 
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Fig. 1 ST1: Density profiles !rom t = 0 to t = 0.875 (a.) and from t = 1 
. to t = 1.875 (b) for a. one-dimensional shock-tube problem, obta.ined 

with 'minmod' and 'auperbee' compression parameters set to 1 and 1.25, 
respectiveIy. Approxima.te time intervals between profiles is ~t = 0.125. 
Calcula.tions were performed on a 200-ceIl grid. 



-2.0 -1. 0 0.0 1.0 2.0 
X 

Fig. 2 Density profiles {rom t = 0 to t = 0.815 {or the one-dimensional shode
tube problem, obtained with 'minmod' and 'superbee' compression pa.
rameters both set to zero. Approximate time interval between profiles is 
Llt = 0.125. Calculations were done on a 200-cell grid. 

Fig. 3a SQR1: Contours of constant density for the 'shode-box' problem at t = 
0.375, obtained with the 'minmod' compression parameter set to 0.75. 
Computations were done with a 200-cell by 200-cell grid. 



Fig. 3b SQRl: Contours of constant density for the 'shock-box' problem at t = 
0.5625, just af ter the rarefaction wave has refiected off the solid waJls of 
the box, obtained with a 'minmod' compression parameter set to 0.75. 

Fig. 4 SQR2: Contours of constant density for the 'shock-box' problem at t = 
0.5625, just af ter the rarefaction wave has refiected off the solid waJls of 
the box, obtained with 'minmod' and 'superbee' compression parameters 
set to 0.75 and 1.25, respectively. Computations were done with a 200-
cell by 200-cell grid. 



(a) 

Fig. 5 WEDGEl: Grid for Mach-3.72 shock incident from the right on a 40 
degree wedge (a), and contours of constant density (b), obtained with 
'minmod' and 'superbee' compression parameters set to 0.75 and 1.25, 
respectively. Only every fifth grid line is shown to maintain clarity. 



Fig. 6 WEDGE2: C'A>ntours of constant density for Mach-3.72 shock incident 
from the right on the wedge, obtained with 'minmod' compression pa,. 
rameter increased to l.O. 
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Fig. 7 Grid for Mach-6 shock incident from the right on aD inlet (a), and con
tours of constant density (b), obtained with 'minmod' and 'superbee' 
compression parameters both set one. Only every fourth grid line is 
shown. 

(a) 
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. Fig. 8 PM1: Grid for·Mach-8.4 flow from the right into a Prandtl-Meyer inlet 
(a), and contours of constant density at t = 1.2 (b), at t = 4.2 (c), 
and at t = 4.8 with increased resolution (d), obtained with 'minmod' 
and 'IUperbee' compression parameters set to 1.0 and 1.15, respectively. 
Only every fourth grid line is shown. 
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(b) 

(c) 

(d) 
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Fig. 9 PM2: Contoura of constant density for Mach-SA flow from right into 
the Prandtl-Meyer inlet at t = 1.2 (a) and at t = 4.2 (b), obtained 
·using implicit time-atepping with 'minmod' and 'superbee' compression 
parameters set to 1.0 and 1.15, respectively. 

Fig. 10 Grid lor Mach-SA flow from right into a spike inlet. Only every fourth 
grid line is ahown. 

(a) 

(b) 



(a) 

(b) 

(c) 

Fig. 11 Contours of constant density at t = ·1.2 (a), at t = 4.8 (b), and at t = 4.8 
with increased resolution (c), for Mach-8.4 flow from right into a spike 
inlet obtained using implicit time-stepping with 'minmexP and 'superbee' 
compression pVameters set to 0.75 and one, respectively. 
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Fig. 12 ST2: Density profiles from t = 0 to t = 0.875 (a) and from t = 1 to 
t = 1.875 (b) for the one-dimensional shock-tube problem, obtlÜned by 
using the TVD-MacConnack scheme with 'minmod' and 'superbee' oom
pression parameters set to 1 and 1.25, respectively. Approximate time 
intervala between profiles is ~t = 0.125. Calculations were performed on 
a 200-ceIl grid. 



Fig. 13 SQR3: Contours of constant density for the 'shock-box' problem at t = 
0.5625, just af ter the rarefaction wave has reflected olf the solid walls of 
the box, obtained with 'minmod' and 'superbee' compression parameters 
set to 0.75 and 1.25, respectively. Computations were done with a 200-
cell by 200-cell grid using the explicit TVD-MacCormack scheme. 

Fig. 14 WEDGE3: Contours of constant density for the Mach-3.72 shock in
cident from the right on a wedge, obtained using the explicit TVD· 
MacCormack seheme with 'minmod' and 'superbee' compression param
eters set to 0.75 and 1.25, respectively. 
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Fig. 15 PM3: Grid for Mach-SA flow trom right inta the Prandtl-Meyer inlet 
(a), and contours of constant density at t = 1.2 (b), at t = 4.2 (c), 
obtained usiog. the explicit TVD-MacCormack acheme with 'minmod' 
and 'superbee' compression parameters both set to one. Only every 
fourth grid lioe is shown. 

(a) 

(b) 

(c) 
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