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Abstract

With the increasing electrification of domestic energy usage and the inherent demands on
distribution networks, there are growing incentives for consumers to produce and consume
energy locally. Cooperative strategies between consumers can alleviate upstream demand
through scheduling the charging and discharging of battery systems on the basis of predicted
knowledge of consumers’ solar panel generation, consumption habits, and electricity prices.
These consumers are called prosumers for their ability to consume and produce energy. Smart
scheduling keeps generated energy stored for local consumption, and can help time prosumers’
consumption of energy from the distribution networks when energy is cheap. One issue lies
in the fair allocation of cost savings amongst prosumers. A well-suited solution concept, the
nucleolus, becomes problematic to solve for larger numbers of prosumers. Building upon
research done on estimating the nucleolus, this thesis investigates how different methods of
clustering prosumers perform in nucleolus estimation.
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Chapter 1

Introduction to Peer-to-Peer Energy
Markets

1-1 Motivations for P2P Energy Exchange

With increased availability of Distributed Energy Resources (DER), it has become attainable
for many consumers to generate and store power at home, and be more proactive with their
consumption with the help of smart devices. DERs are constituted of electricity generation
sources, energy storage devices, and flexible loads [24]. In The Netherlands alone, 2018 saw
an increase of 1500MW in electricity generation from solar panels, to a total of 4400MW
[5]. The availability and decreasing cost of green technology that allows for local generation,
energy storage and scheduling of loads can only point to an ever increasing adoption of such
technologies on the consumer level.

For wider infrastructure-level solutions, Peer-to-Peer (P2P) energy markets are a class of de-
signs that make consumer investments in DERs more effective by reducing costs of consumer
coalitions beyond what would be possible with consumers acting independently. Currently,
consumers can minimize costs by consuming energy during low rate periods, and by gener-
ating energy locally. This approach is inefficient, since consumers are limited to minimizing
their own costs. Cost minimization of a P2P platform involves coordinating multiple DERs
dynamically, minimizing cumulative costs of the P2P market community.

P2P markets are also proposed to reduce loads on electricity networks, which are only expected
to increase due to, amongst others, the propagation of EV’s and the phasing out of domestic
gas use.

P2P markets can improve energy security by providing economic incentive for the purchase
of additional DERs, reducing reliance on centralized sources. Upstream faults with energy
suppliers or transmission networks are better dealt with by a P2P network that can to some
extent meet the energy demands of its constituent prosumers (producer & consumer). Energy
security becomes cheaper for wholesale suppliers because aggregate effects of prosumer loads
show less variability [24] and are easier to estimate.
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2 Introduction to Peer-to-Peer Energy Markets

Prosumers are constrained to a top-down hierarchical approach as any external energy trad-
ing is done solely through conventional retailers which dictate prices. P2P networks and
the decentralization of energy production liberalizes the market by reducing dependency on
upstream suppliers. This turns a hierarchical market approach to a bottom up approach,
potentially allowing prosumers to choose their energy suppliers on the basis of criteria such
as the type of renewable energy, CO2 emissions, and location of energy production.

In The Netherlands, it is generally considered that generating more energy than the prosumer
consumes is financially detrimental given the lower returns on this excess generation [38],
deincentivizing prosumers from having generation capacities larger than individual demand.
Generated excess energy is sent upstream and deducted from the prosumer’s bill at the original
price. New legislation is expected to incrementally devalue any energy fed into upstream
networks, which further incentivizes local use of generated energy. Such legislation feeds the
need for aggregating prosumers into larger groups by means of effective management of local
DERs.
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Chapter 2

The Nucleolus Solution Concept in
P2P Energy Exchange

Game theory is a suitable technique that can be used for these kinds of allocation problems.
In fact, one of the earliest examples of a game theoretic solution was the bankruptcy problem
in the Babylonian Talmud ([2],[1],[33]). A solution to the contested garment problems in the
Talmud are presented that coincide with the nucleolus, a cooperative game theory solution
concept that will be evaluated in this thesis. [2] offers interesting insight into how these
solutions were conceived considering the time they were written: the equal division of the
contested sum, which is specifically mentioned in the classical text, and a physical interpre-
tation, the Rule of Linked Vessels. This offers additional perspective on the meaning of the
nucleolus.

The nucleolus combines some fairness criteria (symmetry and dummy variable axioms [33]) and
the notion of stability [34]. These principles justify investigating nucleolus payoff allocations
of the grand coalition cost savings versus allocations from distributed optimization ([25],
[36]) where prosumers are assumed to not be capable of making tactical decisions, such as
coordinating the defection and formation of subcoalitions (with possibly better outcomes for
the defecting prosumers), or non-cooperative game theory, which generally suffers the same
issue (besides [26] which gives outcomes in the core).

2-1 Cooperative Game & Nucleolus Solution Problem Formula-
tions

2-1-1 Introduction
Han et al. [13] study the impact of a cooperating coalition of prosumers, some having Energy
Storage (ES) systems, on the total coalitional costs. Due to generally lower feed-in tariffs

(the commercial supplier buy-in price), it is preferred to schedule ES systems to retain energy
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4 The Nucleolus Solution Concept in P2P Energy Exchange

rather than sell it off for a sub-optimal price. This is typically done in a non-cooperative
fashion; each ES owner schedules ES operation based on their individual usage profile. This
paper shows that coordinated ES operation is beneficial to the coalition cost. Energy manage-
ment consists of centralized control using an optimization objective that minimizes coalitional
costs. An additional mechanism is required to incentivize coordination by carefully establish-
ing individual prosumer payoffs. To this purpose, Han et al. [13] choose the nucleolus and
Shapley solution concepts for the allocation of coalition cost savings. Grand coalition load
profiles are generated, showing that cooperative ES scheduling is beneficial in reducing loads
on upstream distribution networks, with cooperative ES allowing for better local balance of
energy supply and demand. The paper shows that cost reduction is also possible without
ES, and that the game is balanced (which is proven in this papers extension [15]), meaning
that a stabilizing (prosumer incentivizing) allocation of profits is possible, maintaining mutual
interest amongst prosumers to form the coalition.

2-1-2 Cooperative Game Formulation
Objective Function for a Coalition of Prosumers

Before defining the cost function, relevant variables are

git: Prosumer i net (considering Photovoltaics (PV) generation and prosumer demand, dis-
regarding ES operation) energy consumption (+) or generation (—), at timestep ¢, with unit
[kWh].

bi: Prosumer ¢ ES charging (+) or discharging (—) at timestep ¢ energy [kWh].

pY: Price of energy bought by prosumers from the grid at timestep ¢, unit [£ kKWh].

ps: Price of energy sold by prosumers to the grid at timestep ¢, unit [£ /kWh].

For any coalition S € 2V subset to the grand coalition A/ (§ C N), the lowest coalitional
energy coast C(S) is such that the energy cost function Fs(b) is minimized, b being the set
of vectors b;, each containing elements b;; for each time step t. The authors state that the
cost of purchasing energy to match net coalitional demand is plt’ Y ies laie + bit]+, and for an
excess this is pf > s [qit + bit] -

This results in the objective function being (slightly mistakenly; prices should be applied to
net coalitional loads rather than individual prosumer net loads) defined as

K
cw>=qpﬁabw:qy§j%ﬁ21%+bm++ﬁ§jmt+%]} (2-1)
t=1

€S €S
} (2:2)

which corresponds exactly to the objective function used in a proof by the same authors (eq.
1 in [15]). Operation variables b are subject to a set of constraints.

where the intent was most likely to define the cost function to be

_l’_

+ P} [Z(qz’t + bit)

1€S

K
c(S) = mgn Fs(b) = mgn Z {pg [Z(Qit + bit)
t=1

i€S

1) Power Constraint: The charge and discharge energy b; released or consumed per
timestep ¢ are both limited in the form (with prediction horizon K)

by < byt <bi, VieSVtell, K] (2-3)
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2-1 Cooperative Game & Nucleolus Solution Problem Formulations 5

2) Energy Constraint: the energy stored cannot exceed a prosumer’s energy capacity e;.
Here, SoC; is the state of charge percentage. The term in the summation is the added energy
in each timestep t, accounting for charging and discharging efficiencies 7.

k
0 < e;SoC? + 3 ([bit]J’ T | /ngut) <ei, VieS ke[l K] (2-4)
t=1

3) Cycle Constraint: At final timestep ¢t = K, the initial state of charge must be returned
(net change over all time steps is 0)

> (bal " i + bl fmt) =0, Vies (2-5)
t=1

The minimization is changed slightly as done in [13] to remove the binary effect of the two

[]7,[]” terms in the objective function, and becomes
K
. b _
Lo Y {pt > L +pi) Lit}
oo t=1 €S €S

st. L; <0<L}
b + by +aqi < L
b + by + i = L + L,
0 <bj < (2-6)
b <b, <0

k
0 < ¢;S0C? + Z (b:gmm + bl-_t/nf“t) <e;,Vk €[l K]
t=1

i (biei™ + by /m) = 0
t=1

This effectively sets L} = max{0,b}; + b;; + ¢z} and L;; = min{0, b}, + b;; + qit }-

The implementation in this thesis changes this minimization problem to that in equation 5-1
to make explicit the fact that the coalitional energy cost C(S) is computed over the net load.

Cooperative Game Model

The characteristic function for a coalition § is defined as the cost savings of forming the
coalition.

u(8) =) C({i}) - C(S) (2-7)

i€S

An imputation x € R is a vector of payoff allocations, payments to prosumers i € N,
originating from savings of forming the grand coalition N. There are two criteria for the
imputation:
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6 The Nucleolus Solution Concept in P2P Energy Exchange

1) Efficiency criterion: The total grand coalitions cost savings must be equal to the sum
of all allocation x elements ;.
> i =v(N) (2-8)
ieN

2) Individual rationality: The grand coalition A/ cost savings z; must be bigger than the
non-coalitional individual cost savings v ({i}). In this case, v ({i}) = 0 as a prosumer cannot
generate coalitional cost savings in the non-cooperative case.

x; > v({i}),Vie N (2-9)

Besides criteria 2-8, 2-9, another criterion is needed to guarantee that under a payoff allocation
vector x, any smaller coalition S does not provide its prosumers with better cost savings than
the grand coalition. To examine this, the excess e(x,S) is used.

e(x,8) =v(S) — sz (2-10)

1€S
For the grand coalition to be stable (disincentivizing prosumers from splintering into smaller
coalitions), the excess £(x,S) should always be negative.

The set of valid imputations Z following from the efficiency and individual rationality criteria
is defined as

T:= {XERN 1> @ =v(N), >v({i}),Vz’€N} (2-11)
ieN

The core C is a combination of Z and the negative excess condition: an efficient, individually
rational set of imputations x that guarantee the stability of the grand coalition with negative
excess for all S € 2V

Ci={xeT|e(x,8) <0,¥S 2V} (2-12)

It is important to note that some games will have empty cores, meaning that the grand
coalition is unstable.

The Nucleolus

The nucleolus is a solution concept that gives an allocation that is in the core if the game is
balanced. A game is balanced if for any balanced map «a : 2V — [0, 1], where

o a(d)1f =1,VieN

SeN
15— 1, ifieS
! 0, otherwise
it holds that
> a(8)u(S) < v(N) (2-13)
SeaN
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2-1 Cooperative Game & Nucleolus Solution Problem Formulations 7

Balancedness can be interpreted as follows [22]. Assume each player ¢ has a unit of time to
be distributed amongst all coalitions he is part of. Each coalition S, active for that full unit
of time, generates v(S). Each coalition generates a(S)v(S), when all agents involved in S
participate in it for a fraction of the given time unit «(S). Balancedness then indicates that
no distribution of time across coalitions can generate a greater cumulative output than the
grand coalition v(N).

Han et al. empirically show that the nucleolus is in the core in [13], meaning the game is
likely to be balanced. An extension of this paper ([15]) includes a proof for balancedness.
This means that the nucleolus is a solution concept that generates stabilizing allocations given
this Peer-to-Peer (P2P) framework.

The nucleolus v is an imputation such that for any sub-coalition j
e;(v) < ei(x),vx € Z,vj € 2N —2 (2-14)

the vector of excesses €(r) is lexicographically minimized (the inequality sign refers to a
lexicographic comparison of vectors), and is lexicographically smaller than any other excess
vector €;(x). A vector a = [0,0,—5,—5] is lexicographically smaller than b = [0, 0,0, —10]
because the entry b(3) > a(3). The nucleolus is a unique payoff vector.

2-1-3 Nucleolus Computation

Han et al. ([13]) give the following algorithm for solving the nucleolus

1) Find the sub-coalitions with the largest excess:

LP; gy :njgitps (2-15)
st Y ai=o(N) (2-16)
VieN
v(8S) — Z x; < e, VS ¢ {0, N} (2-17)
VieS

Combining 2-17 with the minimization objective, € is reduced until it reaches a lower bound
constrained by the largest excess corresponding to some set of subcoalitions S ¢ {0, N'}. This
can be one or more sub-coalitions which will be entered into (now empty) set &;.

2) Find the sub-coalitions with the next largest excess, considering that allocations in x given
to prosumers belonging to sub-coalitions in &; must create the correct excesses ¢;, VI € [1, j—1]
determined in previous iterations. Iterating LP; results in the unique nucleolus imputation

x*.

LPj :g; :n}r(lianz-: (2-18)
VieN
SN zi=0(S)—a, ¥Se&Viel,j—1] (2-20)
VieN
u(8) = Y wmi<e, VSE{0,6,N}VIE L 1] (2-21)
VieS

The additional constraint 2—20 specifies the imputation x must be such to respect the already
allocated cost savings v(S) — ¢; determined prior to all agents in all coalitions S in &;.
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8 The Nucleolus Solution Concept in P2P Energy Exchange
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Figure 2-1: Loads of 1) non-cooperative individual agents without ES, 2) non-cooperative indi-
vidual agents with ES, 3) agents with cooperative ES [13].

2-1-4 Case Studies
Load Balancing

Figure 2-1 shows that the grand coalition load with non-cooperative ES reduces reverse power
flow, and lessens the peak load. Cooperative ES operation flattens the coalition net demand /-
generation curve even more.

Nucleolus & Balancedness

Han et al. [13] state that the largest excess of the nucleolus imputation is always negative
across many runs of prosumer constellations, so the game is likely to be balanced. This is an
empirical observation, however balancedness is proven in later paper [15].

Nucleolus and Marginal Contribution

The nucleolus and Shapley values for each prosumer can be plotted against one another
(figure 2-2). The first thing to note is that the imputations follow the diagonal. The Shapley
as a cooperative game theory solution concept calculates prosumer payoffs according to their
marginal contribution to the grand coalition. The diagonal relation between the Shapley and
nucleolus payoffs shows that a relation between nucleolus payoffs and marginal contribution
also holds for the nucleolus to a large extent.
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Figure 2-2: Cost savings according to Shapley and nucleolus solutions for all prosumers, plotted

against eachother.
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Chapter 3

Nucleolus Estimation in P2P Markets

3-1 Introduction

In [13], it was seen that the calculation of the nucleolus was computationally intensive. In
[16], Han et al. explore clustering prosumers into K clusters to reduce the number of required
analyzed coalitions from O ~ (2/V) (for 2 — 2 possible coalitions 7 C N) to a O ~ (2K N)
problem, with 25 ~1(N 4-2) — 1 coalitions that need to be evaluated to estimate the nucleolus.
This chapter details the techniques and results of that paper. The nucleolus estimation is
shown to be accurate in comparison to full nucleolus computation.

As prosumer load and generation profiles characterize the prosumer’s role in the grand coali-
tion, it makes sense to cluster prosumers based on these profiles. Alternatively, the marginal
contribution of each prosumer to the grand coalition can be a clustering feature, as the nu-
cleolus allocation and marginal contribution to the grand coalition are linked. K-means,
hierarchical and Gaussian mixture modelling are chosen as clustering techniques.

3-2 Clustering Techniques

Prosumers are clustered into K clusters on the basis of prosumer feature profiles. The first
feature profile is the grand coalition cooperative energy profile, the net energy demand of a
prosumer across all time intervals as it cooperatively participates in the grand coalition. The
second is the grand coalition marginal contribution profile. These two will be described in
section 3-4.

The set of K clusters are defined as clx = {cly,clo, -+ ,clix}. The clustering assignment is
g :9; = jli € clj,Vi € N. The clustering methods are chosen on the basis of paper [29], where
clustering techniques are evaluated using various cluster validity indices.
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12 Nucleolus Estimation in P2P Markets

3-2-1 K-means Clustering

K-means is a clustering method that iterates between constructing clusters based on the
Euclidian distance to cluster centroids and updating cluster centroids. The two steps are:

1) Generate clusters from centroid profiles, by assigning players to clusters with the smallest
Euclidean distance d(f}, cj). Centroid profiles cl; are initialized as randomly generated profiles
of the chosen feature profile. In this thesis, feature profiles will all have dimensions f;; € R48.

d(fi,c;) = (fit — cjt)? (3-1)

g; < argmind (f;, c;) (3-2)
J
2) The generated clusters are used to compute new centroids c; for each cluster. Centroids

are a minimization of the squared Euclidean distance for all prosumers i € cl;, or equivalently
by calculating the average feature profile of all prosumers.

Ziedj fl

cj = arggnin Z d?* (f;,c) = oL
j

iEClj

(3-3)

The k-means algorithm is prone to settling in local minima. It is the norm to repeat the
algorithm with different random initializations of c¢; to find g;, c; that belong to the iteration
with the lowest cost function 3 ek > ica, d? (f;,c). The authors limit k-means iterations to
1000, each with different initial centroids.

3-2-2 Hierarchical Clustering

Hierarchical clustering was another method that performed well in paper [29]. Clusters are
formed from two most similar clusters (clusters with the smallest Euclidean distance as de-
scribed for k-means clustering). Initial clusters are the individual prosumer feature profiles.
The final cluster assignment of feature profiles is achieved when the predetermined number
of clusters K is reached, however a predetermined number of clusters is not required for the
evolution of cluster formation such as with k-means, as the number of clusters reduces in each
step.

Hierarchical clustering operates on the basis of a linkage criterium, of which there are four;
single, complete, average, and Ward. This defines how the Euclidean distance between clusters
is measured. Single linkage regards the distance (3-1) between the two closest profiles of
two clusters, while complete linkage regards the distance between the two farthest profiles.
Average linkage looks at the average distance of all possible pairs between the two clusters,
with each pair consisting of one feature profile from both clusters. The Ward linkage method
computes, for all possible pairs of clusters, the sum of squared distances between each feature
profile and the centroid of the cluster pair, and forms a new cluster from the pair which
minimizes this objective function.

The authors only consider the Ward linkage for nucleolus estimation case studies, as it has
the least sensitivity to outliers. Sensitivity to noise and outliers is generally unwanted as
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3-3 Nucleolus Estimation 13

a clustering method that discriminates outliers has a tendency to mischaracterize cluster
formations when data is noisy [32].

A clustering method’s sensitivity to outliers is also reflected in the unevenness of cluster sizes,
as this indicates that the clustering method may subject the data to chaining. Chaining is
an unwanted effect of noise that extends clusters into regions that should be represented by
other clusters. This reason for choosing the Ward method is also specified in [29].

3-2-3 Gaussian Mixture Model (GMM) Clustering

Unlike the previous distance based methods, GMM is a probabilistic method that defines
a probability distribution function as the sum of K Gaussian distributions, defined by 8 =
{01,...,0k}, where 0; = (uj, Ej) In this case, p; is a R-dimensional vector of a Gaussian
mean, and X; is a R X R covariance matrix. The probability that an instance occurs can be
defined as a weighted combination of these K Gaussians, where a; > 0, ZjK:1 aj = 1.

K
p(£i|60) =2 ajp(fi|6;) (3-4)
j=1

Values {, 3, a} need to be found with methods such as expectation-maximization so that
the weighted sum of Gaussians best represents the true probability density function of all
feature profiles. The feature profile instance f; has the probability it belongs to cluster k
(defined by Gaussian 6y and scaling factor «ay) defined as

ap (i | O)
p(k|fi) = =% ;
=150 (fi | 0;)

k=1,....K (3-5)

Han et al. [16] run GMM with different covariance structures (full, diagonal, spherical and
tied covariance matrices) using 100 prosumer loads, the most even cluster sizes are generated
by a full covariance matrix. As this is an indicator of good clustering characteristics in the
prevalence of noise, only full covariance matrices are considered in the case studies of this

paper.

3-3 Nucleolus Estimation

As the nucleolus calculation considers all 2 — 1 possible coalitions 7, clustering can help
reduce the number of coalitions 7 by clustering prosumers strategically. In an older paper
[14], nucleolus estimations were based on considering K clusters (nucleolus computation com-
plexity O(2X) rather than N prosumers (computation complexity O(2Y) for the formation
of coalitions 7. The results show that there is no way to differentiate between prosumers in
individual clusters, and that prosumer payoffs within these clusters are arbitrary. Han et al.
considerably improve nucleolus estimation in this paper [16].

Han et al. modify the method of [14], adding coalitions 7 that consider the individuality of
individual prosumers. The method is described in steps as follows:
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14 Nucleolus Estimation in P2P Markets

1. Clustering

Prosumers are clustered based on one of two possible features, the grand coalition cooperative
energy profile and grand coalition marginal contribution profile. These will be explained in
the next section 3-4. The set of K clusters is clx := {cl; | j € K} with K ={1,2,..., K}.

2. Cluster Coalitions\Cluster Combinations

All combinations of clusters are formed and converted into coalitions 7. Specifically, just as
clx was the set of all clusters, each clyy points to a subset of clusters, so that it holds that
Vely C clic. There are 25 — 1 possible combinations of clusters clj. Ultimately, all coalitions
formed in this step are put in set U = {7 | T = Q (cly),Vcly C clx}, where Q(cly) converts
a set of clusters into a coalition of prosumers.

3. Diversity-based Pairing Coalitions

A set G; is created for each prosumer i that consists of all coalitions in { that exclude
prosumer i (defined as U;), but then with prosumer i added to those coalitions. Formally,
S, ={T | T =0Q (cly) U{i},Velyy € U;}. Adding prosumer i to cluster coalitions consisting
of clusters with mutually different characteristics gives a high probability that the greatest
payoff to prosumer i is in one of these coalitions. The number of coalitions 7 added in this
step is bounded by 251N,

4. Collecting Coalition Samples for Nucleolus Estimation
Sampled coalitions are grouped into set T¢< = & ULl which are used for nucleolus estimation.
This set size is bounded by “ICZ’C‘ <Y+ |6 =281 (N +2) - 1.

Intuition of Steps 1-4

Step 2 generates a set of coalitions 7. These coalitions will have large coalitional cost savings
v(T) due to differences in cluster characteristics which improves the marginal contribution of
clusters to the coalition. However, the individuality of each prosumer is not considered as the
nucleolus estimation contains only the set of coalitions (. In such a case, prosumers can at
most be considered arbitrary participants of their respective cluster. Figure 3-4 shows that
considering only prosumer clusters is not enough to estimate an accurate nucleolus payoff.

Step 3 is the solution to this problem. In this step, the individuality of each prosumer is
characterized by a set of coalitions & which likely includes a coalition which offers each
prosumer ¢ the highest payoff (judging from the positive correlation between a prosumer’s
marginal contribution and nucleolus payoff). By including these coalitions in the nucleolus
estimation, the nucleolus estimation must minimize the excesses of each prosumer’s set of
sub-coalition stemming from diversity-based pairing, removing any reason for a prosumer to
be dissatisfied with its payoff.
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3-4 Clustering Features

The clustering of prosumers is based on two feature profiles. The first is the prosumers load
profile as part of the grand coalition. The second is the grand coalition marginal contribution
profile.

3-4-1 Grand Coaliton Cooperative Energy Profiles

A prosumer’s load profile as it operates within the grand coalition is a logical feature profile,
as it captures prosumer behavior in the context of participating in the grand coalition. The
computation of these grand coalition cooperative energy profiles p; only requires the optimal
cooperative ES operations pV (equation 3-6, where FtN refers to the grand coalition cost, see
equation 2-1), and the net energy consumption without ES q; (see 3-7).

R
b = arg min > FN(b) (3-6)
t=1
pi=q;+ bV Vie N (3-7)

An example of clustering grand coalition load profiles is shown below in figure 3-1a.

3-4-2 Grand Coalition Marginal Contribution Profiles

Another feature profile that Han et al. consider is the grand coalition marginal contribution
profile, since a prosumer’s nucleolus payoff is strongly linked to its marginal contribution to
coalitions. Profiles {AF, AF,, ..., AFy} can be found as follows

How these feature profiles look like in practice is shown in figure 3-1b.

3-5 Nucleolus Estimation Evaluation using Stratified Random Sam-
pling

Since the case studies in later section 3-6 examine games of up to 400 prosumers, calculating
the nucleolus value to compare the nucleolus estimation technique of this paper to is not
feasible. An independent and consistent base-line method of estimating the nucleolus is
necessary.

Han et al. use stratified random sampling. Given a prosumer set NV, all possible permutations
of this set are w(N'), each permutation defined by O € 7(N). Strata are defined as P :=
{0 € ©7(N) | O(l) = i,Vi,l € [1,N]}, meaning each stratum P; contains all permutations
O € w(N) where prosumer 1 is in position /.

For consistent and balanced coalition sampling, it is required that we sample across all pro-
sumers and coalition sizes evenly. The steps are as follow:
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(a) Clustering prosumers based on grand coalition
load profiles. Also shows the load profiles of all (b) Clustering prosumers based on
prosumers in the non-cooperative case. marginal contribution profiles.

Figure 3-1: Clustered feature profiles

1) Iteration starts at an initial sample size of m = 1.

2) m random samples from the full set of permutations in a stratum Py are entered into Mj;.
3) Ry turns Pret(O) Ui for each permutation O in M;; into a coalition. Formally R,, := {T |
T = Pref(O)Ui,YO € My, Vi,l € [1,N]}.

4) v(T) is calculated for all coalitions 7 in PR using equation 2-7. The number of positive
excesses given the nucleolus estimation is | eb9° |.

pos pos
5) The number of positive excesses must converge as sample size m increases ( |§L - J;m:ll' <
0). In the case study, the value is § = 0.5%. At this point of convergence, it is considered

pos
. oL Em . o .
that a valid percentage of positive excesses ||£R ‘| is found. This is a measure of the nucleolus
m

estimation performance.

The point of this is to collect an independent sampled set of sub-coalitions 7 for which the
nucleolus estimation can be tested against. If this test gives positive excesses &, (veSt, T),
this means that the nucleolus estimate has not managed to keep all excesses of sub-coalitions

pos
T negative. A nucleolus estimation that has the lowest percentage of |‘;1m|| performs the

best. The authors use the term divisible excess for a positive excess eP% (v®!, T) for which

5?,?5(1)55’5,7')
T > €0.01.

The nucleolus estimation quality indicator coalitions with divisible excesses is critical in the
case studies, since it provides an independent measure for the quality of the nucleolus esti-
mation.
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Figure 3-2: Computation times of nucleolus estimations according to prosumer size and cluster
number K.

CLUSTERING COMPUTATION TIME (S) AVG. OVER 10 RUNS

No. prosumers (X) 14 (10) 20(9) 30(8) 50 (7) 100 (6)

K-means 5.3 4.0 3.5 4.1 5.1
Hierarchical-ward 0.6 0.5 0.5 0.6 0.5
GMM-full 2.2 1.8 1.7 2.1 1.7

Figure 3-3: Computation times of clustering according to prosumer size, cluster number K, and
clustering technique.

3-6 Case Studies

All case studies are completed using Photovoltaics (PV) and Energy Storage (ES) adoption
rates of 50%, all randomly assigned. Domestic load and PV data covers a 24 hour timespan.
This is predictive data, for which the grand coalition Peer-to-Peer (P2P) ES operation and
the corresponding nucleolus estimation must be calculated.

3-6-1 Computation Time: Nucleolus

Applying k-means to grand coalition cooperative energy profiles, the nucleolus computation
times are shown in figure 3-2. The nucleolus of games up to 400 prosumers can be computed
within 10*s (= 2.75h), with varying cluster numbers K.

3-6-2 Computation Time: Clustering

Lets say it is required for the nucleolus to be calculated within 103s (~ 15min). From figure 3-
2, the maximum number of clusters per 14, 20, 30, 50 and 100 player games is K = 10,9,8,7,6
respectively. The time it takes to form these clusters is shown in figure 3-3. Considering
the 103s time limit, the clustering step only takes about 5.3s at worst (with k-means, for
N =14, K = 10). The clustering computation time is not a critical factor in relation to the
nucleolus computation time.
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Figure 3-4: Full nucleolus prosumer payoff allocations plotted against the proposed method
(right) and a nucleolus estimation payoff only considering clustered sets il (left).

3-6-3 Nucleolus Estimation Accuracy

The right figure in figure 3-4 shows the payoff allocations of the full nucleolus calculation plot-
ted against the nucleolus estimation. The left plot shows results from a previous paper ([14]),
where the nucleolus estimation excludes coalition sets &; (diversity-based pairing coalitions)
from the nucleolus estimation, showing that adding coalitions from diversity-based pairing
into the nucleolus estimation computation improves the nucleolus estimation dramatically.

Figure 3-5 shows the percentage of coalitions with divisible excesses. This refers to the afore-

pos est
mentioned percentage of sampled coalitions for which W > €0.01 holds .

ing percentages show that a higher proportion of test coalitions (originating from stratified
random sampling, section 3-5) are dissatisfied with the payoff allocation of the nucleolus
estimation.

Increas-

Figure 3-5 shows the 10-run average percentage of coalitions with divisible excess, taking
(N, K) pairs corresponding to a 103s nucleolus estimation computation time limit (using figure
3-2). GMM with a full covariance matrix considering grand coalition marginal contribution
feature profiles provides the best results.

3-6-4 Scaling Up - 103s to 10%*s Computation Time Limit

The top plot of figure 3-6 shows the percentage of coalitions with divisible excess for (N, K)
pairs taken according to a 10*s nucleolus estimation computation time bound. Nucleolus
estimation performance declines as the ratio N/K is increased. The bottom chart shows the
largest player dissatisfaction for each game, quantified in £.

It is important to note that while the range of percentage of coalitions with divisible excesses
is wide, in most cases a good proportion of them result in 0% of coalitions having divisible ex-
cesses. Consequently, the observation is that prosumer composition can have a large influence
on the quality of the nucleolus estimation.
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Figure 3-7: Averaged grand coalition profit reductions for two sets of standard deviations.

3-6-5 Monte Carlo Analysis of Uncertainty Impact on Grand Coalition Total
Profits

A Monte Carlo analysis applies the prediction-optimal ES operations to a simulation in which
actual PV generation and load profiles are drawn from normal distributions, with predicted
values as means. The actual PV generation profile is applied to all PV installations, assuming
they are all located in the same area. This experiment is repeated 100 times for different
prosumer compositions. The average reduction of grand coalition profits are shown in figure
3-7. The averaged profit reduction resulting from uncertainties in predictions is limited to
4%, with opy joaqa = 15,30%. It follows that the sum of nucleolus payoffs must be reduced by
at most 4% as well.
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Chapter 4

Nucleolus Estimation Case Studies

4-1 Introduction

An interesting field of work would be to investigate and develop the notion of diversity-
based pairing (explained in point 3 under 3-3) to improve nucleolus estimations. This can
be accompanied by a general investigation of other clustering methods often used for the
clustering of load profiles. Han et al. state [16]:

The purpose of choosing a selection of popular clustering techniques is to demonstrate the
effectiveness of the proposed method; a comprehensive investigation of the best possible clus-
tering technique to use is left for future work.

Section 4-2 will detail case studies that develop the notion of diversity-based pairing, by
applying modifications to clustering techniques used by Han et al. [16]. Specifically, the
following case studies are outlined:

e Case Study 1: Distance-adjusted Clustering
Modifications of clustering methods considering distances between cluster centers and
prosumers (section 4-2-1).

e Case Study 2: Considering the Primary Prosumer as a Cluster Centroid
Considering prosumers as cluster centroids in diversity-based pairing (section 4-2-2).

Section 4-3 details investigations into a selection of alternative clustering methods considered
in problems involving the clustering of consumer load profiles in literature. Specifically:

e Case Study 1: Performance Comparisons between K-medians and K-means
Investigating the effect on nucleolus estimation performance with k-medians’ reduced
sensitivity to outliers compared to k-means (section 4-3-1).
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Figure 4-1: Monthly averaged demand profiles as shown in Customer-Led Network Revolution
trials [30].

e Case Study 2: Fuzzy C-Means & Fuzzy C-Medians
Applying fuzzy c-means clustering and evaluating nucleolus estimation performance.
Two additional optional case studies (1. automatic fuzzifier parameter selection, 2.
fuzzy c-medians) could be completed (section 4-3-2).

e Case Study 3: Comparing Hierarchical-Ward, Hierarchical-average, and Hierarchical-
complete Clustering
The degree to which even cluster sizes are generated changes incrementally as the Ward
linkage method is replaced by the complete, and then the average linkage. This case
study evaluates nucleolus estimation performance of each method to see how nucleolus

estimation is affected by clustering with various degrees of sensitivity to outliers (section
4-3-3).

e Case Study 4: GMM-PCA
This case study investigates if the quality of nucleolus estimation improves with reduced
axes (the Curse of Dimensionality) (section 4-3-4).

e Case Study 5: Shape-based Clustering
Shape-based clustering through the normalization of clustering feature profiles (section
4-3-5).

4-1-1 Generating Prosumer Load Profiles

Han et al. [16] use demand profiles sourced from the Customer-Led Network Revolution
[31]. This 11GB database contains individual domestic net load profiles and domestic PV
generation profiles. Both are sampled at one minute intervals. Demand profiles can be
generated by subtracting the PV generation from the net load profiles.

PV generation profiles are sourced from PV Watts, which gives one-hour profiles for all days in
a year. As Han et al. use models assuming a uniform PV profile for all prosumers, it is most
likely that they use a random day (out of 31 July days) for individual nucleolus estimations.
Additionally, the authors consider adoption rates of 50% for each PV and ES independently.
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4-1-2 Marginal Contribution Profile Implementation

The marginal contribution profile used in these case studies is slightly different from the one
used by Han et al. [16] (eq. 3-8). Instead of considering costs of coalitions at isolated time
intervals, each time stamp ¢ will consider the cumulative cost across intervals r = (0, ..., t).

t

AF, = [Z FN (bN\{z‘}> + Zt: Fi (b{i})] —~ zt: EN (bN ) (4-1)

r=1 r=1 r=1

where it was established in equation 5-1 that coalition 7 has coalitional cost F}/ (bT) at

time interval ¢ with optimal ES operation b7

ol (bT) = 7™ max (0, > b+ by + cm) + 7% min (0, > b+ by + qit> (4-2)
€T €T
R
b7 = argmin Z E] (b) (4-3)
b =

Anyhow, this feature profile is just as valid as the original marginal contribution profile
as defined by Han et al., and the difference is caused by a miscalculation early on in the
computation of case study results.

4-2 Case Studies: Set 1 - Modified Clustering Methods

In diversity-based pairing (Han et al. [16]), a prosumer forms coalitions with all possible
combinations of clusters which it is not part of. This is repeated for all individual prosumers,
and the set of coalitions generated is used in the lexicographical minimization algorithm. In
this context, the particular prosumer which is paired with all other clusters will be called the
primary prosumer.

Case studies in this section focus on modified clustering methods. The modifications are
minor adjustments in the cluster formation in diversity-based pairing. As only marginal
improvements are expected at most, it is enough to apply modifications to the three best
performing methods of Han et al. [16]:

1. GMM, using the grand coalition marginal contribution profiles.
2. GMM, using the grand coalition cooperative energy profile.
3. k-means, using the grand coalition cooperative energy profile.
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Figure 4-2: Left: the result of regular k-means clustering. Right: modified k-means clustering
that prefers clusters having equal distance between all its prosumers and the primary prosumer.

4-2-1 Case Study 1: Distance-adjusted Clustering

This case study investigates if clusters should be modified to account for the position of the
primary prosumer in diversity-based pairing, rather than solely being a measure of similarity
between prosumers regardless of the position of the primary prosumer. Figure 4-2 shows an
example of correcting k-means clusters. The modified distance function between any prosumer
i and any cluster j (omitting the primary prosumer’s cluster and its prosumers) is

distyeq (pros;, cluster;) =dist (pros;, cluster;) +

m|dist (prim.pros, cluster;) — dist (pros;, prim.pros) | (4-4)

The idea is that if the purpose of diversity-based pairing is to combine any primary prosumer
with clusters that are diverse in comparison to it, it might be beneficial to modify clusters to
also account for the distance between primary prosumers and clusters. Variable m changes
the degree of the modification (later section 6-1-2 explains how this variable is chosen).

4-2-2 Case Study 2: Primary Prosumers as Cluster Centroids

In diversity-based pairing, the primary prosumer is combined with combinations of clusters
that it does not partake in. However, if the primary prosumer is close to the boundary of its
cluster, it seems unfair to exclude prosumers in its own cluster (that might be farther away),
while including prosumers from neighboring clusters that are closer to the primary prosumer.
A 2D example of this is shown in figure 4-3, where the primary prosumer is combined with
cluster combinations including the cluster containing prosumer B, while prosumer A, despite
being farther, is excluded from any cluster combinations.

A seperate case study can investigate the effect of considering the primary prosumer as a
cluster centroid. The primary prosumer can then be paired with combinations of all possible
clusters excluding itself.
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Figure 4-3: As it stands, in diversity-based pairing, the primary prosumer would be included in
coalitions that exclude prosumers in its own cluster (despite them being farther away, such as
Prosumer A), but include prosumers nearer to the primary prosumer if they belong to different
clusters (such as Prosumer B).

The disadvantage to such a method would be the need to recluster all prosumers N times
for each nucleolus estimation, when each prosumer assumes the role of primary prosumer.
However, benefit may be gotten from the increased accuracy of the nucleolus estimation that,
in combination with the additionally required computational time, is competitive with other
methods.

Modified k-means

Modifying k-means can be done by fixing the mean of a cluster to be the primary prosumer
will have its cluster be centered around it.

Modified GMM

For the cluster to which the primary prosumer belongs, the notion of clustering by distance
to the primary prosumer in k-means is replaced by clustering by likelihood of belonging to a
cluster centered around the primary prosumer for GMM. Figure 4-5 show the non-modified
GMM (figure 4-5a) and modified GMM (figure 4-5b) clustering results, where the modified
case takes prosumer 8 (P8 in figure) to be the primary prosumer, and fixes the mean of the
Gaussian to that position throughout the EM algorithm.

The resulting Gaussian does not accurately represent its prosumers anymore; the mean is not
truly the mean of the cluster assignments, and this in turn warps the covariance calculations.
A fringe case is shown in figure 4-4, where the primary prosumer (prosumer 24) is chosen to
be at the upper limit of dimension 2 and as such cannot be the average of a multi-prosumer
cluster, however the modified GMM still produces an acceptable result worth studying.

From numerous manual applications of code that perform this modification in 2D problems as
shown in figure 4-5b, resulting clusters are usually either 1) modified in line with what would
be expected, 2) unchanged from the non-modified clustering assignments or 3) not preferred

Master of Science Thesis Philip Flatz-Stransky



26

Nucleolus Estimation Case Studies

9
10 A ‘f @° 67 g0t @2
©6 3d 5 67 2(1335 2% a1
o @ Fn A >
‘\‘. 5 ¢ d%:ids @6 25 26 2
e Pl ¢ 22
<
= o,
S a0 Fog ¢
v 184 @
2 “e
5 . v
9 _g
29 é¥°
63‘ & e 1 .
¢  #?
-10 @0
-10 -5 0 5 10 15

Feature profile dim. 1

Figure 4-4: The blue cluster is the cluster associated with primary prosumer (prosumer 24), and
the modified GMM algorithm fixes this cluster's mean to be the position of prosumer 24. Initial
covariance matrices are taken to be spherical as in later studies using GMM.
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Figure 4-5: Modified GMM clusters with one Gaussian mean being fixed.

over the non-modified clustering results as the outcome might include single-prosumer clusters.
The third scenario is easily detectable and avoidable by resorting to non-modified cluster
combinations for that particular primary prosumer (along with being less likely to happen
with a larger number of prosumers N).

One problem to consider with this method is that by equating the mean of a cluster to the
position of the primary prosumer, it is not guaranteed that the primary prosumer will actually
belong to this cluster, and this does happen in case studies occasionally.

Details on the expectancy-maximization algorithm can be found in later section 4-3-4.

4-3 Case Studies: Set 2 - Alternative Clustering Methods

The section prior (4-2) outlines two case studies that suggest modifications to be applied to
the three best performing methods in the paper by Han et al. [16].

This section 4-3 will detail some case studies that analyze alternative clustering methods,
where either clustering technique or choice of feature profile can be fundamentally different
to what is used by Han et al [16]. A list of case studies outlines in this section:

Case Study 1: Performance Comparisons between K-medians and K-means

Case Study 2: Fuzzy C-Means (with two optional sub-case studies)

Case Study 3: Comparing Hierarchical-Ward and Hierarchical-average Clustering
Case Study 4: GMM-PCA

Case Study 5: Shape-based Clustering
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4-3-1 Case Study 1: Performance Comparisons between K-medians and K-
means

K-medians

K-medians is an alternative clustering method to k-means, that can be useful when the effect
of outliers in k-means is such that the mean is drawn away from the majority of instances [41].
Its relevance in the context of clustering feature profiles is that it has even lower sensitivity
to outliers compared to k-means, a characteristic preferred by Han et al.

In k-medians, the medians (or geometric medians) ci of clusters k € K minimize the L;-norm
of the distances between instances and their respective medians ([17], [20], [21]). For this
reason the median is often referred to as the Lj-center, compared to the (Lg-center) mean
(eq. 4-10). The k-medians objective function is shown in equation 4-5. d(z,cy) is a vector
with elements containing distances from prosumers assigned to a cluster k to the cluster
median cy.

K
F=>"|ldz,ck)l1, Vz€clk (4-5)
k=1

Given that the Euclidean norm will be utilized as the measure of distance, considering that
the Li-norm of (Lg) Euclidean distances is taken, the k-medians objective function becomes

K
F=3 % Il el (+6)

k=1x€ecl.k

The geometric median ¢ of a cluster & minimizes the Li-norm of (Ls) Euclidean distances
between instances and itself

cx, = argmin||d(z,y)||1 = argmin Z |z —yll2 (4-7)
Y Y xeclk

This contrasts from k-means, where the objective function is

K
F= Z ld(z, ck)l|l2, Va € clk (4-8)
k=1

which given that |/ is strictly increasing is the same as minimizing (again considering the
Euclidean distance vector d(z, c) with elements ||z — cg||2 for each prosumer instance z)

K
F=3 Y llo-al (+9)

k=1zx€ecl.k

This is based on the definition of the mean ¢y,

¢ = argmin||d(z,y)||2 = argmin Z lz — yl|3 (4-10)
y 4 reclk

Weiszfeld’s algorithm can be used to iterate towards the geometric median.
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Given the Euclidean measure of distance, Weiszfeld’s algorithm ([27]) requires the repetitions
of the following computations

N T;
21 o
N 1
2i ot
until the median settles at xx4+1 ~ z;. The sum of distances from a center to all instances is
a convex function, so the Weiszfeld algorithm descends into a global minimum.

Thtl = (4-11)

4-3-2 Case Study 2: Fuzzy C-Means & Fuzzy C-Medians
Fuzzy C-Means

Rajabi et al. [29] find that FCM performs the clustering of load profiles almost as well as
hierarchical clustering judging by a set of CVI’s. Kim et al. [19] find that FCM works almost
as well as k-means across a wide range of numbers of clusters, and performs better than
hierarchical clustering over the whole domain of cluster numbers.

Consideration must be given to the computational time of FCM. Rajabi et al. [29] find that
the computational time of FCM is much longer than other clustering methods, anywhere
between roughly 5 to 100 times slower than k-means, depending on the fuzzifier parameter.

Fuzzy C-Means - Methodology

Fuzzy c-means is a clustering method that considers the association of each instance to each
cluster, in contrast to k-means which categorizes instances discretely amongst clusters, each
cluster ignoring instances allocated to other clusters in the determination of the updated
cluster mean entirely. FCM can be considered a fuzzy analogue to k-means clustering.

The fuzzy c-means algorithm, minimizing the objective function F = S-% =1 SN un Tlxi — ¢ Hg,
has the following two steps ([4],[23]):

1. Initialize the algorithm with K clusters allocated randomly. Calculate the membership
matrix U = (u;;) € RV*E using

1
U5 = (4—12)

2
lIxi—¢;lly ) m—1
S (e
2. Define new cluster centroids as the weighted average of the new membership degrees.

N
Zz lu]

Nlu

¢ = (4-13)

3. Reiterate steps 1 and 2 until HU (k+1) _ k) H < €, where the norm can for instance indicate

an array of all modulus values \u(kH) Ef)|

The effect of fuzzifier parameter is such that with m — 1, the membership function returns
results same as k-means (u;; — 1 for the nearest cluster, and u;; — 0 for all other clusters).
As m grows, the fuzziness of clusters increases towards the point where memberships of a
prosumer belonging to K clusters are all equally %

Master of Science Thesis Philip Flatz-Stransky



30 Nucleolus Estimation Case Studies

Case Study A: Regular Fuzzy C-Means

This case study involves clustering load profiles for a range of m € {1.6,...,3} in steps of
0.2 (and including 1.9 as the optimal value found in Rajabi et al. [29] for similar half-hour
load profiles). This range is wide enough to include various m values found to be optimal
for case studies analyzing FCM on load profiles ([42], [29]). While Rajabi et al. show that
step changes of resolution m = 0.05 can detect smaller changes in CVI performances, steps
of m = 0.2 would be enough to establish the general trends of CVI’s as a function of fuzzifier
m. This keeps the computational time required for all experiments within reason.

Case Study B - Fuzzy C-Medians

Kersten's Fuzzy C-Medians

Papers that study fuzzy c-medians applications implement fuzzy c-medians as outlined by
Kersten [18]. Instead of using the geometric median, Kersten finds each cluster’s median con-
structed by the median of each cluster’s fuzzy instances mapped onto P individual axes, con-
sidering instances x € RY. Specifically, the objective function F' = ZJK:1 SN ugy b1 lzi(d) — ¢;(d)]
is minimized by iterating over steps:

1. Initialize the algorithm with K clusters allocated randomly. Calculate the membership
matrix U = (uj;) € RN*K ysing

1
U5 = (4—14)

1
Z (”xz <y ) m—1
k=1 ”Xz_CkH1

2. Define new cluster centroids ¢ such that cg[d],Vd € P is the weighted median of the 1D
projection of instances onto axis d, where instances are weighed with u;}

Euclidean Fuzzy C-Medians

Although not found in literature, it is possible to find fuzzy c-median clusters using the
Euclidean distance with the geometric median as a centering statistic instead of Kersten’s
approach of considering medians across P axes. Figure 4-6 shows that the geometric median
and median are not the same. The objective function replaces the Ls-norm in the fuzzy
c-means objective function with the Li-norm

K N
F= Z ZuZ‘ |z: — ¢l (4-15)

j=1i=1

Deriving the objective function % considering the constraints Zle uy; =1,vie {1...N}

using Lagrangian multipliers [8], the optimal membership function is

1
U5 = (4—16)

1
Z (IIxz—C;Hz) m—1
k=1 \TIx;—cxll,

Unlike fuzzy c-means, where the new means are identified by setting % = 0 and solving for
J
means c;, there is no closed form solution for the median center, and Weiszfeld’s iterative
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Figure 4-6: Different centers for dataset [8 (1] ? 1

2
median are not the same as shown in this simple example [17].

approach can take its place. For a set of prosumers with arbitrary weights w;, the weighted
geometric median corresponds to argmin >N w; ||2; — Z||,, and the Weiszfeld algorithm for
T

the weighted geometric median is [7]

ZN ule
S (417)

llzi—z*][2

.fk-i-l

Now considering the Euclidean fuzzy c-medians objective function F' = Z]K:l >N ult ||z — clly,
the Weiszfeld algorithm iterates

N uzg Li
s —0k||2
e R i 1L (4-18)
J ZN 1]
[lei—cEll2

Weiszfeld’s algorithm is a gradient method and must conform to the gradient descent equation

c;?+1 = C? — g(cg?)(% which it does with step size s(cf) and objective function gradient j—g
being
1
k
s(cj) = N u;? (4-19)

Zl i ;II )] (4-20)

Figure 4-7 shows the Euclidean fuzzy c-medians algorithm converging to the centers of multi-
ple Cauchy distributions. The Cauchy distribution is a practical distribution for this purpose
as it is defined by its median. It was found that the per-axis and geometric median are very
similar for these distributions, and the fuzzy c-medians algorithm converges to the geometric
median. The Cauchy distribution is the Student’s t-distribution with one degree of freedom.

Figure 4-8 shows the Euclidean fuzzy c-medians algorithm converging to Gaussian distribu-
tions, for one case where each cluster has an offset Gaussian to represent outliers, and for
another case where each cluster consists only of only one Gaussian. The centers converge to
the centers of the Gaussians well for both cases with little effect from the outlier Gaussians.

The final test (figure 4-9) duplicates clusters of the type shown in figure 4-6. Each center
converges to the geometric median.
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Clustering 3 Cauchy distributions
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Figure 4-7: The evolution of Euclidean fuzzy c-medians towards the median centers of three

Cauchy distributions, which are located at [—10,1],[0, 20], [10, —10], each cluster consisting of
150 samples.

3Colustering Gaussian distributions with noise C3Igstering Gaussian distributions without noise
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Figure 4-8: Left: Three clusters are consisted of 120 samples of Gaussian distributions, along
with 30 samples of another Gaussian for offset noise. Right: The same Gaussians (sample size
150 each) without the Gaussian noise.

A comparison of the two plots shows that the Euclidean fuzzy c-medians centers are relatively
stable including or excluding the presence of offset noise.
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Clustering 3 custom distributions
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Figure 4-9: Applying Euclidean fuzzy c-medians on three clusters of datasets identical to figure
4-6. The centers settle at the geometric medians.

4-3-3 Case Study 3: Comparing Hierarchical-Ward, Hierarchical-average, and
Hierarchical-complete Clustering

Hierarchical Clustering

Hierarchical clustering is a technique that generates clusters either by splitting large clusters
into smaller clusters (divisive), or by joining small clusters into larger ones (agglomerative).

Han et al. [16] use the agglomerative approach, and it is noted both here and in Rajabi et al.
[29] that the agglomerative method is the most preferred method for clustering load profiles.
One issue with the divisive approach is that two instances, nearby eachother, can still belong
to different clusters. The agglomerative approach insures that on an individual basis, each
instance is clustered with its nearest neighbor.

Linkage Mechanisms

Rajabi et al. [29] found that the Ward linkage was the best-performing linkage compared to
the single and centroid linkages, despite worse cluster validation index (CVI) performance.
The Ward linkage generates even cluster sizes and does not extract outliers, while the single
and centroid linkages tend to overwhelmingly group load profiles into one cluster, and dis-
tribute outliers amongst the remaining clusters. The Ward linkage was found to be the best
in even distribution of instances by Han et al. [16] as well, out of the Ward, single, complete
and average linkages. However, the results obtained by Han et al. solely consist of a single
run of clustering. A full case study can compare cluster sizes over multiple iterations, backed
by resulting qualities of nucleolus estimations.

A dendrogram showing different cluster development tendencies for the Ward and single
linkages is shown in figure 4-10. Horizontal lines in the dendrogram show the composition
of clusters as the sum of two sub-ordinate clusters. The height (y-axis) of horizontal lines
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Figure 4-10: An example of an agglomerative hierarchical clustering dendrograms. a) A dendro-
gram for the Ward linkage, where cluster sizes grow evenly as the number of clusters is reduced.
b) A dendrogram for the single linkage, where a single cluster grows as the number of clusters is
reduced, resulting in one large cluster and a few smaller ones for outliers. [29].

represent the distance between the two subordinate clusters according to some distance metric
and the linkage type.

Chicco [6] also found the single linkage to have the best CVI performance. Despite CVI
performances being slightly worse for the average linkage with Euclidean distance (Minkowski
exponent p = 2), the author states that using the average linkage is more effective for a balance
between isolating outliers and somewhat maintaining even cluster sizes. The Ward linkage
performed the worst according to CVI’s. An interesting observation by Chicco is that CVI’s
generally represent the attitude of the clustering method towards isolating outliers.

In conclusion, the Ward linkage produces the most even cluster sizes. The average and
complete linkages have a stronger tendency to isolate outliers, but maintain some ability to
have even cluster sizes for the bulk of the instances. Any benefit of prioritizing even cluster
sizes by choosing the Ward linkage is best shown through a comparison of nucleolus estimation
quality with the average and complete linkage methods.

4-3-4 Case Study 4: GMM-PCA

Rajabi et al. [29] use Principal Component Analysis (PCA) to reduce half-hour load profiles
(R* data) into load profiles with 5 to 6 principal components. The authors state that GMM
might not work optimally if considering all 48 components of the time-series, and that GMM
generally produces better results with limited variables. CVI performance settles as the
number of components are increased up to 8 components.

In this case study, the nucleolus estimation performances of clustering methods applied to
reduced-dimensionality datasets will be analyzed. In the PCA step, the number of principal
components required to reach 99% and 95% variance explained are analyzed. This number of
principal components (out of 48) needed to reach a certain variance explained target is one
way to reveal the inherent dimensionality of datasets, if ignoring phenomena such as mani-
folds. Datasets with high inherent dimensionalities suffer from the Curse of Dimensionality

Philip Flatz-Stransky Master of Science Thesis



4-3 Case Studies: Set 2 - Alternative Clustering Methods 35

Distances between 20 uniform random feature profiles in ndim space
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Figure 4-11: An example of the creeping effect of Curse of Dimensionality with increasing number
of dimensions a prosumer’s feature profile contains. Feature profiles are uniformly generated in
ndim space, which is not the case with true prosumer feature profiles. It can be investigated
whether the Curse of Dimensionality is a problem for our data through the use of PCA.

([40], [37], [3], [9]). where the Euclidean distance metric and Gaussian distribution aren’t
accurate ways of differentiating between prosumers. Figure 4-11 shows how the notion of dis-
tance degrades for uniformly distributed prosumer feature profiles with increasing numbers of
dimensions. Gaussian distributions suffer from a similar effect; most datapoints accumulate
in the outer shell of the distribution, which doesn’t coincide with the shape of a Gaussian
distribution which assumes most instances occur nearby the mean.

Considering that figure 4-12 [16] shows k-means and GMM clusters visually aligning with what
would be expected, all relevant data for clustering is most likely in a low-dimensional subspace
or follows a manifold within R*® space that allows for Euclidean distances and Gaussian
distributions to still work well in these areas densely populated by feature profiles. The
distribution of prosumer feature profiles is then far enough from being uniformly distributed
for the Curse of Dimensionality to be a problem. As a result, it is expected that GMM-PCA
cannot perform better than regular GMM in terms of nucleolus estimation performance.

Gaussian Mixture Models (GMM)

GMM is a probabilistic method that defines a jointed probability distribution function as
the weighted average of K Gaussian distributions, defined by @ = {61,...,0k}, where 0; =

(uj, Ej) In this case, p; is a R-dimensional vector of a Gaussian mean, and ¥; an R X R

covariance matrix. The joint PDF can be defined as a weighted combination of these K
Gaussians, where a;; > 0, ZJK:1 aj = 1.

K
p(fi|0)=> a;p(fi|6)) (4-21)
=1
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(a) Individual Loads w/ PV (b) Indiv. Loads w/ PV & Coop. ES
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Figure 4-12: Left: Clustering 100 prosumers with k-means using the grand coalition coopera-
tive energy profiles shows clusters that align reasonably with what would be expected. Right:
Clustering 100 prosumers with GMM using the grand coalition marginal contribution profiles also
shows clusters forming that align with what would be expected.

Weighting compensates for unevenly populated distributions of feature profiles, allowing the
joint distribution function to vary the overall sizes of Gaussians to account for the number of
prosumers belonging to them.

The variables {p, 3, a} need to be found with methods such as expectation-maximization
for the weighted sum of Gaussians to best represents the true probability density function
representing all feature profiles. The feature profile instance f; has the probability it belongs
to cluster k (defined by Gaussian 0 with weight «y) defined as

agp (i | )

p(k|f) = :
ZjK:l a;p (f; | aj)

=1,....K (4-22)

In all case studies involving GMM, the full covariance structure will be used as it generates
the most even cluster sizes, a good clustering characteristic in the prevalence of noise.

Expectation-Maximization

Expectation-maximization happens in two steps:

1) Expectancy Step:

Gaussian parameters uy, > and weights oy are fixed. Initially, these are chosen randomly.
A common choice is to select the initial covariances of the clusters to be the data covariance.
Weights can be initialized as +. All posterior probabilities p (k | f;) are computed as

p(fi | Ok, o)

p(k|f)= :
' ip(fi]6;,q))

k=1,...,K (4-23)

given that the weighted likelihood of a prosumer f; belongs to a particular multivariate normal

distribution is .
exp {4 (6 n) = (8- )}

(2m)% 32

p(fi]0;,05) = (4-24)
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2) Maximization Step:
Considering probabilities p (k | f;), the Gaussian parameters py, X and weights ay are com-
puted.

Weights of Gaussian k are updated to be the sum of all feature profiles’ probabilities of
stemming from k, normalized for the resulting PDF to have a total probability of 1.

>ep (k| f)

« = 4—25

k N (4-25)

Gaussian means u are updated per the mean of feature profiles, weighted by each feature

profile’s probabilities of belonging to k. This insures that Gaussian clusters move towards a
position that better represents the underlying prosumer feature profiles’ probabilities.

_ 2ilp(k ) fi]

4-26
STy 20
Similarly the full-covariance matrix is updated as
o (k| £) (fi — )" (fi —
g, — Silp Gk 1) (fi= )" (i = gn) o)

Eip(k ‘ fi)

Iterations of the two steps above result in finding a local minimum. For a global minimum,
multiple iterations of GMM are required, of which the solution with the highest maximum
likelihood estimation is chosen by computing and comparing the log likelihoods [ (@ | f) of
each model. The highest log likelihood model is the best fit.

Log-scale GMM

An issue encountered in the GMM-PCA case studies was that the GMM algorithm could
not find valid cluster assignments (have one or more empty clusters) in some cases. GMM
initialization using k-means clusters is not an alternative, as the final GMM clusters remain
identical to the k-means initialization. Initializing GMM with a small covariance as done
by default in the SKLearn GaussianMixture package would solve this issue for a particular
dataset, but result in NaN values in p (k | f;) for other datasets. This was fixed by adopting
log-scale GMM as used in the SKLearn GaussianMixture package instead of the standard
GMM method. This method is used in every application of GMM in this thesis.

Standard GMM Log GMM
p(fi | Bj,aj) = Ozj/\/(fi | 0]') logp(fi ‘ Gj,aj) = logaj +10g./\[(fi | 0]')
(£ | 01 0) =
7 ,
ph|£) = k=1, K p(k | £) = exp |logp (£ | Ox, ax) — log | > exp (logp (£i | 6;,0;)
Do p(Ei ] 85,05) j=1

k=1,...,K

N K N
Lo =) log [Zp(fi | ej,aj)] LO1f)=) log [Z exp (logp (£; | ej,aj))]
i=1 j=1 i=1 =1

J
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The log-scale GMM equations above have been deduced from the SKLearn GaussianMixture
files _gaussian_mixture.py and _base.py. For faster computation of the multivariate dis-
tribution function values, log N (f; | 8;) is computed with the method used in
scipy.stats.multivariate_normal, detailed in [12]. Another crucial step is the use of
SciPy function logsumexp() in the calculations of p (k | f;) and log likelihood for numerical
reasons.

The issue with the standard GMM is that most values in N (f; | 0;) are zero with smaller
covariance matrix initializations (for example a covariance matrix with 1e~% diagonal values),
where N (f; | ;) is taken to be the exponent of log NV (f; | 8;), while log\ (f; | 6;) itself
detects non-zero values. As a result, using logp (f; | ;, ;) with function logsumexp () gives
a working p (k | f;) unlike standard GMM which can contain mainly NaN’s.

The covariance initialization adopted from the same SKLearn GaussianMixture function takes
the covariance to be the identity matrix multiplied by le—6, a default regularization factor.

Principal Component Analysis

Principal component analysis is a technique that generates a set of orthogonal axes, ordered
by their statistical significance. The first principal component (PC) is the axis that generates
maximum variance of the data.

The computation of the principal components and the variance along these axes is found
with the eigenvectors (direction of principal axes) and eigenvalues (variance along principal
axes) of the covariance matrix. This outcome allows for simple dimension reduction; principal
components with the smallest variances can be disregarded.

For data in R% space, the variance contributed by a principal axis PC,,r < R compared to
total data variance can be calculated as
Var. (PCy)

e (4-28)
Zf Var.(pcr)

Var. Contr. pc,) =

A common method to set a bound to the number of principal components is to set the target
cumulative variance of the first () principle components Z? (Var. Contr. pcr)) to 99%.
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4-3-5 Case Study 5: Shape-based Clustering

So far, all clustering methods cluster feature profiles by magnitude at each time interval.
Characteristics determined by ES charging, discharging limits and capacity, and PV genera-
tion characteristics, are all well represented in these feature profiles.

This case study clusters prosumers not by magnitude of load, but by the shape of the load pro-
file. The only difference with shape-based clustering is that the load profile of each prosumer
must be normalized before the clustering step. Like this, prosumers with similar consumption
behaviours and characteristics (PV, ES ownership) can be grouped regardless of differences
in feature profile magnitudes. Generally, this method may work better in scenarios where PV
and ES capacities are not binary (either 0 or at fixed capacities defined in Han et al. [16]),
as no variable PV and ES capacities exist which could be better grouped by shape after a
normalizing step.
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Chapter 5

Computation of the Nucleolus
Estimation

5-1 Load Profile Data

Prosumer profiles have been sourced from [30] (download link in [31]). This dataset gives daily
individual prosumer demand and generation profiles. To reduce the resolution from minute
to half-hour intervals, the average kilowatt reading of all minutes within each half-hour are
taken. A plot of 20 load profiles drawn from a batch of 2782 individual load profiles (after
filtering for load profiles with incomplete or erroneous data, and sorting for July) is shown
in figure 5-1a. PV data has been sourced from PVWatts [28] using variables used by Han et
al.: 4kW PV systems, a fixed 20 degree tilt, in London Gatwick. Half-hour measurements are
interpolated from hourly interval data by taking the average of half-hour prior and half-hour
after measurement. Individual PV profiles correspond to specific days within the PV Watts
dataset.

5-2 Variables

Variables are taken from Han et al. [16]:

Electricity price (00:00-07:00) (ri™): £0.08/kWh | Minimum battery SoC (SoC,): 0.2¢

Electricity price (07:00-24:00) (ri™): £0.18/kWh | Maximum battery SoC (SoC;): 0.95¢

Electricity price (feed in) (rf*): £0.0379/kWh Initial battery SoC (SoCY): 0.5¢

Charging efficiency ny,: 0.95 Battery discharge limit b;: —3.2kW x 0.5hrs

Discharging efficiency 7out: 0.95 Battery charge limit b;: 3.5kW x 0.5hrs

Individual battery capacity e: 7 kWh

Master of Science Thesis Philip Flatz-Stransky



42 Computation of the Nucleolus Estimation

225

2.001

1.754

n
S

o
3

\werage Whole House Demand (kW]
° -
3 "
& &

A
o
g
PV generation profile [kW]

o
N
5

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

(a) 20  prosumer demand  profiles, (b) A set of 10 PV generation profiles based on
with  the average plotted in  blue. data from PVWatts ([28]), as would be used for
10-run nucleolus estimations.

Figure 5-1: An example of 20 prosumer demand profiles, along with 10 sets of PV data as used
in the case studies.

5-3 Cooperative P2P Operation - Linear Programming

5-3-1 Minimization Problem

The minimization problem is to find battery operations b;; and b;; that minimizes the over-
all cost of a coalition of prosumers. With L = max(0,>,cn(bi; + b;; + ¢it)), and L; =
min(0, 3 ;e n (b + by + qit)), the objective function to minimize is

48
b+’ble’iLn+7L_ t; [ri™ L + {7 Ly ] (5-1)
st. Ly <0<Lf (5-2)
> (b + by + ai) < Lf (5-3)
1EN
> (b + by +qi) = L + Ly (5-4)
1€EN
0<by <b (5-5)
b; <b; <0 (5-6)
eiSoC; < €;SoC} + > (bjtn;in + by, /et ) <e;8oC;, Yre[l,48]  (5-7)
t=1
48 )
> (bl + by /™ ) =0 (5-8)
t=1

5-3-2 Constraints

The following constraints are applied:

5-2: Pairs the correct sign of net coalition demand with the appropriate import or export
price.
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5-3, 5-4: Complete the definition of L;” = maxz(0,Y",cn [bi+b;+4it]), and Ly = min(0, >,y [bi+
b + qit))

5-5: Sets bounds on the battery charging variables ([kWh])

5-6: Sets bounds on the battery discharging variables ([kWh])

5-7: Sets bounds any instantaneous battery SoC ([kWh])

5-8: Net battery charge over all time intervals ¢ € {1, ...,48} must be zero.

5-3-3 Python Implementation
Objective function

The chosen state vector of dimension [96(n + 1) x 1] is

[1x48] L [1x4g]
+ - + - + -_nT
v = [0 ] b L
i=1 i=n |
A valid objective function in form min ¢’z has
[1x48] L [1x4g]
T ! m ex
& = [FoT-0 -+ [0 [=0] | e
=1 1=n ‘
Constraint 5-2 (L;; <0< L}
The constraint splits into
1) —-Lf <0
2) Ly <0.
Considering the state vector z, a vectorized version of these constraints would be:
1)
0 ... 0]—-1 0 0
: . . . x < : (5—9)
0 0 -1 0 0
—— ~——
[48 x 96n) 48 x 48 48 x 48 [48x1]
2)
0 010 1 0
< | (5-10)
0 0 0 1 0
—_— Y Y ~——
[48 x 96n] [48 x 48] [48 x 48] [48x1]
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Constraint 5-3 (3,cn (b + b, + i) < L;")

1 1 1 1 -1 0 — > (gi4=1)
1 1 1 1 -1 0 — 221 (qit=18)
N——
i=1,dim = [48 x 96] i=mn,dim = [48 x 96] [48 x 48] [48 x 48] [48x1]
(5-11)

Constraint 5-4 (ZieN(b;g + b+ qit) = LZF + L)

1 1 1 1 -1 —1 —>2i (Git=1)
. . . o . . . . . . . . :E S E
1 1 1 1 -1 -1 — > (gi4=48)
i=1,dim = [48 x 96] i=mn,dim = [48 x 96] [48 x 48] [48 x 48] [48x1]
(5-12)

Constraint 5-5, 5-6 (0 < b}, < b,b;, <b;; <0)

X = it —

Both constraints are enforced by applying bounds on the state vector = as follows

[1x48] ‘ [1x48]
— | e N T
[ [F0-][~b~] - -+ [-0-][~b~] | [-None—]|[-None—]] (5-13)
=1 =n !
<z <
[1x48] o [1x48]
[ [=b—][~0] - - - [-b—][-0—] | [-None—]|[-None—]]" (5-14)
1=1 =n .

Constraint 5-7 (¢;SoC; < ¢;SoC? + Xy (bl + by /™ ) < e,S0Ci,  ¥r € [1,48])

)

In block (diagonal) matrix form, two inequality constraints are

A= ... 00 ... 0O Bi—1
Lo : le<| (5-15)
0 Ai=n |0 ... 0 Bi—n
—_——— ———
[48n x 96n] [48n x 96] [48nx1]
and
Aimy ... 0l0 ... 0 Ciey
- Do : N K (5-16)
0 Ai—p |0 ... 0 Ci=n
—_——— ———
[48n x 96n] [48n x 96] [48nx1]

Philip Flatz-Stransky Master of Science Thesis



5-4 Cooperative P2P Operation - Linear Programming Tests 45

with each prosumer ¢ with assigned ES has

0 .. 0w 0 ... 0
pin o 0| L 1 0 e;SoC; — €;SoC? e;SoCY — e;S0C;

B He o out - - -

A'L = . g . g 7Bi = 7Ci =

in | 1 1 e;SoC; — €;SoC? ;S0CY — e;SoC;

772 771 nc_)ut ngut
: ! (48 x 1] [48 x 1]
[48 x 96]

For prosumers without ES, B; and C; are replaced with zero vectors.

Constraint 5-8 (3%, {b;;ni" + b & } =0)

it 77out

This constraint which forces a zero net change in battery SoC is implemented to limit the
arbitrage period to the forecast horizon, insuring the coalitional cost savings (and allocated
nucleolus payoffs) are not inflated by a "short-sighted" sell-off of previously stored energy.

The constraint can be formulated as

D, ... 0{0 ... O 0
P : B (5-17)

0 Di—, |0 ... 0 0
—_—— —
[n x 96n] [n x 96] [nx1]

where
[1x48]
——
D; = [[-n;"] [_ngut ]

5-4 Cooperative P2P Operation - Linear Programming Tests

This section covers a number of checks that can be done to confirm operation of a coalition
using cooperative ES operation.

5-4-1 Prosumer battery operation

The first check is to confirm that for any ¢ € [1,48], bj;b;, = 0. Figure 5-2 shows two example.
The first example is fora 20 prosumer coalition, and the other is for the same 20 prosumers
in a non-coalitional setting. bb;, = 0 holds true for both cases. Prosumers without ES have
b+

7, b; = 0. Charge and discharge limits b;, b; are shown as dashed lines.
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Individual prosumer (dis)charge b, b;; per AT [kWh] Individual prosumer (dis)charge b;f, b;; per AT [kWh]
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(a) N=20 coalitional battery operations. (b) N=20 non-coalitional battery operations.

Figure 5-2: Prosumer battery operations for a 20-prosumer coalitional and non-coalitional case.
Battery charge and discharge limits b, and b; are shown as dashed lines.

5-4-2 Net coalitional load L;, L;

The second check is to confirm if the minimization formulation generates net coalition loads
L{,L; such that L L; = 0. The results are shown in figure 5-3. One interesting side note
is that in this example, the net load is never negative as a result of the cooperative scheme.
All imported and generated energy is effectively consumed, and no loss is made by exporting
energy to the grid at reduced prices.

5-4-3 Cooperative and non-cooperative coalition cost evolution

The cooperative and non-cooperative cost evolution plots are shown in figure 5-4.

5-4-4 ES operation and coalition net demand matching

Correct cooperative battery operation has to match the coalition net demand. The coop-
erative case is shown in figure 5-5a. Here, cooperative battery operation matches the net
coalition demand well. ES discharge never exceeds net coalition demand, meaning energy
stored is never sold at feed-in prices. ES charging matches available excess PV generation,
reducing reliance on imported electricity.

5-5b shows the non-cooperative ES operation in the context of coalition demand for compar-
ison. Worse matching characteristics of the ES operation are observed. This is also reflected
in the simultaneous charging and discharging of the aggregate ES system, where the coalition
cost is increased by redundant charging and discharging efficiencies.
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Figure 5-3: A plot of the magnitude of net coalitional load L;", L, for a coalition 7" with N=20.
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(a) Cooperative cost evolution for an N=20 (b) Non-cooperative cost evolution for the
coalition. same N=20 coalition.

Figure 5-4: The cooperative and non-cooperative cost evolutions of an N=20 coalition.
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Energy per AT [kWh]

104
5
N V\/\ /\/V
=51 — Coalition consumption (demand+PV, w.o. ES) g, = Zq,,
ieT
"""" Negative coalition consumption (—q)
—— Battery charge operations bt = ¥ b;
ieT
-10{ —— Battery discharge operations b,” = ¥ b,
ier

(a) Cooperative ES operation: Coopera-
tive battery operation matches the net coali-
tion demand well. ES discharge never exceeds
net coalition demand, meaning energy stored
is never sold at feed-in prices. ES charging
matches available excess PV generation, reduc-
ing reliance on imported electricity.

Energy per AT [kWh]

101
54
oA
=51 — Coalition consumption (demand+PV, w.o. ES) q; = ZQu
ier
"""" Negative coalition consumption (—g¢)
—— Battery charge operations b,* = > b
ier
-10{ — Battery discharge operations b,” = X b,
ieT

(b) Non-cooperative ES operation: Worse
matching characteristics of the ES operation are
observed. This is also reflected in the simulta-
neous charging and discharging of the aggregate
ES system, where the coalition cost is increased
by losses of simultaneous charging and discharg-
ing efficiencies.

Figure 5-5: The cooperative and non-cooperative cost evolution of an N=20 coalition.
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Figure 5-6: Cumulative coalition ES SoC.

5-4-5 Aggregate coalition SoC evolution

Figure 5-6 shows the state of charge of all ES batteries acting as a single battery. Performance
is conform to the constraint 2, |btn™ + by, ﬁ} = 0 resulting in a final SoC of 50%. The

state of charge is also conform to a maximum and minimum battery SoC (min: ngg (SoC x e),
max: ngg (SoC X e)), where SoC' X e is the minimum SoC for any prosumer ES considering

SoC and battery capacity e is equal for any prosumer with allocated ES, and ngg = 10, as

50% of prosumers in the coalition are allocated ES.
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M M Cluster1

M Cluster2

Feature profile magnitude
Feature profile magnitude

Time Time

Figure 5-7: The randomness of ES (dis)charge peaks affects distances between prosumers. The
left figure shows two prosumers in cluster 1, with identical feature profiles and ES operations
as a result of incorporating CEPmin or MCPmin. In the right figure, the distance between the
prosumers in cluster 1 increases due to non-synchronous ES operations, resulting in the relative
distance between both prosumers and a third prosumer in cluster 2 becoming smaller.

5-5 Comparison of ES Operation to Plots in Han et al.

Figure 5-8 shows that the ES operation presented in Han et al. [16] shows different charac-
teristics from the results presented here. The authors’ battery operations (figure 5-8c) seem
to be identical across all prosumers, which is not a specific outcome of their minimization
problem. This would coincide with setting all battery operations in figure 5-2a equal to each
other. While this section will not try to exactly duplicate the feature profiles in Han et al.,
their feature profiles show that less erratic ES operations are possible compared to the ones
resulting from the LP in 5-3-1. This section investigates this.

An issue that could stem from (dis)charge peaks caused by the randomness in optimal ES
operations present in figure 5-8a is that the Euclidean distance between prosumers that should
otherwise form one cluster becomes larger, making the relative distance to load profiles in
other clusters smaller, potentially resulting in suboptimal clusters (figure 5-7).

Figure 5-8b shows feature profiles where each prosumer has equal battery operations. Instead
of computing the optimization for one single ES system, a shortcut to compute shared ES

battery operation given the minimization problem in equation 5-1) is to sum the resulting
ES operations bj*"™ = ). b;, and give each prosumer their portion of the sum of operations.

Conditions that all battery variables b;,b;, SoC;, SoC;, SoC? are maintained, and are also
equal for all prosumers. Figure 5-8a and 5-8b shows the comparison between individual

cooperative ES operations compared to an even division of battery operations b;; = f;ﬂ
The resulting ES operations in figure 5-8b are equal across all prosumers, just as shown by
Han et al. [16] in figure 5-8c. However, the erraticness of ES operations is still much larger.

This equalness in ES operations can only hold if all parameters of prosumers are identical.

Another attempt to remove high peaks of battery (dis)charging considers an individual
(dis)charge limit b;,b; that is also minimized in the LP problem 5-18, giving results shown
in figure 5-9. The advantage of this method is that it can increase longevity of ES systems
with slower charging rates and reduce losses caused by unnecessarily high charging currents.
Visually, it often provides a better split amongst cluster groups and may improve clustering
results, which might in turn be reflected in better nucleolus estimations. This new feature
profile can be considered in case studies. A nice coincidence is that it resembles the feature
profiles used by Han et al. quite well.
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The modified objective function has weights somewhat arbitrarily chosen such that if b; = EZ
and b; = b, with all NV prosumers owning ES, the objective function does not change by more

than £0.005. b; and b, are the maximum battery charge and discharge limits, listed in section
5-2. Any other weights could be chosen as long as an excessive cost reduction by b; and b;
leads to a comparatlvely even greater cost increase in Zt L L+ L] A check for
this is to compare 315, [rm L + ¢ L] for both minimization problem outputs to confirm
they are equal for any set of feature profiles used for simulation, but for certainty this check
would have to be applied to all subcoalitions for which the costs are computed, which is far
from practical.

An analytical approach showing that an excessive reduction of b; and b; leads to a compara-
tively even greater cost increase in ), [rgmlﬁ +r§¥ Ly | for any coalition, ‘compares the cost

reduction in (20025 S~ b, + L0925 57\ b; by reducing b, b to 0 from b, b , to the loss in

ieN 1 ZZGNf’L

profit of a lowest-profit ES operation scenario where one battery (instead of 15, for a lowest

profit scenario where only one prosumer has a battery) charges up by min(b, —b) in half an
hour, and discharges this same amount in the next half-hour, for the least possible profit:
ES utilization can vary between A) storing PV energy instead of buying day-tariff energy,
B) storing PV energy instead of buying night-tariff energy, and C) storing night tariff energy
instead of buying day-tariff energy. Situation B is the least profitable with 0.08 =%+ kWh generated,
given the prices of energy listed in section 5-2. Considering (dis)charging efficiencies of 95%,
the profit is 0.08(0.95)? mm(b, —b). With b= 35kWh, b = —22kWh, the profit is £0.1155.

Reducing b, b to 0 from E, b decreases the objective function by 2(0.0025) = £0.005. As a
result, to minimize the objective function, optimization software cannot afford to excessively
reduce b and b as the cost increase in 3¢, [rim L + ¢ L;] will be much bigger.

With L = max(0, Y ;e 5 (b + b;; + git)), and Ly = min(0,>,c 5 (b7 + b, + git)), the mini-
mization problem becomes

48
: 0.0025 0.0025
min Z (™ LE +rf" L] Z bi + Z b, (5-18)
b*b- Lt L-bb 5 ZleN i ieN ZzeN =i iEN

st. Ly <0<Lf (5-19)
> (b + b +ai) < L (5-20)

iEN
> + by +aqie) = L + L; (5-21)

iEN
0 <bj <b (5-22)
0<b; <b (5-23)
b <b; <0 (5-24)
b, <b; <0 (5-25)

e;S0C; < e;SoCY + Z ( i by et ) < e;SoC;, Vrell,48] (5-26)

t=1
48
> (b + by ) =0 (5-27)
t=1
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ES operations for both minimization problems considering dataset 9 are shown in figure 5-10.
It is best mentioned here that with both costs /2, [ri™L;” + r£*L; ] being the same using
both LP problems, the nucleolus estimation code can use any ES operation from any one
of both LP problems as long as coalitional costs savings v(7T) = > ;e C({t}) — C(T) only

consider C' = 218, [rim L +r¢® L; ] without the additional %2‘% Sien bit 2%10135” Sien bi-
iEN Y e =i

This can save time developing code. Only the clustering code has to adopt the correct LP
problem for the desired ES operation.
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Cooperative prosumer loads with PV and cooperative ES

Clustered prosumer Coop. Energy Profiles [kWh]

(a) Prosumer loads with cooperative ES oper-
ation computed with minimization problem 5-1.
Note the peaks of ES charging and discharging.

(a) Individual Loads w/ PV

—— Cluster 0
—— Cluster 1
—— Cluster 2
—— Cluster 3
—— Cluster 4
—— Cluster 5

—2 -

00:00 06:00

18:00

Energy per AT [kWh]

Cooperative prosumer loads with PV and equal ES operations bj;

(b) The same simulation with the same cost
function value, except each prosumer with ES
is assigned b
>, bit), which is identical across all prosumers

= b""/nps (with b{*™ =

(b) Indiv. Loads w/ PV & Coop. ES

—2 -

00:00 06:00

12:00 18:00

(c) Both plots regard one simulation, where the difference between them is the cooperative ES operation.
Cluster assignments in both plots are equal, and prosumers are grouped into 6 clusters. The right plot

shows that ES operation is uniform amongst all ES owning prosumers.

Figure 5-8: A comparison between plots in Han et al. [16] (subfigure ), the results of clustering
purely with the minimization function specified in Han et al. (subfigure a), and results of splitting
the sum of battery operations evenly amongst prosumers (subfigure b), to attempt to replicate
the style of ES operations evident in subfigure c.
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Cooperative prosumer loads with PV and cooperative ES Cooperative loads with PV, ES and minimized (dis)charge rates
—— Cluster 0 —— Cluster 0
37 —— Cluster 1 —— Cluster 1 '\
—— Cluster 2 209 __ Cluster 2 “
—— Cluster 3 —— Cluster 3 | , ‘
2] —— Cluster 4 154 — Cluster 4
—— Cluster 5 —— Cluster 5

1.0

051/

0.0

—0.5

Clustered prosumer Coop. Energy Profiles [kWh]
Clustered prosumer Coop. Energy Profiles [kWh]

~1.01

(a) Prosumer loads with cooperative ES op- (b) The same loads, combined with coopera-

eration computed with minimization problem tive ES operation including l_)i,l_ai as additional

5-1, where (dis)charge limits b;, b, are fixed variables in the minimization objective function.

bounds. The grand coalition cost is the same in both
plots.

Figure 5-9: These figures compare the cooperative ES operation as a) the result of the min-
imization problem as specified by Han et al, b) the result of a modified optimization problem

where b;, b, are additional variables to be minimized. The prevalence of ES peaks are removed,
giving a better visual overview of the 4 main categories of prosumer (with and without PV/ES).
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(a) Battery operations without minimized max-
imum (dis)charge rates.

(b) Battery operations with minimized maxi-
mum (dis)charge rates.

Figure 5-10: Prosumer battery operations for a 30-prosumer coalitional and non-coalitional case,
considering dataset 9. The coalitional cost Zi1 [rim L + rg® Ly | for the left and right case

are exactly the same. Battery charge and discharge limits b, and b; are shown as dashed lines.
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5-6 Nucleolus Computation and Evaluation

Having defined the cost savings formulation for any coalition in section 5-3-1, the nucleolus
algorithm can be implemented.

5-6-1 Nucleolus Estimation Algorithm

The algorithm for estimating the nucleolus used by Han et al. [16] is shown in algorithm 1.

Algorithm 1 Lexicographical Minimization of Excesses
Ty {N }
w(N) < v(N)
a1
T N = {T|T C N}
while a < 2V do

LP,: 4= ming, €
st Pvier Ta, = w(T),VT € Tay (5-28)
o(T) = Yvier Ta; <&, VT € T\Tqy
To  {T0(T) — XvieT Ta; = €as VXa} > binding constraint(s)

w(T) < v(T) —eq, VT € T,
Ta+— T UT,
if €, =%* then
end while
else
a+—a+1
continue while
xX* = x,
return x*

5-6-2 Nucleolus Algorithm - Binding Constraints

The equation {T|v(T) — > vieT Ta; = €a> VXq} in algorithm 1 refers to the set of all coalitions
which have binding inequality constraints in a particular minimization iteration (eq. 5-28).

A binding constraint is a constraint that lies coincident to all possible optimal solutions
of an LP. In the nucleolus computation, binding constraints in each iteration of the LP are
identified by looking at the dual variables. The complementary slackness theorem ([39]) states
that (b — Az*)Ty* = 0, where b — Az* > 0 and y > 0. If the optimization result returns a
positive dual variable y*, the corresponding primal constraint must be binding (Ax* = b).

It appears to be a common mistake ([11]) that binding constraints are taken to be constraints
where A;x* = b; holds, which is too broad of a definition. A solution z* can lie against
two constraints, one binding and the other non-binding, however moving the non-binding
constraint does not move the minimized objective function.
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Dual variables in SciPy

The SciPy package linprog shows non-zero dual variables as negative values, however they
should be regarded as positives.

5-6-3 LP method for lexicographical minimization in SciPy

Relying on highs-ds or highs-ipm in scipy.optimize.linprog can cause errors in the lex-
icographical minimization of the nucleolus estimation payoff vector. For (N, K) = (20,9),
highs-ds works for 9 out of 10 iterations, while highs-ipm works for 6 out of 10 iterations.
Method highs should be avoided as it chooses between highs-ds and highs-ipm automat-
ically. Nucleolus estimation code can use highs-ds primarily, and in case of a fault, repeat
the calculation with highs-ipm. For most case studies, there is only a very small likelihood of
both methods not working (two case studies in sections 6-2-2 and 6-2-3 are exceptions, how-
ever enough results were able to have been computed to show the clustering modifications
do not perform favorably). Impact on computation time can be disregarded as faults usually
occur near the start of the lexicographical minimization.

This issue might be dealt with by addressing the numerical issues mentioned in Guajardo &
Jornsten [11].

5-6-4 Verifying the Nucleolus Algorithm

The nucleolus algorithm results coincide with results found in examples listed by Guajardo
& Jornsten [11]. Special note has to be taken for the last two examples (3.5 and 3.6), where
the nucleolus is an imputation that represents the optimal cost-sharing amongst consumers,
rather than the sharing of cost savings. With the algorithm in Han et al. [16], the last two
nucleoli are achieved by taking v(S) as a negative number, as it can be considered that

coalitional cost savings = —coalitional cost

Considering these last two games this way shows monotonicity, i.e. for example 3.5: v(3,4) =
—12>v(3) +v(4) = —21.

Results have also been checked against three examples in a forum discussion [10].
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5-7 Nucleolus Estimation - Example

An example of nucleolus estimation is presented. Subcoalition values (cost savings v(7) for
some coalition 7°) come from a simulation using input data as presented in this thesis, however
someone can use the coalition values below as inputs into nucleolus estimation code to verify
the resulting nucleolus estimations and lexicographical ordering of excesses and corresponding
subcoalitions. For a clustering algorithm that allocated prosumers such that ¢l; = {0,1} and
cly = {2,3}, considering diversity-based pairing, the reduced set of subcoalitions excludes
subcoalitions {0,2}, {0,3}, {1,2}, {1,3}. Coalition values considered for the full nucleolus
are (with red cells showing coalition values excluded from the nucleolus estimation)

Coalition 7 | {0} | {1} | {2} | {3} | {0,1} | {0,2} {0,3} | {1,2} {1,3}
u(T) 0 0 0 0 0 0.9859 | 0 0.7249 | 0
Coalition 7 | {2,3} {0,1,2} | {0,1,3} | {0,2,3} | {1,2,3} | {0,1,2,3}

o(T) 0.6774 | 1.3521 | O 1.3174 | 1.1784 | 1.5867
Nucleoli:

The nucleolus payoff allocations for the full nucleolus and nucleolus estimations are identical:

Prosumer 0 1 2 3
Full nucleolus 0.2041 | 0.1347 | 1.1306 | 0.1173
Nucleolus estimation | 0.2041 | 0.1347 | 1.1306 | 0.1173

Binding coalitions in each LP iteration:

Full nucleolus Nucleolus estimation

. Excess . Excess
subcoalitions subcoalitions
{0,1,2} -0.1173 | {0,1,2} -0.1173
{3} -0.1173 | {3} -0.1173
{0,2,3} -0.1347 | {0,2,3} -0.1347
{1} -0.1347 | {1} -0.1347
{0} -0.2041 | {0} -0.2041
{1,2,3} -0.2041 | {1,2,3} -0.2041
{1,3} -0.2520
{0,3} -0.3215
{0,1} -0.3388 | {0,1} -0.3388
{0,2} -0.3488
{0,1,3} -0.4561 | {0,1,3} -0.4561
{1,2} -0.5404
{2,3} -0.5705 | {2,3} -0.5705
{2} -1.1306 | {2} -1.1306
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5-8 Nucleolus Estimation Evaluation - Stratified Random Sampling
& Divisible Excess

This section details the implementation of the nucleolus estimation evaluation technique used
by Han et al. [16] to quantify the quality of nucleolus estimation (section 3-5).

5-8-1 Stratified Random Sampling Implementation

The set of all possible permutations 7(N') as described in Han et al. [16] is a hypothetical
construct as computation time is excessive for larger V. Considering this, the steps used to
compute the percentage of sampled coalitions with divisible excess is as follows

1. Set initial sample size m = 1.

2. For each stratum sample set M, if the sample size |M; ;| < m[**, generate one new
unique sub-coalition sample. The maximum sample size is m}'** = min(m, max.comb.)
for I > 1, and m[}** =1 for | = 0. max.comb. is the maximum number of combinations
N — 1 objects (prosumers) with [ samples can generate, and defines the maximum

number of possible sampled coalitions a particular stratum M;;,l > 1 can contain.

Considering indexing from 0 (i, € (0,N — 1)), a sample is created by taking the
prosumer set [0,..., N — 1], then removing prosumer i from this list, and shuffling the
order of remaining prosumers. Prosumer i is reinserted in position [, and any prosumers
after position [ are cut out of the list. The sub-coalition is added to M;; if successfully
tested against other sampled sub-coalitions in M;; for uniqueness.

3. Calculate v(7) for all sampled coalitions in M;;,Vi € [0, N — 1],Vl € [0, N — 2]. This
is a slightly reduced set with respect to Han et al., where sampled coalitions in col-
umn M;;—n_1 are excluded as they all refer to permutations of the grand coalition
which are redundant as they can never generate a divisible excess. Sample excesses
em (Ve T VT € Miepo,N—~1],1€[0,nN—2) are computed. The number of sampled coalitions
with positive excess |e0?%| is counted across all M; .

4. Repeat steps 1-4 with m = m + 1, unless ’i% || is’” 1|\ < 0.5%. R, is the set
of all sampled coalitions in M with m samples speci ed for each M. If this ending
condition is met, the number of divisible excesses (where it holds that the fraction
Em(,uest

T’T) > 0.005£) can be counted, and the fraction of sampled subcoalitions with
divisible excess can be computed.

Figure 5-11a shows a plot containing 20 runs of the stratified sampling algorithm applied to
a single game of 6 prosumers, grouped into 3 clusters randomly. The 6 prosumers and their
cluster assignment are constant across all 20 runs. The plot shows the evolution of percentage
of coalitions with divisible excess as a function of sample size m.

Figure 5-11b shows a similar figure, except the terminating condition in step 4 is defined more
poi
strictly as | ||m ‘| o2 | <0. 005| | 1 ia

m-— |
£ and|| mll 2||<0005mmf1

Master of Science Thesis Philip Flatz-Stransky



60 Computation of the Nucleolus Estimation

Try | Dataset 1 | D.2 | D.3 | D4 D.5 D.6 D7 | D8] D9 D.10
1 0.0583 0 0 | 0.0364 | 0.0232 | 0.0086 | 0.0665 | 0 | 0.0811 | 0.0946
2 0.0628 0 0 | 0.0541 | 0.0086 | 0.0057 | 0.0637 | 0 | 0.0386 | 0.1181
3 0.0885 0 0 | 0.0408 | 0.0212 | 0.0115 | 0.0694 | 0 | 0.0685 | 0.0968
4 0.0667 0 0 | 0.0466 | 0.0212 | 0.0028 | 0.0787 | 0 | 0.0637 | 0.0947
5 0.0628 0 0 | 0.0444 | 0.0114 | 0.0028 | 0.0577 | 0 | 0.0714 | 0.1030

Table 5-1: This table shows the resulting fraction of sampled coalitions with divisible excesses
for 10 separate datasets, where each dataset has its own prosumer demand profiles, distribution
of PV and ES, and PV profile. Data is gathered 5 times across all 10 datasets to show that
results coincide acceptably with multiple applications of stratified random sampling. All data
points regard (N, K) = (14, 5).

Additionally, smaller tests with (N, K) = (14,5) show that the nucleolus estimations have
reasonable variations in results (one such test is shown in table 5-1). Furthermore, a later
section will run nucleolus estimations and compare them to the full nucleoli for N = 15. Figure
8-12 shows that the stratified random sampling scheme is good; the estimated fractions of
sampled subcoalitions with divisible excess tracks the true fraction of all subcoalitions with
divisible excess quite well.

Philip Flatz-Stransky Master of Science Thesis



5-8 Nucleolus Estimation Evaluation - Stratified Random Sampling & Divisible Excess 61

@ 0.175 v 0.175

[ 8

5 :

 0.1501 © 0.150 1

] 2

K7 (%)

3 3

T 0.125 1 T 0.125

s £

] B

£ 0.100 A £ 0.100 4

2 S

E= =

K] 3

S 0.075 4 B S 0.075

3 [N S K

5 I\ A 5

£ 0.050 = £ 0.050

o 50

3 /- 3

o

2 0.025 A % & 0.0254

© ©

< <

[ (7]

£ 0.000 £ 0.000

(7] 7

a T T T T T T T T a T T T T T T T T T T T T
i1 2 3 4 s & 71 8 1 2 3 4 5 6 7 8 9 10 11 12

Sample size m Sample size m

(b) 20 iterations of stratified random sampling
show better consensus with stricter terminating

pos. POs pos
| Jam—*lh < 0.005 1% ] ana

(a) This figure shows the evolution as a
function of increasing m until the terminating
condition in step 4 is met.

condition: | Tl ~ 9t
Pos | pos | |Epos |
mot] _ Tme2) ) o m |
]~ T a] = 00055

o
o
N

o
o
N

°
°
&
L
o
=Y
&
L

°

=)

G
s

0.05 +

0.04 +

0.03 4

0.02

.

°
=)
=1
o
o
=}
s

o
=3
S

°
=)
S

Percentage of sampled coalitions with divisible excess
o o o
o o o
N w &
N | L

Percentage of sampled coalitions with divisible excess

L

1 2 3 4 5 5 6 7 8 9 0 11 12

Sample size m

(c) This figure shows 20 applications of strat-
ified random sampling to another set of 6 pro-
sumers grouped into 3 clusters, with terminat-
ing condition in step 4.

Sample size m

(d) 20 iterations of stratified random sampling
for this second set of 6 prosumers also shows
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Figure 5-11: Each plot shows 20 applications of stratified random sampling to the nucleolus
estimations of 6 prosumers, grouped into 3 clusters. Plots a) and b) compare results between
the terminating condition used in Han et al. and a stricter terminating condition. Plots c) and
d) compare terminating conditions for a second set of 6 prosumers, grouped into 3 clusters.
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Chapter 6

Nucleolus Estimation - Modified
Clustering Case Study Results

6-1 Case Study 1 - Distance-adjusted Clustering

Briefly introduced in section 4-2-1, this section analyzes the effects of modifying clusters to
account for the distances of prosumers to the primary prosumer on the nucleolus estimation
quality.

Computational times mentioned from here on consider multi-core processing, which paral-
lelizes the nucleolus estimations and nucleolus estimation evaluations for each of 10 iterations
as shown in figure 6-1.

6-1-1 Choice of (N, K)

A simulated Peer-to-Peer (P2P) microgrid with N = 30 and K = 5 is used to experiment
with the modification of clusters. This choice of N and K balances:

1) The quality of the nucleolus estimation with non-modified clustering. A reasonable percent-
age of sampled coalitions with divisible excesses is needed to properly evaluate if clustering
modifications reduce, maintain or worsen the divisible excesses. Taking (30,5) makes these
percentages positive in almost all cases.

2) The time needed to compute the percentage of coalitions with divisible excess. For larger
N, the nucleolus estimation computation time becomes relatively insignificant in comparison
to the computation time required for stratified random sampling. For (30, 5), computing and
evaluating the nucleolus estimation for all 10 iterations takes an average of 4333s, of which the
nucleolus estimation takes 503s, and stratified random sampling takes 3830s. This average
is drawn all computations used to create all 10 Gaussian distributions of the non-modified
divisible excess percentages in figure 6-2.
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Initialize 10 unique sets of N load
profiles, clustered into K clusters
{Dataset 0, ..., Dataset 9}

Start timer for Thycr.estim)

| Compute nucleolus estimations per dataset (MP Step) |

[End timer for Tryct.estim)]

[Start timer for Tsrqt rand.samp)

| Compute %div. excess per dataset (MP Step) |

|End timer for Tstrat.rand.sump,l

Figure 6-1: This figure shows how multiprocessing is used to parallelize the nucleolus estimation
and nucleolus estimation evaluation (using stratified random sampling) to keep computational
time manageable in the case studies.

3) To populate the feature space adequately so that minor modifications to the cluster borders
result in reassignments of prosumers from one cluster to another.

In Han et al. [16] it was seen that the relations between nucleolus estimation performances of
clustering methods were reasonably consistent across (N, K) pairs (figure 3-5, 3-6), so to quan-
tify the performance of additional clustering methods, a single (N, K) = (30,5) pair is con-
sidered for now. A later part of this thesis re-runs nucleolus estimations for (N, K) = (15,5)
in order to analyze nucleolus estimations compared to the full (true) nucleoli. Here, some
nucleolus estimation performances are worse despite a better ratio %, so better performance

for improved ratios % cannot be taken for granted.

Also, the focus on percentages of subcoalitions with divisible excesses, rather the magnitude
of these divisible excesses is justified on the basis of figure 3-6, where the bottom plot shows
the magnitude of excesses is proportional to their prevalence.

6-1-2 Nucleolus estimation using distance-modified K-means

Figure 6-2 shows the percentage of sampled coalitions with divisible excess for all 10 datasets,
for two categories of modified k-means clusters. The results are compared to Gaussian dis-
tributions which approximate the non-modified k-means nucleolus estimation data. These
Gaussians are established by repeating stratified random sampling 10 times , and using this
sample set of resulting divisible excess percentages to visualize the variance in divisible ex-
cesses (considering Bessel’s correction for the unbiased estimation of sample variance).

The equation for modifying k-means clusters was
distyneq (pros;, cluster;) =dist (pros;, cluster;) +

m|dist (prim.pros, cluster;) — dist (pros;, prim.pros) | (6-1)

The value of m is incrementally increased in 10 steps between a minimum value m,,;, and a
maximum value Mz, established in two different ways, leading to two categories of modified
k-means clusters.
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Category 1: Setting dataset-specific bounds 1, Mmaz

This category of results is gained by, for each dataset individually, looking at the average
percent change in prosumer cluster reassignments across all N primary prosumers. m is
increased in steps of 0.1. The lower bound m,,;, is set to the lowest value of m where the
average percentage of reassigned prosumers is greater than 0.5%. The upper bound My,
is set to the first value of m that corresponds to a prosumers reassigned percentage within
20 + 1%.

With each dataset having its specific range [min, Mmaz], this range is split into 10 steps to
gradually alter the k-means clusters. For all N primary prosumers per dataset, clusters not
containing the primary prosumer are modified per equation 4-4 if and only if the primary
prosumer is not alone in its cluster. Single-prosumer cluster are skipped entirely in the
diversity-based pairing step because single-prosumer clusters are already grouped with other
clusters in the cluster combinations step, and their payoff as a result is unique, compared
to prosumers in larger clusters that need diversity-based pairing to receive unique payoffs.
Modified clustering methods only regard the diversity-based pairing step.

Category 2: Primary prosumer-specific bounds m,,i,,, Muma., with filters my,.,. < {6,3}

An improvement on the first category of results might be to modify clusters within bounds
Mumin, Mmaz St for each primary prosumer individually rather than with the average across
primary prosumers. A small minority of primary prosumers produce outliers for the bound
Mmaz- In one case, the 20% reassignment condition matched to my,q, = 454.9. Beyond this,
some cases never reach the 20% reassignment condition, regardless of the value of m,4,. This
means that for such a particular primary prosumer, clusters have to be radically distorted
to reach the 20% reassignment terminating condition, at which point the modified clusters
are meaningless (the cluster only represents the distance to the primary prosumer, not the
similarity of prosumers in the cluster itself; in figure 4-2 such clusters would create cluster
rings around the primary prosumer). For this reason a filter is incorporated that only saves
sub-coalitions of primary prosumers combined with modified clusters if the bound M4, is
under some value. With my,., above this value, the primary prosumer is combined with
non-modified clusters as in Han et al. [16]. Two tests are run with filters for my,,,; > 6 and
Mmaz = 3.

Results Analysis

Figure 6-2 shows the results. While some results suggest improved nucleolus estimations in
comparison to the non-modified case (dataset 1 with category 2 modifications using filter
Mmaz < 3, dataset 3 with all modifications besides category 2 modifications using mee < 3,
dataset 5 with modified k-means using dataset-specific bounds on m, and dataset 9 for all
modified k-means), there is no clear factor which indicates which sets of prosumers might

benefit from such modification and from which particular strategy, and for which value of m.

It is ambiguous which k-means modification method perform the best. Dataset 1 and 5
for example show opposite results, where modified results all perform differently. Nucleolus
estimation improvements also depend on the the incremental step of m. Dataset 9 shows
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Effects of distance-modified k-means clustering on nucleolus estimation
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Figure 6-2: Distance-modified k-means results. The black Gaussians represent 10 independent
tries of stratified random sampling to give a range of estimated fractions of sampled subcoalitions

with divisible excess.
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Table 6-1: Values of Min, Mmas for each dataset in modified k-means with dataset specific
bounds on m

[Dataset | 0 | 1 | 2 | 3 [ 4[5 ]6 | 7]8]
Mmin | 0.6 (0.6 [ 0.5 1.3[1.1]0.7[04[0.7]0.9
347856 |76|73|46|19]68 4.2

Mmax
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Figure 6-3: Average nucleolus estimation times across 30 runs from Han et al. [16].

modified k-means using dataset-specific bounds on m to be significantly better than non-
modified clustering for steps 1 to 5, while performing worse for steps 6 to 9. The opposite
is for dataset 5, where modified k-means using dataset-specific bounds on m performs better
for steps 4 to 9, and worse for the lower steps compared to non-modified k-means.

Effect of m,,,, on nucleolus estimation performance (for Category 1 modifications):
Table 6-1 shows the values of Myin, Mimaee for each dataset in modified k-means with dataset-
specific bounds on m. While it was considered that iterations with a high value for my,q.
might perform worse as the 20% reassignment condition needs a higher deformation of the
Voronoi cells (at which point the cluster represents only the distance to the primary prosumer,
and doesn’t represent the similarity of prosumers in the cluster itself), no visible relation can
be found between the results and the the values of M in, Mmaz-

Computation Times

Table 6-2 displays the computational times required to compute all data shown in figure 6-
2. For clarity, computing the nucleolus once per (dataset, clustering method) combination
would be enough. However, the nucleolus estimation is recomputed for each repetition of
stratified random sampling, in order to gather computational times for nucleolus estimations.
Computational times are measured as shown in figure 6-1.

Given that all computation times are specified for 10 datasets, within this multiprocessing
framework it can be said that the nucleolus estimation for (IV, K) = (30,5) is roughly 45s,
which is close to the individual nucleolus estimation times (for individual iterations) estab-
lished by Han et al. [16]. In figure 6-3 this is shown to be roughly 20s.
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Nucleolus Estim. | Strat. Rand. Samp. | Total

K-Means Modification Method Comp. Time [s] Comp. Time [s] 5]

Non-mod. k-means (avg comp.
time for 10 datasets, across 503 3830 43330
10 S.R.S. repetitions)

Mod. k-means with
dataset-specific bounds M,
Mmaz (avg. for 10 datasets,
across 10 m steps)

Mod. k-means with

primary prosumer-specific
bounds Mumin, Mmaz (ave.

for 10 datasets, across

10 m steps and 2 filters)
Total Case Study Comp. Time [s] 155560

461 3724 41850

4464427 306143104
: t 70380

Table 6-2: Distance-modified k-means computational times, for all data presented in figure 6-2

Conclusions

Results currently do not show any consistent way of improving the nucleolus estimation with
distance-modified clustering. Future work can consider increasing the number of stratified
random sampling data points to generate Gaussian probability distribution functions that
represent the results. Comparing PDF’s of modified and non-modified datasets allows for
comparisons with higher statistical significance, using the Student’s T-test.

6-2 Case Study 2 - Primary Prosumers as Cluster Centroids

Introduced in section 4-2-2, this section looks at the effects of equating one out of K cluster
centroids to the primary prosumer’s feature profile in diversity-based pairing.

6-2-1 K-Means (Cooperative Energy Profile)

For this modification, the k-means algorithm has to be applied an additional IV times for each
primary prosumer. The k-means algorithm is modified in the centroids update step. Each
centroid k is redefined as usual besides cluster 0, which is defined to be the primary prosumer’s
cooperative energy profile. There are some exceptions to the application of modified clustering
in diversity-based pairing.

Exceptions

Table 6-3 shows when modified k-means or non-modified k-means is applied. There are two
exceptions to the application of modified clustering.
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Primary prosumer in cluster
Non-mod. | Mod Clustering approach in diversity-based pairing
alone alone No diversity-based pairing (Exception 1)
alone not alone | Modified k-means clustering
not alone alone Non-modified k-means clustering (Exception 2)
not alone not alone | Modified k-means clustering

Table 6-3: This table shows what clustering approach is used, depending on if the primary
prosumer is singularly assigned to its cluster in modified and non-modified k-means clustering.

Dataset 0 1 2 3 4 5 6 7 8 9
Fraction of singular | 17 | 14 | 16 | 15 | 16 | 15 | 19 | 18 | 17 | 14

primary prosumers | 30 | 29 | 30 | 29 | 29 | 30 | 30 | 29 | 30 | 29

Table 6-4: This table shows how many primary prosumers are singularly allocated to a cluster in
the modified k-means scheme, given that they are allocated to clusters with other prosumers in
the non-modified scheme.

Exception 1

The purpose of diversity-based pairing was explained by Han et al. [16] to be a method that
allows for differentiation between prosumer payoffs. The primary prosumer is paired with all
possible combinations of clusters that exclude it. This means that if the primary prosumer is
alone in its non-modified and modified cluster assignments, the diversity-based pairing step
for that particular primary prosumer is redundant as the primary prosumer has already been
paired to other clusters in the cluster combinations step.

Exception 2

Given that roughly half of the primary prosumers end up alone in their clusters using modified
k-means (table 6-4), another exception is to not use the primary prosumer-centric k-means
clusters, and instead use the non-modified k-means clusters for these primary prosumers.
Any clustering result that has the primary prosumer be alone in its cluster is most likely
to be suboptimal, especially considering that non-modified clustering assignments have very
few prosumers that are alone in their clusters. Applying diversity-based pairing with the
non-modified clusters for these primary prosumers effectively reduces sensitivity to outliers,
allowing for efficient usage of the available clusters.

Results

Figure 6-4 shows the results of a series of experiments.

1. Non-modified k-means

The black Gaussian distributions summarize regular, non-modified k-means, with 10 repe-
titions of nucleolus estimation and stratified random sampling (with one common k-means
clustering assignment per dataset) to account for deviations in stratified random sampling.
The recalculation of the nucleolus payoffs could be skipped but are repeated alongside repe-
titions of stratified random sampling to get a good overview of the computational times.
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2. Modified k-means
The red Gaussians show the divisible excess results for modified k-means. It can be seen that
the modified k-means at no point notably outperforms non-modified k-means.

3. Modified k-means (step-wise k-means cost filter)

This experiment is conducted to see if limiting the degradation of k-means quality (setting a
limit on the cost of primary prosumer-centric k-means results) improves results. The modified
k-means costs for primary prosumers can vary from the non-modified k-means cost to varying
degrees (some primary prosumers even have modified k-means assignments with better costs
compared to the non-modified assignment). Each dataset has its own range of k-means cost
limits. The maximum cost for each dataset is the maximum cost found across all modified k-
means assignments. The minimum cost limit is set to be the dataset’s non-modified k-means
cost.

If a primary prosumer has a k-means cost above the limit, the primary prosumer is subject
to diversity-based pairing using the non-modified k-means cluster assignment.

Results show that, besides a few outliers, the k-means cost filter generally improves the
results as the k-means cost limit reaches the minimum value (cost filter step 0), suggesting
that this modified k-means method worsens nucleolus estimation performance by increasing
the k-means cost by forcing each primary prosumer to be its own cluster centroid.

General Analysis

While different k-means modification methods give different results, no experiment produces
results that notably outperform the non-modified k-means case. Datasets 2 and 9 show
slightly better results, but this is more a consequence of the additional variance in modified
k-means divisible excesses caused by the additional primary prosumer clustering assignments.

Computational Time

Table 6-5 shows the computation times of the nucleolus estimation and nucleolus estimation
evaluation (stratified random sampling) across all 10 datasets (considering multiprocessing as
shown in figure 6-1). Using (N, K) = (30, 5), the last two experiments roughly double the time
necessary for the nucleolus estimation, required for the N additional k-means applications for
each primary prosumer.

6-2-2 GMM (Cooperative Energy Profile)
Much like the modified k-means, the modified GMM algorithm is slightly tweaked to have

one cluster centroid set to be equal to the primary prosumer feature profile, as described in
section 4-2-2. The rules in table 6-3 are also applied here.

Errors in nucleolus lexicographical minimization (scipy.optimize.linprog)

While errors in the nucleolus lexicographical minimization come up rarely, errors are easily
avoided by finding a new cluster assignment, or by a slight modification of any parameter.
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Effects of primary prosumer-centric k-means on nucleolus estimation
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Figure 6-4: This figure shows the fraction of sampled coalitions with divisible excesses using
non-modified k-means, modified k-means and modified k-means with a cost function filter.
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Nucleolus Estim. | Strat. Rand. Samp. | Total

K-Means Modification Method Comp. Time [s] Comp. Time [s] ]

1. Non-mod. k-means (avg comp.
time for 10 datasets, across 503 3830 43330
10 S.R.S. repetitions)

2. Mod. k-means: avg. for 10

datasets, across 10 repetitions 953 3647 46000
3. Mod. k-means: avg. for 10

datasets, across 10 k-means cost steps) 1040 3814 48540
Total Case Study Comp. Time [s] 137870

Table 6-5: This table specifies computation times for the nucleolus estimation and stratified
random sampling across all 10 datasets, averaged across 10 repetitions.

In the results presented in this document so far, the only nucleolus estimation error was
encountered in section 6-1-2, where the nucleolus estimation could not be calculated for one
specific dataset for the value of m = 5. Modifying this value slightly to m = 4.8 consequently
avoided the same minimization problem.

For this modified GMM scheme however, a nucleolus estimation is much more likely to termi-
nate in an error than not. The code is modified to repeat nucleolus estimations across all 10
datasets repeatedly (relying on changes in clustering assignments for primary prosumers in
the diversity-based pairing step) until a nucleolus estimation is returned without error. The
set of sub-coalitions which return a valid nucleolus estimate are saved and later used to find
the percentage of sampled coalitions with divisible excess.

The errors presented here are most likely an extension of the issue described in 5-6-3. The
same errors are generated with either regular GMM or the improved log-scale GMM described
in section 4-3-4.

Results

Figure 6-5 shows the nucleolus estimations found. The results show worse nucleolus estimation
properties compared to the non-modified GMM case. These results are calculated with older
data using regular GMM, not the improved log-scale GMM described in section 4-3-4, as no
change was found in nucleolus estimation errors, and the performance of modified GMM was
equally worse using log-scale GMM.

6-2-3 GMM (Marginal Contribution Profile)

Using the marginal contribution profile rather than the cooperative energy profile, the results
of modified and non-modified diversity-based pairing are shown in figure 6-6. The modified
cluster allocations cause the same errors in nucleolus estimation as modified GMM using the
cooperative energy profile, where the minimization fails in a majority of cases. With enough
repetitions, some functioning cluster allocations are found for certain datasets (0,2,3,5,6,8,9),
where performance is better for all non-modified cases. Only the results for dataset 8 are
inconclusive as all divisible excesses (both for modified and non-modified clustering) are 0.
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Non-modified GMM vs. primary prosumer-centric GMM (G.C. Coop. Energy Profiles)
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Figure 6-5: The results of modified GMM with primary prosumer-centric GMM being used in
diversity-based pairing, using the grand coalition cooperative energy profiles.
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As in the previous cases, the rules in table 6-3 are applied here also, however checks if the
primary prosumer is alone in its modified cluster have not been necessary so far; across all
10 datasets (30 prosumers each) only one cluster was found where the primary prosumer was
the sole prosumer in its cluster.
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Non-modified GMM vs. primary prosumer-centric GMM (marginal contribution profile)
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Figure 6-6: The results of modified GMM compared to non-modified GMM, using the marginal
contribution profile.
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Chapter 7

Nucleolus Estimation - Alternative
Clustering Case Study Results

Case studies analyzing additional clustering methods will make use of four feature profiles:

e« MCP: The marginal contribution profile,
e CEP: the cooperative energy profile,

e MCPmin: the marginal contribution profile with minimized battery (dis)charge limits
biagiy

o CEPmin: the cooperative energy profile with minimized battery (dis)charge limits b;, b;.

CEPmin and MCPmin use ES operations from the modified LP in equation 5-18 . All feature
profiles are shown in Appendix A, including the normalized feature profiles used in Case
Study 5 (section 7-5).

7-1 Case Study 1: Performance Comparisons between K-medians
and K-means

The fractions of sampled coalitions with divisible excesses across all datasets is shown in figure
7-1 below. Each Gaussian consists of 10 individual applications of stratified random sampling
to one nucleolus estimation. No Gaussians are shown for nucleolus estimations with any 0%
divisible excess data point in the 10 stratified sampling results. For both k-medians and k-
means, the best clustering assignment is chosen from 1000 separate k-means and k-medians
applications. Centers are initialized to be prosumer instances, with a slight offset applied for
k-medians to avoid division by zero in the Weiszfeld algorithm.

A few exceptions are implemented for the k-medians algorithm. Much like k-means, k-medians
can occasionally give empty clusters, this must be detected. Secondly, a while loop iterating
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K-medians and K-means nucleolus estimation performance
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Figure 7-1: This figure shows nucleolus estimation results grouped by clustering method and

datasets.
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K-medians and K-means nucleolus estimation performance
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Figure 7-2: MCP and CEPmin results are drawn from figure 7-1 and individual dataset results
are combined into single plots for better overview of the best general clustering method. Each
subplot annotates the mean of each dataset's mean fraction of sampled coalitions with divisible
excess, across all datasets. K-means using MCP performs the best.

between new centroids and resulting prosumer allocations occasionally has a centroid bounce
around a minimum by a small but non-decreasing distance, never terminating. Any successful
calculation of k-medians clusters has the medians settle in well under 50 cycles, so 50 is the
chosen threshold. Another solution would be to relax the terminating condition. Specifically,
increasing eps from 0.001 to 0.003 in np.all(abs(new _centroids - centroids) < eps)
would solve all cases of this error for k-medians using MCP. Thirdly, within the Weiszfeld
iterative process, it rarely happens that a geometric median moves to coincide with a prosumer
instance resulting in NaN values. In such cases the program resumes with the next k-medians
iteration.

7-1-1 ES optimization effects on nucleolus estimations

Figure 7-1 shows that regardless of the choice of k-means or k-medians, CEPmin outperforms
CEP. Exceptions are k-means datasets 6,8 and k-medians dataset 8. The opposite is true for
MCP. MCPmin can occasionally perform marginally better than MCP, but MCP outperforms
MCPmin across a large majority of cases, regardless of the choice of k-means or k-medians.

This consistent difference in performances shows that the choice of ES strategies can signifi-
cantly affect nucleolus estimation performance.

7-1-2 Best Results

Figure 7-1 shows that CEP and MCPmin have the worst performance. Figure 7-2 shows the
results from figure 7-1 with CEP and MCPmin results removed, and having all results grouped
by feature profile and clustering method. Each subplot has the average divisible excess across
all 10 datasets, including the results not represented by Gaussians if any dataset has a 0%
divisible excess data point.
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Figure 7-2 shows MCP performing marginally better than CEPmin for both k-means and
k-medians. K-medians offers no performance advantage over k-means.

Variances of cluster sizes per dataset are shown in figure 7-4. A larger cluster variance
indicates less even distributions of prosumers amongst clusters. The two worst performing
feature profiles (CEP and MCPmin) have the largest cluster variances. Cluster size variances
are smaller for CEPmin than MCP, while nucleolus estimation performance was better for
MCP than CEPmin. All this suggests that cluster size variance can to some extent be basis
for predictions regarding a clustering method’s nucleolus estimation performance.

It is interesting to see that k-medians, despite the median being a center less sensitive to
outliers, actually returns larger cluster size variances compared to k-means. The robustness
towards outliers allows certain clusters be large, considering profiles that would otherwise
be separate clusters under k-means as outliers belonging to one cluster, marginalizing only
the most non-conforming feature profiles into their own clusters (figure 7-3). This results in
increased cluster size variances.

Cooperative prosumer loads with PV and cooperative ES

—— Cluster 0
o — Cluster 1
—— Cluster 2 ‘ “
| = M’ I
M‘ ‘ A

\ "’l’ﬁ" "é-M‘.

Clustered prosumer Coop. Energy Profiles [kWh]

Figure 7-3: The best k-medians clustering result out of 1000 iterations using CEP. This figure
shows two large clusters forming amongst the two groups of separated data. Clusters seem to
form based on ownership of PV, where ES profiles are close enough to profiles without ES that
combining both in larger clusters still minimizes the k-medians objective function.
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Feature profile cluster size variance
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Figure 7-4: The figure shows the variances in cluster sizes per dataset, sorted by feature profile.
The feature profiles with the worst nucleolus estimations (CEP and MCPmin) have the largest
variances. The best performing feature profiles (CEPmin and MCP) have considerably lower vari-
ances. Conversely, the best performing feature profile (MCP) has larger variances than CEPmin,
the second-best performing feature profile.

7-2 Case Study 2: Fuzzy C-Means & Fuzzy C-Medians

7-2-1 FCM and FCMed Implementation

Figure 7-5 shows all nucleolus estimation results for fuzzy c-means and fuzzy c-medians. An
immediate conclusion that can be drawn is that fuzzy c-means using the CEP is too unreliable.
For many datasets, FCM does not return valid clustering assignments to prosumers as one
(sometimes more) clusters are not assigned prosumers at all. FCMed is much less likely to
find clustering assignments where any cluster is empty. FCM and FCMed are both iterated
100 times, where runs with faulty outcomes are excluded from nucleolus estimation, and are
deduced from the 100 iteration limit.
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Fuzzy c-means and fuzzy c-medians - Nucleolus estimation performance
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Figure 7-5: This figure shows the fractions of coalitions with divisible excesses for different
fuzzifier parameters m across 10 datasets. Here, each Gaussian consists of 5 stratified sampling

data points.
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For FCMed, the loop alternating between memberships and centroids can occasionally have a
center which never quite settles, but continuously bounces around its minimum by a small but
non-decreasing distance. This was seen in k-medians clustering as well (covered in previous
section 7-1). A limit to the number of evolution cycles solves this problem. Choosing less
stringent terminating conditions is another solution.

7-2-2 Results

Figure 7-5 shows that neither FCM and FCMed with CEP perform well across any datasets
for any value of m. FCM-MCPmin also shows very large portions of sampled coalitions with
divisible excesses, which rules it out as a good clustering algorithm.

Figure 7-6 aggregates the better performing results across all 10 datasets to help look for a
feature profile and m that performs well across all 10 datasets. Taking 1% average divisible
excess as a cutoff criterium, FCMed-CEPmin with m = 1.6, FCM-MCP with m = 1.6,
FCMed-MCPmin with m = 2.2 perform very well.
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Fuzzy c-means and fuzzy c-medians - Nucleolus estimation performance
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Figure 7-6: This figure shows the results of figure 7-5, condensed to show average results across
10 datasets. While Gaussians are only displayed if the minimum divisible excesses is greater than
0, the displayed averages also consider 0% divisible excess results.
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7-3 Case Study 3: Comparing Ward, Average and Complete Link-
age Methods

Figure 7-7a shows hierarchical clustering performing very well with Ward-CEPmin and Complete-
MCP.

Figure 7-7b shows that a broad trend between clustering performance and cluster size variance
exists. However, any direct correlation can be disproven by looking at the following examples:

e MCP: The Ward linkage has marginally smaller cluster size variances compared to the
complete linkage, but the complete linkage still outperforms Ward in terms of divisible
excess.

e« CEPmin: Ward has marginally larger cluster size variances compared to complete link-
age but still performs better.

o CEPmin/MCP with Complete linkage: The complete linkage gives better divisible ex-
cess results with MCP than with CEPmin, while CEPmin has consistently lower cluster
size variances.
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Hierarchical Clustering - Nucleolus estimation performance
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(@) Results of hierarchical clustering for the Ward, average and complete linkages. Each Gaussian uses
10 data points, and each average considers all 100 divisible excess data points per subplot.
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(b) Cluster size variances across all datasets and linkages.

Figure 7-7: Hierarchical clustering results.
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7-4 Case Study 4: GMM-PCA

7-4-1 PCA
Principal Component Analysis, Eigendecomposition and Singular Value Decomposition

In section 4-3-4 it was explained that principal component analysis (PCA) orders a mean-
centered data matrix X’s principal components (eigenvectors of X7 X if considering the data
matrix form in 7-1) based on the variance along the principal components (the corresponding
eigenvalues).

For consistency, notation will consider a data matrix X to have rows of individual prosumer
feature profiles (equation 7-1). Also, as there is no need for any statistical information of
the covariance matrix besides the ordering of the eigenvalues/singular values and correspond-
ing eigenvectors, any mention of X7 X will omit the fraction % in the standard covariance
equation %XTX.

— oz —

oy
X = _ c R<48 (7-1)

— z, —

The implementation of PCA here uses the singular value decomposition (SVD). The SVD
of a mean-corrected data matrix B = X — X (where X is a matrix containing n identical
rows, each containing the average row of matrix X) also produces the eigenvectors V, and
the square roots of the eigenvalues called singular values. Ordering principal components by
the magnitude of the corresponding eigenvalues is identical to ordering principal components
by their singular values. Concretely, if the SVD returns B = ULVT, then

XTx =vxTuTuxsv?®

7-2
=vxTey? (7-2)

Multiplying both sides with V'
XTxX)v=vTsvTv
T (7-3)
=Vy'y
This form above corresponds to the eigendecomposition of X7X (X7XV = VA), showing

that eigenvalues A are the squares of singular values in ¥, and that V is a matrix of eigenvector
columns.

With a given data matrix X of size n x m, the PCA procedure applies singular value decom-
position to the mean-corrected data B = X — X, . The singular value decomposition produces
three matrices, USVT, where U is an orthogonal n x n matrix, V7 is an orthogonal m x m
matrix, and X is an n X m matrix with diagonal values being the singular values, ordered so
that 01 > g9 > --- > 0. The original, full-dimensioned data B can be projected onto the new
reference frame spanned by the eigenvectors (columns of V') with T'= BV, with T being the
new data coordinates with respect to the principal components. Dimensionality reduction
can be done by reducing the number of columns in V', which reduces the dimensionality of
the data T'.
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SVD Implementation

The cutoff condition for the number of principal components is selected on the basis of plots
showing the variance as a function of the selected number of principal components. Figure
7-8 shows two such plots. Cutoff percentages of 99% and 95% are used. The cumulative
variance of the first I singular values in a J x J covariance matrix X is

I s?
==t 7-4)
7 (
Zj:1 3?
With min(n, m) singular values given by np.linalg.svd(..., full_matrices=False), and

the number of non-zero singular values being rank(B), the last singular value is always 0 if
n < m, as rank(B) < min(n, m)—1. This is deduced by considering a mean-corrected matrix
B with varying numbers of data points in R? and R3, for which the table below shows the
number of non-zero singular values:

number of data points n: | 1pt 2pt 3pt 4pt opt
2D (m = 2): 0SVs | <1SV | <28Vs | <2SVs| <2S8SV’s
3D (m = 3): O0SV’s | <1SV | <2SVs | <3SV's| <3SV’s

An example of a typical plots for cumulative variance and singular value magnitudes is shown
in figure 7-8a. A unique situation is shown in figure 7-8b where the first singular value is
already above the 95% cutoff percentage. The code is written so that in these rare exceptions,
it takes the first singular value regardless of the variance that this singular value captures.
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(b) A rare situation in which the first PC captures 98.6% of the data variance.

Figure 7-8: Two examples showing singular value magnitudes and cumulative variances.

7-4-2 GMM-PCA Results

Figure 7-9a shows the nucleolus estimation performance results across 10 datasets, with each
Gaussian consisting of 5 separate stratified sampling data points for one nucleolus estimation.
The figure shows that in the tradeoff between variability loss and reduced dimensionality, the
nucleolus estimation algorithm generally prefers to have complete data. Considering the
low inherent dimensionality of feature profiles and the number of prosumers N, the GMM
algorithm does not suffer from the Curse of Dimensionality.

Figure 7-9b shows cluster size variances. This figure once again shows broad correlations
between cluster size variance and nucleolus estimation performance. Also here there are
exceptions; GMM using CEPmin with a 95% cutoff shows only one Gaussian located at 40%
of sampled coalitions with divisible excesses, while there are 4 datasets with notably high
percentages of coalitions with divisible excess that perform better than would be judged by
their cluster size variances.
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GMM (PCA) Clustering - Nucleolus estimation performance
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(a) The results of GMM clustering with PCA. Gaussians consist of 5 stratified sampling data points.
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(b) Cluster size variances across all datasets and linkages.

Figure 7-9: GMM clustering results with PCA.

7-5 Case Study 5: Shape-based Clustering

This case study looks at the performance of normalized feature profiles for a selection of
experiments. Feature profiles are normalized as follows:

~ 1
S ]
max ([ (7-5)
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7-5-1 Shape-based GMM

Here, GMM is applied to regular and normalized feature profiles. Figure 7-10a shows the
nucleolus estimation performances, and figure 7-10b the cluster size variances. Notable im-
provements are found specifically for GMM-CEP, with more uniform cluster sizes for the
normalized CEP profile. Other feature profiles do not show any large differences in nucleolus

estimation.
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(b) Gmm cluster size variances for regular and normalized feature profiles.

Figure 7-10: GMM with regular and normalized feature profiles.
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7-5-2 Shape-based Hierarchical (Ward linkage)

Figure 7-11a shows that normalized hierarchical clustering performs outstandingly. Figure 7-
11b shows that all cluster size variances are reduced with the normalization of feature profiles.

Normalized vs. regular hierarchical clustering - Ward linkage
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(b) Cluster size variances are reduced using the normalization of feature profiles.

Figure 7-11: Hierarchical clustering results using regular and normalized feature profiles.

Future work can include the complete linkage in the comparison of normalized and non-
normalized hierarchical clustering, as figure 7-7a shows the complete linkage to work well

with MCP.
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7-5-3 Shape-based K-means

Shape-based K-means improves for normalized CEP and MCPmin, while it degrades the
quality of nucleolus estimations with CEPmin and MCP (figure 7-12).

K-means vs. normalized k-means clustering
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(a) Nucleolus estimation performances for regular k-means (10 data points per Gaussian), and normal-
ized k-means (5 data points per Gaussian).
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(b) Cluster size variances for k-means with regular and normalized feature profiles.

Figure 7-12: K-means results with regular and normalized feature profiles.
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7-5-4 Shape-based K-medians

Figure 7-13 shows the K-medians nucleolus estimation performance improves with the nor-
malization of all feature profiles besides MCP, which only changes by a marginal degree.

K-medians vs. normalized k-medians
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(b) Cluster size variances for k-medians with regular and normalized feature profiles.

Figure 7-13: K-medians with regular and normalized feature profiles.
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Chapter 8

Comparisons between Nucleolus
Estimations and Full Nucleoli

Repeating the work done in this section with (NN, K') = (15,5) allows the resulting nucleolus
estimations to be compared to the full nucleolus for N = 15. Given the nucleolus estimation
framework, the full nucleolus is computed by setting (N, K) = (15,15), and skipping the
diversity-based pairing section of code.

This section aims to show that evaluating the nucleolus estimation performances of clustering
methods using the fraction of sampled subcoalitions with divisible excess (under the stratified
random sampling framework) gives an accurate measure of the disparity between nucleolus
estimations and full nucleoli, and that choosing clustering methods that give low fractions of
sampled subcoalitions with divisible excess will give better nucleolus estimations.

The disparity between nucleoli and their estimates (conventionally measured by the fraction
of sampled subcoalitions with divisible excess) are evaluated by looking at:

o Euclidean distances between nucleoli and their estimates (section 8-1)

o The fairness of how nucleolus payoff deviations are distributed across prosumers (section
8-2)

e The ability of stratified random sampling to estimate the true fraction of all 2V sub-
coalitions with divisible excess (section 8-3)

Section 8-5 compares the nucleolus estimation performance of different clustering methods
between (N, K) = (15,5) and N = (30,5).

8-1 Euclidean distance between nucleoli and nucleolus estimations

Figure 8-1 shows that, on average, choosing clustering methods that minimize the fraction of
sampled subcoalitions with divisible excess does result in nucleolus estimations with smaller
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96 Comparisons between Nucleolus Estimations and Full Nucleoli

Euclidean distance deviations of estimated nucleolus payoffs. The y-axis shows the average
euclidean distance between nucleolus estimations 7 and true nucleoli v, where v € RY contains
payoffs for all N prosumers. On the x-axis, the average fractions of sampled subcoalitions with
divisible excess are drawn over all 10 datasets, where stratified random sampling is repeated
5 times for each dataset. The average Euclidean distance considers the average over all 10
datasets.

The computation of a full nucleolus allows the computation of the true fraction of all 2!V sub-
coalitions with divisible excess resulting from a corresponding nucleolus estimation, omitting
the stratified random sampling procedure. Figure 8-2 shows the same as figure 8-1, but using
the true fractions of all 2V subcoalitions with divisible excess to show that deviations between
estimated and true divisible excess results does not change the Euclidean distance-divisible
excess relation. Later figures 8-12 and 8-13 show that stratified random sampling in general
produces good estimations of the true fraction of 2V subcoalitions with divisible excess.

With either the estimated or true fraction of subcoalitions with divisible excess, many data
points still show large variance when considering the line of best fit. This most likely has
to do with the cores of datasets not being spherical. A nucleolus estimation can be close to
the true nucleolus, but still not be in, or even near, the core, and have a larger associated
fraction of subcoalitions with divisible excess, if the core is very narrow in the direction of this
nucleolus estimation. Another nucleolus estimation can be farther from the true nucleolus,
but be either in the core, or much closer to it (with a lower fraction of subcoalitions with
divisible excess), if the core is elongated in the direction of this nucleolus estimation. Future
work could confirm if the Euclidean distance relation with the fraction of subcoalitions with
divisible excess better follows the average line of best fit when more than 10 datasets are
simulated, to average out the effect of narrow or wide cores in the directions of estimated
nucleolus payoff vectors.

Red-dashed lines of best fit are the first principal components of standardized data matrices
(to have zero mean and a population standard deviation of one). This PC is transformed
back onto the correct axes along with all data points.

Philip Flatz-Stransky Master of Science Thesis



8-1 Euclidean distance between nucleoli and nucleolus estimations 97

Euclid. dist. ||V — v||2 (10 dataset average)

Euclidean distance - divisible excess (10 dataset avg.)
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Figure 8-1: A linear relation is seen when plotting the average fraction of sampled subcoalitions
with divisible excess against the average euclidean distances between full nucleoli v and nucleolus
estimations . Averages are drawn across 10 datasets, and the divisible excess averages are drawn
over 10 datasets with 5 iterations of stratified random sampling each.
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Comparisons between Nucleolus Estimations and Full Nucleoli

Euclidean distance vs. true divisible excess fractions (10 dataset avg.)
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Figure 8-2: An identical figure to 8-1, however the x-axis shows the true fractions of all 2V

subcoalitions with divisible excess.
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8-2 Nucleolus estimation deviations and fairness of deviations

The previous section established a linear relation between the fractions of sampled subcoali-
tions with divisible excess and the Euclidean distance between nucleoli and nucleolus estima-
tions. How the improved Euclidean distance is seen in prosumer payoffs, and if there is any
improvement in how fairly deviations (deviations being the per-prosumer difference between
the nucleolus v; and its estimate 7;, |v; — ;] for any prosumer i € N) are distributed across
prosumers, using clustering methods with better nucleolus estimation performance, is not
established yet.

Figure 8-3 shows a hypothetical scenario where two nucleolus estimations can have the exact
same Euclidean distance to the true nucleolus, while the fairness of deviations is better in the
right figure compared to the left figure.

Unfair payoff deviation Fair payoff deviation
I
1.4 1 [ Full nucleolus payoff
’ = Estim. nucleolus payoff
Nucleolus estimation deviation
1.2 4 q
= 1.0 1 -
bS] — — | _
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Figure 8-3: Two different nucleolus estimations are shown. The left figure shows the deviations
between the nucleolus and nucleolus estimation divided amongst prosumer 0 and 1. A more fair

nucleolus estimation is shown in the right figure, where the deviations are spread evenly across
all prosumers.

While figure 8-3 shows a generic example of fair and unfair distributions of nucleolus estima-
tion payoff deviations, the next few subsections (8-2-1 to 8-2-3) will look at the logical steps
taken to form a metric for the fairness of prosumer deviations, the variance of normalized
payoff deviations.
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8-2-1 Maximum payoff deviations

Each nucleolus estimation will have one prosumer ¢ € N with a maximum deviation be-
tween its estimated payoff 7; and full nucleolus payoff v;. Figure 8-4 shows the maximum
per-prosumer payoff deviations (£) for different clustering methods, averaged across all 10
datasets. The figure shows clustering methods which perform better in terms of divisible ex-
cess, on average generate nucleolus payoffs that minimize the maximum deviations. This is a

o Maximum payoff deviations vs. divisible excess (10 dataset avg.)
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Figure 8-4: Clustering methods that give smaller fractions of sampled subcoalitions with divisible
excess, tend to produce nucleolus estimations with smaller maximum prosumer deviations.

good characteristic to check, but it does not say much in terms of fairness. It may be thought
that minimizing maximum payoff deviations should mean a more even distribution of payoff
deviations across prosumers, but a comparison of figure 8-4 and the Euclidean distances (fig.
8-1) show a lot of similarities, suggesting that this metric just tracks the Euclidean distance
instead of being a metric of fairness. Furthermore, later figure 8-6 shows a decrease in both
maximum payoff deviations (payoff deviations A to payoff deviations C) and fairness.

This all means that while it is good to check that the maximum payoff deviations do not
increase for better performing clustering methods, measuring the maximum payoff deviations
as a metric for fairness does not work.
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8-2-2 Variance of payoff deviations

The variance of N payoff deviations is an interesting aspect of a clustering methods’ nucleolus
estimation performance, with results shown in figure 8-5. However, the variance does not
necessarily quantify the fairness of how payoff deviations are distributed. Given two nucleolus
estimations, the estimated nucleolus payoff with a smaller Euclidean distance to the true
nucleolus can still have worse payoff deviation distribution, which is not necessarily indicated
by an increase in the variance. This is shown in figure 8-6, where payoff deviations C are a
more unfair distribution of payoffs amongst prosumers, in comparison to payoff deviations A.
Despite this, the variance in C is still lower than the variance in A.

Payoff deviation variance vs. divisible excess (10 dataset avg.)
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Figure 8-5: On average, the variance of payoff deviations |v; — ;| across prosumers i € N
decreases with clustering methods that produce better nucleolus estimation results (smaller frac-

tions of sampled subcoalitions with divisible excess).
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8-2-3 Variance of normalized payoff deviations

Figure 8-6 shows a slight degradation in fairness when considering payoff deviations C over
A, as % > %‘é . This is not reflected in the variance of deviations, but is reflected in the
variance of normalized deviations. Payoff deviations B are equally fairly distributed as in A,
and the variance of normalized deviations is the same for both.

Given the nucleolus estimation 7 and the true nucleolus v, all N payoff deviations are normal-
ized to correspond to an average payoff deviation of 1; all i € N prosumers’ payoff deviations

|vi—i|

-1
) . The variance of these normalized payoff deviations is
a good measure of the deviation distribution fairness.

are scaled as |v; — 74| (ZieN

0.54

Payoff deviations A Payoff deviations B Payoff deviations C
3.0 1 variance=0.16 1 variance=0.04 1 variance=0.159
c Euclid.=5.769 Euclid.=2.884 Euclid.=2.884
S i Normvar.=0.04 i Normvar.=0.04 i Normvar.=0.18
£25q1._..24 R i
2
o 2.0 1 b b
o 1.5 1.6 8 g R
g 12 |__..1.337 __ |
£ 1.0 1 1
2 0.8 i B
o
@
o
o

o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 o6 7
Prosumer Prosumer Prosumer

Figure 8-6: This figure shows a fictive example of N = 8 payoff deviations |v; — 7;|, expressed
in £, generated by three nucleolus estimations (A-C). For each, the variance, euclidean distance
and variance of normalized payof deviations is shown.

Figure 8-7 shows the variances of normalized payoff deviations for different clustering meth-
ods, plotted against the fractions of sampled subcoalitions with divisible excess, with re-
sults being averaged over 10 datasets. The primary PC shows that clustering methods with
smaller associated fractions of sampled subcoalitions with divisible excess are more likely
to reduce the normalized payoff deviation variance. This means that the fairness of pay-
off deviation distributions improves, if the aim is to equalize normalized payoff deviations

5\ L .
v — 14 (Zze N %) across all prosumers as much as possible.
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Normalized payoff deviation variance vs. divisible excess (10 dataset avg.)
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Figure 8-7: Clustering methods that reduce the fraction of subcoalitions with divisible excess are

more likely to equalize normalized payoff deviations |v; — ] (ZieN
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8-2-4 Maximum fractional payoff deviations

Fairness can also be seen from another perspective. Given the full nucleolus v and the
nucleolus estimate 7 for a particular dataset, instead of equalizing all payoff deviations |v; — ;|
across all prosumers ¢ € N, a more fair approach may be to equalize the fractional payoff
W=l 5 eross all prosumers instead.

deviations

There will be one or more prosumers ¢ € N for whom the fractional deviation @ is max-
imal. Figure 8-8 shows that better performing clustering methods also minimize maximum
fractional deviations. Large values in the y-axis are no cause for concern: figure 8-9 shows
that the largest fractional deviations occur for very small nucleolus payoffs. For example, the
largest fractional deviation occurs is for an estimated payoff of 0.09413, and a true nucleolus
payoff of 0.00016.

Maximum fractional deviations vs. divisible excess
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Figure 8-8: Clustering methods that perform better in terms of fractions of sampled subcoalitions
with divisible excess, also minimize maximum fractional deviations.
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Maximum fractional deviation of nucl. estim. vs. corresponding full nucl. payoff
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Figure 8-9: To explain the scale of the y-axis in figure 8-8, the maximum fractional payoff
deviations are plotted against their corresponding true nucleolus payoffs. The largest fractional
deviations are associated with very small nucleolus payoffs.
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8-2-5 Variance of fractional payoff deviations

Figure 8-10 shows the variance of fractional payoff deviations decreasing as clustering methods
with better nucleolus estimation performance (smaller fractions of sampled subcoalitions with
divisible excess) are chosen.

Fractional deviation variance vs. divisible excess
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Figure 8-10: Variance of fractional payoff deviations decreases with better performing clustering
methods.
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8-2-6 Variance of normalized fractional payoff deviations

Much like how the variance of normalized deviations was a measure of the fairness of payoff
deviation distributions, the variance of normalized fractional payoff deviations is a measure
of the fairness of fractional payoff distributions. Given an vector d € R of fractional pay-
off deviations, normalized to have an average fractional payoff deviation of 1 across all N
prosumers

. -1
|I/i — 171“ ZiEN (‘Vzu;jz')

d' = 8_1
? v N ( )
the variance of normalized fractional payoff deviations is calculated as var(d). Figure 8-
11 shows that these variances increase for better performing clustering methods. Com-

bined with the results from figure 8-7 which shows variance of payoff deviations |v; — 7]
improve, it can be concluded that clustering methods with improved nucleolus estimation
performance improve fairness if this is quantified by how evenly normalized payoff devia-

vi—i]

tions |I/Z‘ — ﬁi| (ZieN ~
normalized fractional payoff deviations d; (eq. 8-1) are distributed.

-1
) are distributed across prosumers ¢, rather than by how evenly
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Figure 8-11: The variance of normalized payoff deviations tends to worsen for clustering methods
with better nucleolus estimation performance.
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8-3 Stratified random sampling analysis

Given that all 2/ subcoalition cost savings v(7") have been computed, it is easy to compare
the estimated fractions of sampled subcoalitions with divisible excesses given by stratified
random sampling, to the true fraction of subcoalitions with divisible excess. Figure 8-13 shows
that stratified random sampling gives good estimations of the true fractions of subcoalitions.
Figure 8-12 shows the results for individual datasets, showing reasonable variance around the

mean.
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Figure 8-12: Estimated vs. true fractions of subcoalitions with divisible excess. Results are

shown per dataset
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Figure 8-13: The same results as in figure 8-12, now averaged over all 10 datasets. Stratified
random sampling performs well in tracking the true fractions of subcoalitions with divisible excess.
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8-4 Conclusion

This section has shown that choosing clustering methods with lower fractions of sampled
subcoalitions with divisible excess tends to:

Improve the average Euclidean distance between nucleolus estimations and full nucleoli.
Reduce the maximum deviations |v; — 4| for corresponding prosumers .

Reduce the variance of deviations |v; — ;| across all i € N.

Ll

5\ L
Reduce the variance of normalized deviations |v; — 7| (Zie N %) :

ot

Reduce the maximum fractional deviation @ for corresponding prosumers .
1

|vi—1i

6. Reduce the variance of fractional deviations o

across all : € N.

. -1
lvi =24l
|Vi_ﬁi‘ ZZEN( v )
1203 N

7. Not improve the variance of normalized fractional deviations

8. Result in nucleolus estimations that reduce the true fraction of all 2V subcoalition with
divisible excess.

The wvariance of normalized deviations and the variance of normalized fractional deviations
were considered two potential metrics of fairness.

Points 1 and 4 mean that improvements in clustering methods’ nucleolus estimation perfor-
mance (in terms of divisible excess) will tend to reduce nucleolus estimation payoff deviations
as shown in figure 8-14 below
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Figure 8-14: Implications of improvements in clustering methods' Euclidean distance (point 1)
as well as fairness (point 4 - judged by the variance of normalized deviations, shown in green) on
nucleolus estimation payoff deviations are vizualized here.

Points 4 and 7 indicate that clustering methods with better nucleolus estimation performance

(in terms of divisible excess) will tend to make the distribution of payoff deviations look more
like the left subfigure below, in contrast to the right subfigure (figure 8-15).
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Figure 8-15: Two nucleolus estimations are shown for a single true nucleolus. Both estimations
have the same Euclidean distance to the true nucleolus. The left subfigure shows a null devia-
tion variance situation (point 4). The right subfigure shows a null fractional deviation variance
situation (point 7), where each prosumer's fractional deviation is the same. For completeness,
it should be mentioned that the right subfigure fictive example does not consider the condition
> (overestimates) = > (underestimates), which is always true for any real nucleolus estimation.
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8-5 Comparisons of N=15 and N=30 nucleolus estimation results

8-5-1 K-means and normalized k-means

Looking at regular and normalized (shape-based) k-means, regular k-means using MCP per-
forms the best across all results. An interesting observation is that despite the smaller number
of prosumers, some results for N = 15 are worse than their equivalents using N = 30. For

example, normalized k-means performs worse using CEP and MCPmin.

K-means

K-means (normalized)

K-means vs. normalized k-means clustering
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Figure 8-16: Nucleolus estimation performances (N = 30) for regular k-means (10 data points
per Gaussian), and normalized k-means (5 data points per Gaussian).
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K-means vs. normalized k-means clustering (N=15)
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Figure 8-17: Nucleolus estimation performances (N = 15) for regular k-means (5 data points
per Gaussian), and normalized k-means (5 data points per Gaussian).
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8-5-2 Hierarchical-Ward and normalized Hierarchical-Ward

For hierarchical-Ward clustering, the ambiguity of best-performing clustering methods is equal
for both N = 30 and N = 15. For N = 15, there is no notable benefit of shape-based
clustering, unlike for N = 30.

Normalized vs. regular hierarchical clustering - Ward linkage
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Figure 8-18: The results of hierarchical-Ward clustering (N = 30) using regular and normalized

feature profiles. Regular feature profile Gaussians consist of 10 data points each. Normalized

feature profile Gaussians consist of 5 data points each.

Normalized vs. regular hierarchical clustering - Ward linkage (N=15)
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Figure 8-19: The results of hierarchical-Ward clustering (N = 15) using regular and normalized
feature profiles. Regular feature profile Gaussians consist of 5 data points each. Normalized
feature profile Gaussians consist of 5 data points each.
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8-5-3 GMM and normalized GMM

For both N = 15 and N = 30, no consequent advantage of shape-based clustering is seen.
GMM-MCPmin performs very well for both N, and was seen to perform the best in terms of
average Euclidean distance (fig. 8-1 and 8-2), average maximum absolute payoff deviations
(fig. 8-4), and performed very well in average maximum fractional payoff deviation (fig. 8-8)

for

GMM

GMM (normalized)

GMM

o GMM (normalized)

Phil

N = 1b5.
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Figure 8-20: The results of GMM for N = 30 using regular and normalized feature profiles.
Each Gaussian consists of 5 data points.

GMM vs. normalized GMM (N=15)
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Figure 8-21: The results of GMM for N = 15 using regular and normalized feature profiles.
Each Gaussian consists of 5 data points.
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8-5-4 K-medians and normalized k-medians

Unlike for N = 30, there is no advantage seen in shape-based clustering for N = 15 besides
for CEP. Across both N, k-medians with CEPmin and MCP, and k-medians with normalized
CEPmin perform the best.

K-medians

K-medians (normalized)

K-medians

K-medians (normalized)

K-medians vs. normalized k-medians
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Figure 8-22: Nucleolus estimation performance for k-medians (N = 30). Regular k-medians
Gaussians consist of 10 data points. Normalized results use 5 data points per Gaussian.
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Figure 8-23: Nucleolus estimation performance for k-medians (N = 15). Regular k-medians
Gaussians consist of 10 data points. Normalized results use 5 data points per Gaussian.
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8-5-5 K-means vs. k-medians

Figures 8-24 and 8-25 below show that out of all k-medians and k-means results, k-means
with CEPmin performs the best on average. For both N = 15 and N = 20, no advantage is
gained by using k-medians instead of k-means.
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K-medians
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K-means vs. k-medians (N=30)
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Figure 8-24: K-means and k-medians results using N = 30.
K-means vs. k-medians (N=15)
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Figure 8-25: K-means and k-medians results for N=15.
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8-5-6 Hierarchical Clustering - Ward/Average/Complete linkages

Considering both N = 30 and N = 15, the best performing clustering methods with good
consistency are hierarchical clustering using Ward-CEP and complete-MCP.

Hierarchical Clustering - Nucleolus estimation performance
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Figure 8-26: Results of hierarchical clustering for the Ward, average and complete linkages using
N = 30. Each Gaussian uses 10 data points.
Hierarchical Clustering - Nucleolus estimation performance (N=15)
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Figure 8-27: Results of hierarchical clustering for the Ward, average and complete linkages using
N = 15. Each Gaussian uses 5 data points.
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8-5-7 GMM-PCA (99%)

GMM-PCA performs better than GMM for N = 15 with the MCP feature profile. This
is confirmed in the divisible excess results (fig. 8-29), as well as in the results looking at
Euclidean distance (fig. 8-1), and in most other analyses, such as maximum payoff deviations
(fig. 8-4), variance of payoff deviations (fig. 8-5), variance of normalized payoff deviations (fig.
8-7), maximum fractional payoff deviations (fig. 8-8), variance of fractional payoff deviations
(fig. 8-10), variance of normalized fractional payoff deviations (fig. 8-11).

For N = 30, GMM-PCA performs worse with MCP compared to full-dimensionality GMM.
No consistent advantage to using GMM on dimensionality-reduced data is shown in these
results.
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Figure 8-28: The results of GMM clustering with PCA, using N = 30. Gaussians consist of 5
stratified sampling data points.
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GMM vs. GMM-PCA (N=15)
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Figure 8-29: The results of GMM clustering with PCA, using N = 15. Gaussians consist of 5
stratified sampling data points.
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8-5-8 Conclusions

Performance degradation with N =15 vs. N = 30

While for most clustering methods, the fractions of sampled subcoalitions decreases for N = 15
compared to N = 30, in some cases, clustering methods perform worse for N = 15 than N =
30, both with K = 5. Some examples of this are normalized GMM using MCP (figures 8-20
and 8-21), normalized hierarchical clustering using MCPmin (8-18 and 8-19), and normalized
k-means using MCPmin (8-16 and 8-17). Seeing how well the average fraction of sampled
subcoalitions with divisible excess follows the true average fraction of all 2%V subcoalitions
with divisible excess (figure 8-13), it is unlikely that variance in divisible excess results causes
this.

In any case, nucleolus estimation performance improvements from using smaller N cannot be
taken for granted. Results highlight the need to consider various simulations which realisti-
cally vary the number of prosumers NV, from which the clustering method that performs best
will be preferred.

Notable results

The overall best performing method overall considering this selection of case studies is GMM
using the MCPmin feature profiles. The performance of this clustering method, in terms of
the fractions of sampled subcoalitions with divisible excess, was very good for both N = 30
(figure 7-10a) and N = 15 (figure 8-21). GMM-MCPmin also performed very well in most
comparisons with full nucleolus payoffs (figures 8-1, 8-2, 8-4, 8-5, 8-7,8-8, 8-10, 8-11).

A list of notable clustering methods that primarily performed well in terms of both Euclidean
distances to true nucleoli (fig. 8-1, 8-2), and performed well across both N = 15,30, and
then also had good performance across additional analyses (fig. 8-4, 8-5, 8-7,8-8, 8-10, 8-11)
is shown below.

o GMM with MCPmin (figures 7-10a, 8-21)

o GMM with CEPmin (figures 7-10a, 8-21)

» normalized hierarchical clustering (Ward) with MCP (figures 7-11a, 8-19)
o normalized GMM with MCPmin (figures 7-10a, 8-21)

o hierarchical clustering (Ward) with CEPmin (figures 7-11a, 8-19)

o normalized GMM with CEPmin (figures 7-10a, 8-21)

o normalized hierarchical clustering (Ward) with CEPmin (figures 7-11a, 8-19)
o mnormalized hierarchical clustering (Ward) with CEP (figures 7-11a, 8-19)
o hierarchical clustering (Ward) with CEP (figures 7-11a, 8-19)

o hierarchical clustering (complete) with MCP (figures 7-7a, 8-27)

o k-means with MCP (figures 7-12a, 8-17)

o GMM-PCA (99%) with MCP (figures 7-9a, 8-29)
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Chapter 9

Conclusions and Future Work

0-1 Conclusions

9-1-1 Best-performing clustering methods

A selection of good performing methods is listed above at the end of section 8-5-8. It was
shown that GMM-MCPmin performs best for N = 15, and for N=30 GMM-MCPmin had
amongst the very best performance as well. This coincides with the results of Han et al. [16]
where GMM-MCP performed best, assuming that their MCP profiles are generated to be
more similar to the MCPmin profiles used here (covered in section 5-5).

For N = 30, fuzzy methods (FCMed-CEPmin, FCM-MCP, FCMed-MCP, FCMed-MCPmin
for specific values of fuzzifier parameter m, shown in figure 7-6) also worked well. However,
given that the ideal fuzzifier parameter m depends on the specific feature profiles used as
well likely being sensitive to parameters (N, K), fuzzy methods in general seem less practical
as finding m is time intensive. Combined with the fact that no fuzzy method outperformed
other clustering methods, these other clustering methods can be prioritized.

9-1-2 Effects of ES operation

It was shown in section 5-5 that there is no unique set of prosumer ES (dis)charging operations
that minimizes the cooperative coalitional cost, and that sharp peaks in ES operation can be
reduced by additional constraints (shown in the LP in equation 5-18). While this seems to
be a neater method of displaying feature profiles, some results show that certain clustering
methods actually prefer MCP over MCPmin. Examples of this are seen for k-means and k-
medians (figure 7-1), hierarchical clustering (figure 7-7), and GMM (for both 99% PCA and
95% PCA but not for the no-PCA case, see figure 7-9). This is also reflected in the variances
of cluster sizes, with MCP showing lower variances in comparison to MCPmin in all these
cases.
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Given these results, future work can consider that the ES operations used in clustering by
no means also have to be used by prosumers. A noisy ES strategy (such as MCP) can
be incorporated into feature profiles to form clusters if it helps the clustering method to
produce better nucleolus estimations. Once the nucleolus estimation algorithm receives the
clustering assignments, the nucleolus estimation algorithm only considers the cost savings of
sub-coalitions, which remain equal for any ES operations that optimize costs of coalitions. As
there is this freedom in the choice of optimal ES operations, it would make sense to choose
the actual ES operation on the basis of any additional criteria that are important in design,
for example battery longevity and hardware constraints (where profiles such as CEPmin and
MCPmin do better in these regards). This is entirely separate from the choice of which
cost-minimizing ES strategy to use for clustering.

9-1-3 Evaluation of Stratified Random Sampling as a measure of nucleolus es-
timation quality

Chapter 8 is in part dedicated to showing that the fraction of sampled subcoalitions with
divisible excess is a viable metric for the quality of nucleolus estimations. Lower fractions of
sampled subcoalitions with divisible excess are tied to smaller Euclidean distances between
nucleoli and their estimates (section 8-1), along with improving the fairness of how payoff
deviations (differences in payoffs between the nucleolus and its estimate) are spread across
prosumers (section 8-2). Furthermore, section 8-3 shows that stratified random sampling
accurately approximates the true fraction of all 2V subcoalitions with divisible excess

9-2 Future Work

9-2-1 Nucleolus estimation instability

Future work can pay more attention to the instabilities involved with computing the nucleolus
estimation explained in sections 5-6-3 and 6-2-2. A good start would be to investigate the
numerical issues mentioned in Guajardo & Jornsten [11].

9-2-2 Simulating sets of realistic (N, K)

Section 8-5-8 noted that a clustering method’s nucleolus estimation performance results for
one (N, K) pair do not necessarily reflect the performance for other (N, K) pairs. Future case
studies should try to simulate scenarios for an accurate range of prosumers.

9-2-3 Applying cluster modification methods to new CEPmin and MCPmin pro-
files

Chapter 6 focused on cluster modification methods, but only regards the CEP and MCP
profiles. Given that k-means performs better using CEPmin in comparison to CEP, and that
GMM works better for both CEPmin and MCPmin in comparison to CEP and MCP, there
is some chance that the cluster modification schemes might perform better overall for these
new feature profiles.
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9-2-4 Prediction divergency effects on grand coalition cost savings

Han et al. [16] (described in 3-6-5) ran a Monte Carlo study showing that some variance
around predicted values for demand and solar generation profiles resulted in small deviations
in the total cost savings of the grand coalition, given that ES operations are optimized for
predicted demand and solar generation profiles.

Future work can analyze how skewed predictions effect the total cost savings of the grand
coalition. Instead of variance being orientated around the predicted means, true demand and
generation profiles can skew away from predicted profiles entirely. These kinds of situations
will most likely create a considerably larger reduction in the grand coalition cost savings.

9-2-5 Implementing loss functions

Future work could look into incorporating loss functions that model efficiency losses between
prosumers, or variable costs of connections between prosumers. This might be crucial in the
implementation of P2P networks that span larger geographical areas, where the cost and ef-
ficiency of infrastructure will have to be accounted for in the optimization problem. It has to
be seen what the consequences (of additional costs and inefficiencies) are on the proof for bal-
ancedness as formulated by Han et al. in [15]. Maybe a bound on the costs/efficiencies could
be established for which balancedness does not hold, or more likely: balancedness might be
assumed through empirical measurements of the fraction of sampled subcoalitions with divis-
ible excess, on the basis of nucleolus estimates, which are preferrably as accurate as possible
so that any detected divisible excess can be said to stem from excessive costs/inefficiencies
rather than bad nucleolus estimations.

9-2-6 Implementing smart devices

Smart devices could be incorporated into the model, where the optimization might include
a time variable which specifies the time of actuation of smart devices. Optimizing the use
of smart devices alongside batteries can further improve independence of Peer-to-Peer (P2P)
grids from the power grids, and generate additional cost savings.

9-2-7 Implications of increased unfairness in distributions of fractional payoff
deviations across prosumers

A worsening of fairness (in the distribution of fractional payoff deviations) with otherwise
better performing clustering methods, established in section 8-2-6, definitely does not auto-
matically rule out the use of better performing clustering methods in the first place, even if
prosumers would prefer the fair distribution of fractional payoff deviations rather than the
fair distribution of regular payoff deviations.

Some loose thoughts to consider for future work:

Given an estimated nucleolus with corresponding fractional payoff deviations shown in A
(figure 9-1), the 8 prosumers might be much more likely to accept nucleolus estimation B,
which reduces the Euclidean distance between the true nucleolus and its estimate by 90%,
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Nucleolus Estimate B: fractional payoff deviations
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Figure 9-1: Three sets of fictive fractional payoff deviations for a coalition of 8 prosumers,
corresponding to three separate nucleolus estimations.

but has increased unfairness in the distribution of fractional payoff deviations, evident by the
normvar metric. Prosumer 0 or 1 (depending on whose nucleolus payoff is underestimated in
nucleolus estimate C) will be much less likely to want to partake in the coalition if it recieves
underestimates corresponding to nucleolus estimation C, which reduces the Euclidean distance
by 50% but with greatly increased unfairness.

In any case, there are definitely imaginable scenarios where the worsening of fairness is worth
the improvement in Euclidean distance.

9-2-8 Recommender Systems

The prosumer’s nucleolus payoff was seen to be quite proportional to its Shapley value (by
definition tied to its marginal contribution to coalitions) in figure 2-2. It would be interest-
ing to develop recommender systems, that could recommend whether to increase PV or ES
capabilities of the coalition, using prosumers with large (normalized) nucleolus payoffs as a
reference, normalized in some way for the magnitude of overall activity in the coalition be-
cause prosumers with larger energy flows (more generation, demand, and/or storage) receive
larger payoffs.

For example, if it could be established that, over multiple datasets (simulated days), prosumers
with battery systems receive larger normalized nucleolus payoffs (normalized by the magnitude
of energy flows) in contrast to prosumers with PV systems having comparatively smaller
normalized nucleolus payoffs, a valid conclusion may be that investing into more batteries
gives the coalition larger cost savings, and the prosumer that decides to invest the sum will
receive larger payoffs as a result.
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An accurate prediction on the returns of investment would require the additional computations
of nucleolus estimations that assume the additional PV or ES as an extra, fictive prosumer
(whose payoff will be merged with the payoff of any prosumer making the investment), and
these nucleolus estimations must be computed for a wide representative variety of days. The
number of clusters K for these parallel nucleolus estimations might be selected to be smaller to
speed up computations at the expense of the quality of the returns-on-investment predictions.
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Appendix A

Feature Profiles

This appendix shows all CEP, CEPmin, MCP, and MCPmin feature profiles used across all
case studies in this thesis.
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Prosumer feature profiles
CEPmin MCPmin

Dataset 9 Dataset 8 Dataset 7 Dataset 6 Dataset 5 Dataset 4 Dataset 3 Dataset 2 Dataset 1 Dataset 0

! ‘

Figure A-1: The set of feature profiles used across all case studies.
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Normalized prosumer feature profiles
CEP CEPmin MCP MCPmin

Dataset 9 Dataset 8 Dataset 7 Dataset 6 Dataset 5 Dataset 4 Dataset 3 Dataset 2 Dataset 1 Dataset 0

Figure A-2: The set of normalized feature profiles used in case study 7-5.
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pPv
ES
P2p
DER
PCA

Photovoltaics

Energy Storage

Peer-to-Peer

Distributed Energy Resources

Principal Component Analysis
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