
Delft Center for Systems and Control

Reward system design for incor-
porating control performance

K. Nagaki

M
as
te
ro

fS
cie

nc
e
Th

es
is





Reward system design for
incorporating control performance

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

K. Nagaki

August 12, 2015

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Reward system design for incorporating control performance

by
K. Nagaki

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: August 12, 2015

Supervisor(s):
dr.ir. G. A. D. Lopes

Reader(s):
dr.ir. M. Mazo Jr.

M. Bharatheesha PhD (BmechE)

S.P. Nageshrao PhD





Abstract

Reinforcement learning (RL) is a machine learning technique whereby the controller
learns the control law by optimizing the received cumulative amount of reward. A
reward is an instantaneous evaluation of the applied action at the current state, given
by reward function. However in theory the reward function is assumed to be given, in
practice it is an effort consuming work to design a good reward function. Reward is
the only information about the learning task given to the controller and therefore op-
timizing the cumulative amount of reward corresponds to fulfilling a particular control
performance. Designing the reward function to achieve the desired control specification
is thus a crucial task to use RL as a reliable controller synthesizing algorithm. The goal
of this thesis is to synthesize a method to design proper reward function to achieve the
desired control performance.
This thesis focuses on two types of control performance. In the first part, reward
function is designed to learn control law fulfilling classical control performance. Hereby
an automaton is created to evaluate classical control criteria by mode-dependent reward
functions. By modeling the process with an automaton, the control problem is divided
into smaller subproblems such that the reward functions are kept simple. In the second
part, temporal logic specification is converted into a reward system whereby a petri net
is used to model the process suitable for rewarding. To the given temporal formula,
reward function is assigned which is a function from the state, i.e. the marking, of the
petri net. By putting information about the task into the petri net, reward function
becomes simple and structured. Simulation experiments are done for several temporal
logic specification.

Master of Science Thesis K. Nagaki



ii

K. Nagaki Master of Science Thesis



Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2-1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-1-1 Computational reinforcement learning framework . . . . . . . . . . 5
2-1-2 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-1-3 Actor-critic learning . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-2 Control performance languages . . . . . . . . . . . . . . . . . . . . . . . 12
2-2-1 Reward function . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-2-2 Classical control performance . . . . . . . . . . . . . . . . . . . . 13
2-2-3 Metric Interval Temporal Logic . . . . . . . . . . . . . . . . . . . 14

2-3 Discrete/Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-3-1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-3-2 Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Reinforcement Learning for classical control performances 19
3-1 Difficulties by reward function design for classical control performance . . . 19
3-2 Hybrid Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 23

3-2-1 Approximators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3-2-2 Mode-wise reward function . . . . . . . . . . . . . . . . . . . . . 26

3-3 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Master of Science Thesis K. Nagaki



iv Table of Contents

3-3-1 Simulation: Mass-damper without overshoot . . . . . . . . . . . . 28
3-3-2 Simulation: Mass-damper with rise time . . . . . . . . . . . . . . 33
3-3-3 Mass-damper with rise time and overshoot performance . . . . . . 36

3-4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Reinforcement learning for Temporal Logic specification 39
4-1 Reward system design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-1-1 Modeling Petri net from temporal logic expressions . . . . . . . . . 40
4-1-2 Metric Interval Temporal Logic reward functions . . . . . . . . . . 42
4-1-3 Table of reward system . . . . . . . . . . . . . . . . . . . . . . . 43

4-2 Reinforcement learning with Petri nets . . . . . . . . . . . . . . . . . . . 43
4-2-1 Approximators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4-2-2 Standard Actor Critic with Petri Net . . . . . . . . . . . . . . . . 45

4-3 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4-3-1 Simulation 1: 32κ . . . . . . . . . . . . . . . . . . . . . . . . . 47
4-3-2 Simulation 2: 32κ ∧2¬ψ . . . . . . . . . . . . . . . . . . . . . 49
4-3-3 Simulation 3: 32κ ∧2¬ψ ∧2υ . . . . . . . . . . . . . . . . . . 51
4-3-4 Simulation 4: 23κ ∧23υ ∧2¬ψ . . . . . . . . . . . . . . . . . 53

4-3-5 Simulation 5: ¬κ U{1,2}
(
κ U{2,∞} 2¬κ

)
. . . . . . . . . . . . . . 55

4-4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusions and recommendations 59
5-1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5-1-1 Reinforcement Learning for classical control performance . . . . . . 59
5-1-2 Reinforcement Learning for temporal logic specification . . . . . . 60

5-2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5-3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Simulation models 63
A-1 Mass-damper system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A-2 Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Hybrid automaton models 65
B-1 Hybrid automaton for overshoot performance . . . . . . . . . . . . . . . . 65
B-2 Hybrid automaton for rise time performance . . . . . . . . . . . . . . . . 67
B-3 Hybrid automaton for overshoot and rise time performance . . . . . . . . . 69

K. Nagaki Master of Science Thesis



Table of Contents v

C Petri net models 71
C-1 Problem 1: 32κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C-2 Problem 2: 32κ ∧2¬ψ . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C-3 Problem 3: 32κ ∧2¬ψ ∧2υ . . . . . . . . . . . . . . . . . . . . . . . 73
C-4 Problem 4: 23κ ∧23υ ∧2¬ψ . . . . . . . . . . . . . . . . . . . . . . 74

C-5 Problem 5: ¬κ U{1,2}
(
κ U{2,inf} 2¬κ

)
. . . . . . . . . . . . . . . . . . . 75

Glossary 79
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Master of Science Thesis K. Nagaki



vi Table of Contents

K. Nagaki Master of Science Thesis



List of Figures

2-1 The flow of interaction of Reinforcement Learning (RL). The elements re-
lated to reward are depicted in grey. Figure adopted from [1] . . . . . . . 6

2-2 The schematic overview of AC learning. The dashed line indicates the up-
dates performed by the critic. Figure adopted from [2]. . . . . . . . . . . 11

2-3 Classical control performances in the time domain step response. . . . . . 14
2-4 Hybrid automaton for a thermostat-heater system. . . . . . . . . . . . . . 17
2-5 An example of a petri net. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-1 Two set of sample trajectories. . . . . . . . . . . . . . . . . . . . . . . . 20
3-2 (a) Transient plot of simulation run without noise, repeated for 50 times.

The policy is learned using the reward function obtained with IRL, is used
as sample trajectories. (b) Obtained reward function plot from top-view. . 21

3-3 (a) Transient plot of simulation run without noise, repeated for 50 times.
The policy is learned using the reward function obtained with IRL, is used
as as sample trajectories. (b) Obtained reward function plot from top-view. 21

3-4 Hybrid automaton describing the condition of the system. . . . . . . . . . 23
3-5 Hybrid automaton for over-/undershoot performance Mp = 0. . . . . . . 25
3-6 Learning behavior by learning overshoot performance for mass-damper system. 29
3-7 A transient response of the mass-damper system and the modes: idle (green),

evaluating (yellow), stabilizing (blue) and penalizing (red) which is not vis-
ited in this simulation run. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-8 Simulation results for the mass position and input force. The simulation is
repeated for 50 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3-9 Examples of bad results for cases q0 ∈ [−0.1, 0.1]. . . . . . . . . . . . . . 30
3-10 Value functions and policy for q0 = −1. . . . . . . . . . . . . . . . . . . . 31
3-11 Value functions and policy for (a) q0 = 1 and (b) q0 = 0. The plots of

q0 = 1 are very similar to those from q0 = −1, although mirrored vertically.
The plots of q0 = 0 is a mix of those from −1 and 1. . . . . . . . . . . . 32

Master of Science Thesis K. Nagaki



viii List of Figures

3-12 Hybrid automaton for rise time performance tr = [0.6, 0.8]. The automaton
jumps to evaluating mode after 10% of the desired value has reached. From
E, it jumps to either S or P, where the automaton will live for the entire
episode time. To avoid that the agent will "wait" at 90% of the desired value
until the given time comes, we forbid q̇ < 0 in E so that it is "rising" to the
desired value. If this is violated, the automaton jumps to P and otherwise
to S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3-13 Learning behavior for mass-damper with rise time performance. . . . . . . 34
3-14 Transient simulation for (a), (b) q0 = −1 and (c) q0 = −0.5. (d) shows the

averaged plot over 30 runs. The color representing again the mode of the
automaton: green is mode I, yellow is E and blue is S. . . . . . . . . . . . 35

3-15 Simulation response running the combined automaton with learned policies
previously for q0 = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3-16 Hybrid automaton for rise time performance tr ∈ [0.6, 0.8] andMp = 0. The
automaton jumps to evaluating mode for rise time after 10% of the desired
value has reached. After the given rise time is elapsed or when the 95% is
reached, evaluating mode for overshoot becomes active. In the latter case,
the performance of rise time is not fulfilled. From the second evaluating
mode, it jumps to either S or P. . . . . . . . . . . . . . . . . . . . . . . . 37

4-1 Petri net modeling control performance 4-1. Right is the state related sub
Petri net with its initial marking. Left the single place with token is timing
related sub Petri net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-2 Picture describing the problem 1 and the corresponding reward Petri net. . 47
4-3 Results of learning problem 1 . . . . . . . . . . . . . . . . . . . . . . . . 48
4-4 Picture describing the problem 2 and the corresponding reward Petri net. . 49
4-5 Results of learning problem 2. . . . . . . . . . . . . . . . . . . . . . . . . 50
4-6 Results for learning using reward function with different weighting factors. 51
4-7 Picture describing the problem 3 and the corresponding reward Petri net. . 51
4-8 Results of learning problem 3. . . . . . . . . . . . . . . . . . . . . . . . . 52
4-9 Angular velocities simulated using policies with different control performance. 53
4-10 Picture describing the problem 4 and the corresponding reward Petri net. . 54
4-11 Results of learning problem 4. . . . . . . . . . . . . . . . . . . . . . . . . 54
4-12 Picture describing the problem 5 and the corresponding reward Petri net. . 55
4-13 Results of learning problem 5. . . . . . . . . . . . . . . . . . . . . . . . . 56

A-1 A mass-damper system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A-2 The pendulum setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B-1 Hybrid automaton for over-/undershoot performance Mp = 0. . . . . . . 66
B-2 Hybrid automaton for rise time performance tr = [0.6, 0.8]. . . . . . . . . 68
B-3 Hybrid automaton for rise time performance tr ∈ [0.6, 0.8] and Mp = 0. . 69

C-1 Petri net for 32κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

K. Nagaki Master of Science Thesis



List of Figures ix

C-2 Petri net for 32κ ∧2¬ψ . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C-3 Petri net for 32κ ∧2¬ψ ∧2υ . . . . . . . . . . . . . . . . . . . . . . . 73
C-4 Petri net for 23κ ∧23υ ∧2¬ψ . . . . . . . . . . . . . . . . . . . . . . 74

C-5 Petri net for ¬κ U{1,2}
(
κ U{2,inf} 2¬κ

)
. . . . . . . . . . . . . . . . . . . 75

Master of Science Thesis K. Nagaki



x List of Figures

K. Nagaki Master of Science Thesis



Acknowledgements

During the period I was working on this thesis, there were many moments where I
lost my self confidence totally and felt helpless. I was deeply depressed and had really
desired to escape from everything surrounding me. I am proud to myself that I currently
writing this and I would like to thank everyone who had supported me during the thesis.
I am really grateful to Gabriel, my supervisor, who had not forsake me even I took very
long time to finish this thesis. He gave me a lot of useful suggestions so the time flew
during our meetings. Also his enthusiasm had helped me to get motivated to work
on. I would also thank Wytske, my counselor, for her assistance to build up my self
confidence. Since I do not like to show my weakness to my family or familiars, talking
with her had helped me to get out of depression. Finally, I would like to thank my
parents for their understandings and supports during the time spent on this thesis.

Delft, University of Technology K. Nagaki
August 12, 2015

Master of Science Thesis K. Nagaki



xii Acknowledgements

K. Nagaki Master of Science Thesis



Chapter 1

Introduction

Reinforcement Learning (RL) is a semi-supervised learning method frequently used in
robotic field. The control law is learned by optimizing the cumulative amount of reward,
an instantaneous evaluation of the current state and applied action. The rewards are
given to the controller as scalar values according to the specified reward function. This
existence of reward function makes reinforcement learning a semi-supervised learning
method, since the reward function gives not the exact information how to behave, but
only the information either the current situation is good or fault. However, "good" for
the practitioner does not have to mean also "good" for the controller.
In the theory of RL, it is usually assumed that the reward function is given. Although
in practice, the RL practitioner has to design the reward function by hand since a
reward function is problem specific. Reward is the only information about the learning
task given to the controller and therefore optimizing the cumulative amount of reward
corresponds to achieve a particular control specification. Thus how more complex
the desired control performance is, the reward function design becomes also complex.
However the reward function forms the core of RL and defines what the controller
will learn, there are very less work done about the design of reward function. Even
the designing is discussed, it is rather about how to make the controller able to learn
and not what the controller will learn. To use RL as a reliable controller synthesizing
method, it would be necessary to establish methods for designing reward functions,
such that the controller learns the truly desired behavior. In this thesis, more focus is
put on designing a reward function that let the controller learn the desired behavior.
In [3] was commented that the reward function should only define what the controller
should learn and not how. However, human assumes a lot (or assumes even too much),
whereby the definition of what to do becomes difficult. Take as an example walking
robot from [4]. At the first instance, the robot was given positive reward when the
center of mass of the robot had moved forward. When human walks, most are get used
to walk forward and therefore it will become obvious to assume that walking is a way
to move forward. However a robot does not know the assumption, rather, it does not

Master of Science Thesis K. Nagaki



2 Introduction

even know what walking is. The robot had learned to alternate stepping forwards and
backwards, such that the center of mass moves forward while the robot itself stays at
the same position. The other example is riding bike from [5]. The robot had to learn
riding bicycle and reward was given for every ridden distance in forward direction as in
the case of walking robot. The practitioners had expected that the bicycle would keep
riding forward, but as result, the robot had learned to ride in small circles. Although
in both cases the learned behavior was not the desired one, the learned policy was not
"wrong" since the controller had optimized the way to achieve as much of rewards: the
used reward function was not proper one.
Since RL is just a optimization method for collecting rewards, it will be natural to only
give a scalar reward 1 if the desired control specification is achieved. Then spending
enough time for learning, the controller might learn a totally unexpected policy which
works better than a hard-coded controller. Thereby the learned controller would be-
have according to the given control performance because the reward was only given
when the control performance was achieved. Though, this is not practical and usually
designers wants that the controller learns the "perfect" manoeuvre which the designers
had expected. To learn control laws in reasonable time, the reward function should be
information rich enough. Also it is usually preferred to have a way to tune the con-
troller such that the learned behavior gets close to the desired behavior. Thus a reward
function should reward the controller in a natural way to avoid undesired behavior.
Thereby it must contain enough information to enable the learning and it should have
the availability to tune the resulting control law.

1-1 Goal of the thesis

The final goal of this thesis is to synthesize a methodology for designing a proper reward
function, where we define a proper reward function as a reward function which:

• leads to a learning controller with desired behavior, i.e. fulfilling the given control
performance;

• is structured naturally in the sense that only the truly desired things are rewarded
such that learning undesired additional behaviors are avoided;

• supplies enough information to the controller such that the learning is done in
reasonable time;

• has the availability to tune the learned control law;

• is able to design in convenient and structured way.

The first two conditions have some in common, since it could depend on the way of
giving the control performance. Since there are many "languages" which represents
control performance, it is impossible to define corresponding reward functions for all
of the control performance languages. Therefore, we will focus on two types of control

K. Nagaki Master of Science Thesis



1-2 Outline 3

performance in this thesis: classical control performance and temporal logic specifica-
tion.
Obviously, when having a complex control performance, the reward function usually
becomes also complex and second and fifth conditions will be hard to fulfill. We will
tackle this problem by using discrete/hybrid models to model the process suitable for
rewarding. Two ways of modeling are considered. First, by dividing the total problem
into subproblems whereby each subproblem corresponds to a control criterion, and
second, by translating the control performance into a model. In former case the reward
function might be kept simple since it evaluates only one part of the problem. For the
latter, we will put information about the problem into the model such that a relatively
simple reward function remains as a function of states of the model. Thereby all the
complexity of conditions and transitions are hidden in the model.
The fourth condition might not be necessary if the desired behavior is defined by
control specification in detail. However, if the control specification only defines a rough
behavior, it might be useful if there is a way to tune the control law.

1-2 Outline

The remaining chapters of this thesis is organized as follows. In chapter 2, preliminary
knowledge is discussed whereby this chapter exists from three parts. The first part
discusses about the algorithm, computational RL framework. In the second and third
part, the constituents of the method proposed in later chapters is discussed briefly:
models and languages representing the control performance. In chapter 3 a method
is proposed to learn controller fulfilling criteria of classical control performance. In
chapter 4 temporal logic specifications are converted into a reward system. The reward
system exists from a petri net and a reward function as a function of the petri net states
and the way of converting is defined. An algorithm for running this reward system is
discussed. Finally we conclude the work with conclusion and recommendations (chapter
5).

Master of Science Thesis K. Nagaki



4 Introduction

K. Nagaki Master of Science Thesis



Chapter 2

Preliminaries

2-1 Reinforcement learning

Reinforcement Learning (RL) is a semi-supervised learning technique whereby the
learner learns how to act using the knowledge of its interaction with the environment.
It is originally inspired by the animal learning behavior and as like the dog learns tricks
by getting cookies by success, the agent (or the controller) learns the control policy by
getting rewarded by its environment (or the process). The agent tries to maximize the
total amount of rewards it receives, which means that the choice of the reward function
becomes a crucial task to let learn the truly desired behavior.

2-1-1 Computational reinforcement learning framework

In RL, the controller will learn to solve the control problem by interacting with the
process. A flow of interconnection is represented in figure 2-1. The controller interacts
with a process by measuring the states and applying actions, and receives numerical
rewards according to a given reward function. Everything outside the controller can be
seen as the process including the robot’s physical body, sensors and actuators as well
as the low-level controllers. In RL the reward function is an important aspect which
characterizes the learning and the control behavior. The fact that the reward function
is placed outside the controller makes RL a semi-supervised learning technique: the
controller does not know which actions are "correct".

Markov decision process

A reinforcement learning problem that satisfies the Markov property is called a Markov
Decision Process (MDP). If the state signal retains all the relevant past information,
it is said to satisfy the Markov property: the next state and reward can be determined

Master of Science Thesis K. Nagaki



6 Preliminaries

Figure 2-1: The flow of interaction of RL. The elements related to reward are depicted in grey.
Figure adopted from [1]

from only the current state and action and do not need the information of the past
states and selected actions. A particular deterministic MDP is defined by state and
action spaces X and U and by one-step dynamics of the environment which includes
the transition function f and the reward function ρ. Applying the action uk in the
state xk at the discrete time step k, the next state xk+1 can be determined using the
transition function f : X × U → X:

xk+1 = f(xk, uk).

Similarly the scalar reward signal can be computed according to the reward function
ρ : X × U ×X → R:

rk+1 = ρ(xk, uk, xk+1)
where it is assumed that the maximum of the reward function is finite. The policy can
be interpreted as the control law in control theory: a rule for the controller to choose
an action given a particular state. For a simple state feedback control law, where the
action only depends on the state, the policy π : X → U is given as

uk = π(xk).

When the MDP has a terminal state which is the goal of the task, the task is called
’episodic’. The trajectory from an initial state to a terminal state is called ’trial’ or
’episode’. On the other hand a MDP without terminal state is called ’continuous’. There
is no specific goal which terminates the task.

Rewards and returns

In reinforcement learning the control specification is realized in terms of rewards. The
rewards are scalar numbers and the controller behaves to maximize the received cu-
mulative reward over the run. Reward functions is thus a cost functions and the RL
algorithm has to optimize the total cost. The rewards have to be provided in such a
way that maximizing rewards corresponds to fulfilling the control task. It is thus a

K. Nagaki Master of Science Thesis



2-1 Reinforcement learning 7

critical task to design the reward function to achieve the desired control specification.
This typically requires experience from the control partitioner to avoid creating reward
functions that can lead to unusable controllers even if theoretically they should return
a desirable controller.
During the learning process, the controller tries to complete the task by maximizing
the cost-function J or the expected return. The return Rπ expresses the expected total
amount of reward by following the policy π, Rπ, and it is defined as some specific
function of a sequence of the received rewards over the run. Return can be seen as the
long-term performance while the reward is the performance in very short term (only
one time step). Commonly used return is the infinite-horizon discounted return which
is given by:

J(π) = Rπ
k(x0) =

∞∑
k=0

γkrk+1 (2-1)

where γ ∈ [0, 1] is the discount factor. The discount factor is a measure for the im-
portance of the future rewards. For γ = 0, the controller would act to maximize the
immediate reward and ignores the effect in the future by choosing a specific action.
This delayed rewards is one of the key feature of the RL problem: how to deal with
the rewards that will be received in the future. From a mathematical point of view,
discounting ensures that the return will always be finite when the reward is finite. Be-
sides the discounted return there also exist an averaged return. In this work only the
discounted return is used and readers interested in averaged return are referred to other
works e.g. [2].

Value functions

The value functions are measures for how good the visited state (or state-action pair) is
for the controller. Physically, the value functions can be interpreted as memories. The
information of the states or state-action pairs are stored in the value functions and the
controller makes decisions using this saved knowledge. There are two types of value
functions: state-value functions (V-functions) and action-functions (Q-functions). The
Q-function Qπ : X × U → R is defined as the expected return starting from a given
state x, taking a given action a and thereafter following by policy π:

Qπ(x, u) =
∞∑
k=0

γkrk+1 (2-2)

= ρ(x, u, x′) + γQπ(x′, u′).

Note that this Q-function holds when the discounted return setting 2-1 is used. When
using the averaged return setting, the value functions is a bit different. Similarly, the
V-function V π : X → R is defined as the expected return starting from state x and
following policy π thereafter:

V π(x) =
∞∑
k=0

γkrk+1 = ρ(x, u, x′) + γV π(x′). (2-3)

Master of Science Thesis K. Nagaki



8 Preliminaries

The optimal policy π∗, which is a solution of the RL problem, is given as the policy that
maximizes the value functions. The optimal value functionsQ∗ and V ∗ are characterized
by the Bellman optimality equations, which is a necessary condition for promising the
optimality and can be represented as:

Q∗(x, u) = ρ(x, u, x′) + γmax
u′

Q∗(x′, u′) (2-4)

V ∗(x, u) = max
u

[ρ(x, u, x′) + γV ∗(x′)] (2-5)

Thus the optimal policy computed from Q∗ is the policy that satisfies

π∗(x) = arg max
u

Q∗(x, u) (2-6)

and similarly π∗ computed from V ∗ satisfies

π∗(x) = arg max
u

[ρ(x, u) + γV ∗(f(x, u))]. (2-7)

It is more difficult to compute policies from V-functions than from Q-functions. In
(2-6) the Q-function already includes the information about the quality of both the
states and the transitions while in (2-7) the quality of the chosen action is taken in
account explicitly because the V-functions only describes the quality of the visited
states. Therefore, Q-functions are preferred to V-functions, although Q-functions are
more costly to represent.

Exploration

When the complete and accurate model of the process is available, the controller can
choose the actions such that the value functions will be maximized: it can take actions
greedy with respect to the value function. Such policy that takes always greedy actions
is called a greedy policy. However, in case by learning from scratch whereby the process
is unknown, the initial value-functions are unreliable and a greedy policy does not guar-
antee optimality. To get reliable estimates of the Q-values, each state-action pairs have
to be visited sufficient times. The controller has to explore its state and action spaces
to obtain knowledge about the process, before it can make right decisions. This explo-
ration can be done by sometimes taking an arbitrary action, which is called undirected
exploration, or by selecting an action according to the obtained exploration-specific
knowledge, called the directed exploration [6]. The spaces can be explored efficiently
by using directed exploration and may lead to speed up of the learning, although the
(near-)optimal policy is independent of the matter of exploration, if the whole region is
sufficiently explored. Therefore in this thesis we assume the way of exploration is not
influencing the performance specification of the controller.
In the later phase of the learning process, if the controller has sufficient knowledge, the
amount of explorative action has to decrease and the controller must take greedy actions
to obtain the optimality (exploitation). The question arises how long the controller has
to explore and when it has to shift to exploitation. By taking long time for exploration,

K. Nagaki Master of Science Thesis



2-1 Reinforcement learning 9

the controller might be able to obtain more accurate results, but the time needed
for learning will increase. If the controller exploits more its knowledge, the learning
will speed up but the result can be poor. This trade-off is known as the exploration-
exploitation dilemma [3],[6],[7]. To handle with the exploration-exploitation problem,
time-varying policies can be used e.g. ε-greedy method (which selects an explorative
action with probability ε and a greedy action with probability 1 − ε) and Boltzmann
exploration [1].

2-1-2 Solution methods

The RL methods can be divided in three subclasses: critic-only, actor-only and actor-
critic methods [2]. The Critic-only methods are methods that derive the optimal policy
by first computing the optimal value functions. There is only an update-function for
the critic and no explicit function for the policy. The model-based methods Dynamic
Programming (DP) and the model-free methods Temporal Difference (TD) learning
are the most popular methods. TD learning is discussed shortly. On the other hand,
actor-only methods will search the optimal policy directly and they do not use value
functions. As example the policy gradient methods is described. Thereafter, Actor-
Critic (AC) methods is discussed which has combined the both methods to deal with
continuous state and action spaces, which are more suitable for robotics applications.

Critic-only method - Temporal Difference learning

The model-based Dynamic Programming methods are very well developed mathemat-
ically, but have the disadvantage that they require a complete knowledge about the
environment. Unlike DP, TD methods are model-free and they are implemented in an
online, fully step-by-step incremental fashion. Though, TD methods are more complex
to analyze. Both methods will search for obtaining the optimal value functions to derive
the optimal policy.
The classical RL methods like DP and TD learning are developed assuming discrete
state and action spaces. When you extend the methods to continuous state and action
spaces, as the most robotics applications have, it becomes impossible to determine exact
value functions for each state. Therefore, function approximators are used to deal with
this problem [8].
As mentioned earlier, TD learning are implemented in an online, step-by-step incre-
mental fashion: the policy is adapted during the episode according to the estimates of
the value functions. The simplest TD method is known as the TD(0) [9] and its update
function is defined by:

V (xk)← V (xk) + αk [rk+1 + γV (xk+1)− V (xk)]︸ ︷︷ ︸
TD-error δk

(2-8)

where αk ∈ (0, 1] is the learning rate and the term between the brackets is called the
TD-error δk. The TD-error is the difference between the predicted value V (xk) and the

Master of Science Thesis K. Nagaki



10 Preliminaries

updated value rk+1 +γV (xk+1) and updates the value function into the direction of the
new, improved value. The influence of this TD-error on the value function estimate
is determined by the learning rate α. Because the update-law is based on temporal
estimates, it is said that TD method is a bootstrapping method.

Actor-only method - Policy gradient

Actor-only methods will search the optimal policy directly using optimization related
techniques and they do not use value functions. Most of the actor-only methods param-
eterize the policy and they will optimize the parameters according to the cost function
J(π), which can be observed as the expectation of the return (2-1) as a function of the
policy π:

J(π) =
∞∑
k=0

γkrk+1. (2-9)

In basic policy gradient methods, the policy π is parameterized by a parameter vector
ξ [2] and the optimal policy according to the cost-function is obtained by finding the
optimal values in the parameter vector space. Because the parameterized policy πξ is
a function of the ξ, the cost function (2-9) is also a function of the ϑ so the gradient of
the cost function with respect to ξ can be written as:

∇ξJ = ∂J

∂πξ

∂πξ
∂ξ

. (2-10)

By using the ordinary gradient ascent method, the optimality can be obtained by the
update rule

ξk+1 = ξk + αk∇ξJk (2-11)
where αk > 0 is the learning rate such that it is sufficient small to have J(π(ξk+1)) >
J(π(ξk)).

2-1-3 Actor-critic learning

Actor-Critic (AC) learning is developed to combine the advantages of both algorithms
discussed in previously [10]. Actor-only methods have strong convergence property, but
the variance of the estimated gradient can become quite large [11]. Furthermore the
new estimated gradient is independent from the past estimates and the knowledge of
the past are not used: there is no "learning". As opposed to it, critic-only methods
can use the previously obtained knowledge which are stored in the value functions.
The disadvantage is that they lack reliable guarantees on the near-optimality of the
resulting policy [2]. By combining the variance in policy gradients can be reduced and
the methods still have the convergence properties of actor-only methods.
In AC learning the controller is divided in two parts. Figure 2-2 shows the schematic
overview of AC learning. The critic will estimate the value functions and the actor will
search directly in the policy parameters space to improve the policy. The updates of the

K. Nagaki Master of Science Thesis



2-1 Reinforcement learning 11

policy parameters are directed according to the evaluation of the critic. AC methods
are useful in robotic applications because they can handle continuous state and action
spaces. As in critic-only methods, the critic estimates the value functions using the
function approximators and like actor-only methods, the actor gives continuous actions
as output.

Figure 2-2: The schematic overview of AC learning. The dashed line indicates the updates
performed by the critic. Figure adopted from [2].

Standard actor-critic

By having the estimated policy π̂ξ and value function V̂θ, both parameterized by pa-
rameter vectors ξ ∈ Rp and θ ∈ Rq respectively, the linear basis function approximation
can be given by

π̂ξ(x) = ξTφa(x) (2-12)
V̂θ(x) = θTφc(x) (2-13)

where φa(x) ∈ Rp and φc(x) ∈ Rq are basis functions of actor and critic respectively.
The parameterizing is not necessary linear, but here it is chosen for the sake of simplic-
ity. Because the actor and critic are updated separately, the critic has only to evaluate
the current state so there is no need any more to consider the action-value functions
and in place the state-value functions can be used, which are cheaper to represent.
The update of critic is done by exploiting the TD-error δ (2-8) in a gradient ascent rule
[2]:

θk+1 = θk + αcδk+1∇θV̂θk(xk) (2-14)
with αc ∈ (0, 1] as the learning rate for the critic parameters. To speed up the learning,
eligibility traces can be adopted. With eligibility traces, the value functions of the
states that are visited in the past are all updated at once [3], [10]. Using the replacing
traces, the eligibility trace ek(x) ∈ Rq is updated according to:

ek(x) =
{
λγek−1(x) if x 6= xk
1 if x = xk

(2-15)

Master of Science Thesis K. Nagaki



12 Preliminaries

where γ is the discount factor and λ is the trace decay rate. Implementing this in
(2-14), the critic update rule becomes

ek+1 = λγek(x) +∇θV̂θk(xk) (2-16)
θk+1 = θk + αcδk+1ek+1. (2-17)

The actor is updated as like in actor-only method by (2-11), where ∇ξJk is

∇ξJk = δk+1∆uk∇π̂ξ(xk). (2-18)

∆uk is a zero-mean exploration term perturbing the policy π̂ξ(xk), which causes dif-
ference in actual taken action and the defined action by the policy. When the critic
concludes that the ∆uk have good influence to the performance (δ > 0), the policy
is updated in the direction of the perturbation ∆uk and otherwise (δ < 0) away from
∆uk.

2-2 Control performance languages

When controllers are designed, the quality of the controller is determined by its con-
trol performance. The desired control performance can vary widely and even in the
same technologic field, each controller might demanded to satisfy totally different per-
formances. Take as an example the controllers in the robotics field. Manipulators for
assembling small components as chips are required to react fast and very accurate,
while for manipulators working on the same area as human workers is the safety prop-
erty most important: fast and robust movements have to be avoided. While in control
theory the control performance is an important aspect, in RL-field the performance of
the policies are often neglected and only the learning performance are studied. Further
in this work, two types of control performance is used to check the quality of the learned
controller: classical control performance and simple temporal logic functions.

2-2-1 Reward function

Reward function could be seen as a language specifying the control performance in
RL problems. Although in theory of RL a reward function is assumed to be given, in
practice the design of a good reward function is a crucial issue. There do not exist
structured strategies to design a reward function that leads to the desired behavior
and RL practitioners have to design reward functions often by hand. For relatively
simple tasks this hand-designing will not be problematic, although it will become more
complex and effort consuming when you scale up to more complex tasks. Most natural
form of a reward function is as follows:

ρ(x, u, x′) =
{
c if the desired control specification is achieved
0 otherwise (2-19)

K. Nagaki Master of Science Thesis



2-2 Control performance languages 13

with c > 0 as a constant. This type of reward function is often used in RL problems
with discrete state space, whereby the control performance is given in form as "visit
a particular state". Since maximizing the cumulative rewards over time should cor-
respond to fulfilling the control performance, this reward function will result always
in a controller fulfilling the control specification theoretically. However for poorly de-
fined control specification, the control law could be undesired. This reward function
will work worse for continuous state space problems. The probability of achieving the
control specification is too low which causes for a bad update rate of the value func-
tions and thus learning: the information contained by the reward function is too little.
Therefore for continuous problems, the absolute or quadratic error are usually used to
penalize the non-desired states

ρ(x, u, x′) = −C|x− xdes| (2-20)
ρ(x, u, x′) = −(x− xdes)TQ(x− xdes) (2-21)

where C > 0 and Q > 0 are cost matrices.

Reward Shaping

To solve complex problems the reward functions should be information rich enough to
be able to update the values of the states with appropriate speed. Editing a sparse
reward function into a dense one is called reward shaping. The idea of shaping is to
solve an edited (easier) problem, whereby it is supposed that the solution of the changed
problem is also optimal in the original problem. Thus by using reward shaping, an MDP
is solved using dense reward function ρ′ instead of the original reward function ρ, which
contains more information and hopefully leads to the same optimal policy [12], [5], [13].
Ng et al. had found that special way of editing reward function will keep the optimality
of the original reward function [14]. However, heuristically shaped reward function has
usually no guarantee that it remains optimality of the original reward function.

Inverse Reinforcement Learning

As the name already implies, the problem definition of Inverse Reinforcement Learn-
ing (IRL) is the opposite as that from the ordinary RL: while in ordinary RL the goal
is to obtain a policy that is optimal in given environment with a given reward function,
in IRL the goal is to find a reward function that makes the given policy (or a sample
trajectory) optimal. When having state trajectories available with desired characteris-
tics, It might be able to run an IRL algorithm to get a reward function that will results
in a policy with desired behavior [15], [16].

2-2-2 Classical control performance

The classical control performance are used to measure the control performance by ana-
lyzing the transient step response of the system, especially when using the Proportional-

Master of Science Thesis K. Nagaki



14 Preliminaries

Integral-Derivative (PID) controllers. Usually four aspects of the transient response are
evaluated:

• rise time tr is the required time to go from 10% to 90% of the reference value;

• overshoot Mp is the amount that the system overshoots its reference value, ex-
pressed in ratio;

• settling time ts is the required time that the state settles within a certain range
of the reference value;

• steady-state error ess is the residual amount of deviation of the state from the
reference value.

Figure 2-3 shows the four aspects graphically. Mention that this measure of performance
does not take the effect of noise in account. Therefore it might be difficult for the RL
controller to obtain a good performance since in RL an action noise is compulsory for
learning.

Figure 2-3: Classical control performances in the time domain step response.

2-2-3 Metric Interval Temporal Logic

Temporal Logic (TL) is a convenient formalism for specifying and verifying properties
of reactive systems that are often used in computer scientific field. The main purpose
is to represent the performance as a formula using special syntaxes. In model checking,
there are techniques to check whether the given model fulfills the given TL formula.
Metric Interval Temporal Logic (MITL) is a subset of TL, whereby quantitative timing
constraints are added on the operators. Further in this thesis, MITL formulas are used
with an aim to represent the control performance and not for model checking.
The temporal formula is built up over a finite set of atomic propositions AP using the
following grammar:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | a | 3Iϕ | 2Iϕ | ϕ1 UI ϕ2 (2-22)

K. Nagaki Master of Science Thesis



2-3 Discrete/Hybrid models 15

where the syntaxes are listed in table 2-1 and subscript I ⊆ R is a time interval. This
interval makes MITL different from ordinary TL and defines the quantitative timing
when the continuing temporal formula has to be achieved. Let have the the temporal
formula 3{5,10}a as an example. The temporal formula is satisfied when a becomes true
within time from 5 to 10 seconds later. When the subscript I is not given, it means
that the timing is not for importance and can be interpret as I = {0, inf}.

Table 2-1: Syntaxes

Textual Symbolic Explanation
a Atomic proposition
¬ϕ Negation

ϕ1 ∧ ϕ2 Conjunction
F ϕ 3ϕ In the Future. Eventually ϕ becomes true.
G ϕ 2ϕ Globally. ϕ has to hold always.

ϕ1 Uϕ2 ϕ1 U ϕ2 Until. ϕ1 has to hold until ϕ2 becomes true at a future position.

A traditional stabilization problem could be represented as temporal formula

ϕ1 = 32φ (2-23)

where φ ∈ AP is true if x ∈ xdes with xdes ⊂ X holds. The control performance reads
as "Eventually Globally φ" and the controller fulfills the performance if this temporal
formula is true. Thus in the future, always x ∈ xdes must hold and therefore this tem-
poral formula represents a stabilization problem. Also the common obstacle avoiding
control performance could be expressed conveniently as

ϕ2 = 2¬ψ (2-24)

where ψ ∈ AP is true if x ∈ xobs with xobs ⊂ X holds. ϕ1 and ϕ2 forms together the
goal reaching obstacle avoidance problem

ϕ = ϕ1 ∧ ϕ2 = 32φ ∧2¬ψ. (2-25)

2-3 Discrete/Hybrid models

To represent varying conditions of a process, discrete modeling is an effective way. Even
when the state space is continuous, the set of states could be labeled as discrete states
or conditions such that it can be modeled. When a process contains both discrete and
continuous states, it is called a hybrid system and hybrid models are used to solve
control tasks on that kind of systems.

In this section (hybrid) automata and petri net are introduced briefly.

Master of Science Thesis K. Nagaki



16 Preliminaries

2-3-1 Automata

A finite automaton or a finite state machine is a mathematical model of computation
broadly used in several fields as computer science, communication systems and also
in control theory. It is an abstract machine that computes the states transitions in
response to the given inputs and can be used to model event-driven systems. On/off
switch is a very simple example of a finite state machine. It has two states ’on’ and
’off’ and when there is an input (e.g. a button is pushed) the state will change. A finite
state machine is defined by the triple Σ(Q,U, F ) with a finite set of states Q, a finite
set of input U and a state transition function F : I × Q → Q. The dynamics of an
automaton could conveniently be represented by a directed graph.

Hybrid automaton

Automatons can model digital systems with discrete states, however many digital sys-
tems interacts with physical processes which live in continuous state space. To deal
with such kind of hybrid systems, the ordinary automaton is augmented to the hybrid
automaton. The discrete part of the system is modeled by the traditional automaton:
there are still discrete states (also called the modes) and driven by an event the state
will change from one to another. While in traditional automata theory this event is
an input from the input set, in hybrid automaton the event depends on the continuous
dynamics. Each mode is associated to an invariant, which describes the conditions
that the continuous states has to satisfy at that mode. The evolution of the continuous
states are typically described by differential equations and whenever the states violate
the invariant conditions, a mode transition takes place. To which mode it will change
will depend on the guard which specifies the subset of continuous state space where a
certain transition is enabled. When transition takes place the continuous states will
go through the reset map which specifies the relation between the new and previous
continuous state.
A hybrid automaton H is an 8-tuple H = (D,X, f, Init, Inv, E,G,R) with

• D = {q1, . . . , qN} is a finite set of discrete states or modes;

• X = Rn is a set of continuous states;

• f : Q × X → X is a vector field or the function describing the evolution of the
states;

• Init ⊆ Q×X is a set of initial states;

• Inv : Q→ P(X) describes the invariants;

• E ⊆ Q×Q is a set of edges;

• G : E → P(X) is a guard condition;

• R : E → P(X ×X) is a reset map.

K. Nagaki Master of Science Thesis



2-3 Discrete/Hybrid models 17

Here P (X) is the power set of X.
A simple example is a thermostat-heater system. The continuous state is the temper-
ature which evolves according to the thermodynamic law. Depending on the current
temperature, the mode of the heater changes between ’on’ and ’off’: the mode will
become ’on’ when the temperature is too low and ’off’ when too high.

Figure 2-4: Hybrid automaton for a thermostat-heater system.

2-3-2 Petri net

An alternative to model the discrete events of a process could be a Petri net (PN). A
petri net graph consists of places, transitions and arcs. The transitions are expressed
by bars and it defines whether events occur. The transition bars are connected by arcs
with the places, expressed by arrows and circles respectively, and each place implies
a condition. The places may contain discrete number of marks called tokens which
visualize the active conditions. The distribution of tokens over the whole places is
called marking and represent the state of the system. Formally a petri net graph is a
bipartite graph (P, T,A,M0) with P = {p1, p2, . . . , pn} and T = {t1, t2, . . . , tm} are set
of places and transitions respectively, A ⊂ (P × T ) ∪ (T × P ) is the set of arcs from
places to transitions and vice versa and M0 is the initial marking. Figure 2-5 shows an
example of a petri net graph.

Figure 2-5: An example of a petri net.

The state evolutions are expressed by the movement of the tokens from places to places.
The connection of the places and transitions shows relations from conditions and oc-
curring events. If an arc runs from a place to a transition, that place is called the input
place of the transition and must hold i.e. the input place must contain a token to enable

Master of Science Thesis K. Nagaki



18 Preliminaries

the transition. The transition is enabled when all the input places contain (at least
one) token(s) and then the transition may fire. The firing represents an occurrence of
the event e.g. an action taken. After firing, from each input place a token is consumed
and a token is generated at all output places, places where arcs run from the transition.
Those output places might again be the input places from other transitions.
The state of the petri net system is expressed by the marking matrix M ∈ N1×n

0 where
n is the number of places. The evolution of the marking matrix can be determined by:

M ′ = TD +M (2-26)

where T ∈ {0, 1}1×m is the transition matrix with m as number of transitions and
D ∈ Nm×n

0 is the composite change matrix. The transition matrix represents which
transition fires. The composite change matrix defines the relations of the places and
the transitions and is calculated by

D = D+ −D− (2-27)

where D+ and D− are m×n matrixes filled in with one if place pj is the output/input
place from transition ti and zeros elsewhere.

2-4 Summary

In this chapter, the basics of RL, some modeling techniques and control performances
are discussed briefly. The advantage of reinforcement learning is that the designer does
not need to give the robot a data which strictly defines the task. This is also the
reason that RL is called a semi-supervised learning method. However, to obtain a truly
"optimal" controller, it is necessary to design a reward function carefully. A possible
way how to attack this complex designing is discussed further in this work.

K. Nagaki Master of Science Thesis



Chapter 3

Reinforcement Learning for classical
control performances

Proportional-Integral-Derivative (PID) controller is by far the most used controller in
the world. This is not only due to its simple structure but also due to its possibility to
define the control performance conveniently. However, PID is a linear controller and
tuning of its parameters maybe challenging if the underlying system is highly nonlinear.
RL on the other hand, it is very suitable to designing nonlinear controllers for highly
nonlinear systems, due to its trial and error approach. Though to make RL a well-
behaved learning controller synthesizing method, a structured reward design method
for incorporating desired control performance is essential. Thereby a question could be
"Is it possible to apply the classical PID controller specification to a RL controller?". In
this chapter RL incorporating classical control performance, especially the overshoot,
is considered and discussed.

3-1 Difficulties by reward function design for classical control per-
formance

A requirement for a RL problem is that the system should be described by a MDP.
Consider for example rise time performance. Will it be possible to incorporate time
related performance in the reward function ρ(x, u, x′) where t /∈ x? To consider this,
first a mass-damper problem is discussed using inverse reinforcement learning.
Apprenticeship learning [16] is used where a reward function is obtained in iterative
way by comparing the given and the found feature expectations. Assuming the reward
function linearly parameterized in the features, the value function can be rewritten as a
product of parameter vector and the feature expectations. Using a linear optimization
technique this feature expectations is determined iteratively such that at least one of the
policy learned with found feature expectations will result close to the given trajectories.

Master of Science Thesis K. Nagaki



20 Reinforcement Learning for classical control performances

Example: apprenticeship learning. Having a simple mass-damper system with
states x =

[
q q̇

]T
with q ∈ [−1, 1] and q̇ ∈ [−5, 5] are position and velocity relatively,

the problem is to stabilize the mass position at q = 0 from its initial position, randomly
chosen from the range [−1, 1]. Given two sample trajectory sets A and B with different
time used to reaching the goal (see Figure 3-1), the obtained reward functions using
apprenticeship learning are discussed. Both trajectory sets exist from 50 samples. The
model of the system can be found in the appendix (B.

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Sample trajectory rise time 1s

time

s
ta

te

(a) Case A: the reference value is reached in 1 second.

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Sample trajectory rise time 2s

time

s
ta

te

(b) Case B: the reference value is reached in 2 seconds.

Figure 3-1: Two set of sample trajectories.

Figure 3-2 and 3-3 show the obtained reward functions with the transient simulations
which were closest to the original ones. For both cases the agent succeed to stabilize
near 0. However, the time taken to go to reference value is for both cases about 1
second, while the sample trajectories of case B took 2 seconds to go.
When the reward functions are compared, they look very similar: both reward functions
have a peak at (0, 0) and reward is near 0 elsewhere. Differences are the existing non-
zero reward areas and the height of the peak. Seemingly the non-zero rewards around
the peak have no or only very less influence to the policy, since for both cases, the policy
behaves very similar and there are no obvious difference between them that might be
caused by non-zero rewards (plot (a) from Figures 3-2 and 3-3). Also the height of the
peak has less influence. Since the structure is the same, the amount of the reward (in
association with the choice of learning parameters) has only influence on the learning
behavior: the value function of the state (0, 0) will updated with larger steps in case
A than in B, however it will have no influence on the time properties of the policy.
From this, we will conclude that time should also show up in the reward structure to
let learn time related performances. Thus the system has to be augmented by time
when incorporating rise time.
In a maze problem, time property is incorporated in reward functions by giving negative
rewards each time step, to reach the goal as fast as possible. This is done under two
assumptions. First, the initial value of all the states are set to zero, and second, the

K. Nagaki Master of Science Thesis



3-1 Difficulties by reward function design for classical control performance 21

time

a
n
g
le

/d
is

ta
n
c
e

Time−domain transient response IRL

 

 

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Mean

95% confidence region

Max and min bounds

time

in
p
u
t

input

0 1 2 3 4 5
−4

−2

0

2

4

(a)
−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

0

1

2

3

4

5  

Obtained reward function

 −0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 3-2: (a) Transient plot of simulation run without noise, repeated for 50 times. The
policy is learned using the reward function obtained with IRL, is used as sample trajectories. (b)
Obtained reward function plot from top-view.

time

a
n
g
le

/d
is

ta
n
c
e

Time−domain transient response IRL

 

 

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Mean

95% confidence region

Max and min bounds

time

in
p
u
t

input

0 1 2 3 4 5
−4

−2

0

2

4

(a)
−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

0

1

2

3

4

5  

Obtained reward function

 −0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 3-3: (a) Transient plot of simulation run without noise, repeated for 50 times. The policy
is learned using the reward function obtained with IRL, is used as as sample trajectories. (b)
Obtained reward function plot from top-view.

problem terminates when the goal is reached. The agent observes the negative reward as
a "penalty" only when it had expected higher reward at that state. Therefore, a negative
reward is given at every time step, such that the agent receives the largest cumulative
amount of rewards when it reaches the goal with as less as possible steps. However
for a problem which continues even after the goal has reached, as like a stabilization
problem, the agent usually remains receiving rewards as long as it stays at the goal.
Here, the best policy is to reach the goal as fast as possible and stay there until the end
time. It does not make sense anymore to give negative rewards each time step since the

Master of Science Thesis K. Nagaki



22 Reinforcement Learning for classical control performances

best policy already contains the information about the time optimality. When negative
rewards are given for stabilization problems, it is either due to exploration or due to
reward shaping to make learning easier for the agent.

The rise time is defined by the required time to go from 10% to 90% of the final
value, so assuming the final value is always the same, the information of the initial
value has also to be known when the rise time is evaluated. Since the initial state is
chosen randomly during the learning, the initial state should also be contained in the
augmented state. The same holds when evaluating overshoots. The maximum allowed
peak value is derived by the equation

qpeak = qdesired +Mp(qdesired − qinitial) (3-1)

where Mp is a given ratio of maximum allowed overshoot. Thus keeping the Markovian
property by having the augmented system state xaug =

[
q q̇ q0 t

]T
, it should be

able to tackle stabilization problems with required rise time and overshoot. However,
to begin with a simple problem, we will first consider stabilization problem with a given
maximum allowed overshoot. The time does not need to be a state anymore and the
augmented state becomes xaug =

[
q q̇ q0

]T
.

The timing to evaluate the performance will also be important. When using PID
controller, the performance is evaluated after the run. In RL, giving reward only at the
end of the run is not a proper way of rewarding. Because of the definition of TD-error
(2-8), only the last state will be evaluated and the performance during the run will be
neglected. It is somehow comparable to teaching manner to the dogs. When a dog
does something wrong, it has to be taught immediately such that it understands it was
behaving bad. Even if you scold the dog an hour later, it cannot understand why it
was scolded and it will not learn to avoid bad behaves. Thus in RL the performance
has to qualified real time, but then the question is how to design the reward function.
The most obvious way is to design a piecewise reward function depending on the living
subspace. However, designing piecewise reward function becomes complex soon and it
will be very problem specific. It might even be that a time dependent piecewise reward
function is needed.

Instead of making reward function complex, the system model can be changed such
that the reward function itself remains relatively simple. We suggest to use automaton
to make timing of performance evaluation easier. There are several advantages to use
automaton. First, we can define by ourself the "checkpoints". Since we can define the
transition conditions by ourself, we are able to define when to evaluate a specific control
criteria. Also the order of evalution can be chosen. Second, by having a separate reward
function for each mode, we can construct a complex reward system at the end, using
simple reward functions as building blocks. Third, we can fix the rewarding structure.
We can reuse the automaton for other stabilization problems only by changing its
transition conditions and mode-wise reward function. In the next section we will discuss
our proposed method formally.

K. Nagaki Master of Science Thesis



3-2 Hybrid Reinforcement Learning 23

3-2 Hybrid Reinforcement Learning

We introduce a new framework for Hybrid Reinforcement Learning (HyRL), whereby
the term "hybrid" refers to the combination of continuous and discrete states in a
system. We will have a hybrid automaton H = (D,X, f, Init, Inv, E, T, %) where D is
finite set of discrete states (modes), X is a set of continuous states, f is a transition
function of continuous states, Init is a set of initial states, Inv describes conditions that
continuous state has to satisfy in given mode, E is a set of edges, T is a set of transition
relation and % is a set of reward functions (see Figure 3-4). The guard and reset map
conditions are combined into transition relations. We will go through the explanation
of HyRL by considering the following example:

x̄0 ∈ Init

I

δ1,ρ1, V1

ẋ = f(x, u)
x ∈ Inv(δ1)

E

δ2,ρ2, V2

ẋ = f(x, u)
x ∈ Inv(δ2)

S

δ3,ρ3, V3

ẋ = f(x, u)
x ∈ Inv(δ3)

P

δ4,ρ4, V4

ẋ = f(x, u)
x ∈ Inv(δ4)

Figure 3-4: Hybrid automaton describing the condition of the system.

Example 2: Mass damper stabilization without overshoot. The problem is to
stabilize the mass-damper system of example 1 (for model see A-1) at q = 0 without
any overshoot (Mp = 0) by using HyRL.

To tackle the stabilization problem, an automaton with the next modes is created:

• ’idle’ mode (I). The initial mode and the agent begins to go towards the desired
value;

• ’evaluation’ mode (E). According to the given transition condition, the automaton

Master of Science Thesis K. Nagaki



24 Reinforcement Learning for classical control performances

jumps from ’idle’ to ’evaluation’ mode. Particular control criteria is evaluated real
time;

• ’penalizing’ mode (P). When the control criteria is violated, the automaton jumps
to this ’penalizing’ mode. Only negative reward is given and the controller should
learn to avoid this mode;

• ’stabilizing’ mode (S). If the agent fulfills the desired control performance and
reaches the desired value, the automaton escapes the ’evaluation’ mode and ends
here. In this mode the controller should stay around the desired value. When this
condition is violated, the automaton jumps to the ’penalizing’ mode.

Depending on the number of desired control performance, the number of ’evaluation’
mode will change. For each classical control criterion, an ’evaluation’ mode is created
such that the automaton jumps to the relevant evaluating mode at proper timing.
Example 2 (continuation). Since we only care the overshoot performance, an hybrid
automaton with four nodes is associated (Figure 3-5). The continuous states will evolve
according to the equation of motion and the invariant sets are noted in the figure. The
automaton jumps to ’evaluation’ mode when it reaches 95% of the desired value and
’evaluation’-’penalizing’ transition is done if the mass position exceeds the desired value.
From the evaluation mode, the automaton jumps to ’stabilizing’ if the velocity is zero or
downwards. The mode remains ’stabilizing’ as long as the position is between 90% and
100% of the desired value. Since the initial state is random over the range of [-1,1], we
have to care about over- and undershoot. The given invariant is for position and only
valid for overshoots (not undershoots where q0 > 0, for complete transition condition
see appendix A-1.
As mentioned in the previous section, there is need to augment the system states. We
introduce a memory state z which stores the values needed for computation of the
performance thresholds. Thereby, also the mode of the automaton is added such that
the augmented state x̄ becomes finally:

x̄k+1 =

xk+1
zk+1
δk+1

 =

 f(xk, uk)
m(xk, zk)

Γ(xk, zk, δk)

 (3-2)

where x is the original system states, δ is the mode of the automaton. Using the
feedback control law uk = h(x̄k), the closed loop system becomes

x̄k+1 = f̄(x̄k) =

f(xk, π(x̄k))
m(xk, zk)

Γ(xk, zk, δk)

 ∈ X̄ ×D. (3-3)

Since the memory state z is added to the system, the whole system remains Markovian.
Therefore the reward function in each mode is a function of the augmented state x̄k,
input uk and next state x̄k+1:

rk+1 = ρ(x̄k, π(x̄k), x̄k+1) ∈ % (3-4)

K. Nagaki Master of Science Thesis



3-2 Hybrid Reinforcement Learning 25

q0 ∈ [−1, 1]
q̇0 = 0

I

δ1,ρ1, V1

−1 ≤q ≤ 0.05q0∨
1 ≥q ≥ 0.05q0

E

δ2,ρ2, V2

0.05q0 < q ≤ 0∨
0.05q0 > q ≥ 0

S

δ3,ρ3, V3

0.1q0 ≤ q ≤ 0∨
0.1q0 ≥ q ≥ 0

P

δ4,ρ4, V4

q /∈Inv(δ3)

Figure 3-5: Hybrid automaton for over-/undershoot performance Mp = 0.

where the reward function ρ(·) might be different for each mode d. Finally, we have a
hybrid automaton H = (D, X̄, f̄ , Init, Inv, E,G,R, %). The control law will be learned
by running RL on this hybrid automaton with some adjustments in computation of the
approximators, which is discussed in the next subsection.
Example 2 (continuation). To compute the overshoot threshold, we need to know the
initial value. The augmented system state becomes

x̄k =


qk
q̇k
q0,k
δk

 (3-5)

where D = {δ1, δ2, δ3, δ4} = {I,E,S,P}.

3-2-1 Approximators

As like in the ordinary RL problem, the main goal is to find an optimal policy π∗(x̄)
and therefore the computation of the value functions is necessary. Since there are
multiple reward functions (one for each mode), each mode also needs an separate value
function for the specific reward function. There are multiple ways to estimate the value

Master of Science Thesis K. Nagaki



26 Reinforcement Learning for classical control performances

functions, e.g. approximators linear in the basis function, neural networks etc. Here,
a basis function approximation linear in the basis function φ is defined. The value
function for each discrete state can be shown as:

V̂i(x̄) = θTi φc,i(x̄) (3-6)

where i represents the discrete state and θ is the parameter that has to be learned.
Besides the mode-dependent value function, we will introduce a general value function
V̂ (x̄)g which contains information that holds for each discrete state. The general value
function is introduced to make the value function smooth and to prevent large gaps
by transitions between two modes. This general value function forms the base of the
total value function. Each mode-dependent value function characterizes the total value
function according to the associated reward function. The general value function will
be updated independent of the mode, while the mode-dependent value functions are
only updated when the mode is active.
The total value function is the sum of the general part and the mode dependent part

V̂ (x̄) = V̂ (x̄)g + V̂ (x̄)i = θTg φc,g(x̄) + θTc,iφi(x̄) (3-7)

and by saving all the parameters and basis functions in large vectors, approximated
value function becomes

V̂ (x̄) =
[
ηi(δ)θTi · · · ηj(δ)θTj θTg

]

φc,i(x̄)

...
φc,j(x̄)
φc,g(x̄)

 (3-8)

where η is the switching function

ηi(δ) =

1 if δ = i

0 elsewhere.
(3-9)

In the same way, we will define approximated policy as

π̂(x̄) =
[
ηi(δ)ξTi · · · ηj(δ)ξTj

] 
φa,i(x̄)

...
φa,j(x̄)

 . (3-10)

Mention here that the approximated policy does not have global term: for each mode
the controller could learn a different policy.

3-2-2 Mode-wise reward function

The reward function in each mode could be seen as building blocks to design a complex
reward function for the total problem. However, there remains still the question how
to choose this mode-wise reward functions. By choosing complex reward functions for

K. Nagaki Master of Science Thesis



3-2 Hybrid Reinforcement Learning 27

each mode, the final reward structure may become too difficult even for the designer to
understand which part of the task is rewarded and which not. Therefore in this work
we will use two types of simple and intuitive reward functions as building blocks. The
first one is the traditional discrete reward function, which is also mentioned in previous
chapter (2-19)

r = ρ(x, u, x′) =

c x ∈ S
0 otherwise

(3-11)

with S ⊆ X. However this reward function works worse for a very rare condition (e.g.
visit a single state while having a continuous state space), by choosing the condition
and the value of c properly, it could give rough information to the agent what is desired.
For example with c < 0 and S = X, the agent receives always a penalty and it tries
to avoid this situation somehow. However this example works not for an ordinary RL
problem, since we have multiple modes, giving only a penalty in one mode will let avoid
the controller the transition to this mode.
The second reward function is

r = ρ(x, u, x′) = −C|x− xdes| (3-12)

where C > 0. This reward function will force the agent to stay close at the desired
state. It is also used frequently in continuous state space RL. In this work, only the
absolute error in position is penalized.
Designing a proper reward function is a complex work. By associating the problem with
hybrid automaton, the complex part of reward function, as like defining the timing of
rewarding, is done in the hybrid automaton design. The remained simple part of what
to reward can be tuned mode-wisely with simple reward functions.
Example 2 (continuation). Since we have four modes I, E, S and P, we also have four
reward functions, see table 3-1. In I, the agent is penalized when it is getting away from
the desired value. In E and S, the absolute error between the current and desired value
is penalized. Furthermore in S, it is rewarded when it stays in stabilizing mode: this
can be seen as reward corresponding to the velocity. In P the agent is always penalized
with a big value, so the best policy is avoiding P while staying in S.

Table 3-1: Mode-wise reward functions for mass-damper stabilization with overshoot perfor-
mance Mp = 0.

Mode Reward function

I ρ1 =


0 if q̇ > 0 | q0 < qdes (overshoot)
0 if q̇ < 0 | q0 > qdes (undershoot)
−3 else

E ρ2 = −3|qdes − q|

S ρ3 = −3|qdes − q|+
{

3 if δ = δ′ = S
0 else

P ρ4 = −9

Master of Science Thesis K. Nagaki



28 Reinforcement Learning for classical control performances

3-3 Simulation experiments

After the modeling of the augmented system is complete, RL can be run. Continuously,
we will work on further with the mass-damper system of the example and here the
simulation results are discussed. Further, mass-damper system with given rise time
performance is experimented.

3-3-1 Simulation: Mass-damper without overshoot

The used simulation parameters in the simulation experiments are listed in table 3-2.
The initial state was randomly chosen from [−1, 1].

Table 3-2: Simulation parameters for simulation experiments HyRL.

Simulation parameters Symbol Value Units
Number of trials - 800 -
Trial duration Tt 5 s
Sample time Ts 0.03 s
Discount factor γ 0.98 -
Eligibility trace decay λ 0.65 -
Learning rate critic αc 0.3 -
Learning rate actor αa 0.08 -
Number of radial basis functions - 10× 10× 5 -

Figure 3-6 shows the learning curve plots of the simulation. The learning experiment
is repeated for twenty times. Both the learning curve and the TD-error are converged,
although the learning curve is very noisy. This noisy learning behavior is caused by the
combination of random initial position and the defined invariant set in stabilizing mode,
which is explained during discussing the time domain response. For a fixed initial value
of −1, the learning curve converged very nicely.

Time domain response

However the convergence was not perfect, the controller had learned to avoid overshoot,
i.e. the controller had learned to avoid visiting the penalizing mode. Figure 3-7 shows
the transient response of position and input, simulated using the learned policy. The
background color represents the current mode of the hybrid automaton. The penalizing
mode is given in red color, however it is not presence since it was not visited in this
run. In the begin of idle state, the mass is given a hard push by the controller such
that it moves towards the goal. After it is in the neighbor of the desired position,
the automaton jumps to the evaluating and starts to give an input against the moving
mass, such that it will not exceed zero.
Figures of 3-8 represents the responses for all the initial states. It can be seen that
both over- and undershoot performance of Mp = 0 are achieved. The small peaks of

K. Nagaki Master of Science Thesis



3-3 Simulation experiments 29

Learning Curve Massdamper with Hybrid Automaton

Trials

C
u

m
u

la
ti
v
e

 r
e

w
a

rd

 

 

0 100 200 300 400 500 600 700 800
−1500

−1000

−500

0

500
Mean

95% confidence region

Max and min bounds

(a) The averaged learning curve of the experiment re-
peated for 20 times.

TD−error Massdamper with Hybrid Automaton

Trials

C
u

m
u

la
ti
v
e

 a
b

s
o

lu
te

 T
D

−
e

rr
o

r

 

 

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

1600

1800

Mean

95% confidence region

Max and min bounds

(b) The averaged cumulative TD-error plot.

Figure 3-6: Learning behavior by learning overshoot performance for mass-damper system.

Figure 3-7: A transient response of the mass-damper system and the modes: idle (green),
evaluating (yellow), stabilizing (blue) and penalizing (red) which is not visited in this simulation
run.

the input plots are the inputs to stop the mass. Since the timing to jump from idle
to evaluating mode is not always the same, we see multiple peaks in the input plot.
After about two seconds the mass stays near by the center, however there were runs
whereby the input was still not zero. This phenomena was visible when q0 was very
close to zero, which is also the cause of noisy learning behavior. Figure 3-9 shows
some examples of such undesired results. This is due to our defined invariant set of

Master of Science Thesis K. Nagaki



30 Reinforcement Learning for classical control performances

time

a
n

g
le

/d
is

ta
n

c
e

Time−domain transient response Massdamper with Hybrid Automaton

 

 

0 1 2 3 4 5
−0.5

0

0.5

1
Mean

95% confidence region

Max and min bounds

time

in
p

u
t

input

0 1 2 3 4 5
−10

−5

0

5

10

(a) Simulated mean transient response with q0 ∈ [0, 1].
The undershoot performance is considered.

time

a
n

g
le

/d
is

ta
n

c
e

Time−domain transient response Massdamper with Hybrid Automaton

 

 

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

Mean

95% confidence region

Max and min bounds

time

in
p

u
t

input

0 1 2 3 4 5
−5

0

5

10

(b) Simulated mean transient response with q0 ∈
[−1, 0]. The overshoot performance is considered.

Figure 3-8: Simulation results for the mass position and input force. The simulation is repeated
for 50 times.

stabilizing mode, 0.1q0 < q < 0 (in case of overshoot). The defined region was too
small when q0 ∈ [−0.1, 0.1], the controller was not able to stabilize the mass in that
region. Therefore the agent visits the penalizing state often as in the figures, and the
cumulative reward becomes less. Precise control is still a very complex task for learning
controllers, since it makes use of approximators. Also the exploration noise makes it
difficult for the agent to control precisely.

(a) The invariant in mode S is 0 < q < 0.001 (b) The invariant in mode S is −0.004 < q < 0

Figure 3-9: Examples of bad results for cases q0 ∈ [−0.1, 0.1].

K. Nagaki Master of Science Thesis



3-3 Simulation experiments 31

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode I

-150

-100

-50

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode I

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode E

-150

-100

-50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode E

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode S

-150

-100

-50

0

50

100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode S

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode P

-300

-250

-200

-150

-100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode P

-10

-5

0

5

10

Figure 3-10: Value functions and policy for q0 = −1.

Value functions and policy

Figure 3-10 represents the value functions and policies when q0 = −1. In mode I, the
agent begins at (−1, 0) and the value increases when the state becomes close to the
center position. Around q = −0.1, the automaton jumps over to evaluating mode. The
value functions of mode E and S are quite similar since the mode-wise reward functions
are similar. Interesting is that the value in mode E is more negative compared with the
mode S. This is probably the effect of general part of value function approximation, to
keep the gap in value functions small. When the jump from idle to evaluate occurs, the
value in both plots are about −50 (yellow in value function of mode I and red in mode
E).Since the automaton does not stay long time in mode E, the update rate is low and
makes the value over the whole region low. In the policy plot is clearly visible that
the controller is giving input against the moving mass, since the value around (0,0) is
negative. The policy of mode S is traditional for stabilization problems and it forces
the agent to stay around the center. The policy in mode P is quite intuitive: when
the velocity is above 0, the input is negative such that the mass is pushed back to the
center. Same holds for when velocity is smaller than 0, only the input is then positive.

The value functions and policies from q0 = 1 (Figure ??(a)) are very similar to Figure 3-
10, only reversed in vertical direction such that it prevents undershoot. For intermediate
initial positions as q0 = 0, the value functions and policies of q0 = −1 and 1 are merged
and they contain characteristics from both (Figure 3-11). It is typical that the policy
of mode S is similar for the three initial conditions: it is visited in the later stage of
the run and the initial value does not have influence anymore.

Master of Science Thesis K. Nagaki



32 Reinforcement Learning for classical control performances

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode I

-100

-50

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode I

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode E

-140

-120

-100

-80

-60

-40

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode E

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode S

-150

-100

-50

0

50

100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode S

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode P

-250

-200

-150

-100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode P

-10

-5

0

5

10

(a) q0 = −1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode I

-200

-150

-100

-50

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode I

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode E

-200

-150

-100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode E

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode S

-200

-100

0

100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode S

-10

-5

0

5

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Value function: Mode P

-400

-300

-200

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-5

0

5

Policy: Mode P

-10

-5

0

5

10

(b) q0 = 0

Figure 3-11: Value functions and policy for (a) q0 = 1 and (b) q0 = 0. The plots of q0 = 1 are
very similar to those from q0 = −1, although mirrored vertically. The plots of q0 = 0 is a mix of
those from −1 and 1.

K. Nagaki Master of Science Thesis



3-3 Simulation experiments 33

3-3-2 Simulation: Mass-damper with rise time

Besides the overshoot, also the rise time performance is considered using the same struc-
ture of hybrid automaton. The goal is designing a controller which will go from its initial
state to 90% of the desired value within tr,min = 0.6 to tr,max = 0.8 second. We will use
the augmented state x̄ =

[
q q̇ q0 t δ

]T
with the following automaton (Figure 3-12)

and mode-wise reward functions (Table 3-3). The most simulation parameters are the
same as the overshoot example, as listed in Table 3-2. The trial number is increased
to 2000 and the number of basis function is also increased to 10× 10× 5× 5. For the
transition conditions, please see the appendix (B). Since the initial states in [−0.1, 0.1]
had difficulties by stabilizing, the set of initial states is changed into [−1,−0.5] to make
the problem easier for the controller.

q0 ∈ [−1,−0.5]
q̇0 = 0

I

δ1,ρ1, V1

q <0.9q0

E

δ2,ρ2, V2

q ∈ [−1,1], q̇ > 0
t < tr

S

δ3,ρ3, V3

x̄ ∈X̄ × δ3

P

δ4,ρ4, V4

x̄ ∈X̄ × δ4

Figure 3-12: Hybrid automaton for rise time performance tr = [0.6, 0.8]. The automaton jumps
to evaluating mode after 10% of the desired value has reached. From E, it jumps to either S or
P, where the automaton will live for the entire episode time. To avoid that the agent will "wait"
at 90% of the desired value until the given time comes, we forbid q̇ < 0 in E so that it is "rising"
to the desired value. If this is violated, the automaton jumps to P and otherwise to S.

The reward function of mode E reinforces the agent to go to 90% of the desired value.
Usually by using this reward function, the controller tries to reach the desired value
as fast as possible, however we have forbidden this behavior by defining the transition
relation from E to P. The automaton jumps to penalizing when it reaches 90% too fast
or too slow or when the controller tries to "wait" until the time elapse, i.e. when the
velocity is negative.

Master of Science Thesis K. Nagaki



34 Reinforcement Learning for classical control performances

Table 3-3: Mode-wise reward functions for mass-damper stabilization with rise time performance
tr = 0.8.

Mode Reward function

I ρ1 =


0 if q̇ > 0 | q0 < qdes

0 if q̇ < 0 | q0 > qdes

−3 else
E ρ2 = −3(0.1qdes − q)

S ρ3 = −3|qdes − q|+
{

3 if δ = δ′ = S
0 else

P ρ4 = −9

Mention here that once the automaton visits the penalizing mode, it will stay there for
the rest of the episode time. This makes the learning difficult and especially noisy, as
can be seen in Figure 3-13. The edges between penalizing mode and stabilizing mode
is erased because the agent could "neglect" some reward losses. Due to the nature of
a stabilization problem, how longer the the agent stays at the stabilizing point, how
more reward it receives. Then even a penalty is given during the way to reach the goal,
it might be seen as an undesirable but acceptable loss since it can compensate it by
earning more reward by stabilizing. Obviously, this means that the given policy is not
optimal, however there are situations whereby this occurs. It is not convincing that
high reward can be earned while the performance was violated and therefore when the
performance was violated, it will stay in the penalty mode.

Learning Curve Massdamper with Hybrid Automaton

Trials

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

(a) Cumulative rewards.

TD-error Massdamper with Hybrid Automaton

Trials

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti
v
e

 a
b

s
o

lu
te

 T
D

-e
rr

o
r

0

200

400

600

800

1000

1200

1400

1600

Mean

95% confidence region

Max and min bounds

(b) Cumulative absolute TD-error.

Figure 3-13: Learning behavior for mass-damper with rise time performance.

Transient response

Figure 3-14 shows the simulation results of obtained policy. Figure 3-14(d) shows that
for each initial state in [−1,−0.5] the stabilization was succeed. In figures (a) and (c) we

K. Nagaki Master of Science Thesis



3-3 Simulation experiments 35

(a) q0 = −1, zoomed in to the significant part. (b) q0 = −1

(c) q0 = −0.5, zoomed in to the significant part.

Mass-damper with Hybrid Automaton t
r
 ∈ [0.6,0.8]

time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a
n
g
le

/d
is

ta
n
c
e

-1

-0.5

0

0.5

Mean

95% confidence region

Max and min bounds

input

time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

in
p
u
t

-10

-5

0

5

10

(d) Averaged plot for q0 ∈ [−1,−0.5] over 30 runs.

Figure 3-14: Transient simulation for (a), (b) q0 = −1 and (c) q0 = −0.5. (d) shows the
averaged plot over 30 runs. The color representing again the mode of the automaton: green is
mode I, yellow is E and blue is S.

can see that the rise time is about 0.78 and 0.63 seconds respectively, which are within
the given range. Since all the simulations are between the max and min bounds created
by trajectories of q0 = −0.5 and q0 = −1 (see (d)), we can expect that for all the initial
states the rise time performance is fulfilled. We can see that the the controller gives a
hard push to the mass after jumped to mode E, and it is adjusting time for reaching
q = 0 by giving negative input to decrease the velocity. The given control specification
is thus achieved. The strange thing is that in mode I the trajectory rises very slowly.
Since we had defined in the hybrid automaton to start counting time in mode E, the
controller is not trying to gaining time to fulfill the rise time criteria. It might be that
however the control criteria was achieved, the policy was still not optimal.

Master of Science Thesis K. Nagaki



36 Reinforcement Learning for classical control performances

3-3-3 Mass-damper with rise time and overshoot performance

After the policies for two different control criteria are learned, we can create an au-
tomaton with both evaluating mode existing. We will obtain an hybrid automaton
with five modes, where I, S, P and two E modes are present: one for rise time and the
other for overshoot performance. Running the hybrid automaton in Figure 3-16, the
simulation result of Figure 3-15 is obtained. Since the separate policy for rise time and
overshoot had both achieved the control performance, also the combination of policies
fulfills both control specification. As in the plots in the previous subsections, the rise
time is about 0.78 and there is no overshoot.
The advantage of this hybrid automaton setting is that by combining multiple modes
with its learned policies, a controller for complex task can be obtained. By preparing
multiple modes with policies learned to achieve different control performances, the only
work to do is create an automaton with desired behavior. By running the automaton,
all the performance should be satisfied if the learning of each policy had gone well.

Figure 3-15: Simulation response running the combined automaton with learned policies previ-
ously for q0 = −1.

K. Nagaki Master of Science Thesis



3-4 Discussions 37

q0 ∈ [−1,−0.5]
q̇0 = 0

I,δ1, ξ1,os

q <0.1q0

Etr ,δ2, ξ2,rt

q ∈[−1, 0.05q0]
q̇ > 0t < tr

EMp ,δ3, ξ2,os

0.05q0 < q ≤ 0

S,δ4, ξ3,os

0.1q0 ≤ q ≤ 0
P,δ5, ξ3,os

q ∈¬Invδ4

Figure 3-16: Hybrid automaton for rise time performance tr ∈ [0.6, 0.8] and Mp = 0. The
automaton jumps to evaluating mode for rise time after 10% of the desired value has reached.
After the given rise time is elapsed or when the 95% is reached, evaluating mode for overshoot
becomes active. In the latter case, the performance of rise time is not fulfilled. From the second
evaluating mode, it jumps to either S or P.

3-4 Discussions

In this section one approach of reinforcement learning for hybrid automaton is proposed.
There is very less work done about RL for a system which containing both discrete and
continuous states and to our knowledge, this is the first plain RL for hybrid system.
As works that deals with hybrid systems, there are few Hierarchical Reinforcement
Learning (HRL) techniques. One example is the options framework ([17], [18]). In this
framework, lower level RL learns extended actions, called options, which is saved as a
new action. The plain and extended actions could be chosen by the higher level agent
to learn its task. In [19] the robot had learned to stand up by combining Q-learning
and actor-critic learning. The higher level uses Q-learning to set subtasks for the lower
level controller, which uses actor-critic to learn achieving the subtask.

As one of the similarities of the proposed technique and HRL is that in both ap-
proaches multiple reward functions are available which only holds for just a part of
MDP. Designing reward function for a complex problem is an effort and time consum-
ing job. Especially when you try to incorporate sub reward functions, corresponding

Master of Science Thesis K. Nagaki



38 Reinforcement Learning for classical control performances

to subgoals, into one global reward function, this may end up in a huge and complex
function. However, in both HRL and proposed one, the problem was decomposed into
multiple subproblems with its own reward function, rather than combining these mul-
tiple reward functions into one. This will end up in relatively simple reward functions
which are easier to design.
In the proposed method, each mode with its policy had the function of a building block
for the total controller. There is the advantage that the modes can be reused and the
reward function design is less complex since only small part of the total problem is
covered.
The question remains whether the proposed method designs a proper reward function
as defined in the introduction (Chapter 1). It definitely has the availability for tuning
and the reward function also contains enough information. The reason of many learning
trials was more due to the augmentation of the states and multiple modes. Also the
control law fulfilled the required control criteria. However, the design of reward function
itself was still on heuristics of the designer.

K. Nagaki Master of Science Thesis



Chapter 4

Reinforcement learning for Temporal
Logic specification

Temporal logic is commonly used for specifying and verifying properties of systems
as finite state machines. In this work, temporal logic is used to describe the control
performance and it is translated into reward system for RL, consisting from Petri net
and reward function. Since a Petri net represents active conditions with tokens, rewards
can be represented conveniently by using the marking of the Petri net. Running RL
over the system using the reward system, a policy is obtained which should fulfill the
given temporal formula, i.e. the control specification.
The proposed method consists of 5 steps.

1. There is a control task for a dynamical system f(x, u) which has to achieve the
control performance ϕ written in Metric Interval Temporal Logic (MITL).

2. Translate ϕ into a Petri net Γ and a reward function, which will form the reward
system of the learning problem.

3. Augment the system state by the marking matrix M such that x̄ =
[
x
M

]
. The

total system becomes Σ(x̄, u) =

f(x, u)
Γ(x,M)

.

4. Apply RL on the whole system Σ to learn the optimal actor parameter ξ∗.

5. Run Σ(x̄, π(ξ∗, x̄)).

The difficulties of this method are in step 2 and 4, which are discussed further on.

Master of Science Thesis K. Nagaki



40 Reinforcement learning for Temporal Logic specification

4-1 Reward system design

Using temporal logic, the control specification can be represented conveniently. While
it is frequently used as a tool for verification of discrete systems, in this work we use it as
a language to represent the desired control performance. The temporal logic expression
is translated into a set of Petri net and reward function, whereby the reward function
is a function of the Petri net markings. Each syntax of temporal logic discussed in
preliminary chapter is assigned to a reward function.
By translating the MITL expressions into a reward system, we will use the traditional
stabilization problem as an example:
Example 1: Translate stabilization control performance ϕ written in temporal logic ex-
pressions

ϕ = 32κ (4-1)
with the atomic proposition κ ∈ AP into a reward Petri net Γ. For κ holds

κ = > if x ∈ κ (4-2)

where κ ⊂ X is the desired set of states and X is the continuous state space.
Since we will work on continuous state space, the desired set of states should be given
instead of a single state. The use of approximators and the existence of exploring noise
make the stabilization at a single state impossible. For this kind of problem, the state
space could be divided into two subsets: κ and ¬κ where κ ∩ ¬κ = X. Dividing the
whole state space into multiple subsets could also be seen as a rough discretization of
the state space. Starting from x0 ∈ ¬κ, the RL agent has to find a policy which makes
4-1 true.

4-1-1 Modeling Petri net from temporal logic expressions

Since we will design a reward function only dependent on the marking of the Petri
net, conversion of temporal formula to Petri net is a necessary and important work. If
we define places for each MITL syntax, the Petri net becomes huge for even relatively
simple control performance. Also superfluous places will made which models the same
part of the system. Therefore, we only have defined Petri nets for particular components
of the MITL expressions. By combining all Petri nets, the reward Petri net is formed
suitable for evaluating the performance. Thereby we distinct between two types of Petri
nets: state related sub Petri net and timing related sub Petri net. These sub Petri nets
in parallel, forms the total reward Petri net.
State related sub Petri net models the atomic propositions related to the states. Going
back to example 1, the state related Petri net of a stabilization problem will exist
from two places. One place for κ and another for ¬κ. There are also two transitions
which connects the two places, to represent the transitions from κ to ¬κ and vice
versa. On the other hand, timing related sub Petri net models the temporal syntaxes
as Eventually, 3, and Until, U . For every temporal syntax a Petri net with at least one

K. Nagaki Master of Science Thesis



4-1 Reward system design 41

place is defined. The purpose of this Petri net is to define the timing of achieving the
state related control performance. Again getting back to example 1, we can design a
timing related Petri net consisting from one place. This is due to the temporal syntax
3, which implies that the continuing expression 2κ should become true in the future
as long there is a token in the place corresponding to 3.
Example 1 (continuation): Petri net Γ modeling 4-1 (Figure 4-1). While living a token
in pτ , 2κ should become true in the future to achieve the control specification. However,
since stabilizing at κ is the only control task and the timing does not make sense, this
sub Petri net becomes trivial. Therefore this sub Petri net is neglected further on and
the marking will always accounted as pτ = 1. The initial marking M0 =

[
p¬κ,0 pκ,0

]
=[

1 0
]
, the composite change matrix D =

[
−1 1
1 −1

]
and transition matrix T =

[
t1
t2

]T

=

t1 = 1 if (xk+1 ∈ κ | p¬κ = 1)
t2 = 1 if (xk+1 ∈ ¬κ | pκ = 1)

where t1 and t2 are zero for else. The evolution

of Petri net becomes

Γ(x,M) : Mk+1 = Tk+1(x,M)D +Mk (4-3)

p¬κ pκ

pτ

t1

t2

Figure 4-1: Petri net modeling control performance 4-1. Right is the state related sub Petri net
with its initial marking. Left the single place with token is timing related sub Petri net.

Table 4-1 shows the sub Petri nets with its corresponding temporal syntax and/or
atomic proposition. Mention here that for modeling Globally, 2, the time related Petri
net is not defined, since the continuing expression should always hold and defining tim-
ing becomes trivial. If the control performance contains multiple atomic propositions
or temporal syntaxes, then the total reward Petri net becomes the corresponding Petri
nets in parallel. Although there are also situation whereby multiple Petri nets in paral-
lel could be simplified as a single Petri net. Especially in situation whereby the whole
state space is divided into multiple subsets, this simplification is effective to decrease
the total number of places and tokens. In the simulation section there are multiple
examples where such simplification is applied (see 4-3-2 and ??). Thereby the way of
placing the transitions would be totally problem dependent and there are no fixed rules

Master of Science Thesis K. Nagaki



42 Reinforcement learning for Temporal Logic specification

how to connect the places. Also the conditions when the transitions will fire is problem
specific. For the temporal MITL operators with time interval, the transitions will fire
according to time.

Table 4-1: Table for translating temporal syntaxes into sub Petri nets for reward system. The sub
Petri nets could be distinct between timing and state related Petri nets. The atomic propositions
κ and ψ are true if x ∈ κ and x ∈ Ψ respectively where κ,Ψ ⊂ X.

State related sub Petri nets
Atomic proposition Sub Petri nets

κ p¬κ pκ

t1

t2

Timing related sub Petri nets
Temporal operator Sub Petri nets

Eventually, 3κ
pτ,κ

Eventually (MITL), 3{a,b}κ
pτ<a,κ pa<τ<b,κ pτ>b,κt1 t2

Until, κ U ψ
pτ1,κ pτ2,ψt1

4-1-2 Metric Interval Temporal Logic reward functions

For the given MITL control performance, we will assign a reward function to each
operator and atomic proposition. Reward function assigned to unary operators is a
function of the expression behind it. Binary operators as U (Until) and ∧ (AND,
conjunction), is a function of expressions before and behind it. Thus for 4-1, the
reward function becomes r3(r2(rκ(Mk,Mk+1))). Since it is usual in reward function
design to consider the states after the action is applied, in this thesis p(·) represents the
number of tokens in place (·) at time step k + 1. For number of tokens at time step k,
the tilde operator is used such that p̃(·) represents the number of tokens in place (·) at
time step k.
Table 4-2 shows the assigned reward functions for the operators and atomic proposition.
Each reward function could be multiplied by some cost to weigh each temporal formula
differently, however for the convenience it is not written in the table. Usually for control
task whereby a certain condition has to hold the entire run, e.g. reaching the goal while
avoiding the obstacle 3κ∧2¬ψ, then that condition 2 should be weighed heavier (see

K. Nagaki Master of Science Thesis



4-2 Reinforcement learning with Petri nets 43

4-3-2). Also when a performance occurs for a short time, the weighting factor should
become large to put emphasis on that specific performance.

Table 4-2: Table representing reward functions assigned to temporal formulae. p(·) is the number
of tokens in place (·).

Temporal formula Reward function Explanation
κ rκ = pκ − p¬κ Reward is given if κ is true and penalize if κ is false.

¬κ r¬κ = −rκ
Multiply the reward above by −1, such that reward is
given if ¬κ is true.

2κ r2κ = (1 + p̃κ)rκ
Give extra reward when κ is true for two time steps
in sequence.

3κ r3κ = p̃τ,κrκ Give reward if κ should become true in the future.

3{a,b}κ r3κ = p̃a<τ<b,κrκ
Give only reward within time a and b such that κ
becomes true within the given time interval.

κ ∧ ψ r∧ = min(rκ, rψ) Penalize if one of the condition is not true.

κ U ψ rU = pτ1rκ+pτ2rψ
Reward if κ is true until ψ becomes true. Thereafter,
give only reward if ψ is true.

Example 1 (continuation): The reward function for 4-1 becomes
r32κ(Mk,Mk+1) = r3(r2(rκ(Mk,Mk + 1))) = p̃τ,κ(1 + p̃κ)(pκ − p¬κ) (4-4)

= (pκ − p¬κ) + p̃κpκ − p̃κp¬κ.
Notice pτ,κ is always 1. The terms between the brackets are rewards corresponding to
the position states, the reward is positive if κ is true and negative else. The third term
will give extra reward if a token lives in pκ for two time steps in sequence, thus it
reduces transitions and forces the agent to let not fire the transition. If nevertheless
the transition fires and the token pκ is consumed, the last term will extra penalize the
agent.

4-1-3 Table of reward system

Table 4-3 summarizes the translation of temporal formulae into Petri net rewarding
system.

4-2 Reinforcement learning with Petri nets

After the control performance ϕ is translated into Petri net Γ with reward function

rϕ, the system is augmented. We will obtain an augmented state x̄ =
[
x
M

]
and total

system Σ(x̄, u) =

f(x, u)
Γ(x̄)

. Since the most existing RL methods only deals with

either discrete or continuous states, we need to rearrange the consisting method. We
will use the standard actor-critic method as a base for our method, Standard Actor-
Critic with Petri Net (SACPN).

Master of Science Thesis K. Nagaki



44 Reinforcement learning for Temporal Logic specification

Table 4-3: Table summarizing translation of temporal formulae into Petri net reward system.
For each temporal formula a cost could be multiplied to tune the importance of each control task.
p(·) is the number of tokens at time step k+ 1 in place p(·), while p̃(·) is the number of tokens at
previous time step k in place p(·)

Temporal
formula Reward function Sub Petri net

κ rκ = pκ − p¬κ p¬κ pκ

t1

t2

¬κ r¬κ = −rκ
2κ r2κ = (1 + p̃κ)rκ

3κ r3κ = p̃τ,κrκ

pτ,κ

3{a,b}κ r3κ = p̃a<τ<b,κrκ

pτ<a pa<τ<b,κ pτ>bt1 t2

κ ∧ ψ r∧ = min(rκ, rψ)

κ U ψ rU = pτ1rκ + pτ2rψ

pτ1,κ pτ2,ψt1

4-2-1 Approximators

Since Petri net is a discrete way of modeling the system, using approximators to ap-
proximate the marking M̂ will not be a proper way to compute the state of the Petri
net. For large Petri net with many places becomes the dimension of the basis func-
tions also large, which requires a lot of computation power. Thereby parallel Petri nets
with multiple tokens in the whole system makes the computation even more complex.
Therefore we suggest to assign parameter vectors of the approximators to each place,
such that each place has its own approximated policy π̂ and value function V̂ . The
total policy and value function are the sum of assigned policies and value functions of
the places where the tokens live in.

Assume we have a total system Σ(x̄, u) =

f(x, u)
Γ(x,M)

, where x ∈ Xn×1 andM ∈ P 1×m.

K. Nagaki Master of Science Thesis



4-2 Reinforcement learning with Petri nets 45

Then assign for each place i estimated policy π̂i and value function V̂i:

π̂i(ξ, x̄) = pi∑
M
ξTi φa(x) (4-5)

V̂i(θ, x̄) = pi∑
M
θTi φc(x) (4-6)

where φa(x) ∈ Rs and φc(x) ∈ Rt are basis functions of actor and critic respectively, pi
is the number of tokens in place i and ∑M > 0 is the total number of tokens, assuming
there is at least 1 token in the system every time. We will use linear parameterization
due to its simplicity and convenient representation. Mention hereby that the number
of tokens is a measure for dominance of the place corresponding policy. The policy is
divided by the total number of tokens to avoid continuous increasing of the TD-error in
case when transition exists which fires tokens without consuming any. Although in this
work, there are no situations whereby two or more tokens live in a place, thus every
policy weighs all even as long there is a token at the place.
The total policy and value function is the sum over all places

π̂(Ξ, x̄) =
∑
m

π̂i(ξ, x̄) =
∑
m

pi∑
M
ξTi φa(x)

= 1∑
M
MΞTφa(x) (4-7)

V̂ (Θ, x̄) =
∑
m

V̂i(θ, x̄) =
∑
m

pi∑
M
θTi φc(x)

= 1∑
M
MΘTφc(x) (4-8)

where
Ξ =

[
ξ1 ξ2 . . . ξm

]
∈ Rm×s and Θ =

[
θ1 θ2 . . . θm

]
∈ Rm×t. (4-9)

4-2-2 Standard Actor Critic with Petri Net

Because the parameters are now matrices instead of vectors, also the update function of
the parameters is changed. The update rules of actor (2-11) and critic (2-17) becomes

Ξk+1 = Ξk + αaδk+1∆ukφaMk+1 (4-10)
Θk+1 = Θk + αcδk+1ek+1Mk+1. (4-11)

Rest of the computation remains the same as in the original SAC. For clarity the pseudo
code of SAC with Petri nets is given in Algorithm 1.

Master of Science Thesis K. Nagaki



46 Reinforcement learning for Temporal Logic specification

Algorithm 1 Standard Actor-Critic with Petri Net (SACPN)
Input: γ, λ, learning rates α and reward function rϕ
1: e0 = 0
2: Initialize x0, M0 and function approximators
3: Apply random input u0
4: k ← 0
5: loop
6: Determine xk+1, Mk+1 and compute rϕk+1(Mk,Mk+1)
7: δk+1 ← rk+1 + γVΘk(x̄k+1)− VΘk(x̄k)
8: // Update actor
9: Ξk+1 ← Ξk + αaδk+1∆uk∇Ξπ̂Ξ,kMk+1
10: // Update critic
11: ek+1 ← λγek +∇ΘV̂Θk(x̄k)
12: Θk+1 ← Θk + αcδk+1ek+1Mk+1
13: // Choose action
14: uk+1 ← π̂Ξk+1(x̄k+1)
15: Choose exploration ∆uk+1 ∼ N (0, σ2)
16: Apply uk+1 + ∆uk+1
17: k ← k + 1
18: end loop

4-3 Simulation experiments

The proposed method is validated on simulation using a pendulum model for 5 different
control tasks. Table 4-5 shows the desired control performance and its translation
to ordinary human language. For all control performance, the task is to swing the
pendulum from its initial position to the desired positions. The fully measurable state
x =

[
q q̇

]T
consists of the angle q and the angular velocity q̇ of the pendulum. Only for

the first control task the input signal is limited to u ∈ [−3, 3] such that the pendulum
has to build up momentum to be able to swing up. For other tasks hold u ∈ [−10, 10]
which is enough input to swing the pendulum freely. For the model of the pendulum,
the readers are referred to the appendix (see A-2). Also the models of Petri nets are
given in the appendix (see C). The simulation parameters are given in table 4-4.

Table 4-4: Simulation parameters used for simulation experiments of SACPN. The number of
trials are different for each problem.

Simulation parameters Symbol Value Units
Trial duration Tt 3 s
Sample time Ts 0.03 s
Discount factor γ 0.97 -
Eligibility trace decay λ 0.67 -
Learning rate critic αc 0.3 -
Learning rate actor αa 0.1 -
Number of radial basis functions - 10× 10 -

K. Nagaki Master of Science Thesis



4-3 Simulation experiments 47

Table 4-5: The experimented 5 control performance. The atomic propositions κ, ψ and υ are
true if x ∈ κ,Ψ,Υ respectively where κ,Ψ,Υ ⊂ X holds respectively.

Temporal formula Human language

1 32κ
Stabilization problem. Visit the desired subset

κ and stay there for the entire time.

2 32κ ∧2¬ψ Stabilization with obstacle avoidance. Stabilize
at κ but do not visit Ψ during the run.

3 32κ ∧2¬ψ ∧2υ

Stabilization with obstacle avoidance and
velocity limit. Stabilize at κ while never
visiting Ψ and the velocity should always

within the values defined by Υ.
4 23κ ∧23υ ∧2¬ψ Visit κ and Υ alternately while avoiding Ψ.

5 ¬κ U{1,2}
(
κ U{2,∞} 2¬κ

) Visit κ within a to b seconds, however do not
visit before and after a and b seconds.

4-3-1 Simulation 1: 32κ

The first control performance is a traditional stabilization problem for an inverted
pendulum with input signal limitation. The goal is to keep the pendulum upwards
while starting form the downward position. Since the maximum input signal cannot
deliver enough power to swing up the pendulum at once, the controller has to build up
momentum to be able to swing the pendulum up. Figure 4-2 shows the region of κ and
the reward Petri net used for the learning. The reward function for this problem is the
same as in the example 4-4

r1(Mk,Mk+1) = p̃τ,κ(1 + p̃κ)(pκ − p¬κ) (4-12)

where p̃(·) is the number of tokens at previous time step k at place p(·). Mention that
pτ,κ is always 1 and by modeling the Petri net it is neglected since single place without
transitions is trivial.

0.1−0.1

κ

¬κ

(a) Picture showing when the
atomic proposition κ is true.

p¬κ pκ

t1

t2
(b) The reward Petri net for 32κ.

Figure 4-2: Picture describing the problem 1 and the corresponding reward Petri net.

Master of Science Thesis K. Nagaki



48 Reinforcement learning for Temporal Logic specification

FGκ

Trials

0 100 200 300 400 500 600 700 800 900 1000

S
u

m
 o

f 
re

w
a

rd
s
 p

e
r 

tr
ia

l

-150

-100

-50

0

50

100

150

Mean

95% confidence region

Max and min bounds

(a) Averaged Learning curve over 30 runs, where
κ = > if −0.1 < q < 0.1. Notice there are trials
whereby the learning was not done well.

(b) Transient simulation of swinging up pendulum
using parameters from a succeed learning trial.
The green region −0.1 < q < 0.1 is the region
where κ is true.

FGκ

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-150

-100

-50

0

50

100

150

Mean

95% confidence region

Max and min bounds

(c) Averaged Learning curve over 30 runs, using
different condition of κ. The controller had learned
a good policy in about 400 trials, which is much
faster than the previous result.

(d) Transient simulation, the green region shows
the subset −0.3 < q < 0.3 where κ = >.

Figure 4-3: Results of learning problem 1

Result

Figure 4-3(a) and (b) shows the averaged learning curve over 30 runs and the transient
simulation without noise. From the learning curve we can notice that the learning
was not gone acceptable. By learning longer time we can expect that the curve will
converge nicely. The reason why the learning take time is because of the very small
region of κ. Another experiment is done with broadened desired subset. Instead of
κ = > if −0.1 < q < 0.1, we have used κ = > if −0.3 < q < 0.3. The result is visible
on Figure 4-3(c) and (d). The agent was able to learn swinging up much faster while
transient response is similar. Defining the conditions of atomic proposition should be

K. Nagaki Master of Science Thesis



4-3 Simulation experiments 49

done carefully such that the main task does not change. However by implementing it
in a smart way, we can make the learning easier for the controller.

Also interesting is that even you assign a subset as a goal to reach, the controller
stabilizes at q = 0. Because of the exploration noise, it can happen that pendulum
crosses over the border of the desired region. To avoid this the controller learns to stay
close to a state far away from the border, which is the center of the region.

4-3-2 Simulation 2: 32κ ∧2¬ψ

The second task is to stabilize the pendulum again at upwards position, however during
the swinging up it should avoid region ψ (see Figure 4-4). The gray part in the figure is
the set of initial states, thus the fastest way to reach κ is to swing up counter clock-wise
however the task is to let it learn swinging up clock-wise. Notice that the reward Petri
net is simplified combining p¬κ and p¬ψ as p¬(κ∧ψ). Mention that this simplification
and way of connecting the transitions are completely problem dependent. The reward
function is

r2(Mk,Mk+1) = min (p̃τ,κ(1 + p̃κ)(pκ − p¬κ), 10(1 + p̃¬ψ)(p¬ψ − pψ)) (4-13)

where
p¬κ = pψ + p¬(κ∧ψ) and p¬ψ = pκ + p¬(κ∧ψ) (4-14)

representing the total number of tokens from places where ¬κ and ¬ψ holds respectively.
The reward function of 2¬ψ is weighed heavier to be sure to avoid the artificial obstacle.
Since we take the minimum of two rewards, as long as one of the condition is violated
a negative reward is given. The controller could only receive the largest reward when
the both control specifications are fulfilled.

0.3−0.3

κ

¬(κ ∧ ψ)

π
2 + 0.5

ψ

(a) Picture showing the corresponding re-
gions of the atomic propositions κ and ψ.
The gray region is the set of initial states.

p¬(κ∧ψ) pψ

pκ

t1

t2 t3

t4

t5

t6

(b) The reward Petri net for 32κ ∧ 2¬ψ.

Figure 4-4: Picture describing the problem 2 and the corresponding reward Petri net.

Master of Science Thesis K. Nagaki



50 Reinforcement learning for Temporal Logic specification

Result

The averaged learning curve in Figure 4-5 shows a very nice convergence behavior of
learning. In the transient plot it seems as the pendulum has visited the non-desired
region, but this is because of the jump from π to −π. Due to the circular motion, q = π
represents the same position as q = −π.

FGκ ∧ G¬ψ

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-600

-500

-400

-300

-200

-100

0

100

200

Mean

95% confidence region

Max and min bounds

(a) Averaged Learning curve over 30 runs. (b) Transient simulation.

Figure 4-5: Results of learning problem 2.

Figure 4-6 shows the result of simulation run using different weighting factors for reward
function. The used reward function was

r2′(Mk,Mk+1) = min (p̃τ,κ(1 + p̃κ)(pκ − p¬κ), (1 + p̃¬ψ)(p¬ψ − pψ)) (4-15)

whereby both terms of the reward function had the same weight. In Figure 4-6(b) it
is clearly visible that the condition of 2¬ψ was not always fulfilled, while the learning
curve had shown a very nice convergence in Figure 4-6(a).
Since the assigned reward function for a particular specification does not take other
specifications in consider, the given reward in ¬(κ∧ψ) and ψ are the same: the reward
from 2¬ψ gives a positive reward but it has no influence on the total reward because of
the minimum operator. Only when the transition ¬(κ∧ψ)→ ψ occurs, an extra penalty
is given. Therefore, in unweighed situation the controller can choose for the trajectory
counter clock-wise, because it can "compensate" the extra penalty of transition by
reaching the desired subset quickly and collecting there the rewards. By weighing the
specification heavily, the behavior to get over the undesired region can be reduced.
However, this way of rewarding is actually not a natural way of rewarding, since the
weighing factor will depend on the simulation time. Usually for longer simulation
time, the controller can "compensate" more penalties received during the trajectory.
The reward function is natural in narrow time perspective since the controller receives
always penalties as long as the specification is not fulfilled. Although, in wide time
perspective the reward function is still not natural because the weighting factors decides
whether the control performance will be achieved or not. Mention in the figure that

K. Nagaki Master of Science Thesis



4-3 Simulation experiments 51

FGκ ∧ G¬ψ

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-150

-100

-50

0

50

100

150

200

Mean

95% confidence region

Max and min bounds

(a) Averaged learning curve over 30 runs. (b) Averaged transient response simulated using
the learned policies over 30 runs.

Figure 4-6: Results for learning using reward function with different weighting factors.

the value which the learning curves converge are the same as in the weighted reward
function because of the minimum operator.

4-3-3 Simulation 3: 32κ ∧2¬ψ ∧2υ

0.3−0.3

κ

¬(κ ∧ ψ)

π
2 + 0.5

ψ

(a) The way the regions divided is the same
as in problem 2.

p¬(κ∧ψ) pψ

pκ

t1

t2 t3

t4

t5

t6

p¬υ pυ

t7

t8

(b) The reward Petri net for 32κ∧2¬ψ ∧
2υ.

Figure 4-7: Picture describing the problem 3 and the corresponding reward Petri net.

Master of Science Thesis K. Nagaki



52 Reinforcement learning for Temporal Logic specification

Third control performance is an arranged version of the second one. As in the second
problem, the agent should stabilize upwards while avoiding a certain region but thereby
a velocity constraint is added. The angular velocity q̇ should always below 10 rad/s,
thus υ = > if | q̇ |< 10 holds. The reward function is

r3(Mk,Mk+1) = min (p̃τ,κ(1 + p̃κ)(pκ − p¬κ), 10(1 + p̃¬ψ)(p¬ψ − pψ), 10(1 + p̃υ)(pυ − p¬υ)) .
(4-16)

The weighting costs are found heuristically.

Result

Figure 4-8 shows the result when also the angular velocity is constrained. Obviously
the pendulum reaches the upward position much slower than in the previous problem.
Figure 4-9 shows the plot of angular velocity of both problems, and it is clearly visible
that the high velocity peak in problem 2 is vanished in problem 3. The controller
reduces the velocity by alternating the input very fast, such that the acceleration will
not become too large.
In this problem, there were cases whereby the pendulum learned to swung to the upward
position directly, violating the latter two control specifications. Thereby the controller
tried again to compensate the large penalties by rewards for staying at the upward
position. From the fact that most of the time the desired controller was learned, a
number of bad learning might be because of the choice of learning parameters. Maybe
the chosen actor learning rate was too large whereby the convergence to the optimal
policy became difficult.

FGκ ∧ G¬ψ ∧ Gυ

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-1200

-1000

-800

-600

-400

-200

0

200

Mean

95% confidence region

Max and min bounds

(a) Averaged Learning curve over 30 runs. (b) Transient simulation.

Figure 4-8: Results of learning problem 3.

K. Nagaki Master of Science Thesis



4-3 Simulation experiments 53

FGκ ∧ G¬ψ

time

0 0.5 1 1.5 2 2.5 3

a
n

g
u

la
r 

v
e

lo
c
it
y

-10

-5

0

5

10

15

20

Mean

95% confidence region

Max and min bounds

(a) Problem 2.

FGκ ∧ G¬ψ ∧ Gυ

time

0 0.5 1 1.5 2 2.5 3

a
n

g
u

la
r 

v
e

lo
c
it
y

-6

-4

-2

0

2

4

6

8

10

Mean

95% confidence region

Max and min bounds

(b) Problem 3 with velocity constraint.

Figure 4-9: Angular velocities simulated using policies with different control performance.

4-3-4 Simulation 4: 23κ ∧23υ ∧2¬ψ

In fourth problem the controller has to learn to repeat visiting two subsets alternately,
while avoiding a particular subset. The pendulum should swing to the left and right
side alternately, while not falling to the downward position (Figure 4-10). The reward
function is

r4(Mk,Mk+1) = min (5(1 + p̃κ)p̃τ,κ(pκ − p¬κ), 5(1 + p̃υ)p̃τ,υ(pυ − p¬υ), 25(1 + p̃¬ψ)(p¬ψ − pψ)) .
(4-17)

If there is a token in pτ,κ, the pendulum has to swing to the left side of the circle,
thus κ should become true. When κ becomes true, t2 will fire such that the reward
corresponding to reaching the right half side will become active. After the pendulum
swings to the right side and υ becomes true, t1 will fire and again the controller has to
swing the pendulum to left side.

Result

As Figure 4-11 shows, the learning curve converges at negative value in contrast with
previous problems. This is due to the fact that the pendulum should swing to two
points alternately. Positive reward is only given at the time step when the region is
visited corresponding to the active timing related place, i.e. if κ becomes true when
pτ,κ = 1 and if υ becomes true when pτ,υ = 1. From the next time step it only receives
negative rewards since the pendulum should already swing to the opposite side. The
controller is thus always forced to reach different subset, which means that it is almost
always penalized. Therefore the cumulative reward becomes negative.

Master of Science Thesis K. Nagaki



54 Reinforcement learning for Temporal Logic specification

−π2 + 0.3

−π2 − 0.5

π
2 − 0.3

π
2 + 0.5

κ υ

¬(κ ∧ υ ∧ ψ)

ψ

(a) The control task is to swing the pendulum to κ and υ alter-
nately, while avoiding ψ. Again gray region is the set of initial
states.

pκ pυ

pψ

p¬(κ∧υ∧ψ)

t3

t4

t5

t6
t7

t8

t9

t10

pτ,κ pτ,υ

t1

t2

(b) The reward Petri net for 23κ∧23υ ∧
2¬ψ.

Figure 4-10: Picture describing the problem 4 and the corresponding reward Petri net.

GFκ ∧ GFυ ∧ G¬ψ

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-1400

-1200

-1000

-800

-600

-400

-200

0

Mean

95% confidence region

Max and min bounds

(a) Averaged Learning curve over 30 runs. (b) Transient simulation.

Figure 4-11: Results of learning problem 4.

K. Nagaki Master of Science Thesis



4-3 Simulation experiments 55

4-3-5 Simulation 5: ¬κ U{1,2}
(
κ U{2,∞} 2¬κ

)
The final control task uses temporal operators the time interval, whereby the timing of
visiting a certain set of state becomes important. Here, the set of initial states is the
upper half plane of the circle (Figure 4-12). Before 1 second elapses, the controller is
forbidden to go to downward position. After 1 second is elapsed, the pendulum should
stay at the downward position and again after 2 seconds the pendulum should leave
the downward position. Since without control the pendulum falls to downward position
immediately, the controller should learn to keep the pendulum outside the asked range
first second. The transitions t1 and t2 will fire according to the elapsed time τ . The
purpose of this experiment is to check whether the proposed method can deal with
Petri net whereby the transition is only in one way, since there is no way to visit the
previous state again.
The reward function is
r5(Mk,Mk+1) = 2pτ<1(p¬κ − pκ) + 3p1<τ<2(pκ − p¬κ) + pτ>2(1 + p̃¬κ)(p¬κ − pκ) (4-18)

and again the costs are found heuristically. This reward function could be interpreted
as a time varying reward function, since every time only one of the three terms is active.

π − 0.5−π + 0.5

κ

¬κ

(a) Depending on the elapsed time,
the pendulum should enter or leave
κ. Again gray region is the set of
initial states.

pτ<1 p1<τ<2 pτ>2t1 t2

p¬κ pκ

t3

t4
(b) The reward Petri net for ¬κ U{1,2}(
κ U{2,∞} 2¬κ

)
. The transitions t1 and t2

fires according to the elapsed time.

Figure 4-12: Picture describing the problem 5 and the corresponding reward Petri net.

Result

Figure 4-13 shows the averaged learning curve and the transient simulation using the
learned policy. As given in the control performance, the pendulum swings downwards
after 1 second and stay there until one more second elapses. In time [0, 1] and [2, 3] we
can see that the pendulum keeps still some distance from the border of defined region.
This is due to the exploration noise: the controller takes enough margin such that the
desired performance is still achieved even when there is noise.

Master of Science Thesis K. Nagaki



56 Reinforcement learning for Temporal Logic specification

¬κ U
{1,2}

 (κ U
{2,∞}

 G¬κ)

Trials

0 50 100 150 200 250 300 350 400

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

-100

-50

0

50

100

150

200

250

Mean

95% confidence region

Max and min bounds

(a) Averaged Learning curve over 30 runs. (b) Transient simulation.

Figure 4-13: Results of learning problem 5.

4-4 Discussion

In this chapter we have discussed how to design a learning controller which fulfills
the control performance given in temporal logic. Thereby the key factor is how to
convert the temporal formulae to a reward system. We have proposed to convert the
temporal formulae into a Petri net, such that the reward function becomes a function
of state of the Petri net. Converting the temporal formulae into a discrete model is
often used in computer science, and there exist also works synthesizing controllers for a
MDP with temporal logic constraints [20], [21]. [20] is closer to our work: they convert
the linear temporal logic specification into a Rabin automaton and gives positive and
negative rewards according to the given acceptance condition. To obtain the policy,
TD-learning is used to the new augmented MDP. Contradictory to their work, our
proposed method deals with continuous states and Petri net is used instead of a Rabin
automaton. There are few reasons why Petri nets are preferable than automata. First,
the states of Petri net can be given in a convenient way i.e. by marking vector which
represents the number of tokens in each place. Presenting multiple active conditions
can also be done conveniently. The reward function could be easily given as a function
of number of tokens in each place (condition). Second, the expansion of Petri net could
be done easily by setting up Petri nets in parallel, which means that we can easily add
new control performance to the existing one. Problem 2 to 3 in simulation section is
an example of adding a new control specification. And finally, each place can contain
multiple tokens. However we did not have Petri nets where multiple tokens live in a
place, this can be useful for rewarding. As an example, we can create a place which
counts how many times the specification is violated.

The reward functions given in 4-3 are all relatively simple reward functions, which
rewards by fulfilling and penalizes by violating given conditions. Thus when we have
complex problems with large state spaces, it might be that reward function is informing
too less whereby the learning becomes slow or even impossible. Though in such kind

K. Nagaki Master of Science Thesis



4-4 Discussion 57

of cases, we might be able to pump in information, while keeping the same structure of
reward function, only by rearranging the true false condition of the atomic proposition.
As an example, imagine a learning task to play reversi. The control performance is
32ϕ whereby ϕ is defined as "true if the agent wins the game". Obviously, it will take
long time until the controller learns winning the game. However by redefining ϕ as
"true if there is more agent’s color than the opponent’s", the learning might speed up.
The main task remains the same since winning the game means there is more agent’s
color on the board than the opponent’s. In the latter case the agent receives far more
information which reinforces the agent’s learning. So we can hid useful information in
Petri nets such that learning becomes easier, while the reward function remains the
same.
In the proposed method, designing reward system consists of two crucial steps: convert-
ing the control performance written in temporal logic to Petri nets and converting the
control performance to a reward function. The reward function defines as usual what
the controller should learn: "good" things are rewarded and "bad" things are penalized.
To let the controller know what "good" and "bad" is for us, we design the Petri net. We
are using the Petri net as a tool to inform the controller about our assumptions.
The designed reward functions satisfies most conditions of a proper reward function de-
fined in introduction (Chapter 1). The learned controller fulfills the control performance
and it is also structured naturally in narrow time perspective, since the rewards are only
given when the specification is fulfilled. However, achieving the control performance
still depends on the weighting factors and it cannot be said that the reward function
is structured truly natural. Once the specification is violated, there is need to give
permanent penalty, such that the maximum cumulative reward will not be achieved.
We had shown one way of how the temporal formula might be converted to a Petri
net and reward function, which could be said as structured way of designing reward
function. There remains the question whether the reward function enables learning in
reasonable time, however this might be improved by editing the atomic sentence as
discussed above.

Master of Science Thesis K. Nagaki



58 Reinforcement learning for Temporal Logic specification

K. Nagaki Master of Science Thesis



Chapter 5

Conclusions and recommendations

In this thesis, two methods are proposed to learn controllers fulfilling two types of
control performance using Reinforcement Learning (RL). This chapter summarizes the
findings of this thesis and lists the recommendations for future work.

5-1 Conclusions

The goal of this thesis was to synthesize a design methodology of a proper reward
function which can be used in RL, such that the learned control law will fulfill the
given control performance. Stated differently, the goal was to translate the control per-
formance into a proper reward function which satisfies several conditions, introduced
in chapter 1. Thereby the focus was put on classical control performance and tem-
poral logic specification, discussed in chapters 3 and 4 respectively. In both cases a
discrete model is used which makes the process more suitable for rewarding. Thereby
the arranged version of Standard Actor-Critic (SAC) is used to run the whole sys-
tem including the discrete model. The most important conclusions from simulation
experiments is given for the proposed methods.

5-1-1 Reinforcement Learning for classical control performance

• Using Hybrid Reinforcement Learning (HyRL), a controller was learned which
fulfills classical control criteria of overshoot and rise time, validated using a mass-
damper system. By modeling the process using an automaton, the total problem is
divided into multiple simpler problems and therefore the reward function assigned
for each mode could be kept simple. HyRL enabled to learn different policy for
each mode defined by the hybrid automaton.

• By reusing the modes with their corresponding policies, new automaton could be
created with a new control law. Therefore it is possible to learn the modes for

Master of Science Thesis K. Nagaki



60 Conclusions and recommendations

fulfilling rise time and overshoot performances separately and later combine them
to obtain a control law fulfilling both.

5-1-2 Reinforcement Learning for temporal logic specification

• The Temporal Logic (TL) specification was converted into a set of petri net and
reward function, whereby the reward function was a function of marking from
the petri net. Applying Standard Actor-Critic with Petri Net (SACPN), which
is an arranged version of Standard Actor-Critic (SAC), a control law was learned
satisfying the given TL specification. Thereby the petri net modeled several condi-
tions of the problem and the desired conditions were then rewarded by the reward
function.

• The conversion of TL into a reward system was defined, which is validated on five
different control performances. For all the simulation experiments, the obtained
results were satisfactory.

• Although the reward system had shown good results, the obtained control law still
depends on the chosen weighting factors, which has to be chosen heuristically. The
reward system should contain information how often the given specification was
violated, such that the resulting control law fulfills the specification independent
from the weighting factors.

• By designing the reward system as a set of process model and the reward function,
it became possible to keep the reward function simple. Complex state and time
relations were all hidden by the petri net.

• There is availability to provide more information to the controller by changing the
atomic sentence, while the structure of the reward function remains the same.

5-2 Recommendations

• In this work HyRL is used with as purpose to learn controller satisfying classical
control performance. The classical control performance is limited since it can only
be used for evaluating stabilization and a part of reference tracking problems. It
is recommended in future research to apply the method to a more complex control
performance which has more power of represent the performance. It might be also
interesting to apply the method on a hybrid automaton as a learning algorithm
for hybrid system.

• Since the system was augmented by initial state and time, computing radial basis
functions costs time. Using other approximators as tile coding may decrease the
computation time.

• In this thesis, the SACPN was only applied to the pendulum setup. Since the
pendulum is in one dimension, the desired movements were somehow fixed. It is

K. Nagaki Master of Science Thesis



5-3 Final words 61

recommended for future research to apply SACPN on a more complex system, such
that the controller find the truly optimal policy from several policies fulfilling the
same control performance. Imagine thereby an goal reaching obstacle avoidance
problem (32goal∧2¬obstacle) in two dimension. There will be multiple trajec-
tories that would fulfill the control specification, however by tuning the weighting
factors for each term, it might be able to learn controllers with different behavior.
For example by weighting the latter term heavier, a prudence controller might be
learned which takes a large margin to avoid the obstacle for sure. Conversely by
weighting the first term heavier, a controller might be synthesized which looks for
the shortest path even it might collide to the obstacle in an irregular situation.

• In this thesis, the reward functions are designed with the expectation that by
giving reward according to the given specification at each time step, the obtained
reward function will lead to achieve the given control specification. However, only
by inspecting whether the specification is fulfilled instantaneously, the learning
could lead to undesired result as like in simulation example 2 in chapter 4 where
the controller had "compensated" the penalty in earlier stage by rewards in later
stage of the run. The reward function should contain information about violated
specifications such that the controller cannot maximize the cumulative amount of
reward by violation.

• However SACPN had worked in simulation experiments in this thesis, there is
no guaranteed convergence. Finding a theoretical convergence guarantee of the
algorithm will be a necessary work.

• There is also no guarantee that proposed way of assigning reward function, al-
ways leads to a desired controller. To our knowledge, there is still no work done
which gives theoretical guarantees of a particular control performance by use of
corresponding reward function. It is even unknown whether such guarantee can
be given theoretically. Finding this guarantee will be an innovative step to fully
understand computational RL.

5-3 Final words

As the title suggests, in this thesis the reward systems are designed for two types
of control performance. The reward function kept simple to avoid unusable control
laws by combining the reward function with discrete models expressing the process in a
convenient way for rewarding, which forms together the reward system. Specifically the
conversion of Metric Interval Temporal Logic to a reward system had shown satisfactory
results in simulations where the controller indeed learned control law which fulfilled the
given control performance. However, there is no theoretical guarantee that this way of
designing reward system always leads to a control law fulfilling the MITL performance.
The obtained control law is still dependent on the weighting parameters, while it is
preferable that the reward function leads to achieving control performance independent
of them. Also the reward system design for more complex systems are left open for

Master of Science Thesis K. Nagaki



62 Conclusions and recommendations

future research. To conclude, in this thesis a step has been taken to design a proper
reward function for fulfilling desired control performance, with the hope of some day
being able to let the controllers learn truly desired behaviors.

K. Nagaki Master of Science Thesis



Appendix A

Simulation models

This appendix describes the two models used for simulation experiments. The first
simulation setup is the mass-damper model used in chapter 3. The second setup is the
pendulum model used in chapter 4.

A-1 Mass-damper system

The mass-damper system consists of a single mass and it will move in one dimensional
direction by applying force on it. The friction of the mass ensures that the system is
always stable. Figure A-1 is the picture of the system.

Figure A-1: A mass-damper system.

The equation of the motion of this system is

Mq̈ = −Bq̇ + u (A-1)

where M and B are mass and damper constant relatively. Table A-1 shows the used
system parameters.

Master of Science Thesis K. Nagaki



64 Simulation models

Table A-1

Model parameter Symbol Value Unit
Mass M 0.5 kg
Damping B 0.05 N s/m

A-2 Pendulum

The pendulum setup consists of a weightless link with a mass attached on the end of
it. The other side of the link is connected to the electro motor, which actuates the link
with mass. A picture of this system is shown in Figure A-2.

Figure A-2: The pendulum setup.

The equation of motion of pendulum is

Jq̈ = Mpglp sin(q)−
(
b+ K2

R

)
q̇ + K

R
u (A-2)

where q is the angle of the pendulum measured from the upright position. The model
parameters are given in Table A-2.

Table A-2

Model parameter Symbol Value Unit
Pendulum inertia J 1.91 · 10−4 kg m2

Pendulum mass Mp 5.50 · 10−2 kg
Gravity g 9.81 m/s2
Pendulum length lp 4.20 · 10−2 m
Damping b 3 · 10−6 N m s/rad
Torque constant K 5.36 · 10−2 N m/A
Rotor resistance R 9.50 Ω

K. Nagaki Master of Science Thesis



Appendix B

Hybrid automaton models

In this appendix the transition conditions of the hybrid automatons used in chapter
3 is given. The figure of the petri net and the table of mode-wise reward functions is
added for the convenience and there is no difference with those in the chapter.

B-1 Hybrid automaton for overshoot performance

The mass-damper system evolves according to the equation of motion given in appendix
A-1 in all modes. The memory state evolves as

zk+1 = zk = q0.

Master of Science Thesis K. Nagaki



66 Hybrid automaton models

q0 ∈ [−1, 1]
q̇0 = 0

I

δ1,ρ1, V1

−1 ≤q ≤ 0.05q0

E

δ2,ρ2, V2

0.05q0 < q ≤ 0

S

δ3,ρ3, V3

0.1q0 ≤ q ≤ 0

P

δ4,ρ4, V4

q /∈Inv(δ3)

Figure B-1: Hybrid automaton for over-/undershoot performance Mp = 0.

Init = {(q0, q̇0) | q0 ∈ [−1, 1] ∧ q̇0 = 0}

Inv(δ1) =

{(q, q̇) | q ≤ 0.05q0} if q0 < 0
{(q, q̇) | q ≥ 0.05q0} if q0 ≥ 0

Inv(δ2) =

{(q, q̇) | 0.05q0 < q ≤ 0} if ∧ q0 < 0
{(q, q̇) | 0.05q0 > q ≥ 0} if q0 ≥ 0

Inv(δ3) =

{(q, q̇) | 0.1q0 ≤ q ≤ 0} if q0 < 0
{(q, q̇) | 0.1q0 ≥ q ≥ 0} if q0 ≥ 0

Inv(δ4) =

{(q, q̇) | q < 0.05q0 ∧ q > 0} if q0 < 0
{(q, q̇) | q > 0.05q0 ∧ q < 0} if q0 ≥ 0

(B-1)

K. Nagaki Master of Science Thesis



B-2 Hybrid automaton for rise time performance 67

Table B-1: Table explaining when transitions occur in the hybrid automaton for overshoot
performance.

transition transition condition
mode I → mode E (q > 0.05q0 | q0 < 0) ∨ (q < 0.05q0 | q0 > 0)
mode E → mode S (q̇ < 0 | q0 < 0) ∨ (q̇ > 0 | q0 > 0)
mode E → mode P (q > 0 | q0 < 0) ∨ (q < 0 | q0 > 0)
mode S → mode P (q > 0 ∨ q < 0.1q0 | q0 < 0) ∨ (q < 0 ∨ q > 0.1q0 | q0 > 0)
mode P → mode S (0.1q0 < q < 0 | q0 < 0) ∨ (0 < q < 0.1q0 | q0 > 0)

Table B-2: Mode-wise reward functions for mass-damper stabilization with overshoot perfor-
mance Mp = 0.

Mode Reward function

I ρ1 =


0 if q̇ > 0 | q0 < qdes (overshoot)
0 if q̇ < 0 | q0 > qdes (undershoot)
−3 else

E ρ2 = −3|qdes − q|

S ρ3 = −3|qdes − q|+
{

3 if δ = δ′ = S
0 else

P ρ4 = −9

B-2 Hybrid automaton for rise time performance

Again, for mass-damper system evolves according to the equation of motion. Thereby
the memory state evolves in mode E as

zk+1 =
[
q0
tk+1

]
=
[

q0
tk + Ts

]

whereby Ts is the sample time. For other modes, time will not evolve and the memory
state becomes

zk+1 =
[
q0
tk+1

]
=
[
q0
tk

]

Master of Science Thesis K. Nagaki



68 Hybrid automaton models

q0 ∈ [−1,−0.5]
q̇0 = 0

I

δ1,ρ1, V1

q <0.9q0

E

δ2,ρ2, V2

q ∈ [−1,1], q̇ > 0
t < tr

S

δ3,ρ3, V3

x̄ ∈X̄ × δ3

P

δ4,ρ4, V4

x̄ ∈X̄ × δ4

Figure B-2: Hybrid automaton for rise time performance tr = [0.6, 0.8].

Init = {(q0, q̇0) | q0 ∈ [−1,−0.5] ∧ q̇0 = 0}
Inv(δ1) = {(q, q̇) | q < 0.9q0}
Inv(δ2) = {(q, q̇) | 0.9q0 < q ≤ 0.1q0 ∧ t < 0.8}
Inv(δ3) = X̄ × δ3

Inv(δ4) = X̄ × δ4

(B-2)

Table B-3: Table explaining when transitions occur in the hybrid automaton for rise time per-
formance.

transition transition condition
mode I → mode E q > 0.9q0
mode E → mode S (q > 0.1q0 | 0.6 < t < 0.8)
mode E → mode P q̇ < 0 ∨ (q > 0.1q0 | t < 0.6) ∨ (q < 0.1q0 | t > 0.8)

K. Nagaki Master of Science Thesis



B-3 Hybrid automaton for overshoot and rise time performance 69

Table B-4: Mode-wise reward functions for mass-damper stabilization with rise time performance
tr = 0.8.

Mode Reward function

I ρ1 =


0 if q̇ > 0 | q0 < qdes

0 if q̇ < 0 | q0 > qdes

−3 else
E ρ2 = −3(0.1qdes − q)

S ρ3 = −3|qdes − q|+
{

3 if δ = δ′ = S
0 else

P ρ4 = −9

B-3 Hybrid automaton for overshoot and rise time performance

q0 ∈ [−1,−0.5]
q̇0 = 0

I,δ1, ξ1,os

q <0.1q0

Etr ,δ2, ξ2,rt

q ∈[−1, 0.05q0]
q̇ > 0t < tr

EMp ,δ3, ξ2,os

0.05q0 < q ≤ 0

S,δ4, ξ3,os

0.1q0 ≤ q ≤ 0
P,δ5, ξ4,os

q ∈¬Invδ4

Figure B-3: Hybrid automaton for rise time performance tr ∈ [0.6, 0.8] and Mp = 0.

Master of Science Thesis K. Nagaki



70 Hybrid automaton models

Init = {(q0, q̇0) | q0 ∈ [−1,−0.5] ∧ q̇0 = 0}
Inv(δ1) = {(q, q̇) | q < 0.9q0}
Inv(δ2) = {(q, q̇) | 0.9q0 < q ≤ 0.1q0 ∧ t < 0.8}
Inv(δ3) = {(q, q̇) | 0.1q0 ≤ q ≤ 0}
Inv(δ4) = {(q, q̇) | 0.1q0 ≤ q ≤ 0}
Inv(δ5) = {(q, q̇) | q < 0.05q0 ∧ q > 0}

(B-3)

Table B-5: Table explaining when transitions occur in the hybrid automaton for rise time and
overshoot performance.

transition transition condition
mode I → mode Etr q > 0.9q0

mode Etr → mode EMp (q > 0.1q0 | 0.6 < t < 0.8)
mode Etr → mode P q̇ < 0 ∨ (q > 0.1q0 | t < 0.6) ∨ (q < 0.1q0 | t > 0.8)
mode EMp → mode S q̇ < 0
mode EMp → mode P q > 0
mode S → mode P (q > 0 ∨ q < 0.1q0 | q0 < 0) ∨ (q < 0 ∨ q > 0.1q0 | q0 > 0)
mode P → mode S (0.1q0 < q < 0 | q0 < 0) ∨ (0 < q < 0.1q0 | q0 > 0)

K. Nagaki Master of Science Thesis



Appendix C

Petri net models

In this appendix the composite change matrix and the transition conditions of the petri
nets used in simulation experiments of chapter 4 are denoted. The figure of the petri net
is added for the convenience and there is no difference with the figures in the chapter.
The marking of the petri net represents the initial marking used in the problems.

Mention for the transition conditions, it is under assumption that the transition is
enabled, i.e. the input place contains a token. Given that the transition is enabled, t
becomes 1 if the the written condition is true and otherwise t is 0.

C-1 Problem 1: 32κ

p¬κ pκ

t1

t2
Figure C-1: Petri net for 32κ

Master of Science Thesis K. Nagaki



72 Petri net models

κ = −0.1 < q < 0.1
M =

[
pκ p¬κ

]
(C-1)

D =
[

1 −1
−1 1

] [
t1
t2

]T
=

κ¬κ

C-2 Problem 2: 32κ ∧2¬ψ

p¬(κ∧ψ) pψ

pκ

t1

t2 t3

t4

t5

t6

Figure C-2: Petri net for 32κ ∧2¬ψ

κ = −0.3 < q < 0.3

ψ = 0.3 < q <
π

2 + 0.5

M =
[
p¬(κ∧ψ) p¬ψ pκ

]

D =



−1 1 0
1 −1 0
0 −1 1
0 1 −1
−1 0 1
1 0 −1





t1
t2
t3
t4
t5
t6



T

=



ψ

¬(κ ∧ ψ)
κ

ψ

κ

¬(κ ∧ ψ)

K. Nagaki Master of Science Thesis



C-3 Problem 3: 32κ ∧2¬ψ ∧2υ 73

C-3 Problem 3: 32κ ∧2¬ψ ∧2υ

p¬(κ∧ψ) pψ

pκ

t1

t2 t3

t4

t5

t6

p¬υ pυ

t7

t8

Figure C-3: Petri net for 32κ ∧2¬ψ ∧2υ

κ = −0.3 < q < 0.3

ψ = 0.3 < q <
π

2 + 0.5

υ =| q̇ |< 10
M =

[
p¬(κ∧ψ) p¬ψ pκ p¬υ pυ

]

D =



−1 1 0 0 0
1 −1 0 0 0
0 −1 1 0 0
0 1 −1 0 0
−1 0 1 0 0
1 0 −1 0 0
0 0 0 −1 1
0 0 0 1 −1





t1
t2
t3
t4
t5
t6
t7
t8



T

=



ψ

¬(κ ∧ ψ)
κ

ψ

κ

¬(κ ∧ ψ)
υ

¬υ

Master of Science Thesis K. Nagaki



74 Petri net models

C-4 Problem 4: 23κ ∧23υ ∧2¬ψ

pκ pυ

pψ

p¬(κ∧υ∧ψ)

t3

t4

t5

t6
t7

t8

t9

t10

pτ,κ pτ,υ

t1

t2

Figure C-4: Petri net for 23κ ∧23υ ∧2¬ψ

κ = −π2 − 0.5 < q < −π2 + 0.3

υ = π

2 − 0.3 < q <
π

2 + 0.5

ψ = −π < q < −π2 − 0.5 ∨ π2 + 0.5 < q < π

M =
[
pτ,κ pτ,υ pκ pυ pψ p¬(κ∧υ∧ψ)

]

D =



−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 −1 0 0 1
0 0 1 0 0 −1
0 0 0 −1 0 1
0 0 0 −1 0 1
0 0 −1 0 1 0
0 0 1 0 −1 0
0 0 0 −1 1 0
0 0 0 1 −1 0





t1
t2
t3
t4
t5
t6
t7
t8
t9
t10



T

=



κ

υ

¬(κ ∧ υ ∧ ψ)
κ

¬(κ ∧ υ ∧ ψ)
υ

ψ

κ

ψ

υ

K. Nagaki Master of Science Thesis



C-5 Problem 5: ¬κ U{1,2}

(
κ U{2,inf} 2¬κ

)
75

C-5 Problem 5: ¬κ U{1,2}

(
κ U{2,inf} 2¬κ

)

pτ<1 p1<τ<2 pτ>2t1 t2

p¬κ pκ

t3

t4

Figure C-5: Petri net for ¬κ U{1,2}

(
κ U{2,inf} 2¬κ

)

κ = −π < q < −π + 0.5 ∨ π − 0.5 < q < π

M =
[
pτ<1 p1<τ<2 pτ>2 p¬κ pκ

]

D =


−1 1 0 0 0
0 −1 1 0 0
0 0 0 1 −1
0 0 0 −1 1



t1
t2
t3
t4


T

=


τ > 1
τ > 2
κ

¬κ

Master of Science Thesis K. Nagaki



76 Petri net models

K. Nagaki Master of Science Thesis



Bibliography

[1] L. Buşoniu, “Reinforcement learning and dynamic programming for control - lec-
ture notes.” Master ICAF, 2012.

[2] I. Grondman, L. Busoniu, G. Lopes, R. Babuska, et al., “A survey of actor-critic re-
inforcement learning: Standard and natural policy gradients,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012.

[3] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning Series, Mit Press, 1998.

[4] E. Schuitema, Reinforcement learning on autonomous humanoid robots. TU Delft,
Delft University of Technology, 2012.

[5] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using reinforcement learn-
ing and shaping,” 1998.

[6] S. B. Thrun, “Efficient exploration in reinforcement learning,” tech. rep., 1992.

[7] M. Wiering, “Explorations in efficient reinforcement learning,” 1999, February
1999.

[8] L. Busoniu, D. Ernst, B. de Schutter, and R. Babuska, “Approximate reinforce-
ment learning: An overview,” 2011 IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning (ADPRL), pp. 1–8, May 2011.

[9] R. Sutton, “Learning to predict by the methods of temporal differences,” Machine
learning, February 1988.

[10] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in SIAM Journal on Control
and Optimization, pp. 1008–1014, MIT Press, 2000.

[11] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of policy gradient methods
and variants on the cart-pole benchmark,” in Approximate Dynamic Programming

Master of Science Thesis K. Nagaki



78 Bibliography

and Reinforcement Learning, 2007. ADPRL 2007. IEEE International Symposium
on, pp. 254 –261, april 2007.

[12] M. Mataric et al., “Reward functions for accelerated learning,” in Proceedings of the
Eleventh International Conference on Machine Learning, vol. 189, San Francisco,
1994.

[13] V. Gullapalli, Reinforcement learning and its application to control. PhD thesis,
Citeseer, 1992.

[14] A. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations:
Theory and application to reward shaping,” MACHINE LEARNING-, 1999.

[15] A. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”
. . . international conference on machine learning, 2000.

[16] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement learning,”
. . . -first international conference on Machine learning, 2004.

[17] R. S. Sutton, D. Precup, S. Singh, et al., “Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning,” Artificial intelligence,
vol. 112, no. 1, pp. 181–211, 1999.

[18] D. Precup, “Temporal abstraction in reinforcement learning,” 2000.

[19] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning,” Robotics and Autonomous Systems, vol. 36,
no. 1, pp. 37–51, 2001.

[20] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, S. Seshia, et al., “A learning based
approach to control synthesis of markov decision processes for linear temporal
logic specifications,” in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on, pp. 1091–1096, IEEE, 2014.

[21] M. Svorenova, I. Cerna, and C. Belta, “Optimal control of mdps with tempo-
ral logic constraints,” in Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on, pp. 3938–3943, IEEE, 2013.

K. Nagaki Master of Science Thesis



Glossary

List of Acronyms

RL Reinforcement Learning

MDP Markov Decision Process

AC Actor-Critic

SAC Standard Actor-Critic

DP Dynamic Programming

TD Temporal Difference

TL Temporal Logic

MITL Metric Interval Temporal Logic

IRL Inverse Reinforcement Learning

PID Proportional-Integral-Derivative

HyRL Hybrid Reinforcement Learning

HRL Hierarchical Reinforcement Learning

SACPN Standard Actor-Critic with Petri Net

List of Symbols

General
â approximation of a variable or function a
aT transpose of vector/matrix a
R set of real numbers

Master of Science Thesis K. Nagaki



80 Glossary

N normal distribution
∼ draw from distribution
σ standard deviation
∇af gradient of function f with respect to a

Reinforcement Learning
e eligibility trace
f transition function
k discrete time
r instantaneous reward
u action
x state
J cost function
Q state-action value function
R return
U action space
V state value function
X state space
α learning rate
δ temporal difference (error)
γ discount factor
λ eligibility trace decay rate
φ basis function
π policy
ρ reward function
θ value function parameter vector
ξ policy parameter vector
∆u exploration

Control performance languages
c constant for discrete reward function
C cost matrix for absolute error reward function
Q cost matrix for quadratic error reward function

ess steady-state error
tr rise time
ts settling time
Mp overshoot ratio

K. Nagaki Master of Science Thesis



81

a atomic proposition
AP set of atomic propositions
I time interval
3 eventually, F
2 globally, G
¬ negation
> true
U until, U
ϕ temporal formula
∧ conjunction

(Hybrid) Automata
f continuous state transition function
D set of modes (discrete states)
E set of edges
F discrete state transition function
G guard condition
H hybrid automaton
P (X) power set of X
R reset map
U set of inputs
X set of continuous states
Init set of initial states
Inv invariant set

Petri net
p place/number of tokens in place
t transition
A set of arcs
D composite change matrix
D+ composite change matrix describing outputs
D− composite change matrix describing inputs
M marking matrix
P set of places
T set of transitions

Hybrid Reinforcement Learning
x̄ augmented state
m memory state transition function

Master of Science Thesis K. Nagaki



82 Glossary

t time
z memory state
T transition relation
δ mode
η switching function
% set of reward functions
Γ transition function of hybrid automaton

Standard Actor-Critic with Peri Net
p̃ number of tokens in place at previous time step
r reward function
x̄ augmented state
τ time
κ, υ, ψ atomic propositions
κ,Υ,Ψ subsets of state space
Γ petri net
Σ total system augmented by petri net
Θ value function parameter matrix
Ξ policy parameter matrix

K. Nagaki Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	Acknowledgements

	Main Matter
	Introduction
	Goal of the thesis
	Outline

	Preliminaries
	Reinforcement learning
	Computational reinforcement learning framework
	Solution methods
	Actor-critic learning

	Control performance languages
	Reward function
	Classical control performance
	Metric Interval Temporal Logic

	Discrete/Hybrid models
	Automata
	Petri net

	Summary

	Reinforcement Learning for classical control performances
	Difficulties by reward function design for classical control performance
	Hybrid Reinforcement Learning
	Approximators
	Mode-wise reward function

	Simulation experiments
	Simulation: Mass-damper without overshoot
	Simulation: Mass-damper with rise time
	Mass-damper with rise time and overshoot performance

	Discussions

	Reinforcement learning for Temporal Logic specification
	Reward system design
	Modeling Petri net from temporal logic expressions
	Metric Interval Temporal Logic reward functions
	Table of reward system

	Reinforcement learning with Petri nets
	Approximators
	Standard Actor Critic with Petri Net

	Simulation experiments
	Simulation 1: 
	Simulation 2: 
	Simulation 3: 
	Simulation 4: 
	Simulation 5:  U{1,2} (  U{2,}   )

	Discussion

	Conclusions and recommendations
	Conclusions
	Reinforcement Learning for classical control performance
	Reinforcement Learning for temporal logic specification

	Recommendations
	Final words


	Appendices
	Simulation models
	Mass-damper system
	Pendulum

	Hybrid automaton models
	Hybrid automaton for overshoot performance
	Hybrid automaton for rise time performance
	Hybrid automaton for overshoot and rise time performance

	Petri net models
	Problem 1: 
	Problem 2: 
	Problem 3: 
	Problem 4: 
	Problem 5:  U{1,2} (  U{2,inf}   )


	Back Matter
	Glossary
	List of Acronyms



