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‘k Sluit m’n ogen als de zon schijnt

Want geluid is soms genoeg en

Kom je me halen uit de speeltuin?

Oh, het klinkt hier als vroeger

(Froukje, 2024)
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Abstract

Despite its importance to public health, 
environmental noise and  soundscapes 
are a forgotten topic in urban design. This 
study crates a framework for a design tool 
for soundscape design. The aim of this 
framework is to bridge the knowledge 
gap of soundscapes for urban designers. 
This is done by looking at the relationship 
between design elements and the percevied 
pleasantness in the soundscape. This 
pleasantness will be predicted by machine 
learning methods.

Machine learning methodologies present 
a promising approach for predicting 
and evaluating the efficacy of potential 
solutions aimed at improving urban 
soundscapes. By analyzing datasets that 
include environmental factors, noise levels, 
architectural designs, and community 
preferences, machine learning algorithms 
can help identify optimal interventions. 
Predictive models can also streamline 
decision-making processes by forecasting 
the potential impact of proposed solutions 
on soundscape quality.

This paper investigates the complexities of 
urban soundscapes, examines the feasibility 
and limitations of using machine learning 
to predict viable solutions, and proposes a 
data-driven framework to guide decesion-
making in urban development. The goal is 
to enhance auditory environments in urban 
areas without the necessity of consulting 
soundscape experts.

The random forest regressor that was used 
for the prediction model in this research 
had an R2 of 0.41, explaining 41% of the 
variance of the model.  This framework is 
tried and tested on a new location to verify 
its use. The prediction maps and section 
are a helpful tool in communicating the 
value of the soundscape pleasantness and

understanding the effect that the design 
elements have on its prediction. 
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Chapter 1 Introduction

Motivation and Problem 
Statement
In urban environments, the prevalence 
of high-density areas has led to an 
increasing concern regarding the quality of 
soundscapes. The persistent noise pollution 
in these environments poses a challenge in 
creating harmonious, pleasant living and 
working spaces. Despite efforts to mitigate 
noise, the selection and implementation of 
effective solutions remains a complex and 
subjective task.

In this context, the exploration of soundscapes 
in busy, noisy environments emerges as 
a crucial aspect of urban development. 
Identifying and evaluating solutions that 
effectively address noise pollution require a 
comprehensive understanding of the various 
contributing factors, human perceptions, 
and the interplay between environmental 
characteristics and acoustic properties.

Machine learning methodologies offer a 
promising avenue to predict and assess the 
efficacy of potential solutions for improving 
soundscapes in new urban development. 
Leveraging machine learning algorithms 
to analyze diverse datasets encompassing 
environmental factors, noise levels, 
architectural designs, and community 
preferences can facilitate the identification 
of optimal interventions. Additionally, 
the utilization of predictive models can 
streamline decision-making processes by 
forecasting the potential impact of proposed 
solutions on soundscape quality.

However, the application of machine 
learning in predicting effective solutions 
for soundscapes in urban development 
necessitates addressing several challenges. 
These include but are not limited to 

the interpretation of subjective human 
perceptions, the integration of multi-
dimensional data sources, and the ethical 
considerations surrounding community 
inclusivity and diverse stakeholder interests.

Therefore, the central aim of this thesis is to 
investigate the complexities of soundscapes 
in busy, noisy environments, explore the 
feasibility and limitations of machine 
learning in predicting viable solutions, and 
propose a framework for leveraging data-
driven approaches to guide decision-making 
in new urban development for improved 
auditory environments without the need of 
consulting soundscape experts.
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Background

Environmental noise impact
After fine particulate matter, traffic noise, 
including road, rail and air traffic, has been 
classified as the second environmental threat 
to public health in western Europe(EEA, 
2020). In the western part of Europe every 
year at least one million healthy years 
of life are lost from traffic-related noise. 
Sleep disturbance and annoyance, mostly 
related to road traffic noise and impact on 
the cardiovascular and metabolic system, 
comprise the main burdens of long-term 
exposure to environmental noise (WHO, 
2023). Noise pollution in urban areas has 
become a serious public health concern.

While Noise annoyance is one of the main 
burdens of traffic noise, Research on sound 
quality indicates that merely 30% of the 
irritation caused by noise stems from its 
physical attributes, such as sound energy. 
Therefore, only focusing on reductions in 
sound levels will not directly translate to 
an improved quality of life (Acun, 2021). 
While traffic and industrial activities often 
limit the possibility of substantial sound 
level reductions in urban environments, 
other strategies exist to mitigate stress and 
annoyance by exploring other potential 
modifications that enhance the overall 
satisfaction of residents in these settings. 

Soundscapes
From soundscape research and literature 
we can find that different factors can 
play a role in the acoustical comfort 
of participants. The International 
Organization for Standardization (ISO)
defines a soundscape as a “[the] acoustic 
environment as perceived or experienced 
and/or understood by a person or people, 
in context” (NEN-ISO 12913-, 2014) It is not 
merely the physical acoustical context. It 
is the relationship between human beings 

and the acoustic environment, based on 
four elements: sound, space, people and the 
environment (Zhang and Kang 2007). Alleta 
et al (2018) found through a systematic 
literature review that positive soundscapes 
were associated with faster stress-recovery 
processes in laboratory experiments, and 
better self-reported health conditions 
in large-scale surveys (Aletta and Kang, 
2018). Soundscape research is essential for 
understanding and optimizing the interplay 
between environmental acoustics and 
human well-being, providing insights crucial 
for designing spaces that promote positive 
auditory experiences and health outcomes.

Machine Learning
Traditional approaches to enquire data for 
soundscape research have often relied on 
manual analysis and subjective assessments. 
However, the integration of machine learning 
techniques offers a transformative potential 
to enhance the efficiency, accuracy, and 
depth of understanding in this field. 
Machine learning presents an opportunity 
to analyze complex acoustic data collected 
from diverse urban environments, identify 
patterns, and predict the efficacy of different 
interventions or designs in mitigating noise 
pollution. However, the application of 
machine learning models to evaluate and 
predict the effectiveness of these solutions 
in new urban development contexts remains 
an underexplored area.

In the context of the Netherlands, a country 
renowned for its commitment to sustainable 
urban development and environmental 
conservation, the soundscape plays a 
pivotal role in shaping the urban experience. 
With densely populated cities and a strong 
emphasis on environmental sustainability, 
understanding and managing the acoustic 
environment is crucial for ensuring a 
harmonious and livable urban landscape.
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Research definition

Research objective
The objective of this research is to develop a 
comprehensive framework for a design tool 
that can anticipate and evaluate perceived 
sound quality in emerging urban (re)
developments. 

The proposed approach involves the training 
and validation of an existing soundscape 
quality prediction model for analyzing 
existing urban environments, specifically 
chosen for its adaptability to analyze the 
perception of the acoustic environment 
of new urban developments. The selected 
model will be repurposed and trained on a 
modified dataset tailored to the nuances of 
soundscape research.

The ultimate deliverable will be a well-
trained model capable of generating 
predictions regarding soundscape quality 
for novel urban designs. The output will be 
presented in the form of an accessible and 
user-friendly soundscape map. 

Research questions
With this research objective my main 
research question will be: 

Main Research Question:

How can soundscape design, and urban 
acoustical comfort, be integrated in the 
early stages of the design process of ur-
ban (re)development, in an accessible and 
intuitive way, without relying on the need 

of experts?

To be able to answer this question I will be 
looking at the following sub questions to 
provide some insights:

Quality of sound and soundscapes
What is ‘good’ soundscape design?

Perception and Soundscape Components:

What correlations exist between the identi-
fied soundscape indicators and descriptors 
of human perception of comfort or discom-

fort within urban environments?

Computational Design Integration

To what extent can computational design 
tools, in the shape of machine learning 
models, incorporate soundscape data to 

inform and shape urban design elements for 
improved soundscapes?

Soundscape of Design Iteration

How do design iterations impact the per-
ceived quality of soundscapes within urban 

environments?

Figure 1 Methodology process, by author
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Research outline
My first two research questions can be 
answered with findings in existing literature. 
For my literature research I have looked at 
the following fields. 

I have used the search queries: 

soundscapes AND urban AND design

soundscapes AND “machine learning”

soundscapes AND mapping

“machine learning” AND urban design

With this research I found +- 8 studies that 
had a similar direction as the proposed plan 
of this thesis project. In the literature studies 
these will be shown and analyzed. Figure 2 
shows the different fields research for this 
thesis. 

The responses to the latter two research 
questions will unfold within the design 
process outlined in the methodology. 
Chapter 1.3 offers a comprehensive 

description of the methodology, explaining 
the sequential steps undertaken to address 
the research questions and providing an 
in-depth explanation of each phase. The 
four phases are: Data collection, machine 
learning model selection, training and 
validation and application as a design tool.

SOUNDSCAPE
• Defenition
• Influences 
• Environmental noise

URBAN DESIGN
• Sense of place
• Map making
• Scales & scale paradox

SOUNDSCAPE DESIGN
• Design strategies
• Interview with urban designer
• Urban design elements & 

soundscapes

MACHINE LEARNING
• Overview
• Types of ML
• Regression Models
• Handling outliers

MACHINE LEARNING IN 
SOUNDSCAPE DESIGN
• ML soundscape design
• Conceptual framework prediction 

model
• Review of existing prediction and 

mapping models

Figure 2 Literature Review
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Methodology

The framework for the design tool
In urban design there is a gap in the 
awareness and understanding of the design 
decisions and their impact on the perceived 
sonic environment, namely the soundscape. 
The research focusses on bridging this gap 
by creating a comprehensive framework 
tailored to equip urban designers with the 
right tools for navigating and designing 
soundscapes. By developing this toolkit, 
designers will be empowered to conduct 
early-stage assessments of the acoustic 
environment, facilitating more informed and 
efficacious design decisions.

Figure 3 Methodology, by author

The methodology for this research and 
design project involves a sequential process 
encompassing literature studies, data 
selection and analysis, machine learning 
model selection, machine learning model 
training and validation, and the subsequent 
creation and application of the chosen 
model as a design tool.

Data Selection and Availability
Data selection and availability are critical 
considerations in model development. The 
dataset that is selected, should contain 
comprehensive information regarding the 
assessment of perceptual quality in acoustic 
environments and the perceived presence 
of diverse sound sources. The dataset that is 
chosen is the dataset from the international 
soundscape database (SSID). This dataset 
contains information on the perception of the 
pleasantness of the acoustic environment 
and the perceived sound sources, as well as 

coordinates.

The dataset has undergone a statistical 
analysis, to find patterns in the dataset itself 
and outliers are removed.

Sourcing georeferenced urban design data
Additionally, geographical data, including 
coordinates, enrich the dataset by facilitating 
precise mapping of points, thus enhancing 
spatial understanding. The additional data 
was sourced from OpenStreetMap (OSM) 
and other publicly available databases. This 
data, alongside the SSID dataset, is loaded 
into QGIS to prepare and modify the dataset. 

Figure 4 Data modification, by author
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Figure 5 Framework visualization process, by author

Machine Learning Model Selection
The machine learning model selection 
involved studying various models and their 
characteristics, and also a process of trial 
and error, in which multiple models were 
tested for accuracy and compatibility. 

For this research multiple regression 
models were compared. Another path that 
was looked into was an image recognition 
model. However it was opted not to choose 
such a model. 

The first reason why this method is not 
chosen, is the data availability. For this type 
of modeling a large dataset is needed. For 
smaller datasets a regression model can be 
trained more effectively. Regression models 
are less complex to implement and interpret 
than image recognition models, especially 
with smaller datasets. The next reason is 
the datatype. The descriptor Pleasantness 
is a numerical value, this is more suited for 
regression. This output for the regression 
model might also be easier to interpret, than 
classification labels. Overall for this research 
opting for regression models, seemed to be 
the best option. 

For fast comparisons the PyCaret Library 
was used. This is a user-friendly python 
library for quick ML model comparisons, of 
25 different regression models. From there 3 
with the highest R2 and lowest errors were 

selected. These were examined further. This 
was done with some extra literature studies, 
and attempts in optimizing and tuning the 
models. Based on the characteristics of the 
models, and their performance, the most 
suitable one was selected.

Application as a Design Tool
To create the framework for the design tool, 
the tool needs to be created. The practical 
application phase comes after successful 
training and validation of the model. The 
models is then also built into a QGIS function. 
The model is created to be user-friendly, so 
easy to use for people with no background 
in soundscape design. 

This function preprocesses the 
georeferenced urban design elements, such 
as the roads, buildings and parks, and adds 
this data to a grid for which a pleasantness 
value is predicted. To visualize this data a 
raster is created with these predicted values.

This Design tool was then optimized 
with multiple alterations, by testing the 
application on locations of the sourced 
dataset, and by applying it into new designs. 
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Chapter 2 Literature

Environmental Noise & 
Health
The World Health organization (WHO) defines 
environmental noise as “noise emitted from 
all sources except for noise at the industrial 
workplace” in the Guidelines for community 
noise (WHO,1999) The European Union 
Directive 2002/49/EC on the management of 
environmental noise has a slightly different 
definition of environmental noise. It defines 
environmental noise as “unwanted or 
harmful outdoor sound created by human 
activities, including noise from road, rail, 
airports and from industrial sites”.

Health Effects
After fine particulate matter, traffic noise, 
including road, rail and air traffic, has been 
classified as the second environmental 
threat to public health in western Europe. 
Long-term exposure to noise that exceeds 
certain levels can lead to non-auditory 
health effects. This includes annoyance, 
sleep disturbance and impact on the 
cardiovascular and metabolic system (EEA, 
2020). Environmental noise is an important 
public health issue, featuring among the top 
environmental risks to health (WHO, 2023).

Merely 30% of the irritation caused by noise 
stems from its physical attributes, such as 
sound energy . Therefore, it is challenging to 
assert that a reduction in sound levels will 
inevitably translate to an improved quality 
of life (Acun, 2021). Together with sleep 
disturbance, noise annoyance is one of the 
main burdens of traffic noise (WHO, 2011). 
Annoyance is not classified as a “health 
effect”, but it does effect the wellbeing of 
many people, and falls within the definition 
of The WHO of health as ‘a state of complete 
physical, mental, and social well-being, 
and not merely the absence of disease of 

infirmity’. 

From soundscape research and literature 
we can find that different factors can play a 
role in the acoustical comfort of participants. 
While traffic and industrial activities often 
limit the possibility of substantial sound level 
reductions in urban environments, avenues 
exist to mitigate stress and annoyance by 
exploring other potential modifications that 
enhance the overall satisfaction of residents 
in these settings

Regulations
The European parliament and of the council 
defines Lden in Directive 2002/49/ by 
formula 1: in which: Lday, Levening, and Lnight are 
A-weighted long-term average sound levels, 
defined in ISO 1996-2:1987, calculated across 
day, evening, and night periods throughout 
a year respectively. The EU Member States 
choose the start times for day, evening, 
and night periods, consistent for all noise 
sources. Typically, defaults are 07:00-19:00, 
19:00-23:00, and 23:00-07:00 local time 
(EEA, 2002). The WHO (2011) recommends 
reducing traffic noise levels to be below 53 
dB Lden. As for night exposure, Lnight should 
be below 45 dB.

According to the Dutch ‘Wet Geluidshinder’, 
homes built within a restructuring, planned 
densification of an existing residential 
area, or adjacent to an existing residential 
area with limited expansion may have a 
maximum allowable noise level of up to 60 
dB(A). For new homes replacing existing 
ones or other sound-sensitive buildings may 
set a maximum noise level of up to 65 dB(A). 
This is in regards to industry noise

The maximum allowable noise level at the 
facades of homes in an area due to road 
traffic is set at 48 dB. However, for future 
homes in urban areas not yet planned, 
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a maximum noise level of 63 dB from an 
existing road can be established. Similarly, 
for existing or under-construction homes 
in urban areas, the future noise levels from 
a road not yet planned can also be set at a 
maximum of 63 dB.

The emphasis on setting maximum noise 
levels for dwellings in the Netherlands, as 
outlined in the ‘Wet Geluidshinder,’ stems 
from the direct impact of noise on residents’ 
well-being and quality of life. Dwellings, 
serving as personal sanctuaries, warrant 
stringent regulations to ensure a peaceful 
living environment. The flexibility in noise 
regulations for urban areas acknowledges the 
dynamic nature of these spaces, allowing for 
a balance between development and noise 
control to accommodate diverse activities 
and functions. For 2024 the legislation has 
been updated.

Figure 6 Noise levels for outdoor living spaces, 
(Camden Local Plan, n.d.)

In London, in the Camden district there 
are values for ‘anonymous noise’ such as 
environmental noise from road or rail traffic. 
In the green zones, the noise is considered 
to be at an acceptable level. For an outdoor 
living space ( a garden) this is less than 50dB 

Formula 1 Lden: Directive 2002/49

Laeq,16hr. from 55dB Laeq,16hr the SPL does have 
an adverse effect, this is in the red zones.The 
amber zones have a value in-between. For 
healthy outdoor living spaces a weighted 
SPL of less than 55dB, and ideally 50 dB is 
required.

Exposure / In practice
According to research from the European 
Environmental Agency (2020), in the 
Netherlands 19.3 % of the population inside 
urban areas is exposed to Lden > 55dB, which 
is less than in other European countries.

Figure 7 Noise annoyance (Poll and Simon, 2023, p. 
16)

The RIVM report of Poll and Simon (2023) 
found the main sources of noise annoyance 
(‘geluidshinder’). Sound originating from 
road traffic is, and remains, the primary 
source of annoyance at 11.1 percent 
(Confidence Interval: 9.8-12.4%). The 
percentage is the part of the population 
that is 16 years and older experiencing the 
annoyance. Noise from 50 km/h roads cause 
the most annoyance (7.3%; CI 6,2-8,4%). 
Other main sources of noise annoyance 
are noise from: neighbors, construction 
and demolition activities, air and rail traffic, 
recreation, and factories.
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Soundscapes
The International Organization for 
Standardization (ISO)defines a soundscape 
as a “[the] acoustic environment as 
perceived or experienced and/or understood 
by a person or people, in context” (NEN-ISO 
12913-1, 2014). It is not merely the physical 
acoustical context. It is the relationship 
between human beings and the acoustic 
environment, based on four elements: 
sound, space, people and the environment 
(Zhang and Kang 2007).

Perception and experience
Schulte-Fortkamp et al. (2023) describes 
soundscapes as a perceptual construct of an 
acoustic environment and, therefore, it must 
be distinguished from the actual physical 
environment.

Figure8 Elements that influence the perceptual 
construction of soundscape experience. (From ISO- 
12913-1. Acoustics—Soundscape—Part 1: Definition 

and Conceptual Framework, April 2014.)

Figure 8, in the ISO standard on defining the 
concept of soundscapes has this diagram 
for clarification. This biggest influence 
on the soundscapes is the context. The 
context facilitates sound sources. They 
create and mold the acoustic environment. 
The acoustic environment influences the 
personal auditory sensation, this sensation 
is then interpreted. By the meaning given 
to this sensation, in regards to the context, 
a response is formed by individuals. For 
example, if a person would evaluate a 
soundscapes negatively, a choice can be 
made to leave and not return to this site. It is 
interesting to note that context plays a role 
in interpreting auditory sensations, and our 

response to them. Non-acoustic factors can 
influence the way we perceive and react to 
acoustic environments, like the character 
of the place (a park), and the timing (on a 
sunny Sunday afternoon). (Hong and Jeon, 
2015) (Haberl, 2018), (Lugten et al., 2017), 
(Schulte-Fortkamp et al., 2023). Therefore 
a holistic approach is recommended when 
studying soundscapes.

Figure 9 experience of soundscapes P34  Schulte-
Fortkamp et al. (2023)

The importance of soundscapes 
The soundscape approach in urban design 
looks beyond noise control. Reducing 
environmental noise can bring economic 
and societal benefits, but it doesn’t always 
directly improve well-being and quality of 
life, because sounds serve as information 
carriers, and loudness can be desirable in 
specific contexts. Systematic reviews by 
Alleta et al (2018) indicate that positive 
soundscapes were associated with faster 
stress-recovery processes in laboratory 
experiments, and better self-reported 
health conditions in large-scale surveys 
(Aletta and Kang, 2018). Therefore adopting 
a soundscape based approach might be 
viable for scenarios where high noise levels 
appear inevitable. 
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Assessment of 
Soundscapes: Descriptors
In a soundscape study, a descriptor refers to 
a term or set of terms used to characterize 
and describe specific acoustic qualities 
or attributes of the auditory environment. 
There are many ways to evaluate a 
soundscape and different descriptors for 
this are used. Descriptors in soundscape 
analysis are perception based so they are 
collected through the use of questionnaires 
or interviews. The descriptors play a crucial 
role in capturing the diverse and subjective 
nature of the soundscape by providing a 
vocabulary to express the perceptual aspects 
of the acoustic experience. 

The most common way in soundscape 
literature to assess the soundscape quality 
is through the use of the pleasantness & 
eventfulness axis defined by Axelsson (2010).

Another more straightforward descriptor 
is to directly ask people their perceived 
soundscape quality, like Hong and Yeon 
(2017), Ricciardi et al. (2015), Boes et al. 
(2018). Respondents questionnaires can 
also ask a question similar to this one: 
Overall, how would you describe the present 
surrounding sound environment. And gave 

this a score on the Likert scale from ‘very 
good’, to ‘very bad’. This can also be used as 
a valid input for a machine learning model. 

Pleasantness from the ISO standard
Axelsson et. al (2010) proposed a model to 
use as a framework for future soundscape 
research, and is the most referenced model in 
other soundscape literature. shown in figure 
11. It has a two-axis framework encompassing 
Pleasantness and Eventfulness dimensions. 
The third dimension, Familiarity, exhibited 
low variance and, consequently, has been 
omitted from subsequent investigations. 
The descriptors employed in characterizing 
affective quality are rooted in the model 
proposed Mehrabian and Russell. (1974), 
utilizing the dimensions of Valence and 
Arousal to capture emotional responses 
to environmental stimuli. Additional 
descriptors utilized in related research 
include Calmness and Vibrancy (Cain et al., 
2013), Pleasure and Activation (Andringa and 
van den Bosch, 2013), as well as Appreciation 
and Dynamism, with Monotony as a third 
separate descriptor  (Tarlao et al., 2019).

Figure 10 Questionnaire Likert scales for Perceived Affective Qualties (PAQ’s) (From ISO- 12913-1. Acoustics—
Soundscape—Part 2: Data collection and reporting requirements, 2018.)
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Soundscape prediction models have been 
measuring pleasantness according to 
Axelsson’s (2010) definition, or have come 
up with their own descriptor. Another more 
straightforward descriptor is to directly ask 
people their perceived soundscape quality, 
like Hong and Yeon (2017), Ricciardi et al. 
(2015), Boes et al. (2018) did.

Data Collection
To calculate the pleasantness survey data 
from a questionnaire is collected via SSID 
Protocol based on ISO 12913 standard. This 
is based on a five point Likert scale, as shown 
in figure 10. 

Calculating ISO pleasantness
ISO Pleasant is a descriptor of a soundscape. 
It is calculated based on 6 survey responses 
(perceived attribute qualities, PAQ’s) that 
each respondent gives (ISO/TS 12913-
3:2019(E), 2019).  pleasant, annoying, calm, 
chaotic, vibrant, and monotonous are 
perceived effective qualities related to the 
environment or experience being assessed. 
These could be subjective ratings given by 
individuals about how they perceive certain 
aspects of their environment.

The formula calculates ISO Pleasant 
by combining three different factors: 
pleasantness vs annoying, calmness vs 
chaotic , and vibrancy vs monotony, and 
normalizing it to a value between -1 and 

1 (shown in formula 2). The part inside the 
square brackets calculates the weighted 
sum of these factors: The part (pleasant-
annoying) measures the difference 
between how pleasant and how annoying 
the environment is perceived to be. In the 
formula cos(45°) Is used with the pairs  (calm-
chaotic) & (vibrant-monotonous) to adjust 
for the 45° rotation in the two dimensional 
model (Figure 1). The denominator 1/ (4 
sqrt(32) normalizes the result to ensure that 
the Pleasant value falls within a the range (-1 
to 1).

Probabilistic distribution
In their recent study, Mitchell and colleagues 
(2022) introduce a novel approach to 
conceptualize soundscapes as probabilistic 
distributions. They assert that this 
framework offers a versatile toolkit for 
broader application. Viewing soundscape 
evaluations through the lens of distribution 
analysis reveals both the mean perception 
and the variability in auditory experiences. 
To use this in design the focus should be on 
shifting the distribution. Figure 10 shows all 
the possible outcomes of the ISOPleasant 
score with all the different inputs in the 
questionnaire. 

Figure 12 Distribution chances for all soundscape 
pleasantness scores, by author

Why use Pleasantness from ISO 
For this research the Pleasantness score 
according to the ISO standard will be used 
as the descriptor. The data for this descriptor 
is collected by ISO standards through 
questionnaires, and is based on 6 PAQ’s. 

Figure 11 from Schulte-Fortkamp et al., Soundscapes. 
Two-dimensional representation of the affective 
quality attributed to acoustic environments
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Formula  2 Pleasantness from (ISO/TS 12913-3:2019).

Comprehensive assessment
the ISO Pleasant formula takes into account 
multiple dimensions of the environment, 
including pleasantness, calmness, and 
vibrancy. By considering these factors 
simultaneously, the formula offers a 
more comprehensive assessment of the 
environment compared to a simple ranking 
system, which may only capture one aspect 
at a time.

Precision and Sensitivity:
The precision and sensitivity of the 
ISO Pleasant formula captures subtle 
differences in the environment. The 
weighted combination of factors, along with 
normalization, ensures that small variations 
in the environment are reflected in the 
calculated index. In contrast, a 1 to 5 ranking 
system may lack the granularity to detect 
these nuances effectively.

Consistency and Reliability:
the ISO Pleasant formula promotes 
consistency and reliability in measurement 
across different contexts and individuals. 
Since it is based on a standardized 
mathematical model, the interpretation of 
the ISO Pleasant index remains consistent 
regardless of who is assessing the 
environment. This consistency is crucial 
for conducting reliable comparisons and 
drawing meaningful conclusions. It also 
makes it favorable when collecting new data.

Practical Applications:
the ISO Pleasantness score could be 
valuable in practical applications, such as 
urban planning, architecture, environmental 
psychology, and user experience design. A 
standardized measure like the ISO Pleasant 
index can facilitate decision-making and 
optimization in these domains.
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Figure 13 Questionnaire Likert scales for presence of sound source types (From ISO- 12913-2. Acoustics—
Soundscape—Part 2: Data collection and reporting requirements, 2018.)

Indicators
Indicators, in the context of soundscapes, 
refer to measurable parameters or factors 
that provide information about the acoustic 
environment. These indicators help 
quantify and describe various aspects of 
the soundscape, allowing for a systematic 
analysis and assessment of the auditory 
surroundings. Indicators play a crucial role in 
influencing how we perceive and understand 
soundscapes. Perceptual indicators, visual 
and contextual cues, along with the temporal 
dynamics, collectively offer a more accurate 
prediction of the overall soundscape quality. 
Other less effective indicators are physical 
measurements and, demographic and 
psychological information. These are the 
categories under which most indicators fall:

Perceptual indicators
Perceptual indicators are automatically 
assessed or evaluated by the participants, 
for example: Subjectively evaluated sound 
level, and Sound source identification. 
Other Perceptual indicators are: subjective 
perception of acoustics, sound source 
prominence assessment, and subjective 
preferences.

Sound source identification
Sound sources identification response and 
the perceptions of the acoustic environment 
show significant correlations in previous 
studies(Hong and Jeon (2015). The NVN-ISO/
TS 12913-2:2018 Identifies source sources 
into three main types: 

•	 Sounds of Technology
•	 Sounds of Nature
•	 Sounds of Human Beings

The most widely used classification of sound 
sources suggested by Axelsson, Nilsson, 
and Berglund (2012). has 5 types of sound 
sources: Traffic noise, fan noise, other noise 
(construction, industry, machines, sirens, 
music), sounds from human beings, and 
natural sounds. These categories are easy to 
understand whilst working with people with 
no background knowledge in acoustics. 

These are incorporated in the ISO standard 
ISO/TS 12913-2:2018(E), 2019 for soundscape 
data collection, as illustrated in Figure 13. 
The standard poses the question: “To what 
extent do you currently hear the following 
four types of sounds?” The four types of 
sounds are

•	 Traffic noise (e.g cars, buses, trains, 
airplanes),
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listeners. (Schulte-Fortkamp et al., 2023)
Psychoacoustic factors are measured using 
sound level meter data. They are converted 
to different metric which explain different 
characteristics of the acoustics. The four 
most important ones are explained below. 

Loudness 
Loudness is a psychoacoustic metric 
measuring the subjective perception 
of sound pressure. which is calculated 
according to Eberhard Zwicker and 
standardized in the ISO 532-1 (ISO, 2017,-
06). It connects the physical sound event to 
the hearing sensation. (Haberl, 2018). The 
loudness metric is soneGF. Sone is the unit 
of loudness. The G shows that the loudness 
was determined from 1/3 octave bands. The 
F says that the sound field was in the free field 
condition. The Loudness N5 percentile is the 
loudness value which is met or exceeded 
in 5% of the measurement time (Rhode & 
Schwarz, 2017) . It is used as a ISO standard  
to determine the overall perceived loudness. 
N10_90 is also the Loudness however this is 
the value that is exceed 10% of the time.

Roughness
Roughness of sounds is determined by slow 
temporal changes at about 70Hz in loudness, 
and it’s a modulation based metric that can 
be defined as quackers, squaller and harsh. 
They usually have an unsatisfactory effect. 
(Aydin and Yilmaz, 2016, p. 88)

Sharpness
“The psycho-acoustic metric Sharpness 
indicates the spectral balance between low 
and high frequencies(Kang, 2007)” (Aydin 
and Yilmaz, 2016, p. 88). 

Relative Approach 2D
The relative approach in 2D acoustics 
involves evaluating sound environments 
based on their spatial characteristics and 
relationships to surrounding features (Bray, 
2004). This method considers how sound 
propagates and interacts within a two-
dimensional space, providing a detailed 
understanding of acoustic landscapes. 

•	 Other noise (e.g. sirens, construction, 
industry, loading of goods), 
•	 Sound from human beings (e.g. 
conversation, laughter, children at play, 
footsteps), 
•	 Natural sounds (e.g. singing birds, 
flowing water, wind in vegetation).

Most soundscape research on this topic 
finds that sounds of technology (traffic noise 
and other noise) have a negative impact on 
the perceived pleasantness. Natural sounds 
have a positive impact (Lavendier, 2016) 
(Hong & Jeon, 2017), (Yin et al., 2023).  

Visual and contextual information.
Individuals who rate visual comfort highly 
tend to provide more positive evaluations of 
acoustic comfort, whereas low visual comfort 
significantly increases the likelihood of giving 
a negative assessment of acoustic comfort 
as well (Lionello et al., 2020). For example: 
the percentage of blue, the percentage of 
natural and contextual features in the visual 
context are visual or contextual indicators 
that can predict the soundscape quality. 
Changing visual features can positively 
affect the soundscape perception of places 
exposed to traffic noise (Lugten et al., 2017). 
Mainly adding vegetation had a positive 
effect.

Acoustic and Psychoacoustic 
indicators
Acoustic indicators are acoustic metric that 
can be measured. For example: The Sound 
Pressure Level ( A weighted, or C weighted). 
Psychoacoustic indicators refer to measures 
or parameters that capture the psychological 
and perceptual aspects of sound, reflecting 
how humans subjectively experience and 
respond to auditory stimuli.. These are 
derived from recordings using standardized 
models to calculate them. Psychoacoustics 
can analyze in detail the acoustic composition 
of a soundscape and the signal properties 
that elicit specific auditory sensations; 
however, a comprehensive interpretation 
of the results requires feedback from the 
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Urban design
Urban design describes the process of 
designing cities with the goal of creating 
urban areas consisting of a high quality of 
life (Haberl, 2018). A good urban design 
varies depending on the context, much 
as a soundscape is best when it meets the 
needs of its specific stakeholders (Schulte-
Fortkamp et al., 2023).

Sense of place
The sense of place is the sensory experience 
of people including the meaning of the place. 
That means sense of place also indicates 
the way we see, interpret and interact with 
our environment. The sense of places can 
vary among people, and even in people in 
different stages of their lives (Haberl, 2018).

 

Figure 14 Sense of place from Montgomery (1998), 
taken from  (Haberl, 2018)

When analyzing soundscapes not only the 
objective environment is important, but also 
the internal representation of it. (Schulte-
Fortkamp et al., 2023). There are similarities 
between this sense of places and the 
soundscape experience. 

Visual representation
In Urban design, Conceptually creating 
a map is creating a visual representation 
landscape (de Jong, 2008). Maps can be 
seen as a form of visual communication — 
a special-purpose language for describing 
spatial relationships.

Map analysis and interpretation
Abstraction and reduction play an important 
role in urban design, due to size and scale 
of the projects. When analyzing maps, 
a reduction of information is needed, 
depending on the information you want to 
focus on. Figure 15 shows an example of  
the alteration from a satelite images using 
abstraction (left), and reduction (right). 

 

Figure 15 Abstraction and Reduction (From  bk1gr2 
Stedebouw Inleiding 120218, p103)

Legends
The legend is the vocabulary of design, and 
tells us how to read a map(de Jong, 2008). 
There are three types of legends, Scale 
representations, how much is the reality 
scaled down. The scale of a map can be 
defined simply as the relationship between 
distance on the map and the distance on 
the ground, expressed as a proportion, or 
representative ratio. Labels, for example, a 
certain color is assigned a certain meaning. 
Symbols, for example the placement of a 
certain function. 

Urban design scales
Urban design is designing through different 
scales. Different scales have a different 
concept of ‘environment’ (De Jong, 2008). 
De Jong (2008) describes 2 dimensions of 
scale. Time and Space. What seems true 
or right in terms of weeks may be false or 
wrong in terms of months. This could relate 
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to the temporality and dynamics of the 
sonic environment as well. When analyzing 
or designing a soundscape, it might be good 
to consider the scale timewise as well as the 
spatial scale. 

Figure 16 Scales of urban design (De Jong, n.d.)

Scale paradox
The scale paradox is that conclusions 
made on a specific scale, can be opposite 
to conclusions that are drawn on another 
urban scale. Conclusions drawn at one scale 
cannot be applied to another scale without 
any concern. As Figure 17 shows that 
conclusions could be different depending 
on the scale that is analyzed, this is called 
scale forgery. To avoid this scale articulation 
is important.

 Figure 17 The scale paradox (de Jong, 2008 Scale 
Articulation)

 Since soundscapes are by definition 
experienced, this experience should not be 
extrapolated or averaged to scales that are 
bigger than that.
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this scale the direction and magnitude of 
these flows can be planned and designed. 
This scale is related more to bigger urban 
planning projects, which take a much longer 
time to realize and to implement. 

District scale
The third and biggest scale discussed here is 
a bit more variable on the context, but here 
is called the district scale. On this scale a lot 
of reduction and abstraction takes places 
when making maps. The human activity 
that is important here are bigger traffic 
flows, such as cars and public transport. On 

Urban scales for soundscapes
Based on the literature by de Jong (2008), 
three major design scales are identified that 
are crucial for soundscapes. These scales 
are not rigidly distinct, and effective urban 
design integrates and navigates through 
these various scales.

Human experience
At the most intimate level lies the human/
street scale, where soundscape design takes 
center stage, as soundscapes are intimately 
perceived through personal encounters. 
Temporally, it also has a very small scale, 
because sounds are perceived only when 
they occur. Once a sound stops it cannot 

be experienced the same way anymore. 
Materiality can play a role in this scale. Street 
profiles are also around this scale. When 
relating this to a human activity, this could 
be related to sitting or standing around.  

Building block / Neighborhood  scale
The second scale is the building/
neighborhood level. This could be a urban 
design project where the building footprint, 
building lots and functions are located. Even 
though a soundscape is experienced locally 
we can still have an understanding of other 
places in the close context, that might be 
contrasting. The impact of the design here 
lies in the layout of the building blocks and 
how movement is created through them. 

Temporally this is a slightly bigger space as 
well. Like we can understand the relativity of 
spaces we can also understand the relativity 
of time. Different physical context are 
experienced differently because there might 
be different sound sources. In the same way 
we can understand that at different times 
of the day there can be different sounds 
present, like rush hour traffic, or a café being 
open at night. Relating this to a human 
activity would be walking, or biking for short 
distances.
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Netwerk
Onderdelen (voortuinen, trottoirs, rijbanen, bermen etc.)

GR2*07
Westersingel

Gesloten verkavelingen

Eilanden

Human Experience

(3-30m)

Building Block  

(30-300m)

District

(300+m)

 Figure 17 Human Experience (From  bk1gr2 
Stedebouw wk2  190218, p22)

 Figure 18 Building Blocks (From  bk1gr2 
Stedebouw wk2  190218, p19)

 Figure 19 Access to public green spaces (Camden 
Local Plan, n.d.)
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Soundscape design 
Good soundscape design involves 
creating environments where the acoustic 
qualities contribute positively to the well-
being, comfort, and intended activities of 
individuals. It considers context-specific 
qualities, embraces positive auditory 
features, minimizes unwanted noise, and 
aligns with the preferences and needs of 
the community or users. Ultimately, a well-
designed soundscape enhances the overall 
experience and character of a space.

lack of information about soundscapes in 
urban design
Current research within the soundscape 
discipline is mainly focused on academic 
studies of individual spaces or methods 
of data collection and analyses, with only 
a few examples of applications on a large 
urban or city-wide scale. (Schulte-Fortkamp 
et al., 2023).Individuals and communities 
can benefit from improving the urban 
soundscape. Many current objectives in 
urban design such as pedestrian-friendly 
districts and mixed-use neighborhoods, have 
good opportunities for soundscape design 
to be implemented (Schulte-Fortkamp et al., 
2023). However in practice very little is done 
to improve the acoustical conditions. 

Tools for Soundscape design 
The Cambridge dictionary defines a 
framework as a system of rules, ideas, 
or beliefs that is used to plan or decide 
something (Framework, 2024).  

Figure 20 Symbol for three action strategies, by 
author

Cerwén (2017) created a model for landscape 
architects, which has three action categories 
to consider in noise-exposed developments. 
These categories were found through 

workshops about soundscape design in 
different contexts with different participants, 
and is focused on actions that can be 
implemented for improving soundscapes. 
The categories are: 1) localization of 
functions, 2) reduction on unwanted sounds, 
and 3) introduction of wanted sounds. 

Localization of 
functions

Reduction 
of unwanted 
sounds

Introduction of 
wanted sounds

Figure 21 Soundscape design action categories, by 
author inspried by Cérwen (2017)

Localization of functions
This first step in the design strategy is looking 
at which function have different requirements 
for their soundscapes. Some functions 
should be localized away from noise sources, 
while others could ‘embrace unwanted 
sounds’ as part of their urban character. The 
importance of a good soundscape design 
is relevant at places where a lot of human 
activities occur. This may include, but is not 
limited to parks, other recreational spaces, 
schools and other educational institutions, 
and around healthcare facilities. Places 
where improvements in soundscape are not 
the most relevant are: on heavy roads where 
a lot of vehicles are passing, and other more 
transit oriented places
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The human sensory experience strongly 
responds to contrast, which is a good thing 
to take into account when designing a place. 
Variation in soundscapes increases the 
possibility of people being able to choose 
which soundscape to attend too (Cerwén 
et al., 2017). For example, a quiet park can 
be experienced as more tranquil when it 
is surrounded by a noisy environment. 
Different soundscape can reinforce each 
other’s character, when they are well 
designed or planned. Some places already 
have existing noise pollution. On this scale it 
can be decided to relocate or redesign a noise 
source, so for example creating alternative 
road networks, where some roads facilitate 
the heavy traffic, so other places are spared 
from this noise source. Or otherwise it can 
be decided that a place where unwanted 
sounds cannot be mitigated are not suitable 
for certain urban functions

This category relates the most to strategic 
thinking and overall planning. On the bigger 
scales in urban design from district, to city to 
regional scale. this localization of functions 
can be realized.

Reduction of unwanted sounds
Reduction of unwanted sounds, such as road 
noise are important if the noise levels exceed 
53dB Lden (WHO,  2023), because from that 
level public health is affected. Reducing the 
presence of unwanted sounds can be done 
with noise screens, reducing the source 
activity, or adding absorbing materials to 
the space. By strategically placing them, 
buildings can also function as sound 
screens. Buildings can have a substantial 
effect, because they are generally larger than 
sound screens. Reducing the sound source 
activity could, for example, be that the speed 
limit of a certain street is lowered, or the 
traffic could be replaced to a different route. 

This strategy step is relevant to the urban 
design scale of the building block or the 
neighborhood. This could be a urban 
design project where the building footprint, 
building lots and functions are developed. 
The impact here lies in the layout of the 
building blocks and how movement is 
created through them. Street network and 
layout design can have a big impact in road 
noise reduction.

Introduction of wanted sounds
To improve the soundscape, wanted sounds 
can be introduced using auditory and visual 
masking techniques Auditory masking is 
the effect that occurs when one sound is 
introduced to reduce impact or shift focus 
from another sound. Visual masking shifts 
the focus away from the noise source, by 
hiding an unwanted sources visually, or 
adding elements that attract attention. The 
experience of sound depends not only on 
auditory information but on many contextual 
cues, such as visual input, expectation and 
relevance (Hong and Jeon, 2014). 

A few strategies for introducing wanted 
sounds using auditory masking are 
introducing water elements, vegetation, 
and biotope design which attracts animals 
such as birds. Other wanted sounds could 
be introducing human propagated sounds 
such as social activities, or pavements that 
enhance the sound of walking.

This third strategy relates to the human/
street scale. On this scale design choices can 
have a substantial impact, for how people 
perceived their environment, because 
soundscape are shaped through perceiving 
them. The strategy of adding wanted 
sounds contributes to a more holistic and 
proactive approach to urban soundscape 
design, aiming to create spaces that not only 
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mitigate unwanted noise but also actively 
promote a positive and enjoyable auditory 
experience

Interview Urban designer with 
soundscape experience 
To validate the creation of my framework I 
interviewed an urban designer Anne van den 
Berg. She helped giving me a perspective 
from an urban designer on soundscape 
design. The interview was an hour long, 
and a lot of things were mentioned that 
are already discussed, these will not be 
mentioned. Some interesting moments will 
be highlighted in the next paragraph.

In urban design it is important to use the 
existing differences as contrast, or create 
new places that contrast the existing ones 
(for example hofjes). Combining information 
on how sound creates different experiences 
in urban design with information about the 
other senses. Routing and sightlines are 
important in urban designs and this can also 
be enhanced with sounds. So draw people 
to certain places where a certain sound is 
coming from, like chatter. Using pattern 
language was also mentioned. 

Designing these ‘urban pockets’ can give a 
sense of privacy and tranquility in a busy city 
and can shape or create a new soundscape 
environment, as shown in figure 22.

137Inward

Urban form: Closed building block
Access: Access through homes to 
collective garden
Publicness: Private
Sound direction: Stays inside, blocks 
outside

Urban form: Building block with open 
entrance
Access: Access by main entrance and 
through homes to collective garden
Publicness: Semi-public
Sound direction: Exchange via entrance

Urban form: U-shaped building block
Access: Access by main entrance and 
through homes to collective garden
Publicness: Semi-public
Sound direction: Exchange via entrance

Urban form: Closed building block
Access: Access by passage and 
through homes to collective garden
Publicness: Private
Sound direction: Stays inside, blocks 
outside

Urban form: Closed building block
Access: Access by passage and by 
private gardens to collective garden
Publicness: Private
Sound direction: Stays inside, blocks 
outside

Urban form: Building block with open 
entrance
Access: Access by passage and by 
private gardens to collective garden
Publicness: Semi-public
Sound direction: Exchange via entrance

Urban form: Inward-oriented building 
rows
Access: Access through building to 
collective garden
Publicness: Public
Sound direction: Exchange via open 
sides

Urban form: U-shaped building block
Access: Access by main entrance to 
collective garden
Publicness: Public
Sound direction: Exchange via entrance

O O O

U 
or 
L

U 
or 
L

L

U U
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An overview of the differences between 
inward-oriented forms (Author, 2022)
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The inward typology

What if we turned it inside out? What if we made the hidden 
space explicit without changing the atmosphere and the 
urban structure? It would give a voice to what we cannot 
see directly but what plays a major role in the experience 
of the soundscape of the city. In this chapter, the inward-
oriented space is explained, mapped, and analyzed in order 
to give an overview of inward-oriented spaces, calm hidden 
gardens, and potential new silent hotspots. 

The inward-oriented typology
To begin with, it is necessary to know what inward-oriented space means. 
The typical urban form, orientation, and position within the urban landscape 
in relation to its publicness play a crucial role in the quality of it and thereby 
its experience. The strength of the inward-oriented space lies in its hidden 
identity.

The urban form: enclosed structures
The inward-oriented space can be divided into 3 categories: the U-form, the 
L-form, and the O-form. The letters explain how the surrounding buildings 
enclose the outdoor space and suggest a more open character (the U-form) 
or a more closed character (the O-form). Within these general forms, there 
are some sub-categories (the page right), which suggest more diversity 
within this publicness. 

The orientation: to the inside
What makes the inward-oriented space different from a typical urban block 
is the orientation towards the inside. It is important to have access to this 
inward space in order to experience its soundscape. This access is visible 
through doors of homes, entrances of garages, and private gardens that 
transform gradually into collective gardens. Because of this, the urban 
blocks that solely include private gardens are not taken into account in this 
chapter.

The U-form
Mainly used for public collective gardens and 
pocket parks (Author, 2022)

The L-form
Mainly used for semi-public expedition streets 
and collective gardens (Author, 2022)

The O-form
Mainly used for semi-public and private 
courtyards (Author, 2022)
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Figure 22 Urban Pockets: Section from thesis van den Berg (2022)

Urban design elements in relation to 
soundscapes
The framework of this design tool aims to 
look at urban design elements and their 
ability to predict urban acoustical comfort. 
In this section these elements will be 
defined, and motivation is given why each 
of these elements should be included in the 
prediction model.

 Figure 23Model of the changeable factors of the 
environment (taken from (Haberl, 2018))  by Cain 

(2013)

As our soundscape design expert stated it is 
important to note that some of the objects 
that urban planners design are not the 
objects that emit sounds, they just facilitate 
the sound propagation. A road unused does 
not propagate traffic noise, this is caused by 
the vehicles using the road. A park bench is 
not having conversations, it is the people that 
sitting on the bench from whom you can hear 
the chatter. Trees do not chirp, the birds in the 
trees do. Exceptions will also be discussed, 
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Buildings 
The buildings can dampen or amplify the 
effects of different types of sound sources. 
Firstly, buildings can act as a shield, shielding 
from noises such as road noise. This can also 
be the case for natural sounds. Secondly, 
it can amplify the sounds. When a sound 
source is surrounded by buildings it reflects 
on all the facades. Environmental noise is 
especially further transmitted by the hard 
materials that are mostly used for façades. 
(Niesten et al., 2021). Facades consisting of 
hard-sound reflective materials can cause 
urban noise levels to be 3-8dB higher than in 
a free field situation.

Sky view factor

Figure 24 Explanation on the Sky View Factor (Dirksen 
et al., 2019)

One way to analyze the effect of building 
shapes between buildings is the sky view 
factor The Sky View Factor (SVF) defines 
the ratio of sky hemisphere visible from the 
ground , which is not obstructed by buildings 
(Bernard et al., 2018), as shown in figure 24. 
The SVF is an important parameter in urban 
planning because of its relationship to the 
UHI. A higher SVF, means lower long-wave 
radiation is emitted by buildings during the 

for example fountains, which can be a good 
design element in creating a soundscape 
composition. Cain (2013) defined elements 
in the environment that can be changed. 
Different acoustic requirements are needed 
for different functions and activities in the 
space (Haberl, 2018). 

night time. And crucial  to describe the urban 
climatology at scales below 100m. (Dirksen 
et al., 2019) 

The study conducted by Silva et al. (2017) 
delved into the impact of Sky View Factor 
(SVF) on the transmission of traffic noise in 
urban environments, particularly in Paris. 
The research compared different urban sites 
in Paris near roads, taking into account their 
geometric shapes,  to the measured sound 
pressure level at the same location. The 
research found that in urban areas with a 
low sky view factor, the highest noise levels 
were found. They conclude that the SVF can 
potentially be used in research on urban 
noise. 

This seems to align with the formula for 
sound levels in an open field:

Formula  3 Sound in a free field

This formula incorporates factors such as 
the directivity factor (Q), reflecting how the 
spreading of sound waves diminishes with 
distance and obstruction. In urban settings, 
where buildings and other structures can 
obstruct sound propagation, SVF serves as a 
proxy for the extent of obstruction, thereby 
influencing the observed noise levels.

Roads
As discussed in the section ‘Environmental 
Noise & Health’ the health effects from 
road noise are significant, and can lead to 
irritation and annoyance. One way to model 
the impact of road noise is simulating the 
Lden.

Parks, Trees and other vegetation
Research by Lugten et al. (2017) underscores 
the significant influence of vegetation on 
the perceived pleasantness and overall 
acoustic quality. Additionally, investigations 
into the correlation between visual context 
and soundscape perception reveal that the 
presence of trees or vegetation positively 
enhances the reported acoustic quality 
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in regions affected by road traffic noise. 
Therefore using the visibility of trees can 
serve as an indicator for the prediction of 
the quality of soundscapes. In city parks 
the majority of people would experience 
hearing road-traffic noise. Good soundscape 
quality in city parks during daytime can only 
be attained when exposure to traffic noise 
remains below 50 dBA. (Nilsson & Berglund, 
2006).

Water sounds / Fountains
Fountains create the sound of running water, 
associated with a lot of positive features like 
calmness, health and cleanliness (Calarco & 
Galbrun, 2024). Additional it also has other 
benefits such as cooling its surrounding 
through evaporative cooling. You et al.( 2010, 
p. 477) found that under conditions of road 
traffic noise registering at 55 or 75 dBA, water 
sounds that had a 3dB smaller SPL were 
found to make the urban soundscape more 
subjectively pleasant. Water sounds with 
more low frequency sound are preferred for 
masking road traffic noise. Through use of 
materials, speed through which the water 
travels through the fountain, and using 
multiple fountain sources the composition 
of the sound can be crafted to elevate the 
surroundings
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Machine Learning
Machine learning (ML) is a subset of 
artificial intelligence (AI), that involves the 
development of algorithms and models 
that enable computers to learn and 
make predictions based on data. ML uses 
algorithms that iteratively learn from data, 
identify patterns, and make data-driven 
predictions or decisions, and improve 
and learn from experience without being 
explicitly programmed. Acun, (2021)

ML algorithms require large datasets to 
learn from. So, the first step is to acquire or 
develop a dataset and to assess the quality 
of the data. The algorithm learns patterns 
and relationships from the data. During the 
training phase the algorithm is exposed 
to the data and learns the patterns and 
relationships. The main types of algorithms 
are supervised and unsupervised learning. 
After the model is trained it needs to be 
validated with a test dataset, to assess how 
well it generalizes to new unseen data. After 
the model is trained and validated it can be 
used to make predictions on new unseen 
data. 

A good performing ML model has a small 
training error and a small difference 
between the test and the training error. A 
training error is the error of performance on 
the dataset the model was trained on. The 
test error is the error of performance on a 
new unseen dataset. A low training error 
means the model can closely replicate the 
target outcomes in the training data. A low 
test error means that the model can make 
an accurate prediction for new data. A ML 
model is overfitted when it performs well 
on training data, but poorly on test data. 
The patterns identified in the model are too 
specific. Overfitting occurs more in nonlinear 
and non-parametric models. A ML model is 
underfitted when it cannot obtain a low error 
rate on the test and on the training data.

 Types of ML

The two main subtypes of machine learning 
are supervised learning and unsupervised 
learning, as shown in figure 25. Unsupervised 
learning uses unlabeled data in the training 
process. 
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Figure 25 Overview of types of Machine Learning by 
author inspried by https://www.geeksforgeeks.org/

types-of-machine-learning/

Supervised learning is the process of 
training the ML structure based on labeled 
data. A supervised learning model predicts 
the label of a new data sample, after training 
on a sample of labeled data instances. This 
research will focus on using labeled data. It is 
most commonly used for classification and 
regression problems. Regression models 
are used with problems with quantitative 
response, and are designed to predict 
continuous outcomes. Classification models 
are used for problems with categorical 
variables. 

PyCaret: Classification & Regression 
PyCaret is as an open-source, low-code 
Python library for machine learning that 
streamlines the entire ML workflow. 
By automating tasks and simplifying 
complex processes, PyCaret accelerates 
experimentation and enhances productivity 
significantly. Compared to other open-
source ML libraries, PyCaret stands out as 
a low-code alternative, enabling users to 
achieve results with minimal code.
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Metrics for regression model analysis
PyCaret allows users to train and test 
different machine learning models and easily 
compare them. When training regression 
models they can be compared on these 
metrics:

R2 (Coefficient of Determination) indicates 
the proportion of the variance in the 
target variable that is predictable from the 
independent variables. The Mean Absolute 
Error (MAE) measures the average absolute 
difference between the predicted and 
actual values. The Mean Squared Error 
(MSE) measures the average of the squared 
differences between the predicted and 
actual values,  penalizing large errors more 
than MAE. The Root Mean Squared Error 
(RMSE) is the square root of the MSE and 
represents the standard deviation of the 
errors

Random Forest Regressor
A random forest regressor (RF regressor), 
is a supervised learning algorithm, using 
ensemble learning method for regression. 
It is a bagging technique meaning that 
the trees run in parallel and there is no 
interaction between these trees.  

Random Forest Regressors are known for 
their robustness, flexibility, and ability to 
handle high-dimensional datasets with 
noisy features. They are less prone to 
overfitting compared to individual decision 
trees and often provide good performance 
with minimal hyperparameter tuning. 

Light Gradient Boosting Machine
Light Gradient Boosting Machine (LightGBM) 
is a machine learning algorithm that belongs 
to the family of gradient boosting methods. A 
LightGBM regression model can be sensitive 
to outliers, they can disproportionately 
influence the decision boundaries. The 
model uses leaf-wise growth, and can be 
prone to overfitting, especially when the 
dataset is small and noisy. Therefore it is 
more suitable for large datasets, with around 
10,000+ rows (Gupta, 2019)

Multiple linear regression model
With a multiple linear regression the 
relationship can be estimated between 
variables (two or more independent 
variables and one dependent variable), 
following a linear regression.

Handling outliers
there are different ways to identify outliers 
for machine learning. Firstly it is important to 
verify in what way datapoints can be outliers 
and how that can impact the model as a 
whole. 

Contextual outliers 
Contextual outliers are outliers within 
specific contexts or subgroups of data. 
Contextual outlier detection considers local 
characteristics of datapoints. n. Contextual 
outlier detection can identify anomalies 
in specific subsets of the data, rather than 
in the data as a whole. This is opposite 
of conventional outlier detection, which 
detects outliers considering the whole 
dataset. This is shown in figure 26.

Z-score method
A commonly used statistical method for 
detecting outliers is the z-score method. 
Z-scores are a metric for assessing how odd 
an observation is within a dataset, when it 
has normal distribution. The z-score is the 
number of standard deviations from the 
mean for each value. A z-score of 1, tells that 
the observation lies 1 std away from the 
mean. The z-score can be calculated with 
this formula:

formula 4: calculating the z-score

The higher the absolute value of the z score 
is the bigger the outlier is. A standard cutoff 
value for outliers is a z-score of 2- 3.  Having 
a low Z-score for contextual outliers means 
that datapoints are removed where there are 
unusual conditions for the certain context. 
The variance is so extreme that it cannot be 
related to the factors that are outlined in this 
research. 
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Addressing contextual outliers facilitates the 
refinement and optimization of machine 
learning models used for predictive 
modeling, ultimately improving the accuracy 
and effectiveness of future analyses and 
applications.

Ensemble learning model
Ensemble learning combines the predictions 
from multiple machine learning algorithms. 
This helps to create more accurate 
predictions, compared to the individual 
models. 

Bagging vs Boosting
Bagging can reduce variance and minimize 
overfitting (Ensemble Models, n.d.). 

Boosting is a sequential ensemble learning 
technique where hard to classify instances 
are given more weights. This weighting 
mechanism facilitates subsequent learners 

Figure 26 Contextual outliers

in focusing their learning efforts on these 
misclassified instances. The final model is 
derived through the weighted aggregation 
of these weak learners. (Gupta, 2019)

 Small datasets

When using small datasets, there are a few 
factors that need to be taken into account. 
(Dealing with Very Small Datasets, n.d.). 
Overfitting becomes harder to avoid, and 
the impact of outliers can increase to a 
point where it makes the general prediction 
inaccurate. With small datasets it is advised 
to use simple models. 
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Machine Learning in 
soundscape studies & 
design
Why ML in soundscape studies?
In contemporary soundscape studies, 
the predominant focus revolves around 
gathering data that captures individual 
reactions to the acoustic surroundings 
directly experienced by individuals in 
situ. This approach commonly relies on a 
restricted range of methodologies including 
soundwalks, questionnaires/interviews, 
non-participant behavioral observations, 
among others Aletta, Obermang & Kang, 
2018). 

Asking people how they perceive the 
acoustic environment is a laborious task, so 
if a model can predict this, it is not needed. 
An accurate model can reveal underlying 
causes of the perceived properties (Alleta 
and Kang, 2016). This can be used for design 
purposes. And therefore subsequently 
improve human wellbeing in noise affected 
areas

Conceptual framework prediction model
Lionello et al. (2020) conceptualized the 
process of modelling soundscape in three 
components, indicators, descriptors and the 
set of rules, as illustrated in figure 27. 

 

Figure 27 Conceptual Framework Prediction Model 
from (Lionello et al., 2020)

Review of existing prediction models 
Aumond et al. (2016) created their own 
indicator, the TFSD(f,t); the normalized 
Time and Frequency Second Derivative, 
representing the deviations of each recorded 
sample: which is best correlated, among a 
large set of calculated physical indicators, 

with the perceived time presence of birds 
and voices” . The full review will be added in 
the appendix

Hong and Jeon (2015) found different 
relations of indicators to soundscape quality 
for different functions in urban areas. These 
four classified functions have been used 
again in the research of Hong and Jeon 
(2017).

Machine learning in design
The prediction models of soundscape 
evaluation can be used in preliminary 
design stages, to indicate and evaluate the 
soundscape design. Only Yue et al. (2023) has 
explicilty attempted to use Machine learning 
to improve the quality of urban parks. This 
will be discussed later in this section.

Design optimization
Radziszewski (2018) discovered through 
research that Machine Learning Algorithm-
Based tools exhibit potential in replacing 
traditional daylight simulations during the 
preliminary stages of architectural design 
evaluation. The algorithm was faster than 
daylight simulations and was max 2.8% off.  
Instead of running three simulations for 
three daylight metrics, a model is trained to 
predict those values. 

Soundscape mapping 
As a complementary approach to noise 
maps, soundscape maps can be useful 
tools for urban planning and design 
because they provide more information 
than conventional noise maps to reflect 
perceived acoustic environments. (Hong et. 
al., 2017). Maps are a widely used method 
by urban designers to convey their message, 
so in order to communicate with them, it 
could work to try to speak their language. 
In addition of creating 2d maps of the site, 
in the next chapter, section drawings are 
proposed as well, because they present the 
opportunity to visualize both the data, and 
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the experienced design. 

Legends and labeling
Lavandier et. Al (2016) created a color scale 
intended be used for soundscape mapping, 
as shown in figure 28.  Their methodology 
involved collecting a questionnaire where 
respondents were asked to select colors 
suitable for their perception of ‘Pleasant’ and 
‘Unpleasant’ acoustic environments. The 
collective average of these subjective color 
selections was combined with the existing 
color scale for European noise maps. In the 
interest of coherence and accessibility, a 
comparable color scheme will be employed 
in this research for of soundscape maps. The 
scales on which the maps will be created will 
be discussed later on in this thesis.

Figure 28 Color Scales, from Lavandier (2016)
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Interpolation methods
The following research papers have 
attempted to visualize soundscape data, they 
have used different methods for calculating 
the data, and/or visually represent the 
soundscape.

Soundscape approach integrating noise 
mapping techniques: a case study in 
Brighton, UK. Aletta and Kang, 2015
Perceptual questionnaire and measurement 
of sound pressure levels during a sound walk, 
with 21 participants. The prediction surface 
is mapped using the kriging interpolation 
method, as shown in figure 29.

Figure 29 Kriging Interpolation map, Soundscape 
Pleasantness Aletta and Kang ( 2015)

Exploring spatial relationships among 
soundscape variables in urban areas: A 
spatial statistical modelling approach. Hong 
and Jeon, 2017
Perceived sound source dominance 
measured with 5 point interval scale by 8 
observers. 

The geographically weighted regression 
(GWR) is used to explore geographically 
varying relationships, dependent and 
independent variables. The GWR analyses 
was conducted using the software gwr4. 
The mapping process was done in GIS, with 
the kriging interpolation method, with the 
circular semi variogram model, as shown in 
figure 30.

Figure 30 Predicted Soundscape Quality using GWR.  
Hong and Jeon (2017)

Urban soundscape maps modelled with 
geo-referenced data. Lavandier et al.,  2016
The final aim of this study is to propose 
predictive sound quality maps that can 
be built by any city which has these 
georeferenced data already collected in 
GIS. Perceptual data modelled with geo-
referenced data. 89 urban sites 20 people 
per location. Linear regression with an R2 of 
0.68. The prediction was based on the time 
presence of certain sound sources. A scale 
from “rarely present” to “frequently present” 
was used to collect data on the presence of 
these types of sound sources. (Lavandier et 
al., 2016). The kernel density method with 
gaussian distribution is used to distribute 
georeferenced data on each mesh of the 
map, as shown in figure 31. 

Figure 31 Predicting Soundscape pleasantness from 
georeferenced data from Lavandier (2016)
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A visualized soundscape prediction model 
for design processes in urban parks. Yue et 
al., 2023. 
This paper uses the soundwalk method, 
with and experimental group consisting 
of 10 observers, to collect data.The paper 
focuses on categorizing the presence of 
different sounds, and predicting them with 
the Gaussian Mixture Model method. The 
predictions are used to analyze design 
alterations. The visualizations are not very 
strong as shown in figure 32.

 

Figure 32 Soundscape prediction classes visualization 
Yue et al. (2023)

Evaluation of Soundscapes in Urban Parks 
in Olsztyn (Poland) for Improvement of 
Landscape Design and Management 
(Jaszczak et al., 2021)
This paper has a more artistic appraoch to 
soundscape mapping, which combines 
numerical data from SPLs and symbology to 
represent the sound source types present, 
as shown in figure 33.  

 

Figure 33 Artistic visualization of Soundscape 
mapping from (Jaszczak et al., 2021)

Soundscape Optimization Strategies Based 
on Landscape Elements in Urban Parks 
(Tian et al. 2023)
This study collected soundscape data, like 
SPL values, sound source presences and 
soundscape evaluation. This visualization 
which combines the SPL and the section 
is  very illustrative on what the locations 
look like to the visitors and relates that to 
a numeric scale. Differences in soundscape 
pleasantness score could be visualized in a 
similar way.

Figure 34 Visualization of SPL on a section of the 
surroundings from (Tian et al., 2023)

Inward, The Silence is within. (van den Berg, 
2022)
This Urban Designer Approach shows how 
sections, combined with maps  can really 
link to the human experience very well. 
Words mimicing sounds are used to convey 
the soundscape as well as shown in figure 
35.

71 | 82Inward | 8 | The Lijnbaan Ensemble as urban escape | Soundscape | Forest

Soundscape elements (Author, 2022)

Figure 35 Visualization of Sound on a section of the 
surroundings from (van den Berg, 2022)
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Soundscape design alterations
Only Yue et al. (2023) focused on design 
alterations. Their grid of 50 meters contains 
design urban design elements. With a 
Gaussian mixture method the soundscape 
evaluation prediction model is developed 
based on SPL prediction, sound source 
prediction and soundscape evaluation 
prediction. The SPL can be predicted from 
the minimal distance to roads, with an 
accuracy of 67%. With computer vision, 
visual perception elements are analyzed, 
to predict the presence of different sound 
sources with an accuracy of 77.4%. Inputs for 
soundscape evaluation included geographic 
information, visual perception data, and 
sound source perception data obtained from 
surveys, although the reliability of the latter 
was limited due to a small sample size (10 
participants). This model reached an overall 
accuracy of 74.2%. Altering the grid size (20-
100m), causes the accuracy to fluctuate. 

For the next step, this research applied 
the model to a new design, incorporating 
predictions of dominant sound sources 
rather than soundscape evaluation. Design 
modifications included adjustments to 
entrances and pathways, as shown in figure 
36.

Prediction pleasantness from urban design 
elements
To date, there has been a notable absence in 
predicting the pleasantness of soundscapes 
in new urban design. To bridge the gap 
between academia and practice this seems 
to be a crucial step, for enhancing the field 
and the practical applicability of research 
findings. 

Figure 36 Prediction of the most dominant present sound source type Yue et al. (2023)
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Datasets for Soundscape 
quality prediction
There are different datasets available to 
use to train a model. In this section I will 
be looking at different datasets and I will 
define what kind of information the dataset 
preferably should contain.

Requirements
Most importantly the dataset should have 
information on the perceptual evaluation of 
their urban acoustical environment. This will 
be the descriptor in the prediction model. 
So a rating or emotion attached to certain 
soundscapes. 

Given the aim of this research to translate 
this data into a design tool for predicting 
the comfort of urban designs, it is preferable 
that the collected data originates from 
urban settings. Ideally, this information 
should be geo-referenced, providing 
coordinates, so that the urban context in 

which the evaluations were conducted can 
be accurately depicted

To apply it as a design tool, architectural 
elements must be linked to the perceptual 
evaluations. For instance, roads could 
be associated with noise emission or 
propagation arising from traffic, while 
vegetation might be linked to emissions from 
natural sound sources. These links enable 
a more nuanced understanding of how 
specific architectural features contribute 
to the overall acoustic environment which 
facilitates targeted design interventions 
aimed at optimizing acoustic comfort. 
Examples of databases are shown in the 
table below.

choice of dataset
The chosen dataset to use in this research 
is the dataset from the international 
soundscape database, which has information 
on the pleasantness, the perceived sound 
sources and the geographical location of the 
respondent. 
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The International 
Soundscape database 
(SSID)

Soundscape assessment campaigns carried out across 
Europe, conducted according the SSID protocol. With in 
situ questionnaires, binaural recordings, sound level meter 
readings and 360 degree video.

DeLTa Deep Learning 
Techniques for noise 
Annoyance detection) 
Dataset

The Deep Learning Techniques for noise Annoyance 
detection (DeLTA) dataset includes 2,980 15-second binaural 
audio recordings from urban public spaces in London, Venice, 
Granada, and Groningen, sourced from the International 
Soundscape Database. A remote listening experiment was 
conducted using Gorilla Experiment Builder, involving 
1,221 pre-registered participants. Participants listened to 
ten 15-second binaural urban environment recordings, 
identifying sound sources and providing annoyance ratings 
(1 to 10). A list of 24 labels was provided for sound source 
recognition. If two or more participants identified a source, 
it was considered present. Each binaural audio recording, 
in MP3 format, has 3.2 identified sound sources on average. 
The dataset includes a 2890 by 24 data frame, representing 
recordings with identified sound sources and average 
annoyance ratings.

Chattymaps An urban sound dictionary and a Sample of sound-related 
Flickr photo identifiers for Barcelona and London

Freesound Freesound is a collaborative database for audio recordings 
released under Creative Commons License. It aims to be a 
open database of sounds available for scientific research. 

Emo-Soundscapes a dataset of 1213 6-second Creative Commons licensed 
audio clips named Emo-Soundscapes. The dataset is 
created by curating 600 soundscape recordings from 
Freesound.org and combining 613 audio clips from 
these recordings. Ground truth annotations of perceived 
emotion in the soundscape recordings were collected 
through a crowdsourcing listening experiment involving 
1182 annotators from 74 different countries, ranking the 
audio clips based on perceived valence/arousal. This 
dataset enables the exploration of emotion recognition in 
soundscapes and the impact of mixing various soundscape 
recordings on their perceived emotion. Two evaluation 
protocols for machine learning models are also proposed 
in the project.
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Discussion and Conclusion 
Literature studies

What is ‘good’ soundscape design?

Good urban design, and therefore good 
soundscape design has the aim of creating 
urban areas consisting of a high quality 
of life. Good soundscape design involves 
creating environments where the acoustic 
qualities contribute positively to the well-
being, comfort, and intended activities of 
individuals. It considers context-specific 
qualities, embraces positive auditory 
features, minimizes unwanted noise, and 
aligns with the preferences and needs of 
the community or users. Ultimately, a well-
designed soundscape enhances the overall 
experience and character of a space.

To reach the goal of a high quality soundscape 
the action categories from the soundscape 
design strategy by Cerwén (2017) can be 
taken into account. 

The first step in the design strategy is the 
localization of functions. Determine which 
areas have different requirements for their 
preferred soundscape. The importance of 
a good soundscape design is relevant at 
places where a lot of human activities occur, 
like parks or other recreational spaces. By 
focusing on specific areas and leaving others 
out contrast is created. This is relevant to the 
bigger scales in urban design from district, 
to city to regional scale. On this scale this 
localization of functions can be realized. 

The second step of the soundscape design 
strategy is the reduction of unwanted 
sounds. Reduction of unwanted sounds, 
such as road noise are important if the 
noise levels exceed 53dB Lden. Reduction 
of unwanted sounds, in this scenario from 
road noise can be most effectively done 
by using buildings as a sound barrier. For 
example when designing a building with a 

small public space on a plot next to a busy 
road, placing the building in between the 
busy road and the public space can improve 
the soundscape quality there. Van den Berg 
(2022) also analyzed building block shapes 
in regards to soundscapes and found that 
creating urban pockets created the most 
optimal soundscapes, while also creating a 
feeling of enclosure. Another aspect for the 
urban design can be to create contrast, like 
van den Berg said during the interview. In 
urban areas with a lot of traffic noise, creating 
small pockets that are more quiet can make 
the city soundscape more livable overall and 
contribute to a better acoustical comfort. 
This strategy action is relevant to the urban 
design scale of the building block or the 
neighborhood. This could be a urban design 
project where the building footprint, building 
lots and functions are developed. The impact 
here lies in the layout of the building blocks 
and how movement is created through 
them. Although this research has mentioned 
the importance of urban morphology, this 
field could has been explored more by other 
researches. Buildings shape, height, and 
façade materials can impact how people 
perceive their soundscape. 

The introduction of wanted sounds, 
which is strategy action step 3, can mask 
or distract from the perceived presence 
of the unwanted sounds. In cases where 
traffic noise levels persistently high, it is 
recommended to incorporate a fountain 
within the urban area. Fountains not only 
offer potential benefits for masking traffic 
noise levels, but they also contribute 
positively to urban heat regulation and  the 
overall ambiance. Adding vegetation such 
as parks and trees can invite natural sounds 
such as rustling leaves, and birdsong, which 
ultimately people will find more pleasant 
acoustically, as well as visually. This third 
strategy relates to the smallest urban design 
scale discussed in this research: the human/
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street scale. Here soundscape design is the 
very important, because soundscapes are 
perceived through personal experience. 

Furthermore, it is important to propose 
methods to integrate these considerations 
into a broader holistic model that 
encompasses various sensory experiences 
to improve the experience of urban design 
overall. Good sound quality should not 
reduce other urban design qualities in the 
area. 

What correlations exist between the identi-
fied soundscape indicators and descriptors 
of human perception of comfort or discom-

fort within urban environments?

Different studies have found correlations 
between the human perception of 
soundscape comfort and different 
indicators. Perceptual indicators such as 
perceived sound source types seem to have 
strong correlations to the perceived quality 
of the acoustic environment. There is a clear 
negative correlation with perceived exposure 
to traffic noise, and other noise sources such 
as railroad traffic or air traffic and noise 
annoyance or unpleasantness. On the other 
hand natural sound sources for example the 
presences of birds, or fountains can have a 
positive effect on the perceived quality, and 
can even distract from the presence of noise 
sources in the area. 

For acoustic parameters, the Lden is relevant 
to take as a boundary measurement level. 
The WHO recommends an Lden lower than 
53, to reduce the public health impact. 
According to the RIVM people find roads with 
a 50km/h speed limit the most annoying. 
In order to test a soundscape design the 
starting point could be an urban area that 
has a busy road of the same order nearby 
that can negatively impact the perceived 
acoustical comfort of the people there. 

To what extent can computational design 
tools, in the shape of machine learning 
models, incorporate soundscape data to 

inform and shape urban design elements for 

improved soundscapes?

For new designs collecting soundscape 
data from people is impossible. And for 
existing sites collecting soundscape data is a 
laborious task, including taking soundwalks, 
collecting surveys and doing sound meter 
recordings. Through computational design 
methods, such as machine learning, the 
soundscape quality can be predicted and 
optimized with knowledge on soundscape 
design strategies. This saves time and energy, 
which can make this type of information 
more accessible to designers with lesser 
knowledge on the topic. 

To date, there has no research been done that 
focused on the applicability of soundscape 
prediction on new urban design. Focusing 
on this practical application could bridge the 
gap between research and the design world.

The dataset that will be used is from the 
international soundscape database and 
has information on the pleasantness, 
the perceived sound sources and the 
geographical location of the respondents. In 
the chapter of the data analysis, the choice 
for this dataset in this research will be further 
examined and motivated

The additional data that is needed for the 
prediction model can be taken from standard 
urban design elements, such as buildings 
roads and parks, and optionally fountains. 
There are different ways to compute their 
relationship to their environment, which are 
briefly discussed in this chapter. For roads, 
Lden can be a good indicator for soundscape 
quality. For vegetation, visibility is an 
important aspect that affects the perceived 
pleasantness of a soundscape, and can 
mask unwanted sound, and mitigate the 
negative effects of traffic noise. For parks, 
the distance from the periphery can play 
a role, since further away from it more 
natural sounds, such as bird sounds can be 
perceived. Fountains can also be used to 
mask unwanted, dependent on their sound 
pressure level, as modeled as such.
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To visualize this data the predicted 
pleasantness can be represented in a map. 
Maps can allow for easy interpretation 
of data, presented in a more visual way 
related to specific location. Soundscape 
perception is very location based, so 
therefore this approach would be suitable 
to communicate this type of data. Maps are 
also a widely used tool for urban designers 
to show their ideas, and one of their main 
forms of communication. 
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Chapter 3 Choosing a dataset

The International Soundscape Database 
(Mitchell et al., 2020), comprises a 
comprehensive collection of individual 
questionnaires from over 3,500 participants 
residing in urban centers across Europe and 
China. The dataset includes psychoacoustic 
analysis of 30-second binaural recordings, 
providing valuable insights into the auditory 
experiences of diverse urban environments.

The collection method is intended for future 
augmentation with new locations, cities, 
and contexts. The responses are collected on 
multiple days in 2-5 hour sessions, for each 
location at least 100 response are collected 
This subjective soundscape data from the 
survey includes soundscape descriptors, 
sound source presence & identification, and 
assessment of the overall environment. 

The data also includes personal information 
per respondent. The respondent also fill in 
the WHO-5 well-being index, rate their self-
reported well-being and give background 
information on themselves such as their 

demographic and socio-economic data. 
The objective measurements included are 
spatial, audio-visual recordings, binaural 
recordings and other acoustic and psycho-
acoustic factors. Figure 37 shows which data 
from the Internation Soundscape database 
is used for the statistical analysis. 

Data collection
Here briefly will discussed how the data is 
collected for this dataset. 

Pleasantness
The SSID questionnaire collected 
the following data on the perceived 
Pleasantness. This data collected according 
to ISO standards (ISO/TS 12913-2:2019(E), 
2019). To calculate the pleasantness survey 
data from a questionnaire is collected via 
SSID Protocol based on ISO 12913 standard. 
This is based on a five point Likert scale. 
Pleasantness is calculated by using formula 
2.

Figure 37 Representation of the used content in the dataset from Mitchell et al. (2020), by author
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Figure 38 Questionnaire Likert scales for presence of sound source types (From ISO- 12913-2. Acoustics—
Soundscape—Part 2: Data collection and reporting requirements, 2018.)

Sound source types
The SSID questionnaire collected the 
following data on the perceived presence of 
sound sources. This data collected according 
to ISO standards (ISO/TS 12913-2:2019(E), 
2019), as shown in figure 38.

It asked the question: To what extend do you 
presently hear the following four types of 
sounds? The four types of sounds are: 

• Traffic noise (e.g cars, buses, trains, 
airplanes),
• Other noise (e.g. sirens, construction, 
industry, loading of goods), 
• Sound from human beings (e.g. 
conversation, laughter, children at play, 
footsteps), 
• Natural sounds (e.g. singing birds, flowing 
water, wind in vegetation).

This is subjective ordinal level data. It is 
not about the physical measured presence 
of sound sources, but of their perceived 
presence. This still however could tell a lot 
on how people experience sounds

A correlation between presence of certain 
sound sources and the perceived quality of 
the soundscape
Investigating the correlation between the 
presence of specific sound sources and 

the perceived quality of the soundscape is 
essential for understanding of their effects on 
perceived soundscape quality. By examining 
whether certain sound sources, such as 
natural elements or human activities, are 
associated with higher or lower perceived 
quality, insights can be gained into the 
factors that shape individuals’ experiences 
of their surroundings. 

a correlation between the perceived 
presence of a sound source and architectural 
objects in a virtual 2d space
Exploring the relationship between 
perceived presence of sound sources 
and objects in a virtual 2D space offers 
valuable insights into spatial perception 
and audiovisual integration. Understanding 
whether individuals perceive sound sources 
as spatially correlated with virtual objects can 
inform the design of immersive environments 
and virtual experiences, enhancing their 
realism and effectiveness. Both inquiries 
contribute to our understanding of how 
auditory and visual cues interact to shape 
our perception of the environment, with 
implications for fields ranging from urban 
planning to virtual reality design.

Psycho-acoustic factors
Acoustic data are collected during the survey 
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sessions, via a stationary class 1 or 2 Sound 
Level Meter as defined in IEC 61672-1:2013 
(Mitchell et al., 2020). The psycho-acoustic 
data for Loudness and sharpness is collected 
according to ISO standard 532-1

Location data
Each survey response includes coordinates. 
Although Mitchell et al. (2020) recorded 
additional location details such as 
architectural typology and visual openness, 
this data was not disclosed in their 
publication

The data points are situated in two cities: 
London and Venice. For the statistical 
analysis, all data points will be utilized. 
However, when examining urban design 
elements, only the data points located in 
London will be considered. The majority of 
the locations, 11 out of 13, are in London. 
These datapoints are shown in figure 39. 
Additionally, more supplementary data, 
such as road maps and a tree database, is 
available for this location.
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Figure 39 All the points in the dataset (excluding points located in Venice), plotted on a map of London. (Bulidings, 
water, roads, and parks from OpenStreetMap) , created by author
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Chapter 4 Statistical Analysis of the Dataset

To check the validity of the dataset a 
statistical analysis is done on features inside 
the dataset. Outliers removal options are also 
discussed in this chapter. The conclusions 
drawn at the end of this chapter will be used 
later on in this research.

Statistics per location 
The examination of mean values per location 
enables the systematic investigation of 
variations across the different spatial 
environments within the dataset. By finding 
the mean value for the variables from 
each location, the influence of personal 
preferences, and temporal differences is 
diminished. 

Pleasantness per location
When looking at the average of the perceived 
Pleasantness per locations, some disparities 
emerge. This is shown in figure 40. The 
location of  ‘Regents Park Japan’ exhibits 
the highest mean Pleasantness score, 
registering at 0.66, while ‘Euston Tap’ has 
the lowest mean Pleasantness, recorded at 

-0.21. Notably, only two locations have mean 
pleasantness values below 0: ‘Camden 
Town’ with -0.10 and ‘Euston Tap’ with -0.21. 
Conversely, all other 11 locations manifest 
mean pleasantness scores surpassing 
0, indicating a predominantly positive 
perception across the dataset.

‘Euston Tap’ and ‘Camden Town’ exhibit 
relatively low standard deviations (std) 
in perceived Pleasantness, measuring at 
0.28 and 0.29, respectively. Those are the 
lowest std among the locations. ‘Marchmont 
Garden’, ‘Regens Park Fields’ and ‘Pancras 
Lock’ are locations with the highest std, with 
a std of 0.42, 039, and 0.39 respectively. Given 
the method of calculating pleasantness, it 
is expected that mid-range scores would 
exhibit the greatest distribution. It is unusual 
that ‘Regent’s Park Fields’ has a high std as 
well. However, the locations with the two 
highest evaluations also have the most 
outliers, resulting in a higher std. 

Seeing these differences per location 

Figure 40 Boxplot of average Pleasantness per location, by author
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Figure 41 Correlation matrix for Spearmanr ISOPleasant and presence of different types of sound sources on the 
whole dataset (left), and on average per location (right), by author

suggests that besides personal preferences 
there are other factors that are spatially 
dependent that have influence on how 
sound is perceived.

Correlations between Sound sources 
and perceived Pleasantness
The first analysis was conducted on the full 
dataset (with removing contextual outliers 
wit a z-score> 2). Next, The same analysis 
conducted taking the averages per location. 

Because the perceived pleasantness and the 
perceived presence of the sound sources are 
ordinal data, a spearman correlation was 
applied. The results are shown in figure 41. 

There is a strong negative correlation for 
traffic sounds , rs[1282] = -0.44, p < 0.001, and 
for sounds in the category ‘Other’ rs[1282] 
= -0.42, p < 0.001. The negative correlation 
with traffic sounds and the rating of the 
soundscape quality is already established in 
previous literature research. It has also been 
correlated with increased annoyance. 

There is a strong positive correlation with 
the pleasantness and the presence of 
Natural sounds rs[1282] = 0.47 p<0.001. The 
presence of Natural sounds and the positive 
correlation with a positive soundscape 

evaluation is also supported by previous 
findings in the literature.

The correlation with presence of human 
sounds  and pleasantness is very weak amd 
not statistically significant: rs[1282] = 0.05, p 
> 0.1. 

Correlation between Pleasantness and 
sound sources per location
The table presented shows the calculated 
means for each location’s Likert scale 
responses in the dataset. Furthermore, the 
correlations observed are particularly robust, 
especially between different variables and 
the ISOPleasant measure. With a rs[13] = 
-0.71, p < 0.001 for the correlation between 
the presence of Traffic noise and the 
Pleasantness, and a rs[13] = 0.92, p < 0.001 
for the correlation between the presence of 
Natural sounds and the Pleasantness. 

Another interesting number that appears 
here is the negative correlation with the 
perceived presence of Natural sounds in 
relation to the perceived presence of Traffic 
and Other noise rs[13] = -0.62, p < 0.001, and 
rs[13] = -0.67, p < 0.001. That suggests that 
when natural sounds are more prevalent, 
the presence of intrusive noises like traffic 
becomes less prominent in people’s 
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perception. Conversely, in environments 
dominated by traffic and other urban noises, 
the presence of natural sounds tends to be 
perceived as less prominent.

Understanding these relationships can be 
valuable for urban planners, architects, and 
policymakers interested in creating healthy 
environments. Incorporating more natural 
elements into urban spaces, such as greenery 
and water features, could potentially mitigate 
the negative impact of urban noise pollution 
on people’s perceptions and overall quality 
of life.

Correlations between pleasantness 
and psycho-acoustic factors
Psycho-acoustic factors are measured using 
sound level meter data. They are converted 
to different metric which explain different 
characteristics of the acoustics. The three 
most important ones are explained below.  
Loudness, Sharpness and Roughness are 
examples of psycho-acoustic metrics to 
measure the sensory experience of different 
characteristics of sounds. THe correlations 
with all the (psycho)-acoustic factor and 
Pleasantness is shown in figure 42.

Higher values of Loudness or roughness in the 
sound recordings are correlated with lower 
scores of perceived pleasantness among 

respondents. There is a negative correlation 
between Pleasantness (ISOPleasant) and 
the loudness that is exceeded 5% of the 
measurement time, Loudness_N5 rs[1282] 
= -0.37, p < 0.001, and the loudness that is 
exceeded 10% of the measurement time 
N10_90(SoneGF): rs[1282] = -0.46, p < 0.001. 

The correlation between pleasantness and 
the Roughness of the sound is negative: 
rs[1282] = -0.44, p < 0.001. This finding is 
consistent with prior research, such as Aydin 
and Yilmaz (2016, p. 88), which has linked 
psycho-acoustic indicators like loudness 
and roughness to heightened levels of 
annoyance or unpleasantness.

Acoustic measurements characterized by 
elevated levels of loud and rough sounds 
tend to coincide with a perceived absence of 
natural sounds. The correlation between the 
perceived presence of Natural sounds and 
Loudness (N10_N90(soneGF)) is  rs[1282] 
= -0.44, p < 0.001. The correlation between 
the perceived presence of Natural sounds 
and Roughness (Rough_HM_R(Asper)) is ( 
rs[1282] = -0.48, p < 0.001. These correlations 
between loudness or roughness and 
pleasantness, exhibit a similar magnitude 
to those observed between pleasantness 
and psycho-acoustic measures. Loudness 
and roughness have a similar effect on the 

Figure 42 Spearman correlation matrix (cutoff) for the ISOPleasant and the psycho-acoustic factors taken for the 
whole dataset, by author
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Figure 43 Spearman correlation matrix (cutoff) for the ISOPleasant and the psycho-acoustic factors for each 
average from each location, by author

perception of those two factors. 

Psycho-acoustic features per location
For the Psycho-acoustic factors, the 
averages per locations are also analyzed and 
compared to the perceived pleasantness. 
Again this is done to account for the variation 
in the responses which is not location based. 
All the correlations are shown in figure 43. 

There is a negative correlation between 
some (psycho-)acoustic factors, like the 
Loudness, Roughness and LZeq, and the 
ISOPleasant. These correlations are in the 
same magnitude as the negative correlation 
between the perceived presence of Traffic 
noise and the perceived pleasantness 
rs[13]=-0.73, p < 0.001 

A higher value of Loudness (N10_90) 
correlates with  a lower ISO pleasant score, 
with a strong correlation of rs[13] = -0.84, p 
< 0.001.

Looking at the correlation between the 
psycho acoustic features and the presence 
of Traffic noise one thing to note is that a 
higher Loudness value or LZeq correlates 
with a higher perceived presence of Traffic 
noise, rs[13] = 0.56 , p < 0.05, and rs[13] = 
0.60, p < 0.05 respectively. These correlations 
are not strongly present when looking at the 

correlations of the entire dataset. 

There is a strong negative correlation 
between the perceived presence of Natural 
sound sources and pyscho-acoustic features 
such as Loudness: Loudness_N5 rs[13] = 
-0.65, p < 0.00, and 1 N10_90(SoneGF) rs[13] 
= -0.78, p < 0.001. As well as a strong negative 
correlation between the perceived presence 
of Natural sound sources and Roughness 
rs[13] = -0.85, p < 0.001. 

The positive correlation between the 2D 
approach and perceived pleasantness, 
evidenced by a Spearman correlation 
coefficient of rs[13] = 0.73, p < 0.001, suggests 
that areas with more favorable acoustic 
spatial configurations tend to be perceived 
as more pleasant. This strong correlation 
indicates that the spatial arrangement 
and interaction of sound sources and 
barriers significantly influence how people 
experience and evaluate the pleasantness of 
an environment.

This tells us that these factors could also 
be suitable for use to predict the urban 
acoustical comfort. However in this research 
these factors will not be used in the 
prediction model, because they cannot be 
obtained for new designs
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Discussion 
This chapter of the research checked the 
validity of the chosen dataset through 
statistical analysis. 

People experience soundscape more 
positively when they experience a higher 
prevalence of Natural sounds rs[1282] = 0.46 
p<0.001, and more negatively when they 
experience a stronger presence of Traffic 
noise rs[1282] = -0.44, p < 0.001. The data 
in the model seems to align with previous 
findings in the literature research (Hong 
& Jeon, 2017), (Aumond et al., 2017). The 
correlation with presence of Human sounds 
is very weak. In previous studies, human 
sounds were correlated both positively 
and negatively, or not correlated at all to 
the soundscape evaluation. Because the 
correlation with the presence of Human 
sounds is very weak in this dataset with the 
perceived pleasantness, and the p value is 
too high, it will not be taken into account 
further on in this research. 

When correlating the mean values per 
location for perceived pleasantness and 
perceived presence of Natural sounds and 
Traffic Noise these correlations become 
even stronger. rs[13] = 0.91, p < 0.001, and 
rs[13] = -0.73, p < 0.001 respectively.  This 
suggests that the variables that impact the 
urban soundscape pleasantness are location 
based. 

This dataset is also used in the research 
where the pleasantness and eventfulness 
are predicted from psycho-acoustic factors 
(Mitchell, 2022). This had an R2 of 0.85. for 
predicting the Pleasantness. This research 
also found that sound level reduction does 
not always increases pleasantness, but 
sound source composition is important This 
statistical analysis also found some strong 
correlations between the psycho-acoustic 
factors and the perceived pleasantness, so 
this aligns with the literature. The psycho-

acoustic parameters were not chosen to 
be used in the prediction model in this 
research because this does not fit into the 
design model framework. Mitchell (2022) 
also researched the correlation between 
pleasantness and eventfulness and 
demographic information. There were no 
strong correlations between those factors. 
In their ML model demographic information 
explained 1.4% of the variance in the model. 
Including the location context increased the 
R2 of the models, suggesting that context 
accounts for the majority of the variance

Limitations 
Even though the dataset is very extensive 
and contains most of the information that 
is needed for the experiment in this master 
thesis, there are some limitations to the 
dataset that require to be mentioned.

Size
The dataset only has 1330 respondents. 
More data would make the model make 
more accurate predictions. However for this 
experiment the size is fine. 

Only for image classification: To increase the 
sample size maps (images) can be rotated, 
to add to the data. Non-linear algorithms 
need more data. 

Likert Scales and the PAs
The Pleasantness based on the ISO standard 
is calculated by the input of answers of 
the questionnaire based on a Likert scale. 
(formula 2) .There is some discussion on 
whether these Perceptual attributes have 
exactly the same effect as in the formula 
(Mitchell, 2022).

Locations
The locations in the dataset are rather 
limited. These mostly consist of public 
spaces in urban parks in big cities. The 
current dataset only has data in London and 
Venice. Acoustical comfort can have some 
differences between countries because of 
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cultural differences. Because most of the 
datapoints are collected in these urban park 
areas, the predictions used will be the most 
accurate in similar environments. The newer 
set of data will also have data on a city in the 
Netherlands (Groningen). and other cities in 
Europe and China. 

more positive responses than negative
Among the surveyed locales, only 2 of 
the 13 exhibited an average pleasantness 
score below zero, indicating inadequate 
soundscape quality. Applying this dataset 
to enhance soundscapes necessitates 
acquiring additional data on both adverse 
and favorable sound environments. Given 
the prevalence of positive soundscapes, 
exploring their positive attributes is 
paramount.

Different points at the exact same location
Human perception is inherently subjective, 
also in regards to acoustics. Datapoints 
sharing the same geographic location 
can still have differences in the perceived 
pleasantness due to this subjectivity. The 
presence of multiple points sharing identical 
geographic coordinates but exhibiting 
variations in the ISOPleasant column and 
other attributes underscores a limitation 
inherent in the dataset. At the same time, 
because of its subjectivity it is important 
to collect a lot of data at the same spot to 
validate the data.

This may result in some generalization 
challenges when training the machine 
learning model later in this research. If the 
dataset contains a wide range of perceptions 
for the same location the model may struggle 
to discern underlying patterns or trends, 
making it less effective when applied to new 
unseen instances. 

Lavandier et. al (2016), tried to predict 
pleasantness in a somewhat similar 
fashion. The research started with 3409 real 
individual sound pleasantness data points, 
which they then condensed down to 204 
urban situations for analysis. Following 
this example, this research could explore 

a similar strategy to streamline the dataset 
and reduce any unwanted noise. 

Another approach would be removing the 
outliers per location. For usage in training 
a machine learning model, outliers per 
location can be removed to improve the 
model, and help against overfitting to these 
outliers

Accuracy of the location coordinates
When inputting the geographical 
coordinates from the dataset into the QGIS 
software and visualizing them on a map, 
certain datapoints exhibit indications of 
potentially erroneous location data. The 
accompanying images illustrate instances 
of points situated within or atop buildings. 
Additionally, the final image depicts points 
where survey respondents appear to be 
positioned within the River Thames. It is 
assumed that these anomalous coordinates 
are likely a consequence of input error during 
the data entry process. These points will not 
be taken into account during the machine 
learning process to make sure the model is 
trained properly. The points that have been 
removed are shown in figure 44. 

Figure 44 Four places in the dataset (Mitchell et al. 
2020) where datapoints are taken out because of 
faulty placing,  Made in QGIS with OpenStreetMap 

background, by author

Time of the day Temporality / Dynamics of 
acoustics
The time of recording is not evenly spread 
throughout the day. Figure 45 shows that the 
majority of the recordings are done between 
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11 am and 2 pm. Acoustics are a very 
temporal dynamic experience. Therefore on 
different times of the day the assessment 
could be different. For example during rush 
hour, there might be an increased experience 
of Traffic noise. 

 

Figure 45Hisotgram showing which hours of the day 
the surveys were collected, graph made by author

The dataset contains a column for 
annotations, which are filled in when there 
are remarks during the survey. For example 
some notes show that there are helicopters 
flying over a park, something that impacted 
the perceived acoustic quality of the area for 
the respondents

Age & inclusivity
Figure 46 shows the ages of the respondents. 
The age group of respondents in the survey 
are on average 31 years old (median 29). 
This might not be representative of a mixed 
population in an urban area, consisting of all 
ages. In terms of inclusivity and accessibility, 
it would be better to question a broader 

age group. Studies found that for example 
elderly (Baquero Larriva & Higueras García, 
2023) experience soundscape differently 
than their younger peers.  

 

Figure 46 Histogram showing the ages of the 
respondents (bins of 5 years), graph made by author
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Conclusion
In conclusion, while the dataset utilized in 
this master’s thesis is extensive and provides 
valuable insights into urban acoustics and 
perceived pleasantness, several limitations 
must be acknowledged.

Firstly, the size of the dataset may limit 
the precision of predictions, particularly 
in non-linear algorithms where more data 
could enhance accuracy. The dataset’s 
geographical scope, primarily focused on 
public spaces in urban parks in London 
and Venice, introduces potential limitations 
regarding generalizability, as acoustical 
comfort can vary across different locations 
and cultures. 

The dataset’s inherent subjectivity, reflected 
in variations in perceived pleasantness even 
within the same geographic coordinates, 
poses challenges for training machine 
learning models. The uneven distribution 
of recordings throughout the day further 

complicates temporal dynamics in acoustics 
assessment, potentially impacting the 
accuracy of predictions. Furthermore, 
demographic considerations, such as 
the age distribution of respondents, and 
methodological aspects, including the 
use of Likert scales for perceptual attribute 
assessment, warrant careful consideration 
to ensure the robustness of findings.

Despite these limitations, the dataset aligns 
with previous literature, highlighting the 
influence of the perceived presence of 
natural sounds and traffic-related noise on 
soundscape pleasantness. Therefore this 
dataset will be used as input for the machine 
learning model for this research.
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Chapter 5 Expansion of Dataset & Statistics

In this section, other additional data sources 
will be explored and their relationship to 
variables in the dataset will be tested. At 
the end of this chapter, a few soundscape 
design strategies will be discussed, based on 
the findings in this chapter.

In order to conduct a comprehensive 
analysis of the dataset, additional datasets 
from the city of London were acquired to 
facilitate comparative assessments. The 
decision to focus solely on London for 
dataset expansion was driven by several 
factors. Firstly, the dataset already contained 
a significant proportion of survey locations 
within London, comprising approximately 
11 out of 13 locations, yielding around 1100 
datapoints. This concentration of data within 
London facilitated robust statistical analyses 
and ensured a representative sample of 
urban dynamics. Conversely, the inclusion 
of only two survey locations in the city of 
Venice limited the availability of public data 
for comparative purposes, since similar 
data for the city of Venice were publicly 
unavailable. Consequently, the research 
scope was narrowed to exclusively examine 
the urban landscape of London, thereby 
enhancing the depth and reliability of the 
analytical findings.

Lden for road Traffic London
The municipality of London (Department 
for Environment Food & Rural Affairs, “Noise 
Pollution in London - London Datastore.”, 
2012) has a map with the Lden of road 
and rail noise for the city. The Lden map 
has similar noise levels as the LAeq levels 
that are already available in the dataset, as 
discussed later in this chapter.  

Some datapoints in the dataset will not be 
included in this part of the statistical analysis. 
The points that are left out have a Lden from 

Road Noise that is lower than 55dB. They 
did not overlap with the Lden map created 
by the municipality of London. 798 of the 
points fall into this group. By excluding these 
points, the dataset becomes more focused 
on capturing the nuances and effects of 
higher levels of road noise. Consequently, 
the remaining 534 data points, which exhibit 
a higher range of road noise exposure in 
terms of Lden, are utilized in the subsequent 
statistical analysis.

Lden & Pleasantness
The Spearman correlation between the 
NoiseClass cateogries for Lden and the 
Pleasantness have a spearman rank 
correlation coefficient of rs[534] = 0.58 
p<0.01. This is a strong correlation which is 
statistically significant. This correlation is 
even stronger than the correlations between 
acoustical measurements in the dataset and 
the pleasantness.

The Lden only captures road noise and 
punishes noise in the evening (+5dB) and 
at night (+10dB) (see formula 1). These 
penalties might impact Lden’s effect, since 
the questionnaires are conducted at specific 
times of the day, mostly around noon, even 
if there is a predicted surge of Traffic noise 
at night. 

When comparing the Lden with the LAeq, 
the Lden has a higher correlation with the 
Pleasantness. The LAeq is recorded during the 
interview sessions, and includes road noise 
as well as all other sounds. The Lden is not 
representative for the SPL as a whole but 
rather emphasizes the presence of Traffic 
noise as discussed in the next section. 

The strong correlation between the Lden and 
the Pleasantness and the likeliness of the 
Lden to the acoustic measures in the dataset 
seem to indicate that creating predicted Lden 
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Figure 47 Lden from GLA (2017) and the perceived presence of Natural Sounds and Traffic Noise, by author

maps for future designs is a good input for 
predicting the urban comfort in that area, as 
shown in figure 48.

Figure 48 Boxplot of ISOPleasant and the Lden from 
GLA (2017) , made by author

Perceived Traffic Noise
The average perceived presence of traffic 
noise increases when the Lden level increase. 
The difference between 55-59.9 and 60-64.9 
is very little. The difference between >=75 
and the step below is the biggest. 

There is a correlation between the perceived 
presence of Traffic noise and a higher Lden 
value. the Spearman correlation is rs[534] = 
-0.51   p<0.001, which is a moderately strong 
correlation. Points were removed that did 

not fall into the categories in the Lden map, 
so when the estimated value is lower than 
55dB. There is more variety in the perceived 
presence of Traffic noise in this group.

The general perceived presence of Traffic 
noise might be more sensitive to changes in 
noise levels in Lden once a certain threshold 
is reached. Below this threshold, the Lden 
from road noise might not be perceived as 
significantly different, but once road noise 
levels surpass this threshold, people become 
more aware of and affected by the noise, 
leading to a stronger correlation between 
measured noise levels and perceived Traffic 
noise presence.

Areas with Lden  noise levels below 55dB 
include quieter residential zones or 
parks where the background noise level 
is generally low. In such environments, 
temporal variations in Traffic noise levels 
may have more impact on perceived Traffic 
noise presence, in comparison to busy areas 
when the Lden is consistently higher.

When checking all the points in the dataset 
the Spearman correlation coefficient is 
rs[1327] = -0.33 with p<0.001. This is a 
moderately weak correlation, which is 
statistically significant. 
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Perceived Natural Sounds 
Spearman correlation coefficient: rs[534]=-
0.45 p<0.01 between the Lden and perceived 
presence of Natural Sounds. This is a stronger 
correlation then the correlation between Lden 
and Traffic Noise. So, the absence of Road 
Noise measured in Lden suggests a higher 
presence of Natural Sounds. 

Again this is with leaving out the datapoints 
having a Lden lower than 55dB, with including 
those datapoints the spearman correlation 
rank is : rs[1332] =-0.21 p<0.01. The stronger 
negative correlation rs[534]= -0.45 suggests 
a more consistent and pronounced 
relationship between road noise levels and 
the perceived presence of natural sounds 
when focusing on areas with higher noise 
levels. Instances where road noise is more 
dominant and has a greater potential to 
overshadow natural sounds, leads to a 
stronger negative correlation between the 
two variables. the Lden does not account 
for temporal changes in the acoustic 
environment, which can be perceived as 
more prominent when the background 
noise levels are lower. 

LAeq, LZeq &  Lden

 

Figure 49 boxplot of Laeq, LZeq and Lden, by author

The Lden and the Laeq have a Spearman 
correlation coefficient rs[534] = -0.64 with 
p<0.01, which is a moderately strong 
negative correlation, which is statistically 
significant. In the places where the Lden is 
higher in general the LAeq is also higher. The 
spearman correlation coefficient between 
the Lzeq and the Lden rs[534] = -0.68 with 

p<0.01. Also a moderately strong correlation, 
which is statistically significant. Figure 48 
shows the distribution of recorded SPL at 
locations with the corresponding Lden level 
from the GLA map

Biodiversity 
The biodiversity map shows different land 
use types. It is called the Living Habitat map 
of England

The majority of the points fall into the 
category of Built Areas. Generally this group 
also scores lower on the Pleasantness, then 
the other categories. 

In the areas labeled ‘Built up Areas and 
Gardens’ the perceived presence of Natural 
sounds is the lowest. With 678 points in this 
category this category also makes up the 
largest part of the dataset. 

 

Figure 50 Violin plot ISOPleasantness for Built-Up 
and Gardens (left), Broadleaved (middle) and Neutral 

grassland (right) , by author
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OpenStreetMap 
 Why use OSM data
The utilization of OpenStreetMap (OSM) 
data offers several advantages. OSM is 
a free publicly accessible geographic 
database collaboratively developed by 
volunteers worldwide, aimed at providing 
comprehensive and up-to-date street 
maps. To goal of the international OSM 
project is to create a free map of the 
world. (OpenStreetMap Blog | Supporting 
the OpenStreetMap Project.) Given its 
community-driven nature, OSM maps 
undergo frequent updates, ensuring the 
accuracy of spatial information pertaining 
to the built environment. Geographical 
data from OSM can give an indication of 
the closeness to a certain sound source, 
in addition it can also somewhat give an 
indication of the visual imagery of the 
surroundings. Therefore OSM data serves 
as a reliable presentation of geographical 
features and infrastructural elements. 

Roads

 

Figure 51 Visualization of datasetpoints and roads 
from OSM, by author

This part of the research aims to find a 
correlation between the distance between 
the dataset objects placed on their 
respective coordinates and the nearest road, 
and their perceived pleasantness and the 
perceived presence of Traffic sounds. The 
road network is loaded from OpenStreetMap 
(OSM). For every point the distance to the 
closest street edge is calculated, illustrated 

in figure 51. The correlation between 
the distance to the nearest road and the 
perceived presence of Traffic noise is 
rs=0.32 p<0.01. Such a correlation implies 
an increase in the perceived intensity of 
traffic-noise as distance from the roadway 
increases. However, this inference appears 
counterintuitive given the conventional 
understanding of sound propagation 
dynamics in free field environments, where 
sound pressure levels typically diminish with 
distance from the source.

The relation between the distance to the 
nearest road and the perceived pleasantness 
the correlation has a correlation coefficient 
(rs) of  =-0.13 p<0.01. This correlation 
coefficient suggests a very weak tendency 
for individuals to perceive acoustic 
environments as more pleasant when in 
close proximity to a road, which also appears 
counter intuitive. 

During the data analysis phase, a negative 
correlation coefficient of -0.43 was 
detected between the perceived presence 
of traffic sounds and the perceived level 
of pleasantness. This finding indicates 
a tendency for individuals to perceive a 
decrease in pleasantness when heightened 
levels of traffic noise are perceived, 
suggesting a potentially adverse impact 
associated with closer proximity to this 
auditory source.

Focusing solely on the proximity to the 
nearest road may suggest that emitted 
sound is confined solely to that nearest road. 
However, this perspective overlooks the 
differential noise emission and propagation 
patterns associated with various types of 
roadways. It is essential to recognize that 
busier thoroughfares, characterized by 
higher volumes of vehicular traffic such as 
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cars and similar vehicles, 50km/h roads, 
are primary sources of traffic noise, and for 
example footpaths or bicycling paths have a 
smaller impact on the perceived presence of 
Traffic noise.

Figure 52 List of road types in OSM with cut off line for 
busy roads, by author

In order to delineate various categories 
of roads, a systematic compilation was 
undertaken, incorporating weighted factors 
corresponding to distinct traffic patterns. 
Roads experiencing heavier traffic volumes 
were assigned higher values within the list. 
For example, roads for walking are labeled 
‘footpath’ and roads for cars can be labeled 
as ‘trunk’ or ‘primary.

Figure 53Spearman correlation matrix ISOPleasant 
and distances to busy roads, by author

The correlation between the distance to 
the nearest ‘busy’ road and the perceived 
presence of traffic noise is observed to be  rs= 
-0.37. This seems more intuitive, that there is 
a tendency to experience more traffic noise 

when proximity to a busy road decreases. 

The correlation analysis reveals a statistically 
significant coefficient rs[1282]  = 0.25 
(p < 0.001) between perceived acoustic 
pleasantness and proximity to the nearest 
busy road. This result indicates that perceived 
pleasantness increases as distance from a 
busy road increases, aligning well with both 
our statistical findings and prior research in 
the field.

This correlation of rs[1282] = 0.26 p<0.001 of 
ISOPleasant and the proximity to the nearest 
busy road is a moderately weak correlation. 
However contrasting this with the stronger 
negative correlation of -0.43 observed 
between traffic noise and ISOPleasant  . This 
suggests the expected correlation between 
roads as a noise source and their influence on 
the perceived pleasantness is not expected 
to be higher than 0.43 in absolute value. This 
indicates the potential for approximately 
half of the variance in pleasantness to be 
accounted for by respondents’ distance 
from a busy road.

Partial correlations
In statistical analysis the partial correlation 
finds the unique relationship between 
variable X and Y, when other variables 
have been considered (Field, 2018). 
Partial correlations are useful in situations 
where multiple variables can influence 
the  relationship between two variables of 
interest. When looking at the correlation 
between factor X and Y it takes into account 
the correlations between X and Z and Y 
and Z, to find what their impact is on the 
correlation. 

By isolating the relationship between these 
two variables from the influence of other 
variables a better understanding of the 
relationship of those isolated variables can 
be found. If the partial correlation differs 
a lot in value from the original correlation, 
the relationship between the variables X 
and Y might be indirectly influenced by 
the variable Z. If the correlation coefficient 
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stays somewhat the same, the correlation 
between X and Y has a smaller influence 
from the variable Z. (This is not to say that 
then there is a causal relationship between 
the factors, they could still be indirectly 
influenced by other factors.). 

This is the formula to calculate the partial 
correlation: 

 
Formula 5: Partial correlations (Field, 2018)

In this case X is the perceived acoustic 
Pleasantness, and Y is the perceived 
presence of Traffic noise.  The variable Z 
that is accounted for is the distance to a 
busy road. This is shown in figure 54. The 
spearman rank correlations between the 
variables are rxy = -0.44, rzx= 0.25, ryz = -0.37.

 
Figure 54 Visualization for partial correlations, by 

author

rxy,z is the partial correlation coefficient 
between ISOPleasant and Traffic controlling 
for the variable bdist_to_road. The partial 
correlation rxy,z[1131]= -0.413, the p-val < 
0.01, which indicates that there is indeed 
a significant partial correlation between 
ISOPleasant and Traffic when controlled for 
distance to a busy road.

n r Cl95% p-val

spearman 1074 -0.44 <0.01

partial 1074 -0.41 [ - 0 . 4 6 
-0.36]

<0.01

Table 2 the Partial correlation between Pleasantness 
and Traffic Noise when controlled for the distance to a 

busy road.

The reduction in the correlation coefficient 
from -0.44 to -0.41 indicates that factoring 
in the variable “distance to nearest busy 
road” slightly weakened the strength 
of the relationship between perceived 
pleasantness  and perceived presence of 
Traffic noise. Even though the correlation 
can partly be explained by this third variable, 
a bigger part of the correlation cannot be 
explained by controlling for distance to 
nearest busy road. 

The propagation of traffic noise within urban 
areas does not adhere to a linear pattern 
across cities. The current model solely 
considers the proximity to the nearest busy 
road, neglecting the natural dispersion of 
sounds throughout the urban landscape. 
Moreover, it fails to account for the presence 
of other multiple nearby roadways that may 
also contribute substantially to road noise 
emissions. Furthermore, the model assigns 
equal weight to all busy roads, disregarding 
variations in traffic densities and the wide-
ranging emissions of road noise among 
different road segments. Additionally this 
model does not take into account the 
temporality of road noise with the presence 
of traffic throughout the day. Thus, a more 
comprehensive approach that incorporates 
the complex spatial distribution of 
traffic noise sources and considers the 
heterogeneous characteristics of urban road 
networks, like Lden simulations, is warranted 
for accurate assessment and prediction of 
urban noise exposure levels.

n r Cl95% p-val

spearman 1074 0.25 <0.01

partial 1074 0.11 0.941

Table 3 The correlation between pleasantness and 
the distance to busy roads, when controlled for the 

Perceived presence of Traffic Noise

The spearman rank correlation between the 
distance to a busy road and the perceived 
pleasantness is rs=0.25. However, when 
accounting for the perceived presence 
of traffic noise, the partial correlation 
coefficient diminishes to rs = 0.11. This 
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suggests that a substantial portion of the 
correlation observed between pleasantness 
and proximity to the nearest busy road can 
be attributed to the influence of perceived 
presence of traffic noise.   Additionally, 
the p-value is very high. Therefore this 
correlation is not statistically significant and 
will not be used in the further research and 
design. 

Nature (vegetation)

 

Figure 55 Visualization for distance from vegetation 
from OSM, by author

This part of the research aims to find a 
correlation between the proximity to the 
nearest park and an increased perceived 
presence of natural sounds, and a positive 
influence on the perceived pleasantness of 
the acoustical environment for respondents. 
In our dataset there is a strong positive 
correlation with the pleasantness and the 
presence of Natural sounds rs[1282] = 0.46 
p<0.001. Therefore modeling the sound 
source of natural sounds can give insights on 
how this plays out in an urban environment.

The data for  parks is loaded from OSM. From 
each point the proximity to the nearest park 
is calculated, as shown in figure 55. If the 
location of the survey respondents is inside 
a park the distance will be set to 0. 

The correlation analysis reveals a moderately 
strong relationship between proximity to 
vegetation and the perceived presence 
of natural sounds rs = -0.38, p < 0.001. 
Specifically, as respondents were closer to 
parks, there is an observed increase in the 
perception of natural sounds.

Similarly, the analysis indicates a moderately 
strong correlation between proximity to 
vegetation and perceived pleasantness 
rs = -0.33, p < 0.001. This suggests that a 
shorter distance to parks is associated with 
a more favorable perception of acoustic 
environments. These findings corroborate 
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previous research and align with our prior 
observations, highlighting the consistent 
influence of vegetation proximity on both 
natural sound perception and perceived 
pleasantness.

The proximity to parks had very little effect 
on the perceived presence of Traffic Noise 
rs=0.04, p < 0.10. 

 

Figure 56 Spearman correlation matrix for 
ISOPleasant and distance to vegetation, by author

In urban settings like the city of London, 
parks are often situated within densely 
populated areas, surrounded by busy 
roads and high traffic density. Therefore, 
even though respondents may have been 
physically close to parks, the pervasive 
urban infrastructure, like roads with heavy 
traffic, still contribute a lot to the overall 
composition of the soundscape

Additionally the design of these urban 
parks in the city center of London might 
not effectively buffer against traffic noise. 
While green spaces provide some degree 
of respite from urban environments, they 
may not offer sufficient acoustic insulation 
to shield park users from the sounds of 
nearby traffic.

While natural elements like grass and 
trees do offer some degree of acoustic 
absorption, they may not be as effective 
as solid structures like buildings in 
attenuating traffic noise. Natural elements 

like grass and trees are porous and have low 
density on average, which may limit their 
capacity to absorb and attenuate traffic 
noise, particularly low-frequency noise 
produced by vehicles. Solid structures such 
as buildings typically have denser and thick 
construction materials, which are more 
effective in blocking and absorbing sound 
waves. 

Considering these factors, in urban planning 
different strategies may need to be employed. 
Adding wanted sound sources like natural 
sounds by, for example, adding vegetation, 
can definitely improve the soundscape. 
However in high density urban places people 
still could experience traffic noise. Therefore 
the other soundscape strategy, limiting the 
perceived presence of unwanted sounds, 
should also be implemented. This can be 
by shielding the urban areas from roads, 
limiting their exposure to traffic noise. 

Partial correlations proximity to vegetation

n r CI95% p-val

Spearman 
correlation

1254 0.46 <0.001

P a r t i a l 
correlation

1254 0.38 [ 0 . 3 3 
0.43],

<0.001

Table 4 The Spearman correlation and partial 
correlation between Natural & ISOPleasant

 The reduction in the correlation coefficient 
from -0.46 to -0.38 indicates that factoring 
in the variable “distance to nearest 
parks” slightly weakened the strength 
of the relationship between perceived 
pleasantness  and perceived presence 
of Natural sounds. While the inclusion of 
the distance to nearest parks variable can 
account for a portion of the correlation 
observed between perceived pleasantness 
and perceived presence of natural sounds, 
a significant portion of this correlation 
remains unexplained even after controlling 
for distance to parks. This suggests that 
there are other factors beyond the proximity 
to parks that influence the relationship 
between perceived pleasantness and 
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perceived presence of natural noise. 

n r CI95% p-val
Spearman 
correlation

1276 -0.33 <0.001

P a r t i a l 
correlation

1276 -0.19 [ 0 . 2 4 
0.13],

<0.001

Table 4 Spearman correlation and partial correlation 
between the distance to the nearest park, and the 
ISOPleasant. The partial corrrelation is controlled for 

the percevied presence of Natural Sounds 

This could have several reasons. One of 
them could be that this type of analysis 
does not take into account the quality of the 
parks. Size, amenities and biodiversity are 
different factors that have not been taken 
into account while looking at these parks. 
Additionally this analysis did not take into 
account other urban and environmental 
factors such as nearby roads or buildings. 
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Conclusion 
Considering the previous analysis of the 
dataset and the added data, there is no 
simple solution to designing a good urban 
landscape. A multifaceted approach is 
needed. 

To what extent can computational design 
tools, in the shape of machine learning 
models, incorporate soundscape data to 

inform and shape urban design elements for 
improved soundscapes?

A high Lden has a strong negative impact 
on the perceived pleasantness of the 
acoustic urban environment, even higher 
than acoustic recordings in the dataset.  
Furthermore greater distance from busy 
roads correlates with an enhancement in the 
perceived pleasantness of the surrounding 
environment and a reduction in the perceived 
presence of traffic noise. However when 
controlling for the presence of traffic noise, 
the partial correlation between proximity to 
a busy road and pleasantness became very 
small. Consequently, utilizing distance from 
roads as a sole design parameter may not 
yield favorable outcomes.

Instead, employing simulation mapping 
techniques to predict Lden levels derived from 
road emissions emerges as a more prudent 
approach for anticipating the perceived 
presence of traffic noise, the perceived 
absence of natural sounds, and the overall 
perceived pleasantness of the soundscape

Proximity to vegetation correlates with 
enhanced pleasantness, and a heightened 
perception of natural sounds. The relation 
between the distance to the nearest park 
and the perceived pleasantness is slightly 
lower when controlled for the perceived 
presences of natural sounds. While this 
approach proves adequate, alternative 
methods for predicting the presence of 
natural sounds will be further investigated 

for comprehensive analysis.

The distance from vegetation exhibited 
minimal impact on the perceived presence 
of traffic noise. Consequently, while the 
addition of vegetation may enhance 
acoustic pleasantness by augmenting the 
perceived presence of natural sounds, it 
does not improve soundscape pleasantness 
by mitigating the presence of traffic sounds.

In examining strategies for enhancing urban 
soundscape design, referencing Cerwén’s 
(2017) soundscape design strategy is 
beneficial. 

Reduction of unwanted sounds
Soundscape design aims to look beyond 
noise reduction. However Traffic noise 
emissions still remain an important part in 
the perceived pleasantness in the dataset. 
In places where the Lden level exceeds 
60dB the pleasantness is heavily impacted. 
Therefore if at a a selected location the 
Lden exceeds this level, reduction methods 
should be implemented, before looking at 
other strategies. 

Introduction of wanted sounds
The introduction of wanted sounds through 
adding vegetation can definitely improve 
soundscape design by inviting more 
vegetation not only adds aesthetic value 
but also contributes to acoustic comfort by 
absorbing and diffusing sound waves, thus 
mitigating the impact of unwanted noise.

Overall the findings in this chapter helped 
with creating the framework for the design 
tool that is created in this research, and help 
focus on which subjects are important
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Chapter 6 Modification of the  dataset

Modification of the dataset
After the statistical analysis, to check the 
validity of the dataset, the information that 
is needed as input for the machine learning 
process is compiled

Filtering data 
The dataset used is the previously discussed 
International Soundscape Database dataset: 
Below is shown what data the dataset 
includes and what data is used to train the 
model eventually. Data that is included in the 
dataset are the perceived affective qualities 
(PAQs), which lead to a pleasantness score 
with the formula from the ISO standard 
(formula 2). Other data from the dataset that 
is used are the coordinates. With the latitude 
and longitude the point can be located 
geographically. 

Sound source identification was employed 
in the statistical analysis to inform decisions 
regarding the design tool framework. 
Alternative studies, exemplified by 

Lavandier et al. (2016) and Hong and Jeon 
(2017), attempted predicting the presence 
of different sound source , distinguishing 
between natural and technological or traffic-
related sounds. However, because of the 
unavailability of subjective data for new 
designs, it will not be included for training a 
ML model. 

Sound level meter data is also left out of the 
ML model, since this is hard to reproduce 
for new designs. The same goes for VR 
recordings. Additionally, demographic 
information is left out of the dataset for the 
machine learning model. 

Identify outliers
contextual outliers per geographical location
The literature section has discussed methods 
for identifying outliers, with this research 
opting to focus on contextual outliers. In the 
context of the dataset used in this research, 
the geographical location serves as the 
relevant context for identifying contextual 
outliers. The contextual outliers are the 

Figure 57 Representation of the used content in the dataset from Mitchell et al. (2020), by author
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datapoints in the same location, which 
have a very different ISOPleasant score. 
Removing conventional outliers, so looking 
at the dataset as a whole, removes the 
variance that can be attributed to differences 
in physical and sensory environment. Since 
this research looks at the differences per 
location, it would not be beneficial to remove 
conventional outliers. 

Z-score method
The z-score method, previously discussed in 
the literature chapter, will be used to remove 
contextual outliers. Having a low Z-score 
can take into account contextual outliers 
per geographic location that may not solely 
be attributed to their physical environment. 
This approach considers additional factors 
such as temporal fluctuations, such as for 
example the presence of helicopters, and 
wellbeing of the respondent, which can 
significantly impact the perceived quality 
of the acoustics (Mitchell, 2022). Addressing 
contextual outliers facilitates the refinement 
and optimization of machine learning models 
used for predictive modeling, ultimately 
improving the accuracy and effectiveness of 
future analyses and applications.

Outlier removal process
Given the amount of contextual outliers 
affecting perceived pleasantness within the 
dataset, the decision was made to remove 
the most significant outliers. For each group 
of data points sharing identical longitude 
and latitude coordinates, datapoints were 
removed with z-score exceeding 2.0 for their 
ISOPleasant value. The datapoints have 
a column with the latitude and longitude 
coordinate, that is ow they are determined. 
This removed 41 outliers, out of 1332 
datapoints.

Eliminating additional outliers 
As discussed in the chapter where the 
dataset is analyzed, some points in the 
dataset are located on odd locations. For 
example, certain data points are situated in 
unconventional locations, such as inside or 
atop buildings. These locations introduce 

distinct input values for the supplementary 
data discussed later in this chapter. 
Therefore, these datapoints will also be 
removed for more accurate results

Failed attempt
Although an attempt was made to replicate 
Lavandier’s (2016) methodology of averaging 
across different locations, this approach did 
not result in an improvement in the machine 
learning model’s performance. There are 
approximately 200 different locations in the 
dataset based on coordinates. Some of these 
coordinates have 1 data entry while others 
have +100. By taking the average of every 
location, the locations with only 1 entry have 
as much weight in the model as locations 
with 100 data entries. This discrepancy 
likely contributed to the inefficacy of this 
methodology for the current dataset.

Additional data 
Once the dataset is filtered and the outliers 
are determined, other data can be added to 
the dataset. Data that is added to the dataset 
is in regards to the previously discussed 
urban design elements, such as buildings, 
road and vegetation/natural elements, to 
see if they can accurately predict urban 
acoustic pleasantness.

Figure 58 Contextual outliers
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Buildings
During the statistical analysis phase, 
buildings were not initially considered. 
However, upon completion of the analysis, 
it became apparent that buildings may have 
a significant influence on sound propagation 
and ultimately shape the experience of 
the soundscape. Moreover, buildings are 
integral to the creation of the predicted Lden 
maps, which are used to predict traffic noise. 
These buildings are initially sourced from 
OpenStreetMap data for inclusion in the 
analysis.

Building height
Building height data was sourced from 
the municipality of London dataset (GLA, 
2017), providing information for the majority 
of buildings in the area, although not 
all buildings are included. For buildings 
lacking height data, interpolated values 
from neighboring buildings were employed 
to estimate their heights. Notably, the 
generated map of building heights does 
not consider variations in elevation levels 

throughout the city. In a city like London 
this is not a problem, but in other places this 
should also be taken into account. If such 
data is accessible, it could be integrated 
into a raster format along with the building 
height data to enhance the accuracy of the 
analysis. The raster map that is created is 
shown in figure 59.

Sky view factor, Visible Sky and Average View 
distance
The Sky View Factor (SVF) defines the ratio 
of sky hemisphere visible from the ground , 
which is unobstructed (Bernard et al., 2018). 
The research from Silva et al. (2017), found 
that in areas with a low sky view factor, the 
highest noise levels were found. 

The input needed to create the following 
maps with this plugin is a Digital Elevation 
Model (DEM) file, and a radius, which here 
was set to 100m. The Skyview Factor plugin 
in SAGA performs this computation, for the 
sky view factor. (Böhner & Antonić, 2009). The 
SAGA-plugin also calculates the ‘Visible sky’. 

Figure 59 Building heights data, created by author
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This is the unobstructed hemisphere given as 
percentage. Lastly it creates an Average View 
Distance (AVD) map. The values calculated 
here represent the average distance to the 
horizon. The map that is created is shown in 
figure 60, together with the buildings and the 
datapoints in the dataset.

Correlations building maps
The SVF, Visible Sky, and AVD all show 
moderate positive correlations with 
pleasantness: rs[1327]= 0.32 (p<0.001), 
rs[1327]= 0.34 (p<0.001), and rs[1327]= 0.36 
(p<0.001), respectively. Similarly, they exhibit 
moderate positive correlations with natural 
sounds: rs[1327]= 0.40 (p<0.001), rs[1327]= 
0.43 (p<0.001), and rs[1327]= 0.44 (p<0.001), 
respectively.

In contrast, they have a moderate to weak 
negative correlation with Traffic Noise: 
rs[1327]= -0.19 p<0.001, rs[1327]= -0.20 
p<0.001 and rs[1327]= -0.22 p<0.001, 
respectively. 

The AVD map seems to have the strongest 

Figure 60 Average View Distance Map, by author

correlation with pleasantness in the dataset 
compared to the Visible Sky and  SVF factor 
map. The explanation for this could be 
because the receiver and the noise source 
are on the same plane, Therefore building 
height might not be a very important factor.  

The correlation between the AVD map and 
the SVF map is notably high at rs[1327]= 
0.98 (p<0.001). The similarity in calculation 
methods could explain the notably high 
correlation. Consequently, the SVF map, 
which exhibits the lowest correlations, is 
excluded as input for the machine learning 
model, as well as the Visible Sky map. In 
summary, the Average View Distance map 
seem to be promising inputs for the machine 
learning model.
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Roads
During the statistical analysis, it was 
determined that Lden exhibits the strongest 
correlation with the perceived pleasantness 
reported by respondents. Consequently, 
a map depicting Lden levels was generated 
for the roads. Road data was sourced from 
OpenStreetMap (OSM) as well. The Lden map 
was created with the plugin Noise Modelling.

Noise Modelling
Noise Modelling was used to create Lden 
noise maps from the surroundings. The 
application is an open-source noise 
mapping tool integrated into a Geographic 
Information System (Bocher et al., 2019). 
The Noise Modelling plugin assigns certain 
weights of traffic density to different roads 
based on their categorization in the highway 
column. This is very similar to the ways that 
actual Lden maps are calculated. The created 
map is shown in figure 63.

Correlation of Noise Modelling data and 
actual measured Lden

Figure 61 Boxplot of Lden from GLA versus the Lden map 
created by the Noise Modelling plugin

The Noise Modeling plugin provides an 
estimate of what the Lden could be, based on 
information about road hierarchy and sound 
propagation between buildings. To check 
the validity of this method the correlation 
between the simulated.

A spearman correlation is used because 
both models don’t give exact numbers but 
a range where the noise level can fall in. 
The Spearman correlation between the Lden 
from Noise Modeling and the Lden from 
the municipality of London is rs[534]= -0.97, 
p-value: p<0.001. This distribution is shown 
in the boxplot in figure 61. This is excluding 
the datapoints where in the original dataset 
the Lden is lower than 55dB. With including 
those points the rs[1327]=-0.54, p-value 
<0.001. The correlation probably has a 
lower R value because this is the furthest 
away from the noise source, and there most 
inaccuracies could occur regarding the 
simulation. Therefore It is assumed that this 
model is an accurate way to represent the 
Lden for the machine learning model.

Perceived presence of Traffic noise & 
pleasantness in the dataset and the Lden 
map

Figure 62 Boxplot of Lden from GLA vs the percevied 
pleasantness from the questionnaire

The relationship between perceived traffic 
noise and pleasantness in the dataset 
compared to the Lden map shows significant 
correlations. The correlation coefficient 
between perceived traffic noise and the Lden 
map is rs[1327]=0.29 (p < 0.001), indicating a 
moderate positive correlation. Conversely, 
the correlation coefficients between 
perceived pleasantness and the perceived 
presence of Natural sound and the Lden map 
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are rs[1327]=-0.27 (p < 0.001), rs[1327]=-0.16 
(p < 0.001), respectively. This are moderate 
to weak negative correlations. 

When removing the points in the dataset 
where the original Lden values are below 
55dB the correlations increase a lot. The 
correlation coefficient between perceived 
traffic noise and the Lden map is rs[534]=0.50 
(p < 0.001), indicating a moderate positive 
correlation. Conversely, the correlation 
coefficients between perceived pleasantness 
and the perceived presence of Natural sound 
and the Lden map are rs[534]=-0.57 (p < 0.001), 
rs[534]=-0.43 (p < 0.001), respectively. This 
are moderate negative correlations. 

Figure 63 Lden map created in Noise Modelling, by author
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Parks
Similar to trees parks can have both a visual 
and acoustical impact on the perceived 
pleasantness of the soundscape. Inspired by 
the maps created by (Lavandier et al., 2016), 
for the parks a raster was created where 
inside parks the weight was higher. This map 
represents the significant presence of birds 
on the map. This is because it is assumed 
by Lavandier (2016) that the bird sounds are 
better perceived in the center of the parks 
than at their periphery. The map is created 
with the proximity plugin available in QGIs. 
The result is shown in figure 65. 

Proximity to parks and the perceived 
presence of natural sounds and Traffic 
Noise
The relationships between proximity to parks 
and perceived presence of natural sounds 
and the pleasantness is notable. Between 
the perceived presence of Natural sounds 

and the created map for the parks there is 
a correlation of rs[1327]= 0.55, p-value < 
0.001. In contrast, the correlation between 
perceived traffic noise and the park map is 
rs[1327]= -0.34 (p < 0.001). The integration 
of Likert scale responses with data from 
the parks map is presented in Figure 64. 
The correlations for both natural sounds 
and traffic noise are evident, with positive 
and negative relationships, respectively. 
The negative correlation with traffic noise 
appears more pronounced, although it 
exhibits more outliers at Likert scale values 
of 3 and 4. 

A very low perceived presence of natural 
sounds is not associated with a distance 
of 200 meters or more from a park but is 
observed within the range of 0-100 meters 
outside a park. This indicates that the 
perception of natural sounds is significantly 
reduced even at short distances from parks. 

Figure 64 Boxplot proximity to parks and presence of Traffic Noise and Natural sounds, by author
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Specifically, people within 0-100 meters 
outside the boundary of a park report a very 
low presence of natural sounds, suggesting 
that the influence of park environments on 
auditory experiences diminishes rapidly as 
one moves away from the park, even within 
a relatively short distance.

Proximity to parks and the perceived 
Pleasantness
Additionally, there is a correlation of 
rs[1327]= 0.48 (p < 0.001) between perceived 
pleasantness and the proximity to parks 
map. This is a moderately strong correlation. 

Figure 65 Parks proximity from QGIS, by author
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Figure 66 Visibility of Trees with Visibility plugin from QGIS, by author

Trees
The literature review revealed a positive 
correlation between the presence of 
trees and the enhancement of perceived 
pleasantness in the acoustic environment 
(Lugten et al., 2017). Therefore a map 
depicting the visibility of trees within the 
urban landscape was generated.

Trees were sourced from OpenStreetMap 
(OSM), with the option to also incorporate 
data from the London tree database. Utilizing 
the visibility analysis tool in QGIS, a map was 
produced to illustrate the number of trees 
visible from various points across the area of 
interest.

visibility of trees and the presence of 
Natural sounds & pleasantness
The relationship between perceived presence 
of natural sounds and the visibility of trees 
on the map exhibits a correlation coefficient 
of rs[534]= 0.38, p-value < 0.001, indicating a 
moderate positive correlation. Conversely, 
the correlation between perceived traffic 

noise and the visibility of trees on the map 
is rs[534]= -0.31, p-value < 0.001, indicating a 
moderate negative correlation. Between the 
perceived pleasantness and the visible trees 
map there is a correlation of rs[534]= 0.37, 
p-value < 0.001. This is a moderate positive 
correlation, that is similar to the correlation 
between the visibility of trees map and the 
perceived presence of Natural sounds.

This is only with leaving out the data when 
the measured Lden level is below 55dB. If 
these datapoints are added all correlations 
are very weak (rs<0.1 )and not statistically 
significant. Therefor this map is not a great fit 
as predictor for the perceived pleasantness. 

Overall the map created for the parks seems 
to be a better indication of the perceived 
pleasantness and the perceived presence 
of natural sounds and Traffic noise than the 
map created for the visibility of trees. It has 
higher correlation coefficients. 
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Fountains
From the literature it is found that fountains 
can have a positive effect on the perceived 
pleasantness, and are percevied as calming. 
Additionally the sound that foutains produce  
can mask noise such as traffic noise. A map 
was created showing how far the sound 
could travel. The created map is shown in 
figure 67.

correlations of fountains map and presence 
of Natural sounds and Traffic Noise. 
Between the perceived presence of Natural 
sounds and the fountains map there is 
a correlation of rs[1327]= 0.43, p-value < 
0.001. Between the perceived presence of 
Traffic noise and the fountains map there 
is a correlation of rs[1327]= -0.23, p-value < 
0.001. Despite expectations from existing 
literature suggesting a stronger correlation, 
it’s likely hindered by the dataset’s lack of 
fountain data. 

correlations of fountains and pleasantness 
Regarding the perceived pleasantness there 

is a correlation of rs[1327]= 0.42, p-value 
< 0.001, with the fountains map.  This is 
a moderately strong postive correlation. 
Overall, fountains serve as a moderate to 
good indicator of both natural sounds and 
pleasantness.

Figure 67 Visibility of Trees with Visibility plugin from QGIS, by author
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Compilation of data
During the compilation process, data 
extracted from raster files is merged with 
corresponding points that match in location. 
This is used as input for the machine learning 
model. The construction of additional maps 
for different features and the integration of 
this data has been streamlined using the 
model builder plugin within QGIS. The model 
created is shown in figure 69. The Model 
Builder plugin facilitates the integration 
of various algorithms available in QGIS, 
akin to the functionality of Grasshopper in 
Rhinoceros. The model in model builder is 
shown below. To simplify the compilations 
some steps are built in smaller models that 
are plugged in this bigger model. Here the 
vector files of the different layers like the 
buildings, trees, parks and fountains are 
used as input. The previously discussed 
layers are calculated. And added to a point 
layer. This workflow is part of the framework 

for the design tool where urban designers 
do not have to do all the calculations one by 
one by themselves but it forms a streamlined 
process where they only have to deliver the 
data that is already in their design. 

International Sounsc...

Location coordinatesPercevied Affective...

Openstreetmap

Building data Roads Parks

Lden Traffic NoiseAverage View Distance Distance to parks

Dataset

Trees

Visible trees

Fountains

Fountains visible

Figure 68 Overview of all the data acculmulated in the dataset, by author
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Figure 69 Model Builder model from QGIS for preprocessing data, by author



78

Discussion & Conclusion

The maps created for the buildings are 
Visible Sky maps, and Average view distance 
maps. These maps are created using OSM 
building data and building height data from 
GLA by using the SAGA Sky View Factor 
plugin.. They have a correlation with the 
pleasantness of the soundscape of 0.34, and 
0.36 respectively. Limitations concerning 
buildings include the absence of precise 
building height data, because for a part 
of the buildings height is missing, missing 
building height were interpolated heights 
from close by datapoints. Something else 
that is not included in the building data is 
the façade materials, which could impact 
noise propagation, and can have an impact 
visually. 

For the roads, the Lden map is an 
approximation based on the road types in 
the road data from OSM. This could differ 
from the actual Lden. However in this case 
the Lden from the Noise Modeling Plugin 
correlates strongly with the existing Lden 
maps. The Lden map correlates strongly with 
the perceived pleasantness, making it a 
compatible input for the machine learning 
model. This aligns with previous literature 
linking high Lden levels with annoyance and 
disturbance (WHO, 2011)

The correlation between the trees visibility 
map and the pleasantness in the dataset 
was very weak. Therefore this dataset is not a 
good predictor for the pleasantness. Several 
limitations are evident in the datasets 
for trees. Firstly, there are gaps in tree 
coverage within the OSM dataset, indicating 
incomplete representation. Secondly, due to 
the absence of height information for trees, 
a uniform height assumption of 20 meters 
is applied across the dataset, potentially 
introducing inaccuracies. Additionally, the 
discrepancy between trees identified in 

OSM and those documented in the London 
database suggests a lack of alignment 
between the two datasets, raising concerns 
about their overall validity and reliability 
for comprehensive analysis and decision-
making. This difference is illustrated in figure 
70, showing both datasets in different colors.  
The previous literature suggests a stronger 
correlation between the visibility of trees 
and the perceived pleasantness (Lugten 
et al, 2017). The absence of the correlation 
in this dataset could be explained by the 
quality of the available data. 

The proximity to parks maps are a good 
indicator of pleasantness. This map is 
created using OSM park data. The limitations 
of using OSM data for parks include the 
absence of information regarding the quality 
or attributes of the parks themselves. The 
map is created using the proximity plugin 
in QGIS, created a higher value inside the 
parks further away from the periphery and a 
lower negative value further away from the 
border of the parks. The correlation for the 
perceived presence of Natural sounds and 
the perceived pleasantness, with the created 
proximity map for the parks is a strong 
positive correlation. Lavandier (2016) used a 
similar methodology to predict the presence 
of bird sounds. Their linear regression model 
based on georeferenced data could explain 
67% of the variance in the perceived time 
ratio of birds ( how much of the time bird 
sounds were present). This is slightly higher 
than the values found from the spearman 
correlation, but their prediction also 
included using predicted values of traffic 
noise. 

The fountain maps also used OSM data and 
were created using the viewshed plugin. 
The dataset exhibits a notable scarcity of 
fountains, and crucially lacks information 
regarding the quality or characteristics of 
these fountains as sourced from OSM. The 
correlation with the fountains map and the 
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pleasantness is high. Overall this is a good 
to moderate indication for pleasantness. 
However the strength of this correlation 
could also be caused by the placement of 
these fountains. The fountains are all placed 
inside parks. Consequently, the apparent 
connection between fountains and 
pleasant environments could potentially be 
misleading.

To summarize the created maps have been 
analyzed statistically and a selection of these 
maps has been made to be used in the next 
stage of this research. This is choosing and 
training the machine learning model. 

Figure 70 Trees dataset combined. Purple from OSM, and yellow from GLA, by author
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Chapter 7 Choosing the ML model

After compiling the data into a csv file it was 
uploaded to a python file and run through 
the PyCaret plugin, for model selection. 
Once the model was selected, the model 
was recreated in the python console of QGIS. 

Regression models
For this research the regression model was 
chosen over a classification model. The 
soundscape pleasantness is measured as 
a continuous variable, on a scale from -1 
to 1, where different levels of pleasantness 
can be quantified precisely. Regression 
models are designed to predict continuous 
outcomes and can provide insights into the 
relationship between predictors (e.g., Lden 
levels, visual presence of natural elements) 
and the level of pleasantness. 

Classification models are used when the 
target variable is categorical, allowing for 
the prediction of the class to which each 
observation belongs based on the input 
features. If soundscape pleasantness needs 
to be categorized into discrete classes (e.g., 
“pleasant,” “neutral,” “unpleasant”), then 
a classification model could be utilized. 
However because a regression model shows 
more nuances a regression model apprach 
was chosen. 

Comparing different regression 
models
Using PyCaret allows for running multiple 
ML models and compare the ability of these 
models to create accurate predictions of 
the dataset based on different metrics. 
The metrics that were used to determine 

Figure 71 Residuals Plot Random Forest Regressor for input Parks and Lden, by author



81

the accuracy are The Mean Absolute Error 
(MAE),  The Mean Squared Error (MSE),  The 
Root Mean Squared Error (RMSE) and the 
Coefficient of Determination (R2). For this 
dataset and its purpose the random forest 
regressor seems to result in a model with 
highest accuracy.

Light Gradient Boosting Machine
The initial results with the LightGBM seemed 
promising. However this method is prone to 
overfitting, especially with small and noisy 
datasets. With these things considered, this 
model has been deemed to not be a good 
model for creating the prediction model in 
this research

Linear regression
A linear regression model is a parametric 
model, and the importance of the variables 
can be expressed in a function. 

Random Forest regressor
The Random Forest  (RF) regressor has giving 
the best results, with an R2 of 0.43. 

In this residuals plot, shown in figure 71, the 
locations with many respondents can be 
seen very clearly, forming vertical lines. On 
average, the predicted score also was lower 
than the actual score. 

The RF regressor cannot be expressed in a 
linear function because it is a non-parametric 
model, which makes the predction based on 
an ensemble of decision trees. 

RF regressor benefits
non linear relationships
Urban factors influencing the perceived 
pleasantness of a soundscape are likely 
to interact in complex, non-linear ways. 
For instance, the impact of green spaces 
might be different in noisy vs. quiet areas. 
Random Forest Regressor can capture these 
intricate, non-linear relationships without 
needing explicit specification, unlike linear 
models that assume linearity

Reduction of Overfitting:
Overfitting is a common problem in 

predictive modeling, where the model learns 
noise and details specific to the training set. 
Random forests mitigate overfitting 
through ensemble learning, averaging the 
predictions of multiple trees to generalize 
better to unseen data. This is still important 
to look out for.

Feature Importance Insight:
Understanding which factors most influence 
soundscape pleasantness is valuable 
for urban planning and policy-making. 
Random Forest provides feature importance 
scores, helping to identify and prioritize key 
variables, such as the presence of green 
spaces, traffic density, and building heights.

Robustness to Outliers and Noise:
Urban data often contains outliers and 
noise, such as sudden changes in traffic 
volume or unexpected construction work. 
Random forests are inherently somewhat 
robust to outliers and noise due to the 
aggregation of multiple decision trees, each 
trained on different subsets of the data. The 
outliers in the dataset are already using the 
z-score method. 

High Predictive Accuracy:
Random forests are known for their high 
predictive accuracy compared to many other 
algorithms, particularly in datasets with 
complex interactions between variables. 
This makes it a strong candidate for 
delivering reliable predictions of soundscape 
pleasantness

Flexibility and Versatility:
Random forests can handle various types of 
predictor variables, including continuous, 
categorical, and ordinal data, often present 
in urban datasets.
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Model with Parks and Lden
Initial attempts involved using various inputs 
to predict the pleasantness from the dataset. 
Based on these predictions and statistical 
analysis, some inputs were removed. The 
presence of trees was excluded as it was not 
reliable in predicting ISO pleasantness, both 
statistically and in the regression model. 
Similarly, the visibility of fountains was also 
removed. By retaining only the distance 
from parks and the Lden map created via 
NoiseModelling, a prediction of similar 
accuracy was achieved. This simplified 
model has an R² of 0.41, compared to the 
R² of 0.44 for the model with all features 
(discussed later in this chapter), indicating 
only a slight improvement. The model 
with only two features is less complex and 
therefore more efficient.

Feature importance
The Lden map, which includes the road noise 
contours, has the greatest impact on the 
model with an importance value of 0.58. 
The Parks map follows closely with a feature 

Figure 72 Residuals Plot Random Forest Regressor created with PyCaret library, by author

importance of 0.42. Both maps exhibit a 
comparable level of influence on the input.

Optimizing the random forest regressor
to improve the accuracy of the model these 
parameters were adjusted: the maximum 
depth of the trees & the minimum number 
of samples required to be considered a leaf 
node. Specifically, the maximum depth of the 
trees was set to 6, controlling the maximum 
number of levels within each decision tree. 
Additionally, the minimum number of 
samples required to be considered a leaf 
node was set to 3, refining the granularity 
of the tree’s decision boundaries. These 
parameter modifications aimed to optimize 
the model’s performance by balancing 
complexity and generalization, ultimately 
leading to improved predictive accuracy.

The prediction model was tested on the 
locations where the surveys were taken, 
to be albe to reflect on the performance of 
the prediction model. The Russels square 
location was investigated, it has all the 
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Figure 73 Feature importance graph, by author

Figure74 Regressor Plot for link between Lden and pleasantness, by author

elements present in the prediction model: 
variety in buildings (openness), trees, parks 
and a fountain.

Behaviour of variables
As seen in Figure 74 the Lden has the most 
influence on the rnadom forest regressor. This 
aligns with the exsiting data. One interesting 
thing to note is that the relationship between 

Metric Value
Mean 
Absolute 
Error

0.26

Mean 
Squared Error

0.1

Root Mean 
Squared Error

0.32

R-squared 0.41

the pleasantness and the Lden does not seem 
exactly linear. 
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Testing models, with different inputs
For the prediction models a variety of inputs 
was tested to see their results. The features 
were tested on their own to see how well 
they can predict the pleasantness from the 
dataset. The amount of estimators was 2000. 
It was found that for multiple combinations 
of features increasing the amount of 
estimators did not increase the preformance 
of the prediction model in terms of 

Key Findings
The graph shows feature combinations 
and their respective importance values as 
determined by the Random Forest Regressor. 
The R-squared shows how much of the 
variance in the model can be explained by 
the model. Here, PARKSDISTAN (distance to 
parks) appears prominently in many feature 
combinations with high importance values.

High Importance of proximity to parks:
PARKSDISTAN appears in the top four 
features with the highest importance 
value (0.42), both individually and 

in combination with other features. 
This suggests that proximity to parks is a 
crucial factor influencing pleasantness.

Synergistic Interactions:
Combinations like proximity to parks & 
Average View Distance (AVD) or Visible Sky 
(VS) also have high importance values (0.42).
This  indicates that the interaction between 
those varaibles enhances the model’s 
predictive  power.

Complex Interactions:
More complex combinations, such as 
Parks, Lden & AVD (0.42) and Parks, Lden & 
VS (0.40), still maintain high importance. 
These suggest that noise levels and visibility, 
when considered along with proximity to 
park, play a significant role in influencing the 
target.

Notable Single Features:
treesvisibi (visibility of trees) has a substantial 
importance value of 0.40, highlighting its 
individual impact. This is remarkable, because 
it contrast with the statistical analysis.  

Figure75 Residuals Plot Random Forest Regressor created with PyCaret library, by author
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Figure 76 Maps created using prediction models. Top righ: Parks (R2 = 0.42), Top leftt: Parks & AVD (R2 = 0.42), bottom 
right Parks and Lden (R

2= 0.41,discussed in previous section), Bottom left: Parks, AVD and Lden (R
2 = 0.42)

Single features like visible sky (0.37) and 
AVD (0.36) are also noteworthy but less 
critical compared to their interactions with 
PARKSDISTAN. In this urban context higher 
amount of open spaces often are parks, so 
that could explain why this overlap is there.

Impact of Road Noise:
The Lden map shows lower importance 
individually (0.24) but is significant when 
combined with other features. This implies 
that while Lden alone might not be a strong 
predictor, its interaction with other factors, 
such as distance and visibility, is significant.

Less Important Features:
fountainsvi (visibility of fountains) 
has a lower importance value (0.29) 
and its combinations with other 
features have moderate importance. 
This suggests that fountains’ visibility is a 
less critical factor in comparison to park 
distance, Lden, and tree visibility.

Conclusion
The analysis highlights that PARKSDISTAN 

is a pivotal feature, both individually and 
in combination with other features, in 
predicting the target variable in the Random 
Forest Regressor model. The interactions 
between PARKSDISTAN, visibility, AVD, 
and Lden significantly enhance the model’s 
predictive capabilities, demonstrating the 
complexity and interdependence of these 
environmental factors.

Generated maps
Figure 76 displays several maps produced 
using the machine learning models, on 
the location of Russel’s square in the 
dataset. The process of this visualization 
step will be elaborated upon in the next 
chapter. The map generated using only the 
proximity to parks as an input feature shows 
signs of overfitting, evident from the very 
localized changes in the raster. However, 
incorporating additional features appears 
to mitigate this overfitting. Comprehensive 
maps for all prediction models are provided 
in the appendix.
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Prediction model
This is the Random Forest Regressor that has 
been used in the prediction maps in further 
chapters of this project. This prediction 
models includes the process features of the 
buildings, roads, parks, trees, and fountains.  

Feature importance
Feature importance analysis helps identify 
which features (or variables) in a dataset have 
the most influence on the target variable (in 
this case, soundscape pleasantness). 

In terms of feature importance for the RF 
regressor figure 77 shows the result. The Lden 
map that is created to simulate the road noise 
has the highest variable importance. After 
that the distance to parks becomes more 
important. The third feature in importance 

is the average view distance. This could be 
related to the sound propagation in narrow 
vs free field situations. The model has an R2 
of 0.43, sothe model can explain 43% of the 
variance in pleasantness

Figure 77 Feature importance Random Forest Regressor created with PyCaret plugin, by author

Metric Value
Mean Absolute 
Error

0.25

Mean Squared 
Error

0.10

Root Mean Squared 
Error

0.31

R-squared 0.43
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Figure 78 The residual plot (top) and the regression plot (bottom) of the Random Forest Regressor, by author
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Discussion
Not a lot of research is done where the 
soundscape pleasantness is predicted using 
urban design elements. This chapter looked 
at different models and ways to predict 
the soundscape pleasantness and made a 
choice for the best performing model. 

Through analysis from the python library 
PyCaret, implementing the best working 
models in QGIS, and using ML model 
optimization strategies, the Random Forest 
Regressor gave the best results for this 
dataset. The ML model achieves an R2 value 
of 0.4, indicating that 40% of the dataset's 
variance can be explained by the inclusion 
of objects in the physical environment.

Roads and visible sky percentage
The model struggles to accurately 
predict areas with both low visible sky 
percentages and high Lden levels, contrary 
to expectations set by literature. Typically, 
lower pleasantness is expected in locations 
with high traffic noise and limited visible sky 
according to Silva et al. (2017). One possible 
reason for this mismatch could lie in the 
dataset itself. The majority of locations in 
the dataset are places, where the visible sky 
percentage tends to be notably high.

Upon examining locations with the highest 
Lden levels, this trend becomes clearer. Take, 
for example, "Camden Town", situated at a 
bustling intersection of five roads. Camden 
Town is after the Euston Tap location 
the worst ranked location in terms of 
pleasantness with an average of -0.10. This 
location is the only location that is more 
than 200 meters away from a public park, 
and other greenery is barely present. 

The location has high Lden levels, and a high 
average view distance. This can be attributed 
to the broad roads designed to facilitate 
traffic flow, enhancing the view distance for 
observers at the crossroad. In the prediction 

map you can see that at the crossroad 
where the datapoints are situated the color 
of the prediction grid aligns with the colors 
of the predictions. This is the location in 
the dataset which had to most negative 
review. The prediction model had a bit more 
extreme negative prediction in this place. 
It is interesting to see what happens right 
outside of the junction. There the predicted 
soundscape becomes suddenly very 

Figure 79 Prediction model used on location 
CamdenTown (top) and corresponding Lden map 
(middle) and Average View Distance (AVD) map 

(bottom), by author
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Figure 80 Prediction map 
for Russel’s square (top), 
and Lden map (middle), 
and Average View distance 

(bottom) by author
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positive. Even when the Lden is still very high. 
This is likely a result of overfitting, because 
these types of situations are not available in 
the dataset. 

Figure 81 Created prediction map for location Euston 
Tap (top), corresponding Lden map (middle) and 

Average View Distance (AVD) map (bottom), by author

Similarly, "Euston Tap," another heavily 
trafficked spot with elevated Lden levels, also 
has a high average view distance. In contrast 
with the Camden Town location there is 
some greenery in the form of a park nearby.  

Figure 62 shows how the high Lden, leads to a 
lower pleasantness score. The other strong 
outline here is the average view distance 

map. Once the Lden steps down from the 
most extreme value, The AVD has a positive 
effect where the AVD is the lowest, and has 
a negative effect when the AVD has a more 
average value.

In contrast, “Russell Square,” though 
experiencing moderately high Lden levels, 
garners a better pleasantness score. This 
is likely due to its central fountain and 
surrounding greenery, which provide visual 
and acoustic buffers against traffic noise. 

The predictions in this location seem more 
logical. Except from the busy street in the 
right lower corner, which is a street with a 
high Lden, but the predicted pleasantness 
becomes very high. 

Significantly, the dataset lacks instances of 
locations with low visible sky values, often 
found in narrow streets, which also have 
high Lden levels. This gap may contribute to 
inaccuracies in the model’s predictions for 
such areas. To enhance the model’s accuracy, 
future research and data collection efforts 
should encompass locations with different 
urban characteristics.

The Regents park fields location is one 
of the most positively rated places in the 
dataset with a mean pleasantness rating for 
this location of 0.50. Here the pleasantness 
score seems more aligned with the statistical 
analysis as well. One this to note is that trees 
may have a negative impact., when there is a 
small amount of them.

To what extent does the prediction actually 
reflect reality?

In places similar to the dataset, at a similar 
time and for a similar demographic, these 
predictions could be quite accurate. 
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Figure 82 Prediction map 
for Regents Parks Fields 
(top), and Lden map 
(middle), and Average 

View distance (bottom) by 
author
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Other, less successful attempts
Several methods were tested for the 
prediction model, including spatial 
regression methods. 

Taking averages per location
Lavandier et al. (2016) saw in the Cart_ASUR 
project an improvement from r2=0.58 to 
r2=0.89, when reducing the dataset to the 
averages per geographical location, for the 
prediction model. This method appeared 
promising. However, in our context, it did not 
yield the expected results. This discrepancy 
may be due to the uneven distribution of 
respondents across locations, with some 
sites having over 100 respondents and others 
only one. When averaged, these locations are 
given equal weight in the machine learning 
model, which is problematic. Locations with 
more respondents provide more reliable 
predictions because averaging across a 
larger sample size mitigates individual 
differences. Conversely, locations with fewer 
respondents are less reliable.  Averaging 
each location reduced the dataset from 
880 to 111 datapoints, with only half of the 
locations having two or more datapoints. 
This did not create an accurate machine 
learning model. 

Regressions in QGIS

 

Figure 83 First attempt in multiple linear Regression in 
QGIS, by author

Multiple linear regression combines the 
effects of multiple linear regressions. This 
was not used because of high prediction 
errors. 

Regression Kriging in QGIS

 

Figure 84 Regression Kriging map created using the 
SAGA plugin prediction pleasantness from the Lden 

map , by author

The Kriging regression was tested but not 
chosen due to its limitation of accepting 
only one input variable, which in this 
example was the Lden map. The regression 
was implemented on a smaller subset 
comprising 671 samples, predicting 
pleasantness. The resulting R-squared 
value was 0.29, indicating a moderate 
level of explanatory power. However, the 
standard error was relatively high at 0.38, 
suggesting considerable variability in the 
model’s predictions. Moreover, the sum of 
squares values (SSR = 38.7, SSE = 96.7, SST 
= 135.7) and mean squared error (MSE = 
0.14) highlighted the model’s limitations in 
effectively capturing the variation in the data. 
The high F-statistic value of 267.8 indicated 
that the model was statistically significant. 
One of the reasons for this could be that the 
data points are in groups that are not evenly 
spaced throughout the map. It can be useful 
when there is a spatial autocorrelation in the 
residuals of the regression model, so nearby 
locations have similar errors. These errors 
could be due to omitted variables, here the 
variables for the average view distance and 
the proximity to parks are not used as input, 
because the software limits this. These could 
explained those spatial errors. It could also 
be the case that this model mis-specifies 
the relationship between the predictors and 
the target variable. The performance of the 
model demonstrates effectiveness; however, 
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a notable limitation arises in its inability to 
retain the regression for application to new 
designs. Although the built-in functionalities 
in QGIS facilitate the creation and immediate 
visualization of spatial regressions, they 
lack the options for predictive applications. 
This constraint underscores the need for a 
framework that not only generates spatial 
regressions but also enables their storage 
and reapplication to novel designs, thereby 
enhancing the model’s utility and scalability 
beyond initial visualization.

SVM in QGIS smart maps
The Smart Maps plugin for QGIS, employs 
a support vector machine and ordinary 
kriging, Despite achieving an R-squared 
value of 0.37 and an RMSE of 0.343, its 
utilization was deemed impractical due 
to similar constraints as the regression 
kriging model, in applying it to new designs. 
However the way the interface works could 
be an inspiration for developping the design 
tool in this research. 

 
Figure 85 Table for the SVM pleasantness predictions 
vs real values from Smar tMaps plugin, by author

Multiple linear regression (MLR) model
The MLR model based on the  perceived 
presence of sound source types, with this 
formula. Knowing from the dataset which 
sound sources are perceived to be present, 
the pleasantness can be calculated, with an 
R2 = 0.35. This cannot be recreated for new 
designs. 

Pleasantness = 0.477 + 0.115 * Natural - 0.09 
* Traffic - 0.08 * Other Noise - 0.03 * Human 

Figure 86 Prediction map created using the Smart Maps machine learning prediction in QGIS, by Author
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Maps with Single Feature Input
These maps are generated from Random 
Forest regressor models using only one 
feature as input. All maps can be found in 
the appendix. The models for parks, trees, 
sky visibility, and average view distance 
were relatively successful in prediction, 
with R2 values of 0.42, 0.40, 0.37, and 0.36, 
respectively. However, these models appear 
to be prone to overfitting, as indicated by 
the rapid, non-linear changes in prediction 

values. The models for fountains and the 
Lden map for traffic noise performed worse, 
with R2 values of 0.29 and 0.26. This could 
be attributed to the lower number of input 
values for these features, making them less 
prone to overfitting but consequently less 
accurate.

Figure 87 Prediction maps created for Parks, Trees, AVD, Sky visiblity, fountains, and Lden, by Author
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Conclusion
The machine learning model achieves an 
R2 value of 0.43, indicating that 43% of the 
dataset's variance can be explained by the 
inclusion of architectural objects in the 
physical environment.

The features that are the most important for 
the ML model are the Lden map created for 
the roads and the map for the proximity to 
parks. This aligns with the findings of Chapter 
5 where these two factors also have a strong 
correlation with the perceived pleasantness. 

However, the model remains susceptible 
to overfitting and exhibits inaccuracies, 
particularly in areas where the dataset lacks 
representation. To address this, additional 
data could be incorporated, or alternative 
modeling approaches could be explored to 
enhance performance, like linear regressions, 
which are less prone to overfitting, but have 
a lower R2.

The chosen and testing prediction models 
are available at Github.
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Figre 88 Section from prediction map, by author
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Chapter 8 Visualization and Application 

Implementation in QGIS
A QGIS function / plugin, the Beyond Noise 
function, was created to incorporate the 
gathered data, does the ML predictions and 
creates a visualization of this data through a 
soundscape map. The Model Builder layout 
of the function is shown in Figure 90.

The prediction model was implemented 
by writing the python script for the model 
in the python editor for QGIS. For the  first 
implementation the LGBM model was 
selected, but upon further research the 
Random Forest Regressor was chosen. It was 
implemented using the points from the SSID. 
The outliers were removed (z=2). The model 
has an R2: 0.43. The input features are the 
buildings, roads, parks, trees and fountains.

Visualization
A grid is created and for each of the points 
in the grid the data on the parks, road, 
buildings and fountains is collected to 
predict the pleasantness with the ML model. 

Once every grid point has a prediction, it is 
visualized by creating a grid. In this chapter 
the locations in the dataset are visualized, 
to verify the prediction model with the data 
from the database. 

Colors
The maps use a color scale which goes from 
dark red to green-blue. The color palette 
draws inspiration from Lavandier et al.’s 
(2016) work, which identified these colors 
as both accurate representations and easily 
interpretable within the color scheme.

Choice of grid size
When choosing the grid size, the scale 
paradox (De Jong, 2008) was used as a 
guiding measure. Grid size plays a crucial 
role in the calculation of the soundscape 
pleasantness index, with smaller scales, 
such as 1-5m grids, being recommended for 
comprehensive analysis. 

Utilizing larger grid sizes, such as 
neighborhood-level scales (e.g., 500m or 

Figure 89 Beyond Noise Plugin, by author
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1km squares), yields limited insights into 
the nuanced variations experienced across 
different locations. The perceived quality can 
change every few meters from streetcorner to 
streetcorner, depending on the presence of 
different sound sources and other elements 
in the context. The precision or granularity of 
the prediction will be removed when trying 
to predict 1 soundscape rating for bigger 
areas at a whole. 

Target audience
the target audience is urban designers 
involved in the urban redevelopment 
process. The tool is meant to be helpful in 
the preliminary stages of the design process.

How to use this tool
The Beyond Noise plugin can predict the 
soundscape pleasantness using the following 
spatial data. A polygon layer containing the 
buildings in the area, optionally including the 
height of the buildings. Parks must also be 
represented as a polygon layer. For the roads 
an Lden map created with the Noise Modelling 
plugin should be incorporated. Additionally, 
create a point layer featuring the fountains. 
Lastly, a point layer containing the locations 
of the trees is optional, with the tree height 
ideally included, but the default is set to 20m 
if not specified. Since the tool is trained with 
data in urban environments, it is advised to 
use this tool in similar applications. 

Sections
Sections can be a valuable tool in design, 
providing a 2D representation of the 
surrounding environment. A vertical cut, 
combined with the depiction of people, 
helps to identify scale and proportion 
(Chatel, 2019). 

Sections are created using Adobe Illustrator. 
The line indicating pleasantness is derived 
from map data using the profile section 
tool. Building heights are taken from the 
building map to outline structures in the 
section. Materialization is illustrated through 
a combination of Illustrator and Photoshop 
drawings, adhering to the style of landscape 
sections.

Figure 90 QGIS model builder model for preprocessing data (shown in figure 58) and the prediction and creation of 
the raster, by author
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strategies per location can be drafted. With 
this method it can be decided to place 
certain urban functions in certain places 
with the most fitting sonic environment.
Improvements, such as alternating the route 
of a busy road, can be motivated, by doing 
small scale tests with this tool. This method 
can also be used for creating policies. With 
using a prediction model soft criteria can be 
quantified and goals with these number can 
be formulated. 

District scale
Creating Soundscape maps for areas larger 
than a 300 m2 is discouraged, because the 
granularity will be removed when trying to 
predict 1 soundscape rating for large areas 
as a whole. However the prediction model 
can still be used to inform design decisions 
in this scale when used accordingly. By 
taking  small samples in different areas with 
the prediction model, their different qualities 
can be determined, and the scale paradox 
can be avoided. Different improvement 

Urban scales for soundscapes
There are 3 scales/ scale types where this tool 
can be applied. Based on the literature by de 
Jong (2008), three major design scales are 

Human experience
This scale is about the human perception 
of an environment, on one specific place, 
for example people sitting somewhere on a 
bench. On this scale changes in design can 
have a lot of impact on how people perceive 
their environment. Design changes on this 

scale are vegetation or adding fountains, 
which mask the effect of unwanted sounds, 
by introducing wanted sounds. A model is 
created where the value can be predicted for 
one single point

Building block / Neighborhood  scale
The impact here lies in the layout of the 
building blocks and how movement and 
contrast is created through them. People 
can understand the difference between 
different spaces and different times of the 
day. Routing can be an important aspect.

Although this research has mentioned the 
importance of urban morphology, this field 

has been explored more by other researches. 
Buildings shape, height, and façade 
materials can impact how people perceive 
their soundscape. The effects of design 
choices in these two scales can be easily 
informed by the design tool that is created 
for this framework.  On this scale differences 
with the buildingblock are clearly expressed.

identified that are crucial for soundscapes. 
These scales are not rigidly distinct, and 
effective urban design integrates and 
navigates through these various scales.
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Discussion
Soundscape predictions are not widely used 
outside of academia, this part of the research 
tries to bridge the gap between soundscape 
research and application to soundscape 
design. In this chapter of the research a 
plugin is created which preprocesses the 
data needed for the prediction model, 
and then creates the predictions using the 
random forest regressor. These predictions 
are then visualized using a grid in QGIS. This 
is an accessible way to interpret this data. 

User-friendliness
Creating Lden maps
One aspect of the process that isn't 
automated is the creation of the Lden map. 
Currently, this task is carried out using the 
WPS builder within the Noise Modeling 
plugin. However, since this tool operates in 
JavaScript, I have encountered difficulty in 
converting it into a Python script that can be 
integrated directly into the QGIS application. 
These maps had a strong correlation with 
pleasantness in the dataset, so leaving this 
step out seemed unlikely

In further expansion of this topic this could 
be elaborated upon. 

Computation time
Currently creating each map costs a few 
minutes, which may become a bottleneck 
when iteratively designing multiple 
scenarios. While the machine learning 
model's prediction phase is relatively fast, 
the slowest aspect lies in preparing the 
input data. Creating the input data for the 
average view distance is one of the most 
time-consuming parts. This could be sped 
up by using less directions, in which the 
model looks. However this reduces the 
accuracy of the model. Currently, the model 
examines 32 directions, but to enhance 
accuracy, doubling this to 64 directions 
is ideal. However, this enhancement was 

deferred due to concerns over increased 
computation time. Creating the tree map 
also is time consuming. Since this map is not 
an important data feature for the machine 
learning model, it could be left out entirely. 
Creating the Lden maps also costs some 
calculation time, however this is the most 
important feature in the ML model, therefore 
this should be kept. 

Leaving out layers
Currently all the urban design elements have 
to be present in the selected area to run the 
prediction, otherwise it will give an error. So 
leaving object types out, such as fountains, 
is not currently an option. 
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Conclusion
Overall a framework is created which uses 
computational tools to improve soundscape 
design A QGIS function  is created with basic 
geometrical inputs that uses a machine 
learning model to predict the pleasantness 
of the soundscape. All though there is room 
for some improvement, the created function 
works the way that was aimed for this 
framework

This predictions are easy to interpret, by 
the color labels, and can be used to iterate 
through design options and for making 
design decisions.

The created tool is available as python code 
at Github:  https://github.com/niroda01/
BeyondNoise To implement in QGIS. THe 
modelbuilder files should be placed in the 
modelbuilder folder of QGIS. The python 
scripts should be placed in the python scripts 
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Figure 91 Usage of tool on multiple scales

folder. Make sure that the trained model is 
loaded through the correct file path. 
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Chapter 9 Design proposals

This chapter introduces innovative design 
concepts aimed at transforming existing 
spaces. The initial focus lies in identifying 
areas with the potential for enhancing their 
sonic environment.

Site choice
The chosen site for redevelopment lies 
within the city of London, selected due to 
its notable threats and opportunities. The 
existing situation is an empty lot in between 
different buildings. Positioned next to a road 
with high levels of road traffic noise and 
situated at a considerable distance from 
urban greenery, this location emerged as 
one that has room for growth. Identified as 
one of the areas on the Camden Town plan 
map exceeding a 280-meter radius from 
publicly accessible green spaces, it holds 
promise as a potential site for creating new 
urban green public spaces (figure 19). 

 

Figure 93 Outlined location from Google Street View 
Images, by Google 

Project requirements
The objective entails revitalizing an 
undeveloped parcel of land nestled within a 
busy urban city center. The design involves 
increasing density, by adding building 
square meters while concurrently fostering 
the creation of communal areas. These 
spaces are envisioned to serve as inviting 
retreats, encouraging social interaction and 
leisure activities. Right now the soundscape 
pleasantness score is around 0. The goal is 

Figure 92 Outlined location from GFrom QGIS, by author
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to increase this as much as possible, with the 
tools available. 

Analysis of the predicted values.
Analyzing the data was simplified using the 
zonal statistics method to calculate various 
metrics such as mean, minimum, maximum, 
median, range, and standard deviation for 
each prediction. This method utilized a 
vector polygon delineating the open space, 
chosen consistently across designs as the 
focal area for analysis. The area is shown in 
figure75.

Baseline, existing situation (b0p0f0)
The prediction in the existing situation 
is presented in figure 75. The ratings in 
the middle of the square are around 0.12 
soundscape rating. The first action strategy 
in soundscape design is the localization 
of functions. From this viewpoint it could 
be argued that this is not a suitable site to 
create a public space, because of the lack 
of a positive soundscape. However with 
the soundscape pleasantness evaluation 
being above and around 0, It could be un-
wise to write the place off entirely . Rather, 
it presents an opportunity for potential 
improvement through targeted design 
modifications, suggesting the potential for 
a moderately positive soundscape with 
appropriate alterations.

Design Variations
Using this soundscape prediction model 
there are three main ways to alter the design. 
The first one is to change the building shapes. 
The second one is to add water features. The 
third one is add greenery. 

Baseline: Illustrates the existing environment 
devoid of any alterations.

Integration of Sound-Blocking Structures: 
Introduces the incorporation of a building 
block strategically positioned to mitigate 
noise pollution.

Introduction of Water Features: Envisions 
the installation of fountains to serve as 
tranquil auditory elements, effectively 
masking the din of nearby traffic.

Integration of Green Spaces: Explores the 
addition of parks and verdant landscapes 
to enhance aesthetic appeal and promote 
environmental sustainability.

Roadway Transformation: Considers 
the possibility of reconfiguring the busy 
thoroughfare to minimize its auditory impact 
and improve traffic flow.

Figure 94 Baseline (b0p0f0), prediction of soundscape pleasantness score using the prediction model (left) and 
section taken (right), by author

0

-1

1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8



106

These design permutations represent 
a comprehensive approach to urban 
redevelopment, prioritizing both acoustic 
harmony and public well-being.

Because the sound levels are so high, it is 
important to lower these limits first as this 
is the most impactful for creating a better 
soundscape environment. Using building 
volumes for this purpose proves efficient, as 
these structures are already planned, and the 
resultant spaces will be publicly accessible.

The first design iterations shown are varaition 
where only 1 urban design element is altered 
(Figure 85-88). Next a combination of design 
strategies is shown.
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Courtyard (b1p0f0) 

 

Figure 85 Courtyard (b1p0f0) predicted pleasantness, 
by author

Creating a u or o-shaped open space with 
buildings as shields significantly enhances 
the predicted quality of the area. Only using 
this strategy increases the pleasantness in 
the public space by 0.25 to 0.37, showing its 
effectiveness.

However, it's worth noting that areas closer 
to the street exhibit higher scores, possibly 
due to inaccuracies akin to those observed 
in Camden Town.

Half Open (b2p0f0)

 

Figure 86 Half Open (b2p0f0) predicted pleasantness, 
by author

In this design, the building shields against 
the adjacent busy road, albeit leaving the 
possibility for noise infiltration from other 
directions. The improvement is noticeable 
behind the building's "shadow" from the 
road, other areas are less improved, with 
the pleasantness score increasing by 0.14 
to 0.26. This approach proves less effective 
compared to the previous one.

Drops of sound (b0p0f1)

 

Figure 87 Drops of Sound  (b0p0f1) predicted 
pleasantness, by author

The adding water features only marginally 
improve the predicted pleasantness to 0.14 
with 0.02,. Given the Lden of 65 to 70dB, 
relying solely on fountains to mask the 
sound may not suffice

Parkour (b0p1f0)

 

Figure 88 Parkour (b0p1f0) predicted pleasantness, by 
author

Adding greenery also seems to have a very 
strong effect. Incorporating greenery to the 
existing scenario, had an overwhelmingly 
positive effect. The soundscape pleasantness 
increases to 0.27 on average, an increase of 
0.15.
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Combinations of strategies
Now we have seen the individual effects of 
the three steps. Building shape and adding 
greenery seemed to have a positive effect 
when applied well. Fountains did not seem 
to have a very strong effect. 

Buildings Variation 1 - The Green Courtyard 
(b1p1f0)

 

Figure 89 The Green Courtyard (b1p1f0) predicted 
pleasantness, by author 
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This variation had the highest score in terms 
of pleasantness. Incorporating greenery 
into the courtyard design, did not improve 
the models outcomes. The mean score 
remained 0.37, as in the ‘Courtyard’ design. 
Adding fountains lowered this number to 
0.35 (not shown in the figure).  The section 
below shows the average increase of 0.25 
quite clearly. 

Figure 90 Section of final design, by author
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Drops of Green Blue (b0p1f1)

 

Figure 91 Drops of green blue (b0p1f1) predicted 
pleasantness, by author

Incorporating fountains alongside greenery 
in this scenario did not enhance the overall 
pleasantness, as might be expected. The 
average score decreased to 0.26, lower 
than the previous 0.27 in design ‘Parkour’, 
suggesting a potential negative effect. This 
might be an issue with the prediction model 
itself.

Buildings Variation 2 - Masked (b2p0f1)

 

Figure 92 Masked  (b2p0f1) predicted pleasantness, by 
author

In this variation adding fountains to the Half 
open design concept, had a small positive 
effect. The score is 0.27, 0.01 more than in 
the ‘Half-Open’ design concept. This could 
be because the Lden is measured to be 
around 5-10dB lower than in the ‘Drops of 
sound design’. 

Enclosed green (b2p1f0) 

 

Figure 93 Enclosed Green (b2p1f0) predicted 
pleasantness, by author

Combining the two strategies of shielding 
from the road, and adding greenery resulted 
in a slightly reduced increase compared 
to their individual effects. Their combined 
score is 0.32. This represents  only a 0.06 
increase from the ‘Half Open’ design (0.26), 
indicating the effect of adding greenery. 
Similarly it shows only a 0.05 increase from 
design ‘Parkour’ (0.27) which should be the 
effect from using the buildings as a shield. 

The Barrier: Sound centered (b2p1f1). 

 

Figure 94 The Barrier: Sound centered (b2p1f1) 
predicted pleasantness, by author

Again the effect of adding fountains seem 
to have little to no effect. Combining the 
three strategies did have a good impact on 
the overall soundscape pleasantness score, 
reaching a score of 0.31. It is slightly lower 
than the ‘Enclosed green’ design with 0.3, so 
the fountains had a slightly negative effect. 
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Discussion
This part of the research shows a practical 
application of the function that is created, 
and shows how new designs can be 
predicted with this tool as well. 

The building shape seems to have a big 
impact as well as the addition of greenery.  
The buildings shape is used as a sound 
shield to decrease the presence of traffic 
noise in the public area. 

Adding fountains has very little effect in this 
design program. This could be because of 
the lack of fountains in the dataset. 

Changing road traffic intensity is an 
important tool for urban designers to control 
traffic noise. Right now practically changing 
the road type in the program is challenging. 
This takes extra time to change, and also 
extra computing time. In a better version this 
could be integrated into the program. 

The maximum increase in average 
pleasantness core is 0.25, from 0.12 to 0.37. 
While seemingly modest, this increase 
represents an eighth of the entire range of 
pleasantness. However, replicating the very 
high pleasantness scores observed in park 
settings far away from the periphery of the 
park, within the dataset proved unfeasible 
due to space limitations. This amount of 
greenery could not be recreated on this scale. 
The highest average score in the dataset is 
0.66, which is Regents Park Japan, in the 
middle of a very big park, away from city life 
in London. It has a similar score to the Tate 
Modern, and St Paul’s Cross locations, with 
0.38 and 0.36 respectively. 

Furthermore, even in the optimal design, 
traffic noise remains around 50 dB. To 
enhance comfort, reducing this noise level 
is imperative. Yet, achieving this balance 
requires careful consideration. In this design 
the choice was not made to make it more 

closed off, as it might not be perceived 
as publicly accessible, and possibly be 
perceived as unsafe. Removing the service 
road traversing the area could potentially 
alter the dB levels and improve overall 
comfort. The mean value is used to give 
an overall impression of the soundscape 
evaluation. 

Using this in urban design
This design is shown on a building block 
scale. To interpret the data effectively, a 
new function is created which calculates the 
mean values per design. Other values from 
the grid were also calculated, such as the 
minimum and maximum values in he grid, the 
range and the standard deviation. however 
these values did not change significantly 
throughout the design steps so they are not 
mentioned in the steps. The total evaluation 
can be found in the appendix.

Setting targets

 

Figure 95 Setting targets taken from Mitchell (2022)

Mitchell (2022) talks in their research about 
how the pleasantness can be used to set 
targets in urban design. So improving it 
from an xx number to another. This model 
also takes into account the Eventfulness. In 
this research this dimension of soundscape 
experience has not been taken into account, 
but it could be important in communicating 
designs. 
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One other thing that this prediction model 
does not take into account is the distribution 
of responses. It predicts the average 
pleasantness as perceived by the general 
public. However in the statistical analysis 
it is shown that some places have a higher 
variability in responses than others. Mitchell 
(2022), proposes that design goals could be 
formulated such as ‘the soundscape should 
be likely to be perceived as pleasant by at 
least 75% of users’. This is something that 
the current prediction model is not able to 
show. And even though this can lead to new 
insights, showing the mean of a location 
makes comparisons easily to investigate. 

The impact of design strategies 
It is unclear whether urban designers with 
no background information would apply the 
model according to the strategy described 
here. The designs drawn here we done by 
myself, having background knowledge on 
soundscapes. Therefore a short information 
piece should be included on the effects of 
each urban design element. 

Conclusion
In conclusion, the tool successfully 
generated multiple predictions for 
soundscape pleasantness across different 
design variations. These predictions provide 
a basis for analysis and evaluation, guiding 
the subsequent steps in the design process.

There are some areas where there is room for 
improvement, for example the computation 
time or ease of use.
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Soundscape Design Tool Guide

The created tool is available as python code 
at Github:  https://github.com/niroda01/
BeyondNoise.

To implement in QGIS. THe modelbuilder 
files should be placed in the modelbuilder 
folder of QGIS. The python scripts should be 
placed in the python scripts folder. Make sure 
that the trained model is loaded through the 
correct file path. 

Choose the right projection! 
The projection should be the same for all 
files in QGIS to avoid misplacement. The 
projection type should be in meters not 
degrees. The default crs from QGIS (4326)
should be avoided. This is in degrees. For 
London the projection 3857 was used. 

Load & process all layers
The layers Buildings, Parks, Trees, fountains 
and Roads can all be loaded from the OSM 
plugin QuickOSM. These are in the CRS: 

4326. Make sure to reproject them within 
QGIS. These layers can then be altered to fit 
the new design. For the design all the objects 
of the same sort have to be in the same layer. 
For example: if a park is added make sure to 
combine this object with a file with all the 
existing objects. 

Create the Lden map with the NoiseModelling 
plugin.Follow the steps available at here.
Create the Parks map using the parks 
modelbuilder script.

Create and Train ML model (optional). 
Use the ML_script_05.py as a guide,  Available 
at Github. Load in the datapoints from the 
survey. Make sure the added information 
of the layers is there. The trained model 
can be saved to the device. The prediction 
models uploaded to the github can be 
used as well. If you want to create your own 
prediction model, statistical analyis and 
testing is advised to validate the results of 

Figure 96 Outlined location from GFrom QGIS, by author
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the predictions. 

Create prediction raster
With the created script in modelbuilder the 
prediction raster can be created. Make sure 
that the modelbuilder file is in the right 
folder. Use the vector files you have as input. 
If you created your own prediction model, 
make sure the data is preprocessed in the 
same way as the training data. Creating your 
own modelbuilder file for the preprossecing 
is helpfull for this.

Creating the sections
The sections were created with the help of 
the section profile plugin in QGIS, and by 
adding visuals in Illustrator. The profile of 
the prediction raster is taken as well as the 
building height.

The building height is use to create the 
building outlines. Add the roads and 
parks as line below the section to show 
materialization. Adding trees also gives a 
better sense of materiality. Adding people 
and cars help with giving a sense of the 
human scale. 

The color scale is added to the pleasantness 
line to communicate the values better. Use 
the color scale as image in the background 
and use the line as a mask. 

Design iterations
For new designs new layers should be 

created. With the raster and section tool the 
differences in the predicted pleasantness 
can be shown. 

For the design iterations the three design 
action stratigies should be taken into 
account: Localization of functions, reduction 
of unwanted sounds and introduction of 
wanted sounds. 

Reducing unwanted sounds can be 
done using shielding from noise sources. 
Introducing natural elements such as 
greenery and fountians can have a positive 
effect. Fountains can be great for masking 
traffic noise as well. 

Figure 97 Section of russelsquare, created by Author
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Chapter 10 Discussion

Despite its importance, in urban design the 
incorporation of sound is often overlooked. 
One cause of this is a lack of availability 
of information about soundscapes. This 
research aims to address this oversight by 
proposing a framework for a computational 
design tool which assesses the impact of 
design choices on the soundscape.

While environmental noise, such as traffic 
noise, poses significant public health risks in 
urban settings, including noise annoyance 
and sleep disturbances, focusing solely on 
its negative aspects disregards the potential 
positive effects of sound. The concept of 
the soundscape broadens this perspective 
by considering the perception of all sounds 
and their influence on individuals and their 
surroundings.

This research created the framework for 
a design tool for soundscape design. The 
tool consists of a prediction model that 
can predict the perceived pleasantness of 
the environment, based on urban design 
elements. The tool is user-friendly, with 
simple inputs, and therefore accessible for 
designers with no background in soundscape 
design. Some additional information on 
soundscape design can be provided. 

A Random Forest regressor was employed 
to develop the  prediction model capable 
of assessing soundscape quality at specific 
locations. Utilizing data from the International 
soundscape database alongside additional 
georeferenced information sourced from 
OpenStreetMap and other databases, the 
research analyzed the impact of various 
urban design elements, including roads, 
buildings, and parks, on perceived acoustic 
pleasantness. Subsequently, the prediction 
tool was developed for potential application 
in future urban design projects.

The random forest regressor achieves R2 = 
0.43, indicating that 43% of the dataset’s 
variance can be explained by combined 
effect of the urban design elements in the 
physical environment. 

The Smart Maps plugin (Pereira et al., 
2022) is an open source plugin which uses 
machine learning techniques and ordinary 
kriging for digital mapping. It was developed 
for mapping soil attributes. This tool worked 
quite well in the prediction and interpolation 
on the dataset in the existing situation (R2 = 
0.37). However this prediction model could 
not be applied to new designs. 

Other studies have tried to predict 
the soundscape quality from different 
predictors. Lavandier et al. (2016) tried 
predicting soundscape pleasantness from 
georeferenced data. About 68% of the 
variance in pleasantness could be attributed 
to this georeferenced data. In this study 
linear regressions were used. This study 
had a bigger data set of 1800+- rows, which 
averaged out to 89 locations. An increase in 
quality of the data could improve the results 
of this research as well. 

The most important feature in the prediction 
model, created from the random forest 
regressor is the Lden map created from OSM 
data. The second most important feature is 
the proximity map for the parks. Lavandier 
et al. (2016) found that Traffic noise has 
the biggest impact, with gardens coming 
second, aligning with the findings in this 
research. 

The dataset in this research, when averaged 
per location has a very strong positive 
correlation between the presence of natural 
sounds and pleasantness and a very strong 
negative correlation between Traffic noise 
and pleasantness. Hong and Jeon (2017) 
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used a geographically weighted regression 
to predict Soundscape Quality. The data is 
taken from 125 sites. They collected data on 
the perceived presence of Human, Traffic, 
Water and Bird sounds, with R2 = 0.70. This 
correlation is similar to the correlations 
done in the statistical analysis. The dataset 
of Hong and Jeon (2017) is bigger and has a 
more diverse set of places, compared to the 
dataset used in this research. The locations 
in this study are also evenly placed on a 
grid, unlike thedataset used in this thesis. 
This correlation found in the study of Hong 
and Jeon (2017) is high, but does not take 
into account urban design elements or 
georeferenced data. 

Hong and Jeon (2017) also did some research 
on the morphological characteristics of 
spaces with different functions. Respondents 
in these places can have different 
expectations which can lead to different 
ratings for the soundscape design. This is 
something that is not taken into account 
in this thesis. Since 11/13 of the locations 
are an urban park, this was not possible to 
research with the current dataset. With other 
data this could be a potential next step, to 
improve soundscape design, also in relation 
to one of the three action categories from the 
soundscape design strategy: the localization 
of functions. 

Cerwén’s (2017) soundscape design strategy, 
has three different types of actions. This 
strategy was developed also to be used 
as a design tool in urban design, and fits 
very well into the design tool framework 
created in this thesis. The abstraction to 
the three categories was very helpful on 
deciding which features to include in the 
machine learning model. With the urban 
design elements of the roads and parks, the 
presence of unwanted and wanted sounds 
are modeled. As expected also from previous 
literature these were the two most important 
features for the prediction model. 

The action category of the localization of 
functions, was not directly related to the 

input of the machine learning model, namely 
the strategy action of creating contrast and 
variety. There was no part of the machine 
learning modeling that takes into account 
the effect that the surrounding soundscapes 
have relating to the current soundscape. 
However it could be argued that the 
responses given in the dataset consciously or 
subconsciously already have taken this into 
account when filling in the survey. Despite 
the fact that it was not explicitly modeled 
in the prediction model, this is discussed in 
the section on how to apply the design tool. 
Adding contract or variety is something to 
take into account in the biggest (and second 
biggest) of the three urban scales discussed 
in De Jong (2008). 

Limitations
Dataset and Design
The dataset recorded various factors, 
including pleasantness, at different 
locations. However, it does not account for 
changes in public spaces that can influence 
the soundscape. Incorporating this aspect 
would be an intriguing approach for design 
applications, and further validate the created 
framework.

COVID-19 Lockdown data
Data collection for the International 
soundscape database was repeated during 
the COVID-19 lockdown in the spring of 2020. 
This thesis excludes this data because only 
acoustic data is available and no information 
on the pleasantness, and it is not considered 
an accurate representation of the current 
urban environment. However, the impact 
of the lockdown on soundscape within this 
dataset has been studied by Mitchell (2022). 
They developed a ML model based on 
pyscho-acoustic factors that can predict the 
pleasantness R2=0.85, and eventfullnes R2=-
.72. These coefficients represent the model’s 
ability to predict the overall response at a 
given location, averaged across all responses 
for that location. The model that is created 
is not generalisable, and only works on the 
LocationIDs in the dataset. The study found 
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that Sound level reduction does not always 
lead to increased pleasantness. What is most 
important are the sound source composition 
and the sonic character. 

Quality of the dataset
These are limitations of the dataset that 
is used in this research. Even though the 
dataset is very extensive and contains most 
of the information that is needed for the 
experiment in this master thesis, there are 
some limitations to the dataset that require 
to be mentioned. The size of the dataset, 
in regards to dataset to train an machine 
learning model, is on the smaller side with 
only 1300 respondents. The locations in the 
dataset are limited to 13 locations in 2 cities, 
which are not very diverse in character, 
where 11/13 are located in parks in an 
urban environment, and 2/13 are located 
near a busy road. As a result in 11/13 of 
the locations the average response was 
positive. The accuracy of the coordinates of 
a selection of the datapoints was deemed 
inaccurate, because of their positioning in 
water, or inside buildings. These points were 
taken out of the dataset.

Figure 98 Datapoints that are taken out because of 
faulty placing,  Made in QGIS with OpenStreetMap 

background, by author

The data mostly represents young people, 
without hearing impairments, having their 
lunchbreak in a park that is located in 
London. The collection of survey responses 
was mostly done between 11 am and 2 pm. 
This might not reflect the temporal varieties 
during the day. The age of respondents in the 

dataset is on average mostly young adults. 
This might not be representative of the 
population as a whole. In terms of inclusivity 
and accessibility, it would be better to 
question a broader age group. Because for 
example elderly people, can experience 
soundscape differently from their younger 
peers. To truly characterize the soundscape, 
long-term monitoring would be needed.

With a small dataset, like the one used in 
this research,  there are things to consider 
to ensure the validity  and accuracy of the 
predictions of the machine learning model. 
Firstly removing outliers is very important 
in small datasets. Otherwise they weigh too 
heavy in the predictions. Secondly with small 
datasets models are prone to overfitting. 

In the dataset there is a lot of variation on 
the perceived pleasantness of the acoustic 
environment even when respondents are 
in the same environment physically. The 
statistical analysis shows that on average 
per location there is a strong correlation 
with the types of sound sources and how 
pleasant the environment is perceived to 
be. However within the same exact location 
variation of the perceived pleasantness can 
be very large. Human perception inherently 
will vary from person to person Therefore 
errors in the machine learning model will be 
inevitable. 

Quality of the added data

Figure 99 the trees datasets combined, by author

Within the dataset, with its modifications, 
there are also some limitations, that could 
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impact the accuracy of the model. Materiality 
is not included in this dataset becaus of a 
lack of information available. Limitations 
concerning building data include the 
absence of precise building height data. 
From the building data, also information is 
missing, that could provide insights, such 
as the façade materials. For the road data, 
the Lden map is an approximation based on 
the road types in the road data from OSM. 
However in this case the Lden from the Noise 
Modeling Plugin correlates strongly with the 
existing Lden maps, which are also simulated. 
Several limitations are evident in the datasets 
for trees. Firstly, there are gaps in tree 
coverage within the OSM dataset, indicating 
incomplete representation. Secondly, due to 
the absence of height information for trees, 
a uniform height assumption of 20 meters 
is applied across the dataset, potentially 
introducing inaccuracies. Additionally, the 
discrepancy between trees identified in 
OSM and those documented in the London 
database suggests a lack of alignment 
between the two datasets, raising minor 
concerns about their overall validity and 
reliability for comprehensive analysis and 
decision-making. The limitations of using 
OSM data for parks include the absence 
of information regarding the quality or 
attributes of the parks themselves. The 
dataset exhibits a notable scarcity of 
fountains, and lacks information regarding 
the quality or characteristics of these 
fountains as sourced from OSM.

Machine learning model inaccuracies
The machine learning model that was 
developed was a random forest regressor. 
The model works quite well (R2= 0.40). 
However in some places the predictions 
seemed inaccurate. From the literature it 
was expected in places with a high Lden, 
a lower SVF, and subsequently a lower 
average view distance (AVD), would create a 
more negative prediction. However in some 
places, where green seems to be absent, it 
seemingly has the opposite effect. However 
this relation between the AVD and the Lden is 

assumed in the literature and not reinforced 
by examples in the dataset. Having a dataset 
including these kinds of instances could 
improve training the model. 

Figure 100 Prediction model used on location 
CamdenTown (top) and corresponding Lden  map 

(bottom), by author

Application as a design tool
The user-friendliness of the tool was an 
important factor in this research. The 
creation of the Lden maps however is 
not integrated into the tool, but has to be 
done separately. The computation time is 
also something that should be balanced. 
The predictions themselves are not taking 
a lot of computation time. However the 
preprocessing of the urban design data takes 
a few minutes. To improve this, the trees 
visibility layer could be left out, because 
currently the processing time of this data is 
relatively high and the feature importance of 
this input is very low. 

The prediction model predicts the average 
perceived pleasantness of a location’s 
soundscape. However, it overlooks the 
variability in responses across different 



118

places, as highlighted by Mitchell (2022). 
Mitchell suggests formulating design goals 
to ensure that a significant majority, such as 
75% of users, find the soundscape pleasant. 
The prediction model lacks the capability to 
illustrate such variations. 

Extending this framework to other 
datasets can make the framework usable 
in broader applications and more diverse 
urban environments. When applying this 
framework to other datasets, it’s important 
to pay attention to a few factors. The steps 
taken in this research are firstly statistical 
analysis, within the dataset, and also with 
the modified dataset. This way patterns 
in the data, and lack there off can emerge. 
OpenStreetMap (OSM) data for the urban 
design elements is publicly available 
worldwide, however it’s good to check the 
validity of this data. In this research the 
data layer with trees from OSM seemed 
inaccurate. This should be checked for every 
layer. Removing outliers per location did 
improve the prediction model in this process, 
and checking the validity of datapoints. 

Currently all the urban design elements have 
to be present in the selected area to run the 
prediction, otherwise it will give an error. So 
leaving object types out, such as fountains, 
is not currently an option. This decreases 
the transferability to other designs. The work 
around this was to put in these places where 
the calculated value would not count towards 
the average, so behind or ‘inside’ buildings, 
for fountains. For parks it is advised to do a 
similar thing. When the building height is 
not in the column the model expects it to be 
the height will be set to 0, In further research 
this should be optimized to increase the 
robustness of the design tool. 

Further research steps
Future directions of this research could 
include looking at other regression models, 
like regression kriging, to see if there are any 
improvements there. Another interesting 
approach is image segmentation. Research 
could be done to see if this will yield better 

results.

Collecting Additional Data 
To ensure the model minimizes overfitting 
and achieves high accuracy and predictive 
power, robust data collection practices are 
crucial. This includes gathering a large and 
diverse dataset across various urban settings 
and conditions. Implementing cross-
validation techniques during model training 
can further mitigate overfitting. Ensuring 
the dataset is balanced and representative 
of different scenarios will also enhance the 
model’s generalizability. Additionally, using 
feature selection methods to identify the 
most relevant variables can improve the 
model’s performance.  

To validate the framework, a new dataset 
could focus on locations where design 
changes have been implemented. Examples 
of such changes include adding a fountain 
or planting trees. Ideally, only one change 
should be made at a time to ensure that any 
differences in the results can be attributed to 
these specific changes.

Including various urban settings, such as 
narrow streets with high traffic density 
or tranquil public spaces shielded from 
traffic noise with low sky view factors, 
could improve the accuracy of predicting 
soundscape quality.

A point to further explore in soundscape 
design is the materialisation of the urban 
environment. Due to a lack of data, this 
aspect could not be included in the current 
regression model. However, materialisation 
is crucial for urban designers as different 
materials affect sound propagation and 
absorption. Future data collection should 
include detailed information about the 
materials used in urban environments, 
focusing on their acoustic properties, surface 
textures, and spatial distribution. This 
level of detail would enable more accurate 
soundscape models, helping designers 
create environments that better manage 
noise and enhance auditory comfort.
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In terms of accessibility and inclusivity further 
data collection could focus more including 
different ages groups, such as elderly.

Further research could also look into the 
impact of trees on the perceived acoustical 
pleasantness, even though in this research 
this did not give promising results. 

Exploring virtual reality (VR) as a research 
tool holds promise for refining the design 
tool framework. VR technology enables 
users to immerse themselves in modified 
environments, facilitating controlled 
experimentation with subtle alterations. 
Leveraging the dataset’s 360 images and 
sound recordings, VR-based data collection 
can be conducted to evaluate the impact of 
environmental modifications on perceived 
pleasantness.

Integrating other sensory experiences into an 
urban design tool could also be a next step 
in further research. This holistic approach 
could offer urban designers valuable insights 
into the overall sensory experience of their 
designs.Currently the machine learning 
model does not take into account that 
human experience can be relative, this could 
be interesting to study as well. 

Another interesting next step is using this 
tool in a parametric design workflow. This 
could be in a design optimization part of the 
design process.

Other next steps which are important for this 
research are increasing the user-friendliness 
of this tool by reducing the computation 
time and decreasing the complexity in using 
the tool. In considering further research, it 
would be interesting to explore adjustments 
to the input values utilized in generating 
the maps. Currently, these values strike a 
balance between maximizing prediction 
accuracy and minimizing computational 
time. However, for the tool to be practical for 
urban designers and planners, it’s essential 
to streamline the map creation process 
for new designs. If, for instance, analyzing 
a design iteration takes half an hour, the 

utility of the tool may be limited for its 
intended users. Finding ways to optimize 
this process without sacrificing prediction 
accuracy would be a valuable path for future 
investigation.

This research only included people perceived 
pleasantness of the acoustic environment, 
but not the eventfulness, even though 
this dimension is also widely discussed 
in soundscape research. A next step in 
to include this dimension as well. Other 
information to include in the data, would 
be of human sounds. This was not including 
in this research, because there was no 
correlation between the presence of Human 
sounds and the pleasantness. However it 
could correlate with the eventfulness.

The main takeaway from this study 
underscores the critical role of sound in urban 
design and its often overlooked significance. 
By developing a predictive model to assess 
soundscape quality in urban environments, 
this research highlights the potential for 
integrating sound considerations into 
future design processes. The study’s 
primary contribution lies in providing urban 
planners and designers with a practical tool 
for evaluating the impact of design choices 
on the acoustic environment, ultimately 
enhancing the overall quality of urban spaces 
and improving the well-being of inhabitants.
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Chapter 11 Conclusion

Problem statement
The importance of soundscapes in urban 
design is often overlooked. One reason 
for this is the lack of expertise from urban 
designers in the field of soundscapes. The 
framework that is created for the design tool 
for predicting urban soundscapes can help 
bridge this knowledge gap. 

To date, no research has focused on the 
applicability of soundscape prediction on 
new urban design. Focusing on this practical 
application could bridge the gap between 
academic findings and the applicability in the 
design world, which would be an important 
next step for the field of soundscapes.

Research and process
The following conclusions have been made 
after completing the research for this thesis. 

How can soundscape design, and urban 
acoustical comfort, be integrated in the early 
stages of the design process of urban (re)
development, in an accessible and intuitive 
way, without relying on the need of experts?

The biggest impact on the design can be 
made early in the design process. The earlier 
in the design process, the more flexible the 
design is and the bigger the impact of design 
choices will be later on in the process. 

Though developing a preliminary prediction 
model, the model was able to predict the 
pleasantness perceived by the respondents 
in the given dataset. This model used 
architectural elements in the physical 
environment  of the respondents as input. 

A Random Forest regressor was employed 
to develop the prediction model capable 
of assessing soundscape quality at 
specific locations. Utilizing data from 
the International Soundscape database 
alongside additional georeferenced 

information sourced from OSM and other 
databases, the research analyzed the impact 
of various urban design elements, including 
roads, buildings, and parks, on perceived 
acoustic pleasantness. Lastly the prediction 
data is visualized in maps and sections, to 
communicate this data to designers and 
other stakeholders involved in the design 
process. Subsequently, the prediction tool 
was developed for potential application in 
future urban design projects.

What is ‘good’ soundscape design?

Good urban design, and therefore good 
soundscape design has the aim of creating 
urban areas consisting of a high quality 
of life. Good soundscape design involves 
creating environments where the acoustic 
qualities contribute positively to the well-
being, comfort, and intended activities of 
individuals. It considers context-specific 
qualities, embraces positive auditory 
features, minimizes unwanted noise, and 
aligns with the preferences and needs of 
the community or users. Ultimately, a well-
designed soundscape enhances the overall 
experience and character of a space.

Reduction of unwanted sounds, such as road 
noise are important. From the data analysis 
it is found that from a Lden level of 60dB, the 
pleasantness is severely impacted. Reduction 
of unwanted sounds can be most effectively 
done by using buildings as a sound barrier. 
Van den Berg (2022) also analyzed building 
block shapes in regards to soundscapes and 
found that creating urban pockets created 
the most optimal soundscapes, while also 
creating a feeling of enclosure. This strategy 
step is relevant to the urban design scale 
of the building block or the neighborhood. 
This could be a urban design project where 
the building footprint, building lots and 
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functions are developed. The impact here 
lies in the layout of the building blocks and 
how movement is created through them. 
Although this research has mentioned the 
importance of urban morphology, this field 
could has been explored more by other 
researches. Buildings shape, height, and 
façade materials can impact how people 
perceive their soundscape. 

The introduction of wanted sounds, 
can mask or distract from the perceived 
presence of the unwanted sounds. In cases 
where traffic noise levels persistently high, it 
is recommended to incorporate a fountain 
within the urban area, masking the noise. 
Adding vegetation such as parks can invite 
natural sounds, such as birdsong, which 
ultimately people will find more acoustically 
pleasant, as well as visually. This strategy 
relates to the human/street scale, where 
soundscape design is the very important, 
because soundscapes are perceived through 
personal experience. 

On the bigger scales in urban design 
from district, to city to regional scale. this 
localization of functions can be realized. 
Urban design interventions such as land-use 
planning, street layout optimization, and 
the creation of pedestrian-friendly zones 
can help enhance the overall quality of the 
urban soundscape, in the places where it is 
the most meaningful.

Furthermore, it is important to propose 
methods to integrate these considerations 
into a broader holistic model that 
encompasses various sensory experiences 
to improve the experience of urban design 
overall. Good sound quality should not 
reduce other urban design qualities in the 
area, Instead good soundscape design 
should enhance other qualities in the area. 

What correlations exist between the identi-
fied soundscape indicators and descriptors 
of human perception of comfort or discom-

fort within urban environments?

The perceived presence of different 

sound source types seem to have strong 
correlations to the perceived quality of 
the acoustic environment. There is a clear 
negative correlation with perceived traffic 
noise, and unpleasantness. On the other 
hand the presence of natural sounds for 
example birds, or fountains can have a 
positive effect on the perceived quality, and 
distract from the presence of unwanted 
noise sources in the area. 

In terms of acoustic parameters, the sound 
pressure level, for example Lden is relevant 
to take as a boundary measurement level. 
The WHO recommends an Lden lower than 
53, to reduce the public health impact.  
According to the RIVM people find roads with 
a 50km/h speed limit the most annoying. 
For vegetation like trees, visibility is an 
important aspect that affects the perceived 
pleasantness of a soundscape, and can 
mask the perceived presence of unwanted 
sound, and mitigate the negative effects 
that traffic noise can have on the perceived 
pleasantness. For parks, the distance from 
the periphery can play a role, since further 
away from it more natural sounds, such as 
bird sounds can be perceived. Fountains can 
also be used to mask unwanted sounds, like 
traffic noise.

To what extent can computational design 
tools, in the shape of machine learning 
models, incorporate soundscape data to 

inform and shape urban design elements for 
improved soundscapes?

For new designs collecting soundscape 
data is virtually impossible. For existing 
sites collecting soundscape data still is a 
laborious task. Through computational 
design methods, such as machine learning,  
the soundscape quality can be predicted 
and optimized with knowledge on 
soundscape design strategies. This saves 
time and energy, which can make this type 
of information more accessible to designers 
with lesser knowledge on the topic. 

The data that is needed from that can be 
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taken from standard urban design features, 
such as buildings, roads, and parks, and 
optionally fountains. There are different 
ways to compute their relationship to their 
environment, which are briefly discussed in 
the chapter on data collection. 

The chosen prediction model for this 
research was the random forest regressor, 
which is an ensemble of decision trees. The 
accuracy of the prediction model is around 
R2=-0.43. Which means that 43% the variance 
of the pleasantness can be explained by 
extracting architectural features from the 
surroundings. The feature elements which 
had the most impact in the model are the 
Lden map which simulates the road noise, 
and the parks map, which present the 
presence of greenery and bird songs. The 
visibility of trees seemed to have very little 
ability to predict the pleasantness, as well as 
the presence of fountains. 

The predicted data can be represented in a 
map. Maps can allow for easy interpretation 
of data, presented in a more visual way 
related to specific location. Soundscape 
perception is very location based, so 
therefore this approach would be suitable to 
communicate this type of data. 

How do design iterations impact the per-
ceived quality of soundscapes within urban 

environments?

Through various design iterations, the 
influence of diverse architectural elements 
can be visualized. As indicated in the 
literature, the presence of roads and their 
simulated representation via Lden maps. 
The soundscape quality correlates negatively 
with the strength of the Lden value. Building 
design, however, can serve as a means to 
mitigate this noise in specific locations. 
Furthermore, the inclusion of natural 
elements such as parks has been observed 
to enhance the quality of the soundscape 
in public spaces. While literature suggests 
a significant positive impact of fountains 
on their surroundings, this effect was not 

corroborated through the training of the 
machine learning model, possibly due to the 
absence of fountain data in the model.

In chapter 9 on design proposals, a method 
is shown on how to improve the soundscape 
of urban design areas. Once a design area 
is located, design variations are drafted. To 
evaluate the soundscape prediction score, 
a 1m grid is created in the public space for 
which the pleasantness is predicted. The 
mean of these values is taken and used to 
evaluate the soundscape overall. 
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Chapter 12 Reflection 

Graduation process
How is your graduation topic positioned in 

the studio?

This graduation topic is a combination 
of acoustics and computational design, 
set in an urban environments.  The MSc. 
Building Technology track from the Faculty 
of Architecture and the Built Environment 
is about applying new and innovative 
technologies to the design world. In Urban 
design computational methods such as GIS 
has been widely used to do analysis already. 
Regression models are also used to analyze 
existing urban situations. However the tools 
are absent to do these analysis in new urban 
designs. 

The topic of acoustics, in the field of health 
and comfort was explored in the soundscape 
field. This is more about the sensory 
experience of acoustics rather then the 
numerical values that are usually calculated. 
However looking at acoustics from an 
experience point of view is very relevant in 
urban design

How did your research influence your de-
sign/recommendations and how did the 
design/recommendations influence your 

research?

The literature research conducted for P2 
influenced the direction of my framework 
and recommendations

While the literature provided initial guidance, 
it was through extensive trial and error that 
I discovered methods that worked best for 
me. 

The input for the machine learning model 
was based on findings in the literature 
and the dataset further validated those 

approaches. 

Entering the field of machine learning as 
a novice, I analyzed different methods 
through testing and experimenting with 
them. Alongside this experimentation 
I looked up the characteristics of these 
models, which informed my decisions 
making process. Reflecting on the project, I 
realize the importance of conducting more 
comprehensive research prior to diving into 
a complex topic such as machine learning. 
Initially, I underestimated the complexity 
of the subject matter and assumed I could 
navigate it as I progressed, but in reality, it 
demanded more thorough preparation. 
I also spend a significant amount of time 
testing models, that are open source and 
already built in in QGIS. Reflecting on my 
framework, I realize I should have assessed 
their applicability to new designs more 
critically. In hindsight, these pre-existing 
models fell short in meeting the specific 
requirements of my project.

How do you assess the value of your way of 
working (your approach, your used methods, 

used methodology)?

Reflecting on my approach, I recognize 
the need for a more structured plan in 
selecting the machine learning model. 
Much time was devoted to exploring 
various approaches, even though many of 
them ultimately proved incompatible with 
my project framework. Greater emphasis 
on optimizing the chosen model could 
have been beneficial. While I extensively 
experimented with previous models using 
different inputs, I did not allocate as much 
time to this process for later models, 
overlooking potential improvements in the 
final outcomes. Evaluating the efficacy of my 
approach involves considering the benefits 
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of my methods and methodology. While 
my approach was full of trial and error, A 
noteworthy aspect in my methodology was 
the statistical analysis of the additional layers 
in the dataset. This way it was shown which 
input would be suited well for the machine 
learning model input. Emphasizing the 
importance of data validity, this approach 
ensured the integrity of the project’s findings.

How did the research approach work out 
(and why or why not)? And did it lead to the 
results you aimed for? (SWOT of the method)

The methods that were used have some 
strengths and weaknesses as explained 
in this section. One weakness of the 
methodology is that is needs a large dataset 
to predict the acoustical pleasantness 
accurately. Soundscape evaluation, like 
every human experience, varies from person 
to person. Therefore a lot of data is needed 
to account for personal preferences. 

Because of my personal lack of experience 

with machine learning, the selection and 
training of the model has not been the easiest 
part of this thesis. Other machine learning 
approaches such as an image segmentation 
method could also get better results. One 
problems that the model currently has is a 
problem of overfitting, and failing to make 
accurate predictions in areas that very 
unfamiliar to the model. 

The computation time that is needed in 
this research   could be more optimized. 
Preprocessing the new design data is 
a weakness in the design tool in this 
framework. Training a ML model could take 
time, but the predictions are computed quite 
fast. Preprocessing the data needs to be 
done with every design iteration. This takes 
a lot of time. Additional steps in creating the 
code could be taken to minimize this time.

The strength of this thesis is the framework 
that is created. The infrastructure for 
creating the trained machine learning model 
and using the prediction model is created 

Internal strengths
•With more data the model can be 
retrained

•The model can be refined for 
different age groups, or urban 
characters

•Design tool application

Internal weaknesses
•Not very readable how the 
features impact the prediction 
model

•Large dataset is needed to get an 
accurate model

•Process of trial and error
•Computation time

External opportunities
•Current growing interest in 
sensory experience in urban 
design

•Current growing interest in the 
application of machine learning in 
research and design

•Good working design tool could 
help well-informed design 
decisions, creating healthy and 
resilient public spaces

External threats
•Limited data available on 
soundscapes.

Figure 101 SWOT diagram, by author
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in this research. With the right dataset this 
framework could be transferred to other 
places, other times of the day, and also other 
demographics. The prediction model can be 
retrained with different datasets depending 
on the requirements. The methodology that 
is created in this thesis and also the mistakes 
made can be valuable lessons to reuse in 
applying this framework in new situations.

There were also external threats in this 
thesis process. The biggest threat was the 
availability of datasets that contain the data 
that is needed to train the machine learning 
model to make accurate predictions. For this 
research I compromised on choosing the 
dataset, because this available dataset was 
the best option that was widely available. 
There are some issues regarding the quality 
of the dataset, which has been explained in 
section on the limitations of the dataset. 

Also the quality of the added data that is 
acquired poses a threat on the accuracy of 
the prediction model. 

Some great opportunities for this topic are 
the growing interest in urban comfort and 
the sensory experience, and also the growing 
interest in machine learning applications in 
design. 

The framework for the design tool that is 
created in this thesis, is not a design in itself. 
However it can be used to inform design 
decisions. Urban designers and planners 
currently often do  not take into account 
the effect that the acoustics have on the 
environment. The design tool that is created 
bridges this gap. 

Did you encounter moral/ethical issues or 
dilemmas during the process? How did you 
deal with these?

Using machine learning comes with biases. 
It is important to be aware of the inherent 
biases on training a model with a certain 
dataset. For example this dataset was 
primarily young people, during their lunch 
break in an urban park. The prediction 

model created in this thesis would not be a 
very good design tool when the design aims 
to include for example elderly, who can have 
a very different sensory experience. It might 
also not be well suited in prediction at other 
times of the day. These seem like relatively 
innocent biases, but they can make a huge 
impact. 
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Societal relevance
What is the academic and societal value of 

your graduation project?

The societal relevance of soundscape design 
is linked to the general societal relevance of 
urban design. Good urban planning aims 
to improve the quality of life. This includes 
auditory quality. Exposure to high levels 
of noise impacts public health and quality 
of life. In 2012, an estimation of about 100 
million people were to be exposed to road 
traffic noise (European Environment Agency 
2020). 

Soundscape design looks beyond noise and 
look at the urban acoustics as a composition 
of wanted and unwanted sounds Positive 
soundscapes are associated with faster 
stress-recovery processes, and better 
self-reported health conditions (Alleta 
et al., 2018). Therefore access to positive 
soundscapes in environments such as urban 
areas, which have high amounts of noise 
pollution, could increase public health and 
improve quality of life for people living close 
to and visiting these areas. 

to what extent are the results applicable in 
practice?

Chapter 10 with design proposals shows how 
applicable the design tool is in practices. 
Data from the design that is needed is the 
buildings, building height. Roads and their 
hierarchy. Parks, trees and fountains. 

To what extent has the expected innovation 
been achieved?

The model works a bit less well than I had 
expected, which is also based on findings in 
the literature. However examples from the 
literature also do a lot of tweaking in the 
data to find regressions that work (Lavandier 
et al., 2016). In my opinion, delivering a 
moderately to good working machine 

learning prediction model, and building the 
application for new designs, falls within the 
scope and planning of a master thesis.

If everything would have gone very well, I 
would have put more time into optimizing 
the machine learning model. I would also 
have put time into created a parametric 
workflow, that can help optimizing designs. 
Another step would be integrating it with 
other senses. 

How does your research impact architectural 
practice?

This prediction model can be used in 
consultation with  new urban designs in the 
preliminary design phases. By using the tool, 
a better understanding for the designer is 
created on what the impact of design choices 
have on the urban acoustical environment. 
This makes it more accessible to implement 
soundscape design into the architectural 
practice. The soundscape prediction model 
is a design tool that can put numerical values 
on soft criteria in design requirements.

How do you assess the value of the transferability of 
your project results?

This prediction currently is not the most 
transferable. The dataset contains young 
people on their lunch break in urban parks. 
This prediction tool currently is not super 
ideal for predictions in very different contexts 
or for a very different demographic. It is also 
not known if the results can be applied to 
other times of the day. 

The scale is also important to take into 
account. Predictions made locally, cannot 
just be interpreted on another scale. 
Soundscapes are experienced at a specific 
time and a specific place. 

When looking at the framework for the 
design tool as a whole the transferability can 
be a strength. The infrastructure for creating 
the trained machine learning model and 
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using the prediction model is created in 
this research. With the right dataset this 
framework could be transferred to other 
places, other times of the day, and also other 
demographics. The prediction model can be 
retrained with different datasets depending 
on the requirements. The methodology that 
is created in this thesis and also the mistakes 
made can be valuable lessons to reuse in 
applying this framework in new situations. 
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Table 1 Performance Metric for Random Forest regressor with different input layers.

Features Metric Value
PARKSDISTAN Mean Absolute Error 0.26
PARKSDISTAN Mean Squared Error 0.1
PARKSDISTAN Root Mean Squared Error 0.32
PARKSDISTAN R-squared 0.42
roadnoiseco Mean Absolute Error 0.29
roadnoiseco Mean Squared Error 0.13
roadnoiseco Root Mean Squared Error 0.36
roadnoiseco R-squared 0.24
DISTANCE Mean Absolute Error 0.27
DISTANCE Mean Squared Error 0.11
DISTANCE Root Mean Squared Error 0.33
DISTANCE R-squared 0.36
VISIBLE Mean Absolute Error 0.27
VISIBLE Mean Squared Error 0.11
VISIBLE Root Mean Squared Error 0.33
VISIBLE R-squared 0.37
fountainsvi Mean Absolute Error 0.29
fountainsvi Mean Squared Error 0.12
fountainsvi Root Mean Squared Error 0.35
fountainsvi R-squared 0.29
treesvisibi Mean Absolute Error 0.26
treesvisibi Mean Squared Error 0.1
treesvisibi Root Mean Squared Error 0.32
treesvisibi R-squared 0.4
PARKSDISTAN & roadnoiseco Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco R-squared 0.41
PARKSDISTAN & DISTANCE Mean Absolute Error 0.26
PARKSDISTAN & DISTANCE Mean Squared Error 0.1
PARKSDISTAN & DISTANCE Root Mean Squared Error 0.32
PARKSDISTAN & DISTANCE R-squared 0.42

Appendix
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PARKSDISTAN & VISIBLE Mean Absolute Error 0.26
PARKSDISTAN & VISIBLE Mean Squared Error 0.1
PARKSDISTAN & VISIBLE Root Mean Squared Error 0.32
PARKSDISTAN & VISIBLE R-squared 0.42
PARKSDISTAN & fountainsvi Mean Absolute Error 0.26
PARKSDISTAN & fountainsvi Mean Squared Error 0.1
PARKSDISTAN & fountainsvi Root Mean Squared Error 0.32
PARKSDISTAN & fountainsvi R-squared 0.42
DISTANCE & VISIBLE Mean Absolute Error 0.26
DISTANCE & VISIBLE Mean Squared Error 0.1
DISTANCE & VISIBLE Root Mean Squared Error 0.32
DISTANCE & VISIBLE R-squared 0.4
DISTANCE & roadnoiseco Mean Absolute Error 0.26
DISTANCE & roadnoiseco Mean Squared Error 0.1
DISTANCE & roadnoiseco Root Mean Squared Error 0.32
DISTANCE & roadnoiseco R-squared 0.41
roadnoiseco & fountainsvi Mean Absolute Error 0.27
roadnoiseco & fountainsvi Mean Squared Error 0.11
roadnoiseco & fountainsvi Root Mean Squared Error 0.33
roadnoiseco & fountainsvi R-squared 0.37
DISTANCE & fountainsvi Mean Absolute Error 0.26
DISTANCE & fountainsvi Mean Squared Error 0.1
DISTANCE & fountainsvi Root Mean Squared Error 0.32
DISTANCE & fountainsvi R-squared 0.4
PARKSDISTAN & roadnoiseco & DISTANCE Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco & DISTANCE Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco & DISTANCE Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco & DISTANCE R-squared 0.42
PARKSDISTAN & roadnoiseco & VISIBLE Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco & VISIBLE Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco & VISIBLE Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco & VISIBLE R-squared 0.4
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Table 2 R2 for random forest regressor with features as input sorted by highest R2 value.

Features R2 Value
PARKSDISTAN 0.42
PARKSDISTAN & DISTANCE 0.42
PARKSDISTAN & VISIBLE 0.42
PARKSDISTAN & fountainsvi 0.42
PARKSDISTAN & roadnoiseco & DISTANCE 0.42
PARKSDISTAN & roadnoiseco 0.41
DISTANCE & roadnoiseco 0.41
treesvisibi 0.4
DISTANCE & VISIBLE 0.4
DISTANCE & fountainsvi 0.4
PARKSDISTAN & roadnoiseco & VISIBLE 0.4
VISIBLE 0.37
roadnoiseco & fountainsvi 0.37
DISTANCE 0.36
fountainsvi 0.29
roadnoiseco 0.24
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Table 3 feature importances per regression model

All features Feature Importance
PARKSDISTAN PARKSDISTAN 1.0
roadnoiseco roadnoiseco 1.0
DISTANCE DISTANCE 1.0
VISIBLE VISIBLE 1.0
fountainsvi fountainsvi 1.0
treesvisibi treesvisibi 1.0
PARKSDISTAN & roadnoiseco roadnoiseco 0.62
PARKSDISTAN & roadnoiseco PARKSDISTAN 0.38
PARKSDISTAN & DISTANCE DISTANCE 0.53
PARKSDISTAN & DISTANCE PARKSDISTAN 0.47
PARKSDISTAN & VISIBLE VISIBLE 0.53
PARKSDISTAN & VISIBLE PARKSDISTAN 0.47
PARKSDISTAN & fountainsvi PARKSDISTAN 0.93
PARKSDISTAN & fountainsvi fountainsvi 0.07
DISTANCE & VISIBLE DISTANCE 0.56
DISTANCE & VISIBLE VISIBLE 0.44
DISTANCE & roadnoiseco roadnoiseco 0.56
DISTANCE & roadnoiseco DISTANCE 0.44
roadnoiseco & fountainsvi roadnoiseco 0.8
roadnoiseco & fountainsvi fountainsvi 0.2
DISTANCE & fountainsvi DISTANCE 0.93
DISTANCE & fountainsvi fountainsvi 0.07
PARKSDISTAN & roadnoiseco 
& DISTANCE

roadnoiseco 0.53

PARKSDISTAN & roadnoiseco 
& DISTANCE

DISTANCE 0.26

PARKSDISTAN & roadnoiseco 
& DISTANCE

PARKSDISTAN 0.21

PARKSDISTAN & roadnoiseco 
& VISIBLE

roadnoiseco 0.52

PARKSDISTAN & roadnoiseco 
& VISIBLE

VISIBLE 0.34

PARKSDISTAN & roadnoiseco 
& VISIBLE

PARKSDISTAN 0.13
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Features Metric Value
PARKSDISTAN Mean Absolute Error 0.26
PARKSDISTAN Mean Squared Error 0.1
PARKSDISTAN Root Mean Squared Error 0.32
PARKSDISTAN R-squared 0.42



135



136

PARKSDISTAN & roadnoiseco & DISTANCE Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco & DISTANCE Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco & DISTANCE Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco & DISTANCE R-squared 0.42
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PARKSDISTAN & DISTANCE Mean Absolute Error 0.26
PARKSDISTAN & DISTANCE Mean Squared Error 0.1
PARKSDISTAN & DISTANCE Root Mean Squared Error 0.32
PARKSDISTAN & DISTANCE R-squared 0.42
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PARKSDISTAN & VISIBLE Mean Absolute Error 0.26
PARKSDISTAN & VISIBLE Mean Squared Error 0.1
PARKSDISTAN & VISIBLE Root Mean Squared Error 0.32
PARKSDISTAN & VISIBLE R-squared 0.42
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PARKSDISTAN & fountainsvi Mean Absolute Error 0.26
PARKSDISTAN & fountainsvi Mean Squared Error 0.1
PARKSDISTAN & fountainsvi Root Mean Squared Error 0.32
PARKSDISTAN & fountainsvi R-squared 0.42
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PARKSDISTAN & roadnoiseco Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco R-squared 0.41
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DISTANCE & roadnoiseco Mean Absolute Error 0.26
DISTANCE & roadnoiseco Mean Squared Error 0.1
DISTANCE & roadnoiseco Root Mean Squared Error 0.32
DISTANCE & roadnoiseco R-squared 0.41
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DISTANCE & VISIBLE Mean Absolute Error 0.26
DISTANCE & VISIBLE Mean Squared Error 0.1
DISTANCE & VISIBLE Root Mean Squared Error 0.32
DISTANCE & VISIBLE R-squared 0.4
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treesvisibi Mean Absolute Error 0.26
treesvisibi Mean Squared Error 0.1
treesvisibi Root Mean Squared Error 0.32
treesvisibi R-squared 0.4
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DISTANCE & fountainsvi Mean Absolute Error 0.26
DISTANCE & fountainsvi Mean Squared Error 0.1
DISTANCE & fountainsvi Root Mean Squared Error 0.32
DISTANCE & fountainsvi R-squared 0.4



153



154

PARKSDISTAN & roadnoiseco & VISIBLE Mean Absolute Error 0.26
PARKSDISTAN & roadnoiseco & VISIBLE Mean Squared Error 0.1
PARKSDISTAN & roadnoiseco & VISIBLE Root Mean Squared Error 0.32
PARKSDISTAN & roadnoiseco & VISIBLE R-squared 0.4
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VISIBLE Mean Absolute Error 0.27
VISIBLE Mean Squared Error 0.11
VISIBLE Root Mean Squared Error 0.33
VISIBLE R-squared 0.37
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roadnoiseco & fountainsvi Mean Absolute Error 0.27
roadnoiseco & fountainsvi Mean Squared Error 0.11
roadnoiseco & fountainsvi Root Mean Squared Error 0.33
roadnoiseco & fountainsvi R-squared 0.37
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DISTANCE Mean Absolute Error 0.27
DISTANCE Mean Squared Error 0.11
DISTANCE Root Mean Squared Error 0.33
DISTANCE R-squared 0.36
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fountainsvi Mean Absolute Error 0.29
fountainsvi Mean Squared Error 0.12
fountainsvi Root Mean Squared Error 0.35
fountainsvi R-squared 0.29
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roadnoiseco Mean Absolute Error 0.29
roadnoiseco Mean Squared Error 0.13
roadnoiseco Root Mean Squared Error 0.36
roadnoiseco R-squared 0.24
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Locations

Regents Park Japan

Regents Park Fields

Russell Square

Monumento Garibaldi

Tate Modern

St Pauls Cross

Marchmont Garden

Pancras Lock

St Pauls Row

San Marco

Torrington Sqaure

Camden Town

Euston Tap

ISOPleasant

0.70

0.52

0.5

0.42

0.38

0.36

0.31

0.28

0.23

0.22

0.09

-0.09

-0.21

Average ISOPleasant Value per 
location

The follwing maps are created using the 
Random Forest Regressor that is used in the 
thesis chapter with the desing proposals. 
This was done to check the validity of the 
model. The input features were buildings, 
roads, parks, trees and fountains. Next to the 
maps is the avrage pleasantness from that 
location
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From dataset:

ISO Pleasant = 0.50

From dataset:

ISO Pleasant = 0.38

From dataset:

ISO Pleasant = 0.52
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From dataset:

ISO Pleasant = 0.31

From dataset:

ISO Pleasant = 0.28

From dataset:

ISO Pleasant = 0.36, 0.23
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From dataset:

ISO Pleasant = -0.09

From dataset:

ISO Pleasant = -0.21

From dataset:

ISO Pleasant = 009
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