
Bing Forecast

Thesis BSc. Project IN3405

Roy de Bokx (1515624)
Leendert Gravendeel (1514180)

Maikel Krause (1511475)

Public version

Delft University of Technology
EEMCS Faculty
July 8th, 2011

Exam committee

Bing Technology LLC:

Dan Guy, CEO at Bing Technology

Delft University of Technology:

Ir. B.R. Sodoyer

J. de Vries

2

Preface
This document is the result of three months of work on our BSc. project, concerning the creation of a
stock market forecasting application for Bing Technology, LLC. We consider ourselves very lucky to have
found a host allowing us to work on this project for two months on location near Philadelphia, USA.

We would like to thank Laurens Swinkels, of Robeco Investment Solutions, for giving us a head
start by providing us with some rudimentary general knowledge of stock market forecasting, and for
giving us advice when we needed it.

We would also like to thank Augie Chung, for giving technical advice on difficult Java-related
issues.

Finally, we would like to thank Dan Guy in particular for supporting us in many ways.

3

Summary
Bing Technology, a Philadelphia, USA based software company, seeks to develop a software framework
that can be used to create forecasts for a wide range of predictive domains. In particular, they would like
to create an application of this framework that is able to perform stock market forecasting.

The goal of our project is to develop an innovative algorithm to perform data prediction, and to
apply this algorithm in a stock market forecasting application. The application should generate
investment strategies which can be evaluated to output an optimal investment portfolio.

We have achieved this goal by making use of a variant of Genetic Programming to create
strategies which are represented internally by a tree containing "modules". Each module performs a
specific function; examples include simple numerical parameters, statistical functions and technical
indicators.

The backbone of the application is written in Java, communicating with a web-based PHP front-
end through a MySQL database. The front-end allows the user to create jobs for the back-end to
process, as well as view the resulting strategies and related statistics.

Test runs have shown a correlation between in-sample and out-of-sample performance. Further,
we have determined with high certainty that there is a predictable relation between the complexity of a
test run and the duration of the run.

There are several features and changes we would like to see in future development of the
product. Several program parameters can be optimized further, and there are more modules to
implement that could boost the performance of the generated strategies. Further, the data provided to
the modules can be improved by including qualitative data about the company, or industry aggregative
data. Other improvements could come from implementing support for short selling and more accurate
transaction costs. On the user side, we would like to give investors more control over the strategy
building process by allowing them to create templates on which new strategies have to be based.

4

Table of Contents
Preface .. 2

Summary ... 3

1. Introduction .. 8

2. Problem Definition and Analysis .. 9

3. Design ... 11

3.1 Data Design ... 11

3.1.1 Strategies .. 11

3.1.2 Modules, Nodes and Node Types .. 11

3.2 The Forecasting Algorithm ... 12

3.3 Architecture ... 12

3.4 Database Design .. 13

3.5 Interface Design ... 13

3.5.1 Back-end ... 13

3.5.2 Front-end .. 14

4. Implementation ... 18

4.1 Strategy Modules ... 18

4.2 Genetic Programming .. 19

4.2.1 Parameters ... 20

4.2.2 Process ... 21

4.2.3 Reproductive Operations .. 21

4.2.4 Stop Criterion .. 22

4.3 Representation and Interpretation of Numeric Values ... 22

4.4 Multithreading ... 22

4.4.1 Creating Generations from Previous Generations .. 23

4.4.2 Evaluation of Generations ... 23

4.4.3 Race Conditions .. 24

4.5 MyBatis ... 25

4.5.1 Database Classes ... 25

4.5.2 Integration .. 26

4.6 Caching .. 26

4.6.1 Database Caching .. 26

5

4.6.2 Strategy Caching ... 27

4.6.3 Strategy Component Caching .. 27

4.7 Historical Data ... 28

4.8 Front-end... 28

5. Conclusions and Findings ... 29

5.1 In-sample Versus Out-of-sample Results .. 29

5.2 Execution Time .. 31

6. Recommendations ... 32

6.1 Parameter Tweaking .. 32

6.2 Modules .. 32

6.3 Industry Aggregation Data ... 32

6.4 Qualitative Data ... 32

6.5 Short Selling ... 33

6.6 More Advanced Option Trading ... 33

6.7 More Accurate Transaction Costs ... 33

6.8 Cloud Computing ... 33

References .. 35

Appendix C - MyBatis... 36

Appendix F - Packages ... 37

Appendix G – Database Design .. 39

Appendix H – Genetic Programming Sequence Diagram .. 40

Appendix I - Orientation Report ... 42

Preface .. 42

1. Introduction... 42

2. Heritage Health Prize ... 42

3. Forecasting Methods ... 43

3.1 Regression Analysis .. 43

3.2 Stock Market Analysis .. 43

4. Market Analysis ... 45

4.1 Forecasting Platforms .. 45

4.2 Stock Market Software ... 45

4.3 Forecasting Research Using Innovative Algorithms ... 48

6

5. Metrics .. 49

5.1 Sharpe Ratio .. 49

5.2 Sortino Ratio .. 50

5.3 Calmar ratio / Maximum Drawdown .. 52

5.4 Bias Ratio ... 52

5.5 Maximum Negative Outlook / Investor Emotion Quantification.. 53

5.6 Input stability / ‘Data Mining’ prevention ... 54

6. Genetic Programming .. 56

7. Framework Research ... 57

7.1 Java Development Frameworks .. 57

7.2 PHP Development Frameworks .. 59

7.3 Java Testing Frameworks ... 59

7.4 PHP Testing Frameworks .. 61

Literature .. 62

Appendix J – Requirements Document .. 63

Summary ... 63

1. Introduction... 63

2. Current system .. 63

3. Proposed system ... 64

3.1 Overview ... 64

3.2 Functional requirements .. 65

3.3 Non-functional requirements ... 66

3.4 Use case models .. 66

Appendix K – Plan of Approach .. 69

1. Introduction... 69

2. The Problem .. 69

2.1 Problem Description as Given by Bing Technology.. 69

2.2 The Goals ... 69

2.3 Deliverables for Delft University of Technology .. 70

2.4 Deliverables for Bing Technology ... 70

2.5 Technical Constraints ... 70

2.6 Schedule Constraints .. 71

7

2.7 Risk Factors .. 71

3. Approach ... 72

3.1 File Sharing .. 72

3.2 Documentation .. 72

3.3 Methodology ... 72

3.4 Techniques... 72

3.5 Activities .. 72

3.6 Planning ... 73

4. Project Design .. 73

4.1 Involved Parties ... 73

4.2 Organization .. 74

4.3 Staff ... 74

4.4 Administrative procedures ... 74

4.5 Reporting ... 77

4.6 Facilities ... 77

5. Quality Assurance .. 77

5.1 Product Quality .. 77

5.2 Process Quality .. 78

5.3 Evaluation .. 78

Appendix L – Request for Proposal .. 79

8

1. Introduction
Mid January 2011, Leendert received an assignment from Bing Technology, a company Leendert and Roy
had worked for in the past. Bing sought to develop a framework that could be used to produce
specialized forecasting tools useful across industry verticals. Initially, they were seeking to target two
specific domains: stock market prediction and the Heritage Health Prize. Leendert then approached Roy,
who was already planning to do his BSc. project together with Maikel. This resulted in a group of three
students who were to travel to the US and write software to predict the future, under the supervision of
Dan Guy.

We started off doing a lot of research in The Netherlands concerning existing stock market
prediction methods as well as the possibilities and facilities we were planning to use in the US. When we
were all set to go, we went to Conshohocken, Pennsylvania, where the project began.

This document describes the product that was developed during the project. In chapter 2 we
start by describing and analyzing the problem to be solved. Next, the product itself is described
according to the design in chapter 3, and the implementation, in chapter 4, followed by several findings
in chapter 5. Finally we will make some recommendations for the future development and use of
Genetic Programming in the field of stock market forecasting in chapter 6.

9

2. Problem Definition and Analysis
When Bing Technology approached us, they sought to develop a framework that could be used to
produce specialized forecasting tools useful across industry verticals. Initially they were seeking to target
stock market prediction and the Heritage Health Prize. Targeting the stock market would come down to
developing an application of the forecasting framework which could generate a trading strategy which
should perform better than other currently known trading strategies. The Health Heritage Prize is a
competition to develop an algorithm to predict and prevent unnecessary hospitalizations in the US,
based on patient data of the past. This goal is to create an algorithm that predicts how many days a
patient will spend in the hospital in the next year.

Bing sought a framework that could ideally be repurposed for other tasks such as product
recommendations and other predictive domains. This would happen in a possible follow-up project.
Additionally, Bing would prefer that the back-end be written in Java. PHP would be acceptable for the
front-end application. They desired having a functional proof of concept by May 24 2011, with further
iterations delivered as needed depending on efficacy of the prototype and future arrangements
between the selected vendor(s) and Bing.

Before arriving in the US, a great amount of research was done, including an interview with
Laurens Swinkels, vice president of Robeco Investment Solutions. This research helped us get a better
view of the environment in which the applications had to run. The next step was to create a design
which would give us the stability and flexibility to meet the demands of Bing Technology. After some
research was done on the scope of this assignment, followed by some drafts on the design of it, it
turned out that it would not be feasible to make a reusable forecasting framework and an application of
this framework for the stock market forecasting within the limited time constraints of the Bachelor
project. Therefore, it was decided to develop a stock market forecasting application for the proof of
concept, which could, if necessary, be transformed into a forecasting application for some other domain
later on.

After this was decided, a design had to be made for the stock market forecasting application.
Because of the scope and complexity of the existing prediction algorithms, it was decided to create a
modular system, which would have a front-end in PHP and a back-end in Java to meet the demands. The
back-end would contain all the functionalities to create and evaluate trading strategies. To create these
strategies, Genetic Programming would be used to combine the different modules. These modules
would be obtained by breaking down existing trading strategies to their granular functionalities, which
would then be implemented in Java. These modules would be represented by a node which can specify
constraints on its child nodes. By genetically constructing a tree out of these different nodes not only
existing strategies but also new strategies can be constructed.

The collection of all these node types should facilitate the creation of modules that implement
all functionalities that are represented in currently known trading strategies. It should also facilitate the
creation of new trading strategies, with additional modules that implement new functionalities if
required.

However, the danger of this approach is overfitting. The ability to create new functionalities
which are to be tested on historical data, in order to perform well in the future, increases the chance
that a strategy will be constructed which does very well on the data which it will be tested on, however
it will perform bad on future data. It is therefore important to only implement a module if there are
good reasons to do so, instead of implementing functionalities just for the sake of it. This way,
overfitting is prevented by design.

However, it is also very important to use in-sample and out-of-sample testing, because this is
actually the most commonly used method to measure overfitting. If the constructed strategy performs

10

very well on the in-sample test data, but very poor on the out-of-sample test data, chances are high that
the constructed strategy suffers from overfitting.

11

3. Design
To achieve the goal of outperforming all other known trading strategies, a solid design is needed. A
design that is solid, however not rigid, since the application will likely need to be altered in the future to
adapt to new market trends. Therefore, it was decided to design the core of the application as a
modular system, which would consist of a part that would genetically generate strategies, a part that
would evaluate them and a part that would contain all the modules that could be used for constructing
the trading strategies.

3.1 Data Design
First of all, it is useful to begin by looking at the data objects implicitly mentioned in the previous
chapter. This is to prevent any misunderstandings or ambiguities when describing the design and
implementation of the application.

3.1.1 Strategies
From a high-level point of view, the main task of the application is to create new investment strategies.
Such a strategy is essentially an algorithm which can tell an investor which stocks to buy or sell, and how
much. Said another way, a strategy should be able to predict the optimal stock portfolio composition for
the next day.

Most stock traders use investment strategies intuitively all the time., however it is needed to turn
these intuitive notions of a “strategy” into some data structure that can be manipulated by software.
This data structure needs to facilitate the following operations:

 Constructing new strategies completely automatically, based on any sample data we can
provide, such as historical market data, company profit results, or even Twitter feeds.

 Evaluate a strategy for the current date, telling the user how to compose his portfolio in order to
maximize the portfolio’s value.

The most logical representation of a strategy – which is actually an algorithm – is a syntax tree, since
the field of Machine Learning has much experience in creating optimal algorithms represented as trees
by the technique of Genetic Programming. A slight twist in our approach to Genetic Programming is that
the basic elements that our strategies will consist of will not be elementary operations which all require
and return values of the same type. This could cause too much risk of data-fitting, and further would
result in very complex, black box algorithms.

Instead, our approach was to break down existing, proven strategies in such a way that they would
be reusable for constructing new strategies, where overfitting would be prevented by design. Each of
these basic block were implemented as modules in the application, instances of which can be placed in a
strategy’s tree, resulting in a strategy that could be evaluated on a day-by-day basis.

3.1.2 Modules, Nodes and Node Types
Modules are the basic primitives with which the strategies will be constructed. These modules are
specific to the problem domain, and allow the forecasting algorithm to be easily reused for other
domains or other types of input which could vary from historical data of stock markets to Twitter feeds.

Modules often require some parameters, which will then be obtained by their children. Each
module can therefore put constraints on the amount, order and types of its children. These node types
are, as mentioned before, obtained during the breakdown of existing strategies and can be found in
appendix D, followed by a graphical representation in appendix E.

12

Figure 3.1 Relationships between strategy-related objects.

3.2 The Forecasting Algorithm
As stated before, our approach to forecasting is to use an innovative variation on Genetic Programming.
The algorithm builds a program that can be evaluated through time to ultimately propose a portfolio
composition for every single day. Using Genetic Programming to forecast stock markets is not really
something new, however so far most approaches used Genetic Programming to combine several
Buy/Sell/Hold (BSH) indicator nodes. Our approach is different, combining different functionalities
instead which have different input and output data types. The exact implementation of our approach
will be described in paragraph 4.2.

3.3 Architecture
The application is split up into two parts: the back-end, written in Java, and a web-based front-end,
written in PHP. This is done because Java is more suitable for developing complex and heavy duty
applications. However, for displaying the results through a web interface, which is the standard at Bing
Technology, PHP is more suitable. All communication between the front-end and the back-end flows
through a shared database. This setup will also allow us to execute all CPU intensive jobs on a big server
while the system can still be controlled from a portable interface.

The back-end is a command line Java program that will run continuously on the server. The
back-end will first poll for any jobs that are submitted into the database by the front-end. Next, it will
execute all calculations necessary to provide the front-end with the desired information such as
generated strategies and results of the evaluations of these strategies. Note that the evaluation of
strategies will be done by an evaluator which will continuously evaluate strategies that are not

13

evaluated during the last 24 hours. These results will then again be submitted to the database so they
can be retrieved by the front-end. All these different tasks are assigned to separate packages which can
be found in appendix E.

The front-end will serve as the user interface to the entire application. The user will be able to
submit new jobs for tasks such as creating new strategies and instantiating generic strategies. After
these jobs are executed by the back-end, the user will be able to review the generated results such as
the structure of the generated strategies, as well as the performance of these strategies.

Figure 3.2 Back and Front-end architecture

3.4 Database Design
The application needs a somewhat extensive database. First of all, it needs to facilitate submitting tasks
for generating and instantiating strategies at the front-end. These tasks have to be executed by the
back-end which then needs to store the genetically generated strategies in the database so they can be
executed every day.

Second, the results of the strategies have to be calculated by the back-end, stored in the
database and viewed by the front-end. To make all these functions possible, a database design was
composed which can be found in appendix G.

3.5 Interface Design
On implementing an application, an interface is also to be designed, so the application can actually be
executed and used by the user. In this paragraph, the back-end and front-end interface is discussed. For
the back-end this is done by describing how to start the application on the server, as the actual
interaction with the back-end will from there on be done by the front-end interface. The front-end
interface will then be described by mock-ups, showing what functionalities can be found on the several
pages the web interface provides.

3.5.1 Back-end
The back-end is entirely command line based, and does not provide a graphical user interface. The
program accepts the following command line arguments:

 Database name
 Database user
 Database password
 Number of threads
The program will run in the background and automatically polls for new jobs to perform.

14

3.5.2 Front-end
The front-end is a web-based application that allows users to request the generation of new strategies
and then run these for the current date. It also allows users to view the details of a generated strategy
and get its performance data.

Home

The Home screen is very simple, and simply gives the user an overview of his strategies, as well as
providing standard CRUD (Create, Read, Update, Delete) actions.

15

Create Strategy

Clicking the "Add Strategy" button on the Home screen takes the user to the Create Strategy screen,
which is a form where the user can input various settings, such as GP parameters and investment
preferences.

16

Display Strategy (Specific)

Clicking the name of a specific strategy on the home screen takes the user to the Display Strategy
(Specific) screen. Specific and generic strategies have different properties, and the corresponding
"display" screens are therefore separate screens.

This screen shows basic information about the strategy such as its settings as well as the current
portfolio composition advice and the strategy results over time. It also displays some statistics such as
the Sharpe ratio of the strategy.

17

Display Strategy (Generic)

The generic version of the Display Strategy screen is similar to the specific one, but shows averaged data
over all allowed instantiations. The amount of allowed instantiations is equal to the amount of allowed
symbols to be used in the job; for each allowed symbol one specific strategy is created and simulated.

18

4. Implementation
In this chapter, the implementation process of the forecasting project is described, as well as the
decisions that were made during the implementation phase. As mentioned in the Plan of Approach, a
flat hierarchy was used during the project, assigning tasks to each other on the fly. This resulted in a
division of labor in which, roughly, Maikel took care of the front-end, and Roy and Leendert
implemented the majority of the back-end.

4.1 Strategy Modules
As mentioned in the previous chapter, the strength of the application is in the breakdown of existing
strategies. The node types which were mentioned in this chapter should facilitate the breakdown and
modelling of existing strategies in modules which can then be used for the construction of new
strategies. By breaking down several existing strategies, as well as doing research on existing indicators
and heuristics, many modules were obtained and implemented, which can all be found in appendix A.

The process of breaking down existing strategies is focused around trading strategy interfaces,
both internal and external. All trading strategies have some form of inputs and outputs, which can be
used to categorize them. In turn trading strategies also use different data types internally. For instance,
a trading strategy that takes a long position in the stock with the highest value of the closing price
multiplied by the daily traded volume can be seen as an object that takes a date as input and returns
one selected symbol as output.

Internally, the strategy could be broken down as well. First of all, the strategy contains a
component that is a set of symbols from which the best one is selected. For this sample strategy we
assume the stock set remains the same through time, meaning that particular component does not have
any inputs and returns a set of stocks as output.

A second component in the sample strategy could be an object that takes a stock and date as
input and returns a "score" for that particular stock on that particular date. In the case of the sample
strategy, it could be calculated by looking up the closing price and daily traded volume on the specified
date and multiplying both to get a resulting score. This component could be seen as a stock evaluator, of
which more similar components can exist throughout the program, with different formulas to calculate
the score for a given stock on a given date.

The last component in the sample strategy is the top object, connecting both the set of stocks
and the stock evaluator. It takes a date, but also takes two or more components as inputs, namely an
element that can return a set of stocks without any input and an element that can return a score when
given a stock and a date. This top node can now be used to construct the sample strategy, but besides
that it can also be used to create similar but slightly modified strategies.

Alternative strategies could now be generated by swapping out the required components for
different implementations that use the same interfaces. If another stock evaluator component were to
come along having the same exact signature as the stock evaluator used in the sample strategy, it could
be used by the top node to create an entirely new strategy with a very similar structure. An example of
such a different stock evaluator component would be a component that calculated the difference
between the open and close prices of a certain stock, and multiplied that by the traded volume of that
day.

This method of analysing strategies, breaking them down into components, grouping all created
components by their interface and having all components of the same interface select their own set of
required child interfaces was used on many existing strategies. The amount of different interfaces used
was relatively small, allowing for great substitutability within the created strategies, in turn allowing for
more diversity in possible output strategies.

19

While a greater amount of modules results seems better, it is also important not to overdo it as
this allows for too much overfitting in the strategies. An example of this can be found in the described
sample strategy, of which the module that multiplied the stock price by the volume could still be broken
down further. A possible way to break it up would be to create a top node that multiplies two numerical
values and two more modules that can get the stock price and the volume. This way of breaking up the
module into smaller components would be a good example of going too far in the process of modular
decomposition. The reason why this would go too far is that it would allow for substitution of any
number used in existing strategies by a multiplication of that number with any other number. If the
amount of modules that return a number becomes great enough, this multiplication module would
become the gateway for overfitted strategies.

To summarize, using this method the interfaces, referred to as "node types", specify the output
of strategy components and their required inputs for the evaluate function. The constraints that are put
on the children of such a node type depends on the implementation of this evaluation function
however. This means any component of a certain node type has the same signature, which for instance
could always return an integer if a date is given as input. The components, referred to as "modules",
could then specify the amount of children they require and their node types.

4.2 Genetic Programming
As mentioned in chapter 3, Genetic Programming is used to construct trees that represent trading
strategies. With the basic ingredients such as node types and modules, as discussed above, a start could
be made on actually constructing an algorithm that would genetically construct these trees. In this
paragraph our implementation of Genetic Programming is described, as it differs from the usual concept
of Genetic Programming on some aspects.

First of all, Genetic Programming has already been used in this field in several scenarios.
However, usually the goal of this genetic process was to find the ultimate combinations of indicators.
This would mean that all nodes in the constructed trees would have the same input and output except
for the leaves which would base their output on historical data. In our implementation of Genetic
Programming, we use different node types of which the implementations, also known as modules, may
put different constraints on their children, as described in chapter 3. The construction of these trees was
done by starting with a generation of random generated trees, which are then duplicated, mutated and
combined towards the optimal trading strategy.

Second, our genetic process has a different stop criterion than common genetic processes.
Usually, a genetic process would stop when the overall improvement of the last x generations does not
meet a certain boundary value. In our implementation, the amount of generations is fixed because of
the limited time that was available for this project. The advantage of this approach is that for the
performance breakdown, the required time for a certain job, considering the hardware of the machine it
is running on, can quite easily and accurately be predicted. However the disadvantage is that a genetic
process might be stopped while still making significant improvements between consecutive generations,
which means that some testing needs to be done on the ideal amount of generations.

20

4.2.1 Parameters
Constructing a strategy is initiated by the front-end, where the user inserts the parameters used for the
construction. These parameters include the following:

 Input parameters
o Modules: the modules that are allowed to be used.
o Symbols: the symbols on which the performance of the constructed trees are verified.
o Transaction costs ratio: the ratio of the transfer price that a transaction on the stock

market costs.
 GP parameters

o Duplication Rate: the chance that during the genetic construction of new generations
any tree will be duplicated.

o Mutation Rate: the chance that during the genetic construction of new generations any
tree will me mutated.

o Combination Rate: the chance that during the genetic construction of new generations
any tree will be combined with a part of another tree.

o Population Size: the size of the generations during the genetic construction.
o Generation Amount: the amount of generations that were constructed during the

genetic process.
o Run Amount: the amount of separate runs that should be executed, based on these

settings.
o In Sample Start Date: the start date of the period on which the constructed trees can

base their fitness.
o In Sample End Date: the end date of the period on which the constructed trees can base

their fitness.
 Output parameters

o Performance Weight: the weight of the performance (excess returns) in the fitness
function

o Sharpe Weight: the weight of the Sharpe ratio in the fitness function
o Sortino Weight: the weight of the Sortino ratio in the fitness function
o Branch Coverage Weight: the weight of the branch coverage in the fitness function
o Maximum Negative Outlook Weight: the weight of the Maximum Negative Outlook (a

quantification of the duration of a period in which a strategy does not perform well) in
the fitness function.

o Max Nodes: the maximum amount of nodes. If a tree was constructed with more nodes,
it will not be discarded, however it will get a penalty on its fitness, which decreases its
chances of survival.

o Max Symbols: the maximum amount of symbols. If a tree was constructed with more
symbols, it will not be discarded, however it will get a penalty on its fitness, which
decreases its chances of survival.

21

4.2.2 Process
Next, these settings, submitted as a job in the database by the front-end, will be retrieved by the Poller
of the back-end, after which this Poller will create a JobRunner that will actually execute the job.

However, before the genetic process will start, the application will first check whether the job is
feasible. During this check all symbols that do not have historic data for the specified in-sample period
will be excluded from the process. After this, a check is performed to check if it is actually possible to
construct trees with the given parameters. This means that there has to be at least one stock symbol left
to base the tree on and for all selected modules of the type Portfolio, a complete and correct tree can
be constructed with the help of the other modules that were allowed for this job.

After the JobRunner has determined that the job is feasible, the genetic process begins.
According to the principle of Genetic Programming, the process starts with the construction of a
randomly generated generation. This is done by the GenerationFactory by acquiring strategies that were
produced by the StrategyFactory. This StrategyFactory constructs these strategies by randomly picking a
portfolio module from the provided pool of allowed modules. From here on, a tree was constructed by
selecting random children for this portfolio, the children of the portfolio and so on, according to the
constraints each node puts on its children. This generation of strategies is repeated until a collection of
trees was constructed that has a certain size, defined by the job parameters.

After this first generation was made, all strategies in this generation are evaluated and ranked.
This is done according to an evaluation on historic data, based on the fitness function.
After the construction and ranking of this first generation, an iterative process starts that is repeated a
certain amount of times, defined by the job parameters. In this process, new generations are
constructed based on the previous ones to converge towards the ultimate trading strategy.

To construct a generation based on the previous generation, it is a requisite that this previous
generation was ranked according to the fitness function. Then, a tree was randomly picked from this
previous generation, according to its fitness. This random selection of strategies was implemented by a
WeightedRandomPool, of which you can get a random element in O(log(n)) time, where elements with a
bigger weight have a higher chance to be picked.

4.2.3 Reproductive Operations
When a tree is picked from this WeightedRandomPool, it is either duplicated, mutated or combined by
the StrategyFactory. Chances for each genetic operation are determined by the job parameters. These
steps are repeated until a new generation is created with duplicated, mutated and combined strategies
that has a certain size that was specified by the job parameters, after which all the strategies in the new
generation are evaluated and ranked according to the fitness function.

When a tree is duplicated, a duplicate of the tree is made where all nodes are reinitialized, since
most module implementations are stateful. This duplicate is then placed in the next generation.

When a tree is mutated, however, a duplicate is created on which a mutation is performed. This
is done by randomly picking a node from the tree, which is then deleted, together with its children.
Next, a random tree is constructed of which the root node must have the same type as the deleted
node. This tree is then placed in the duplicated tree at the position of the deleted node, which results in
a new strategy which is then placed in the next generation.

Finally, there is a chance that the picked tree will be combined. This is done by randomly picking
a node from the duplicate of the picked tree. This node will be deleted together with its children, after
which a second strategy was picked from the previous generation, of which a random node will be
chosen that has the same node type as the deleted node in the first tree. This node from the second
tree, will then be duplicated, together with its children, and inserted in the first tree on the place where
the randomly picked node was deleted. The result will then be added to the next generation.

22

4.2.4 Stop Criterion
The creation of new generation based on the previous generation is repeated for a certain amount of
times, as defined by the job parameters. Usually a genetic process stops when the overall improvement
of the last x generations does not succeed a certain boundary. In our implementation however, the
amount of generations is fixed because it is quicker to implement and fine-tune. Considering the limited
time that was available for this project, this seemed justifiable.

As mentioned before the advantage is that the required time for performing a job can be
estimated and easily regulated, however the disadvantage is that several tests might be needed to
determine the ideal amount of generations that are needed to get optimal results. If not enough
generations are constructed it is possible that the process would be stopped while significant
improvement was made on consecutive generations. That would mean that if more generations were
allowed, the outcome of the process would quite likely be better. However if too many generations
were used, it would be a waste of resources, which are quite important as will be discussed in paragraph
5.2.

After the iterative process is finished and the last generation was ranked, the best performing
strategy of the last generation will be picked as the actual result of the genetic process. This strategy will
then be stored in the database and evaluated for the out-of-sample period. Finally, the strategy can be
showed to the user by the front-end, together with any information on the performance of the strategy
during the in- and out-of-sample period. A graphical overview of this entire process can be found in
appendix H.

4.3 Representation and Interpretation of Numeric Values
Many modules have one or more numeric children, which for instance can be used as the amount of
days to look back for a moving average. The amount of days a moving average module is allowed to look
back is not just any random number between 0 and the maximum amount of days of which data is
available. If this were to be allowed, the risk of overfitting would increase drastically. For instance, if
both a 123-day and a 124-day lookback period are allowed, the one with the best performance on the
in-sample data would likely be selected eventually in the GP process. However, there is absolutely no
guarantee that this choice will also yield the best results on the out-of-sample data.

To get around this issue of overfitting, we wanted to make sure only those lookback periods for
a moving average could be selected that were commonly used or at least referenced by some academic
papers. Lookback periods that were more popular got greater chance of being selected. We did not do
this just for the moving average module, but for all modules that used numeric children on which
references could be found.

To implement this functionality all numbers are represented as numbers between 0 and Java's
maximum integer value. For each number that was required as a child of a module, a probability
distribution function of all possible desired outcomes was constructed as an instance of the
WeightedRandomPool class. We then used a form of inverse transform sampling to map the random
number to a selection of this WeightedRandomPool.

As a result of this approach, the same input number will always resolve to the same
interpretation of the number. Also, if the same WeightedRandomPool contains an interpretation of a
number with a weight twice as high as another interpretation, the first interpretation will be twice as
likely to be selected when a randomly generated strategy is interpreted.

4.4 Multithreading
The entire GP process is very expensive to run and is generally executed on big servers with many
available cores. Without any further optimization it would not be possible to spread out the process to
more than one thread, thus not fully optimizing the process to fully utilize all available cores. On the

23

other hand it would be much quicker to implement the program without multi-threading, as thread
setup and possible race conditions would not have to be taken into consideration. We therefore chose
to initially design the program in such a way that it would be easy to later extend it to use multi-
threading but at first just use a single thread, in compliance with our incremental design pattern.

A new "Parallel" package was created for all tasks that could be parallelized, starting out with
single thread implementations. The reason for this choice was the ease with which it could later be
swapped for a package that used multi-threading. Inside this package is the class Dispatcher, containing
the link between a single thread and multiple threads. Calls to its methods can be made from a single
thread and it will ensure new threads are started, executed and joined. After the threads are joined the
Dispatcher method will also ensure the results are being passed back to the single thread as if
everything was executed in the same thread.

Three possible places of parallelization were found in the back-end. First of all the creation of a
new generation consisting of randomly created strategies, secondly the creation of new generations
based on previous generations and lastly the evaluation of a generation. Out of those three possibilities
the last two were chosen to be implemented. The reason for not implementing parallelization of the
creation of the first generation is that it is only called once per GP job and can run relatively quickly on
one thread as well. On top of that our timeframe was rather limited forcing us to only focus on the most
important aspects.

4.4.1 Creating Generations from Previous Generations
When creating a new generation from an old generation, a WeightedRandomPool containing all
strategies from the previous generation is used. The actual creation of the required amount of new
strategies is a task that can then easily be parallelized. On top of that, this task takes quite some time to
execute for each job as it is responsible for the creation of (amount of generations - 1) * (population
size) new strategies, which for an average job of 200 generations and a population size of 2500 already
makes for 497,500 strategies.

The strategies that are being created for a new generation can be created independent of each
other, meaning it can efficiently be parallelized by creating N new tasks for the creation of (population
size / N) strategies each. After all of these tasks are then finished, a single thread can join all strategies
into the new generation.

For this particular parallelization task, a new method was created with the following syntax:

public static Generation getGenerationFromPrevious(Job job,
Generation previousGeneration)

The method will start out by creating N StrategyCreator objects, which each create (population size / n)
new strategies. After the objects have been initialized a new Thread is created for each of them, after
which all threads are executed. When all threads are finished, a new Generation object is created and
filled with the results from each of the StrategyCreator objects.

4.4.2 Evaluation of Generations
Once a new generation has been constructed it needs to be evaluated so a new generation can be
constructed based on it, but also so the current best strategy from the generation can be selected.
When evaluating a generation all strategies are first evaluated individually, after which the mean,
standard deviation, maximum and minimum performance of all strategies in the generation is
calculated. The process of evaluating all individual strategies is the part that takes a lot of time and it is

24

also a part that can be parallelized efficiently because separate strategies can be evaluated
independently of each other.

To evaluate a generation, the following method of the Dispatcher can be called:

public static void evaluateStrategies(List<Strategy> strategies,

Date begin, Date end)

Once a new request has been received by the Dispatcher in this way, it will create N new
StrategyEvaluator objects and corresponding Thread objects, with each (population size / N) strategies
to evaluate. Each StrategyEvaluator object will then ensure the performance of each of its Strategies is
calculated and stored. To account for rounding errors, the exact amount of strategies per
StrategyEvaluator object can vary by one.

After all StrategyEvaluator threads are finished the Dispatcher is finished as well, as the method
manipulates the input list of strategies.

4.4.3 Race Conditions
Because the originally single-threaded program had to be modified to allow for multi-threading, there
were some newly introduced race conditions which had to be taken into consideration. Problems can
occur when multiple threads are accessing data on the same location on the same time and both start
manipulating it. The problems start occurring when shared data is not only being read but also written.

The first instance of these problems arises with the database access. All of the database access
in the system runs through DAO Singletons, which means the getInstance methods of their classes need
to be thread-safe. This could be simply achieved by making the getInstance methods synchronized, but
that will introduce locking between threads for every call to getInstance, making the parallelization less
effective than possible. To get around this issue, the instance attribute was marked as volatile and the
getInstance methods were implemented as such:

public static SomeDAO getInstance() {

if(instance == null) {
synchronized(DataAccessObject.class) {

if(instance == null) {
instance = new SomeDAO();

}
}

}
return instance;

}

By only making the creation of a new instance synchronized, the getInstance call will generally not lock
up, making the process more efficient.

Another issue with thread safety occurs with the introduction of cache. It is important that
cache access is thread-safe, but at the same time it is important that reading from a cache does not lock
it up for other threads. To achieve this the same design pattern from the DAO Singletons was used. All
read methods that hit a cache are non-blocking, but will use a synchronized section when the cache is
empty and the results have to be fetched and stored.

25

To summarize, multithreading was implemented to boost the performance of the program to
the maximum. This was done by parallelizing the creation and evaluation of strategy generations.
However, multithreading does not come without any risks. Some design patterns were applied to
prevent unacceptable risks to the stability of the program, according to the race conditions that were
discussed. The result of this parallelization is that the workload of the program can be spread equally
over all available cores, as one core will be reserved for the main thread and MySQL, where the rest of
the cores will execute the generation and evaluation of the generations. This means that the
performance of the program can be improved linearly to the hardware it will be run on.

4.5 MyBatis
A database is used extensively, since all strategies are dynamically created and are therefore stored in
the database. Besides this, a great amount of historic data will facilitate the evaluation of these
strategies. It would therefore be useful to use a library that could increase the ease of coding and
decrease the chance of bugs by providing a framework for database manipulation.

In Java, there is a broad collection on database libraries, as mentioned in the Orientation Report.
However, because of the huge amount of database transactions, even when historic values would be
cached, the library should be light-weight. Therefore, it was decided to use MyBatis.
MyBatis is actually rather an ORM library than a framework, however it makes the interaction with the
database much easier, since it will take care of JDBC connections and SQL queries each time the back-
end would interact with the database. It beats other ORM libraries for Java in it’s simplicity and
configurability, however during the development of the application, this turned out to also be its
disadvantage, since the integration and maintenance took more time than should be necessary.
Nevertheless, we integrated MyBatis into our application. The integration mainly consists of
implementing three different classes for each table in the database, of which a graphical representation
can be found in appendix C.

4.5.1 Database Classes
POJOs
POJOs are Plain Old Java Objects, which basically contain several private attributes, together with a
public getter and setter function for each of these attributes. When integrating MyBatis, for eacht table
a POJO has to be implemented, containing an attribute for each field of the table. These POJO’s were
used throughout the program and therefore, some POJO’s were extended with some extra attributes
and functionalities rather than getters and setters, as these functionalities do not conflict with MyBatis.

DataMappers
DataMappers are interfaces that contain the mapping between the database and the application. This
means that for each database transaction needed by the program, this interface contains a
corresponding method. This method was linked with an SQL statement containing variables which
would be determined by the parameters of the function, if necessary.
To return a usable result, each function that should return a POJO, was joined by a collection of tuples
which map the column names of the table to the attributes of the POJO. The actual execution of these
transactions is taken care of by MyBatis.

DAOs
DAOs are DataAccessObjects, which actually are the interface of the database towards the rest of the
program. If some transaction has to be made in the database during the execution of the application,

26

the application should do this by calling the corresponding function of the right DAO. This DAO will then
use a corresponding DataMapper to perform this transaction and will, if necessary, return the result of
the transaction.

4.5.2 Integration
MyBatis supports two ways of integration. The first option is to use XML files. These files are used to
construct the DataMapper configurations such as the SQL statements and the collections that map the
table names to the POJO attributes. Besides this XML files, an additional XML file is needed for
configuring the SqlSessionFactory, which will take care of the actual connection between the application
and the database.

The second option is to use java code with annotations to configure the DataMapper and
SqlSessionFactory. In our opinion this would create cleaner code and therefore it was decided to use
MyBatis with annotations.

However, during the development process some maintenance issues surfaced considering
MyBatis. On integrating MyBatis in the application, for each table a POJO has to be made, with a
corresponding DataMapper and DAO. Later on, during the development process, for each transaction a
function in the DAO has to be made, together with a function in the DataMapper, linked to an SQL
statement and a collection of tuples. In this scenario, the maintainability of this framework was already
not meeting our initial expectations.

While implementing the application, some fields were added to tables in the database. Here the
maintainability issue really surfaced, since the corresponding POJO had to be updated together with the
corresponding DataMapper. Despite the fact that updating the POJO is not a lot of effort, updating the
DataMapper would mean that for every implemented function, the SQL statement and the mapping of
field names to POJO attributes had to be updated.

However, all other expectations on this framework were met, the maintainability is not perfect
and would be something to work on in the future.

4.6 Caching
As mentioned earlier it is very expensive to run Genetic Programming jobs because of the great amount
of strategies that have to be created and evaluated. A possible way to reduce the processing cost was
already mentioned in chapter 4.4, by multithreading. Another way to reduce the execution time is
caching. Results that already have been calculated or retrieved from an external data source can be
stored so any subsequent request for that particular data is much quicker.

There are a few places where the system can benefit from caching, first of all when accessing
the database. The database is used quite frequently, especially the tables that store historic stock value
information. Secondly all the created strategies in the GP process can be very similar. Evaluating the
exact same tree twice for the exact same In-sample period will result in the same strategy performance,
thus allowing for strategy performance caching as well. Lastly, components of strategies could be
cached as well, because many strategy components are likely to be shared across different strategies,
also because of the used GP process.

4.6.1 Database Caching
The database is frequently accessed when creating and evaluating strategies. The most common
requests to the database are the retrieval of historic stock value information from HistoricValueDAO,
retrieval of a Symbol object by its id and lookups in the Module table.

To deal with caching of recurring queries Ehcache[8] was chosen as it is known for its high
performance and can easily be integrated with MyBatis. However, this was not sufficient for the
retrieval of historic values. Ehcache works by caching any query it executes, but historic values are

27

requested for each separate symbol and date combination. For a test run with 100 symbols and 30 years
of stock value data with 250 trading days per year, this comes down to 750,000 separate queries that
need to be executed by MySQL before the cache is completely filled. To increase this performance it was
decided to replace the standard integration of Ehcache within MyBatis with our own implementation
that we could preload with one single MySQL query per symbol.

When preloading the historic value cache, an additional problem was the absence of data for
some symbols on some trading days. The trading strategies are executed for every single known trading
day and if a stock is not traded on a certain trading day, its last known value should be used. To get
around this list synchronization issue as efficiently as possible, two custom iterators were implemented
to iterate over both the trading days and the known historic values for a stock, being DateIterator and
HistoricValueListIterator. The DateIterator simply iterates linearly through all dates, while the
HistoricValueListIterator is used to update the list pointer to a new date, which in case of missing
historic values means the pointer is not updated.

All the added database caching significantly improves the overall system performance, but
Ehcache still has quite some overhead. To reduce this overhead a new type of custom caching was
introduced with the HighPerformanceCache class. This class can be used in a very similar way to
Ehcache, except it uses a simple Java HashMap<String, Object> to store its values and does not
use any cache expiration policies. Without this HighPerformanceCache the system could perform
roughly one evaluate() function call in 1.04 microseconds, after customizing the cache this time was
reduced to 0.588 microseconds per call, indicating a 43% speed-up.

4.6.2 Strategy Caching
One of the reproductive operations within the GP process is duplication, meaning a new generation has
a high chance of containing strategies that had already been evaluated for the same in-sample period
for the previous generation. If the exact same strategy is evaluated for the exact same period of time
with the same fitness function, the results will also be the same, meaning the results could be cached in
these cases.

To implement this every generation writes the results of all its strategies to a cache in the job
scope. To accomplish this strategies first generate a ‘hash’ which is unique for each strategy structure
but is the same for two strategies with the same structure. This hash is generated by creating a textual
representation of the strategy, which had already been implemented for debugging purposes. The
reason the cache is stored in job scope and not in application scope is the fact that settings as the in-
sample period and the fitness function can vary per job.

One downside of this method of caching is that writing all strategy performance objects to cache
needs to be executed in a single thread, making the system somewhat less efficient on systems with
many available cores. However, the performance increase seems to outweigh the cache writes, with a
total speed-up of roughly 25% on an 8-core server.

4.6.3 Strategy Component Caching
Many of the components of strategies are also being reused in the GP process, as the reproductive
operations often leave parts of strategies in tact. In theory caching these parts of strategies should
provide a huge performance increase, but the downside is the enormous variety of strategy
components. The first problem would be how to break up strategies, as the power set of the set of
nodes in a strategy is quite large. As cache writes are relatively expensive and have to happen in a single
thread it was decided not to cache separate components of strategies.

28

4.7 Historical Data
Key to building good strategies is a large amount of sample data. For modules that are mainly based on
the chart of a stock, this means we need historical stock market values. In the database the following
values are stored for a given symbol on a given date: open, close, high, low and volume.

There are many sources of data available to pull these values from. Early in the project, the
application pulled its data from Yahoo! Finance, a high-quality free service with a public API.
Unfortunately, the Yahoo! API only allows you to place a limited number of requests until the user is
blocked from further access.

For the test runs, Bing Technology was able to provide an archive of stock market data from all
the big US indices such as the NASDAQ, NYSE and S&P, going back to 1981. This archive contains text
files for each stock with open, close, high, low and volume values.

There was a bit of a challenge getting this large amount of data in the MySQL database. The first
approach was to use a Python script to parse the data files and generate an SQL script containing
INSERT statements for each historic value. This proved to be suboptimal, as even the historic values of
a collection of 100 symbols (the S&P 100 index) from 1981 to 2011 would take roughly 5 hours to insert
into the database.

Instead of using pure INSERTS, a better approach was to use MySQL's LOAD DATA INFILE
command to insert the data directly from the text files. This allows the same 100 symbol insertion as
above to load in about 3 minutes.

4.8 Front-end
The front-end was built as a PHP web application. Its primary task is to facilitate user friendly CRUD
(Create, Read, Update, Delete) operations for strategies, jobs and modules. In addition, it allows the
user to analyze a strategy's internal tree structure, and can display interactive charts of a strategy's
performance history.

As the application had little special needs besides the standard CRUD operations, we decided to
use a web application framework. In particular, the front-end uses a custom MVC1 framework called
Roy[5], built by Maikel for a previous project. In addition, the front-end uses the Flourish[6] and PHP
ActiveRecord[7] libraries for functionality such as session handling and object-relational mapping.

Each of the tables in the database has its own model class, and each of strategies, jobs and
modules has a controller providing all relevant actions.

Being a data-centric application, the front-end could rely on PHP ActiveRecord for most
functions. One function that is not supported is a cascading delete operation that will delete an object
along with all its dependencies. This was implemented as a custom method named
delete_completely(), which is overridden by any object that has dependencies. For a Strategy
object for example, this method will delete that strategy along with any strategy values, performance
objects, jobs and nodes.

1 Model-view-controller, 2011-06-15, accessed 2011-06-20, http://en.wikipedia.org/wiki/Model–view–
controller

29

5. Conclusions and Findings
The initial goal was to create a generic forecasting framework that could be used to predict anything.
Because this task proved to be too non-specific, the goal was changed. The new task became creating a
forecasting system that could create stock trading strategies. Also, the created trading strategies should
perform better than other trading strategies and not only in the simulated period but also in the future.
In more technical terms, the out-of-sample (OoS) performance should be good in comparison to other
existing trading strategies.

5.1 In-sample Versus Out-of-sample Results
It turned out getting good OoS results is more difficult than one would expect, as any usage of OoS data
in the construction of trading strategies renders the OoS data as in-sample (IS) data. Even though this
might seem obvious, it results in persistent problems while trying to optimize OoS data. For instance,
trying out three different input parameters for the forecasting system and selecting the best input
parameters for future usage solely by comparing the OoS results of the three generated strategies
would not be a good idea. Because this comparison looks at the OoS results, the OoS period would
become an IS period and the results in the true OoS period would still be unknown.

This problem with IS and OoS results was resolved in two different ways. First of all, the used
modules and maximum allowed nodes in created strategies were chosen in such a way that the chance
of overfitting was small. Secondly all tests executed on real data were thoroughly documented and no
tests were executed without proper argumentation to support the notion that the tests did not turn any
OoS data into IS data. The result is a strong correlation between IS and OoS performance.

To test the correlation between the IS and OoS performance, the forecasting system was used
to create 40 trading strategies of which the OoS performance / IS performance ratio was calculated. It
would have been better to get even more test results but each test result was quite expensive to obtain,
with individual runtimes of at least 3 hours. The small amount of sample data should therefore be taken
into consideration when interpreting the results.

The 95% confidence interval of the OoS performance / IS performance ratio is shown in figure
5.1. The returns shown are annual factors of the initial investment, meaning a factor of 1.1 corresponds
with profits of 10% per year. The confidence interval was calculated based on the null hypothesis that
the results from the different created trading strategies were normally distributed. The basis for this
hypothesis was a combination of a visual interpretation of a histogram of the results, shown in figure
5.2, and an interpretation of the generated strategies. All results were generated completely
independent of each other, with only the initial settings for the GP process in common. Even though this
might lead to the suspicion that the results would be very similar, the resulting trading strategies from
individual test runs did not appear to have much in common.

To back up this hypothesis of a normally distributed dataset, a Shapiro Wilk2 normality test was
performed on the resulting ratios to try and reject the null hypothesis. It could not reject this hypothesis
with a used significance level (alpha) of 5%. It is therefore likely that the results are normally distributed.

2 Shapiro-Wilk test, 2011-02-15, accessed 2011-06-21,
http://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

30

Figure 5.1.

Figure 5.2.

31

5.2 Execution Time
Another interesting conclusion is the relatively long time it takes to execute tests. Each test run can
easily take a few hours on the regular Bing test server, making the execution of a large set of test runs a
very time consuming process. An average set of tests needs a large amount of runs to get more stable
results. Also, the tests seem to show that tests with larger population sizes or more generations are
usually more likely to yield better in-sample results. It was initially expected that test runs could not run
instantaneous but the final length of test runs was much longer than expected. The main reason for this
underestimation of execution time was an underestimation of the required population size and the
amount of runs.

To get a better understanding of the time it takes for strategies to be created, the size of a GP
job first had to be normalized. A way to measure the total complexity of a job is to multiply the average
amount of nodes of all constructed strategies by the amount of generations, the population size and the
amount of evaluated trading days. If the system scales linearly to those inputs, the complexity number
multiplied by a certain constant C should be fairly close to the time it takes to execute a job, with the
same C for all jobs. The time it took to execute the first 49 test runs, all executed on the same server, is
shown in figure 5.3.

Figure 5.3.

Also shown in the chart is the complexity multiplied by a certain constant C, indicating an average
processing speed of roughly 1.7 million complexity units per second. All actual execution times seem to
be fairly close to the expected time based on the complexity units, meaning it is likely that the execution
time in fact scales linearly to the amount of complexity units of a job. There is one result that stands out
from the rest, which could be explained by the fact that the server used in the tests was running other
processes as well, including periodically executed cron jobs.

32

6. Recommendations
From the outset of this project it was clear that we had an idea with a lot of potential and a very large
scope. Not only did we want to take on the ambitious – some would say foolish – task of predicting the
stock market, but we also wanted to apply these ideas to other forecasting domains.

It is therefore no surprise that we have possible improvements in mind for future development
of the product. This chapter gives on overview of recommendations to future teams (possibly including
ourselves), to improve and expand upon the forecasting application.

6.1 Parameter Tweaking
As a result of our Genetic Programming approach, the application contains a lot of parameters. Fitness
function, population size, GP operation rates such as the duplication rate, just to name a few. Although
we've extensively tested the program to optimize these parameters, we feel there is room for
improvement.

An example of possible further improvement is tweaking the used generation size for different
fitness functions. It is possible to change the fitness function to get better results, but it is not certain
what the minimum required generation size should be to get stable results using that new fitness
function. As a result of this, every change in fitness function should also result in a thorough retesting of
the minimum required generation size, the downside of which is the relatively long time it takes to run a
new batch of tests.

Tweaking the required generation size is just an example of the dependencies between
parameters that needs to be tested. In theory every single combination of parameters needs to be
tested, but that is not feasible given the amount of time it takes to run tests. However, it is
recommended to create a test plan for further parameter tweaking, researching known and expected
dependencies and suggesting a minimal set of required further tests.

6.2 Modules
In order to be able to construct powerful and flexible strategies, we have implemented a wide variety of
technical indicators as modules. However – as a quick look at a reference such as StockCharts' list of
Technical Indicators and Overlays[2] will tell you – there is much more ground to cover. A list of
additional technical indicators that are suggested to be implemented is shown in appendix B1.

6.3 Industry Aggregation Data
At the moment, all strategies are based purely on data from individual stock symbols. The algorithm may
perform better when we take into account aggregative data from entire financial sectors or industries.
For example, we would want to answer questions such as: "Which financial industry should I invest in,
Technologies or Consumer Goods?"

Sources of financial data such as Yahoo! Finance can provide this kind of data[3]. For example,
Yahoo! Finance can tell you the total market cap and P/E ratio on a per-sector or per-industry basis.

6.4 Qualitative Data
As mentioned in the Orientation Report, there are multiple ways to approach investment strategies.
One is Technical Analysis, or the chartist approach, which looks only at historical stock price data.
Another is Fundamental Analysis, which bases its decisions on information about a company, such as its
earnings reports.

So far, most modules we have implemented are chartist in nature. We would like to incorporate
modules using fundamentalist data as well. There are data sources available for fundamentalist data, we

33

would need to look into these sources to see exactly what sort of data they provide and which source is
the best.

We may also want to include more unconventional sources of data such as Twitter. The
Orientation Report contains more information about the potential of Twitter as a source of investment
data.

6.5 Short Selling
So far all we have allowed trading strategies to do is taking long positions in stocks. This basically means
the strategy can select any of the provided stocks and buy as much of it as it has available cash or sell as
many of the stock as the strategy owns. In addition to these long positions, the system could also be
adjusted to allow for covered short selling as well. When allowing strategies to take advantage of this
trading method, they can benefit from drops in the price of stocks, rather than rises.

One possible downside of allowing short selling is that some implementations enable the loss of
more assets than available to the trading strategy, resulting in effective bankruptcy of a trading strategy.
This situation could be resolved by limiting the possibilities for short selling available to the system to
relatively safe ones, such as purchasing, but not selling, put or call options.

There are different types of available options as well, of which American-style options seem to
be the most practical because of their flexibility, making them easy to connect to the existing system.
However, more research is needed to find out if any other option styles might be more fit for usage in
the forecasting system.

6.6 More Advanced Option Trading
Besides the introduction of options to enable short selling, the system could also benefit from the
introduction of other combinations of options. Some investors might prefer to reduce their exposure by
limiting the downside risk on investments, which could be ensured by wrapping an entire strategy by a
stabilizing option strategy. A possible stabilizing strategy that could be implemented is a collar, which
buys put options and sells call options for the stocks owned.

The advantage of this strategy would be that possible losses per transaction are limited,
providing more certainty for the investor. A disadvantage of this collar strategy is the limit it imposes on
the possible gains per transaction, although that can also be seen as a possible advantage for the
resulting Sharpe ratio.

Other option strategies should be investigated as well, such as fence, straddle, strangle, iron
butterfly and iron condor.

6.7 More Accurate Transaction Costs
An important factor in creating strategies is how transaction costs are handled. A broker will charge a
certain amount for every buy/sell transaction, limiting the amount of transactions an investor can
perform without making too much losses.

At the moment, transaction costs are handled rather conservatively. In reality, broker policies
for transaction costs can be complex. We would like to take the utmost advantage of transaction
policies to improve our strategies.

6.8 Cloud Computing
Creating and evaluating strategies is very computationally intensive task. Although optimizing the
software has been a priority, pure software optimization can only get you so far. In order to improve our
results, we would need a lot of hardware.

34

Instead of buying and maintaining this hardware ourselves, we would like to utilize one of the
many cloud computing services available. In particular, we'd like to deploy the application to Amazon's
Web Services (AWS) platform[4].

Given our back-end/front-end architecture, it would make sense to deploy only the back-end to
AWS, and have the front-end talk to each of these instances. This would require some rethinking in how
we communicate between back-end(s) and front-end, either by re-engineering the front-end to talk to
several (remote) databases, or by abstracting – from the front-end's point of view – the remote
databases into one big master database.

35

References
1. StockCharts.com – Chartschool, Money Flow Index (MFI), 2011-01-25, accessed 2011-06-16,

<http://stockcharts.com/help/doku.php?id=chart_school:technical_indicators:money_flow_ind
ex_mf>

2. StockCharts.com – Chartschool, Technical Indicators and Overlays, 2011-06-09, accessed 2011-
06-17, <http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators>

3. Yahoo! Finance, Industry Browser – Sector List, 2011-06-17, accessed 2011-06-17,
<http://biz.yahoo.com/p/>

4. Amazon Webservices, accessed 2011-06-17, <http://aws.amazon.com/>
5. Krause, M.R., Roy project page, 2011-05-03, accessed 2011-06-20,

<https://github.com/mkrause/roy>
6. Flourish, accessed 2011-06-20, <http://flourishlib.com>
7. PHP ActiveRecord, accessed 2011-06-20, <http://www.phpactiverecord.org>
8. Ehcache, Terracotta, 2011-05-23, accessed 2011-06-20, <http://ehcache.org>

36

Appendix C - MyBatis

Figure C.1. The design of the MyBatis library. For each table a DAO, DataMapper and Data object exists,
however only Symbol and Node are viewed here as an example.

37

Appendix F - Packages
Data
The Data package contains all the classes for data objects. These are simple POJOs (Plain Old Java
Objects), and consist only of some attributes and their getter and setter methods. If necessary,
additional functionalities can be added to these objects to increase the ease of coding.

DAO
This package contains all the DAOs (Data Access Objects), which can be seen as model classes (in the
MVC sense). These objects use their Data Mappers, in combination with the MyBatis library to
manipulate the database.

Strategy
This package contains all the controllers that construct and evaluate trading strategies. This is therefore
divided into subpackages, listed below.

Strategy.Nodetypes
This package contains the abstract data classes which represent the different node types a tree can
consist of. Note that these abstract classes contain several methods and attributes, however they do not
put constraints on the amount and types of their children.

Strategy.Modules
This package actually contains the innovative part of the application. In this package, all implemented
modules will be stored which are basically the nodes of which the tree of a strategy will be constructed.

Strategy.Evaluate
This package contains all controllers which are necessary to evaluate the constructed strategies.

Genetic
This package contains all the controllers needed to genetically construct strategies. In fact, this is the
real Genetic Programming part of the system.

Parallel
This is a smaller package, however not less important, since it provides the functionalities that are
needed for multithreading some parts of the program, so we can really use the full capacity of all
available cores on the server. In the future it can be adapted to allow for job distribution across multiple
servers.

Poller
This package will contain the part of the program that is continuously running. This means it will retrieve
jobs from the database and execute them with the use of the other packages, as well as evaluating all
strategies that weren’t evaluated in the last 24 hours.

Scraper
This package is a less complex however not less important part of the program, as it scrapes historic
values from the web. Initially this will be done from Yahoo Finance, however this package can also

38

include other scrapers such as a Twitter scraper. These historic values will be stored in the database
after which they can be used for the evaluation of constructed strategies.

Test
Last, but certainly not least, the test package. Not all methods will be tested since some are quite trivial
to test. For all code that will be tested however, the test suites will be put in this package.

39

Appendix G – Database Design

Figure B.1. The database design

40

Appendix H – Genetic Programming Sequence Diagram

Figure D.1. The first part of genetically creating new strategies.

41

Figure D.2. The second part of genetically generating a strategy.

42

Appendix I - Orientation Report

Preface
In the fourth quarter of the 2010–2011 academic year, we – a team of three Computer Science students
at Delft University of Technology – will be working on our BSc. Project at Bing Technology in the
Philadelphia area, USA. The project entails the design and implementation of forecasting software. This
Orientation Report contains the results of our initial research into the field of forecasting and some of
the available technical solutions – such as software libraries – we might use to build such forecasting
software.

1. Introduction
Forecasting is a problem with a long history and many applications. Given a record of past events, can
we say anything about future outcomes? In other words, can we predict seemingly random patterns like
the weather, the stock market or the pattern of sun spots given historical data? Such predictions are not
always possible. For example, some have hypothesized that stock market prices evolve according to a
completely random process called a random walk3. If this is the case, we cannot say anything useful
about the future of such a statistic. If, however, we can discover certain trends and patterns, then we
can try to find strategies to accurately predict changes.

We are interested in the problem of forecasting in general, and believe that there is enough
overlap in the various techniques for forecasting to merit the making of a general software framework
that can be applied to specific problems using a modular approach. However, we will focus on two
specific fields of interest to guide us, and the implementations of one or both these will form an
important end product for our project. The first field of interest is the stock market. There has been a lot
of work in this area to analyze data and find effective strategies. It is also an area where a small
algorithmic improvement over current methods can have a big impact. The second field was inspired by
a competition set up by the Heritage Provider Network, the goal of which is to predict which patients in
America are at high risk to be hospitalized in the next year. An algorithmic solution to this problem has
the potential to save billions of dollars in unnecessary hospital admissions.

2. Heritage Health Prize
On April 4th, 2011, the Heritage Provider Network (HPN) launched a competition to find an effective
predictive algorithm that can identify patients who will be admitted to a hospital within the next year,
using historical claims data4. The HPN has offered a prize of USD $3 million for the winner of the
competition. The applicant receives a dataset of three years of medical insurance claims, and will be
asked to predict the values of the fourth year. The applicant's entry will be evaluated using the following
score:

Figure 2.1. Heritage Health Prize evaluation function.

3 Random Walk Hypothesis, 2011-05-03, accessed 2011-06-21,
<http://en.wikipedia.org/wiki/Random_walk_hypothesis>
4 Heritage Health Prize, accessed 2011-06-21, <http://www.heritagehealthprize.com>

43

Where pi is the predicted number of days in hospital for member i, and ai is the actual number of days,
unknown to the applicant. The Heritage Health Prize is part of the Kaggle platform of data prediction
competitions, which will be covered in more detail in chapters 3 and 4.

3. Forecasting Methods
Many techniques have been developed to perform forecasting, many statistical in nature. This chapter
reviews some of these techniques.

3.1 Regression Analysis
Regression analysis5 is a statistical method used to analyze the relationship between a set of variables,
some dependent on the others. Using a regression model, one can extrapolate the data to values
outside the range of the dataset, making such models very useful to make predictions. Regression
models are often combined with machine learning algorithms, which have proven to be efficient at
creating a regression model from large amounts of data.

3.2 Stock Market Analysis
Stock market forecasting involves trying to determine the value of company stock at some point in the
future. Or, in a less absolute but still useful form, which stocks to buy, sell or hold, and when. This
determining "which stocks" is often called selective skill, whereas the "when" part is called timing skill.
Methods to perform forecasting fall into three broad categories:[1]

 Fundamental Analysis
 Technical Analysis
 Technological Methods

These methods can be automated to various degrees, but an investor will generally stay involved in the
decision making process.

3.2.1 Fundamental Analysis
Fundamental analysis6 involves analyzing all relevant information about a business, such as financial
statements, competitive advantages and competitors. An important tool for fundamental analysis is a
company's financial ratios, such as the Price/Earnings (P/E) ratio.

3.2.2 Technical Analysis
Technical analysis7, or "charting", is based on the trends of a company's stock price. Technical analysts
use time series analysis (where a time series is a series of data points in time) to determine future prices.
"Trends are your friend," is their motto. Many numerical patterns (such as "head and shoulders" and

5 Regression Analysis, 2011-06-19, accessed 2011-06-21, <http://en.wikipedia.org/wiki/Regression_analysis>
6 Investopedia , Fundamental Analysis: Introduction, accessed 2011-06-21,
<http://www.investopedia.com/university/fundamentalanalysis>
7 Investopedia , Technical Analysis: Introduction, accessed 2011-06-21,
<http://www.investopedia.com/university/technical>

44

"cup and saucer") and statistical methods (such as the exponential moving average) are used to predict
future trends.

3.2.3 Technological Methods
Making use of the power of modern computers and advents in the science of computational models,
technological methods are used to determine future stock prices using techniques such as Artificial
Neural Networks (ANN) and Genetic Algorithms/Programming. Moreover, some are using Data Mining
(of social media like Twitter for example[1]) to find out what the current sentiments are regarding a
certain company.

45

4. Market Analysis
A number of software solutions already exist to perform forecasting. This chapter presents an overview
of the most important such solutions available today.

4.1 Forecasting Platforms

4.1.1 Kaggle
Kaggle8 is a website that serves as a platform for data prediction. It hosts competitions, like the Heritage
Health Prize, with the goal of solving data prediction problems using outsourcing to a large crowd.
Kaggle can be useful to us as a source of information, as it gathers a large community of experienced
data analysts, and it might even serve as a verification of our software if we manage to solve one of the
given problems.

4.1.2 Google Prediction API
Google offers an API to run machine learning algorithms on their powerful servers.9 A user can upload
training data via this API, and have Google perform predictions on new instances of the data. The API
can be used to identify, for example, spam, the language of a piece of text, or product
recommendations. This API may prove useful to us as a way to run very complex calculations as part of
our algorithms, if necessary.

4.2 Stock Market Software
A number of software solutions already exist to perform stock market analysis. Unfortunately, the
trading software scene is filled with "get rich quick" schemes. This section attempts to separate the
wheat from the chaff and give an overview of the most prominent products available.

4.2.1 Online Stock Screeners
There are various online services providing up to date or even real-time stock screening. Prominent such
services include Google Finance and Yahoo Finance, both of which are free to use. These sort of financial
services are a fast and easy way to gather a large amount of data, but are generally limited in their
ability to analyze this data.

4.2.2 MetaStock
Type: charting tool

Price: $499+

MetaStock10 is a technical analysis tool by Thomson Reuters. It allows you to view current and historical
stock data, and perform statistical methods on this data. The software provides many "expert
strategies" advising you when to buy/sell/hold. It also allows you to back-test a strategy on historical
data to test its performance.

8 Kaggle, accessed 2011-06-21, <http://www.kaggle.com>
9 Google Prediction API, accessed 2011-06-21, <http://code.google.com/apis/predict>
10 MetaStock, accessed 2011-06-21, <http://www.equis.com>

46

4.2.3 Tradecision
Type: charting tool including technological methods

Price: $1195 – $1995

Tradecision11 is another technical analysis tool, with the distinguishing feature that it allows you to
create Neural Network models to use in trading strategies, as well as using a genetic algorithm for fast
optimization. This is an example of using technological methods to optimize a strategy.

11 Tradecision, accessed 2011-06-21, <http://www.tradecision.com>

47

4.2.4 Tweet Trader
Type: data mining (technological method)

Price: free web service

TweetTrader12 is a free web service that produces stock market predictions according to tweets
concerning the stock market. As mentioned by J. Bollen et al.[2], predictions can be made based on
Twitter moods, so a PhD student of the University of Munich, called Timm Sprenger, analyzed 250,000
tweets during six months and found that investors following stock market tweets could have achieved
an average return rate of 15%[3]. Consequently, he developed a web service that gathers tweets related
to the stock market and asks the community to evaluate whether they think this tweet speaks positively
or negatively about one or more stock symbols. These inputs are then used to improve the text analysis
algorithm the website uses to make predictions on individual stock symbols.

They are also currently improving their algorithms to detect tweets that consider stock
branches, rather than individual stock symbols [12]. All in all this results in a service which can make very
accurate predictions (up to 98%) on individual stock symbols [13], which means that it might be
interesting to use this service as part of our financial forecasting software.

12 TweetTrader, accessed 2011-06-21, <http://tweettrader.net>

48

4.3 Forecasting Research Using Innovative Algorithms
During the search for any information on financial forecasting, some research on forecasting algorithms
was found related to our approach, using innovative algorithms like genetic programming. In this
section, these articles will be summarized and discussed briefly.

Grant V. Farnsworth et. al.[4] describe how genetic programming can be used to combine
different buy-sell-hold signals based on different modules like the moving average
convergence/divergence and various exponentially weighted moving averages. These strategies are then
genetically combined to create an algorithm that uses the best of both to ultimately create one buy-sell-
hold signal that is more reliable than all other signals currently known. In this paper, the authors
conclude that genetic programming can be used to identify predictable patterns in financial asset prices
and outperforms most buy-sell-hold signals on average.

In general, this approach is quite similar to our approach. However, a fundamental difference is
that the outcome of our product is more than just a buy-hold-sell signal for one stock symbol. Our
output will be a proposed portfolio composition with exact amounts, rather than just a signal which tells
you whether you should buy or sell, without any recommended amount.

Another difference is that our algorithm will be far more complex. In the paper the authors use
relatively simple operators and literals, as they use buy-sell-hold signals, which are all the same kind of
input, and compare these to each other. In the approach proposed to Bing Technology, the generated
strategies will consist of different modules which have different output types, connected by different
operators, which require various input types. This will therefore be seen as evidence that our approach
is first of all feasible and secondly will outperform conventional methods on average. Taking in mind
that our algorithm has a much more complex structure, which gives the opportunity to actually act on
any time series that are provided to the algorithm, our algorithm is bound to have a result which should
be at least as good as the result described in the paper.

49

5. Metrics
In order to optimize a trading strategy, we need to have some measure of the quality of an investment.
This chapter presents an overview of some of the available metrics.

5.1 Sharpe Ratio
The Sharpe Ratio is a measure of the excess return of an investment, with a correction for the risk of an
investment. It is defined as:

Here, R and Rf are stochastic variables representing the asset return and the return of a benchmark (e.g.
a risk-free investment like a savings account) respectively. R - Rf then gives us the excess return over the
risk-free rate, and σ is the standard deviation of this excess return. When Rf is replaced by Rb – the
performance of a certain benchmark such as the market as a whole – the same formulas can be used to
calculate the Information Ratio.

The SR is a dimensionless value indicating the performance of the investment. However, the
measurement interval does affect the Sharpe ratio. Due to the central limit theorem, under the
assumption that returns per time unit are independent and identically distributed measuring the returns
per month will result in a higher standard deviation than measuring the returns per deviation[11].
Usually, Sharpe ratios are measured each month and the results annualized[5]. This is done as follows:

When applying this formula to monthly measurements, the annualized Sharpe SR(12) becomes the
monthly Sharpe ratio SR multiplied by the square root of 12. It should be noted this aggregation into an
annualized Sharpe is not always correct, but an excellent approximation for most applications[5].

In some cases the returns per time unit are not independently distributed, in which case an
alternative method should be used to create annualized Sharpe ratios from monthly measurements.
This method is described as:

50

Because this second method of aggregation will take significantly more time to implement and run than
the first method, increase the complexity and only provide more accurate results in some cases[5], we
will use the simplified method of Sharpe ratio aggregation.

When comparing two Sharpe ratios to each other, the measurement interval is not important,
as long as both ratios were measured in the same way. When looking at Sharpe ratios on their own
however, it is important to use one standard measurement interval. This standard measurement
interval is usually one year, which is also referred to as annualized Sharpe ratio. Given two investments,
if we use the same benchmark, then the investment with a higher Sharpe Ratio has a better risk
adjusted performance than the other.

Note that, since S is dimensionless, we cannot say anything useful about the absolute value of
the Sharpe Ratio, we can only use it to compare different investments among one another. A related
instrument, the Modigliani Risk-Adjusted Performance (RAP), addresses this weakness. This instrument
is calculated as follows:

Where is the standard deviation of a benchmark portfolio and Rf is the Risk-free rate. When
comparing individual strategies from one GP job, both the and the Rf remain the same, making
comparison of RAPs redundant when the Sharpe ratios of the same strategies are already being
compared.

As a general guideline, we can say that an annualized Sharpe ratio of 1 to 2 is good, 2 to 3 is very
good and 3+ is excellent[6], a Sharpe ratio of 5 or higher should not be possible[7].

5.2 Sortino Ratio
While the Sharpe Ratio is a very useful indication of the risk-free performance of an investment, it has a
major downside. Because the ratio is divided by the standard deviation of the excess return over the
benchmark, it penalizes both upside and downside volatility. It could be argued that upside volatility by
itself does not attribute to the total risk involved in an investment. Also, under certain circumstances the
overall Sharpe ratio could be improved by only ‘discarding’ some of the profits that caused the upside
volatility. An example:

51

 Excess return over benchmark Excess return over benchmark,
with some discarded profit

 1 1

 2 2

 3 3

 4 3

Mean 2.5 2.25

Standard deviation 1.29 0.96

Sharpe 1.94 2.35

An alternative ratio that addresses this issue is the Sortino ratio, which is calculated in roughly the same
way as the Sharpe ratio, except it divides by the downside risk only. The formula for the Sortino ratio is:

Where R is the annualized return of the investment, T is the target and DR is the downside risk. If the
value for T is determined by Rf, the ratio can be used to calculate the risk-free performance of
investments, much like the Sharpe ratio.

The downside risk is calculated as:

where f(x) is the probability distribution function of R.

52

5.3 Calmar ratio / Maximum Drawdown
Another way to measure the performance of an investment strategy is to see how big the biggest
sustained losses have been. This is important because the change needed to recover from a loss relative

to the loss increases with the loss (). A measurement for the biggest sustained losses is
called the maximum drawdown (MDD), which is specified as the maximum relative drop from the prior
maximum. This can be written as the following formula:

Where X(t) is the total value of the portfolio at time t. Using this MDD, a new ratio, called the Calmar
ratio, can be constructed that accounts for both the profits and the greatest sustained losses:

Note: A very similar ratio is the Sterling ratio, in which the MDD(T) is replaced by (MDD(T) - 10%).

An interesting aspect of the Calmar ratio is its statistical relation to the Sharpe ratio. For a
similar measurement period, the Calmar ratio can be derived from the Sharpe ratio and vice versa[8].
Because the measurement period is the same for all different evaluated strategies within one GP job,
usage of the Calmar ratio in the fitness function will not yield any better results than usage of the Sharpe
ratio. The same goes for the Sterling ratio[8].

5.4 Bias Ratio
The Bias Ratio (BR) is a ratio that indicates the ratio between the amount of months with a positive
performance versus the amount of months with a negative performance. This is calculated by:

The amount of months which yielded a profit is described as PM and the amount of months in total is
described as M.

53

The BR can be used in addition to the Sharpe Ratio to detect return smoothing. A Sharpe Ratio
can in some cases be artificially high due to excessive smoothing, which can be detected by the BR[9].
Smoothing is a form of 'Financial Engineering' in which excessive returns (returns above the average) are
temporarily hidden and resurfaced at a time at which the returns are below average[8]. Because
smoothing by itself does not add value, but does increase the Sharpe ratio and some investors base their
actions on the Sharpe ratios, an instrument to detect smoothing is required. The BR is one quantitative
instrument to detect this. It is also shown not to have a statistical relationship with the Sharpe Ratio,
making it a good addition to the set of measurement instruments.

Because all investment strategies constructed by one GP job use the same valuation method,
there is no risk of accidental smoothing which therefore does not need to be detected by the fitness
function. Therefore the Bias Ratio will not be a part of the fitness function.

5.5 Maximum Negative Outlook / Investor Emotion Quantification
Another important aspect of any investment strategy is the maximum negative outlook it yields. When
applying investment strategies in reality, it is important that any failure can be detected quickly so the
strategy can be abandoned before too much damage is done. Also, investment strategies that result in
long negative outlooks easily lose the trust of potential investors, which should also be avoided.

There are several different methods to calculate the maximum negative outlook and no single
method is perfect as its effectiveness is mainly based on human emotion. The different methods to
measure the maximum negative outlook are:

 Longest depression
The longest period between any two points in time during which the value at the first point is
not exceeded by any other point.

 Longest underperformance of safe investment
The longest period of time the investment strategy performed less than an investment strategy
taking a long position in a safe investment from the start.

 Most consecutive losses
The maximum amount of consecutive time-units with negative performance. These time units
should probably not be as small as one day, as a single positive day does not emotionally
compensate a series of surrounding negative days. The time-units should also not be as large as
one year, as the difference between 0 and 1 year with negative performance is too large for the
range of emotional stability of investors. Useful options could be weeks or months.

The first option, measuring the longest depression, has one critical flaw. If at any point the investment
reaches a high and a recessing market causing a steep decline, a full recovery could be very time
consuming. The entire period it takes the investment to return to its old high would be considered as
one long depression, while this is likely not to be a good representation of the investor emotion.
Therefore this method does not seem to be a valid way to measure the maximum negative outlook.

54

The second option seems like a fairly reliable way to measure the maximum negative outlook as
investors are likely to compare their current returns to a safe investment that started out at the same
point. However, investment strategies that start out with very high returns and only lose value after a
certain point are also bad for investor emotion, even if the total returns from the start remain above
those of a safe investment. This property makes measurement of maximum negative outlook by means
of the second option insufficient as well.

Measuring the most consecutive losses seems to be an even more reliable way of measuring
investor emotion as it captures long periods of negative returns but does not necessarily yield bad
results after a peak in the overall returns. One downside of measuring investor emotion in such a way is
the lack of measurement of total returns. Therefore this method is valid for measuring the investor
emotion, but only if combined with other metrics that ensure the total returns are solid as well.
Combining this method with a Sharpe or Sortino ratio could fulfill this requirement.

5.6 Input stability / ‘Data Mining’ prevention
It is also important to measure the level of ‘data mining’ an algorithm executes. An example of a bad
algorithm that uses ‘data mining’ is an algorithm that will base its decisions on the date. Using Genetic
Programming such an algorithm would likely develop into a strategy that bases its prediction on date T
mainly on T, effectively over-fitting on the period which the fitness function measures in a way that is
not likely to maintain success in a future period. This is due to the fact that such an algorithm would be
mapping separate events rather than actual behavior.

Testing an algorithm during the time the fitness function uses to measure the performance of
algorithms can be described as in-sample testing and testing an algorithm with data from dates outside
those used in the fitness function that was used to construct the algorithm is called out-of-sample
testing as described by Swinkels[1]. The input stability indicates how closely related the in-sample and
out-of-sample results are.

Measuring input stability as part of the fitness function is slightly complicated as comparing
results from in-sample and out-of-sample testing basically renders both tests in-sample tests. To cope
with this problem, it is important to construct the algorithm in such a way that they are likely to have a
high input stability, without actually measuring it.

5.6.1 Prevention
One way to ensure input stability is prevention. If the genetically constructed programs are not able to
acquire too much information about events, they will also be unable to use information on separate
events and will be much more likely to start mapping behavior instead. It is not possible to eliminate all
event information in the inputs given to the algorithms, as all information can be seen as event data in
some way. However, by using a form of Genetic Programming with relatively large ‘operator’ nodes, it is
possible to ensure the nodes do not extract too much detailed information of particular events. It should
be noted prevention does not provide a good method for comparison of generated algorithms as they
were all constructed with the same preventive measures.

55

5.6.2 Measurement of Branch Coverage
Different generated algorithms could be compared to each based on their input stability by means of
branch coverage measurement through time. This could be achieved by creating one large function
containing the code from all ‘operators’ of the genetically created programs as well. The level of branch
coverage through time would be a relatively good measurement of input stability. Event-mapping
algorithms would be more likely to have branches that are only invoked during certain events, whereas
behavior-mapping algorithms would be more likely to mainly consist of branches that are covered more
frequently.

5.6.3 Measurement of Diversification Potential
Another method to compare the input stability of two genetically generated financial forecasting
algorithms is performance measurement after applying the algorithm on different stocks. Given an
algorithm that trades the stocks S1…Sn, the effect swapping Si (1 <= i <= n) for another random stock has
on the algorithm performance determines the input stability by means of diversification potential
measurement. An algorithm with a high diversification potential measurement is less likely to be an
event-mapping algorithm as it could not be mapping events for individual stocks, but only for the entire
market or at least a large segment of it. Events that occur in the entire market are already an aggregate
of individual stock events and are therefore more likely to be the linked to market behavior instead.

5.6.4 Precognition Interaction Paradox
Another important aspect of input stability that needs to be considered is the way in which usage of the
resulting algorithms will affect the future inputs for this algorithm. If an algorithm for financial
forecasting turns out to be very effective and starts being used to manage a significant investment, the
future stock prices are likely to be influenced by the predictions of this algorithm. This is due to the
Precognition Interaction Paradox: “The ability to change the future state of any object at time T is
mutually exclusive with the ability to predict the state of the object at time T with certainty”. This holds
true because if it was not, a machine could be constructed that knows the state of the object at time T
and would change it to something else, leading to a contradiction. This same effect applies to the usage
of forecasts, as soon as they start being used in a way that will influence the future inputs of the
algorithm, the quality will decline.

56

6. Genetic Programming
Genetic Programming (GP) is a machine learning technique from the field of Artificial Intelligence.13 In
GP, operations inspired by natural evolution are used to construct syntax trees representing an entire
program. The technique is a specialization of the broader class of Genetic Algorithms.

In GP, there are several steps which have to be repeated to eventually construct an algorithm
which performance converges to the best possible performance. First of all, GP works with generations.
These generations consist of dynamically constructed programs that can be modeled as syntax trees. To
measure the quality of such a program, a fitness function is needed, which can consist of (combinations
of) all kinds of measurements, depending on the expected outcome of constructed programs.

When a GP algorithm starts, it first starts with constructing an initial population of M programs,
which is done by randomly creating syntax trees. Next, a sequence of executions follow which will be
repeated for N generations. First of all, all the programs of the current generation have to be rated using
the fitness function and are then ordered accordingly. Secondly, a program is picked out of the current
generation, where programs with a higher fitness function are more likely to be picked. This program
can then be either duplicated, mutated or combined with another program of the generation. The result
is then put into the next generation.

These steps will be repeated until the next generation consists of M programs, after which the
same steps will be executed for the next generation and so forth. After N iterations, a generation was
constructed which should have been converged to the maximum fitness value possible.

In our situation, this principle is extended in several ways. First of all we have several modules
which, combined, should be able to construct any currently known stock trading strategy. Not all
modules have the same outcome, nor need the same (numbers of) input, which means the generation,
mutation and combination of trees is slightly more complex. Secondly, our fitness function isn’t purely
based on the total profit that a strategy would make, but also on several other measurements which are
mentioned above in chapter 5. These metrics will be calculated by evaluating the generated programs
with the use of the stock data that is scraped from the web.

Finally, we will introduce several functionalities to tweak the performance of the GP algorithm,
such as penalties for strategies which are too complex. Eventually, in theory, this should lead to the
optimal stock trading strategy, depending on the input given such as available stock symbols, which
should outperform all other strategies.

13 Genetic Algorithms, 2011-06-20, accessed 2011-06-22, <http://en.wikipedia.org/wiki/Genetic_algorithms>

57

7. Framework Research
Before implementing the application, some research on Java and PHP frameworks had to be done to
investigate if these might give any advantages during the implementation and testing phase. This means
research had to be done on frameworks for both coding and testing in Java and PHP. The problem with
most frameworks is that they can make the coding much easier, however they are usually full of, in this
context, unnecessary features, which will only cause the application to run slower. Therefore the
framework has to be selected according the following criteria:

 It has to be light-weight (as few unnecessary features as possible)
 It should have features which makes coding easier
 It should be easy to set up, learn and use

Below, you can find the frameworks we found, followed by a brief evaluation of the reasons why this
framework might be of use.

7.1 Java Development Frameworks

7.1.1 Hadoop
Hadoop14 is a framework which is specially made for processing large quantities of data. This is used by
high-profile companies such as Google and Facebook, which process quantities of data that are too large
for a regular database. This is done by distributing tasks over several PC's, using the map and fold
function, known from functional programming languages. This framework requires a lot of work to set
up and extensive knowledge of Java, network structures and Linux. Even though the application might
be processing a lot of data, it can still be managed by a regular database, therefore it would contain
more features than required, causing the application to run unnecessary slow.

7.1.2 NetBeans Platform
NetBeans Platform15 is a framework which supports the development of desktop applications in Java.
Because the the forecasting application will be executed on a server, without any graphical user
interface, this framework is probably not suitable for developing the application.

7.1.3 Spring Framework
Swing16 is a decent framework for Java programming, which is used by a lot of programmers. It
comprises several modules and services such as batch processing, data access (database
communication), messaging and testing. However, it seems like a framework that is generally used for
smaller applications. The developers state that your application shouldn’t be depending on large
frameworks with huge configuration files, which only causes the system to run slow. They try to achieve
this by means of a structure which consists of one main container doing most of the work such as
gathering data and then using several relatively simple classes to do the actual calculations.

14 Hadoop, 2011-06-21, accessed 2011-06-22, <http://en.wikipedia.org/wiki/Apache_Hadoop>
15 NetBeans, accessed 2011-06-22, <http://netbeans.org/features/platform>
16 Swing Framework, accessed 2011-06-22,
<http://sourceforge.net/project/stats/?group_id=73357&ugn=springframework>

58

Despite the useful features, this is not suitable for the forecasting application, since it is a
modular system where each methodology has its own module and its own responsibilities.

7.1.4 Hibernate
Hibernate17 is rather more an ORM library than a framework, but this might still be of use. It makes the
interaction with the database much easier, since you don’t have to worry about JDBC connections and
SQL queries each time you want to retrieve data from the database. Since there will be a lot of
interaction with the database, an ORM library can be of great use. However, the disadvantage of
Hibernate is that it is a very complex system. This means that it can cause the application to run slow
and that it is not very flexible. This can be a great disadvantage, since data has to be stored in the
database in a format which can also be used by the PHP application, without too much effort.

7.1.5 MyBatis
The MyBatis18 ORM library is comparable to Hibernate, however it beats Hibernate in simplicity and
configurability. This means that it can ease the effort to use a database as well as Hibernate, but in
contrast to Hibernate, this library is light-weight. This is also because you have to configure the executed
SQL queries yourself in XML. This can be seen as a disadvantage, however in the case of the Forecasting
application, it can work as an advantage because it makes it easy to store data in such a format that it
can also be easily retrieved by the PHP application.

7.1.6 Spine
Spine19 is a framework designed to ease the portability of an application, based on multiple data stores.
However it might be useful to run the script on multiple servers if it scales to such a size that the
execution time runs out of hand, not many servers will be necessary, so the portability is not really an
issue here. Therefore, this framework is not suitable for the forecasting application.

7.1.7 Google Guice
Google Guice is an improved version of Spring but with the same underlying structure [14]. One of the
improvements is the addition of Java annotations support, however this doesn’t make it more suitable
to the forecasting project.

When designing the software, it is advised to use an MVC structure. Since the forecasting
application doesn’t have a view, this comes down to dividing the application in controllers and models.
No frameworks were found that are really suited for the Forecasting application, however the ORM
MyBatis has some significant benefits. Therefore, models of the application will be done by MyBatis,
leaving the controllers to be implemented manually.

17 Hibernate, accessed 2011-06-22, <http://www.hibernate.org>
18 MyBatis, accessed 2011-06-22, <http://www.mybatis.org>
19 Spine, 2008, accessed 2011-06-22, <http://spine.zphinx.co.uk/overview.html>

59

7.2 PHP Development Frameworks

7.2.1 CakePHP
CakePHP20 is a popular MVC web framework, in the style of Ruby on Rails. It provides a fixed directory
structure, where the user can plug in the relevant application controllers, models, etc. Its distinguishing
features are its ease of use, decent documentation and PHP4 support. However, experience among our
team members tells us that it is also limited in flexibility, and its PHP4 backwards compatibility makes its
architecture somewhat dated.

7.2.2 Kohana
Kohana21 is a web framework with a very elegant architecture, using a so called HMVC (Hierarchical
MVC) pattern, where a page's output is built up from multiple requests to controllers. Nonetheless,
Kohana suffers from lack of good documentation, and changes its API so much that there is a lot of
incompatible information and broken plugins out in the wild.

7.2.3 Alloy
Alloy22 is another HMVC framework that is very light-weight and has better documentation than Kohana.
It is however a very unknown, immature framework, and none of us has had previous experience with
Alloy, making it risky to use.

7.2.4 Flourish
Flourish23 is not really a framework, but more of a library, even though it provides much of the
functionality of a framework, such as an ORM, anti-XSS security features and user authentication. It calls
itself an "unframework" for this reason. Flourish is excellently designed, but does not immediately give
you a full-fledged application.

7.2.5 Roy
Roy24 is a minimal HMVC web framework that provides only the essential features an application
programmer needs to set up an application. It includes such features as error/exception handling, URL
routing and a standard directory structure for a very modular application. Roy makes it easy to integrate
various third-party libraries in an MVC environment. Roy is a custom framework written by one of our
team members after a frustrating experience with Kohana.

To get the benefits of an HMVC architecture, with enough flexibility and power to suit our
needs, we've decided to use the Roy framework along with Flourish and PHP ActiveRecord (an ORM).

7.3 Java Testing Frameworks
During the study of Computer Science, students are frequently taught to test their programs using JUnit.
This framework has everything one might need to make unit tests and is therefore one of the most used
testing frameworks for testing java applications. Basically, JUnit would be suitable enough to test the

20 CakePHP, accessed 2011-06-22, <http://cakephp.org>
21 Kohana Framework, accessed 2011-06-22, <http://kohanaframework.org>
22 Alloy, accessed 2011-06-22, <http://alloyframework.org>
23 Flourish, accessed 2011-06-22, <http://flourishlib.com>
24 Krause, M., Roy, 2011-05-03, accessed 2011-06-22, <https://github.com/mkrause/roy>

60

forecast application, however, it might also be interesting to do some research on other Java testing
frameworks. Bellow, the different testing frameworks are discussed and compared to each other.

7.3.1 JUnit
JUnit25 has more than once proven its benefit when implementing applications in Java. During the
course “Software Quality and Testing” this language has been extensively investigated, giving experience
and insight in all functionalities JUnit offers to test every aspect of the implemented software. This
testing framework can therefore be used as a benchmark when investigating other testing frameworks.

7.3.2 TestNG
TestNG26 is inspired by JUnit, however with several extensions. While still giving the possibility of writing
ordinary JUnit unit tests, this testing framework also has several features that facilitate support for
parameters, annotations, integration testing, dependent methods for application server testing and the
testing of multi-threaded applications.

7.3.3 JWalk
JWalk is a framework that automatically generates tests according the feedback of the developer. When
testing a class, JWalk creates several tests according to the code and presents the outcome to the
developer. The developer then gives feedback (pass or fail), which will be used by JWalk to construct an
oracle. After giving feedback to several tests, JWalk claims to be able to construct an oracle which scores
over 90%, which means that 90% of the generated test cases will be evaluated correctly[10]. Although
this might save a lot of time, this testing framework might not be suitable. This is because this
framework is especially aimed at testing the underlying state machine of a class and it can in some cases
also generate an oracle with a score of only 40%[10]. This might have catastrophic consequences for our
application.

7.3.4 DbUnit
DbUnit27 is a testing framework, or rather just a library, that resets your database to a known state
between tests so tests concerning the database won’t influence each other by leaving a corrupt or
messy database. However this can be a valuable functionality, this is not very necessary, since this is
actually one function which you can easily implement yourself.

7.3.4 Other Testing Frameworks
A lot of other testing frameworks surfaced during the research, which were all inspired by JUnit, but
didn’t contain all the features that TestNG contains. Some of the testing frameworks that were found
are Cactus, MultiThread TC, Fit, JTiger, Arquillian, JUnit EE, GroboUtil and Unitils.

25 JUnit, accessed 2011-06-22, <http://www.junit.org>
26 TestNG, accessed 2011-06-22, <http://testng.org>
27 DbUnit, accessed 2011-06-22, <http://www.dbunit.org>

61

7.4 PHP Testing Frameworks

7.4.1 PhpUnit
PhpUnit28 is a testing framework in the style of JUnit. It is the most popular PHP testing framework, and
is well documented. It provides all the basic testing functionality you'd expect, as well as some nice-to-
haves such as mocking and automated test generation using annotations.

7.4.2 SimpleTest
Another popular testing framework for PHP is SimpleTest29. This framework does not seem to be as
stable and well-documented as PhpUnit, but does include some useful features such as a "Web tester",
which allows you to test generated HTML output very easily.

28 PhpUnit, 2011-06-16, accessed 2011-06-22, <https://github.com/sebastianbergmann/phpunit>
29 SimpleTest, accessed 2011-06-22, <http://www.simpletest.org>

62

Literature
1. Interview with Laurens Swinkels of Robeco Investment Solutions, held 2011-03-02.
2. Bollen, J. et al., Twitter mood predicts the stock market, 2010-10-14, accessed 2011-06-22

<http://arxiv.org/abs/1010.3003>
3. Sprenger, T.O., Welpe, I.M., The Information Content of Stock Micoblogs, Tweets and Trades,

2010-11-01, accessed 2011-04-20.
4. Grant V. Farnsworth et. al., Successful Technical Trading Agents Using Genetic Programming,

October 2004, accessed 2011-04-30
5. Getmansky, M., Lo, A.W., Makarov, I., An Econometric Model of Serial Correlation and Illiquidity

In Hedge Fund Returns, 2003-04-28, accessed 2011-05-15.
6. Investopedia, Understanding The Sharpe Ratio, 2010-07-28, accessed 2011-06-21

<http://www.investopedia.com/articles/07/sharpe_ratio.asp>
7. Le Marios, O. et al., Return smoothing practices: a potential threat for alternative investment

growth, September 2007, accessed 2011-04-20, <
http://www.thehedgefundjournal.com/magazine/200709/technical/a-potential-threat-for-
alternative-investment-growth.php>

8. Magdon-Ismail, M., Atiya, A., Maximum drawdown, Risk magazine, 2004-10-01, accessed 2011-
04-20.

9. Abdulali, A., The Bias Ratio Measuring the Shape of Fraud, 2001, accessed 2011-06-10.
10. Simons, A.J.H., JWalk: a tool for lazy, systematic testing of java classes by design introspection

and user interaction, 2007, accessed 2011-04-20
<www.springerlink.com/index/n2l78k8777262351.pdf>

11. Sharpe, W.F., The Sharpe Ratio, Stanford University, Reprinted from The Journal of Portfolio
Management, Fall 1994, accessed 2011-04-10.

12. Followers and Foes: Defining Industry Groups with Twitter, 2011-03-15, accessed 2011-06-21
<http://tweettrader.blogspot.com/2011/02/followers-and-foes-defining-industry.html>

13. Deiters, E., Kun je echt rijk worden door Twitter te volgen?, 2011-04-21, accessed 2011-06-21
<http://www.depers.nl/economie/563206/Kun-je-echt-rijk-worden-door-Twitter-te-
volgen.html>

14. Google Guice – Spring Comparison, 2010-02-04, accessed 2011-06-22
<http://code.google.com/p/google-guice/wiki/SpringComparison>

63

Appendix J – Requirements Document

Summary
This document documents the requirements analysis of the Bing Forecast project. This is done by first
evaluating the current system, which consists of stock trading according to intuition or tools. While
some traders listen to their gut feelings, professionals trade according to tools which give information
about the current stock market or the companies behind the stock market. These two trends are called
chartism and fundamentalism.

Both these trading strategies have to be either used or outperformed by the application that will
be developed. This application has several functional requirements, such as the possibility to provide
additional analysis for the generated strategy, and non-functional requirements, such as the
requirement to outperform all other forecasting algorithms. These requirements are then prioritized
according to a MOSCOW table.

To illustrate the actual usage of the application, some use cases are described in section 3.4,
which should, in combination with the functional and non-functional requirements, cover all needs of
Bing Technology, concerning the implementation of the application.

1. Introduction
Bing Technology seeks to develop a general framework that can be used to produce specialized
forecasting tools useful across industry verticals. Initially this will be specified to two subject domains:
stock market forecasting and the Heritage Health Prize.

Bing seeks a framework that can ideally be repurposed for other tasks such as product
recommendations and other predictive domains. This would happen in a possible followup phase 2
product, as the initial product will be specialized to stock market predictions.
After consulting Dan Guy, several requirements were obtained, which will be presented in this
document. These requirements will ensure that the product will meet the demands of Bing Technology,
which will be done according to the following chapters.

First, methods currently used for forecasting will be analyzed. Accordingly, the proposed system
will be treated, as well as why this is an improvement on the current system. This will be done according
to functional and non-functional requirements, followed by several use cases to illustrate the behaviour
of the application.

2. Current system
The current “systems” that are used for forecasting are usually not digital systems, but systems based on
personal experience and analytical tools. This comes down to gut feelings and intuition, which can differ
per person. For instance in the case of stock market forecasting, a lot of traders trade according to their
personal intuition and interpretation of the stock price.

In contrast, some stock traders use various tools to analyze and quantify the current stock prize
and trade according to these tools, which is how professionals usually earn their living. Here, a
distinction can be made between two different kind of traders: fundamentalists and chartists.
Fundamentalists analyze the actual company and determine the value of the stocks accordingly. If this
value is above the actual stock price, they would advise you to invest in this company, and vice versa.

In contrast, chartists rather analyze the chart of a stock. They do this according to different tools
like Sharpe ratios, extrapolation, etc.

In the new proposed system, which will be described in the next chapter, all of these techniques
that are currently used should be used by the application, if this enhances the performance of the
forecasting algorithm.

64

3. Proposed system

3.1 Overview
As mentioned before, Bing Technology seeks to develop a general framework that can be used to
produce stock market forecasting tools, which outperforms conventional forecasting algorithms. This
can be adapted to the needs of future customers, so they can use it for their business. The general idea
is that a customer submits a task to the application to generate a strategy which should outperform all
other strategies. After the strategy has been created by the application on the server, the user can
access this strategy and its statistics, advice and structure via the web interface.

The different requirements are viewed below in a MOSCOW-table, together with any
dependencies to prioritize the different requirements. Additional information on these requirements
can be found in sections 3.2 and 3.3.

 Must have Should have Could have Won’t have Dependencies

1. Generate strategies X 6

2. Give advice for
portfolio composition
from generated
strategy

X 1, 10

3. Generated strategy
should be acceptable
to investor

 X 1, 2, 9

4. Multiple inputs X 10

5. Usage of a stateful
algorithm

 X

6. Ability to put
constraints on the
results

X

7. Run on server,
accessed by web
interface

 X

8. Provide additional
analysis

 X 1, 2

9. Analyze trading
strategy for all /
individual stocks

 X 8

10. Standard input and
output

X

65

11. Use the world as
input

 X

12. Make generated
strategies transparent

 X 1

13. Outperform all
other traders

 X 1, 2,1 3.1, 13.2

13.1 Generate accurate
predictions

 X 1

13.2 Reliability X

14. Innovative
algorithms

X

15. Ease of use X 7

3.2 Functional requirements
1. Generate strategies. First of all, the application should provide the functionality to generate a
strategy according to the stock symbols and the allowed modules the user provides.

2. Give advice for portfolio composition from generated strategy. Based on the presented result of the
forecasting algorithm, the application should be able to propose a portfolio composition to the trader.

3. Generated strategy should be acceptable to investor. The strategy generated by the application
should be acceptable to investors, which means that it will generate a strategy which they are confident
about. This means that the strategy for instance must have a Sharpe ratio that is acceptable to the
investor, high input stability and the maximum negative outlook should be limited.

4. Multiple inputs. The forecasting algorithm can base its results on multiple time series and can trade
with composed portfolios consisting of more than one stock symbol.

5. Use of a stateful algorithm. As the application could base its generated algorithm on, for instance,
the current value of the portfolio, the algorithm generated by the application should also take the
results of its previous forecasts into account.

6. Ability to put constraints on the results. When the application generates an algorithm, it is possible it
produces a value which can not be used to give an advice to the trader. It is therefore necessary to
implement the ability to put constraints on the result of the algorithm.

7. Run on server, accessed by web interface. The application can get very complex and therefore heavy
weight to run. In the worst case scenario it might need a lot of computational power, which might cause
a heavy load on the machine of potential customers. Therefore, the forecasting framework should be

66

executed on a central server that can manage the application and generate strategies in a reasonable
time without any negative side effects. The generated strategies can then be accessed and reviewed
through a web interface. Further advantages of this approach is that the application is portable to
different machines, light-weight for the customer to use and easy to install.

8. Provide additional analysis. When the forecasting framework has generated a strategy, which is then
accessed by the customer, the customer might want additional analysis to get an indication of the
quality of the generated strategy.

9. Analyze trading strategy for all / individual stocks. Depending on the customers needs, the
application needs to generate a trading strategy that performs well for one or more stocks. It is
therefore needed to analyze the performance of the generated strategy on all stocks and on any specific
stocks.

10. Standard input and output. The application should give a certain type of output when a certain type
of input is given. This means that the application should always be able to generate a portfolio
composition based on the generated strategy, as long as stock value time series, the current state and
possibly other time series such as weather reports are given as input.

11. Use the world as input. The application could take advantage of the information that is provided on
the internet nowadays. This means it can make use of time series concerning for instance the weather,
stock quantities of stores and maybe even social media like Twitter and Facebook.

12. Make generated strategies transparent. To gain the confidence of the investor, it is important to
make the generated strategy transparent, so the investor can see why certain advice is given.

3.3 Non-functional requirements
13. Outperform all other traders. In order to develop a product which can be sold by Bing Technology,
our application should outperform all other traders, or at least enough to become a viable product. This
can be done by making use of the same techniques that traders use, but can also be done by using or
generating algorithms that generate better results than these algorithms
13.1 Generate accurate predictions. In order to outperform all other algorithms, accurate predictions
have to be made by the algorithm. This can be defined as the difference between the prediction
generated by the algorithm and the actual portfolio composition of the best case scenario.
13.2 Reliability. To outperform all other algorithms, it is necessary to develop a reliable application. If
for instance the application only performs well in 25% of the time, it will not be of any use for
customers, since they will then be better of by asking a conventional trader to trade for them.
14. Innovative algorithms. Since this is a research project for as well Bing Technology as ourselves,
innovative algorithms have to be used to investigate what the state of the art algorithms in the field of
computer science are capable of.
15. Ease of use. The application should be simple to use so all potential customers can understand it and
use it to their needs to actually save effort.

3.4 Use case models
To give a general idea of the required functionalities of the forecasting application, different use cases
are described in this section. All use cases will start with a short scenario description, followed by a

67

systematic representation of the actions of the user and the executions made by the system. In all of
these use cases there is only one actor: the investor, also known as “user”.

Create new strategy
To start trading, the investor first needs to submit a task to the application to generate a new strategy.
This has to be done by using the “add strategy” functionality in the web interface, in which the user has
to select the stock symbols of interest and the modules that the application is allowed to use to
generate a suitable strategy. After the task has been submitted, the user can close the application and
check if the server has constructed a strategy later.

User System

Start application Show welcome screen

Navigate to strategy overview screen View all generated strategies (if any)

Click on “add strategy” button View form for generating a new strategy

Fill out form
Strategy name
Stock symbols of interest and sets of stock
symbols of interest
Allowed modules

Submit form Generate and execute task

View advice of a strategy
When an investor is planning to trade his stocks, he first starts the application to view the advice that
was generated by a created strategy. This is done by opening the strategy overview screen and clicking
the strategy he wants to use.

User System

Start application Show welcome screen

Navigate to strategy overview screen View all generated strategies

Click a strategy of interest If generated strategy is a broadly applicable
strategy, ask for stock symbols to apply the
strategy on

If necessary, provide stock symbols to provide the
strategy on

Generate and view proposed portfolio
composition

View strategy performance

68

After a strategy has been generated, the performance of the strategy can be viewed. This is done by
opening the strategy overview screen, clicking the strategy the investor is interested in and navigate to
the performance tab. The performance is based on the scenario in which the trader would always
change his portfolio to the portfolio composition the system proposes.

User System

Start application Show welcome screen

Navigate to strategy overview screen View all generated strategies

Click a strategy of interest View the advice for this strategy

Click the “performance” tab View statistics of the strategy, such as average
sharpe, best sharpe, profit, etc...

View structure of generated strategy
After a strategy is generated, the investor might want to know the logic behind the strategy, so he
knows if he can trust the algorithm. This can be done by opening the strategy overview page and
navigating to the “structure” tab of the strategy of interest.

User System

Start application Show welcome screen

Navigate to strategy overview screen View all generated strategies

Click a strategy of interest View the advice for this strategy

Click the “structure” tab View the structure of the generated strategy.

69

Appendix K – Plan of Approach

1. Introduction
In the fourth quarter of the 2010-2011 academic year, we – a group of three Computer Science students
at Delft University of Technology (DUT) – have decided to work on our BSc. Project at Bing Technology, a
software company located in the Philadelphia area in USA.

One of our team members has had previous communication with Bing Technology, and they
have generously agreed to host us for 9 weeks in Conshohocken, PA as we work on the project on
location.

The project itself has been decided on, and will entail the construction of a stock market
forecasting application using an innovative algorithm we will need to develop. This stock market
application will serve as a proof of concept for a general forecasting framework that can be widely
applied to predictive domains.

This document functions as the plan of approach for our project. The sample Plan of Approach
(PoA) provided by the Delft University of Technology (DUT) was used as the base of this document,
except that sections were modified or omitted where they did apply to this project.

2. The Problem

2.1 Problem Description as Given by Bing Technology
The project will be performed for the software company Bing Technology, LLC. They have provided us
with the following problem description:

Bing Technology seeks to develop a framework that can be used to produce specialized
forecasting tools useful across industry verticals. Initially, we are seeking to target two specific subject
domains:

1) Stock Market Prediction
2) Heritage Health Prize

Bing seeks a framework that can ideally be repurposed for other tasks such as product
recommendations and other predictive domains. This would happen in a possible follow up phase 2
project.

Note that there are two different kinds of products mentioned in this problem description. Two
specific forecasting applications and a generalization of these applications in the form of a software
framework. Implicit in this description is the creation of the underlying algorithm.

Note that the Heritage Health Prize (HHP) application mentioned in the description has – after
deliberation with Bing Technology – been dropped after reconsideration, due to time constraints and
unacceptably strict licensing terms enforced by the hosts of the HHP.

2.2 The Goals
The end goal is to produce an innovative forecasting algorithm that can be used to forecast a wide range
of predictive domains, along with an application of this algorithm in the form of a stock market
forecaster.

The generalization into a general framework is a secondary goal, which would be nice to have
but is not essential to the project.

70

To summarize, the main focus of our project will be to develop the algorithm in the context of
an application that can forecast the stock market with high accuracy. This application will serve as a
proof of concept that can potentially be generalized into a software framework.

2.3 Deliverables for Delft University of Technology
Delft University of Technology's (DUT) main interests in our project relate to the process itself. To this
end, DUT will receive the following documents:

 Plan of Approach (April 21st, 2011)
 Orientation Report (April 21st, 2011)
 Announcement of Commencement (May 2nd, 2011)
 Two-weekly progress reports (one every two weeks)
 Requirements Document (July 8th, 2011)
 Design Document (July 8th, 2011)
 Final Report + own evaluation (July 8th, 2011)
 Final Presentation (July 8th, 2011)
 Evaluation by Bing Technology (July 8th 2011, possibly later)

In addition, the SIG will twice receive a copy of our code for review, as arranged by DUT.

2.4 Deliverables for Bing Technology
The deliverables for Bing Technology are:

 Proof of Concept (May 24th, 2011)
 Finished product (July 8th 2011)
 Documentation in the form of a User Manual (July 8th 2011)

The Proof of Concept (POC) will need to be able to show that our algorithm works well enough in
forecasting the stock market, such that Bing Technology is convinced it will be able to sell this product.
The POC need not be 100% complete, it may lack some features or interface elements. It is mainly
intended as a point of evaluation.

After the POC has been delivered to Bing Technology and evaluated, we will make the final
planning for the finished product. Depending on the results, Bing Technology may decide to have us
continue work on the stock market application, or direct us to work on another application or the
general forecasting framework.

2.5 Technical Constraints
The technical constraints for this project are:

 The back-end must be written in Java
 The front-end must be written in PHP

Server requirements are not a big issue, in principle. Bing Technology will provide us a development
server with generous hardware, and the actual production server(s) may have higher performance if
necessary. The algorithm will not need to run in real-time, it may take several hours to run if needed. Of

71

course, efficient performance remains an important requirement, but high accuracy takes priority in our
case.

2.6 Schedule Constraints
The schedule constraints for this project are:

 Proof of Concept, by May 24th 2011
 Completely finished, by July 8th 2011

2.7 Risk Factors
The entire project has several risk factors which should be taken into account. Many of these risks have
been pointed out to us by Laurens Swinkels, an econometrist we interviewed prior to the start of our
project.

‘Data mining’ effect / overfitting
The first risk factor is the ‘data mining’ effect, as described by Swinkels [1]. This effect occurs when too
much incidental input data is used, causing any predictions made in the testing period to become mere
mappings of events rather than derivatives of underlying behaviour.

‘Black swan’ effect
Another risk factor mentioned by Swinkels is the ‘black swan’ effect, meaning a completely unexpected
event occurs. An example of this effect in stock market forecasting could be the sudden total collapse of
a company which used to yield relatively stable results. Bankruptcy as such could easily be overlooked as
a possible event influencing the stock prices, but many other unexpected events could happen as well. It
is important to take this into calculation while coming up with reliable forecasting strategies.

Inability to achieve sufficient quality of forecasts
Another risk factor, which is in fact more of a challenge than a risk, is the quality of the results from
forecasting tools based on the constructed application. The main target will be to create forecasts which
are more reliable than any competitors, thereby making them more valuable. However, achieving such a
quality of forecasts is difficult and there is no guarantee of this beforehand.

Inability to meet the planning
One of the toughest issues in software engineering projects, experience shows, is sticking to the original
schedule. This can be caused by wrong time estimates or unpredictable factors. We try to avoid this by
using a Scrum workflow, which is specially designed for getting projects done in time. Another way we
tried to counter this problem is the introduction of some slack, allowing for small delays without real
consequences. Despite all this, it is still possible that some phases will take more time than estimated.
Consequently, it is important to set priorities in case this happens besides working harder of course.

As discussed in chapter 3 most phases build on the previous phase. This means that if we get behind on
schedule, we cannot drop the current phase we are working on and move to the next phase. This is only
the case for Phase 5 and 6, since these phases mostly consist of adding and implementing new
strategies, which will be implemented as modules. After completing the implementation and testing of
the current module, it is possible to move to the next phase. However, this will have to be discussed
with Bing Technology.

If we get behind on schedule during any other phase we have to analyze why this happens and
check if we can do anything about it.

72

3. Approach

3.1 File Sharing
We will use a shared Dropbox account to sync files such as documents, proceedings, research papers
and design source files. Dropbox is free up to 2GB of data, and provides live syncing and even some
version control.

3.2 Documentation
All documentation shall be done using Google Docs. This free tool allows us to easily collaborate on
documents online, and also provides a limited form of version control.

At the end of each phase, all documents should be in a readable state. That is, it should contain
no "to do's" and be reviewed for spelling and content by all team members. All documents will then be
exported and archived as the end result of that phase.

3.3 Methodology
We will use iterative development for the entire project, building and releasing the product in several
phases. For each phase we will use the V-Model to construct the final product, starting out by defining
the global requirements, working our way down to module requirements and the final implementation.
During the explication of the requirements of all stages, we will also define the test designs and if
possible test specifications.

As far as the workflow is concerned we will use a variation of Scrum, with a brief status meeting
at the beginning of each day and a finalization of a Phase roughly every week or so, allowing us to finish
up all phases in time for the final deadline.

The specific forecasting applications we will be working on require a lot of knowledge about the
particular subjects, which might not always be present within our team. To overcome this issue we will
conduct interviews with experts on subjects such as stock market forecasting to gain further insights and
find answers.

3.4 Techniques
The techniques we will use for the application are Genetic Algorithms (GA) and Genetic Programming
(GP). We will use GA to estimate optimal values for strategy parameters for our software in Phase 3. In
Phase 4 we will switch to a more elaborate form of evolutionary algorithms with an adapted version of
GP. This adapted version of GP will be used to construct trading strategies that can dynamically
adjusted.

3.5 Activities
The activities for this project will consist of:

 Research, consulting with experts, desk research and preliminary tests
 Talking with Bing Technology
 Gathering requirements
 Writing Plan of Approach
 Writing Orientation Report
 Writing Final Report
 Writing Requirements Document
 Writing Design Document
 Data mining, setting up sanitized databases for particular applications (stock prices,

hospitalization data)

73

 Building general back-end in Java
 Testing, all frameworks, adjustments will be tested

3.6 Planning
Following the Scrum methodology, we have split up the project into several sprints of two weeks in
length. Each sprint corresponds to one of the following phases:

 Phase 1: Orientation (week 1+2, April 18th - April 29th)
 Phase 2: Initial Prototype (week 3+4, May 2nd - May 13th)
 Phase 3: Proof of Concept (week 5+6, May 16th - May 27th)
 Phase 4: Elaboration (week 7+8, May 30th - June 10th)
 Phase 5: Final Product (week 9+10, June 13 - June 24th)
 Phase 6: Final Report (week 11+12, June 27th - July 8th)

Note that phase 4 is highly dependent on the results of the proof of concept. It may involve elaborating
on the stock market application, or we may start to work on other applications or even generalize the
software into a general forecasting framework.

Each phase should result in some product, something that is functional and able to be tested
and evaluated. This product can consist of documents (an export of all current documents, which should
be reviewed by all team members) and code (should successfully compile and be able to run and
produce some valid output).

4. Project Design
In this paragraph we will specify how the project will be organized to meet the aforementioned
requirements, constraints and planning. This will be done by specifying different aspects of the project
such as organization, staff and finance.

4.1 Involved Parties
During the project, different parties are involved with different interests. First of all there is Bing
Technology, who would like to see some application which they can sell. However, they think it is also
important to document the program well, so further development and extension of the program can be
done by other developers if needed. Besides that a proof of concept is desired by the end of May so Bing
Technology will know what to expect of us and help steer us in the right direction if needed.

Secondly, the Delft University of Technology also has certain interests in our project because
they also benefit if we succeed. Besides a possible contribution to their reputation, they might also gain
a new partner to send future students for other Bachelor Projects.

Last but not least, we are involved ourselves. Besides passing our Bachelor Project for the Delft
University of Technology and gaining the experience of working at a company abroad, we also got some
certain interests and obligations towards Bing Technology during this project. However we don’t get
paid according to our performance, we still got a moral obligation to deliver a decent application, or at
least a firm basis for future developers to finish this product, since they were so kind to give us this great
opportunity and even took care of several facilities. Besides that, there is also a chance that Bing
Technology would contact us for future work if they are satisfied with our work.

74

4.2 Organization
The following organization structure is derived from the interests of the different parties that were
described above.

First of all we will keep a flat hierarchies within our group, because there is only the three of us
who will develop this project. During the project we will set up the tasks together and will divide them
equally. This will be done according to personal preferences and experience so a task will be done by
someone who is preferably both motivated and qualified, since this will increase the overall efficiency.

During the project we can count on assistance of Dan Guy and Augie Chung. Dan Guy is the CEO
of Bing Technology and has much experience in project management and Java development. Besides
helping us with overcoming obstacles, he also keeps a close eye on our progress to help us in the right
direction if necessary. Augie Chung has a lot of experience in the stock market, so he can give us some
advise about, for instance, different strategies.
Besides mr. Sodoyer we can also count on the assistance of mr. Wiggers from the Delft University of
Technology for certain technical questions relating to Genetic Programming.

4.3 Staff
During the project, the Delft University of Technology and Bing Technology both impose some
requirements towards us. As far as the Delft University of Technology is concerned, we have to
complete a project that is “BSc-Project-worthy”, which means that the content of the project is related
to our study, the required skill-level for the project is high enough, the amount of work has to be at 15
ECTS, including writing the reports, which comes down to 12 weeks of 40 hours a week. Besides that, we
all have to have finished all the subjects of our Propedeuse (1st year of our study), at least 30 ECTS of
subjects of our second year and the subjects “Software Engineering” and “ST4 project”.

As far as Bing Technology is concerned, we are required to have some experience in project
management and software engineering. This necessary to get the project done in time and meet the
standard of coding quality of the company. One of the most important demands though, is to retain the
secrecy of the code and algorithm we will develop. A minor requirement is that we deal professionally
with possible clients.

4.4 Administrative procedures
Before, during and after the project different administrative procedures have to be done.

Before the project
Disable public transport traveling card
By disabling our traveling card for the public transport in Holland, we can get a compensation from the
Dutch government. This is only possible for the period we are staying abroad.

Check the worldwide coverage of your insurance
If your insurance doesn’t cover any calamities during our stay in the VS, you should get an additional
insurance that covers this.

Fill out ESTA
To use the visa waiver commitment of the USA, we need to fill out the ESTA form online and wait for
approval. This cost us 14 dollars per person, which has to be paid by credit card.

Get a credit card
If you don’t already have a credit card, you should get one before you go to the US, since it is not
guaranteed that your ordinary bank card can be used over there.

75

Book a flight
Obviously, we need to book a flight to actually get to the US. We will fly from Schiphol (AMS) to New
York JFK (JFK) and our trip back will fly from Newark airport (EWR) to Schiphol (AMS).

Apply for the FIS scholarship
The Delft University of Technology gives scholarships to students who do an internship at non-European
companies. We have to fill out a set of forms and hand them in at the Central Student Administration,
together with an affirmation of the internship coordinator of the TU, the agreements with Bing
Technology and a copy of the invoice of our flights.

Get an international drives license
In theory, we should be allowed to drive any car in Pennsylvania with our Dutch drivers license, however
there are rumours that some police officers might take you into custody if don’t have an American
drivers license, until everything is sorted out. To avoid this, an international drivers license can be
bought at the “ANWB”.

Passport
You are not allowed to travel to the USA if you only have an Identity Card, so if you don’t have a
passport yet, you should get one.

Aside from these administrative procedures, several facilities were arranged by Bing Technology, listed
below.

Apartment
Bing Technology arranged an apartment at Shery Lake, which contains all facilities we might need during
our stay, including gym, pool and more.

Car
Bing Technology will get us a car so we can travel to and from the office. We can also use the car for any
other purpose, such as trips in the weekend. We only have to pay the fuel we use.

Internet
To work on the project and communicate with, for instance, Dan when he is not around, we will need
mobile internet. The benefit of mobile internet is that it is relatively cheap and gives us internet access
everywhere, such as in the apartment and at the pool. We have to pay for this ourselves.

Laptops
To work on the project, Bing Technology provides laptops which we can use during and after the project.

Office
Last but not least we need a place to work.

During the project
During the project the only administrative work that has to be done are the reports for the Delft
University of Technology. Next to this document, the following documents have to be created:

Orientation Report

76

This report will contain all the research we’ve done beforehand, but also the research we will be doing
during the project.

Announcement of commencement
As soon as we start working at the office, we have to fill out the announcement of commencement and
send this to the Delft University of Technology. This has to be done within one week after
commencement.

Two weekly progress report
Every two weeks, we have to make a little report about our progress. This report then has to be sent to
our internship coordinator at the Delft University of Technology (B.R. Sodoyer).

Besides these documents, we are planning to make a little accounting system to keep track of all the
costs we have to divide such as food supplies and mobile internet.

After the project
Final report
After we get back, we have to finish the final report. We are planning to write a part of it while we are
developing in the US, however most of the report has to be written in Holland.

Evaluation of BSc. Project
When we finished the project, the Delft University of Technology would like us to fill out an evaluation
form to improve the organization of the BSc Projects of the future.

Evaluation by Bing Technology
When we will be back in Holland, Dan has to fill out a form to evaluate the project.

Presentation
After we finished and submitted the final report, we have to present our project for the committee. This
includes the client (Bing Technology), the Delft University of Technology mentor and the BSc Project
coordinator.

Submit approved final report
After our final report is approved, we have to submit it to the Delft University of Technology repository.

These are all procedures that have to be done for the Delft University of Technology, however we might
have to do some administrative work for ourselves as well when we get back. The following issues are
dependent on your own situation and preferences.

Subscribe for subjects for next year
If you are going to do a minor track or maybe a master, you have to subscribe for these subjects.

Disable your credit card
If you don’t like the idea of a credit card and don’t think you might use it for some time, you could
disable your credit card.

Stop the world coverage of your insurance

77

If you don’t think you are going to travel to a country outside Europe for a while, you might want to stop
the world coverage of your insurance.

4.5 Reporting
Communication is essential to the success of a project. We will therefore meet frequently with Dan to
check if we are still heading in the right direction and if he has any tips for us. Besides that we will,
despite the agile workflow, document thoroughly so other developers of Bing Technology are also able
to understand the design and implementation of the application. This will in general be done by
JavaDoc, while any information gained by research will be included in the orientation report.

4.6 Facilities
For the development of this application, several facilities are needed, which will all be provided by Bing
Technology. First of all we will need a working space with laptops and internet access. Bing Technology
has rent an office with internet access where we can work at and will provide laptops with extra external
monitors on which we can implement the software. Besides that, they provide an SVN server on which
the code will be placed and a dedicated server on which the program will be run when it is finished.
As mentioned before they will also provide a car, an apartment and mobile internet.

5. Quality Assurance
Last but not least, the quality of application, as well as the underlying code, has to be assured in some
way. In chapter 2 we already described the criteria and risks of this project, however in this chapter we
will describe how this criteria will be met and how risks can be avoided.

5.1 Product Quality
First of all, what do we define as quality? Quality consist of different aspects, with different criteria and
different priorities. The following aspects define the quality of this application.

Maintainability
Obviously, it is necessary to write clean and maintainable code so possible bugs can easily be traced and
further development is enabled. Even though this might not seem very important for the end-user, it is
very important for ourselves and Bing Technology because this influences the time spent on
development and maintenance of the application. It therefore has a high priority. The criteria for writing
clean code are not really clear, since writing clean code can save time at the end, however if you take it
to the maximum, it will cost more time than it will save. The criterion is therefore defined at a level on
which every developer would be able to understand and maintain the applications underlying code and
design, though with as less effort required from the developer as possible.

Application performance
Secondly the application performance is very important. This might actually have the highest priority,
since eventually Bing Technology wants to sell this application with as much profit as possible. The
better the performance of the application is, the higher the value of program will be. However,
performance is quite a general term. It can be specified into sub-terms.

Accuracy is of great importance to the overall performance of the application. This means the rate at
which the application will overrule other predictions made by men or computers. The criterion for this

78

property is very high: our goal is to develop an application that will overrule all other human and
computer made predictions.

Besides accuracy, response time is important. Despite the fact that this property has a high priority, the
criterion is not very high. If we take for instance the forecasting specification of stock markets, it would
be sufficient if you post a request for several stocks at the end of the day and get the results by the next
morning. However if you have to wait a week for your result, the application would be fairly useless for
the customer, not to mention that the result would be outdated.

Application usability
The usability of the application is also quite important, however not as important as aforementioned
aspects. If the application gives an accurate outcome and contains all the features the customer needs,
however isn’t really user friendly, the application will still be very valuable. The criterion for this aspect is
therefore that as long as the costumer can use the application according to it’s needs, possibly with the
help of a manual and with a reasonable response time, the application is considered as usable enough.

Application reliability
Finally, the reliability of the application is important. With reliability we don’t mean if a stock trader can
rely on the results of application to earn a living, this is considered as the accuracy of the program,
mentioned above. With the application reliability we mean at what rate the application does what it is
supposed to do. For instance, if the application is supposed to produce a result within an hour and the
program still hasn’t produced a result after a day, the program is considered as unreliable. The criterion
of this aspect depends on the response time of the application. For instance, if the application will
produce a result in several seconds, it is not a big problem if the problem sometimes fails to calculate a
result, as long as this doesn’t happen too often. However if the response time of the application is
several hours, it can be very inconvenient if the application fails to produce a result.

5.2 Process Quality
Besides product quality, process quality has to be taken into consideration. A high process quality means
time is efficiently used, leaving more time to extend the application, resulting in a higher product
quality. In short this actually comes down to efficiency of resources such as time and material.

5.3 Evaluation
To achieve the criteria of the aforementioned quality aspects, we took several precautions. First of all
Dan Guy will guide us throughout the entire project and keep a close eye on our progress as well as the
produced code. Besides that we will have different people wit experiences in stock markets have a look
at the produced result for their opinion on the performance and usability. Finally we will run several
acceptance tests to test the applications reliability.

To ensure the process quality we will, next to asking feedback from Dan, frequently reflect on our work,
attitude and use of resources.

References
[1] Interview with Laurens Swinkels

79

Appendix L – Request for Proposal

Objective
Bing Technology seeks to develop a framework that can be used to produce specialized forecasting tools
useful across industry verticals. Initially, we are seeking to target two specific subject domains:

1) Stock Market Prediction
2) Heritage Health Prize

Bing seeks a framework that can ideally be repurposed for other tasks such as product
recommendations and other predictive domains. This would happen in a possible followup phase 2
project.

Technologies
Bing would prefer that the back-end at a minimum be written in Java. PHP is acceptable for the front-
end application(s).

Schedules
Bing desires having a proof of concept (POC) functional by May 24, with further iterations deliverable as
needed depending on efficacy of the prototype and future arrangements between the selected
vendor(s) and Bing.

Next Steps
Any interested vendors should submit a proposed methodology for accomplishing the aforementioned
goals as well as a proposed cost and time schedule. This information can be forwarded to
dan@bingtechnology.com

