

Optimized Green Walls

Study of Vertical Green Systems' Performance in an Urban Setting

Francisco Guzmán | 4710487 | CiTG

1) Introduction

- 1) Introduction
- 2) Part I Computational model definition

- 1) Introduction
- 2) Part I Computational model definition
- 3) Part II Heat transmission study

- 1) Introduction
- 2) Part I Computational model definition
- 3) Part II Heat transmission study
- 4) Part III Effect on an urban setting

- 1) Introduction
- 2) Part I Computational model definition
- 3) Part II Heat transmission study
- 4) Part III Effect on an urban setting
- 5) Conclusions

URBAN HEAT ISLAND PROFILE

ALTERNATIVES

ALTERNATIVES

BUT WHY?

REAL PROJECTS

BUILDING INTEGRATED VEGETATION

BUILDING INTEGRATED VEGETATION

BUILDING INTEGRATED VEGETATION

Green Façades

40

Green Façades

Living wall systems

Leaf Surface Albedo

Leaf Surface Albedo

Leaf Angle Distribution

Leaf Surface Albedo

Leaf Angle Distribution

Soil Substrate Thickness

Leaf Surface Albedo

Leaf Angle Distribution

Soil Substrate Thickness

Soil Moisture Content

Leaf Area Index

Leaf Area Index

LAI ≈ 0.25

LAI ≈ 0.75

LAI ≈ 1.50

RESEARCH QUESTION

RESEARCH QUESTION

How can vertical greenery systems be optimized to improve the performance of a building for different climate types?

I Model definition

I Model definition

II Optimization study of heat transmission

I Model definition

II Optimization study of heat transmission

III Impact on an urban setting

PART I - MODEL DEFINITION

```
// life motto
if (sad() === true) {
  sad().stop();
  beAwesome();
}
```


Green Façade

Green Façade

Living Wall System

COMPUTATIONAL WORKFLOW

COMPUTATIONAL WORKFLOW

COMPUTATIONAL WORKFLOW

URBAN STREET CANYON

URBAN STREET CANYON

URBAN STREET CANYON

PART II - HEAT TRANSMISSION STUDY

CORRELATION FACTORS

CORRELATION FACTORS

Green Façades

CORRELATION FACTORS

SUBSTRATE LAYER

SUBSTRATE LAYER

Substrate thickness

SUBSTRATE LAYER

Substrate thickness

Moisture Content

Leaf Surface Albedo

Leaf Surface Albedo

Leaf Angle Distribution

Leaf Angle Distribution

Leaf Angle Distribution

Evapotranspiration

Evapotranspiration

Relative Humidity

Relative Humidity

Stomatal Resistance

LEAF AREA INDEX

Living Wall System

LEAF AREA INDEX

Green Façade

LEAF AREA INDEX

| | |

Green Façade

ENERGY SAVINGS DUE TO TRANSMISSION

ENERGY SAVINGS DUE TO TRANSMISSION

PART III - URBAN EFFECTS

I Wind speed

I Wind speed

II Ambient temperature

I Wind speed

II Ambient temperature

III Incoming short-wave radiation

$$V_w = V_0 * (0.0049 * LAI^2 - 0.1451 * LAI + 1)$$

Case A: Reference scenario

Case A: Reference scenario

Case B: Single green building

Case A: Reference scenario

Case B: Single green building

Case C: Full green environment

Singapore & Phoenix

Singapore & Phoenix

Singapore & Phoenix

Amsterdam

Amsterdam

Amsterdam

Green Façade

Living Wall System

Singapore

120 100 80 60 40 20 5 10 15 20 Time [hours]

Singapore

Phoenix

Economy

Economy

Environment

Green Façades

Living wall systems

Green Façades

Living wall systems

CONCLUSION

	Liv	ing Wall syst	Green Façade	
Climate	Singapore	Phoenix	Amsterdam	Singapore Phoenix Amsterdam
Latitude	Low	Mid	High	Low Mid High

Living Wall system				Green Façade			
Climate	Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam	
Latitude	Low	Mid	High	Low	Mid	High	
LAI	+/-	+/-	+/-	+/-			

	Living Wall system			Green Façade		
Climate	Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam
Latitude	Low	Mid	High	Low	Mid	High
LAI	+/-	+/-	+/-	+/-	+	+

	Living Wall system			Green Façade		
Climate	Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam
Latitude	Low	Mid	High	Low	Mid	High
LAI	+/-	+/-	+/-	+/-	+	+
LAD	H/V	H/V	Ø	H/V	H/V	Ø

	Liv	Living Wall system Green Façade		Green Façade		
Climate	e Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam
Latitud	e Low	Mid	High	Low	Mid	High
LAI	+/-	+/-	+/-	+/-	+	+
LAD	H/V	H/V	Ø	H/V	H/V	Ø
Albedo) +	+	_	+	+	_

	Living Wall system			Green Façade		
Climate	Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam
Latitude	Low	Mid	High	Low	Mid	High
LAI	+/-	+/-	+/-	+/-	+	+
LAD	H/V	H/V	Ø	H/V	H/V	Ø
Albedo	+	+	_	+	+	-
Thickness	+	+	+			

	Living Wall system			Green Façade		
Climate	Singapore	Phoenix	Amsterdam	Singapore	Phoenix	Amsterdam
Latitude	Low	Mid	High	Low	Mid	High
LAI	+/-	+/-	+/-	+/-	+	+
LAD	H/V	H/V	Ø	H/V	H/V	Ø
Albedo	+	+	_	+	+	-
Thickness	+	+	+			
MC	+	+	+			

TO GREEN OR NOT TO GREEN?

Optimized Green Walls

Study of Vertical Green Systems' Performance in an Urban Setting

Francisco Guzmán | 4710487 | CiTG

SUB-RESEARCH QUESTIONS

- 1) Which parameters have the highest influence in the VGS?
- 2) To what extent can evapotranspiration reduce a building's energy demand?
- 3) How large is the influence of the substrate layer in the performance of the system?
- 4) How does a VGS respond under the UHI effect?
- 5) How does the LAI influence wind velocity in the surroundings of a building?

LIMITATIONS

FUTURE WORK

- 24-hour period
- Constant moisture content
- Influence of Stomatal resistance
- Plant selection

- Quantification of moisture release
- Flexibility in the computational model
- Spatial distribution of cooling effect
- Irregular urban configuration

CLIMATE SELECTION

COMPUTATIONAL WORKFLOW

CORRELATION FACTORS

LEAF ANGLE DISTRIBUTION

PART I - MODEL DEFINITION

