

Delft University of Technology

Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material

Sasayama, Tomone; Kosaka, Fumihiko; Liu, Yanyong; Yamaguchi, Toshiaki; Chen, Shih Yuan; Mochizuki, Takehisa; Urakawa, Atsushi; Kuramoto, Koji

DOI

[10.1016/j.jcou.2022.102049](https://doi.org/10.1016/j.jcou.2022.102049)

Publication date

2022

Document Version

Final published version

Published in

Journal of CO₂ Utilization

Citation (APA)

Sasayama, T., Kosaka, F., Liu, Y., Yamaguchi, T., Chen, S. Y., Mochizuki, T., Urakawa, A., & Kuramoto, K. (2022). Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material. *Journal of CO₂ Utilization*, 60, Article 102049. <https://doi.org/10.1016/j.jcou.2022.102049>

Important note

To cite this publication, please use the final published version (if applicable).

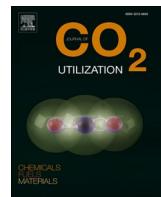
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.



We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material

Tomone Sasayama ^a, Fumihiko Kosaka ^{a,*}, Yanyong Liu ^a, Toshiaki Yamaguchi ^a, Shih-Yuan Chen ^a, Takehisa Mochizuki ^a, Atsushi Urakawa ^b, Koji Kuramoto ^a

^a National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

^b Delft University of Technology, Van der Maasweg 9, 2629 Hz Delft, The Netherlands

ARTICLE INFO

Keywords:
CO₂ capture
CO₂ utilization
Dual-function material
Reverse water gas shift
Syngas

ABSTRACT

Integrated CO₂ capture and conversion (ICCC) using dual-function materials (DFMs) is one of the key technologies for addressing critical global environmental and energy issues. DFMs generally consist of alkali or alkaline earth metals for CO₂ capture and transition metal catalysts for CO₂ conversion. In this study, we studied the ICCC to CO using transition-metal-free DFMs to demonstrate their potential to directly produce syngas from atmospheric-level CO₂. Among the DFMs prepared herein, Na/Al₂O₃ exhibited excellent performance and achieved a CO₂ conversion exceeding 90% and CO selectivity exceeding 95% at a reaction temperature of 450–500 °C. Na/Al₂O₃ maintained its capture and conversion capacity throughout a 50-cycle stability test without significant deactivation. Furthermore, in the scale-up experiments using Na/Al₂O₃ DFM, a syngas-like mixture an H₂/CO molar ratio of 3.3 (48.1 vol% H₂ and 14.5 vol% CO) was directly obtained from 400 ppm CO₂. These results suggest that ICCC using the transition-metal-free Na/Al₂O₃ DFM may be practicable provided the CO₂ capture capacity of the DFM is further improved while maintaining the aforementioned advantages.

1. Introduction

The development of carbon dioxide capture, utilization and storage (CCUS) technologies is essential for addressing critical global environmental and energy issues. CCUS technologies capture CO₂ from industrial exhaust gases or the atmosphere and convert it into value-added products such as fuels and chemicals, or store it safely underground [1–6]. In general, CO₂ capture and utilization/storage are performed in physically separate processes. Therefore, energy- and cost-intensive operations such as CO₂ purification, compression, and transportation to a utilization/storage site are required following CO₂ capture [7,8].

Recently, integrated CO₂ capture and conversion (ICCC) processes using dual-function materials (DFMs) have emerged as advantageous alternatives for CCUS [9–12]. DFMs generally consist of alkali or alkaline earth metals for CO₂ capture and transition metal catalysts for CO₂ conversion. In the initial step of an ICCC process, a CO₂-containing gas is supplied to a reactor packed with the DFM, as illustrated in Fig. 1. CO₂ is selectively captured by the DFM, mainly via carbonation (Eq. 1), and the

CO₂-free gas exits the reactor.

Subsequently, the gas stream is switched to renewable H₂. CO₂ is released by the reverse reaction of Eq. 1, namely decarbonation, and converted into fuels and chemicals through reaction with H₂. The transformation may take place directly through an active surface intermediate without releasing CO₂. The advantage of ICCC over conventional CCUS is that energy-and cost-intensive operations such as purification and transportation are obviated, and dilute CO₂ can be directly converted into target chemicals [10,12].

The majority of studies on ICCC using DFMs focus on the methanation of CO₂ by the Sabatier reaction (Eq. 2).

Farrauto's research group pioneered ICCC using Ru, CaO/γ-Al₂O₃ as a DFM [13]. Subsequently, new types of DFMs have been proposed, including those containing inexpensive Ni catalysts [14–16] and those in

Abbreviations: DFM, dual-function material; CCUS, carbon dioxide capture, utilization and storage; ICCC, integrated CO₂ capture and conversion; RWGS, reverse water gas shift.

* Corresponding author.

E-mail address: f.kosaka@aist.go.jp (F. Kosaka).

<https://doi.org/10.1016/j.jcou.2022.102049>

Received 25 February 2022; Received in revised form 21 April 2022; Accepted 29 April 2022

Available online 13 May 2022

2212-9820/© 2022 Elsevier Ltd. All rights reserved.

which the sorbent (CO₂) and the transition metal catalyst are directly combined by the sol-gel method in the absence of a support [17,18]. In addition to fundamental and mechanistic *in situ* and *operando* studies [19–21], industrially important kinetic analyses [22,23] are ongoing. However, due to the chemical stability of CH₄, CO₂-derived CH₄ might be utilized mainly as a fuel gas without further conversion.

In contrast, several studies have attempted to convert CO₂ into CO by the reverse water gas shift (RWGS, Eq. 3) reaction [24–30].

Via the RWGS reaction, a mixture of CO and H₂, named syngas, can theoretically be obtained by completely converting CO₂ with a stoichiometric excess of H₂ and removing the moisture by condensation. In particular, syngas having an H₂/CO ratio of 2–3 is a feedstock for the well-developed methanol synthesis (Eq. 4) and Fischer-Tropsch synthesis (Eq. 5) for the production of liquid fuels or chemicals.

Therefore, the conversion of captured CO₂ into syngas could be a more attractive and versatile option than converting it into CH₄.

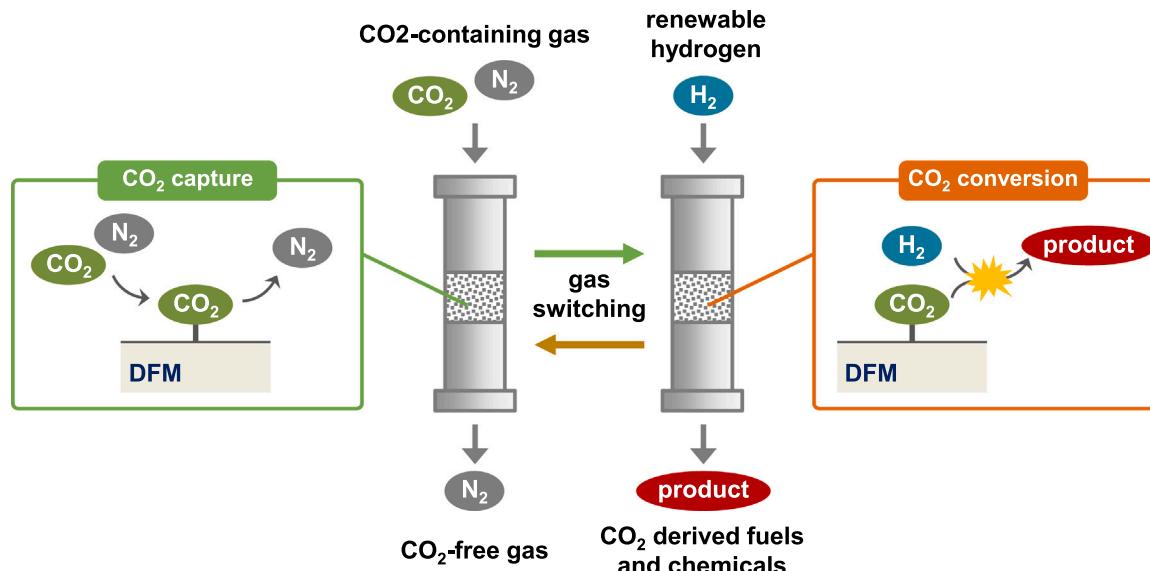
In ICCC processes focusing on the RWGS, DFM_s with and without supports can both be utilized. Examples of the former include FeCrCu/K/MgO-Al₂O₃ [24] and K/Ba-promoted Cu/Al₂O₃ [25], while examples of the latter include Fe₅Co₅Mg₁₀CaO [28] and Ni/CaO [27,30]. In some studies, ICCC has been performed in the absence of transition metals using unsupported CaO [18,29]. Although conducting ICCC using solely CaO reduces the cost of the DFM, the formation of CO is slow, and the CO₂ capture and release temperatures are 600–700 °C. The cycle stability at such elevated temperatures is low. Although a transition-metal-free DFM in which only alkali or alkaline earth metals are carried on the support would have a smaller CO₂ capture capacity, it would overcome the aforementioned shortcomings. Such materials have been studied only as CO₂ sorbents [31–33] and not as DFMs.

In addition, the low concentration of the CO generated is a common shortcoming of ICCC processes based on the RWGS reaction. Compared to the conventional process which employs a simultaneous supply of CO₂ and H₂, ICCC processes using DFMs exhibit higher CO₂ conversion because of the kinetically driven process [12]. However, the molar ratio of unreacted H₂ to the produced CO is excessive for syngas. The ability of ICCC processes using DFMs to achieve a practical H₂/CO ratio for syngas

remains unproven.

In this study, transition-metal-free DFMs, in which only CO₂ sorbents such as Na, K, or Ca was dispersed over an alumina support, were prepared, and evaluated for ICCC to CO. Initially, the amount of CO₂ captured, the conversion of captured CO₂, and selectivity for CO were compared for screening of DFM performance. Thereafter, the effects of the reaction temperature throughout the ICCC experiments and the H₂ flow rate in the conversion step were discussed, and the stability of the DFM was investigated. Finally, the practical value of the process was evaluated by operating the process on a 60 times larger scale using the best performing DFM with 5 vol% and 400 ppm CO₂ to verify a production of syngas with a practical H₂/CO ratio under model flue-gas or direct air capture modes of operation.

2. Materials and methods


2.1. Preparation of DFM

γ-Al₂O₃ (Neobead MSC#300, Mizusawa Industrial Chemicals, Ltd.) was used as a support for the DFM. Na₂CO₃, K₂CO₃, and Ca(NO₃)₂·4 H₂O (guaranteed reagent, Fujifilm Wako Pure Chemical Corp.) were used as precursors. Table 1 lists the DFMs prepared. All the DFMs were prepared by the impregnation method as follows: Initially, γ-Al₂O₃ was impregnated with an aqueous solution containing a predetermined amount of one of the precursors, and subsequently dried at 110 °C for 12 h. The dried samples were calcined in air at 550 °C for 4 h to obtain Na/Al₂O₃, K/Al₂O₃, and Ca/Al₂O₃, according to the selection of precursor. The alkali and alkaline earth metal loading was set at 1.5 mmol per 1 g of DFM in carbonate form.

Table 1
Compositions of the as-prepared DFMs.

DFM	support	precursor	loading ^a	
			[wt%]	[mmol/g-DFM]
Na/Al ₂ O ₃	γ-Al ₂ O ₃	Na ₂ CO ₃	16	1.5
K/Al ₂ O ₃	ditto	K ₂ CO ₃	21	1.5
Ca/Al ₂ O ₃	ditto	Ca(NO ₃) ₂ ·4 H ₂ O	15	1.5

^a Loading was calculated in carbonate form.

Fig. 1. Conceptual diagram of integrated CO₂ capture and conversion using DFMs.

2.2. Characterization of DFM

The textural properties were analyzed by N₂ adsorption-desorption isotherms at -196°C using a surface area and pore size distribution analyzer (BELSORP MAX, Microtrac MRB). The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method using the adsorption data in the relative pressure (P/P_0) range of 0.05 – 0.25. The pore volume was obtained by accumulating up to $P/P_0 = 0.95$. The pore size distribution was determined by the nonlinear density functional theory (NLDFT) method using desorption branch isotherm. To determine the crystalline structures, powder X-ray diffraction (XRD) was conducted by operating a diffractometer (SmartLab SE, Rigaku Corp.) at 40 keV and 50 mA. A Cu K α radiation ($\lambda = 1.5418 \text{ \AA}$) was used as an X-ray source. Wide-angle XRD patterns were collected in the 2θ range of 10 – 80° using a step size of 0.02° and a scanning rate of 2 s per step.

The reducibility and surface basicity of the DFMs were studied by H₂ temperature-programmed reduction (H₂-TPR) and CO₂ temperature-programmed desorption (CO₂-TPD) using a catalyst analyzer (BELCAT II, Microtrac MRB) equipped with a thermal conductivity detector (TCD) and a quadrupole mass spectrometer (BELMASS, Microtrac MRB). Prior to H₂-TPR measurement, 0.1 g of sample was loaded in a quartz tube and pre-treated at 50°C in a 5.05 vol% H₂/Ar stream (15 mL/min) until the TCD signals were stable. The H₂-TPR profiles were recorded at 0 – 500°C using a 5.05 vol% H₂/Ar flow (15 mL/min) and a heating rate of $10^{\circ}\text{C}/\text{min}$. The signals of H₂, H₂O, CO, and CO₂ were detected by *m/z* ratios of 2, 18, 28, and 44, respectively. Prior to CO₂-TPD measurement, the sample was reduced by a H₂ flow (50 mL/min) at 500°C for 1 h, and purged by an Ar flow until the temperature of sample was decreased to 50°C and the TCD signals were stable at that temperature. The reduced samples were treated by a 5 vol% CO₂/Ar (50 mL/min) at 50°C for 30 min, and purged by an Ar flow of 50 mL/min to remove physically adsorbed CO₂. The CO₂-TPD profiles were obtained by heating the CO₂-adsorbed sample at 0 – 800°C using a heating rate of $10^{\circ}\text{C}/\text{min}$ and an Ar flow of 30 mL/min.

2.3. CO₂ capture and conversion to CO

Fig. 2 shows a schematic of the experimental apparatus. It consists of mass flow controllers for gas supply, an electric furnace, a stainless-steel reactor (i.d. 9 mm, length 400 mm), a thermoelectric cooler, and a continuous gas analyzer. One gram of DFM was packed in the fixed-bed reactor, and the bed height was approximately 20 mm. Thermocouples covered by a stainless-steel tube was inserted into the reactor to monitor the reaction temperatures at the top, middle, and bottom part of the packed bed. As a pre-treatment to activate the CO₂-capturing capacity of the DFM by decarbonation (reverse of Eq. 1), the packed bed was heated to 500°C at $10^{\circ}\text{C}/\text{min}$ in a 100 mL/min flow of H₂ and maintained at

that temperature for 1 h.

The ICCC experiments were composed of four steps, as listed in Table 2. In step 1, 5 vol% CO₂/N₂ was supplied to the reactor at a flow rate of 500 mL/min for 3 min to capture CO₂. In step 2, the gas stream was switched to N₂ to purge the CO₂. In step 3, H₂ was fed to the reactor at a predetermined flow rate to convert the captured CO₂. Finally, in step 4, N₂ was supplied in the same manner as in step 2 to purge H₂ and the converted products remaining in the reactor. Upon completion of step 4, the experimental operation was repeated from step 1. The reaction temperature was varied in the range of 350 – 500°C between runs, although each individual run was isothermal. In addition, the H₂ flow rate in step 3 was regulated in the range of 25–500 mL/min, which corresponds to a weight hourly space velocity (WHSV) of 1.5–30 L/(h·g). During that time, the H₂ supply time was changed to maintain a constant total H₂ input. In each experiment, steps 1–4 were repeated for a minimum of four cycles, and the values observed were expressed as means \pm standard deviations. For reference, identical experiments were conducted using γ -Al₂O₃.

In analysis, the moisture in the outlet gas was condensed and removed by the thermoelectric cooler, and the concentrations of CO₂, CO, CH₄, and H₂ were measured using a continuous gas analyzer (Rosemount X-STREAM Enhanced XEGP, Emerson Electric Co.). For quantitative analysis, the amount of CO₂ captured (C_{CO_2}) per unit weight of DFM (W) was calculated by integrating the CO₂ profile during steps 1–2 as follows:

$$C_{\text{CO}_2} = \frac{1}{W} \left[\int_{t_0}^{t_1} \{F_{\text{CO}_{2,f}}(t) - F_{\text{CO}_2}(t)\} dt - \int_{t_1}^{t_2} F_{\text{CO}_2}(t) dt \right] \quad (6)$$

where t_0 , t_1 , and t_2 represent the time at the start of the experiment, the end of step 1, and the end of step 2, respectively. $F_{\text{CO}_{2,f}}$ and F_{CO_2} denote the CO₂ molar flow rates of the feed stream and outlet gas, respectively. In addition, the outflowing amount (n_i) of component i ($i = \text{CO}_2, \text{CO}, \text{CH}_4$) was calculated by integrating the concentration profile during steps 3–4 as follows:

$$n_i = \frac{1}{W} \int_{t_2}^{t_4} F_i(t) dt \quad (7)$$

where t_4 and F_i represent the time at the end of step 4 and the outlet molar flow rate of component i , respectively. From these values, the conversion based on the amount of CO₂ captured (X_{CO_2}), the selectivity for CO (S_{CO}), the yield of CO (Y_{CO}), and the material balance of carbon (B_{C}) were calculated as follows:

$$X_{\text{CO}_2} = \frac{n_{\text{CO}} + n_{\text{CH}_4}}{C_{\text{CO}_2}} \times 100 \quad (8)$$

$$S_{\text{CO}} = \frac{n_{\text{CO}}}{n_{\text{CO}} + n_{\text{CH}_4}} \times 100 \quad (9)$$

$$Y_{\text{CO}} = \frac{n_{\text{CO}}}{C_{\text{CO}_2}} \times 100 = \frac{X_{\text{CO}_2} S_{\text{CO}}}{100} \quad (10)$$

$$B_{\text{C}} = \frac{n_{\text{CO}_2} + n_{\text{CO}} + n_{\text{CH}_4}}{C_{\text{CO}_2}} \times 100 \quad (11)$$

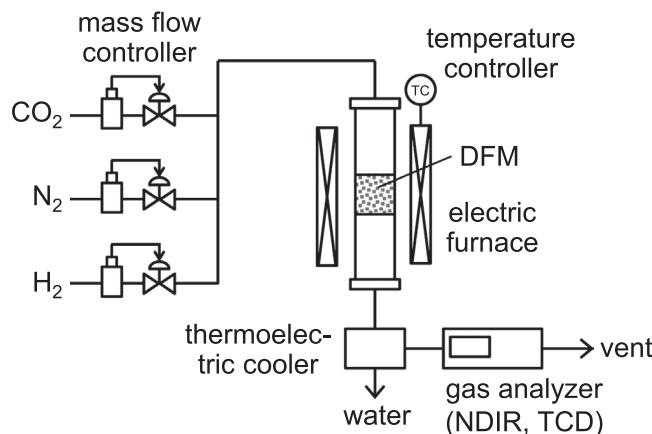


Fig. 2. Schematic diagram of experimental apparatus.

Table 2
Experimental conditions for ICCC using 1 g of DFM.

step	supply gas	temperature [°C]	pressure [MPa]	flow rate [mL/min]	time [min]
1	5 vol% CO ₂ /N ₂	350–500	spontaneous (0.1)	500	3
2	N ₂	ditto	ditto	500	3
3	H ₂	ditto	ditto	25–500	6–120
4	N ₂	ditto	ditto	500	3

2.4. Syngas production from atmospheric-level CO₂

To enrich the CO concentration, scale-up experiments were performed. Sixty grams of the DFM was packed in a fixed bed reactor (i.d. 25 mm, length 400 mm) made of stainless steel, and the bed height was approximately 250 mm. In a 500 mL/min flow of H₂, the packed bed was heated at 10 °C/min up to 500 °C and maintained thereat for 2 h. Although the ICCC experiments were performed using the procedure described in Section 2.3, step 4 was omitted because the experiments were not cyclically repeated. The experimental conditions for steps 1–3 are listed in Table 3. The changes were that the CO₂ feed concentration in step 1 was set at 5 vol% or 400 ppm, and the gas flow rates of all the steps were arbitrarily doubled because a high flow rate would be required to maintain the WHSV employed in the 1 g-DFM experiments. The H₂ flow rate in step 3 was experimentally optimized as described in the following section.

In analysis, a dual-channel micro gas chromatograph (GC) equipped with TCDs (Agilent 490, Agilent Technologies, Inc.) was used in addition to the continuous gas analyzer. The analytical method with the micro-GC is described below. The exhaust gas from the continuous gas analyzer was collected in a gas bag for analysis during step 3. In channel 1 of the micro-GC, a Molsieve 5 Å column (Agilent Technologies, Inc.) was used to measure the concentrations of H₂, CO, and CH₄. Ar was used as the carrier gas, and the column temperature and pressure were 100 °C and 170 kPa, respectively. In channel 2, a PoraPLOT Q column (Agilent Technologies, Inc.) was used to determine the concentration of CO₂. He was used as the carrier gas, and the column temperature and pressure were 80 °C and 170 kPa, respectively.

3. Results and discussion

3.1. Characterization of DFM

The results of the characterization are shown in the [Supplementary Materials](#) and are briefly described in this section. Table S1 shows the textural properties of the as-prepared DFMs as measured by N₂ adsorption-desorption analysis. Compared to the bare alumina support, the DFMs prepared using alkali or alkaline earth metals exhibited smaller BET surface areas and pore volumes, although the pore sizes were nearly identical. This result suggests that DFMs maintain appropriate porous structures. The crystalline structures were analyzed using XRD, as shown in Fig. S1. Small diffraction peaks attributed to the corresponding alkali carbonate were detected in addition to the γ -Al₂O₃ peaks in the XRD patterns of Na/Al₂O₃ and K/Al₂O₃. In contrast, only γ -Al₂O₃ peaks were detected in the XRD pattern of Ca/Al₂O₃. This result indicates that alkali or alkaline earth metals are uniformly dispersed on the alumina support.

Fig. S2 shows the H₂-TPR profiles of the DFM samples. All the samples underwent the desorption of H₂O in the range of 50–300 °C. For the DFMs, trace amounts of CO₂ and CO were detected at temperatures exceeding 400 °C. They were not detected when using the bare alumina support. This result implies that the release of CO₂ by decarbonation (reverse of Eq. 1) and the conversion of CO₂ to CO (Eq. 3) occur when using the DFMs. Fig. S3 shows the CO₂-TPD profiles of the DFMs. For all the samples, a broad CO₂ peak appeared at approximately 100 °C, which

indicates the desorption of weakly adsorbed CO₂. The DFMs prepared using alkali or alkaline earth metals have higher basicity than the bare alumina support and consequently exhibit a more intense CO₂ peak. An additional CO₂ peak that was attributed to decarbonation was observed at temperatures exceeding 600 °C. CO₂-TPD conducted in an inert atmosphere required a high temperature for decarbonation compared to H₂-TPR conducted in a reducing atmosphere.

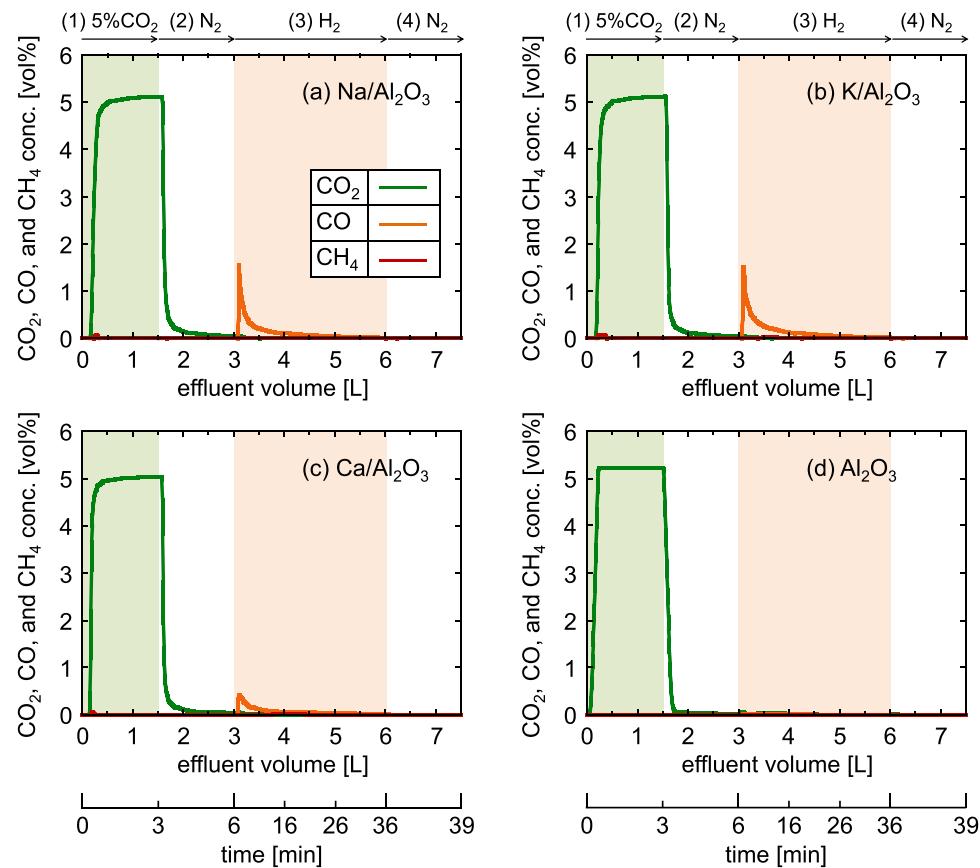
3.2. Screening of supported alkali/alkaline-earth metals

Fig. 3 shows the concentration profiles plotted during the ICCC experiments using the prepared DFMs at 450 °C and an H₂ flow rate of 100 mL/min. The effluent gas volume and time elapsed since the start of step 1 are both plotted along the horizontal axes. The time scale for step 3 is different from that for the other steps because of the lower flow rate. As shown in Fig. 3(a), when using Na/Al₂O₃, CO₂ was not detected immediately upon commencing the CO₂ supply in step 1, which means that CO₂ was aggressively captured in the DFM during the initial period. Following the breakthrough, the CO₂ concentration increased rapidly and approached the feed concentration. While purging CO₂ using N₂ in step 2, the CO₂ concentration decreased rapidly. Immediately upon the commencement of H₂ supply in step 3, the CO concentration increased rapidly, and gradually decreased after reaching the maximum. At the end of step 4, the H₂ concentration was confirmed to fall below 0.5 vol% (data not shown).

Similar gas responses were observed from K/Al₂O₃, as shown in Fig. 3(b). As shown in Fig. 3(c), the CO peak produced in step 3 was lower when using Ca/Al₂O₃. Finally, as shown in Fig. 3(d), the breakthrough in step 1 when using the reference alumina occurred earlier than that for the DFMs, and a small amount of CO was detected in step 3. These results indicate that the transition-metal-free DFMs developed in this study facilitate rapid conversion of CO₂ into CO at a lower temperature than previously reported CaO-based ICCCs [18,29].

For quantitative discussion, the amounts of CO₂ captured and outflow of each component during steps 3–4 are shown in Fig. 4. The amount of CO₂ captured decreased in the following order: K/Al₂O₃ > Na/Al₂O₃ > Ca/Al₂O₃ > Al₂O₃, which indicates that alkali or alkaline earth metals play an important role in CO₂ capture. For all the DFMs, the majority of the captured CO₂ was converted into CO, and the amount of CO produced was of the same order as the amount of CO₂ captured. In addition, the released amount of unreacted CO₂ was small. From these results, we infer that the direct synthesis of CO may proceed from alkali or alkaline earth carbonates (Eq. 12) through an overall reaction of decarbonation (reverse of Eq. 1) and the RWGS (Eq. 3).

Additionally, a trace amount of CH₄ was also produced. There are two possible reaction pathways for CH₄ formation: (i) parallel formation with CO by the Sabatier reaction (Eq. 2) and (ii) sequential formation from CO by methanation (Eq. 13).



The conversions of captured CO₂, selectivities for CO, CO yields, and carbon material balances achieved by the DFMs are compared in Table 4. The highest conversion of 90.2% was obtained using Na/Al₂O₃. The CO selectivity of all the DFMs exceeded 90%, with Na/Al₂O₃ achieving the highest selectivity. The CO yield of Na/Al₂O₃ was the highest because of its well-balanced ICCC performance. The carbon material balance was approximately 90–95% for all the DFMs, which indicates that nearly all of the captured CO₂ was released as CO₂, CO, or CH₄.

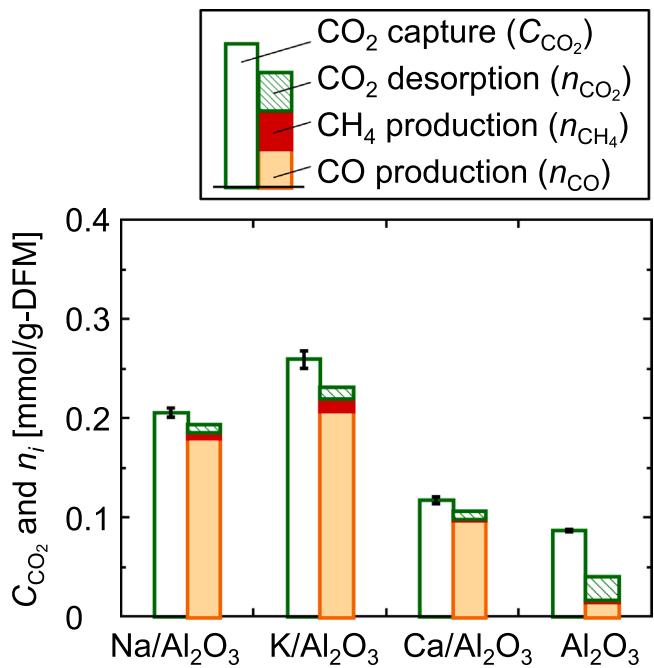

In summary, the transition-metal-free DFMs prepared herein using alkali or alkaline earth metals facilitated the capture of CO₂ and its selective conversion into CO. Although the amounts of CO₂ captured and CO produced were highest for K/Al₂O₃, the CO yield was the highest for

Table 3
Experimental conditions for ICCC using 60 g of DFM.

step	supply gas	temperature [°C]	pressure [MPa]	flow rate [mL/min]	time [min]
1	5 vol%, 400 ppm CO ₂ / N ₂	500	spontaneous (0.1)	1000	15, 720
2	N ₂	ditto	ditto	1000	15
3	H ₂	ditto	ditto	200	60

Fig. 3. Concentration profiles during integrated CO₂ capture and conversion with (a) Na/Al₂O₃, (b) K/Al₂O₃, (c) Ca/Al₂O₃, and (d) Al₂O₃ at 450 °C and an H₂ flow rate of 100 mL/min.

Fig. 4. CO₂ capture and conversion performance of the prepared DFM at 450 °C and an H₂ flow rate of 100 mL/min.

Table 4

Comparison of the conversion of captured CO₂ (X_{CO_2}), selectivity for CO (S_{CO}), CO yield (Y_{CO}), and carbon material balance (B_C) achieved by the prepared DFMs.

sample	X_{CO_2} [%]	S_{CO} [%]	Y_{CO} [%]	B_C [%]
Na/Al ₂ O ₃	90.2 ± 1.8	96.9 ± 0.3	87.4 ± 2.0	94.6 ± 1.9
K/Al ₂ O ₃	85.0 ± 2.7	93.9 ± 0.7	79.8 ± 1.9	89.4 ± 2.8
Ca/Al ₂ O ₃	86.2 ± 3.7	96.0 ± 1.9	82.7 ± 2.6	93.6 ± 4.1
Al ₂ O ₃	20.3 ± 0.2	89.6 ± 0.3	18.1 ± 0.2	47.1 ± 0.6

Na/Al₂O₃. Hence in subsequent experiments, the Na/Al₂O₃ DFM was employed.

3.3. Effect of reaction temperature and H₂ flow rate on integrated CO₂ capture and reduction

Fig. 5 shows the experimental results when Na/Al₂O₃ was used as the DFM and the reaction temperature was varied in the range of 350–500 °C. During this investigation, the H₂ flow rate in step 3 was set at 100 mL/min, as described in the previous section. The CO production peak in step 3 increased in intensity as the reaction temperature increased. The amount of CO₂ captured, conversion of captured CO₂, and selectivity for CO are summarized in **Fig. 6**. The amount of CO₂ captured, shown using a bar chart is higher at lower temperatures. This occurred because CO₂ capture by carbonation (**Eq. 1**) is exothermic, and lower temperatures are thermodynamically favorable. The CO₂ conversion, shown as a square symbol, drastically increased with temperature, and the values at 450 and 500 °C were almost identical at approximately 90%. The CO selectivity (shown as the circle symbol) exceeded 95% in the temperature range of 350–500 °C. However, it

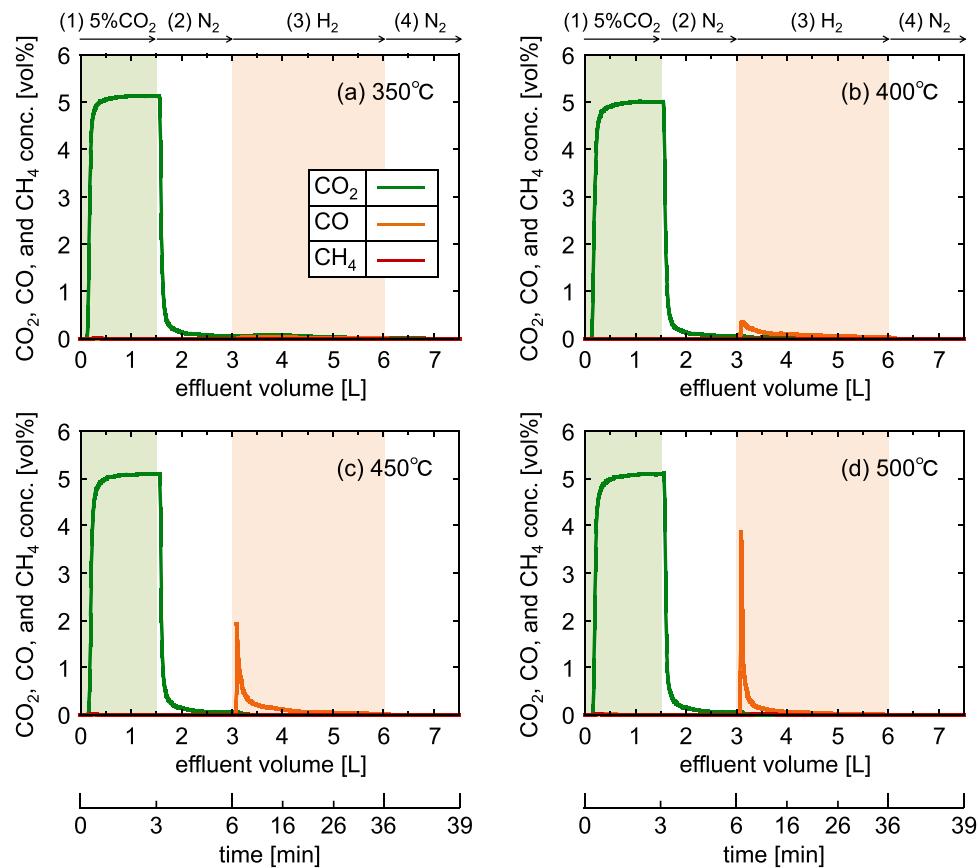


Fig. 5. Concentration profiles during integrated CO₂ capture and conversion using Na/Al₂O₃ at 350–500 °C and an H₂ flow rate of 100 mL/min.

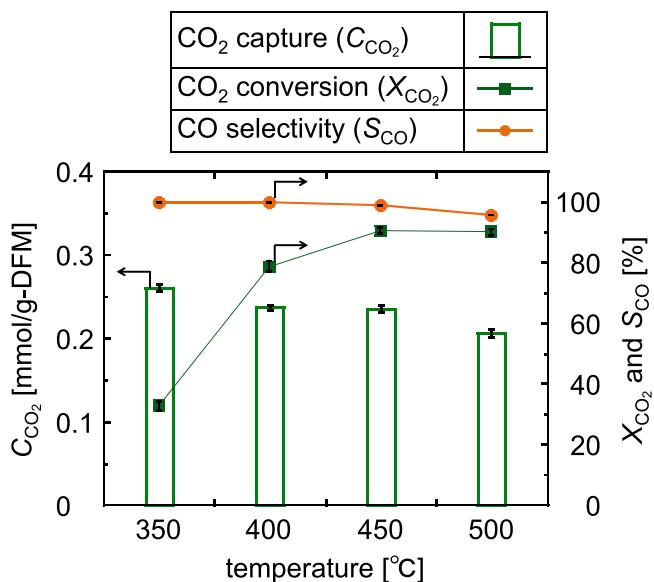


Fig. 6. Effect of reaction temperature on amount of CO₂ captured, CO₂ conversion, and CO selectivity using Na/Al₂O₃ at an H₂ flow rate of 100 mL/min.

decreased slightly at higher temperatures.

Furthermore, the effects of H₂ flow rates in step 3 were studied at 450 °C as shown in Fig. 7. The maximum CO concentration increased as the H₂ flow rate decreased. A similar trend was observed at other temperatures (data not shown). The conversion of captured CO₂ and selectivity for CO were calculated from the concentration profiles in Fig. 7, and are summarized in Fig. 8 with the results obtained at different

temperatures. The H₂ flow rate and the corresponding WHSV are plotted along the horizontal axes. Comparing the results generated at identical H₂ flow rates in Fig. 8(a), higher temperatures evidently resulted in higher CO₂ conversions, although there was no significant difference between the values at 450 and 500 °C. The main reaction, namely the production of CO by the RWGS reaction (Eq. 3), is endothermic. Consequently, higher temperatures are favorable in terms of thermodynamics and kinetics. Comparing the results generated under identical temperatures, a lower flow rate, that is, a longer residence time, resulted in a higher conversion. As shown in Fig. 8(b), the CO selectivity decreased marginally with increase in the temperature and decrease in the H₂ flow rate. The decrease in the CO selectivity indicates a higher proportion of CH₄ in the product. Both the CH₄ formation reactions (Eq. 2, Eq. 13) are exothermic; therefore, they are thermodynamically unfavorable at high temperatures. This suggests that the formation of CH₄ is kinetically limited in this system. Therefore, the CH₄ formation with a low reaction rate proceeds at a lower H₂ flow rate, that is, a longer residence time, resulting in the slight decrease in the CO selectivity.

In summary, a higher reaction temperature slightly reduced the amount of CO₂ captured and the selectivity toward CO, but significantly improved the conversion of captured CO₂. Therefore, a reaction temperature of 450–500 °C was found to be preferable for ICCC to CO using the transition-metal-free DFM. Reducing the flow rate of H₂ increased the conversion but slightly reduced the CO selectivity. An H₂ flow rate of approximately 100 mL/min, that is, a WHSV of 6 L/(g·h), was found to be optimal. Under the optimized conditions, the conversion and selectivity exceeded 90% and 95%, respectively.

3.4. Stability of DFM

Fig. 9 shows the transitions of the amounts of captured CO₂ and produced CO during 50 cycles of ICCC using the Na/Al₂O₃ DFM. The

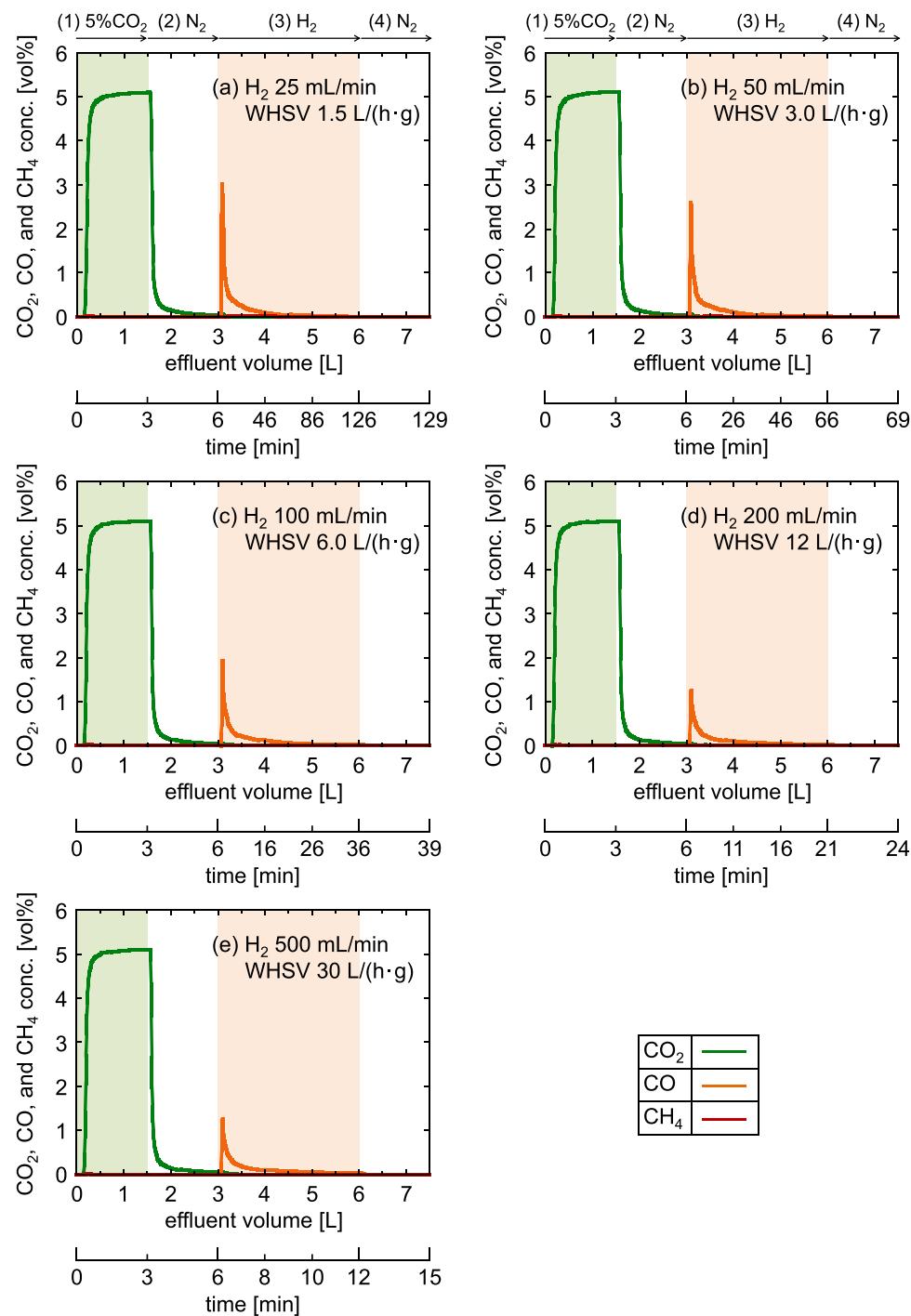


Fig. 7. Concentration profiles during ICCC using Na/Al₂O₃ at 450 °C and an H₂ flow rate of 25–500 mL/min.

reaction temperature was 450 °C, and the H₂ flow rate was 100 mL/min. In the second cycle, the amount of CO₂ captured decreased to approximately 80% of that in the first cycle. Thereafter, this value remained nearly constant. The amount of CO₂ captured in the first cycle was particularly high because the pre-treatment of DFM was conducted at 500 °C, which was higher than the reaction temperature of the ICCC experiments (450 °C). Decarbonation (reverse of Eq. 1) would proceed more efficiently during the pre-treatment than during step 3 for CO₂ conversion in each cycle. The amount of CO produced did not change significantly during the 50 cycles. As mentioned in Section 3.2, Na/Al₂O₃ achieved a high carbon material balance of approximately 95%; consequently, no carbon was accumulated during the cycles, resulting in

high stability.

The textural properties and crystalline structures of as-prepared and used Na/Al₂O₃ DFM were compared. As shown in the aforementioned Table S1, the textural properties of used Na/Al₂O₃ such as the BET surface areas, pore volumes, and pore sizes were nearly identical to those of as-prepared Na/Al₂O₃. The crystalline structures analyzed using XRD are shown in Fig. S4. A significant difference was not observed between as-prepared and used Na/Al₂O₃. In summary, these findings demonstrate the reusability of the Na/Al₂O₃ DFM for repetitive ICCC to CO without significant deactivation.

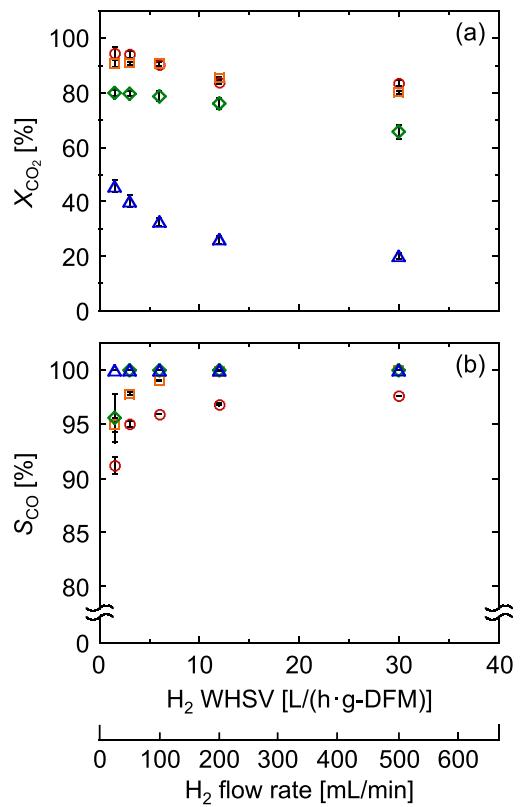


Fig. 8. Effect of H₂ flow rate and reaction temperature on (a) CO₂ conversion and (b) CO selectivity of Na/Al₂O₃.

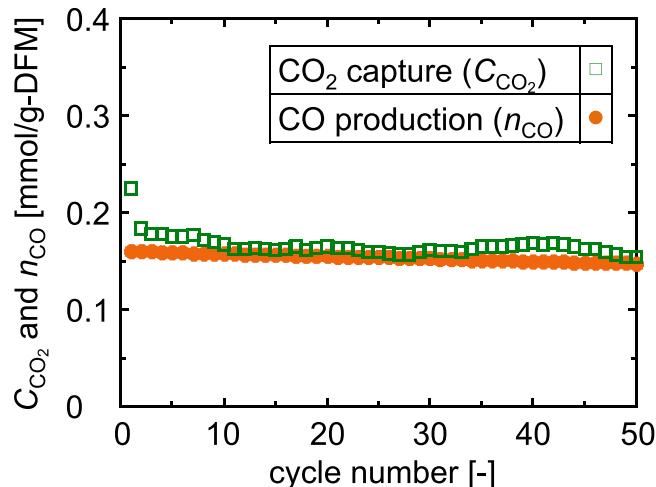


Fig. 9. Transitions of the amounts of CO₂ captured and CO produced during the 50-cycle stability test at 450 °C.

3.5. Syngas production from atmospheric-level CO₂

In this section, the scale-up ICCC experiments with 5 vol% and 400 ppm CO₂ were performed to verify a production of syngas with a practical H₂/CO ratio. Fig. 10 shows the concentration profiles using 5 vol% CO₂ and 60 g of Na/Al₂O₃ DFM, which was 60 times larger scale than the previous experiments. Fig. 10(a) and (b) show the results of steps 1–3 (CO₂ capture, purging using N₂, and CO₂ conversion, respectively). The time span depicted in each figure is different. The vertical axes are common in Fig. 10(a) and (b). Fig. 10(c) is an enlarged view of the initial 3 min of step 3, and the concentrations of CO₂, CO, CH₄, and

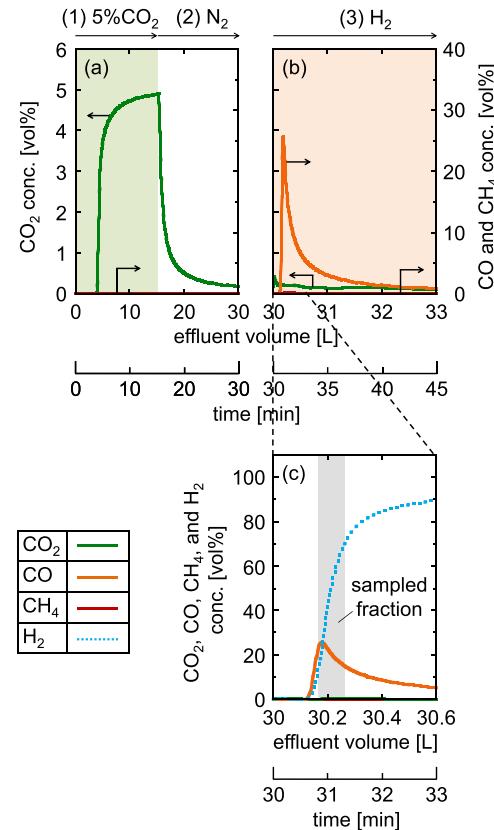
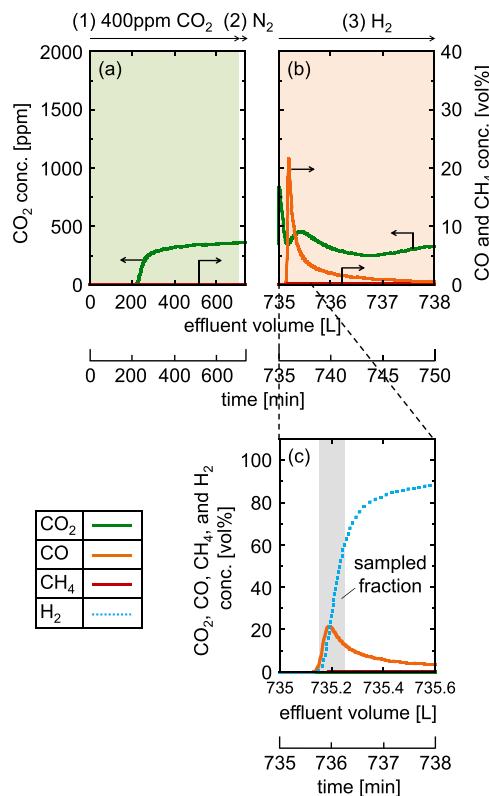



Fig. 10. Concentration profiles recorded during (a) the CO₂-capturing step for 5 vol% CO₂ and (b, c) the conversion step using 60 g of Na/Al₂O₃ at 500 °C.

H₂ are shown on the same scale. As shown in Fig. 10(a), in step 1, the CO₂ concentration was lower than 0.1 ppm until approximately 4 min, whereafter it rapidly increased to the feed concentration. During step 2, the CO₂ concentration decreased rapidly. As shown in Fig. 10(b) and (c), the formation of CO was observed immediately upon commencement of step 3. The CO concentration reached a very high value of 25 vol% at the maximum, and the corresponding CO₂ concentration was surprisingly low, less than 0.5 vol%. Simultaneously, the concentration of H₂ increased and finally approached 100 vol%.

Furthermore, we also challenged the direct syngas production from very dilute CO₂ at the atmospheric level (400 ppm) as shown in Fig. 11. As expected, a significantly longer time elapsed until the breakthrough in step 1 owing to the lower feed concentration of CO₂ (Fig. 11(a)). In step 2, the CO₂ concentration did not decrease from the value at the end of step 1. Because of the very dilute feed concentration of CO₂, a slight CO₂ release from the DFM in an inert N₂ atmosphere was remarkably observed. As shown in Fig. 11(b) and (c), the maximum CO concentration exceeded 20 vol% even from 400 ppm CO₂. This result indicates that Na/Al₂O₃ DFM can directly convert and enrich atmospheric level CO₂ into CO with more than 500 times higher concentration.

For quantitative analysis, the outlet gas fractions in the vicinity of the CO peak that are indicated by the gray-shaded area in Fig. 10(c) and Fig. 11(c) were collected to analyze the composition by micro-GC. The analysis results of CO₂, CO, CH₄, and H₂ are summarized in Table 5. When the feed concentration of CO₂ in step 1 was 5 vol%, the concentrations of CO and unreacted H₂ in step 3 were 19.7 and 55.9 vol%, respectively. Therefore, the H₂/CO ratio was 2.8, which is practically feasible for the Fischer-Tropsch synthesis (Eq. 5). In addition, similar to the experimental results with 1 g-DFM described above, the amounts of unreacted CO₂ and produced CH₄ were negligible. When using 400 ppm CO₂, even though the feed concentration of CO₂ was two orders of

Fig. 11. Concentration profiles during (a) the CO₂-capture step using 400 ppm CO₂ and (b, c) the conversion step using 60 g of Na/Al₂O₃ at 500 °C.

Table 5

Compositions of fractions collected during the conversion step following the capture step for 5 vol% and 400 ppm CO₂.

component [vol%]	5 vol% CO ₂	400 ppm CO ₂
CO ₂	0.294	0.0558
CO	19.7	14.5
CH ₄	0.363	1.31
H ₂	55.9	48.1

magnitude lower than that when using 5 vol% CO₂, a high CO concentration of 14.5 vol% was obtained. A slight decrease in the CO production resulted from the smaller amount of captured CO₂. A near-practical H₂/CO ratio of 3.3 was also achieved using 400 ppm CO₂.

Table S2 in the *Supplementary Materials* shows the amount of CO₂ captured, conversion of captured CO₂, and selectivity for CO. Although the CO selectivity was similar to the experimental results obtained using 1 g-DFM at 500 °C, the amount of CO₂ captured and the conversion decreased. This occurred mainly because the bed height when using 60 g-DFM was approximately 250 mm, and there was an axial temperature distribution (Figs. S5 and S6). This is not a shortcoming of the DFM and can be improved by constructing an appropriately scaled experimental apparatus.

So far, only a pioneer work of Hu and Wang's research group has reported the scale-up ICCC to CO using DFMs [28]. They demonstrated that 25 g of Fe₅Co₅Mg₁₀CaO DFM produced CO with the maximum concentration of approximately 15 vol% at 650 °C following CO₂ capture using a simulated flue gas containing 10 vol% CO₂. An H₂/CO ratio was not mentioned in the work. The transition-metal-free Na/Al₂O₃ DFM prepared herein demonstrated the potential to directly produce syngas with a near-practical H₂/CO even from atmospheric-level CO₂ at a lower reaction temperature.

4. Conclusion

In this study, ICCC experiments were performed to synthesize CO by employing transition-metal-free DFMs prepared by impregnation of alkali or alkaline earth metals on γ-Al₂O₃. During the screening of the DFMs prepared, although the capacity of Na/Al₂O₃ for CO₂ capture was slightly lower than that of K/Al₂O₃, Na/Al₂O₃ was selected because it exhibited the highest yield of CO. The effect of the operating conditions on CO₂ capture and conversion using Na/Al₂O₃ DFM was investigated. Although increasing the reaction temperature slightly reduced the amount of CO₂ captured and the selectivity for CO, it significantly improved the conversion of captured CO₂. Reducing the flow rate of H₂ increased the conversion, but marginally decreased the CO selectivity. The optimized conditions were a reaction temperature of 450–500 °C and an H₂ WHSV of 6 L/(g·h), under which the conversion and selectivity exceeded 90% and 95%, respectively. A 50-cycles stability test revealed that the Na/Al₂O₃ DFM is reusable for repetitive ICCC to CO without significant deactivation. Finally, the scale-up experiments demonstrated that the transition-metal-free DFM has the potential to directly produce syngas from atmospheric-level CO₂, which leads to further conversion into value-added products such as fuels and chemicals. In conclusion, ICCC using the transition-metal-free DFM developed in this study may be practicable provided the CO₂ capture capacity of the DFM is further improved while maintaining the aforementioned advantages. For that purpose, mechanistic in situ and operando studies for revealing the state of the active Na species need to be performed in the future. Further investigations with realistic flue gas containing impurities such as O₂ and H₂O are also important to verify the practical availability of the DFMs.

CRediT authorship contribution statement

Tomone Sasayama: Methodology, Investigation, Formal analysis, Visualization, Writing – original draft **Fumihiro Kosaka:** Methodology, Investigation, Writing – review & editing, Supervision **Yanyong Liu:** Conceptualization **Toshiaki Yamaguchi:** Conceptualization **Shih-Yuan Chen:** Investigation, Visualization, Writing – review & editing **Takehisa Mochizuki:** Methodology, Conceptualization **Atsushi Urakawa:** Writing – review & editing, Validation, Supervision **Koji Kuramoto:** Writing – review & editing, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at [doi:10.1016/j.jcou.2022.102049](https://doi.org/10.1016/j.jcou.2022.102049).

References

- [1] K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, Recent advances in CO₂ capture and utilization, *ChemSusChem* 1 (2008) 893–899, <https://doi.org/10.1002/cssc.200800169>.
- [2] M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Müller, Chemical technologies for exploiting and recycling carbon dioxide into the value chain, *ChemSusChem* 4 (2011) 1216–1240, <https://doi.org/10.1002/cssc.201000447>.

[3] Z. Yuan, M.R. Eden, R. Gani, Toward the development and deployment of large-scale carbon dioxide capture and conversion processes, *Ind. Eng. Chem. Res.* 55 (2016) 3383–3419, <https://doi.org/10.1021/acs.iecr.5b03277>.

[4] R.S. Norhasyima, T.M.I. Mahlia, Advances in CO₂ utilization technology: a patent landscape review, *J. CO₂ Util.* 26 (2018) 323–335, <https://doi.org/10.1016/j.jcou.2018.05.022>.

[5] T.A. Atsbyha, T. Yoon, P. Seongho, C.-J. Lee, A review on the catalytic conversion of CO₂ using H₂ for synthesis of CO, methanol, and hydrocarbons, *J. CO₂ Util.* 44 (2021), 101413, <https://doi.org/10.1016/j.jcou.2020.101413>.

[6] S. Saeidi, S. Najari, V. Hessel, K. Wilson, F.J. Keil, P. Concepción, S.L. Suib, A. E. Rodrigues, Recent advances in CO₂ hydrogenation to value-added products — current challenges and future directions, *Prog. Energy Combust. Sci.* 85 (2021), 100905, <https://doi.org/10.1016/j.pecs.2021.100905>.

[7] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N.M. Dowell, Carbon capture and storage (CCS): the way forward, *Energy Environ. Sci.* 11 (2018) 1062–1176, <https://doi.org/10.1039/C7EE02342A>.

[8] R.M. Cuellar-Franca, A. Azapagic, Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, *J. CO₂ Util.* 9 (2015) 82–102, <https://doi.org/10.1016/j.jcou.2014.12.001>.

[9] P. Melo Bravo, D.P. Debecker, Combining CO₂ capture and catalytic conversion to methane, *Waste Dispos. Sustain. Energy* 1 (2019) 53–65, <https://doi.org/10.1007/s42768-019-00004-0>.

[10] I.S. Omodolor, H.O. Otor, J.A. Andonegui, B.J. Allen, A.C. Alba-Rubio, Dual-function materials for CO₂ capture and conversion: a review, *Ind. Eng. Chem. Res.* 59 (2020) 17612–17631, <https://doi.org/10.1021/acs.iecr.0c02218>.

[11] B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie, J. Hu, H. Liu, CO₂ capture and in-situ conversion: recent progresses and perspectives, *Green. Chem. Eng.* (2021), <https://doi.org/10.1016/j.gce.2021.11.009>.

[12] S. Sun, H. Sun, P.T. Williams, C. Wu, Recent advances in integrated CO₂ capture and utilization: a review, *Sustain. Energy Fuels* 5 (2021) 4546–4559, <https://doi.org/10.1039/DISE00797A>.

[13] M.S. Duyar, M.A.A. Treviño, R.J. Farrauto, Dual function materials for CO₂ capture and conversion using renewable H₂, *Appl. Catal. B* 168 169 (2015) 370–376, <https://doi.org/10.1016/j.apcatb.2014.12.025>.

[14] L. Hu, A. Urakawa, Continuous CO₂ capture and reduction in one process: CO₂ methanation over unpromoted and promoted Ni/ZrO₂, *J. CO₂ Util.* 25 (2018) 323–329, <https://doi.org/10.1016/j.jcou.2018.03.013>.

[15] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO₂ to CH₄ using CaO or Na₂CO₃, *J. CO₂ Util.* 34 (2019) 576–587, <https://doi.org/10.1016/j.jcou.2019.08.011>.

[16] F. Kosaka, Y. Liu, S.-Y. Chen, T. Mochizuki, H. Takagi, A. Urakawa, K. Kuramoto, Enhanced activity of integrated CO₂ capture and reduction to CH₄ under pressurized conditions toward atmospheric CO₂ utilization, *ACS Sustain. Chem. Eng.* 9 (2021) 3452–3463, <https://doi.org/10.1021/acssuschemeng.0c07162>.

[17] S.B. Jo, J.H. Woo, J.H. Lee, T.Y. Kim, H.I. Kang, S.C. Lee, J.C. Kim, A novel integrated CO₂ capture and direct methanation process using Ni/CaO catalyst-sorbents, *Sustain. Energy Fuels* 4 (2020) 4679–4687, <https://doi.org/10.1039/D0SE00760A>.

[18] X. Ma, X. Li, H. Cui, W. Zhang, Z. Cheng, Z. Zhou, Metal oxide-doped Ni/CaO dual-function materials for integrated CO₂ capture and conversion: performance and mechanism, *AIChE J.* (2021), e17520, <https://doi.org/10.1002/aic.17520>.

[19] L. Proaño, E. Tello, M.A. Arellano-Trevino, S. Wang, R.J. Farrauto, M. Cobo, In-situ DRIFTS study of two-step CO₂ capture and catalytic methanation over Ru, “Na₂O”/Al₂O₃ Dual Functional Material, *Appl. Surf. Sci.* 479 (2019) 25–30, <https://doi.org/10.1016/j.apsusc.2019.01.281>.

[20] H. Sun, Y. Zhang, S. Guan, J. Huang, C. Wu, Direct and highly selective conversion of captured CO₂ into methane through integrated carbon capture and utilization over dual functional materials, *J. CO₂ Util.* 38 (2020) 262–272, <https://doi.org/10.1016/j.jcou.2020.02.001>.

[21] L. Proaño, M.A. Arellano-Treviño, R.J. Farrauto, M. Figueiredo, C. Jeong-Potter, M. Cobo, Mechanistic assessment of dual function materials, composed of Ru-Ni, Na₂O/Al₂O₃ and Pt-Ni, Na₂O/Al₂O₃, for CO₂ capture and methanation by in-situ DRIFTS, *Appl. Surf. Sci.* 533 (2020), 147469, <https://doi.org/10.1016/j.apsusc.2020.147469>.

[22] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Modeling the CO₂ capture and in situ conversion to CH₄ on dual function Ru-Na₂CO₃/Al₂O₃ catalyst, *J. CO₂ Util.* 42 (2020), 101351, <https://doi.org/10.1016/j.jcou.2020.101351>.

[23] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Simulation-based optimization of cycle timing for CO₂ capture and hydrogenation with dual function catalyst, *Catal. Today* (2021), <https://doi.org/10.1016/j.cattod.2021.08.023>.

[24] L.F. Bobadilla, J.M. Riesco-García, G. Penelás-Pérez, A. Urakawa, Enabling continuous capture and catalytic conversion of flue gas CO₂ to syngas in one process, *J. CO₂ Util.* 14 (2016) 106–111, <https://doi.org/10.1016/j.jcou.2016.04.003>.

[25] T. Hyakutake, W. van Beek, A. Urakawa, Unravelling the nature, evolution and spatial gradients of active species and active sites in the catalyst bed of unpromoted and K/Ba-promoted Cu/Al₂O₃ during CO₂ capture-reduction, *J. Mater. Chem. A* 4 (2016) 6878–6885, <https://doi.org/10.1039/C5TA09461E>.

[26] H. Sun, J. Wang, J. Zhao, B. Shen, J. Shi, J. Huang, C. Wu, Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO₂ capture and conversion, *Appl. Catal. B* 244 (2019) 63–75, <https://doi.org/10.1016/j.apcatb.2018.11.040>.

[27] S.B. Jo, J.H. Woo, J.H. Lee, T.Y. Kim, H.I. Kang, S.C. Lee, J.C. Kim, CO₂ green technologies in CO₂ capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane, *Sustain. Energy Fuels* 4 (2020) 5543–5549, <https://doi.org/10.1039/D0SE00951B>.

[28] B. Shao, G. Hu, K.A.M. Alkebsi, G. Ye, X. Lin, W. Du, J. Hu, M. Wang, H. Liu, F. Qian, Heterojunction-redox catalysts of FexCoyMg10CaO for high-temperature CO₂ capture and in situ conversion in the context of green manufacturing, *Energy Environ. Sci.* 14 (2021) 2291–2301, <https://doi.org/10.1039/D0EE03320K>.

[29] S. Sun, Z. Lv, Y. Qiao, C. Qin, S. Xu, C. Wu, Integrated CO₂ capture and utilization with CaO-alone for high purity syngas production, *Carbon Capture Sci. Technol.* 1 (2021), 100001, <https://doi.org/10.1016/j.cscst.2021.100001>.

[30] G. Wang, Y. Guo, J. Yu, F. Liu, J. Sun, X. Wang, T. Wang, C. Zhao, Ni-CaO dual function materials prepared by different synthetic modes for integrated CO₂ capture and conversion, *Chem. Eng. J.* 428 (2022), 132110, <https://doi.org/10.1016/j.cej.2021.132110>.

[31] R.R. Kondakindi, G. McCumber, S. Aleksic, W. Whittenberger, M.A. Abraham, Na₂CO₃-based sorbents coated on metal foil: CO₂ capture performance, *Int. J. Greenh. Gas. Control* 15 (2013) 65–69, <https://doi.org/10.1016/j.ijggc.2013.01.038>.

[32] J.V. Veselovskaya, V.S. Derevschikov, O.A. T.Yu. Kardash, T.A. Stonkus, A. G. Trubitsina, Okunev, Direct CO₂ capture from ambient air using K₂CO₃/Al₂O₃ composite sorbent, *Int. J. Greenh. Gas. Control* 17 (2013) 332–340, <https://doi.org/10.1016/j.ijggc.2013.05.006>.

[33] Y. Wu, X. Chen, M. Radosz, M. Fan, W. Dong, Z. Zhang, Z. Yang, Inexpensive calcium-modified potassium carbonate sorbent for CO₂ capture from flue gas: improved SO₂ resistance, enhanced capacity and stability, *Fuel* 125 (2014) 50–56, <https://doi.org/10.1016/j.fuel.2014.02.014>.