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Abstract

There is a convergence occurring between the energy demands of modern society and the sustainabil-
ity requirements of the environment in which we live in. The combination of these factors is driving
the development and implementation of an updated power system with integration of Renewable En-
ergy Sources (RES). This calls for an update of the existing infrastructure, with an additional layer of
advanced monitoring, control and Information and Communication Technology (ICT) that is presently
only beginning to be applied. With this introduction of ICT into the power system, a Cyber-Physical
Energy System (CPES) is formed, that is multi-domain in nature. It encompasses interactions between
the power system, communication as well as control and supervisory applications. Thus, the CPES
is greater in scale and complexity, in comparison to the traditional electrical power grid. As a result,
the study and analysis of this complex and large scale CPES is not feasible in one dedicated facili-
ty/Research Infrastructure (RI). Therefore, remotely interconnecting Smart Grid laboratories unlocks
the potential to test large scale scenarios through Joint Research Activity (JRA). By conducting joint ex-
periments between different RIs within Europe, resource sharing can be achieved. This enables usage
of and interaction between assets located in each RI in a coordinated way. Hence, the application of
control algorithms running in one RI for the remote control of devices which are physically distributed
in other facilities becomes possible. Thus, this thesis studies the implementation and application of
geographically distributed laboratory interconnections for smart grid testing. Broadly, two types of
interconnections have been studied extensively, within the scope of this thesis:

• Remote Hardware and Software Interconnection
At present, EU smart-grid laboratories are not connected by a common framework or infrastruc-
ture. Various EU labs have their own specialised facilities and interconnecting them will help
in having all the required and important features under a common virtual platform. This thesis
project work was undertaken for partial fulfillment of the objectives of developing interfaces, sup-
porting software infrastructure for virtual integration under the H2020 funded project, ‘ERIGrid’.
Developing an integrated research infrastructure for smart grid systems is the main objective of
the ERIGrid project. The interconnection of labs is achieved using the innovative Joint Test Fa-
cility for Smart Energy Networks with Distributed Energy Resources (JaNDER) specification over
the internet and involves exchange of critical real-time simulation information– measurements,
control signals. A case study involving interconnections between TU Delft, The Netherlands,
Technical University of Denmark (DTU) and VTT Multipower Laboratory, Finland is carried out.
In the studied test case, the Real-Time Digital Simulator (RTDS) at TU Delft has been virtually
interfaced with power hardware at at DTU and VTT. The proof of concept of a Virtual Research
Infrastructure (VRI) is presented through a joint experiment involving all three labs, to study a
geographically distributed power system. Results show the the performance validation of this
distributed setup by comparison to a reference simulation.

• Remote Software and Software Interconnection
As part of the ERIGrid Transnational Access Research Exchange, the real-time grid simulators
at RWTH Aachen University, Aachen and TU Delft have been interconnected through the public
internet. This interconnection is realised through a software tool-set called VILLAS Framework
and is applied to carry out a Geographically Distributed Real-Time Simulation (GDRTS). A sys-
tematic and comprehensive analysis of a Dynamic Phasors (DP) based co-simulation interface
algorithm for GDRTS is studied and its improvements are provided. The obtained results show
that, to ensure simulation fidelity in a GDRTS on a shared communication medium, an automated
approach to monitor the network and adapt to network congestion is required. Therefore, this
thesis introduced the application of a Real-Time Protocol (RTP) in the real-time power system
simulation domain.
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1
Introduction

The electricity grid is one of the cornerstones of the modern world, without which, life is impossible to
imagine. Fossil-fuel based non-renewable energy sources are at the heart of the existing power system.
However, their polluting nature and the ever-increasing effects of climate change have necessitated a
call for action [1]. Thus, there is an ঈEnergy Transitionউ taking place globally, aiming to achieve
fully renewable power generation in the near future. Europe in particular has ambitious targets for
greenhouse gas reductions and decarbonization by 2020 [2]. This introduction of RES has introduced
new challenges in system operation and planning [3]. Hence, advanced ICT based solutions are the
need of the hour, to cope up with these challenges, moving forward.

1.1. Background and Motivation
The conventional electrical power grid is undergoing a paradigm shift due to the integration of Renew-
able Energy Sources (RES). With this integration of renewables and driven by technological develop-
ments, an ICT layer is emerging on top of the physical power grid, transforming the existing energy
system into a cyber-physical system, which can be defined as a Smart Grid [4, 5]. The complexity
of the present and future smart power system will require tools that are suited for simulations on a
large scale, in order to study their interactions with newer energy sources and inter-operability of new
control methods. Advancement in power electronics, driven by the increasing penetration of RES and
HVDC calls for high-fidelity simulation tools and a shift from static load flow simulations to dynamic
ones. The dynamics and control of such inverter dominated power systems have not been assessed
much in detail. Hence, the stability of future power system operation with inverter dominated dynamics
requires a matching assessment infrastructure.

As the future power system becomes complex and interconnected to multiple energy sources, a
single research infrastructure can rarely provide the required resources to study this complex energy
system. The ability to study large energy systems is not only limited by the lack of cross-carrier labo-
ratories but also the absence of detailed large scale models (e.g coupled transmission and distribution
system) and expertise. Hence, integrated and unified approaches for analysing and evaluating complex
configurations in a cyber-physical system manner are limited.

With the advent of more powerful computational tools : Electromagnetic Transient (EMT) or Dy-
namic Phasors (DP), large-scale simulation becomes feasible and enables HIL testing through real-time
simulation technologies. However, the required level of detail for such simulations cannot be concen-
trated in a single site for both technical and organizational reasons. Scaling digital real-time simulation
in the power system domain to larger systems is a challenging task; not only limited by technical but
also by financial and human factors. Detailed models are rarely available for large-scale dynamic sim-
ulations. The process for estimating dynamic parameters assumes full knowledge of static models and
associated topologies. For confidentiality reasons, this information is usually inaccessible across RIs
and partner sites.

GDRTS presents an approach which solves the issue of confidentiality, by distributing both the
simulation as well as human work load across a set of participants and Research Infrastructure (RI).
Small time steps, often in the range of micro to milliseconds, impose strict real-time computational
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2 1. Introduction

burdens on the underlying computer and operating system. Thus, differentiating them from offline
simulation tools used in other domains. It is an advanced concept which enhances experimental and
testing capabilities. Real-time simulation resources, HIL set-ups, novel test benches and hybrid co-
simulation frameworks can be interconnected virtually to form a comprehensive VRI platform that
allows for sharing of resources present at different geographic locations. In the fields of scientific
modelling and simulation, fidelity refers to the degree to which a model or simulation reproduces the
state and behaviour of a real world object, feature or condition [6]. Fidelity is therefore, a measure of
the realism of a model or simulation. The fidelity of a GDRTS is major challenge, which this thesis aims
to address. Figure 1.1 shows the violation of quantities at the co-simulation interface in a GDRTS.

Figure 1.1: Illustration of GDRTS and its challenges

The key objective of investigating this concept, is the potential development of a software platform
for the remote interconnection of smart grid laboratories. This enables the possibility of conducting joint
experiments between RIs in Europe, utilizing the different assets provided by each, in a coordinated
way. The technical possibility of conducting such joint experiments allows the application of control
algorithms running in one research infrastructure for the remote control of devices which are physically
located in other facilities. This is shown in Figure 1.2. From the figure, it can be seen that the main
advantage of the VRI concept is the possibility for one RI to access the resources located at a remote
site - these resources can range from actual hardware devices to real time simulators or Supervisory
Control and Data Acquisition (SCADA) systems.
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Figure 1.2: Virtual Research Infrastructure concept
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1.2. Literature Review
1.2.1. Inter-Connection of Labs
In relation to this thesis, [7] serves as the most important reference. This work describes the efforts
toward the realization of a large-scale inter-connected research infrastructure and explains a demon-
stration of the multi-lab setup for simulation and testing of next-generation global power grids. The
idea of virtual integration of labs at different locations was originally investigated in [8]. This paper
investigates the feasibility of geographically distributed real-time simulation. Two real time grid sim-
ulators located remotely are virtually connected. A simple HVDC point to point link that connects the
two AC systems is adopted as a case study.

The proof of concept for virtual integration, however, is presented in [9], which introduces a frame-
work for virtual integration of hardware and software assets at different geographical locations. The
framework presented seeks to realise simulation as a service (SMaAS) concept. The paper presents
real-time coupling of hardware and software assets located remotely through the internet.

1.2.2. Geographically Distributed Real-Time Simulation (GDRTS)
GDRTS is a novel research topic that addresses the requirements of using real-time simulation resources
at multiple locations for joint testing [10–14]. Furthermore, [15] illustrates the development of a real-
time power system solver which has been applied to perform GDRTS. A review of existing and emerging
cyber-physical system test-beds is carried out in [16].

1.2.3. Co-simulation
In other related work, a novel co-simulation architecture that integrates hardware testing using Power
Hardware-in-the-Loop (PHIL) techniques with larger-scale electric grid models is discussed in [17]. In
addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility
with hardware testing in one location linked via the internet to software modeling in a remote location.
The feasibility, applicability and benefits of a real-time virtual connection of laboratories for virtual
integration of simulators and hardware assets was demonstrated in [18]. A co-simulation platform for
analysing electric power grid operation, considering integrated communication systems using OPNET
and OPAL-RT is discussed in [19].

A co-simulation framework for wide-area Smart Grid monitoring systems based on phasor mea-
surement units (PMU) is presented in [20]. A simulator having both communication and power system
capabilities is presented, based on existing public-domain simulators. OpenDSS and OMNET++ are
used for simulation of power systems and communication networks respectively. A study of wireless
and wired communication technologies for smart grid implementation is presented in [21]. The analysis
shows that wireless technologies have suitability for smart grid applications. However, a combination
of mixed wireless and wired technologies may introduce latencies that cannot serve critical functions
such as power system protection.

1.2.4. Interface Algorithms for Distributed Simulations
A co-simulation of multi-area power systems was investigated in [22], which dealt with the requirement
of large-scale simulation resources using real-time simulation at multiple institutions and the confidence
for their grid models. In [23], a GDRTS of HVDC systems were implemented using ideal transformer
model interface algorithm. This work showed that simulation fidelity is robust with a small time delay.
However, there is room for improvement of co-simulation interface algorithms to guarantee simulation
fidelity of all quantities. The use of Dynamic Phasors (DP) as a feasible approach to couple real-
time simulators was demonstrated in [13, 24–26]. Similarly, [27] deals with interfacing of Dynamic
Phasors (DP) with real-time EMT simulations. A really important reference with respect to this thesis
is [28]. It focuses on mitigation of the effects of communication delays between multiple, virtually
connected, yet physically separated HIL experiments. The proposed methodology is validated through
simulation and hardware experimentation conducted between geographically dispersed laboratories.
An approach similar to DP based on shifted frequency analysis is presented in [29], while [30] focuses
on the improvement of the accuracy and stability in Power HIL experiments.

[31] deals with the current state-of-the-art in interfacing issues related to real-time digital simulators
employed in the simulation of power systems and power-electronic systems. This paper provides an
overview of technical challenges encountered and their solutions as the real-time digital simulators
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evolved. Hardware-in-the-loop interfacing for controller hardware and power apparatus hardware are
also presented.

1.3. ICT tools for Laboratory Interconnections
Literature proposes various methods for the validation of simulation models or systems. This can range
from comparison with actual real data, comparison with another model etc [32]. In this thesis, both
approaches for lab interconnections are validated by comparison to a monolithic simulation model.
Within the scope of this thesis, JaNDER and VILLAS framework have been used extensively, for slightly
different objectives as explained below:

1.3.1. JaNDER Specification
The starting point for the design of the JaNDER platform was in DERri (Distributed Energy Resources
Research Infrastructure), a European project where the JaNDER concept was defined for the first
time [33]. In DERri, JaNDER provided a common interface to control DERs in remote laboratories
and measure relevant system data. The implementation of JaNDER in ERIGrid is based on a layered
architecture, where each layer addresses a specific aspect and allows for a modular implementation
based on the specific test cases which must be implemented as shown in Figure 1.3. As part of this
thesis, JaNDER level 0 has been applied to realise a geographically dispersed Software andHardware
Interconnection. This is achieved by interconnecting RTDS at TU Delft with power hardware at other
european labs as explained in Chapter 3.
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Figure 1.3: JaNDER Modular Architecture

1.3.2. VILLAS Framework
A component of VILLAS Framework, VILLASnode has been used to interconnect the real-time simulators
at TU Delft and RWTH Aachen, to carry out GDRTS. This method demonstrates a remote, real-time
Software and Software Interconnection. The implementation details are covered in Chapter 4.

1.4. Research Questions
The key research questions, this thesis aims to answer are as follows:

• How to interconnect real-time grid simulator at TU Delft with power hardware at other European
labs to build a Virtual Research Infrastructure (VRI)? Benefits?

– Study and validation of a geographically distributed, virtually coupled power system by com-
parison with monolithic simulation.

• How to interconnect two real-time simulators to perform Geographically Distributed Real-Time
Simulation (GDRTS)?

– Performance validation of a co-simulation interface algorithm for GDRTS based on Dynamic
Phasors (DP). Stability and accuracy? Limitations? Improvements?
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• What is the effect of the properties and physical limitations of the communication channel (inter-
net) on a networked, distributed power system? Impact on co-simulation interface algorithm for
GDRTS?

1.5. Methodology
This thesis work-flow is broadly divided into two parts:

1. JaNDER based Lab Connections and Testing: The interconnection of the labs requires devel-
opment of coupling and interface algorithms which can be standardized across all labs. Currently,
JaNDER specification is used for exchange of critical real-time simulation information (measure-
ments, control signals, laboratory asset descriptions). However further testing is required under
various complex real-time scenarios before JaNDER can be adapted as a lab interconnection
standard. Hence, this thesis aims at studying and validating a distributed power system setup,
wherein, resources present at different research labs are interconnected over large geographical
distances using JaNDER. This is achieved by conducting joint test experiments with other Euro-
pean labs and institutions, namely – Technical University of Denmark (DTU) and VTT Technical
Research Centre, Finland. This is covered in detail in Chapter 3.

2. GDRTS using VILLAS Framework: Over the past few years, RWTH Aachen has developed a
framework for geographically distributed real-time co-simulation. This framework, called VILLAS
framework can be used to virtually interconnect labs in the physical domain to perform larger Dis-
tributed Real-time Simulations. As part of the H2020 ERIGrid Transnational Access (TA) research
exchange, the real-time simulators at RWTH Aachen and TU Delft have been interconnected to
carry out GDRTS. Thus, this thesis will also investigate and validate the co-simulation interface al-
gorithm based on dynamic phasors for GDRTS and contribute to its improvement. This is covered
in Chapter 4.

1.6. Thesis Contributions
1. Implementation of JaNDER specification at TU Delft, as part of a joint research experiment, inter-
connecting labs at TU Delft, Technical University of Denmark (DTU) and VTT Technical Research
Centre, Finland. Thus, contributing to the development of a Virtual Research Infrastructure (VRI)
platform.

2. Setup of VILLASnode at TU Delft to perform GDRTS. Performance validation of a Dynamic Phasors
(DP) based co-simulation interface algorithm for Geographically Distributed Real-Time Simulation
(GDRTS). This is carried out by investigation of its stability and accuracy with respect to a
monolithic simulation model.

1.7. Outline
This thesis document is organised as follows: This chapter gives an introduction to the project and the
intended outcomes. Chapter 2 provides a background of the ICT tools used to achieve lab intercon-
nections within the scope of this thesis. The implementation steps and methodology of JaNDER and
VILLAS Framework are covered in Chapters 3 and 4 respectively. Chapter 5 deals with the observations
and results of both the methods in depth. Finally, Chapter 6 draws conclusions of this thesis and also
discusses future work to be undertaken.





2
ICT tools for Laboratory

Interconnections

This chapter covers some of the key details of the tools/specifications used within the scope of this
thesis. Both the methods to achieve laboratory interconnections – JaNDER and VILLAS framework are
discussed.

2.1. Introduction
This thesis project was undertaken for partial fulfillment of the work to be carried out under the H2020
funded project, ERIGrid [34] under work package 10, JRA 4. This work package aims to implement
and demonstrate the functioning of different test cases when various RIs are interconnected to each
other. Developing an integrated research infrastructure for smart grid systems is the main requirement
of ERIGrid project. Some of its key objectives can be summarized as:

• Supporting the technology development as well as the roll out of smart grid approaches, solutions
and concepts in Europe with a holistic, cyber-physical systems approach.

• Integrating and enhancing the necessary research services for analysing, validating and testing
smart grid system configurations [35].

• Coupling of research infrastructures for integrated and joint testing [36].

2.2. State of the art
The ERIGrid project deals with the remote interconnection of RI for the purpose of performing joint
distributed tests online, thus, building a Virtual Research Infrastructure (VRI). This concept is validated
by real implementation and demonstration of different use cases and testing scenarios, by using a
dedicated ICT platform which enables remote data exchange between RIs over the internet. The
purpose of this thesis is to illustrate in detail, the application of this platform, called JaNDER for remote
testing and experimentation, covered in the subsequent section. More specifically, in this project,
JaNDER Level 0 (L0) has been implemented and tested.

2.3. JaNDER Specification
The starting point for the design of the JaNDER platform was in DERri (Distributed Energy Resources
Research Infrastructure), a European FP 7 project where the JaNDER concept was defined for the first
time [33]. In DERri, JaNDER provided a common interface to control DERs in remote laboratories
and measure relevant system data. The implementation of JaNDER in ERIGrid is based on a layered
architecture, where each layer addresses a specific aspect and allows for a modular implementation
based on the specific test cases which must be implemented. The lowest level (Level 0) implements
the basic functionalities for remote connection over Internet, and is the basis for all the other layers.
The requirements for implementing Level 0 are very minimal and any standard Internet connection

7



8 2. ICT tools for Laboratory Interconnections

can support it. The updated JaNDER platform is very easy to implement; it is modular, so that only
the functionalities which are really needed for each test case must be configured, and is expandable
by adding new levels. As an added advantage, most of the implemented software is available as open
source. The high level architecture of JaNDER level 0 used at TU Delft as part of this thesis is shown
in figure 2.1.

Redis Cloud

Redis API

Virtual Inter-connection

UDP/IP

Local Redis

redisRepl

Real Time Grid Simulator

GTNET

Redis Interface Client 
(Publish/Subscribe)

Socket

Figure 2.1: JaNDER implementation at TU Delft

2.3.1. Real Time Digital Simulator (RTDS)
A real time grid simulator (RTDS) consists of custom hardware and all-in-one software, specifically
designed to perform real-time EMT simulations. It operates continuously in real time while providing
accurate results over a frequency range from DC to 3 kHz. This range provides a greater depth of
analysis than traditional stability or load flow programs which study phenomenon within a very limited
frequency range.

The simulator operates continuously in real time, allowing analytical studies to be performed much
faster than with offline simulation programs. Complex networks can be simulated using a typical time
step of 25-50𝜇s. Sub-networks consisting of fast switching power electronic devices operating with
smaller time-steps in the range of 1-4 𝜇s can also be simulated. RSCAD is RTDS Technologies’ propri-
etary power system simulation software, designed specifically for interfacing to the RTDS hardware.

Figure 2.2: RTDS Hardware at TU Delft
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2.3.2. GTNET Block
Figure 2.3 shows the GTNET-SKT component from RSCAD. Data may be exchanged between the RTDS
and the external equipment over a LAN/WAN using the GTNET-SKT (SocKeT) Protocol. The SKT pro-
tocol is provided as a means to communicate with the RTDS using Transfer Control Protocol (TCP) or
User Datagram Protocol (UDP) sockets [37]. A typical connection arrangement for the GTNET-SKT
function on the RTDS is shown in figure 2.4. Data is exchanged between the socket communication
firmware running on the GTNETx2 card and a RTDS processor card (PB5 or GPC) using a fiber optic
connection between the cards. Data is exchanged between the socket communication firmware run-
ning on the GTNETx2 card and the remote equipment over a LAN connection. The remote machine
may be dedicated hardware, a computer workstation or even another GTNET-SKT module running on
another GTNETx2 card. In this case, the remote machine is a computer workstation running the redis
database and GTNET-SKT component is configured to be in UDP send/receive mode. The SKT protocol
represents both integer and floating point numbers as 4 bytes in the packet. Floating point numbers
are single precision(32-bit) and are represented using IEEE754 format. The packet size is an integral
multiple of 4 bytes, depending on number of data points transferred.

Figure 2.3: GTNET-SKT Component in RSCAD

Once the parameters have been configured and the connection is established, a UDP stream com-
mences between RSCAD/Runtime and the remote machine through a bi-directional channel, also called
UDP socket. As explained in Stevens et al. [37], most programming languages consider the socket as
a file object. This implies that, simulation data can be fed at one end and taken out at the other. Thus,
communication between RTDS and a remote machine becomes possible.

GTNETx2 Card

PB5 Processor Card

Remote Machine

GTPort Connection (Optical)

Ethernet LAN

Ethernet Switch

Ethernet LAN

Figure 2.4: GTNET socket Connection
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2.3.3. Local and cloud redis
The next step after communication between RSCAD and an external application/machine has been
established, is to capture and store the simulation data. As per JaNDER specification, Redis is used as
the database. Redis which stands for REmote DIctionary Server is an an open source (BSD licensed),
in-memory data structure store, used as a database, cache and message broker [38]. It supports data
structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps and geo-spatial
indexes with radius queries. Redis has built-in replication, scripting, transactions and different levels
of on-disk persistence and provides high availability. Redis has many available data types, however for
this thesis, two are of particular importance– key-values and hashes.

Keys are the building blocks of redis and a key is the variable name associated to which data needs
to be stored. To this end, redis offers ’strings’. Redis String type is the simplest type of data that can
be associated with a Redis key. Redis hashes serve as an extension to keys and can be described as
a collection of key-value pairs. This is similar to the python ’dictionary’ data type. In other words,
redis hashes are maps between string fields and string values, so they are the well suited to represent
objects. A hash with a few fields (where few means up to one hundred or so) is stored in a way that
takes very little space, so one can store millions of objects in a small Redis instance. While hashes are
used mainly to represent objects, they are capable of storing many elements, so they can be used for
a wide range of tasks. In this thesis, all measurement values (i.e) data retrieved from simulations are
stored in hashes, while control variables are simple key-value pairs. Figure 2.5 shows the working of
keys and hashes respectively, as discussed.

(a) Working of redis keys

(b) Working of redis hashes

Figure 2.5: Redis variables

2.3.4. Redis publish/subscribe client
To store simulation data from the RTDS in the local redis database/instance, an appropriate client
is required. It needs to be to interact with both redis and the RTDS. Redis offers scripting through
a number of clients, however python is chosen as it open source and also compatible with RSCAD.
Python is a free and open source, high-level programming language with a wide range of applications.
Of particular interest to this thesis are its socket library and redis API. As described in the previous
section, a UDP socket between RSCAD/RTDS and python ensures a bi-directional flow of data. The
extracted data is then published to the local redis server through the use of the redis API. Similarly,
data to be fed back into the simulation is subscribed to from the local redis and sent to RTDS. Thus the
python script acts as a redis publish/subscribe client. The source code for the python script is provided
in Appendix A.3.

2.3.5. Redis Replication (redisRepl)
The replication mechanism for JaNDER in ERIGrid has been completely redesigned. The new architec-
ture uses a central master server, placed at one of the RIs and reachable from the public internet, to
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which all the other RIs connect. This eliminates the need for special types of network setup or firewall
exceptions at the client RIs. Outward connectivity towards the public internet is the only requirement,
presenting less administrative barriers since it is usually available by default. The main disadvantage
of this setup is that a connection-oriented transport layer must be used which leaves TCP as the only
transport layer option. Compared to UDP transport, this results in higher latencies and increased jitter
due to TCP buffers, re-transmission logic and connection overhead. However, this is not expected to
affect overall system performance at the time scale required for the multi-RI test case studied in this
thesis.

Hence, the final link in the remote connection process is the replication of the local redis database
into the cloud, which can then be accessed or read by other remote partner institutions. For this a
small command line program, called ’redisRepl’ is used to replicate remotely the commands sent to a
local Redis instance [39]. The remote instance is assumed to be running behind a HTTPS interface.
The HTTPS connection must use bi-directional authentication, so the appropriate certificate files must
be provided via command line parameters. These files have been provided to all partner RIs. It is
optionally possible to specify a name space (i.e. a string prefix) in the remote instance to be replicated
locally. When started, redisRepl starts listening for events from a locally running Redis instance (in
particular, string and hash events): every ’set’ or ’hset’ event is replicated remotely via HTTPS. If the
’-rc’ option is passed to redisRepl, then the reverse is also true: every ’set’ or ’hset’ event in the remote
Redis instance is replicated locally. The architecture of ’redisrepl’ is illustrated through Figure 2.6.

Machine 1

redisrepl

Machine 2

Redis

redisrepl

HTTPS--HTTP
Proxy Webdis

Redis

Redis
Central Redis Cloud

Figure 2.6: Redis replication structure

2.4. VILLAS Framework
VILLASframework is a toolset for local and Geographically Distributed Real-Time Simulation (GDRTS).
It is actively developed by the Institute for Automation of Complex Power Systems at RWTH Aachen
University [40]. As mentioned earlier, this framework has been used to interconnect the real-time sim-
ulators at Aachen and Delft to carry out distributed simulations in real-time. The overall structure and
components of the VILLASframework can be seen in Figure 2.7. It is to be noted that, VILLASframework
consists of several components:

• VILLASnode

• VILLASfpga

• VILLASweb
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• VILLAScontroller

However, within the scope of this thesis, the most important component is the VILLASnode gateway
which is described in the subsequent section.
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Figure 2.7: Components of VILLAS Framework

2.4.1. VILLASnode
VILLASnode is a modular gateway for simulation data. It offers interfaces to simulation equipment,
databases and web services. It is tuned for the real-time exchange of simulation data in different
formats and protocols. The software is written in C/C++ using the ISO C11 standard while following
an object oriented programming paradigm. It is deployed within each laboratory as a Linux-based
gateway server to establish VPN connections and handle data exchange between the local simulators
and remote laboratories. The server simply acts as a gateway to forward simulation data from one
client to another. For optimal performance, the server is implemented in low-level C and makes use of
several Linux-specific real-time features. In this project, it is used on a Fedora-based Linux distribution
which has been reduced to the bare minimum, with no GUI and only a few background processes.
VILLASnode is designed around the concept of nodes, paths and hooks. It is the task of the server
to forward real-time simulation data between multiple clients. In doing so, the server has to perform
simple checks and collects statistics. From the viewpoint of the communication partners the server is
nearly transparent. Hence, it’s crucial to keep the latency as low as possible.

Nodes and Clients
All communication partners which are interfaced by the VILLASnode gateway are represented as nodes.
These nodes act as sinks / sources for simulation data. Every node is an instance of a node-type. In
a single VILLASnode instance, multiples instances of the same node-type can be created at the same
time. Multiple types of nodes are supported as shown in Figure 2.8. The socket node-type is the most
comprehensive and complex one. It allows to send and receive simulation data over the network.
Internally it uses the well known BSD socket API. A way to connect simulation equipment is by using
a client-application, which itself sends the data over the network to VILLASnode. In this scenario,
VILLASnode uses the Sockets node-type to communicate with the client-application.

In addition to the supported Node-types, VILLASnode comes with examples for client applications /
and model blocks. These clients usually use the Sockets node-type to exchange data with a VILLASnode
instance via UDP packets. With respect to the experiments conducted in this thesis, RTDS acts as a
client at both the labs and provides real-time simulation data with socket being the node type. The
RTDS GTNET card with the SKT (Socket Fimrware) sends real-time simulation data to the VILLASnode
as UDP packets.
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Figure 2.8: VILLASnode supported clients and nodes

Hooks
At times, forwarded sample data needs to be modified or filtered. VILLASnode supports hooks for this
purpose. Hooks are simple callback functions which are called whenever a message is processed by a
path. There are several built-in hooks for:

• Collecting, showing & resetting statistics

• Dropping reordered messages

• Verifying message meta data

• Handling simulation restarts

• Remapping values of a sample

• Overwriting / updating time-stamps

• Converting data-types

But the main goal of the hook mechanism is to provide extensibility to the end user. Example applica-
tions for hooks might be:

• Filter sample values

• Transform sample values: Fourier Transform

• Update network emulation settings based on sample values

Hooks can be added to the processing pipeline in three places:

• Node-read: Every time a sample is received from a node

• Node-write: Every-time a sample is sent to a node

• Path: Every time a sample is processed within a path

Some hooks are built-in, which are enabled by default, without a corresponding section in the
configuration file. Usually, built-in hooks have no configurable options.
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Paths
A path is a uni-directional connection between incoming and outgoing nodes. It forwards messages
from a single incoming node to multiple outgoing nodes. Therefore it represents a 1-to-n relation be-
tween nodes. For bidirectional communication, a corresponding path in the reverse direction must be
added. By default, message contents are not altered. The server only performs checks for valid mes-
sage headers (sequence number, time-stamp..). However every path supports optional hook/callback
functions which allow user-defined operations on the message contents. Some example node and path
configurations are shown below. All the node, hook and path configurations used in this thesis project
are provided in Appendix C.1.

1 nodes = {
2 ”tud_node” = {
3 type = ”socket”,
4 vectorize = 10,
5 hooks = (
6 {
7 type = ”decimate”,
8 ratio = 10
9 }
10 ),
11 builtin = true,
12 samplelen = 64,
13 signals = (
14 { name = ”Va”, unit = ”Volts”, format = ”float”},
15 { name = ”Vb”, unit = ”Volts”, format = ”float”},
16 { name = ”Vc”, unit = ”Volts”, format = ”float”},
17 )
18 # type specific settings follow here.
19 }
20 }

Listing 2.1: Example node configuration

1 paths = {
2 in = [
3 ”rtds.data[0-5]”,
4 ”web.data[0-2]”
5 ],
6 out = [
7 ”broker”,
8 ”opal”
9 ],
10 reverse = false,
11 mode = ”any”,
12 mask = [ ”rtds” ],
13 rate = 100,
14 original_sequence_no = false,
15 hooks = (
16 {
17 type = ”print”
18 },
19 {
20 type = ”ts”
21 }
22 )
23 }

Listing 2.2: Example path configuration
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JaNDER Implementation

This chapter discusses the implementation of JaNDER, investigated within the scope of this thesis,for
laboratory interconnections and testing. This work is undertaken as part of the ERIGrid project. The
aim of this particular test is to study a system composed of virtually coupled, geographically dispersed
sub-grids. By utilizing remote hardware, a wider range of tests can be performed without a need for
additional investments in new equipment. The test also enables integration of remote real system
behaviour into a real-time grid simulation.

3.1. Introduction
The overall objective of this test is to demonstrate that, by interconnecting the resources already
present in European RIs, it is possible to create an extended Research Infrastructure (RI). With this,
new use cases can be developed and studied, without any additional investment in new hardware. All
the participating laboratories, linked with a standardized ICT solution –JaNDER, are integrated into a
single VRI, encompassing the simulation / experimental potential made available by each lab. Thus,
this enables the ability to participate in tests of complex use cases. The virtual emulation of an electrical
interconnection is made possible by the communication platform used to exchange data, online. This
platform, JaNDER Level 0 has been implemented in each RI involved in this test. Accordingly, this
thesis aims also aims to demonstrate the JaNDER-Level 0 platform in a multi-RI experiment.

3.2. Test Setup
As part of the system under test, three RIs, namely – TU Delft, DTU and VTT have been interconnected
to form a Virtual Research Infrastructure (VRI), i.e. a set of devices (simulated, emulated or physical)
that act together following predefined criteria. In the studied test set-up, TU Delft acts as a grid
simulator and simulates a distribution network using a real-time simulator. The other two RIs, namely
DTU and VTT represent smaller physical parts of the network that are locally controlled. This section
describes the communication and simulation test setups for the implementation of JaNDER.

3.2.1. Communication Network
The JaNDER method of interconnection is a cloud based solution to remotely connect laboratories which
are geographically dispersed. As described in Chapter 2, a central cloud based server acts as a broker.
This is an Amazon Web Services (AWS) cloud machine EC2 located at RSE in Italy. Consequently, the
quality of the communication link between the central cloud and local redis database at every lab is
an important performance criterion. Therefore, it is decided to investigate the one way latency of
JaNDER Level 0 between the local and cloud redis. In particular, the test has been executed changing
the number of measurements exchanged between the the local redis at TU Delft and the central redis
cloud. This experiment, however does not consider the load of the different laboratories, but only the
latency time (for JaNDER Level 0). The target measure is latency of data updates on the cloud platform.
In the performed test, 𝑛 number of measurements: 1, 10 and 100 were exchanged simultaneously
between the local and cloud redis and time-stamps noted. 1000 repetitions were performed for every
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single type of measurement with a cooling period of 1s. Both the databases are synchronized through
a Network Time Protocol (NTP) server in Italy, the same location as the central cloud. Hence, the
comparison of time-stamps is indicative of the one way latency.

Central
Cloud Redis

Data Exchange

Local Redis 2 Local Redis 3

Data Exchange

Local Redis 1

Data Exchange

Figure 3.1: JaNDER Communication Setup

3.2.2. Experimental Setup at TU Delft
As part of the experiment, TU Delft provided its Real-Time Digital Simulator (RTDS) and acts as the
grid simulator to which other two RIs connect remotely. The distribution network model simulated on
the RTDS is a Low Voltage network based on [41, 42]. It is a single phase network with 11 buses, two
of which are chosen to act as Virtual Point of Common Coupling (PCC), Buses 8 and 11 respectively.
All the loads, PVs and storage are modeled as controllable current sources. The input for their control
blocks is a set of P (Active power) and Q (Reactive power) values. The control block then calculates the
current magnitude and angle that corresponds to these P and Q values, with regard to the voltage of
the bus that the current source is connected to. For buses 8 and 11, these P and Q values are received
from the remote RIs, DTU and VTT.

The JaNDER specification has been implemented through a custom python script. This enables
bi-directional data exchange between the RTDS and redis database by the use of UDP packets. To
this end, the GTNET card of the RTDS in conjunction with the SKT(socket) firmware is used. The
GTNET card supports data exchange rates between RTDS and an external machine, in the range of 1
to 20 kHz. This maximum value of 20 kHz corresponds to the default time-step of the simulator (i.e)
50𝜇𝑠. Additionally, up-to 100 data-points from the simulation can be exchanged in every time-step.
However, as per RTDS, an exchange rate of 5 kHz and transfer of 50 data points is recommended.
Since, the other participating RIs within this experiment supply their hardware, only lower exchange
rates between 1 to 10 Hz have been used. Further, the number of variables sent and received are 4
each, respectively. Voltage measurements at the PCC is calculated by the real-time simulator and sent
to the remote RIs which act as micro-grids and provide feedback active (P) and reactive power (Q)
set-points. This can be visualized through Figure 3.5.

3.2.3. Experimental Setup at VTT
VTT provided a grid emulator and a load within its low voltage network. The VTT RI acted as a sub-
network of the main grid simulated by TUD. The virtual PCC between TUD and VTT is realised via a
grid emulator, which sets the voltage and the frequency of the network. The range for grid emulator
is 0-277 𝑉፫፦፬ and 10-400 Hz. The grid emulator is connected to several different resistive loads during
the testing ranging from 2 to 15 kW. Other devices which are part of this sub-network are two feeder
protection and control relays connected to each line of the busbar. The measurements are sent to the
substation computer around every 300 ms. The substation computer is connected to the local Redis
via a Modbus client program on python. From the local Redis the data is exchanged with the other RIs
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via the JaNDER-L0 interconnection. The variables used in the experiment are listed in Table 3.1.
The measurements are published to redis in hashes containing the value, time stamp and the quality

indicator for each value, while controls are published as key value pairs. The measurements published
are active and reactive power, phase voltage and frequency for the phase A. The controls published
are the phase voltage and frequency set points. The local Redis is installed on the same server as the
redisRepl application for replicating the data from the local Redis to the cloud Redis and vice-versa. The
measurements are updated to the cloud Redis every second and controls every second. The internal
update time for the controls is 100 ms. In the experiment, VTT received the set points for the phase
voltage and frequency at the virtual PCC from main grid simulated by TUD and sends measurements of
active and reactive power at the virtual PCC to the main grid at TUD. To avoid damaging the hardware
due to the remote connection, all the set points received are reviewed by the Modbus client. If a
set-point is not within the limits defined on the Modbus client, the controls are set to the nearest limit.
Additionally, all the devices part of the experiment have also own local protection to diminish the risk
of damage.

3.2.4. Experimental Setup at DTU
DTU’s setup consists of a grid emulator and a branched network with a controllable load and a (non-
controllable) wind turbine, each connected at the end of a long line from the grid emulator. Due to
operational difficulties with the units scheduled to be used as a grid emulator, multiple candidates for
grid emulator were tried over the course of the testing period: A 125 kVA back-to-back converter, the
20 kVA inverter of a redox-flow battery and finally a 15kVA three-phase linear amplifier. Due to the
different connection points of these units in the laboratory, the topology of the test system had to be
adapted each time.

The grid emulator unit used for the tests is a Spitzenberger & Spies DM-15000/PAS 3x5kW linear
amplifier system. It consists of three 5 kVA amplifiers which are controlled through the manufacturer
supplied SyCore unit. The latter provides an IEEE488 control interface as the only remote control input.
The characteristics of this interface are the primary factor limiting the response time of the unit. A full
set-point cycle requires the setting of the main oscillator frequency (20ms) as well as three individual
waveform amplitudes (ca. 40ms each), resulting in an overall response time of ca. 140ms (~7Hz).

While the particular amplifier model is equipped with voltage and current feedback which can be
read through the IEEE488 interface, active and reactive power measurements are not available due to
the lack of a suitable measurement module. The P and Q readings of the amplifier must therefore be
taken from the panel instrumentation in the substations which have a lower measurement rate of ca.
1Hz.

The load at the end of the first grid branch (Load 2.1) is a three-phase, 80kW load bank consisting of
an array of 3x8 resistors switched by semiconductor relays with zero-crossing detection. The resistors
form an exponential cascade with 256 load steps per phase. The worst-case response time of the
unit is one half cycle (~10ms). The combined network between TU Delft, DTU and VTT is shown in
Figure 3.2. The orange lines represent virtual PCC implemented through JaNDER Level 0, while green
rectangles illustrate the boundaries of each RI.
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Figure 3.2: Single Line Diagram of Combined System

3.3. Implementation
The implementation of the experiment is carried out in incremental steps as follows:
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3.3.1. Data Exchange using JaNDER
This first step of implementation involves connecting all the RIs remotely to verify that they can connect
and communicate with each other through JaNDER. This is a fundamental requirement without which,
no further testing can be carried out. The chosen test system requires a significant number of signals
pertaining to measurements of physical grid quantities to be transferred from the SCADA systems in
DTU and VTT to the RTDS at TU Delft, in real-time. Similarly, the grid simulator sends the set-points
to all the devices in the other RIs. via redis. To achieve a successful remote connection test, all the
participating RIs must be able to read and write into the redis variables. For this, proper naming
conventions are to be followed. Table 3.1 lists all the redis variables used in this experiment. The
workflow to exchange measurement data and set points is shown in Figure 3.3.

START

Load 
Simulation 
files, scripts

Start RTDS 
Simulation

Run Python redis 
interface script

Values Published in 
Local redis?

Run Redis 
Replication 
(redisRepl)

YES

Simulation over or 
connection 
terminated?

STOP

YES

Check simulation, 
script  files and redis

NO

NO

Figure 3.3: Flowchart of JanDER level 0 implementation at TU Delft for data exchange

3.3.2. Quasi Static Soft HIL
The second step of implementation is the establishment of a virtual electrical connection by the ex-
change of data set points – voltage and frequency from the grid simulator to other remote RIs. In
return, these RIs provide power set-points (P and Q) from their physical devices. This data exchange
is independent of any control algorithm to observe steady-state system behaviour.
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Open-loop configuration

In the open loop configuration, as the name suggests, data is exchanged only in one direction. The
RI with the grid simulator, sets the voltage and frequency at the grid interface of the remote RIs, but
receives no feedback in the form of P and Q measurements. In order to verify the interconnection
between the three labs, JaNDER level 0 is used. All the RIs start two instances of Redis replication:
one to publish their measurements and one to read the measurements of the other RIs. Since this test
is an open-loop test, the frequency and voltage values obtained from the simulation are set at the grid
interfaces of DTU and VTT by TUD. On the contrary, TUD does not send the P and Q measurements
back to the RTDS. This can be seen through Figure 3.4.

Grid Simulator

JaNDER Level 0

V, f Setpoints

P, Q Setpoints

V, f Setpoints

P, Q Setpoints

Figure 3.4: Soft HIL Open-loop configuration

Closed-loop configuration

In the closed-loop test, all three RIs exchange data, with feedback P and Q measurements from DTU
and VTT integrated into the real-time simulation at TU Delft, thus closing the loop. This implies that,
the system under test is now geographically distributed, but virtually coupled. In order to test this
system, actual hardware at DTU and VTT is used. The devices used as part of the experiment are
controllable loads at both locations. Subsequently, load step events are performed and the result-
ing behaviour/performance of the geographically distributed, virtually coupled system is noted. The
purpose of this test is the characterization and validation of steady-state precision. To this end, the
virtually coupled, geographically distributed physical system is also modeled in a real-time simulator
as a monolithic reference to validate its performance. The results of all these cases are covered in
Chapter 5.
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Grid Simulator

Real-time Simulation

JaNDER Level 0

V, f Setpoints

P, Q Setpoints

V, f Setpoints

P, Q Setpoints

Figure 3.5: Soft HIL Closed-loop configuration

Table 3.1: List of Redis Variables

RI: DTU

Redis Variable Description
DTU::Storage_Vanadium:S_EA_PPV.instMag Voltage setpoint for grid interface
DTU::Storage_Vanadium:S_EA_Hz.instMag Frequency setpoint for grid interface
DTU::Storage_Vanadium:M_EA_Watt.instMag Resulting active power load on grid interface
DTU::Storage_Vanadium:M_EA_Var.instMag Resulting reactive power load on grid interface

RI: VTT

VTT:Source_JK-T.KK-TRB.emulator:C_EA_PhV.phsA.ctlVal Phase A voltage setpoint for grid interface (0-277 𝑉፫፦፬)
VTT:Source_JK-T.KK-TRB.emulator:C_EA_Hz.phsA.ctlVal Phase A frequency setpoint for grid interface (10-400 Hz)
VTT:Source_JK-T.KK-TRB.emulator:M_EA_W.phsA.instMag Resulting active power load on grid interface
VTT:Source_JK-T.KK-TRB.emulator:M_EA_VAr.phsA.instMag Resulting reactive power load on grid interface

RI: TUD

TUD:RTDS_PCC_A:Meas Voltage and Frequency Measurements at PCC A (Bus 8)
TUD:RTDS_PCC_B:Meas Voltage and Frequency Measurements at PCC B (Bus 11)





4
VILLAS Framework for GDRTS

This chapter discusses the application of VILLAS framework, a toolset for Geographically Distributed
Real-Time Simulation (GDRTS) which has been used to interconnect the real-time simulators at RWTH
Aachen and TU Delft. The architecture of the experimental setup and detailed communication and
simulation test cases are described. Additionally, study of the co-simulation interface algorithm based
on Dynamic Phasors (DP) is also dealt with, in detail.

4.1. Architecture
This section describes the system architecture used for GDRTS through VILLAS framework as illustrated
in Figure 2.7.
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Figure 4.1: Architecture of VILLAS framework implementation

4.1.1. Communication Network
Interface signals from the electrical domain are exchanged over the public internet between both real-
time simulators. For best results, both laboratories are connected via their university networks to
the National Research and Education Networks (NREN). Namely, Germany’s Deutsches Forschungs
Netzwerk (DFN) and the Netherlands’ SURFnet are non-profit organizations which are themselves in-
terconnected the the European GÉANT network. In contrast to special purpose computing networks
such as the LHC Computing Grid (LGC) by CERN [43], the networks used in this thesis are part of the
public internet and thus, shared with other users, which may result in unpredictable communication
latencies or packet loss. The DP based co-simulation interface algorithm described subsequently in this
chapter, can mitigate the consequences of these disturbances on simulation performance.

Virtual Private Network: Tinc
For GDRTS it is crucial to establish a direct point-to-point connection between the labs to maintain low
latency and jitter. As in most cases, computing equipment in both laboratories is protected against
external threats via a firewall which filters incoming network traffic. There are two approaches to
circumvent this restriction:

23



24 4. VILLAS Framework for GDRTS

1. Virtual Private Network (VPN) can tunnel network traffic between both sites. Most of the time
this requires the addition of exceptions to the firewall rule-set.

2. A technique referred to as Interactive Connectivity Establishment which facilitates peer-to-peer
networking as used by Voice-over-IP (VoIP) or other Video Conferencing Solutions such as Mi-
crosoft’s Skype [44].

In this thesis, Tinc-VPN software has been used which leverages both above mentioned techniques
to establish a fully meshed VPN between multiple labs [45]. It does so by using a publicly reachable
node which supports the restricted nodes in their connection establishment. However, after this initial
connection establishment, all critical real-time traffic is exchanged peer-to-peer between the laborato-
ries.

4.1.2. Co-simulation Gateway: VILLASnode
Within each laboratory, a Linux-based gateway machine is deployed to establish VPN connections and
handle data exchange between the local simulators and remote laboratories. For the data exchange
VILLASnode, a component of the VILLASframework, is used. VILLASnode is a C/C++ application tuned
for the real-time exchange of simulation data in different formats and protocols. In this setup, it handles
the collection of statistics on the communication link as well as the protocol conversion between the
UDP based connection to RTDS’ GTNET card and the Real-time Transfer Protocol (RTP) which has been
used between the laboratories. Its working has been explained in depth, previously, in Chapter 2.

4.1.3. Real-time Protocol: RTP / RTCP
The rate at which simulators exchange their interface signals is one of the key factors, which affects
accuracy of simulation results. The maximum rate is limited only by the available bandwidth of the
communication link. As the link is shared with other users, the available bandwidth varies with time,
which may cause congestion. Congestion has to be avoided as it leads to packet loss and a degradation
of simulation fidelity.

In the past, a static rate has been determined by empirical tests preceding the actual simulation
tests. This approach is cumbersome as it needs to be repeated for every new communication link and
possibly at different times of a day. To improve this situation, this project implements a congestion
avoidance scheme based on a real-time protocol which dynamically adjusts the sending rate.

For data exchange between the gateway machines, RTP and its sibling, Real-Time Transfer Control
Protocol (RTCP) are used [44]. Both protocols are used in conjunction: RTP handles data transfer
whereas RTCP is used to exchange Quality of Service (QoS) reports which measure packet loss, delay
and jitter. These reports are the main advantage of RTP over plain User Datagram Protocol (UDP)
packets, as they can be used by the sender to adjust its behaviour.

RTP and RTCP are widely used protocols in real-time multimedia streaming applications such as
Voice-over-IP (VoIP) or Video-on-Demand streaming. In these applications, RTCP receiver reports are
used to adjust the bit rate of multimedia codecs based on the current network conditions in order to
avoid stuttering and lags in the stream. In the context of this work, the receiver reports are used to
change the sampling (sending) rate of signals which are a exchanged between the simulators. RTP
encapsulates the simulation signals in a raw IEEE 754 single-precision floating format and adds header
fields for time-stamps as well as a sequence number. In this project, RTP uses UDP as the underlying
transport protocol.

4.1.4. Real-Time Digital Simulators: RTDS
Both labs operate digital real-time simulators from RTDS Technologies. As part of this project, two
Novacor chassis at RWTH and one PB5 rack at TU Delft have been used to simulate the system described
subsequently. For synchronization, both RTDS installations are equipped with GTSYNC extensions cards
which use the Global Position System (GPS) to synchronize the time-steps as well as the simulation start
to a common time reference. However, as seen later, synchronization is not an essential requirement
for the fidelity of the simulation, but instrumental for the collection and alignment of results.
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4.2. Test Cases
4.2.1. Communication Tests
In order to interconnect the real time simulators at both labs, the network topology and underlying
characteristics of the communication network have to be studied. The following communication tests
are conducted, for the same:

Ping & Trace-route tests
The most basic of communication tests, involve using the standard ping and trace-route tools to gain
a basic idea about the network connecting the two sites. For the ping test, 10000 packets in total, in
intervals of 10 ms are transmitted from one VILLASnode gateway machine to the other and the average
Round Trip Time (RTT) is recorded. This is found to be in the range of 12.7 to 13 ms. Next, using the
trace-route tool, the routing path between RWTH Aachen and TU Delft is found with a total number of
seventeen hops. Additonally, using the mtr (My Traceroute) command, each individual hop is pinged
with 1000 packets in intervals of 100 ms and the resulting statistics of the network are studied. These
are presented in Chapter 5.

Between VILLASnode Gateways
In this test, data is exchanged between the VILLASnode gateway machines running Tinc VPN in a
loop-back configuration through UDP. Sine-waves with varying frequencies are generated at either
location and every sample is transmitted to the other site, with a time-stamp. The received samples
on the other end, are re-transmitted back to the source without any changes to the encapsulated
data. By comparing the sent and received time-stamps, the communication latency between the sites
is estimated. This test is carried out for the following combinations:

• With a fixed sending rate and variable data size. Data size is varied from 1 to 100 data points in
steps of 10 data points.

• With a variable sending rate and fixed data size. Sending rate is varied from 1 packet/s to 20000
packets/s in steps of 500 packets/s.

Between Simulators using GTSYNC
As the final step of communication testing, data exchange between both the real-time simulators is
carried out. To achieve this, models which test the communication latency, jitter and maximum packet
rate were developed. Using the GTSYNC cards at both labs, simulations are started concurrently.
Simulation data is transferred from one RTDS to its local VILLASnode machine through the GTNET card
and GTNET SKT (socket) protocol. The SKT protocol represents both integer and floating point numbers
as 4 bytes in the packet. Floating point numbers are single precision(32-bit) and are represented using
IEEE754 format. The packet size is an integral multiple of 4 bytes, depending on number of data points
sent. From there on, this data is sent through the internet to the other lab, where is it received by its
VILLASnode machine and transferred to the RTDS using a similar setup. The IP addresses, ports and
variables to be exchanged are specified in the RSCAD model files.

4.2.2. Simulation Test Cases
The system under study in this project is based on a simple power system consisting of a voltage
source connected to loads through a transmission line as shown in Figure 4.2. This system represents
the most simple version of a transmission / distribution network, where the co-simulation interface is
located at the sub-station. Initial tests were conducted with an ideal voltage source to validate the
co-simulation setup. For validation, three different variants of the model have been compared:

Monolithic model
Monolithic model is modelled in real-time simulator using a single RTDS rack where the entire system is
simulated in a single subsystem with 50 µs time step as shown in Figure 4.2a. It serves as a reference
with no time delay for the comparison of the decoupled and distributed model.
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Decoupled model
The decoupled model shown in Figure 4.2b is derived from the monolithic model where the system is
separated into two subsystems at the 230 kV bus based on Ideal Transformer Model (ITM) approach
for co-simulation as described in the next section. The simulation is executed across two RTDS racks
but still contained and started by a single RSCAD/draft file. Signal exchange between the subsystems is
handled by cross-rack signal import/exports. Additional communication delay can optionally be applied
to these cross rack signals by using RSCAD control components.

Distributed model
The distributed model is derived from the decoupled model by moving one subsystem entirely to a
separate RTDS simulation. The co-simulation now spans two independent RSCAD/draft files which are
started separately. The signal exchange of the subsystems is handled by the VILLASnode gateway
machines, as discussed previously.

~
15/230 kV 230/115 kV

Load 2Load 1

(a) Monolithic model

15/230 kV

Load 1

~

230/115 kV

Load 2

SS1 SS2

~

(b) Decoupled/distributed model

Figure 4.2: Simple power system diagram

4.3. Dynamic Phasors (DP) Co-Simulation Interface Algorithm
The co-simulation interface algorithm used in this thesis is based on the ideal transformer model (ITM)
approach. As illustrated in Figure 4.2b, controlled sources are utilized to impose voltage and current
measured at the interface. GDRTS systems are based on Electromagnetic Transient (EMT) simulations,
where current and voltage quantities are as instantaneous values. Direct sampling and transfer of
these instantaneous values is not preferable. This is because, across a shared wide-area communication
network that is characterized by a relatively large and time-varying delay, transfer of these values would
significantly deteriorate the wave-forms and simulation fidelity. As a solution, two main approaches
are proposed in literature. Representation of interface quantities in the form of Root Mean Square
(RMS), Frequency and Phase angle is proposed in [46]. In this work, co-simulation interface algorithm
based on representation of current and voltage at the interface in the form of time-varying Fourier
coefficients, known as Dynamic Phasors (DP) is utilized [13].

Figure 4.3 illustrates transformation of waveforms to a DP based representation before sampling
and sending interface quantities to the remote GDRTS system. At the receiving side, the DP quantities
are reconstructed back to the time-domain to serve as reference for the controlled sources as illustrated
in the Figure 4.4. DP interface algorithm allows for the compensation of time-varying delay based on
phase shift within reconstruction of time-domain waveform. This compensation approach has been
proposed for Power Hardware-In-the-Loop (PHIL) in [47] and adapted for GDRTS in [13]. Details of
the implementation and comprehensive analysis of the DP-based co-simulation interface algorithm are
given in the following Section.
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Figure 4.4: Reconstruction of the time-domain waveform based on DP coefficients

4.4. Implementation
4.4.1. DFT Window Length
In a GDRTS, the power system is simulated in the time domain through discrete and equal time steps.
As a consequence, the Fourier transform used to calculate dynamic phasors must be a Discrete Fourier
Transform (DFT). The DFT is implemented as a series over the moving window of the product of signal
𝑥[𝑛] with reference phasors:

𝑋፤[𝑚] =
1
𝑁

፦

∑
፧዆፦ዅፍ

𝑥[𝑛] ⋅ 𝑒ዅ፣ኼ᎝ Ꮂ፟፤፧ (4.1)

As a result, the Fourier coefficients describe the harmonic components of the interface quantity.
The length of the DFT window is chosen so that it covers one period of the fundamental frequency of
the signal. For example, in a 60 Hz system which is simulated with a 50 µs time step 𝑇፬, the window
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has a length of 𝑁 ≈ (1/𝑓ኺ)/𝑇፬) = 333, 3. As this window length is not an integer number, the resulting
Fourier coefficients do not represent the harmonic components of the 60 Hz system accurately. If this
error is not properly taken into account, RMS values of interface quantities will not be identical and the
power exchanged at the co-simulation interface will be imbalanced even in steady state. As indicated
in the Table 4.1, a possible solution to this issue is the adjustment of the simulation time step such
that, the DFT window length is closer to an integral number: 𝑇፬ = (1/𝑓ኺ)/334 ≈ 49, 9 µs

Table 4.1: RMS values of interface quantities with respect to the DFT window lengths

DFT window Interface quantity
𝑉ፀ,፫፦፬ [kV] 𝐼ፀ,፫፦፬ [A]

𝑇፬ [µs] 𝑁 𝑙𝑒𝑛𝑔𝑡ℎ [ms] SS1 SS2 SS1 SS2
50 333 16.65 136.7 136.0 51.64 51.9
50 334 16.7 136.6 137.9 52.56 52.05
49.9 334 16.6666 136.6 136.6 52.56 52.56

It is to be noted that, this problem only occurs for systems whose fundamental period is not evenly
divisible by the simulation time step. E.g. for simulations with a 50 Hz system frequency and a 50 µs
time step, the DFT window exactly spans 400 steps.

4.4.2. DFT Calculation
A critical step for performance of the Dynamic Phasors (DP) Interface Algorithm is the calculation
of complex-valued phasors from the real-valued instantaneous voltage and current signals and their
subsequent reconstruction to original form. Phasors are calculated by a DFT from which only certain
harmonic components are selected. The calculation is continuously updated over a moving window,
thereby producing a stream of dynamic phasor updates. Different approaches to calculate the phasors
and the reconstruction have been considered:

RSCAD: DFT control component
The included DFT block in RSCAD supports a maximum sampling of 64 points per cycle. For the case
of a 60 Hz system, this results in a maximum update rate of the phasors to 60 Hz × 64 = 3840 Hz.
The execution time required for this block is 0.18 µs × 64 + 0.5 µs = 12, 02 µs which is relatively high.
In a standard co-simulation, 9 DFT blocks are required (3 phases × 3 harmonic components). Given
the execution time, this would result in utilization of several control component processors, which is
undesirable.

RSCAD: Moving average window
Figure 4.5b shows a custom implementation of the phasor calculation which utilizes moving average
blocks in RSCAD. This implementation produces an updated phasor in every simulation time step and
has an execution time which is nearly half of that of the DFT block.

VILLASnode
Both RSCAD based DFT implementations suffer from the disadvantage that, changing the number of
harmonic components is not feasible without extensive manual changes to the models and their large
utilization of RTDS hardware resources. Therefore, it is desirable to move the calculation of the DP
interface algorithm to the VILLASnode gateway and reduce the amount of changes required to the
initial model. The only modification, then necessary to adapt a model for co-simulation is the addition
of communication blocks (GTNET) and controlled sources. The simulation gateway has been updated
to perform calculation and reconstruction of phasors to instantaneous values.
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Figure 4.5: RSCAD implementation of DP interface algorithm

4.4.3. Signal reconstruction to the time-domain waveform
The reconstruction of the instantaneous voltage/current wave forms is performed by multiplying the
dynamic phasor coefficients 𝑋፤[𝑛] with the same rotating reference phasor. The resulting signal is
then used to directly control a voltage/current source at the coupling point. Due to internals of RTDS
scheduling, the resulting reconstructed waveform is always delayed by 1-3 time steps 𝑛፜ as the control
components cannot control the sources in the same time step as they are executed. This demands for
a constant phase compensation by 𝜑፜ = 2𝜋𝑓ኺ𝑛፜𝑇፬ which can be added to the absolute phase of the
reference phasor as shown in Figure 4.5c:

𝑥[𝑛] =
ፊ

∑
፤዆ኺ

𝑋፤[𝑛] ⋅ 𝑒፣(ኼ᎝ Ꮂ፟፤፧ዄᎣᑔ) (4.2)

Table 4.2 shows the steady state power flow with respect to different compensation steps for the
voltage and current sources in SS1 and SS2 respectively. It is to be noted that, the apparent power
and RMS voltage at the interface are matching in all cases. If internal delays of controlled sources are
properly compensated, the power flow is identical for both sides of the interface (𝑃ፒፒኻ = 𝑃ፒፒኼ, 𝑄ፒፒኻ =
𝑄ፒፒኻ) which is given for 𝑛ፒፒኻ = 3, 𝑛ፒፒኼ = 2.

Table 4.2: Steady-state power flow with respect to phase compensation of source signals.

፧ᑊᑊᎳ ፧ᑊᑊᎴ ፏᑊᑊᎳ ፐᑊᑊᎳ ፏᑊᑊᎴ ፐᑊᑊᎴ ፒ ፕ፫፦፬
[ፓᑤ] [ፓᑤ] [MW] [MVar] [MW] [MVar] [MVA] [kV]

0 0 19.16 9.846 20.0 8.003 21.54 227.7
1 1 19.52 9.118 20.0 8.003 21.54 227.9
2 1 19.69 8.749 20.0 8.003 21.54 227.9
3 2 20.0 8.003 20.0 8.003 21.54 228.1

4.4.4. Update Rate
In steady state, all three approaches provide correct results as the exchanged phasors remain constant.
During transients, the update rate of the phasors becomes critical. There are currently two bottlenecks
which limit the update rate of the phasors:
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1. Firstly, the RSCAD DFT block is limited to 3840 Hz.

2. Secondly, the maximum recommended sending rate by RTDS for the GTNET card is 5 kHz.

The first bottleneck has been solved by using the custom DFT implementation based on moving
average windows. The second bottleneck is the current limiting factor and therefore, the simulations
in this project have been conducted with an update rate of 5 kHz.

In any case, a sending rate less than the simulation time step (𝑓፜ <
ኻ
ፓᑤ
) during transients will result

in discontinuities in the reconstructed signal. In order to be avoid system instabilities, the signal should
be filtered with a low pass filter. Initial tests with a 3rd degree Butter worth filter with 𝑓፜ =

ኻ
ኼፓᑤ

have
shown promising results but entail a group delay of the reconstructed signal. However, this delay will
add to the existing communication delay.
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Results and Discussion

The results of JaNDER Implementation and application of VILLAS framework for GDRTS are discussed
in this chapter. For both methods, results of the communication tests are presented followed by the
results of the simulations.

5.1. JaNDER Implementation
5.1.1. Communication Test Results
A key parameter which must be evaluated for the JaNDER solution is performance : the platform
should be “fast enough”, meaning that it should be able to support future ERIGrid test cases. However,
it should be kept in mind that performance of the JaNDER platform arises from a trade-off between
conflicting requirements, in particular:

• To guarantee a very high level of cyber security.

• The need to work over the public Internet.

• Be easy to configure and deploy.

Thus, the most important performance factor becomes latency, i.e delays associated with exchange
of information or data. To obtain performance which meets the testing needs of ERIGrid, it is crucial
to ensure that the appropriate Redis data structure is used in each context (i.e.) plain keys or hashes.
In this project, to evaluate latency, simple measurements were conducted at each step of the remote
connection, as explained in Chapter 3.

Local to Redis cloud
The most important step in communication testing is investigation of latencies between the local redis
and the central redis cloud database. As explained earlier in Chapter 3, redis hashes containing 1, 10,
100 and 1000 measurements were replicated to the cloud. Each of these tests was repeated 1000
times, with the local and cloud redis time-stamps being recorded. The difference in these time-stamps
is the latency associated with local to cloud replication.

Figure 5.1a shows the cumulative distribution of the one way delays when replicating hashes with 1,
10 and 100 measurements respectively. It can be observed that, all three cases show similar behaviour
with the 95፭፡ percentiles for replication of 1, 10 and 100 measurements being 29.20 ms, 30.81 ms and
32.48 ms respectively. Thus, in all these cases, 95% of the values lie below 35 ms. In stark contrast,
Figure 5.1b shows the distribution for replication of 1000 measurements. There is a significant increase
in delays, with the 95፭፡ percentile, now lying at 129.01 ms. This implies, majority of the values are
below 130 ms. However, for real-time applications such a large delay is unacceptable. Therefore,
number of measurements contained in a hash and replicated during a joint experiment must be limited
below 1000.

31
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Figure 5.1: Cumulative Distribution of Latencies

5.1.2. Remote Data Exchange using JaNDER

The objective of this step is to show the proof of concept for bi-directional exchange of data between
the RTDS at TU Delft and a partner RI using JaNDER level 0. Figures 5.2 shows the working of
redis replication and the RTDS simulation. It can be seen from Figure 5.2 that, through the line
𝑙𝑜𝑐𝑎𝑙 → 𝑟𝑒𝑚𝑜𝑡𝑒, simulation data stored in local redis as a hash is being replicated to the cloud. It can
also be observed that, the slider for controlling active power load is at 50 MW.
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Figure 5.2: Remote connection test default case

Figure 5.3 depicts the realization of a successful remote-connection. Through the line, 𝑟𝑒𝑚𝑜𝑡𝑒 →
𝑙𝑜𝑐𝑎𝑙, the value of the active power set-point for load at bus 8 is modified remotely. This is depicted
by the change in slider value on the right from 50 to 75 MW as highlighted in the figure. Thus, remote
data exchange using JaNDER is achieved.

Figure 5.3: Virtual connection with remote changes

5.1.3. Simulation Test Results
In order to test and validate the geographically distributed, virtually coupled power system, described
in chapter 3, it is also modeled as a monolithic reference case in the real-time simulator at TU Delft for
comparison. Similar events/scenarios are simulated for both, monolithic and distributed setups.
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Steady State Behaviour
Figures 5.4a and 5.5a show the steady state performance of the monolithic model. Since the system
is in steady-state, there are no deviations or changes to system parameters. The bus voltages and
frequencies are maintained at their nominal values. It is to be also noted that, all the loads kept at zero.
The same is observed for the distributed setup as seen through Figures 5.4b and 5.5b. In order to study
the quasi-static behaviour of the system, the loads connected to buses 8 and 11 which represent the
virtual PCC in the distributed system are changed i.e increased or decreased. The resulting changes to
bus voltages and frequencies are observed for both the studied cases. This is explained in the following
sections.
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Figure 5.4: Active Power and Frequency: Steady State
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Figure 5.5: Bus Voltages: Steady State

Load Change at Bus 8
To note system performance when subjected to a change, the active and reactive power of the load at
Bus 8 (DTU) are increased to 6.7 kW and 10 kVAr respectively. These values correspond to three actual
load steps in the controllable load-bank located at DTU in Denmark. The same load step is performed
in the monolithic simulation as well. Due to the sudden increase in load demand, a frequency drop is
observed from 50 Hz to 49.9 Hz. However, since, the simulated network is a distribution grid, with an
ideal voltage source, the system frequency quickly recovers to the nominal value of 50 Hz. Similarly,
there is a drop in bus voltages with the maximum effect observed for bus 8 where the load step occurs.
In both cases, a voltage drop of about 6 V occurs. The post event voltages settle to a new steady-state
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value, slightly lower than the pre-event or base values. This can be seen in Figures 5.7a and 5.7b. It
is observable from Figures 5.6 and 5.7 that the behaviour of the monolithic and distributed cases is
similar.
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Figure 5.6: Active Power and Frequency: Load Step at Bus 8 (DTU)
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Figure 5.7: Bus Voltages: Load Step at Bus 8 (DTU)

Load Change at Bus 11

The controllable load used at VTT as part of the joint experiments is purely resistive in nature. One
load step of this load corresponds to an increase by 2.73 kW. Hence, an increase in active power from
0 to 2.73 kW is simulated at 𝑡 = 1𝑠 in the monolithic model, while the load step event in the distributed
setup is triggered at 𝑡 = 3.5𝑠. The frequency nadirs observed in both cases match quite well, with
recovery time for both cases being around 600 ms. Due to the increase in load, a voltage drop also
occurs. This is shown in Figure 5.9, which highlights the similar behaviour of the distributed system
with respect to monolithic case; The voltage drop in both cases is 3 V. It is interesting to note, there is a
very small voltage dip of about 0.5 V at Bus 8. This shows that despite being geographically separated,
the virtually coupled system behaves similar to an actual distribution grid.
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Figure 5.8: Active Power and Frequency: Load Step at Bus 11 (VTT)
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Figure 5.9: Bus Voltages: Load Step at Bus 11 (VTT/PCC B)

5.2. VILLAS Framework
This section delves into the results obtained through the application of VILLAS framework. The com-
munication and co-simulation test results are presented and discussed.

5.2.1. Communication Tests
Trace Route and Ping Tests
Routing path of packets between Delft and Aachen is shown in Figure 5.10a. A total of seventeen hops
are present. Statistical analysis of all individual hops is shown in Figure 5.10b. It can be observed that,
there is a positive correlation between the actual physical distance between hops and the modeled
latency, calculated using:

𝑇፦ = 𝑎 ∗ 𝐷 ∗ (𝑐/𝑛) (5.1)

where, 𝑎 ≈ 2 is an empirical air-line distance correction factor, 𝐷 as the distance, 𝑐 as speed of light
and 𝑛 ≈ 1, 5 as the refractive index of a fiber optic.
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Figure 5.10: Ping and trace-route results

Between VILLASnode Gateway Machines

Figure 5.11a shows the cumulative distribution of Round Trip Times (RTT) for the transfer of a fixed
number of data points–24 with variable sending rates between the gateway machines. 24 data points
are chosen as they are relevant to the application/use-case. It can be inferred from Figure 5.11b
that, for sending rates greater than 10000 packets/sec, RTT is higher than average and they can be
treated as outliers. Further, with higher sending rates, average RTT and packet loss also increase,
which is undesirable for the case of real-time simulations. For instance, with a sending rate of 17000
packets/sec, there is only a 60% chance of the RTT being lesser or equal to 25 ms. However, the lower
sending rates are all tightly coupled with their RTT lying in the range of 12.3 to 13 ms.

A similar analysis is carried out for RTT measurements with a fixed sending rate of 2000 packets/sec
and variable number of data points in each packet. Even here, when number of data points transferred
is greater than 100, there is a pronounced increase in RTT and packet loss. This is clearly seen
through Figure 5.12. Thus, it can be concluded, neither higher sending rates nor large data sizes are
preferable. This can be attributed to the fact that, the communication network between the two sites
is not a dedicated one, but shared. Hence, this introduces a degree of unpredictability or randomness.
Therefore, to avoid congestion and guarantee soft real-time behaviour even on a shared connection,
the sending rate and number of data points transferred should be kept below 10000 packets/s and 100
respectively.
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Figure 5.11: RTT statistics for a fixed data size and variable sending rate
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Figure 5.12: RTT statistics for a fixed sending rate and variable data size

5.2.2. Validation of the Co-simulation Interface
In order to validate the co-simulation interface, outputs from the distributed simulation are compared
to the monolithic case. To ensure simulation fidelity, values on either side of the interface must be
similar. To test and validate the robustness of the co-simulation interface, the amplitude of the ideal
voltage source is decreased from 230 kV to 165 kV as shown in Figure 5.13a. Both, the decoupled and
distributed simulation models’ RMS voltages on either side of the interface are similar to the mono-
lithic/original model. The results of the distributed model, if compared against the original monolithic
model as well as the decoupled version, show only a slight delay of 6 ms. This delay is attributable
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to the one way communication latency between both the labs. The same holds true for instantaneous
voltages and power quantities on both sides of the interface observable in Figures 5.13c and 5.13b.
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5.2.3. Limitations of the co-simulation interface
To test the limits of the co-simulation interface algorithm, a 90∘ phase discontinuity of the ideal voltage
source is introduced. This causes a transient in the monolithic simulation model, before the system
returns to a steady-state. However, the distributed and decoupled system’s response to the same event
is highly different. This is shown in Figure 5.14. The interface quantities do not change and strongly
differ from the monolithic reference waveforms. In the case of the simple and stiff power system which
is used in this study, the system eventually returns to a steady state. Thus, there is a strong case for
investigation of this improved co-simulation interface when applied to more complex power system test
cases.
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6
Conclusions and Recommendations

This chapter summarizes and concludes the scientific and technical implications of the research findings
of this thesis in considerable detail. The answers to the research questions posed in Chapter 1 are
presented along with final concluding remarks and specific contributions of this thesis. Last but not
least, challenges faced and recommendations for future work are also discussed.

6.1. Answers to Research Questions
1. How to interconnect real-time grid simulator at TU Delft with power hardware at

other European labs to build a Virtual Research Infrastructure (VRI)?
The RTDS at TU Delft has been successfully interconnected with hardware at other European labs
using the JaNDER platform. This is a software solution to interconnect multiple labs over large
geographically distances through the internet.

2. How to interconnect two real-time simulators to perform Geographically Distributed
Real-Time Simulation (GDRTS)?
The real-time simulators at RWTH Aachen and TU Delft have been successfully interconnected
through the VILLAS Framework. This interconnection was used to perform Geographically Dis-
tributed Real-Time Simulation (GDRTS); Thus, extending the simulation capabilities of both labs.

3. What is the effect of the properties and physical limitations of the communication
channel (internet) on a networked, distributed power system?

• Using the JaNDER architecture, only static experiments can be performed. The term static
refers to the limitation of being able to only analyze steady state performance. This is due
to the data exchange method between the RIs, which is cloud based and centralized. It
is known that the internet is not deterministic for networked control systems[48]. Conse-
quently, the latency between the local Redis of each RI can change as a function of many
uncontrollable variables.

• The average one way delay between local and cloud redis for transfer of 10 measurements
at one RI is 30 ms. Extending this, the overall RTT for a complete loop-back between two
RIs would be 30 × 4 = 120𝑚𝑠, which is quite high. Hence, the dynamic behaviour of an
electrical system cannot be accurately emulated using this approach.

4. What is the effect of the properties and physical limitations of the communication
channel (internet) on a co-simulation interface algorithm for GDRTS?

• The communication link between RWTH Aachen and TU Delft is quite good due to routing of
packets over the dedicated National Research and Education Networks (NREN). The average
RTT is in the range of 12.5 to 12.7 ms, which is quite low. Detailed testing of this particular
link has also revealed that, to avoid congestion and ensure simulation fidelity for a GDRTS,
the sending rate and number of data points transferred between the labs should be kept
below 10000 packets/s and 100 respectively.

43
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6.1.1. Conclusions on JaNDER Implementation and Testing
• The proof of concept for a geographically distributed, virtually coupled power system is presented
and its quasi static steady state performance is validated. This enables the realization of the
Virtual Research Infrastructure (VRI) concept, extending the individual capabilities of laboratories.

• The JaNDER Level 0 one way latency is approximately identical for transfer of 1, 10, 100 mea-
surements (29, 30 and 32 ms respectively) to the cloud. However, it is about 129 ms for 1000
measurements. Thus, JaNDER Level 0 is unsuitable in situations where more than 1000 mea-
surements have to be exchanged.

• For replication of measurements, it is better to use hashes since they are updated periodically in
a bulk manner. On the other hand, plain keys are more suitable for control variables since these
are typically transmitted asynchronously.

• The results obtained from the monolithic simulation and distributed test case match quite well.
The system response of the distributed setup to load change events is similar to that of the
monolithic case and inline with theory. There are some small deviations, which are to be expected,
as the three participating RIs are geographically dispersed and no delay compensation or control
was applied.

6.1.2. Conclusions on Application of VILLAS framework for GDRTS
This thesis identified and addressed several issues in the co-simulation interface which has been used
so far for GDRTS. These issues have been solved and validated, using a distributed real-time simulation
of a simple power system.

• Significant differences in Quality of Service (QoS) of the communication link have been observed in
comparison to previous lab couplings. These demand for an automated approach to monitor the
network and to adapt to network congestion. Therefore, this project introduced the application
of RTP/RTCP protocol in the real-time simulation domain.

• In the current state, GTNET cards cannot achieve the required sending rate, to sample data at
every simulation time step. This is necessary to move the Co-simulation Interface Algorithm into
the VILLASnode gateway machine. This is a hardware limitation which can be overcome by use
of a GTFPGA unit.

• The Discrete Fourier Transform (DFT) window lengths do not always match with the fundamental
system period due to the usage of discrete time steps by the simulators. This error has been
successfully reduced by adjusting the simulation time step to an integral factor of the time period.

• A constant phase offset caused by scheduling dependencies in the control system and network
solution within the RTDS system has been identified. This has been solved by applying a constant
phase compensation to the reconstructed signals.

6.2. Contributions
• This thesis has demonstrated and validated the concept of Virtual Research Infrastructure (VRI)
through a multi RI experiment. It was achieved by interconnecting geographically dispersed
hardware and software assets using the JaNDER level 0 platform. The platform can be used for
similar experiments or projects in the future, involving TU Delft.

• Study and validation of an updated co-simulation Interface Algorithm (IA) for Geographically
Distributed Real-Time Simulation (GDRTS) by means of the VILLASframework. Hence, TU Delft
is now a Point-of-Presence for Virtually Interconnected Laboratories for Large Scale Simulation
(VILLAS).

• Another important contribution of this work is the development and release of a reusable library
component and its demonstration in a demo model for the RTDS’ RSCAD software. It simplifies
the procedure to adapt existing models for a GDRTS as the user can simply copy a library block into
their models. This thesis also presented the improvements made in simulation fidelity as well as
usability for establishing future simulator and laboratory connections using Dynamic Phasors (DP).
This is shown in Appendix B.1.
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• The research findings of this thesis have been submitted to a special session on Smart Automation
and Digital Control in Power and Energy Systems at the 45፭፡ Annual Conference of the IEEE
Industrial Electronics Society (IECON’2019).

6.3. Challenges Faced
• JaNDER Implementation

– Resolving basic issues related to signal names, formats, units etc. as part of the JaNDER
tests took a surprising amount of time.

– Due to involvement of multiple RIs with different local hardware and software setups, testing
and experimentation was slow.

– Time Synchronization between RIs was an issue.

– Different data logging formats were time consuming to process.

• VILLAS Framework Implementation

– Obtaining intricate details related to existing network topology at TU Delft.

– Wiring and connection changes to the RTDS setup had to be made to ensure a best-effort
connection with the VILLASnode gateway machine.

6.4. Recommendations on Future Work
• The improved Dynamic Phasors (DP) based co-simulation Interface Algorithm must be tested for
more complex scenarios/models. Therefore, as follow-up work, a complex GDRTS is planned,
composed of a transmission (IEEE 9-bus system) and a distribution system (IEEE 34-node test
feeder), to be implemented among three real-time simulation laboratories at RWTH Aachen Uni-
versity, Technical University of Denmark (DTU) and TU Delft.

• To add an additional layer of complexity to the JaNDER testing, a control algorithm such as
the Coordinated Voltage Control (CVC) applied in [42] can be implemented, to control remote
resources in the distributed setup.

• A known hardware limitation in the RTDS hardware is sending/update rate of the GTNET card.
The recommended limit of 5 kHz cannot sample data at every simulation time-step. In future
tests, GTFPGA cards could be used to work around this issue and obtain more accurate results.
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A.1. Remote connection test
1. Title of Test: Remote Connection of different RI

2. Test Rationale: The concept of a Virtual Research Infrastructure (VRI) requires a soft-HIL
approach, so there is a “main-RI” that sends the voltage and frequency setpoints to all the other
“sub-RIs” virtually connected. All the RIs sends the active and reactive power and the voltage
measurements to the RI with the grid simulator. This test aims to verify the remote connection
between the RIs.

3. Specific Test System: The Test System consists of all RI SCADA/DAQ systems (at least the
variables of the power converters, or similar devices, that allows the coupling between the RIs)
through JaNDER infrastructure.

4. Target measures:

• Two way data exchange between RIs

• Data can be deciphered and read in the RIs

• Divergence between end-to-end values within uncertainty threshold: error between the
voltage and frequency setpoint sent by the main-RI and the corresponding measurements
at the virtual connection node in the sub-RI; error between the active and reactive setpoints
sent by the sub-RI and the corresponding measurements at the main-RI.

5. Test Design:

• Verify the operation mode of each device dedicated to the virtual connection: in the main-RI
all the devices at the connection nodes must be in grid-feeding mode (current source) while
in all the sub-RI, the devices at the connection nodes must be in grid-forming mode (voltage
source).

• Set a grid configuration of the main-RI in order to have different voltages measurements at
the connection nodes with the sub-RIs.

• Read the measured voltages and frequencies in all the sub-RIs.

• Evaluate the error between the setpoints and measurements of voltage and frequency in all
the connection nodes.

• Repeat the point 2 and 3 also for the active and reactive power values.

A.2. Quasi Static Software based HIL
1. Title of Test: Quasi Static Software based HIL

47
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2. Test Rationale: This is the second step of implementation where a virtual electrical connection is
established by exchange of data set-points. Voltage and frequency from RI 1 and power setpoints
from RI 2 and 3. The data exchange is independent of any control algorithm to observe system
behaviour, without any control

3. Specific Test System: A test grid is created which spans multiple RIs i.e. some lines and
resources in each RI. The test grid is also modelled in a power flow simulator as a monolithic
model, without any split.

4. Domain under Investigation (DuI): Electric power and ICT domains.

5. Purpose of Investigation (PoI):

• Integrating real physical system behaviour into simulated grids.

• Proof of concept of soft-real time multi-RI experiment through JaNDER level 0.

• To characterize the difference in results obtained through experiment carried out within one
RI and experiments carried out through a multi RI setup.

6. Target measures:

• Deviations/errors in the multi-RI setup with respect to the monolithic model.

7. Test Design:

• Define data to exchange and corresponding convention.

• Establish RIs communication through JaNDER-L0.

• Plan the experimental steps.

• Run the experiment:

(a) Load change in DTU
(b) Load change in VTT
(c) Voltage change in TUD

• For each test, transient and steady state values are recorded.

A.3. Script to Interface RTDS through JaNDER
1 import socket
2 import s t r u c t
3 import r ed i s
4 import t ime
5 import math
6

7

8 r=r ed i s . Redis ( ’ l o c a l h o s t ’ )
9

10

11 dtu=[”DTU: : Storage_Vanadium :M_EA_Watt ” , ”DTU: : Storage_Vanadium :M_EA_Var ” , ”DTU: :
Storage_Vanadium :S_EA_PPV” ,

12 ”DTU: : Storage_Vanadium :S_EA_Hz” ]
13

14 v t t =[”VTT: Source_JKዅT .KKዅTRB . emulator :M_EA_W. phsA ” , ”VTT: Source_JKዅT .KKዅTRB . emulator :M_EA_VAr .
phsA ” ,

15 ”VTT: Source_JKዅT .KKዅTRB . emulator : C_EA_PhV . phsA . c t l V a l ” , ”VTT: Source_JKዅT .KKዅTRB . emulator :
C_EA_Hz . phsA . c t l V a l ” ]

16

17 tud=[”TUD:RTDS_PCC_A:Meas” , ”TUD:RTDS_PCC_B:Meas” ]
18

19

20 UDP_IP = ” 10.10.9 .1 ”
21 UDP_PORT = 7777
22 gtnet=(” 10.10.9 .2 ” ,7777)
23

24 sock = socket . socket ( socket . AF_INET , socket .SOCK_DGRAM) # UDP
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25 sock . bind ( ( UDP_IP , UDP_PORT) )
26

27

28 whi le 1:
29 t r y :
30 #send data
31

32 data , ( UDP_IP ,UDP_PORT)= sock . recvfrom (1024) # bu f f e r s i z e i s 1024 bytes
33 ar ray = bytear ray ( data )
34 va lue_rec= s t r u c t . unpack ( ’>4f ’ , a r ray ) #read from RTDS GTNET and decode
35 #p r i n t ( va lue_rec )
36

37

38 #set to l o c a l r ed i s
39 r . hmset ( tud [0] , { ’ vo l tage ’ : ( va lue_rec [2]*1000) , ’ f req ’ : ( va lue_rec [0 ] ) , ’ tstamp ’ : s t r (

t ime . t ime ( ) ) })
40 r . hmset ( tud [1] , { ’ vo l tage ’ : ( va lue_rec [3]*1000) , ’ f req ’ : ( va lue_rec [1 ] ) , ’ tstamp ’ : s t r (

t ime . t ime ( ) ) })
41

42 #set va lues at DTU
43 r . hmset ( dtu [2] , { ’ instMag ’ : ( va lue_rec [2]*1000*math . sq r t (3) ) })
44 r . hmset ( dtu [3] , { ’ instMag ’ : va lue_rec [0 ] } )
45

46 r . se t ( v t t [2 ] , va lue_rec [3]*1000)
47 r . se t ( v t t [3 ] , va lue_rec [1 ] )
48

49 p1=( f l o a t ( r . hget ( dtu [0 ] , ’ instMag ’ ) . decode ( ) ) /1000)
50 q1=( f l o a t ( r . hget ( dtu [1 ] , ’ instMag ’ ) . decode ( ) ) /1000)
51 p2=( f l o a t ( r . hget ( v t t [0 ] , ’ VTT: Source_JKዅT .KKዅTRB . emulator :M_EA_W. phsA . instMag ’ ) . decode ( )

) /1000)
52

53 q2=( f l o a t ( r . hget ( v t t [1 ] , ’ VTT: Source_JKዅT .KKዅTRB . emulator :M_EA_VAr . phsA . instMag ’ ) . decode
( ) ) /1000)

54

55 i f ( p1>15.0) :
56 p1=15
57

58 i f ( p1<0) :
59 p1=0
60

61 i f ( q1>10) :
62 q1=10
63

64 i f ( q1<0) :
65 q1=0
66

67 i f ( p2>6.5) :
68 p2=6.5
69

70 i f ( p2<0) :
71 p2=0
72

73 i f ( q2>4) :
74 q2=0
75

76 data_to_r tds=s t r u c t . pack ( ’>4f ’ ,p1 , q1 , p2 , q2 )
77 sock . sendto ( data_to_rtds , gtnet )
78

79

80 except ( KeyboardInterrupt , RuntimeError , TypeError , NameError ) :
81 p r i n t ( ” bye ” )
82 break
83 #r . f l u s h a l l ( )
84 sock . c l o se ( )

Listing A.1: Python Code to communicate between RTDS and redis
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A.4. RSCAD and RTDS Models

Figure A.1: Simulated Network on RTDS
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A.5. Network Data

Table A.1: Component data

Cable/Line Length [m] RI Real/Virtual R [Ω] X[Ω]
Z1.1 70 TUD RTDS Virtual 0.02 1.846E-05
Z1.2 40 TUD RTDS Virtual 0.02 1.846E-05
Z1.3 40 TUD RTDS Virtual 0.04 3.692E-05
Z1.4 40 TUD RTDS Virtual 0.06 5.538E-05
Z1.5 40 TUD RTDS Virtual 0.08 1.56E-05
Z1.6 40 TUD RTDS Virtual 0.2214 1.794E-05
Z1.7 60 TUD RTDS Virtual 0.15372 7.22E-05
Z1.8 60 TUD RTDS Virtual 0.05226 1.547E-05
Z1.9 60 TUD RTDS Virtual 0.05226 1.547E-05

Z2.1 700 DTU Real 0.0854 0.0539
Z2.2 350 DTU Real 0.10955 0.0273
Z2.3 25 DTU Real 0.00783 0.00195

Z3.1 50 VTT Real 0.008 0.004

Table A.2: Load Data

Bus Max Active Power [kW] Max Reactive Power [kVar]

7 1.5 1
8 (DTU) 15 10
9 6.5 4
10 1.5 1
11 (VTT) 6.5 4
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A.6. Additional Results

Figure A.2: Comparison of Voltages at DTU
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Figure A.3: Comparison of Voltages at VTT
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Application of VILLAS Framework

B.1. RTDS Models
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Figure B.1: RSCAD Draft of Simple Power System Model
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B.2. Additional Co-simulation results
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Figure B.4: Instantaneous Voltages and Currents
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B.3. Effects of Communication Jitter and Congestion
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C
VILLASnode Configuration Files

C.1. Communication tests
1

2

3 priority = 99
4 affinity = 0x1c
5

6 logging = {
7 level = ”info”
8 }
9

10 nodes = {
11

12 acs = {
13 type = ”socket”
14 layer = ”udp”
15

16 in = {
17 address = ”*:12000”,
18 builtin = false
19

20 signals = {
21 count = 500
22 type = ”float”
23 }
24

25 hooks = (
26 {
27 type = ”fix”
28 },
29 {
30 type = ”restart”
31 },
32 {
33 type = ”stats”,
34

35 verbose = true
36 warmup = 100
37 }
38 )

59



60 C. VILLASnode Configuration Files

39 }
40 out = {
41 address = ”10.10.12.2:12000”
42 }
43 }
44

45 test_data = {
46 type = ”test_rtt”
47

48 cooldown = 2, # The cooldown time between
each test case in seconds

49

50 prefix = ”ct2_1_%Y-%m-%d_%H-%M-%S”, #
An optional prefix in the filename

51 output = ”/home/iepg/Sciebo/ERIGrid TA/Measurements/CT/CT2
”, # The output directory for all results

52 # The results of
each test case will be written to a seperate file.

53 format = ”villas.human”, # The output
format of the result files.

54

55 cases = ( # The list of test
cases

56 # {
57 # rates = [
58 # 1, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500,
59 # 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000,
60 # 9500, 10000, 10500, 11000, 11500, 12000, 12500, 13000, 13500,
61 # 14000, 14500, 15000, 15500, 16000, 16500, 17000, 17500, 18000, 1

8500,
62 # 19000, 19500, 20000
63 # ]
64 # values = [ 24 ] # An array of number of

values
65 # duration = 60 # The duration of

the test case in seconds (depending on the sending rate)
66 # },
67 {
68 rates = [ 2000 ]
69 # values = [
70 # 1, 10, 20, 30, 40, 50, 60, 70, 80, 90,
71 # 100, 110, 120, 130, 140, 150, 160, 170, 180, 190,
72 # 200, 210, 220, 230, 240, 250, 260, 270, 280, 290,
73 # 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400
74 # ]
75 values = [ 350 ]
76 duration = 60
77 }
78 )
79

80 }
81 }
82

83

84 paths = (
85 {
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86 in = ”test_data”,
87 out = ”acs”
88

89 hooks = (
90 # { type = ”print” }
91 )
92 },
93 {
94 in = ”acs”,
95 out = ”test_data”,
96

97 hooks = (
98 # { type = ”print” }
99 )
100 }
101 )

Listing C.1: Configuration for communication tests

C.2. Simulation Tests
1

2 priority = 99
3 affinity = 0x1c
4

5 logging = {
6 level = ”info”
7 }
8

9 nodes = {
10

11 acs = {
12 type = ”socket”
13 layer = ”udp”
14

15 in = {
16 address = ”*:12000”,
17 builtin = true
18

19 hooks = (
20 {
21 type = ”stats”,
22

23 verbose = true
24 warmup = 20
25 }
26 )
27 }
28 out = {
29 address = ”10.10.12.2:12000”
30 }
31 }
32

33 rtds-tud = {
34 type = ”socket”
35 format = ”gtnet.fake”
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36 builtin = true
37

38 in = {
39 address = ”*:12002”
40

41 hooks = (
42 { type = ”stats” }
43 )
44 }
45 out = {
46 address = ”10.10.9.2:12002”
47 }
48 }
49 }
50

51

52 paths = (
53 {
54 in = ”rtds-tud”
55 out = ”acs”
56 },
57 {
58 in = ”acs”
59 out = ”rtds-tud”
60 }
61 )

Listing C.2: Configuration for simulation tests

C.3. Implementation of Real-Time Protocol (RTP)
1 priority = 99
2 affinity = 0x1c
3

4 nodes = {
5

6 acs = {
7 type = ”rtp”
8

9 rate = 20000
10

11 rtcp = {
12 mode = ”aimd”
13 throttle_mode = ”limit_rate”
14 }
15

16 aimd = {
17 a = 100
18 b = 0.8
19

20 start_rate = 8000
21 }
22

23 in = {
24 address = ”0.0.0.0:12000”,
25
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26 signals = {
27 count = 24
28 type = ”float”
29 }
30

31 hooks = (
32 {
33 type = ”stats”,
34

35 verbose = true
36 warmup = 100
37 }
38 )
39 }
40 out = {
41 address = ”10.10.12.2:12000”
42 }
43 }
44

45 signal = {
46 type = ”signal”
47

48 rate = 20000
49 signal = ”constant”
50 values = 24
51 }
52 }
53

54

55 paths = (
56 {
57 in = ”signal”,
58 out = ”acs”
59

60 hooks = (
61 # { type = ”print” }
62 )
63 },
64 {
65 enabled = false
66 in = ”acs”
67

68 hooks = (
69 # { type = ”print” }
70 )
71 }
72 )

Listing C.3: Configuration for RTP
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