
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

MSc Thesis
Domain-Informed Neural Networks for Detecting
Underwater Moving Objects with Noisy Datasets

Mathieu D'heer

MSc Thesis
Domain-Informed Neural Networks for

Detecting Underwater Moving Objects with
Noisy Datasets

by

Mathieu D'heer

Student number: 4557476

In partial fulfillment of the Master of Science at Delft University of Technology

Cover image generated using Dall-E.

Supervisor: Dr. ir. A. Jamshidnejad
PhD Candidate: Ir. A. Ilioudi
Faculty: Faculty of Aerospace Engineering, Delft
Thesis committee: Dr. ir. E.J.J. Smeur

Dr. ir. A. Jamshidnejad
Dr. ir. M. Guo

Acknowledgments

This thesis marks the end of my academic journey. As I reflect on these years, I recognize them as both
rewarding and challenging. I am immensely grateful for having chosen to study Aerospace Engineering
at Delft University of Technology. Despite the hard work and numerous sacrifices required, the rewards
make it all worthwhile. The opportunity to forge lifelong friendships with peers from around the world,
participate in a minor program in Singapore, and experience zero-gravity flight are just a few of the
unique experiences that have enriched my life.

I extend my gratitude to my supervisors, Dr. Anahita Jamshidnejad and Athina Ilioudi, for their continual
advice and guidance. Their flexibility with the timeline, particularly in allowing me to take a three-
month break to participate in one of The Ocean Cleanup’s offshore campaigns, was invaluable. Their
motivation and support were crucial in helping me make consistent progress while working part-time.

To my parents, my brother, and my girlfriend Magali, who have always believed in me: I cannot thank
you enough. Your unwavering support helped me persevere through the darkest and most difficult
times. To all the friends I made along the way, thank you for making this journey unforgettable and
filled with joy. I have found lifelong friends, and though I left home, you all helped me build a second
one.

I am also thankful to my colleagues at The Ocean Cleanup for their support and understanding. I greatly
appreciate the flexibility I was allowed to finish the thesis and the trust placed in my work.

I now close this chapter of my life with a smile. This journey has shaped the person I am today, and I
look forward to the future with optimism. After all, it only gets easier from here, right?

Mathieu D’heer
Delft, July 2024

i

Part I
Scientific paper

Domain-Informed Neural Networks for Detecting Underwater Moving
Objects with Noisy Datasets

M. D’heer

Delft University of Technology, 2629HS Delft, the Netherlands

Keywords: Marine pollution, neural networks, object detection, knowledge distillation, synthetic data

Marine pollution is a critical issue impacting the global community, with underwater waste a particularly daunt-
ing challenge. While autonomous detection and collection of underwater waste is highly desirable, these are
extremely difficult ta sks. Th is di fficulty aris es from the intr insic comp lexities of t he aqua tic envi ronment, in-
cluding variable lighting conditions, reduced visibility, and the complex nature of water currents. This paper
focuses on novel approaches for autonomous detection of underwater waste and proposes to incorporate domain
knowledge to refine deep-learning-based underwater object detection t echniques. More specifically, the domain
knowledge is represented with models in the state space form that describe the motion of the target objects to
assist the classification o f o bjects. M oreover, o ptical fl ow is co mbined wi th a k- means cl ustering al gorithm to
extract the trajectory of the target objects from videos. These trajectories are subsequently fed into a neural
network that is trained using knowledge distillation, enhanced with domain knowledge. For our experiments, a
simulator is devised to facilitate the creation of a dataset for developing and testing the proposed architecture.
The results of the experiments demonstrate that including domain knowledge within the object detection ap-
proach with neural networks provides numerous substantial advantages, including enhanced robustness against
noisy and poorly labelled data, facilitation of semi-supervised learning, and consistent superiority in accuracy
over the baseline scenario. Additionally, combining the domain knowledge with a neural network significantly
increases the computational speed of object detection compared to using the standalone domain knowledge
module.

Table 1: Mathematical notations

Symbol Description

ρ(·) Density function
d Depth
vobjx True object velocity in m/s

xobj
i Horizontal position of the object in m

xrov
i Horizontal position of the ROV in m

i Frame number
f s Frame rate in Hz
I(·, ·, ·) Intensity function of optical flow
xpixel Horizontal pixel location in a frame
ypixel Vertical pixel location in a frame
t Time
vpixelx Horizontal pixel velocity

vpixely Vertical pixel velocity
c⃗k Motion constraint vector
a⃗n Vector of feature parameters for com-

ponent n
m⃗ Mixture model weight
p (. | ., ., .) Motion constraint probability
λl Weight of label-based loss
λr Weight of regularization term
λk Weight of knowledge-based loss
Ll (., .) Label-based loss function
Lk (., .) Knowledge-based loss function
R(·) Regularisation function
ρfog Density of the underwater fog
ρwater Density of the water
xmax Maximum x-distance object can spawn
yglobal y-coordinate in a real-world coordinate

system
f Focal length

1

1 INTRODUCTION

fovv Vertical field of view
ycentre Centre location of pixels on vertical

axis
dcam Distance from the object to the camera

in m
hpix Height of the image in pixels
g Gravitational acceleration
mo Mass of the object
ρwater Water density
V o Volume of the object in m3

cd,o Drag coefficient
Ao Surface area in m2

vcurrentz Water current velocity in m/s
F fz Fish force
f tail Fishtail frequency
Lce Cross entropy loss
Lkl Kullback-Leibler divergence
P ∗ True probability distribution
P Predicted probability distribution
P soft Softened predicted probability distri-

bution
P soft Softened predicted teacher distribu-

tion
T Temperature parameter
α Weighting parameter balancing two

losses

I. Introduction

While the manufacturing of disposable products has
significantly increased in recent decades, the ability to
sustainably manage the waste has not kept pace with
the rising production. Especially in underdeveloped ar-
eas, plastics and their resulting environmental pollution
have reached alarming levels, triggering the need for a
global Plastics Treaty by the United Nations [1]. It
is estimated that there are between 50 and 75 trillion
pieces of plastic in the oceans, and this number is con-
tinuously rising [2].

Trash cleanup involves inherent difficulties and chal-
lenges, but the specific environment dictates the feasi-
bility of the cleanup endeavours. Specifically, the re-
moval of underwater debris is extremely resource- and
time-intensive, making autonomous methods the only
feasible and scalable solution. The first step in enabling
these autonomous approaches is to achieve automated
debris detection from captured images. This task is
difficult even with the recent advancements in Artifi-
cial Intelligence (AI), such as large language and mul-
timodal models that are specifically suited for classi-

fication (i.e., classifying an input image into the cor-
rect class) [3, 4]. In fact, the underwater environment
poses various challenges compared to other object de-
tection problems, including low contrast, uneven illumi-
nation, complex backgrounds, and high noise caused by
water turbulence, marine snow, backscatter and more
[5, 6, 7, 8].

The problem of underwater object detection can also
be observed from an information theory perspective
[9]. Each image has a limited amount of information
that is encapsulated in its pixels. Convolutional Neu-
ral Networks (CNNs) are methods that extract and
interpret this information [10]. The state-of-the-art
neural-network-based methods, such as YOLOv8 [11],
EfficientNet [12], RetinaNet [13], and Faster R-CNN
[14] are highly capable of extracting and interpreting
the available information in images. Enhancing per-
formance beyond this level necessitates expanding the
informational base. The most direct strategy to in-
crease the available information entails transitioning
to a video-based approach instead of an image-based
one. Leveraging this additional information can be
done in two ways: implicitly and explicitly. The im-
plicit approach relies heavily on large existing datasets
that allow the neural network to deduct the underlying
physics and knowledge from the data. Video-based ob-
ject detectors using temporal data are notoriously hard
to train [15] and datasets with sufficient size for train-
ing them are hard, or even impossible, to collect. The
explicit approach relies on formally defining informa-
tion and integrating this information into a neural net-
work. This method can be referred to as informed ma-
chine learning [16]. Informed machine learning lever-
ages two sources of information: data and prior knowl-
edge. An example is described in [17], where a neural
network is trained from data and existing knowledge,
i.e., it should satisfy the rule that the water density
ρ(·) in a lake at two different depths d1 and d2, with
d1 < d2, must follow ρ(d1) < ρ(d2). A taxonomy of
informed machine learning [16], where prior knowledge
with different sources corresponding to certain repre-
sentations and different integration methods are used,
can be found in Fig. 1.

Considering the temporal aspects of the data and the
dynamics of a moving object in aquatic environments,
this paper focuses on domain-specific scientific knowl-
edge relevant to underwater object dynamics. More-
over, this paper presents the modification of an exist-
ing Unity3D project [18], in order to generate a dataset
that is tailored to the scope of this research. Subse-

2

1 INTRODUCTION

Fig. 1: Taxonomy of informed machine learning [16]

3

2 RELATED WORK

quently, an algorithm is designed to extract the object
trajectories from the synthetic dataset. Two mathe-
matical models representing the movement of the ob-
jects of the two considered class categories, i.e., trash
and fish are subsequently integrated into a neural net-
work using the principle of knowledge distillation [19].
This enables the neural network to learn from both the
dataset and the domain-specific knowledge during the
training phase. An analysis compares the performance
of the neural network that is trained with and with-
out the integration of domain knowledge across vari-
ous scenarios and explores the benefits and limitations.
Additionally, the training is performed in both fully
supervised and semi-supervised settings.

The main contributions of this paper are given be-
low:

• A synthesised Ordinary Differential Equations
(ODE)-driven dataset is introduced for underwa-
ter object detection.

• A domain-informed neural network framework is
developed to address the challenges of underwa-
ter object detection with limited and poor-quality
data.

• The proposed architecture is trained in both a fully
supervised and a semi-supervised learning setting
and a comprehensive analysis of the results is pre-
sented.

Given the scope of this research, the study is delim-
ited into two primary class categories: trash and fish.
The trash class consists of two objects: a plastic bottle
and a plastic beer holder. The fish class comprises a
single type of fish. The proposed approaches can be
generalised and expanded to more classes and differ-
ent applications, including various types of trash, other
marine life or even space applications that use different
types of domain knowledge.

This paper is organised into four sections: Section
section 2 discusses the related work. The methodology
is described in section 3, covering the simulator setup
and the generated dataset, the data preprocessing mod-
ule, the mathematical models and their application as
domain knowledge, the dataset customisation module,
and the neural network along with the training process.
The results, discussed in section 4, are presented in two
case studies: the first one, detailed in subsection 4.1, is
based on supervised learning, and the second one, dis-
cussed in subsection 4.2, is based on semi-supervised
learning. The conclusion and topics for future research
are given in section 5. A road map can be found in
Fig. 2.

Fig. 2: Road map of the paper

II. Related Work

This section provides an overview of the existing rel-
evant state-of-the-art knowledge on video-based under-
water datasets and simulators, motion extraction tech-
niques, neural networks, and domain knowledge inte-
gration methods.

II.i Datasets and simulators

Data is paramount in any machine learning problem.
In fact, the quality of the dataset that is used in the
training and validation of a machine learning method
has a major effect on the performance of the resulting
model [20, 21].

As this paper focuses on dynamic underwater en-
vironments, the machine learning-based classification
method requires a sequentially annotated dataset in-
cluding both plastic and fish. The most known un-
derwater datasets are Deep-sea Debris Database [22],
Trashcan [23], and TrashICRA19 [24]. However, these
datasets provide annotations at the frame level, instead
of the video level, and lack unique identifiers to track
the moving objects. The velocity of a moving object
can be calculated via:

vobjx =
xobj
i+1 − xobj

i

f s
−

xrov
i+1 − xrov

i

f s
(1)

with vobjx the velocity of the moving object in the hor-

izontal direction, xobj
i the location of the object across

4

2.2 Motion extraction techniques for images 2 RELATED WORK

the horizontal axis, i the frame number, f s the sam-
pling rate in Hz, and xrov

i the location of the Remotely
Operated Vehicle (ROV) in the horizontal direction for
the ith frame. Note that the locations are assumed to
be in a real-world coordinate system, not an image-
based coordinate system. It is possible to convert the
locations from one reference frame to another, but in
the aforementioned datasets, neither the real-world po-
sitions nor the sampling rate is present. This makes
none of the publicly available datasets usable for this
research. It is not deemed feasible to generate a real-
life dataset, due to the high cost and time required for
setting up and performing the data collection, post-
processing the data, and annotating the data.

Given the scarcity of real-world video object detec-
tion datasets, synthetic datasets are considered. After
a comprehensive search for open-source visually and
physically accurate simulators, the following options
were identified. Note that since in fully automated de-
tection and collection of underwater waste robots are
used, simulators relevant for robotic systems were also
included:

• Robot Operating System (ROS) based simulator:
This is an open-source simulation tool for robotic
systems that encompasses a modular structure and
offers a wide range of vehicles and sensors with
realistic visualizations [25].

• Gazebo-based simulator: This is a package for the
Gazebo framework that supports multiple robots
and intervention tasks. It allows a straightforward
setup of diverse scenarios and robots [26].

• Unity-based simulator: This is an environment in
the Unity landscape that enables the simulation of
underwater dynamics. It facilitates the integration
of various control algorithms and the training of
neural networks thanks to its high visual fidelity
[18].

II.ii Motion extraction techniques for images

To leverage the dynamics of the object to make pre-
dictions about its movements, the first step is to extract
the motion from the gathered data. The apparent mo-
tion of the brightness patterns in an image, caused by
the relative motion between the object and the cam-
era, is called optical flow [27], which will be used in
this paper to extract the position and the velocity of
a moving object from images. The goal is to calculate
the horizontal and vertical velocity for each pixel in the
image in order to describe the movements of the object
across the frames.

The most known techniques are based on the bright-
ness consistency assumption [27, 28], which states that
the apparent intensity of an object does not change
across different frames. Mathematically, this assump-
tion is given by:

I(x, y, t) = I(xpixel + ∆xpixel, ypixel + ∆ypixel, t + ∆t)
(2)

where I(·, ·, ·) is the intensity function, and xpixel and
ypixel are the locations of the object in pixel coordi-
nates at time instant t in the, respectively, horizontal
and vertical directions, and ∆x, ∆y, and ∆t show the
increment of these positions and the time. Consider-
ing a small motion, the Taylor series expansion can be
used to construct the Optical flow equation, given be-
low, where vpixelx and vpixely are the velocities of the pixel
in the, respectively, horizontal and vertical directions:

∂I(x, y, t)

∂x
vpixelx +

∂I(x, y, t)

∂y
vpixely +

∂I(x, y, t)

∂t
= 0 (3)

To solve this equation for the two unknown variables
vpixelx and vpixely , another equation that relates these
two variables is required. Different approaches have
been proposed for this aim: Lucas-Kanade [28] is an
approach that stands out for its speed. It leverages
spare optical flow and assumes that the neighbouring
points belong to the same flow. In contrast to dense op-
tical flow, which considers all the pixels, sparse optical
flow only focuses on specific features. A slightly dif-
ferent approach is taken in the Horn-Schunck method,
where the difference in the average velocity between the
neighbouring pixels is minimised [27]. Lastly, Gunnar-
Farneback method utilises the dense optical flow tech-
nique, employing polynomials to represent the image
and subsequently comparing two sets of these polyno-
mials to determine the flow [29]. Despite being the
slowest of the three techniques, the Gunnar-Farneback
method stands out as the most accurate.

Besides the traditional methods, Gaussian mixture
models [30] have also been applied to the optical flow
problem. These models work based on the more general
assumption that the information in the image sequence
is conserved locally in space and time, in the direc-
tion of motion. The corresponding algorithm operates
by clustering different layers of motion within the im-
age. Each layer typically refers to a different object
such as a car or a cyclist. The mixture model proba-
bility equation provides the conditional probability for
satisfaction of the motion constraint vectors c⃗k for the
location x⃗k = [xk, yk]⊤ in the image, for the different N

5

2.3 Neural networks 2 RELATED WORK

flow fields with parameter vectors a⃗n for n = 1, . . . , N .
Note that a⃗n is the vector of all the parameters that de-
scribe the nth flow field, where each flow field represents
a potential motion layer in the image that captures the
velocity vectors of a specific coherent motion within the
image region. We have:

p (c⃗k | x⃗k, m⃗, a⃗1, . . . , a⃗N) =

N∑
n=0

mn · pn (c⃗k | x⃗k, a⃗n)

(4)
In other words, (4) gives the probability that a given
motion constraint vector or class (e.g. pedestrian) c⃗k
at location x⃗k in the image matches the flow field de-
scribed by the feature parameter vector a⃗n for n =
1, . . . , N . The left side of (4) yields the total prob-
ability and the right side is the weighted sum of the
component probabilities. Note that mn is the mixture
probability weight with a sum equal to 1. The equation
is solved by utilising the Expectation-Maximisation al-
gorithm [31].

The trend in the last few years has been to ap-
ply machine learning to improve optical flow accuracy.
The first widely known machine learning-based model
is FlowNet [32], where two identical models are used
for both the input images and a shared correlation
layer is used to match them together. The endpoint
error, which is a standard metric for optical flow is
used as training loss [32]. Despite the innovative nature
of FlowNet, its generalizability for different datasets is
limited compared to the conventional approaches, such
as Lucas-Kanade [28] and Horn-Schunck [27]. FlowNet
2.0 [33] has been built based on the architecture of
FlowNet 1.0, where various improvements, such as
dataset training scheduling, stacking neural networks,
and the addition of a neural network focused on small
movements, have been added.

Another architecture for motion extraction from
images is the Recurrent All-Pairs Field Transforms
(RAFT) [34], which includes a feature encoder and a re-
current update mechanism. A special characteristic of
RAFT is maintaining a high-resolution flow through-
out the layers of the neural network. This results in
considerably less missing data corresponding to small
and fast-moving objects, compared to other models.

The primary drawback of using neural networks for
motion extraction from images is their requirement
for extensive training datasets. Although the perfor-
mance of neural networks may surpass that of tradi-
tional methods, this comes at the cost of losing gen-
eralizability. Consequently, these drawbacks make the

traditional optical flow methods preferable.

II.iii Neural networks

Deep learning video object detection has seen a surge
in popularity over recent years. Instead of applying 2D
CNNs to individual video frames, research has shown
that both 3D CNNs and transformers achieve higher
performance levels [35, 36]. The state-of-the-art neu-
ral networks include X3D [37], InternVideo [38], and
VideoMAE V2 [39]. Despite their impressive perfor-
mance, running these models on ROVs is challenging
due to their high computational demands. Addition-
ally, these neural networks are notoriously difficult to
train, require extensive datasets for training and valida-
tion, and possess complex architectures, which makes
it difficult to modify the architecture to embed domain-
specific knowledge. Considering these challenges, this
work focuses on more conventional methods for process-
ing temporal data, including the Feed-Forward Neural
Networkss (FFNNs) and Recurrent Neural Networks
(RNNs).

A FFNN is a simple architecture that consists of an
input layer, one or more hidden layers, and an output
layer, where each layer is composed of various neurons.
During the training process, the data is fed into the
input layer and flows through each subsequent layer. A
weighted sum of the inputs is calculated at each neuron
and is passed through an activation function, which is
responsible for introducing non-linearity in the neural
network. At the final layer, the output tensor is re-
sized to the number of classes of objects that should be
determined by the neural network. A loss function is
used to calculate the difference between the annotations
and outputs of the neural network. During the train-
ing process, this loss is back-propagated through the
model and an optimiser is used to update the weights,
such that this loss is minimised throughout the train-
ing. The most common optimizers used for this pur-
pose are the stochastic gradient descent methods and
the Adam optimiser [40].

Similarly, an RNN deals with a layered structure, re-
quires activation functions, and follows a training pro-
cess. The main difference between RNNs and FFNNs
is the presence of memory blocks, which allow the neu-
ral network to remember the previous inputs and to
use this information in its predictions. The most com-
mon RNNs are the Long Short-Term Memory networks
(LSTMs) [41] and the Gated Recurrent Unit networks
(GRUs)[42], which address the basic architecture prob-
lems of RNNs, i.e., a vanishing or exploding gradient

6

2.4 Domain knowledge and deep learning integration methods 2 RELATED WORK

during the training [41, 42]. While RNNs are frequently
used in time series analysis, due to their recurrent ar-
chitecture, the input trajectory in the application of
this paper includes a single data point. This facilitates
the use of a straightforward FFNN.

II.iv Domain knowledge and deep learning integration
methods

Integration of domain knowledge and neural net-
works is known to, generally, improve the performance,
consistency with rules and principles of physics, and
generalizability of neural networks [43, 44, 45]. As is
given in Fig. 1, each source of knowledge that is used in
training the machine learning-based models may have
various representations of the information, where this
representation subsequently dictates the possible meth-
ods of integration of the knowledge. For the application
of this paper, the main source of information for the
object detection module is the dynamic movements of
the target objects that may be represented via differ-
ential equations, through numerical or computer-based
simulations, or as logical rules. The corresponding in-
formation can then be integrated within a neural net-
work via the input data, the loss function, knowledge
distillation, the architecture, and the output data [46].

The integration of the domain knowledge via the in-
put data can be done by using a modified version of
the existing data for training of the neural network
[47]. Another way is to construct a completely new
set of data, e.g., using computer-based simulations, as
additional labels in training [48]. Moreover, the ex-
isting training datasets can be enriched by modifying
samples such that they exhibit specific properties, as
demonstrated in [49].

Then the domain knowledge can effectively be used
to select characteristics, such as rotational and Galilean
symmetries, where this helps to create neural network-
based models that are more robust to low-quality train-
ing sets and aligned with the underlying physical prin-
ciples of the system they model.

Modifying the loss function is also a popular ap-
proach to effectively embed the domain knowledge
within the training process of a neural network. The
most common approach is to add a knowledge-based
term within the formulation of the loss function, where
this term, often called the physics-based or hybrid loss,
provides information about the quality of the annota-
tions and indicates consistencies. Furthermore, domain
knowledge can be integrated into support vector ma-
chines and kernel-based approximation methods by ad-

justing the optimisation problem to include constraints,
thereby guiding the learning process within defined re-
gions of the input domain [50]. The different compo-
nents of the loss function, including the label-based reg-
ularisation, and physics-based terms, and the problem
formulation for determining w⃗∗

f (i.e., an optimal value
for the vector w⃗f of the weights of function f : X → Y)
for the neural network are given below, based on [16]:

f (X| w⃗∗
f) = arg min

w⃗f

(Label-based loss︷ ︸︸ ︷
λl
∑
i

Ll (f (ξi|w⃗f) , ζi)

+

Regularisation︷ ︸︸ ︷
λrR(w⃗f) +λkLk (f (ξi|w⃗f) , ζi)︸ ︷︷ ︸

Knowledge-based loss

) (5)

with X the input dataset and Y the predictions, λl, λr,
and λk the weights for, respectively, the label-based
loss Ll (., .), the regularisation-based term R(f) ap-
plied to the model weights, and the knowledge-based
loss Lk (., .). Moreover, ξi ∈ X and ζi ∈ Y with
(f (ξi|w⃗f) , ζi) the input-output pair of the neural net-
work.

A method for embedding the domain knowledge
into a neural network is knowledge distillation, which
involves transferring information from a (typically
large) teacher neural-network-based model to a (usually
small) student neural-network-based model [19]. Dur-
ing the training process, the student model learns from
both the training data and the teacher model. The
loss function is designed such that the student model
learns to mimic the probabilities of the class predictions
of the teacher model. This approach not only helps
in compressing the size of the student neural network-
based model but also accelerates the inference time (the
time it takes for a trained model to make predictions
on unseen data). This is specifically advantageous for
deployment in resource-constrained situations and en-
vironments, e.g., when ROVs are used. Using knowl-
edge distillation, Z. Hu et al. [51] have in particular
shown the efficacy of combining deep neural networks
with domain knowledge represented via structured log-
ical rules. Their work will serve as a foundational basis
for this paper.

Domain knowledge may be integrated into a neu-
ral network through its architecture, which was done
first in 1994 in [52], where the architecture of the neu-
ral network is defined by a hierarchically structured
set of rules [53]. A main shortcoming of this approach
is that the ability to expand to new applications be-

7

3 METHODOLOGY

yond the predefined rules is limited. Therefore, var-
ious improvements have been proposed to this archi-
tecture [54, 55]. Recently, the trend has been shifting
towards embedding symbolic knowledge, expressed as
logical rules, into the architecture of the neural net-
work [56]. The hypothesis set of a neural network is
the set of all functions that the neural network chooses
one function from in order to generate outputs from in-
puts. Integrating logical rules into the hypothesis set of
a neural network in a probabilistic manner is another
approach that, by assigning probabilities to the logical
rules, makes these rules soft (i.e., not necessarily true,
but probabilistically true) [57, 58].

Finally, domain knowledge may be included in the
output data, which typically entails applying algebraic
equations to the output of the neural network and fil-
tering out those results that do not obey the rules [59].
These rules can be the laws of physics, but also be
guidelines such that the model’s output does not vio-
late any legal laws. Besides algebraic equations, this
domain knowledge may be included as simulation re-
sults that are employed to validate the trained neural
network [60, 61].

Knowledge distillation stands out among all these
approaches, for several reasons: Firstly, knowledge dis-
tillation allows to develop a small, computationally ef-
ficient neural network with a similar performance to
the larger teacher neural-network-based model. This
is especially important for applications that run on
resource-limited platforms, including ROVs. Addition-
ally, the distinct nature of the teacher neural-network-
based model allows for the use of various existing
mathematical models, thereby enabling the incorpora-
tion and extension of state-of-the-art methods. Lastly,
knowledge distillation leverages the structured knowl-
edge that is embedded in the teacher neural network-
based model, and learns from raw data. This effec-
tively bridges any gaps that may exist in the teacher
network-based model and enhances the overall robust-
ness of the student neural network to any noise in the
training data.

III. Methodology

This paper develops a machine learning-based model
that extracts the dynamics of motion of underwater
waste and fish from a series of underwater images, and
that, according to these dynamics, classifies the de-
tected object as either fish or plastic. Accordingly,
this section provides a comprehensive outline of the ap-

Fig. 3: Schematic of knowledge distillation

proaches proposed and adopted, starting with the gen-
eration and curation of the dataset for training and val-
idation of the model. We then discuss the preprocessing
techniques that extract the trajectories of motion, fol-
lowed by an overview of the mathematical model that
captures the domain knowledge, as well as the method
for integrating this domain knowledge into a neural net-
work. It is essential to compare the performance of the
neural network with and without domain knowledge in-
tegration across diverse scenarios. To facilitate this, an
advanced setup for dataset generation is introduced and
employed. We conclude this section with an in-depth
analysis of the architecture of the proposed neural net-
work and its training regimen.

III.i Generation and curation of data

Since no open-source dataset is available that can
be used to extract the trajectories of active and passive
objects, custom data via a micro-simulator will be gen-
erated. The existing simulators that focus on ROVs,
lack the option to model plastic and fish in the un-
derwater environment. Thus, custom modifications are
needed to provide the desired underwater simulation
environment.

First, the accessibility to both the source code of the
micro-simulator and the corresponding documentation
have been considered necessary. Moreover, to adopt
a structured approach to the decision-making, the fol-
lowing list of requirements for the simulator has been
established:

1. autonomously generating datasets
2. generating the required datasets in a reasonable

time that meets the time requirements
3. generating an annotations file that includes a 3D

vector of the position, velocity, and acceleration,
as well as the coordinates of the bounding box of
the detected objects corresponding to every new

8

3.1 Generation and curation of data 3 METHODOLOGY

trajectory
4. generating a file including the specific settings of

every trajectory (i.e., the strength and direction
of the water current, the direction and intensity
of light, the intensity of bubbles, the intensity of
particles, the transparency given as a quantity that
determines the clarity of the water, and the objects
in view)

5. modelling the underwater environment accurately,
by including the gravity force, the buoyancy, the
friction, the linear drag, and the current forces

6. creating an environment with high visual fidelity,
including lighting, the water body, bubbles, and
various particles

7. randomly spawning a minimum of two different ob-
jects

8. allowing to freely choose the degrees of motion of
the objects

9. generating diverse scenarios with variations in the
direction and intensity of lighting, the strength and
direction of the water current, the water trans-
parency, the particles, and the bubbles

An extensive investigation of different simulators
brought us to the Unity Game Engine (briefly called
Unity) [62], which emerges as the most suitable choice
for fulfilling all the abovementioned requirements. In
addition to its versatility and comprehensive documen-
tation, which distinguish Unity from other potential
simulators, Unity has shown to provide a robust setup
that is capable of generating high-quality data that
is flexible to be customised for object detection [18].
Next, we explain the overall architecture of the simu-
lator that has been developed in Unity to simulate the
underwater scenarios for this paper. This architecture
is also represented in Fig. 4 and the id’s of the block
are referenced in the section below.

First, Unity simulates an ROV with a stationary
camera, focusing on the underwater object avoidance.
A Python module interacts with Unity in the baseline
simulator and gathers data. Given that this paper is
focused on detection of moving objects, rather than on
the movements of the ROV itself, the baseline simula-
tor has been extended with a custom C# module for
data gathering. Since C# provides direct Unity inte-
gration, it is a more suited option than Python. The
C# module autonomously produces a dataset, where
the desired number of trajectories for the moving ob-
jects is provided as input to the module. The scene of
the scenario and the various plugins (including Aura 2
and custom scripts) are initialised as soon as the Unity

editor is launched (block 1). This then triggers the data
gathering script, which generates the required number
of trajectories in a loop with several iterations, where
during each iteration various steps, as will be explained
below, are executed (block 2).

A custom-built module, called the variable tracker
(block 3.a), tracks the states of the moving objects.
Two plastic objects are present, a plastic bottle, a plas-
tic beer holder and one fish. The position, velocity in
the horizontal and vertical directions and acceleration
in the horizontal and vertical directions are tracked.
For the environment are fog densities, bubble and par-
ticle emission and the current velocity tracked. The
data generation procedure ensures a diverse dataset,
by generating iterations with varying parameters for
the scene (these parameters include the underwater fog
strength, the particle emission rate, the intensity and
position of the light, and the direction and strength of
the water current) and for the moving objects (these pa-
rameters include the mass, volume, initial position and
orientation), but keeping the water density, ground tex-
tures, and dimensions of the scene constant (block 3.b).
Each iteration is characterised by the initialisation of
the variable tracker, by generation of a random scene,
and by spawning one randomly chosen object from the
input list of objects (which includes fish, plastic bottle
or plastic beer holder) (block 3.c).

Note that the underwater fog strength is a parameter
that determines the water transparency, where a large
value for this parameter indicates low transparency,
which results in low visibility and affects the maximum
distance that an object can be placed from the cam-
era, before becoming undetectable for it. The particle
emission rate introduces particles (called the marine
snow) in the scene that impact the clarity of the im-
ages taken by the ROV. The bubble emission rate de-
termines the amount of bubbles that are spawned in the
simulation environment every second. Including these
bubbles in the simulation enhances the visual fidelity
of the scene. Similarly, the intensity and position of
the light significantly impact the visual fidelity of the
scenes, where by avoiding extreme lighting conditions
more realistic scenarios are simulated. Finally, the di-
rection and strength of the water current influence the
direction and velocity of the movement of the objects.
The ranges of all these parameters have been carefully
chosen for the simulations to reflect realistic underwa-
ter conditions (see the details in Appendix A). At the
end, by adding ocean sand and rock formations at the
bottom of the scenes, the visual fidelity of the simulator

9

3.1 Generation and curation of data 3 METHODOLOGY

has been further improved (see Fig. 5).
The last step in the initialisation is the spawning

of either a plastic bottle, plastic six-pack holder, or a
fish, where these have been illustrated in, respectively,
Fig. 6a, Fig. 6b, and Fig. 6c as they appear in Unity.
These objects are not only characterised by their mesh
but also by their various properties, including the mass
mo, the volume V o, the surface areas Ao

x, Ao
y, Ao

z and

the drag coefficients cd,ox , cd,oy , cd,oz in the 3 dimensions,
and the density ρo, with o ∈ {fish, bottle, holder}.
Moreover, for the fish, the fish force F fish

z is also consid-
ered and consists of a sinusoidal force used to simulate
the thrust generated by the tail. Per iteration, the mass
and the volume of the plastic bottles, plastic six-pack
holders, and the fish vary within a range of ±10% from
their default values. The values for all the parameters
used in the simulations are given in Appendix A.

During and across the iterations, the camera of the
ROV is kept stationary at position [0, 0.5, 0]⊤, where
the first, second, and third elements of the given coor-
dinate correspond to, respectively, the horizontal, ver-
tical axis, and depth directions. The camera of the
ROV has a vertical field of view of 60 degrees and uses
perspective projection. While the simulator is capable
of generating 3D trajectories, in order to reduce the
complexity, the movements of the object are restricted
along the depth axis (negative x-axis). Consequently,
the object moves within a 2D plane relative to the cam-
era.

A randomisation function chooses which object is se-
lected for the iteration (block 4). Although the move-
ment of the object along the depth has been restricted,
a different static value is selected per iteration where
this value directly corresponds to the distance from the
camera that the object is spawned. The upper bound
of the position where the object is spawned across the
horizontal axis is determined by the fog density ρfog.
Given that the relationship between the fog density and
the maximum distance from the camera that an object
is still detectable for the camera is non-linear, the fol-
lowing polynomial regression is used to determine the
bound for the depth coordinate of an object:

xobj,max = 4 × 10−6 ·
(
ρfog

)3 − 0.0011 ·
(
ρfog

)2
+0.1048 · ρfog − 5.0222

(6)

After determining the bound of the horizontal co-
ordinate, the bounds of the vertical and depth co-
ordinates will be calibrated. For this, the method
ViewportToWorldPoint [63] from Unity is used to re-
shape the bounds. Additionally, the direction of the

Fig. 4: High-level architecture of the steps within the
Unity simulator for generating the underwater en-
vironment for data collection and for running our
experiments

10

3.1 Generation and curation of data 3 METHODOLOGY

Fig. 5: Default scene of the underwater environment generated by Unity

water current is considered to restrict the spawning lo-
cation to either the left or right side of the horizontal
plane. This consideration, along with the implementa-
tion of buffer zones, constitute the measures taken to
prevent the object from being spawned at the periphery
of the visible area and to ensure that the object does
not immediately exit the field of view of the ROV.

The object spawns in the scene after the initialisa-
tion steps are all complete. The Unity engine oper-
ates on a continuous cycle wherein the object states
are updated, the inputs are processed, the calculations
are performed, and the graphics are rendered. Each
C# class within the simulation has two default meth-
ods: Update() and FixedUpdate(). The Update()

method is invoked at every frame, but the frame rate
varies with the performance of the hardware. To en-
sure that the calculations are executed consistently, the
FixedUpdate() method is employed. While the Unity
Physics engine applies by default the forces, such as the
gravity and the collisions, more specific forces includ-
ing the buoyancy and the water current require custom
implementation, which has been discussed in detail in
Appendix A (block 5).

Finally, an iteration is terminated when one of the

following three exit criteria is met:

1. The object has moved out of the view of the cam-
era (block 7.a).

2. The velocity in the horizontal and vertical axis
of the object has dropped under the threshold of
moving at least 0.02 m between any two frames
(block 7.b).

3. The maximum number of frames is reached (block
7.c)

Upon completion of each iteration, the following two
files are generated: settings.json and annotations.json
(block 8). The file settings.json contains a comprehen-
sive record of the settings that have been employed in
the simulation for the completed iteration. The file
annotations.json is generated using a custom-built an-
notation module, which casts rays across a designated
area towards the centre of gravity of the object. Each
ray outputs a boolean that is true if the object is col-
lided by the ray. An array is then created from all the
rays that collide with the object and is then translated
into pixel locations, facilitating the automated genera-
tion of the bounding boxes (block 6). A sketch of this
approach can be found in Fig. 7. While the rays may
collide with the object in two senses, i.e., box collision

11

3.2 Data preprocessing 3 METHODOLOGY

(a) Plastic bottle 3D model [64]

(b) Plastic beer holder 3D model

(c) Fish 3D model [65]

Fig. 6: Objects used in the simulator

or mesh collision, we consider the box collision (which
compromises some levels of accuracy to achieve com-
putational efficiency).

All the aforementioned steps are repeated per iter-
ation until the desired number of trajectories of move-
ment are generated.

III.ii Data preprocessing

As explained earlier, the simulator produces a set
of trajectories for the movement of the objects, where
each trajectory corresponds to a set of sequential im-
ages, a configuration file, and an annotation file. Al-
though both the bounding boxes and the 3D positions
of an object are always known to the simulator, in the
real world, only the images with metadata are present.
Consequently, in this section, we discuss how the pat-
terns of movement captured from sequential images are
leveraged to accurately infer and extract the real-world
positions of the objects from the simulated data.

The motion extraction from sequential images is con-

Fig. 7: Sketch of bounding box creation module. The
camera projects 200 rays in both the horizontal and
vertical directions. Note that the sketch only shows
the 2D case.

ducted through optical flow, specifically utilising the
Farneback method [29]. This process is implemented
using the OpenCV library [66], a widely recognised
package for computer vision tasks. The input consists
of two sequential images that are likely to include a
moving object, and the output is a velocity magni-
tude plot for the object. Suppose that image 1 cor-
responds to time instant t1 with the object positioned
at (xt1 , yt1), expressed in pixel coordinates, and image
2 corresponds to time instant t2 with the object po-
sitioned at (xt2 , yt2). Each image consists of multiple
items with distinct optical flows, including the object
of interest, bubbles, particles, waves, and present tur-
bulence. If the actual velocity of the object through the
water exceeds the velocity of, for example, the bubbles
or the waves, then the optical flow values for the object
will be larger than those for the bubbles or the waves.
Note that the bubbles, partial waves, or any turbulence
will be referred to as the “surroundings” of the object.
Given the average frame rate of 10 fps, a small, linear
motion for the object in between any two consecutive
frames is assumed. We also assume that the velocity
of the object exceeds that of the surroundings, thus
the largest optical flow will be attributed to the object.
Using these assumptions, the position of the moving
object in pixel locations at time instant t̄ = t2−t1

2 is
approximated by:

(xpix
t̄ , ypixt̄) =

(
xpix
t2 − xpix

t1

2
,
ypixt2 − ypixt1

2

)
(7)

From Fig. 8, the object silhouette is not uniformly

12

3.3 Mathematical models 3 METHODOLOGY

Fig. 8: Output mask of the Farneback optical flow ap-
plied to two sequential underwater images of a plas-
tic beer holder. The more intense the colour of the
pixel, the larger the optical flow is for that location.

detected, and noise is present in the mask due to the
dynamic surroundings. To accurately locate the cen-
troid of the object, a k-means clustering algorithm [67]
is applied twice. Firstly, the clustering algorithm is ap-
plied to the magnitude of the optical flow values. The
algorithm is designed to extract three magnitude-based
clusters, from which the background (any pixels not be-
longing to the object) is identified if it covers more than
20% of the image. This can be either one cluster or two
clusters whenever a high level of noise is present (see
Appendix B for further details). Subsequently, the re-
sulting cluster or clusters undergo a second iteration
of k-means clustering. This time the emphasis is on
the spatial positioning of the highest optical flow val-
ues. The objective of this phase is to determine those
segments of the previously identified cluster(s) that cor-
respond to the actual object, given that the magnitude
clustering is also susceptible to noise interference, due
to optical flow produced by the surroundings. Ulti-
mately, this process isolates a maximum of six clusters
(i.e., in case three magnitude and three colour clus-
ters are identified), and the centroids are calculated
per cluster. These centroids are then assessed for their
proximity to each other and the clusters with centroids
closer than a given threshold are merged. Finally, the
cluster of the most substantial size is presumed to rep-
resent the object of interest. The centre of the resulting
cluster is then extracted and expressed in the local ref-
erence frame of the image.

The motion extraction module expresses the esti-
mated location of the moving object in pixel coordi-
nates. In order to use differential equations correspond-

ing to the domain knowledge, these pixel coordinates
should be transformed from a local 2D reference frame
into a 3D global real-world frame of reference. The
simulation uses the projection view [68] to generate the
footage. We have:

yobj =

((
ypix − ycentre

f

)
dcam − y0

)
(8)

where

f =
hpix

2 tan
(

fovv

2

) (9)

The projection view formula to convert the y coordi-
nate of a local reference frame in pixels to a global
reference frame in meters is given by (8) (note that the
same formula is used for the x-coordinate), where ypix

is the given y-coordinate of the moving object in pix-
els and ycentre is the y-coordinate of the centre of the
image in pixels, which equals 540 pixels, as the height
of the image is 1080 pixels. Moreover, dcam is the dis-
tance of the object from the camera in meters that is
assumed to be known. Additionally, y0 is the offset of
the coordinates of the camera that equals 0.5 m in this
setup, and f is the focal length. The simulator does
not provide the focal value, but this value is calculated
using (9), taken from [69]. The formula uses the res-
olution height hpix and the vertical field of view fovv,
which equals 60 degrees in our setup.

In order to enhance the computational efficiency, the
method is militarised to enable the motion extraction
and the clustering processes to be executed in parallel
across the entire dataset of trajectories. These results,
settings, and annotations are consolidated into a sin-
gle .json file, which eliminates the need for interfacing
with various files. In addition to the simulation and
the optical flow-derived trajectories, to mimic the sen-
sor noise that is typically present in real-world data,
additive Gaussian noise of mean 0 and a standard de-
viation of 0.4 is included in the ideal trajectories. The
unmodified trajectories are referred to as ”ideal” tra-
jectories.

In summary, the parsed data.json file is compiled
utilising the data preprocessing module to combine all
the data into a single file. Furthermore, validations
are implemented to ensure the data integrity and to
verify compliance with the minimum length criteria of
9 frames.

III.iii Mathematical models

Given the custom data and the feasibility of mod-
elling the underwater domain with mathematical ex-

13

3.3 Mathematical models 3 METHODOLOGY

pressions, it is chosen to represent the domain knowl-
edge using differential equations. A mathematical
model is developed per class of objects, where the focus
of the modelling is on the underwater movement, while
partial submersion is outside of the scope.

The mathematical model for the class of plastic is a
set of differential equations describing the 2D position
and velocity of a passive object with specific properties
in an underwater environment. The state vector is x =[
s1 s2 s3 s4

]T
with s1 = yo, s2 = ẏo, s3 = zo

and s4 = żo with o ∈ {fish, bottle, holder}, and the
nonlinear system of equations of motion of the object
is given by:

ṡ1 = s2,

ṡ2 =
1

mo

−
Gravity︷ ︸︸ ︷
mo · g +

Buoyancy︷ ︸︸ ︷
ρwater · g · V o

− 1

2
· sgn(s2)cd,oy · ρwater ·Ao

y · s22︸ ︷︷ ︸
Drag

 ,

ṡ3 = s4,

ṡ4 =
1

mo

(
−1

2
· sgn(s4 − vcurrentz) · cd,oz · ρwater ·Ao

z

·(s4 − vcurrentz)2
)

(10)

The static parameters include the gravitational acceler-
ation g, the density of water ρwater, the drag coefficient
in the y direction cd,oy and the drag coefficient in the z

direction cd,oz and are assumed to be known. The other
parameters are volume V o of the object, the drag coef-
ficients cd,oy and cd,oz , the surface areas Ao

y and Ao
z with

o ∈ {fish, bottle, holder}.

The state vector and model of the movements of a
fish are derived similarly as for the plastic, since they
are subject to similar forces. For the fish, however, an
extra force that represents the fish propulsion force is
included (the differences between the plastic model are

indicated in bold). We have:

ṡ1 = s2,

ṡ2 =
1

mo

−
Gravity︷ ︸︸ ︷
m · g +

Buoyancy︷ ︸︸ ︷
ρwater · g · V o

− sgn(s2)
1

2
· cd,oy · ρwater ·Ao

y · s22︸ ︷︷ ︸
Drag

 ,

ṡ3 = s4,

ṡ4 =
1

mo


Fish force︷ ︸︸ ︷

Ffz · u2 + Ffz

− sgn(s4 − vcurrentz) · 1

2
· cd,oz

·ρwater ·Ao
z · (s4 − vcurrentz)2

)
u2 = sin(t · f tail)

(11)

Specifically, the equation for ż incorporates a “fish
force” F fz and a tail frequency f tail . More details
are given in Appendix C.

From both (10) and (11), solving the differential
equations requires the values for the following parame-
ters: the volume V o of the object, the drag coefficients
cd,oy and cd,oz , the surface areas Ao

y and Ao
z, and the fish

force F fz with o ∈ {fish, bottle, holder}. The exact
values for these parameters are known within the sim-
ulator, but determining these parameters in the real
world is very hard, and model identification is used to
estimate those parameters. Thus, we also performed
model identification based on an initialisation of the
parameters. Numerical integration is then performed
to simulate a trajectory using the backward differen-
tiation formulation and a quasi-constant step scheme
[70] of 0.1 seconds. These parameters are identified
to account for the discrepancies between the observed
trajectories and the simulated ones, that occur due to
small differences between the mathematical models and
the simulation. A minimisation algorithm is employed
to iteratively update the parameters until the desired
conversion rate is obtained.

The system identification module is set up such that
the volume V o of the object is estimated using the sys-
tem identification module, while other parameters are
derived from the simulation. Note that the volume of

14

3.4 Domain knowledge integration 3 METHODOLOGY

the object is chosen to be identified, due to its signifi-
cant impact on the buoyancy, which affects the differ-
ential equations governing the dynamics of the vertical
motions of the object.

Both models (10) and (11) have been validated us-
ing data collected from simulations. The results of the
validation are detailed in Appendix C.

III.iv Domain knowledge integration

The concept of knowledge distillation [51] is used
to integrate the domain knowledge (provided via the
mathematical models (10) and (11)) during the train-
ing phase of the neural network. Knowledge distilla-
tion is typically applied to scenarios where a small-
sized neural network should replace a large-sized neural
network with similar performance. The smaller neural
network is called the student and the large neural net-
work is called the teacher. During the training process,
the student not only learns from the data, but also
from the teacher, by calculating the loss consisting of
a weighted combination of the cross-entropy (CE) loss,
Lce(·), and the Kullback-Leibler (KL) divergence loss,
Lkl(·), where the corresponding formulas are given be-
low:

Lce (P ∗ | P) = −
2∑

i=0

P ∗
i · logPi (12)

Lkl(P soft | Qsoft) =
2∑

i=0

P soft
i log

P soft
i

Qsoft
i

(13)

where P ∗ represents the true probability distribution
for the class labels, P denotes the probability distri-
bution predicted by the neural network, and Q is the
predicted probability distribution determined by the
teacher model. Moreover, P ∗

i , Pi, P soft
i , and Qsoft

i

specify the probabilities of the i-th class in the true
distribution, the predicted distribution, the softened
predicted distribution, and the softened target distri-
bution, respectively. Finally, P soft equals P/T with
T called the temperature parameter, a hyperparameter
that controls the softness of the probability distribution
of the model’s logits, making the distribution more uni-
form as T increases and more peaked as T decreases.
A value larger than 1 for T softens the distribution,
by spreading the probabilities more evenly across the
different classes.

The teacher model in our proposed training archi-
tecture is represented by the domain knowledge mod-
ule. The domain knowledge module employs the math-
ematical models (10) and (11)) to generate the ideal

trajectories of movement per class, based on the initial
conditions given for these input trajectories, including
the initial positions and velocities, and the object’s pa-
rameters. Each of these trajectories is then compared
to the input trajectory that is generated by the simula-
tor and is assessed based on their similarities. A variety
of similarity metrics for the trajectories exist in litera-
ture, where the following metrics have been considered
in this paper:

• Pearson correlation [71]
• Spearman correlation [72]
• Discrete Hausdorff distance [73]
• Mean average distance (MAD)
• Discrete Frechet distance (DFD) [74]
• Dynamic time warping (DTW) [75]
• Mean Squared Error (MSE)

Each of these metrics is assessed based on two crite-
ria: accuracy and the alignment between the expected
and the observed probability distribution. The accu-
racy reflects the effectiveness of the metric in predicting
the correct class. The probability distribution pertains
to the relative difference between the two classes. The
probabilities must accurately reflect the match between
the input trajectory and the expected trajectory gener-
ated by the mathematical models. The input trajectory
can be one of three different types:

• Ideal: The trajectory coordinates are directly ob-
tained from the simulator.

• Noisy: The trajectory coordinates from the sim-
ulator are used but are multiplied by Gaussian
noise.

• Optical Flow: The trajectories are extracted us-
ing the motion extraction module.

The probabilities are expected to be centred around
0.5 if the trajectory data is of a low quality. In con-
trast, for high-quality trajectory data, the probabilities
are expected to be more widely distributed towards the
extremes. It is essential that these probabilities ac-
curately represent the expected distribution to ensure
that the maximum amount of information can be en-
capsulated within the neural network.

The accuracy is constructed by calculating the tra-
jectory similarity between the input trajectory and by
the mathematical models for yo, zo, voy, voz with o ∈
{fish, bottle, holder} and by determining the weighted
sum of all these similarities. Depending on the metric
considered, the largest or smallest value of the metric
indicates the highest similarity (for instance the higher
the mean squared error, the lower the similarity, while
a higher Pearson coefficient indicates a higher similar-

15

3.5 Dataset customisation 3 METHODOLOGY

ity). The class with the highest probability is taken as
the prediction for the domain knowledge module and is
compared with the ground truth to compute the accu-
racy.

This accuracy is evaluated across different data
types. It is found that the mean squared error yields
the highest accuracy. The comparison is illustrated in
Fig. 9, with additional details available in Appendix D.
The figure is constructed by testing each of the metrics
on the full dataset of 2500 samples. The anticipated
trend is observed, with optical flow data proving to be
the most challenging, followed by Gaussian noise and
ideal data being the easiest.

For optical flow, which is suited for data of low qual-
ity, the probabilities are expected to be centred around
0.5. In the case of Gaussian noise, the distribution is
expected to be more uniform, with a higher concentra-
tion of values at the extremes. For ideal data, this trend
is anticipated to be even more pronounced. In Fig. 9
the probability distributions for each of the metrics for
the optical flow case are presented. It shows that the
MSE adheres to the expected distribution, while the
mean absolute distance (MAD) places more values at
the extremes. The other metrics also generally follow
the expected distribution pattern. A different distribu-
tion is observed in Fig. 11. As desired, the probabilities
for the MSE and MAD metrics show a greater presence
at the extremes. This pattern is not evident in the rest
of the similarity metrics. Based on these observations,
it is concluded that the MSE is the best similarity met-
ric, thanks to its high accuracy and the alignment of
its probability distribution with the desired trend.

The output of the domain knowledge module is
aimed to have a similar behaviour as the logits of the
typical teacher model. The softmax function, given be-
low, is then used to convert the raw logits to probabil-
ities:

σ(z⃗)i =
exp (hi)∑K

j=1 e
hj

(14)

with z⃗ = [hi, h2, ..., hK] the input vector of logits, z⃗i the
output of the softmax function for the i-th element in
the input vector z⃗, K the number of classes and hi the
i-th element of the input vector. The logits are divided
by the temperature parameter before the softmax op-
eration to soften the final probabilities. The total loss
function becomes a weighted sum of the CE loss Lce

and the KL divergence loss Lkl given by:

Ltot(P ∗, P, P soft, Qsoft) =

(1 − α)Lce(P ∗ | P) + αT 2Lkl(P soft | Qsoft)
(15)

with α the parameter that determines the impact of
both the CE loss and the KL divergence loss on the to-
tal loss. The KL divergence loss is multiplied by T 2 to
ensure that the gradients remain appropriately scaled,
maintaining the balance between the contributions of
the CE and KL divergence losses [19]. The temperature
parameter T and the balancing parameter α are two
hyperparameters that are tuned to obtain the highest
accuracy. The knowledge distillation approach allows
the domain knowledge module to effectively regularise
the training, by leveraging its information on the qual-
ity of each trajectory.

III.v Dataset customisation

Data constitutes the fundamental basis for machine
learning problems. The generation of a sufficiently
large dataset usually involves challenges due to the sig-
nificant time and financial resources required. Typi-
cally, a dataset is divided into training, validation, and
testing subsets, with a distribution of 70%, 20%, and
10%, respectively. It is important that this distribution
is executed cautiously; otherwise, the derived metrics
may inaccurately reflect the performance of the neu-
ral network. In some applications, the available data
may be insufficient to ensure the representation of all
possible scenarios across each data split. Investigat-
ing how an architecture deals with these suboptimal
datasets can be a tedious analysis. A data split gen-
eration module is designed for this paper to facilitate
this analysis.

The dataset generator module uses a dataset
configuration file as input and the path to the
parsed data.json file described earlier in subsection 3.1
Besides choosing the number of samples for the train-
ing, validation, and test set, the following steps are
important for ensuring that the evaluation process is
thorough and robust against any noise present in the
subsets:

• Utilisation of k-fold cross-validation[76, 77].
• Creation of multiple datasets, each with a reduc-

tion in the number of training samples.
• Generation of datasets based on specific criteria.
The first step involves k-fold cross-validation, which

decreases the bias in the model’s results on the test and
validation sets, and prevents overfitting. The custom-
written k-fold cross-validation module works by allo-

16

3.5 Dataset customisation 3 METHODOLOGY

Fig. 9: Comparison between all the similarity metrics for the three different data types (ideal refers to the
datasets generated via the simulator, Gaussian noise is the ideal data augmented with Gaussian noise and
optical flow is the trajectory extracted by the motion extraction module).

Fig. 10: Probability distribution for all the similarity
metrics for the optical flow data. All the metrics
are weighted and abbreviated for plotting.

Fig. 11: Probability distribution for all the similarity
metrics for the Gaussian noise data. All the metrics
are weighted and are abbreviated for plotting.

17

3.6 Neural network and training 3 METHODOLOGY

cating a specific number of samples to each k-fold, en-
suring that this number is a multiple of the number
of samples in the training, validation, and test sub-
sets. Firstly, the algorithm extracts the required data
points for each data split. Subsequently, each of the
data points is divided into a specific k-fold. Depend-
ing on the number of k-folds, the assigned k-folds are
shuffled between the data splits. For instance, in one
configuration, folds 1, 2, and 3 might be allocated to
the training set, folds 4, 5, and 6 to the validation set,
and folds 7, 8, and 9 to the test set. A subsequent dis-
tribution could assign folds 3, 7, and 9 to training, folds
1, 4, and 8 to validation, and folds 2, 5, and 6 to test-
ing. This approach ensures that the trajectories within
each fold remain consistent, while the folds themselves
are shuffled across the data splits. In the end, the vari-
ability and robustness against noise in the data of the
evaluation process is increased.

The second step entails generating multiple datasets
by progressively increasing the number of training sam-
ples. Each training file is created using a mapping be-
tween the data samples and their respective data split.
Each iteration increases the number of data samples
in the training set by a fixed number. This approach
makes investigating the impact of the dataset size on
the results a trivial task.

The last step involves filtering the datasets based on
specific properties, such as keeping the current below
a certain threshold. Using this approach, the train-
ing and validation datasets will exclusively consist of
data with lower current values, while the test dataset
comprises only high current values. This stratification
allows for the evaluation of the generalizability of the
model. Note that if the property-based filtering is ap-
plied, the k-fold methodology cannot be utilised due to
the inherent contradiction that a single trajectory can-
not simultaneously possess both high and low current
values.

III.vi Neural network and training

The neural network can be trained both with and
without the knowledge distillation approach, by switch-
ing between learning from both data and domain
knowledge to learning only from data.

The goal of the neural network is to classify the
extracted trajectory of the target objects. A simple
feed-forward neural network is chosen with one input
layer, two hidden layers, and an output layer. The
hidden layers are fully connected and each is followed
by a Rectified Linear Unit (ReLU) activation function,

which introduces non-linearity into the neural network
and facilitates the ability of the neural network to learn
more complex functions. The input layer is configured
with a fixed size of 1000 neurons, and the first and
second hidden layers include respectively, 128 and 64
neurons. Reducing the number of neurons across the
layers is to distil the most salient features of the data as
it progresses throughout the neural network. Finally,
the output layer maps the last hidden layer to the dif-
ferent classes of objects (see Fig. 12).

A custom dataset class is used to parse and iterate
through the data to ensure a streamlined training pro-
cess. The training data for the neural network consists
of an input trajectory transformed into a tensor of the
format [yo, zo, voy, v

o
z , 0, 0, ...]. Zero padding is utilised to

meet the fixed input requirement with variable trajec-
tory lengths. During training without domain knowl-
edge, α (see (15)) is equal to zero and training relies
solely on the CE loss function. The Adam optimiser
[78] is used to solve the optimisation problem (15). If
the loss value increases for 5 consecutive epochs, the
training procedure is terminated due to overfitting.

When domain knowledge is included in the train-
ing procedure, both the trajectory of the detected ob-
ject and the settings used to generate the trajectory
(such as the distance of the object from the camera)
are fed into the domain knowledge module, which then
calculates the dynamics of motion based on the math-
ematical model for both classes, plastic and fish. The
estimated dynamics are then compared with the input
trajectory, and the logits are calculated and undergo
a softening process, being divided by a temperature
parameter. Utilising these adjusted logits, the differ-
ence between the probability distributions of the neu-
ral network and of the mathematical model is quan-
tified using the KL divergence loss. The total loss is
then back-propagated through the model in order to
find the gradients and to optimise the weights of the
neural network.

At the end of each training epoch, the performance
of the neural network is evaluated using the validation
dataset. The highest accuracy is tracked throughout
the training process. The final step is to apply the
trained neural network that shows the highest accuracy
for the validation set to the test dataset. A schematic
overview of the entire process is illustrated in Fig. 13.
More information is given in Appendix E.

18

4 CASE STUDIES

Fig. 12: Architecture of the neural network used to
classify the underwater moving objects

IV. Case studies

This section presents various case studies that were
conducted to evaluate the proposed underwater object
detection model. A comprehensive overview of various
scenarios is provided, distinguishing cases where the
incorporation of domain knowledge proves beneficial
and cases where the implementation of domain knowl-
edge may not be justified. Two principal categories
of scenarios are considered: those involving supervised
learning and those involving semi-supervised learning.
Per scenario, three distinct cases (with regards to data
types for training, validation, and testing) were consid-
ered, as will be explained below:

1. Base data: training, validation, and testing were
all conducted on ideal data (i.e., data that is gen-
erated by the simulator without the addition of
any noise). This case represents the conventional
approach in machine learning where all the sets
contain the same type of data.

2. Low-quality data: training and validation used op-
tical flow data, whereas testing was performed on
ideal data. This case has been designed to evalu-
ate the robustness of training on trajectories that
are extracted using a non-perfect module.

3. Noisy data: training and validation were con-
ducted on ideal data that is augmented with Gaus-
sian noise, whereas testing was performed on ideal
data. This case simulated situations when sensor
noise is present in the training dataset.

The three cases mentioned above (i..e, base data,
low-quality data, and noisy data) assess the impact of
different data qualities on the performance of various
object detection models, including a neural network

with and without incorporated domain knowledge. The
aim is to explore the potential advantages of incorpo-
rating domain-specific knowledge into the training pro-
cedure of a neural network, for various conditions. In
addition to investigating the effects of the quality of the
datasets, each case is also evaluated based on the de-
pendability of the sample size of the training set. This
evaluation is conducted by training two neural networks
six times, with the training set size increasing from 100
to 600 samples in increments of 100. Both the vali-
dation and test datasets consistently hold 400 samples
each.

To facilitate a robust assessment, a 10-fold cross-
validation method is employed, with each fold contain-
ing 100 samples. Consequently, a total of 60 training
runs per learning method are performed. A predefined
seed is used to initialise the random neural network
weights, ensuring that both the neural network with the
domain knowledge module and the one without it start
from the same initial conditions. Moreover, these neu-
ral networks are trained, validated, and tested on iden-
tical samples in order to maintain consistency across
the experiments. The learning rate is maintained con-
stant throughout the training process and is tuned per
case of data type. The parameters of the mathemati-
cal models are estimated during the first epoch and are
reused in subsequent epochs in order to improve the
computational efficiency. This approach is viable be-
cause the mathematical models are static and remain
unchanged during the training period.

The training of each neural network involves tuning
the various hyperparameters of the model to optimise
its performance. For this discussion, the batch size is
kept equal to 1, and α in (15) is equal to 0.5. The
temperature parameter in (15) and the learning rate
are fine-tuned.

Lastly, the robustness of the supervised and semi-
supervised learning scenarios against low-quality anno-
tations is examined. This is because annotations that
are predominantly generated by humans are prone to
errors. Thus, the resilience of both training processes
is evaluated against incorrectly labelled data. Based on
the existing literature [79, 80] and our experience, it is
deemed that incorrectly labelling 20% of the samples
in the training dataset is a realistic scenario.

IV.i Supervised learning

The initial setup that was investigated included su-
pervised learning, which encompasses the three previ-
ously discussed cases: base data, low-quality data, and

19

4.1 Supervised learning 4 CASE STUDIES

Fig. 13: Overview of the proposed architecture for training the classifying neural network

20

4.1 Supervised learning 4 CASE STUDIES

noisy data. For each case, the accuracy of the neural
networks, the impact of the size of the training dataset
on the performance of the trained model, and the con-
sequence of using a poorly labelled dataset for training
were examined.

The accuracy values obtained for the trained mod-
els for the base data case (with training, validating,
and testing processes done on ideal data) with a de-
creasing number of training samples are illustrated in
Fig. 14a. It shows that increasing the number of data
points for training the models yields a higher perfor-
mance for both models. As the mathematical model
is static, the number of data points does not impact
its performance. The accuracy graphs for both models
are very similar, indicating that the domain knowledge
is not impacting the learning significantly. Since the
real-life data considered for this case is generated by
the mathematical model, as expected the mathemati-
cal model shows the best performance among all. With
a lower learning rate of 10−4, the trend of the accuracy
graph is further accentuated where both curves for the
two neural network models almost fully coincide. This
behaviour can be explained by analysing the probabil-
ity distribution. The mathematical models closely ap-
proximate the ideal trajectory, positioning the proba-
bilities at the extremes of the spectrum. Consequently,
the information conveyed by these probabilities is iden-
tical to that contained in the labels, that meaning the
domain knowledge does not contribute additional in-
sight in this case.

The accuracy values obtained for the trained models
for the low-quality data case are illustrated in Fig. 14c
when using a temperature parameter value of 0.5. A
temperature parameter below 1 hardens the probabil-
ity distribution, effectively increasing the sharpness. A
temperature value higher than 1 softens the distribu-
tion by bringing the probabilities closer to each other.
As previously demonstrated, the probability distribu-
tion for optical flow is centred around 0.5. Utilising a
temperature parameter value larger than 1 will soften
the distribution (bringing the probabilities closer to
each other), which dilutes the embedded information
and slows down the learning process. Conversely, a
temperature of 0.5 hardens the distribution and am-
plifies the information, thereby enhancing the learn-
ing speed. In comparison to the results presented in
Fig. 14a, for the low-quality data case the neural net-
work with domain-knowledge-infused learning consis-
tently outperforms the neural network without domain
knowledge, with an average improvement of 2%. This

is because the domain knowledge module instructs the
neural network with domain knowledge on which tra-
jectories to learn or disregard.

Finally, the accuracy values for the trained models
in the noisy data case are shown Fig. 14e, where the ob-
served trend is consistent with the previous cases. In
other words, the inclusion of domain knowledge consis-
tently leads to a superior performance for the trained
neural network. The domain knowledge module effec-
tively prevents the neural network from overfitting to
the Gaussian noise. In contrast, the absence of do-
main knowledge is marked by a (significant) perfor-
mance decline at 600 data points, indicating overfitting.
A temperature parameter value of 3 has been used. As
the probabilities for the Gaussian noise are centred on
the extremes, a temperature parameter value of 3 en-
sures softening the probability distributions and broad-
ens the range of values.

The three cases explained above showed that the in-
clusion of domain knowledge will consistently improve
the performance of the trained neural network, partic-
ularly for low-quality and noisy data. Similar accuracy
results for lower numbers of samples for the training,
indicate the potential of the neural network with do-
main knowledge for modelling cases where limited data
is available.

Next, the robustness of both neural networks in sit-
uations where 20% of the training dataset has been
mislabelled is discussed. The accuracy values for the
trained models with 20% mislabelled base data is pre-
sented in Fig. 14b. In this scenario, the domain knowl-
edge module demonstrates a distinct advantage. From
200 data points onwards, the neural network with do-
main knowledge consistently outperforms the neural
network that does not incorporate domain knowledge.
On average, a 2% improvement in performance is ob-
served that diminishes with larger training datasets.
Via providing insights into the quality of the data, the
domain knowledge module acts as a regularisation in
the explained situation. This enables the neural net-
work to effectively identify and disregard incorrectly
labelled trajectories. Consequently, incorporating do-
main knowledge enables the neural network to main-
tain accuracy even when trained on poorly annotated
datasets, avoiding the accuracy loss that would occur
if domain knowledge were not used.

The impact of introducing erroneous labels to the
low-quality data case is depicted in Fig. 14d. It is evi-
dent that the incorporation of domain knowledge con-
sistently increases the accuracy of the trained model

21

4.2 Semi-supervised learning 4 CASE STUDIES

across all training sample sizes. Although a slight re-
duction in the maximum accuracy is observed, com-
pared to the scenarios without erroneous labels, the
performance of the neural network with domain knowl-
edge remains approximately 2-5% higher than that of
the neural network that is trained without domain
knowledge included.

Finally, the accuracy values for the models trained
with noisy data including 20% mislabelled data are
shown in Fig. 14f. A less consistent increase in the
performance of the models is observed, with a notable
decline at 400 data points. Moreover, while the neural
network with domain knowledge shows a lower accu-
racy at 100 data points, it outperforms the neural net-
work without domain knowledge at all other data sizes.
In general, the performance across different training set
sizes fluctuates significantly. These fluctuations are at-
tributed to the high learning rate employed. The di-
minished performance at low data point counts is due
to the domain knowledge module optimising for two
objectives: label accuracy and alignment with domain
knowledge. This dual optimisation, especially when
combined with a high learning rate, becomes partic-
ularly challenging with a limited amount of data.

In summary, when utilising supervised learning with
training data that is different from the testing data, the
integration of domain knowledge into the training pro-
cedure of a neural network enhances the accuracy of
the trained model and improves its robustness against
poorly annotated datasets. Moreover, the temperature
parameter value and the learning rate are crucial hyper-
parameters that must be carefully selected to optimise
the performance of the neural network.

IV.ii Semi-supervised learning

In this part of the case study, we investigate whether
the inclusion of domain knowledge into the training
procedure of a neural network will similarly to the
supervised learning, also facilitate the use of semi-
supervised learning. Hence, an additional 400 unla-
belled data points of the same type as the labelled train-
ing dataset were incorporated into the training proce-
dure, with a value of α set to 1. This setup effectively
eliminates the CE loss, in order to solely use the KL
divergence loss for the 400 unlabelled trajectories. The
value of α is set back to 0.5 for the other data points.
The analysis proceeds with the same cases as before,
now augmented with the inclusion of unlabelled data.

The accuracy values for the trained models when
the base data case was used for training are shown in

Fig. 15a. The optimal temperature parameter value
was found to be 1. With the introduction of addi-
tional unlabelled data points, a lower learning rate
was needed to yield an improved performance. From
the figure, the knowledge-infused training procedure
significantly outperforms the training procedure with-
out domain knowledge, particularly with lower num-
bers of data samples. The out-performance diminishes
when larger numbers of data points are used for the
training. In fact, it is anticipated that the perfor-
mance of the training process without domain knowl-
edge will converge when more data becomes available.
At the 400-trajectory mark, the performance of the
neural network-trained with domain knowledge sta-
bilises. This indicates that any further increase in the
number of data points does not enhance the perfor-
mance of the model. This also emphasises the ad-
vantage of employing semi-supervised learning together
with domain knowledge, especially in scenarios where
obtaining annotations comes with a large financial cost
or is impossible in practice.

The accuracy values for the trained models when
low-quality data is used for training are shown in
Fig. 15c. In this case, a different trend is observed:
A consistent out-performance by the neural network
that is trained including domain knowledge. The neu-
ral network trained without the inclusion of the do-
main knowledge does not ever catch up, while the neu-
ral network with domain knowledge outperforms it for
5-7%. This consistent advantage suggests that the low-
quality (optical flow) data is significantly more complex
to learn unsupervised, compared to the base data case.
It is expected that, with a sufficiently large number of
data, the trend mirrors that of the base data case, al-
beit at a slower rate. These results were obtained using
a temperature parameter value of 0.5, which is consis-
tent with the value used in the supervised learning.

Finally, the accuracy values for the trained models
when noisy data is used for training are illustrated
in Fig. 15e. This case yet shows a different trend
compared to the above two cases. The signature el-
ement of consistent out-performance of the neural net-
work with domain knowledge is present, particularly
for lower numbers of data points. Interestingly, at 400
data points —a threshold previously noted in the base
data case as well— the training process that incorpo-
rates domain knowledge begins to learn the Gaussian
noise characteristics. This is indicated by the decrease
in the accuracy. Between 100 and 400 data points, the
accuracy peaks for this process.

22

4.2 Semi-supervised learning 4 CASE STUDIES

(a) Base data case: The accuracy when training, validat-
ing, and testing the two neural networks (with and without
domain knowledge) on ideal data.

(b) Base data case: The accuracy when training, validating,
and testing the two neural networks (with and without the
domain knowledge) on ideal data with 20% of the samples
mislabelled.

(c) Low-quality data case: The accuracy when training the
two neural networks (with and without the domain knowl-
edge) on optical flow data, validating them on optical flow
data, and testing them on ideal data.

(d) Low-quality data case: The graph is constructed by
training on optical flow data with 20% of the samples mis-
labelled, validating on optical flow data and testing on ideal
data.

23

4.2 Semi-supervised learning 4 CASE STUDIES

(e) Noisy data case: The accuracy when training the two
neural networks (with and without the domain knowledge)
on data including Gaussian noise, validating them on data
including Gaussian noise, and testing on ideal data.

(f) Noisy data case: The accuracy values when training the
two neural networks (with and without the domain knowl-
edge) on data including Gaussian noise with 20% of the sam-
ples mislabelled, validating them on data including Gaussian
noise, and testing them on ideal data.

Fig. 14: Supervised learning: Comparison between the mathematical model and the neural networks trained
with and without domain knowledge. The accuracy shown is based on the test set. Each row corresponds
to a different type of data. The first column corresponds to training data with no errors in the labelling and
the second column corresponds to training data with 20% mislabelled. The orange, blue, and green curves
correspond to, respectively, the neural network without domain knowledge, the neural network with domain
knowledge, and the domain knowledge module alone.

Conversely, the training process without domain knowl-
edge reaches its peak of accuracy only at 400 data
points. It is concluded that with larger numbers of
data points, some of the noise is learned by the neu-
ral network with domain knowledge. This effect could
be minimised again with a dynamic value for α that
is adapted to balance the CE loss and KL divergence
during the training process. A temperature parameter
value of 3 is used, as for the supervised learning.

In summary, knowledge-infused training signifi-
cantly boosts the accuracy for semi-supervised learn-
ing, especially with fewer training samples. This im-
provement is evident not only in the noisy data case,
but also in the base data case, demonstrating the ef-
ficacy of semi-supervised learning including domain
knowledge across these various conditions.

Next, similarly to the supervised learning, we
evaluated the robustness of the training with semi-
supervised learning with and without domain knowl-
edge when 20% mislabelled data was included in the
training dataset. Fig. 15b shows the accuracy of
the neural networks trained with and without domain
knowledge on the base data, where 20% of the data has
been wrongly labelled. A similar pattern for the accu-

racies as in the case of non-erroneous data is observed,
with an enhanced performance per data point level and
a plateau reached at 400 data points. The increased
discrepancy –compared to the base data case– in the
performance of the neural networks with knowledge-
infused and standard training that is observed for larger
numbers of data points, is attributed to the presence of
the data with erroneous labels.

The obtained accuracies for the neural networks for
the low-quality data, with 20% of the data being la-
belled wrongly, are illustrated in Fig. 15d. The same
hyperparameters as for the low-quality data case with-
out erroneous labels have been used. A similar trend
as for the low-quality data case without the erroneous
labels is observed, but with a smaller difference in the
accuracies for both neural networks. This trend, which
does not align with the conclusions drawn from the su-
pervised learning, can be elucidated by examining the
loss function, which is a linear combination of the CE
loss and the KL divergence loss (see (15)). During the
initial phase of training on the 400 unlabelled samples,
the neural network trained with domain knowledge only
minimises the KL divergence loss. In the subsequent
phase, the CE loss, which may include errors, is much

24

4.3 Computational efficiency 4 CASE STUDIES

larger than the KL divergence loss, and thus becomes
more influential in the total loss. Consequently, the
optimisation process prioritises the CE loss. This is-
sue can be addressed by introducing α as an adaptable
parameter, to ensure that the KL divergence loss main-
tains its effectiveness in the total loss. However, imple-
menting a varying α is considered beyond the scope of
this research.

Finally, when 20% of the noisy data is mislabelled,
the accuracy graphs are obtained as shown in Fig. 15f.
A similar trend as for the noisy data without wrong la-
belling is again observed, while at the 400 data points
mark, the performance accuracy of the neural network
that is trained without domain knowledge experiences a
significant drop. This indicates that with a larger num-
ber of samples, erroneous elements are impacting fur-
ther the learning of this neural network. This drop does
not occur in the performance accuracy of the neural
network that is trained including domain knowledge.
It is noteworthy that a temperature parameter value
of 2 yields the best results in this case. Additionally,
the knowledge-guided learning process requires an aver-
age of 12 epochs to train, whereas the training process
without domain knowledge requires 25 epochs. This re-
veals another advantage of combining semi-supervised
learning with noisy data and domain knowledge for sit-
uations where the long training time should be avoided,
such as in online learning.

In summary, this section demonstrated that inte-
grating domain knowledge allows for semi-supervised
learning to significantly enhance the robustness of a
neural network against low-quality and noisy data,
especially including erroneous labels. The analysis
across various cases and scenarios showed that do-
main knowledge-infused training consistently outper-
forms training that excludes domain knowledge, par-
ticularly with lower numbers of data points and with
imperfect annotations. The analysis of the impact of
the number of data points on the performance accuracy
revealed that increasing the number of data points does
not necessarily enhance the performance. Additionally,
it was found that a subset of data points, combined
with augmented training, can achieve similar perfor-
mance accuracy as when larger datasets are used in
training processes without domain knowledge included.
This finding is significant for applications where obtain-
ing labelled data is particularly challenging or impossi-
ble.

IV.iii Computational efficiency

While the standalone domain knowledge module ex-
hibits high accuracy, it is crucial to consider the in-
tended final application, i.e., the use of (ROVs) for au-
tonomous underwater cleanup operations. These ROVs
are constrained by limited power and on-board com-
putational resources, where these necessitate computa-
tionally efficient algorithms for online object detection.
The domain knowledge module is composed of nonlin-
ear differential equations and a parameter estimation
module, both of which are computationally intensive.
Furthermore, the computation time scales almost lin-
early with any new class that is added to the domain
knowledge module, making it not a scalable solution.
In contrast, this problem is not observed with the neu-
ral network. The domain knowledge has a run time
of 5.0381 seconds while the neural network has a run
time of 0.0032 seconds, hence a difference of 15267 fold
difference. The experiments are performed on NVIDIA
GeForce RTX 3090. The neural network operates or-
ders of magnitude faster than the domain knowledge
module, making it the only feasible option for real-time
on-board ROV applications.

IV.iv Recommendations for future research

Based on the results presented and discussed in this
case study, the following recommendations are made for
future research on enabling autonomous trash cleanup.

• The current simulator may be enhanced in terms
of dynamics and visual fidelity of the simulated
camera. This will allow for validation with real-life
experiments and comparison with state-of-the-art
neural networks.

• The trajectory extraction module consisting of op-
tical flow and clustering may be improved. Ide-
ally, these components will be enhanced using a
Kalman filter to predict the subsequent positions
of the moving objects and to verify these predic-
tions using the extraction module. The proposed
pipeline should also be augmented with state-of-
the-art object detection neural networks that have
superior performance for static objects.

• Making the hyperparameters α, temperature, and
learning rate adaptable throughout the training of
the knowledge-infused learning is recommended for
enhancing the performance of the resulting model
[81].

• While the current setup and codebase of the
project are designed to support only two classes of
moving objects (i.e., plastic and fish), future de-

25

4.4 Recommendations for future research 4 CASE STUDIES

(a) Base data case: The accuracy when training, validat-
ing, and testing the two neural networks (with and without
domain knowledge) on ideal data.

(b) Base data case: The accuracy when training, validating,
and testing the two neural networks (with and without the
domain knowledge) on ideal data with 20% of the samples
mislabelled.

(c) Low-quality data case: The accuracy when training the
two neural networks (with and without the domain knowl-
edge) on optical flow data, validating them on optical flow
data, and testing them on ideal data.

(d) Low-quality data case: The graph is constructed by
training on optical flow data with 20% of the samples mis-
labelled, validating on optical flow data and testing on ideal
data.

26

5 CONCLUSION

(e) Noisy data case: The accuracy when training the two
neural networks (with and without the domain knowledge)
on data including Gaussian noise, validating them on data
including Gaussian noise, and testing on ideal data.

(f) Noisy data case: The accuracy values when training the
two neural networks (with and without the domain knowl-
edge) on data including Gaussian noise with 20% of the sam-
ples mislabelled, validating them on data including Gaussian
noise, and testing them on ideal data.

Fig. 15: Semi-supervised learning: Comparison between the mathematical model and the neural networks trained
with and without domain knowledge. The accuracy shown is based on the test set. Each row corresponds
to a different type of data. The first column corresponds to training data with no errors in the labelling and
the second column corresponds to training data with 20% mislabelled. The orange, blue, and green curves
correspond to, respectively, the neural network without domain knowledge, the neural network with domain
knowledge, and the domain knowledge module alone.

velopments should expand this to a broader range
of objects.

• For real-world applications, the mathematical
model for fish and plastic motions should be aug-
mented to include additional forces, such as the
rotational drag and the wave-induced motion, in
order to enhance the accuracy and realism of the
models.

V. Conclusion

Trash pollution in the rivers and oceans has become
a global problem. While autonomous cleanup repre-
sents the most viable solution to this problem, the per-
formance of current underwater trash detection meth-
ods falls short of enabling full-scale autonomous oper-
ations. This research introduces a novel pipeline that
has been developed to enhance frame-by-frame object
detection by incorporating dynamic domain knowledge
into the training procedure of the classifying neural net-
work and by basing the predictions solely on the ob-
ject’s trajectory, eliminating the need for CNNs. This
paper was focused on embedding domain knowledge
into the training procedure of a trajectory classifier

and on investigating the performance of the resulting
model across various cases and dataset types. In or-
der to validate the hypothesis that domain knowledge
improves the detection performance, a simulator was
developed in Unity to ensure the generation of high-
quality datasets. A trajectory extraction module was
also designed using optical flow and a clustering algo-
rithm as the first step of the proposed pipeline. Subse-
quently, two mathematical models were formulated to
provide the foundation for the domain knowledge mod-
ule. The probability distribution of the domain knowl-
edge module was computed using the mean squared
error in conjunction with the softmax function. This
knowledge-infused training process was then compared
with a standard training process that did not include
domain knowledge across multiple scenarios. The find-
ings revealed that training with domain knowledge no-
tably enhances the robustness of the resulting neural
network model against low-quality and noisy data, par-
ticularly when such datasets involve wrongly labelled
data. Moreover, the inclusion of domain knowledge fa-
cilitated semi-supervised learning and consistently sur-
passed in performance accuracy the model that was
trained solely based on data. In particular, an im-

27

REFERENCES

provement of 10% in the accuracy on the test set was
observed in scenarios where only a limited number of
annotations were available.

VI. Acknowledgements

The author would like to express sincere gratitude
to Piotr Szleg and Pawe l Barczyk for their generos-
ity in licensing their simulator for this project. This
research would not have been possible without their
support.

References

[1] L. Parker, “The world’s plastic pollution crisis, ex-
plained,” National Geograhic, February 2024.

[2] M. Fava, “Ocean plastic pollution: An overview of
data and statistics,” May 2022. Accessed January
27, 2023.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,
J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models
are few-shot learners,” in Advances in Neural In-
formation Processing Systems 33 (NeurIPS 2020),
pp. 1877–1901, 2020.

[4] R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac,
J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai,
A. Hauth, et al., “Gemini: A family of highly ca-
pable multimodal models,” 2023. arXiv preprint
arXiv:2312.11805.

[5] C. Fu, R. Liu, X. Fan, P. Chen, H. Fu, W. Yuan,
M. Zhu, and Z. Luo, “Rethinking general under-
water object detection: Datasets, challenges, and
solutions,” Neurocomputing, vol. 517, pp. 243–256,
2023.

[6] R. A. Dakhil and A. R. H. Khayeat, “Review
on deep learning techniques for underwater object
detection,” in Data Science and Machine Learn-
ing, Academy and Industry Research Collabora-
tion Center (AIRCC), 9 2022.

[7] S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and
A. Liotta, “A systematic review and analysis of

deep learning-based underwater object detection,”
Neurocomputing, vol. 527, pp. 204–232, 2023.

[8] A. Jesus, C. Zito, C. Tortorici, E. Roura, and
G. De Masi, “Underwater object classification and
detection: first results and open challenges,” in
OCEANS 2022 - Chennai, IEEE, Feb. 2022.

[9] R. M. Gray, Entropy and Information Theory.
New York: Springer-Verlag, first edition cor-
rected ed., 2023. Corrected first Edition copyright
2011 by Robert M. Gray.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel,
“Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4,
pp. 541–551, 1989.

[11] G. Jocher, A. Chaurasia, and J. Qiu, “Ul-
tralytics yolov8.” https://github.com/ultralytics/
ultralytics, 2023. Version 8.0.0.

[12] M. Tan and Q. Le, “Efficientnet: Rethinking
model scaling for convolutional neural networks,”
in Proceedings of the 36th International Confer-
ence on Machine Learning, vol. 97 of Proceedings
of Machine Learning Research, pp. 6105–6114,
PMLR, 2019.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and
P. Dollár, “Focal loss for dense object detection,”
in 2017 IEEE International Conference on Com-
puter Vision (ICCV), pp. 2999–3007, 2017.

[14] S. Ren, K. He, R. B. Girshick, and J. Sun,
“Faster R-CNN: towards real-time object detec-
tion with region proposal networks,” IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[15] D. K. Prasad, C. K. Prasath, D. Rajan, L. Rach-
mawati, E. Rajabally, and C. Quek, “Challenges in
video based object detection in maritime scenario
using computer vision,” International Journal of
Computer and Information Engineering, vol. 11,
pp. 31–36, 2017.

[16] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev,
S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer,
A. Pick, R. Ramamurthy, M. Walczak, J. Gar-
cke, C. Bauckhage, and J. Schuecker, “Informed
machine learning – a taxonomy and survey of in-
tegrating prior knowledge into learning systems,”

REFERENCES

IEEE Transactions on Knowledge and Data Engi-
neering, vol. 35, no. 1, pp. 614–633, 2023.

[17] A. Karpatne, W. Watkins, J. S. Read, and V. Ku-
mar, Physics-guided Neural Networks (PGNN):
An Application in Lake Temperature Modeling,
ch. 15, pp. 353–372. Taylor & Francis, 2022.

[18] P. Szleg, P. Barczyk, B. Maruszczak, S. Zielin-
ski, and E. Szymańska, “Simulation environment
for underwater vehicles testing and training in
unity3d,” in Annual Meeting of the IEEE Industry
Applications Society, 2022.

[19] G. E. Hinton, O. Vinyals, and J. Dean, “Distill-
ing the knowledge in a neural network,” ArXiv,
vol. abs/1503.02531, 2015.

[20] H. Chen, J. Chen, and J. Ding, “Data evaluation
and enhancement for quality improvement of ma-
chine learning,” IEEE Transactions on Reliability,
vol. 70, no. 2, pp. 831–847, 2021.

[21] V. Gudivada, A. Apon, and J. Ding, “Data qual-
ity considerations for big data and machine learn-
ing: Going beyond data cleaning and transforma-
tions,” International Journal on Advances in Soft-
ware, vol. 10, pp. 1–20, 07 2017.

[22] J. A. for Marine-Earth Science and T. (JAM-
STEC), “Deep-sea debris database.” (Accessed on
02/03/2023).

[23] J. Hong, M. Fulton, and J. Sattar, “Trash-
can: A semantically-segmented dataset to-
wards visual detection of marine debris,” CoRR,
vol. abs/2007.08097, 2020.

[24] M. Fulton, J. Hong, M. J. Islam, and J. Sat-
tar, “Robotic detection of marine litter using deep
visual detection models,” in Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA), pp. 5752–5758, IEEE, 2019.

[25] M. Prats, J. Pérez, J. J. Fernández, and P. J. Sanz,
“An open source tool for simulation and supervi-
sion of underwater intervention missions,” in In-
ternational Conference on Intelligent Robots and
Systems, (Vilamoura, Algarve, Portugal), 10 2012.

[26] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R.
Douat, and T. Rauschenbach, “Uuv simulator: A
gazebo-based package for underwater intervention
and multi-robot simulation,” in OCEANS 2016
MTS/IEEE Monterey, pp. 1–8, 2016.

[27] B. K. Horn and B. G. Schunck, “Determining op-
tical flow,” Artificial Intelligence, vol. 17, no. 1,
pp. 185–203, 1981.

[28] B. Chiang and J. Bohg, “Lecture notes cs231a:
Computer vision, from 3d reconstruction to recog-
nition: Optical and scene flow,” February 2022.

[29] G. Farnebäck, “Two-frame motion estimation
based on polynomial expansion,” in Image Anal-
ysis (J. Bigun and T. Gustavsson, eds.), (Berlin,
Heidelberg), pp. 363–370, Springer Berlin Heidel-
berg, 2003.

[30] A. Jepson and M. Black, “Mixture models for op-
tical flow computation,” in Proceedings of IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 760–761, 1993.

[31] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelihood from incomplete data via
the em algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1,
pp. 1–38, 1977.

[32] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser,
C. Hazirbas, V. Golkov, P. v. d. Smagt, D. Cre-
mers, and T. Brox, “Flownet: Learning opti-
cal flow with convolutional networks,” in 2015
IEEE International Conference on Computer Vi-
sion (ICCV), pp. 2758–2766, 2015.

[33] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Doso-
vitskiy, and T. Brox, “Flownet 2.0: Evolution
of optical flow estimation with deep networks,”
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pp. 2462–2470, IEEE, 2017.

[34] Z. Teed and J. Deng, “Raft: Recurrent all-pairs
field transforms for optical flow,” in Proceedings
of the European Conference on Computer Vision
(ECCV), pp. 402–419, Springer, 2020.

[35] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri, “Learning spatiotemporal features with
3d convolutional networks,” in 2015 IEEE Inter-
national Conference on Computer Vision (ICCV),
pp. 4489–4497, 2015.

[36] Z. Tang, Y. Zhao, Y. Wen, and M. Liu, “A survey
on backbones for deep video action recognition,”
IEEE Transactions on Image Processing, vol. 33,
pp. 525–540, 2024.

REFERENCES

[37] C. Feichtenhofer, “X3d: Expanding architectures
for efficient video recognition,” 2020 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 200–210, 2020.

[38] Y. Wang, K. Li, Y. Li, Y. He, B. Huang, Z. Zhao,
H. Zhang, J. Xu, Y. Liu, Z. Wang, S. Xing,
G. Chen, J. Pan, J. Yu, Y. Wang, L. Wang, and
Y. Qiao, “Internvideo: General video foundation
models via generative and discriminative learn-
ing,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

[39] L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He,
Y. Wang, Y. Wang, and Y. Qiao, “Videomae
v2: Scaling video masked autoencoders with dual
masking,” 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pp. 14549–14560, 2023.

[40] D. P. Kingma and J. Ba, “Adam: A
method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[41] S. Hochreiter and J. Schmidhuber, “Long Short-
Term Memory,” Neural Computation, vol. 9,
pp. 1735–1780, 11 1997.

[42] K. Cho, B. van Merrienboer, Çaglar Gülçehre,
D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine trans-
lation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), (Doha, Qatar), pp. 1724–1734, As-
sociation for Computational Linguistics, 2014.

[43] F. Fernández de la Mata, A. Gijón, M. Molina-
Solana, and J. Gómez-Romero, “Physics-informed
neural networks for data-driven simulation: Ad-
vantages, limitations, and opportunities,” Phys-
ica A: Statistical Mechanics and its Applications,
vol. 610, p. 128415, 2023.

[44] M. Raissi, P. Perdikaris, and G. Karniadakis,
“Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse
problems involving nonlinear partial differential
equations,” Journal of Computational Physics,
vol. 378, pp. 686–707, 2019.

[45] C. Anitescu, B. İsmail Ateş, and T. Rabczuk,
Physics-Informed Neural Networks: Theory and

Applications, pp. 179–218. Cham: Springer In-
ternational Publishing, 2023.

[46] T. Dash, S. Chitlangia, A. Ahuja, and A. Srini-
vasan, “A review of some techniques for inclusion
of domain-knowledge into deep neural networks,”
Sci Rep, vol. 12, p. 1040, 2022.

[47] T. M. Deist, A. Patti, Z. Wang, D. Krane,
T. Sorenson, and D. Craft, “Simulation-assisted
machine learning,” Bioinformatics, vol. 35,
pp. 4072 – 4080, 2018.

[48] J. Pfrommer, C. Zimmerling, J. Liu, L. Kärger,
F. Henning, and J. Beyerer, “Optimisation of man-
ufacturing process parameters using deep neural
networks as surrogate models,” Procedia CIRP,
vol. 72, pp. 426–431, 2018.

[49] J.-L. Wu, H. Xiao, and E. Paterson, “Physics-
informed machine learning approach for augment-
ing turbulence models: A comprehensive frame-
work,” Physical Review Fluids, vol. 3, July 2018.

[50] G. Fung, O. L. Mangasarian, and J. W. Shavlik,
“Knowledge-based support vector machine classi-
fiers,” Procedia Computer Science, 2002.

[51] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Har-
nessing deep neural networks with logic rules,” in
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers) (K. Erk and N. A. Smith, eds.),
(Berlin, Germany), pp. 2410–2420, Association for
Computational Linguistics, Aug. 2016.

[52] G. G. Towell and J. W. Shavlik, “Knowledge-based
artificial neural networks,” Artificial Intelligence,
vol. 70, no. 1, pp. 119–165, 1994.

[53] G. G. Towell, J. W. Shavlik, and M. O. No-
ordewier, “Refinement of approximate domain
theories by knowledge-based neural networks,” in
Proceedings of the Eighth National Conference
on Artificial Intelligence - Volume 2, AAAI’90,
p. 861–866, AAAI Press, 1990.

[54] J. Fletcher and Z. Obradovic, “Combining prior
symbolic knowledge and constructive neural net-
work learning,” Connection Science, vol. 5,
pp. 365–375, 1993.

REFERENCES

[55] G. G. Towell and J. W. Shavlik, “Extracting
refined rules from knowledge-based neural net-
works,” Machine Learning, vol. 13, pp. 71–101,
1993.

[56] Y. Xie, Z. Xu, K. S. Meel, M. S. Kankanhalli,
and H. Soh, “Semantically-regularized logic graph
embeddings,” in Advances in Neural Information
Processing Systems 32 (NeurIPS 2019), pp. 4233–
4243, Curran Associates, Inc., 2019.

[57] M. Schiegg, M. Neumann, and K. Kersting,
“Markov logic mixtures of gaussian processes: To-
wards machines reading regression data,” Pro-
ceedings of Machine Learning Research, vol. 22,
pp. 1223–1231, 2012.

[58] A. Kimmig, S. H. Bach, M. Broecheler, B. Huang,
and L. Getoor, “A short introduction to proba-
bilistic soft logic,” in Proceedings of the 26th Inter-
national Conference on Neural Information Pro-
cessing Systems (NIPS), pp. 1–9, Curran Asso-
ciates, Inc., 2012.

[59] R. N. King, O. Hennigh, A. T. Mohan, and
M. Chertkov, “From deep to physics-informed
learning of turbulence: Diagnostics,” in 71st An-
nual Meeting of the APS Division of Fluid Dynam-
ics, 2018.

[60] G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and
G. Ceder, “Finding nature’s missing ternary ox-
ide compounds using machine learning and density
functional theory.,” ChemInform, vol. 41, 2010.

[61] Y. Du, Z. Liu, H. Basevi, A. Leonardis, B. Free-
man, J. B. Tenenbaum, and J. Wu, “Learning to
exploit stability for 3d scene parsing,” in Proceed-
ings of the 32nd International Conference on Neu-
ral Information Processing Systems (NeurIPS),
pp. 4145–4155, Curran Associates, Inc., 2018.

[62] Unity Technologies, Unity Game Engine. Unity
Technologies, San Francisco, CA, 2024. Version
2024.1.

[63] Unity Technologies, “Cam-
era.viewporttoworldpoint,” 2024. Accessed:
2024-06-06.

[64] RoutineStudio, “Plastic water bot-
tle.” https://sketchfab.com/3d-models/
plastic-water-bottle-731efe2635c9472c9c1e4fdb1f8fbd13,
2020. Accessed: 15/01/2023.

[65] Froggreen, “Fish.” https:
//sketchfab.com/3d-models/
fish-ae9089d355d244aebd9abee4da7d35af, 2017.
Accessed: 20/01/2023.

[66] G. Bradski, “The OpenCV Library,” Dr. Dobb’s
Journal of Software Tools, 2000.

[67] OpenCV, “K-means clustering,” 2023. Accessed:
2024-05-21.

[68] S. Mallick, “Geometry of image formation.”
LearnOpenCV, OpenCV, 2020. Accessed: 2024-
04-21.

[69] G. Hollows and N. James, “Under-
standing focal length and field of
view.” https://www.edmundoptics.com/
knowledge-center/application-notes/imaging/
understanding-focal-length-and-field-of-view/,
2023. Accessed: 2023-05-23.

[70] L. F. Shampine and M. W. Reichelt, “The matlab
ode suite,” SIAM Journal on Scientific Comput-
ing, vol. 18, pp. 1–22, Jan 1997.

[71] K. Pearson, “Vii. note on regression and inheri-
tance in the case of two parents,” Proceedings of
the Royal Society of London, vol. 58, pp. 240 – 242,
1895.

[72] C. Spearman, “The proof and measurement of
association between two things,” The American
Journal of Psychology, vol. 100, no. 3/4, pp. 441–
471, 1987.

[73] F. Hausdorff, Grundzüge der Mengenlehre.
Leipzig, Germany: Veit & Comp., 1914.

[74] H. Hahn, “Sur quelques points du calcul fonc-
tionnel,” Monatshefte für Mathematik und Physik,
vol. 19, pp. A47–A48, 1908.

[75] H. Sakoe, “Dynamic programming algorithm op-
timization for spoken word recognition,” IEEE
Transactions on Acoustics, Speech, and Signal
Processing, vol. 26, pp. 159–165, 1978.

[76] M. Stone, “Cross-validatory choice and assess-
ment of statistical predictions,” Journal of the
Royal Statistical Society: Series B (Methodologi-
cal), vol. 36, no. 2, pp. 111–133, 1974.

REFERENCES

[77] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sen-
sitivity analysis of k-fold cross validation in predic-
tion error estimation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 32,
no. 3, pp. 569–575, 2010.

[78] D. P. Kingma and J. Ba, “Adam: A
method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[79] M. Staats, M. Thamm, and B. Rosenow, “Reeval-
uating loss functions: Enhancing robustness to
label noise in deep learning models,” ArXiv,
vol. abs/2306.05497, 2023.

[80] S. Bai, S. Zhou, Z. Qin, L. Wang, and N. Zheng,
“Robust noisy label learning via two-stream sam-
ple distillation,” arXiv preprint arXiv:2404.10499,
2024.

[81] Z. Li, X. Li, L. Yang, B. Zhao, R. Song,
L. Luo, J. Li, and J. Yang, “Curriculum temper-
ature for knowledge distillation,” in Proceedings
of the AAAI Conference on Artificial Intelligence,
vol. 37, pp. 1504–1512, 2023.

[82] G. Li, H. Liu, U. K. Müller, C. J. Voesenek, and
J. L. van Leeuwen, “Fishes regulate tail-beat kine-
matics to minimize speed-specific cost of trans-
port,” Proceedings of the Royal Society B: Biolog-
ical Sciences, vol. 288, 2021.

APPENDICES

Appendix A: Unity simulator setup

This appendix consists of an in-depth discussion about the physics implemented in the simulator alongside a
comprehensive listing of the parameter values utilised for data generation.

The scene is generated using various parameters. An overview can be found in Table 2.

Table 2: Unity scene parameter ranges

Unity Simulator parameters
Name Unit Minimum value Maximum value

Underwater fog strength - 6 120
Particle emission rate #/s 3 10
Bubble emission rate #/s 0 3
Water current z m/s -0.3 0.3
Light intensity lx 0.8 1.8
Light angle x deg 60 120
Light angle y deg 0 360
Distance from the camera m 1 6
Spawn position x m -3 -6
Spawn position y m -1.8 -1.2
Spawn position z m -6 6
Spawn rotation y deg 0 360
Margin - 0.25 0.75

As mentioned in the main paper, the FixedUpdate() method is used to update the physics. Two custom
forces were added: buoyancy force and drag force. The buoyancy force formula can be found in (16).

fbuoy = ρfluid · g · V o (16)

With ρfluid equal to 997 for the density of water, g the gravitational acceleration constant equal to 9.81 m/s2,
and V o the volume.

The simulator offers two methods for simulating gravity: it can either treat gravity as a point source at
the object’s centre of mass or discretize the gravitational force across the object’s entire surface based on voxel
count. Additionally, to simulate minor disturbances commonly found in underwater environments, the simulator
incorporates Perlin noise. This technique generates a pseudo-random pattern of floating-point values that modify
the gravitational force, effectively simulating environmental disturbances.

Note that the buoyancy formula in (16) uses volume V o. Accurately calculating an object’s volume based
on its mesh can be challenging. As mentioned before, the simulator opts for a box collider instead of a mesh
collider. This collider outlines the object with a box. This suffices for many objects but in some cases, such
as for the plastic beer holder, it considerably overestimates the volume. To address such discrepancy, a volume
scaling parameter is introduced, allowing for more accurate buoyancy calculations. Specific parameters for
various objects are detailed in Table 3, Table 4, and Table 5. In each FixedUpdate() step, the buoyancy force
is calculated and added to the object.

The second force implemented is the drag force. This simulator only considers linear drag and models angular
drag using constant damping. The drag force is caused by the difference in speed between the fluid vfluid and
the object vobj. In typical applications, the following relation holds vfluid << vobj. In the underwater domain
with slow-moving objects, the velocity of the fluid has a large effect, especially on passive objects. The formula
for the drag force alongside one axis is given in (17).

fdrag
i =

1

2
· ρfluid · v2i · c

d,o
i ·Ao

i (17)

APPENDICES

with i ∈ {x, y, z} and o ∈ {bottle,holder,fish}. The value for ρfluid is the same as before, v2i the difference in

fluid and object speed squared, cd,oi the drag coefficient, and Ao
i is the surface area. The values used to solve the

equations are given in Table 3, Table 4, and Table 5. Note that the surface areas are based on the box collider
discussed before. For each FixedUpdate() step, the speed of the current is subtracted from the velocity of the
object and the calculated force is added to the centre of mass of the object.

Table 3: Unity fish parameters

Fish parameters
Name Symbol Unit Value
Mass mfish kg 3.6
Drag coefficient x cd, fishx #/s 0.5
Drag coefficient y cd,fishy #/s 0.5

Drag coefficient z cd,fishz m/s 0.5
Area x Afish

x m2 0.1003
Area y Afish

y m2 0.0898

Area z Afish
z m2 0.0323

Damping coefficient ζfish - 2e-5
Volume scaler - - 0.1876
Swim force F f

z - 7
Probability against current swimming p - 0.7

Table 4: Unity plastic bottle parameters

Plastic bottle parameters
Name Symbol Unit Value
Mass mbottle kg 0.78
Drag coefficient x cd, bottlex #/s 0.82
Drag coefficient y cd, bottley #/s 0.82

Drag coefficient z cd, bottlez m/s 1.03
Area x Abottle

x m2 0.0152
Area y Abottle

y m2 0.0138

Area z Abottle
z m2 0.0050

Damping coefficient ζbottle - 2e-6
Volume scaler - - 0.8914

Table 5: Unity plastic beer holder parameters

Plastic beer holder parameters
Name Symbol Unit Value
Mass mholder kg 0.3
Drag coefficient x cd, holderx #/s 0.83
Drag coefficient y cd, holdery #/s 0.88

Drag coefficient z cd, holderz m/s 1.17
Area x Aholder

x m2 0.0092
Area y Aholder

y m2 0.0834

Area z Aholder
z m2 0.0139

APPENDICES

Table 5 continued from previous page
Damping coefficient ζholder - 2e-6
Volume scaler - - 0.11

Each run of the simulator outputs a series of images displaying the movement of the object over time. Some
examples of the plastic bottle, plastic beer holder and fish can be found in Fig. 16, Fig. 17 and Fig. 18 respectively.

Fig. 16: Example images of the plastic bottle inside the simulation.

APPENDICES

Fig. 17: Example images of plastic beer holder inside the simulation.

APPENDICES

Fig. 18: Example images of the fish inside the simulation.

APPENDICES

Appendix B: Motion extraction and clustering

This appendix discusses the motion extraction and clustering algorithm in more detail. The motion between
two frames is extracted using optical flow. Many forms of optical flow exist, but the Farneback method is used
for this research. The Farneback method is built on approximating each pixel’s neighbourhood with a quadratic
polynomial, found in (18). This results in a local signal model.

f(x) ∼ xTAx + bTx + c (18)

A is a symmetric matrix, b is a vector and c is a scalar. The coefficients are estimated using a weighted
least squares fit. The weighting has two components: certainty and applicability. The certainty reflects the
quality or confidence of the pixel data. High contrast and sharpness typically have a high level of certainty.
The applicability component refers to the relevance of the pixel’s data. This value often decreases with distance
from the centre of the neighbourhood. A new signal can be constructed by translating the polynomial over the
distance d. The new signal can be found in (19).

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT
1 (x− d) + c1 (19)

Subsequently, if A1 is non-singular, an expression for d can be derived, shown in (20) with the parameters
defined in (21).

d = −1

2
A−1

1 (b2 − b1) (20)

A2 = A1,

b2 = b1 − 2A1d,

c2 = dTA1d− bT
1 d + c1.

(21)

This approach makes use of local polynomial approximations as global approximations are not realistic. The
displacement is assumed to vary across the frame and a multiscale approach is taken to iteratively refine the
displacements. The output of this approach is a mask with the magnitudes indicating the pixel velocity. The
assumption is made that the object of interest has the highest velocity of the frame and thus the largest optical
flow value. Finding the location of the object in the frame is not a trivial task. The particles, bubbles and waves
also have an optical flow. These items add noise to the mask and assuming that the object’s position coincides
with the single highest value is untrue.

A more complex centroid extraction module is designed and an overview can be found in Fig. 19. The module
applies the k-means clustering algorithm twice, once focused on the magnitudes and once focused on the positions.
The k-means clustering algorithm is a form of unsupervised learning. It works by iteratively partitioning the
dataset into k predefined distinct non-overlapping clusters. The algorithm minimizes the squared distance
between each point and the centroid of the cluster. The objective function can be seen in (22).

J =

K∑
i=1

ni∑
j=1

∥xj − µi∥2 (22)

With K the number of clusters, ni is the number of data points in cluster i, xj is the j -th data point in
cluster i and µi the centroid of the i -th cluster. The algorithm tries to find the centroid locations that yield the
lowest value of J . K-means clustering is a very popular technique widely used in industry thanks to its speed
and simplicity. Important to note is the sensitivity to outliers, dependence on the initialization and tendency to
find local minima.

For the magnitude clustering, a value of 3 is used. The cluster covering the largest number of pixels is
assumed to be the background. This can be observed in Fig. 20. Cluster zero indicates the background. Cluster
1 contains the object (plastic beer holder) and some noise. Cluster 2 contains only noise. Another example can

APPENDICES

Fig. 19: Architecture motion extraction module.

be found in Fig. 21. Again, the background can be seen in cluster 0. In this case, the object (fish) is detected
in both cluster 1 and cluster 2. The level of noise is more significant in cluster 2 than in cluster 1. This shows
the benefit of using three magnitude clusters.

Fig. 20: Output magnitude clustering example 1.

The k-means clustering algorithm is applied again to the two extracted position clusters, but this time spatially
focused. The spatial clustering algorithm is applied to magnitude cluster 1 and magnitude cluster 2 from Fig. 20
and the output can be found in Fig. 22 and Fig. 23 respectively. It can be seen that the object is present in
Fig. 22 together with some noise. Spatial cluster 0 filters the majority of the noise out and spatial cluster 1
shows the outline of the object with limited noise. The output of applying the spatial clustering applied to
magnitude cluster 2 is shown in Fig. 23. Although only noise is present, it verifies that the algorithm correctly
spatially clusters the pixels.

The spatial clustering algorithm is also applied to magnitude cluster 1 and magnitude cluster 2 from Fig. 21.
In this example, both magnitude clusters contain a part of the object. In Fig. 24, the object is split into two

APPENDICES

Fig. 21: Output magnitude clustering example 2.

parts. Similar behaviour can be observed in Fig. 25. To cover the cases where multiple clusters belong to the
object, the centroids are compared and the clusters are merged if near each other. The final extracted clusters
can be found in Fig. 26 and Fig. 27.

Fig. 22: Output spatial cluster 1 example 1.

Fig. 23: Output spatial cluster 2 example 1.

Note that this method is built on the assumption that the object has a higher or similar velocity compared
to the bubbles and marine snow. If this is not the case, the object is not seen on the mask such as the case in
Fig. 28

APPENDICES

Fig. 24: Output spatial cluster 1 example 2.

Fig. 25: Output spatial cluster 2 example 2.

(a) Original image example 1 containing plastic beer holder. (b) Final centroid (indicated in red) example 1.

Fig. 26: Original image and the optical flow output.

APPENDICES

(a) Original image example 2 containing fish. (b) Final centroid (indicated in red) example 2.

Fig. 27: Original image and the optical flow output.

(a) Original image containing plastic bottle. (b) Mask generated using optical flow.

Fig. 28: Example if the object’s velocity is lower than the surroundings.

APPENDICES

Appendix C: Mathematical model

The mathematical model module consists of two models: a passive plastic model and an active fish model.
These two models are largely the same, with the fish force as the main difference. This accounts for the fish’s
tail movement generating thrust and is modelled as a sinusoidal motion with a tail frequency f tail. Research
indicates that frequencies ranging from 1 to 90 Hz are commonly observed to be used by fish in nature [82]. A
value of 50 Hz is chosen.

This appendix discusses the verification performed to ensure the models are behaving as expected. The total
generated dataset consists of 2500 trajectories. Each of these trajectories has three different sources: optical flow,
Gaussian noise and ideal data. Each of these different types can be used with different parameter estimation
settings: off, low, medium, high and full. Note that only the low setting is used in the main paper.

At the first level (parameter estimation off), all the parameters are extracted. The second level estimates
the volume, which impacts the object’s buoyancy, affecting its vertical position and velocity. The third level
includes mass estimation, crucial for both buoyancy and drag equations, impacting the object’s overall dynamics.
The fourth level adds estimates for surface areas, influencing the drag forces in both directions. The final level
includes the fish force which drastically impacts the fish mathematical model. This approach allows for tailored
parameter estimation that can be adjusted based on the model’s complexity and desired performance. An
overview of the different levels can be found in Table 6. The mathematical model yields four outputs: yo, zo,
ẏo, and żo over the length of the input trajectory that can vary between 1 second and 20 seconds.

Table 6: Different levels of parameter estimation

Parameter estimation levels
Level Param extracted Param estimation
Off Az, Ay, Ffz , m, V -
Low Az, Ay, Ffz , m V
Medium Az, Ay, Ffz m, V
High Ffz Az, Ay, m, V
Full - Az, Ay, Ffz , m, V

The mathematical model module receives three primary inputs: the input trajectory, the desired degree of
parameter estimation, and the class. Its output comprises the calculated trajectories for either plastic or fish,
utilising the initial conditions specified by the input trajectory.

To assess the accuracy of the mathematical model is the root mean squared error (RMSE) calculated for each
of the states yo, zo, ẏo and żo. The results can be found in Table 7.

In Table 7, a clear difference between the data sources can be observed. As expected, the mathematical model
performs exceptionally well on the ideal data, significantly outperforming the other data sources. This is thanks
to the high similarity between the differential equations present in the simulation and in both mathematical
models.

The RMSE for the yo optical flow is considerably lower than for the Gaussian noise, but this trend can not be
observed in the other states. The disparities between yo and zo and żo and żo can be explained by the difference
in methods to calculate the velocities between the two data sources. Optical flow uses the derivatives from the
position while the Gaussian noise makes use of the ideal velocities and augments these with noise. This also
explains why the errors in the Gaussian noise are constant across the states.

For each of the data sources, one might expect the error to be minimised when using the true parameters.
However, an alternative behaviour can be observed; the error decreases with the increase of parameter estimation
level up to a certain point beyond which the error begins to rise again. This tipping point varies with each data
source and state. For optical flow, this tipping point is either high or non-existent. For the Gaussian noise
scenario, it consistently occurs at a high level of parameter estimation while for the ideal data, this occurs at
either medium or high. This pattern emerges because the parameter estimation allows the mathematical model

APPENDICES

Table 7: Overview of average root mean squared error (RMSE) for 2500 trajectories for the mathematical model

Data Source Parameter Estimation RMSEyo [m] RMSEzo [m] RMSEẏo [m/s] RMSEżo [m/s]

Optical flow OFF 0.161 0.670 2.08 19.6
Optical flow LOW 0.0472 0.669 1.98 19.6
Optical flow MEDIUM 0.0320 0.594 1.98 19.5
Optical flow HIGH 0.0386 0.543 1.97 19.5
Optical flow FULL 0.0404 0.461 1.97 19.3
Gaussian noise OFF 0.272 0.287 0.115 0.124
Gaussian noise LOW 0.194 0.287 0.123 0.124
Gaussian noise LOW 0.194 0.287 0.123 0.124
Gaussian noise MEDIUM 0.174 0.265 0.122 0.119
Gaussian noise HIGH 0.174 0.252 0.122 0.116
Gaussian noise FULL 0.179 0.278 0.124 0.139
Ideal OFF 0.00190 0.00130 0.00207 0.00203
Ideal LOW 0.00370 0.00130 0.00320 0.00203
Ideal MEDIUM 0.000315 0.00135 0.000924 0.00190
Ideal HIGH 0.00168 0.00122 0.00105 0.00150
Ideal FULL 0.00219 0.0281 0.00160 0.0177

to fine-tune itself on the input trajectory, resulting in a better performance compared to the scenario without
fine-tuning.

A similar trend can be observed when looking at the graphs. For each of the parameter estimation levels,
the plots for yo, zo, ẏo and żo are generated. Both the plastic and fish models are generated using the levels
of parameter estimation and plotted, together with the ideal trajectory. Important to note is the “absence” of
the fish model in the case with parameter estimation off for yo and ẏo. This happens because the plastic and
fish models have the same differential equations (for yo and ẏo) and thus produce identical trajectories when the
same parameters are used. The graphs are produced for the case of a plastic bottle so the plastic model uses
the parameters of the plastic bottle and so does the fish model.

The Gaussian noise graphs can be found in Fig. 29, Fig. 30 and Fig. 31. The mathematical model receives
the Gaussian noise-added trajectory as input, performs parameter estimation and generates a trajectory aiming
to mimic the input trajectory as closely as possible.

The optical flow graphs are shown in Fig. 32, Fig. 33 and Fig. 34. The difference between the optical flow
and Gaussian noise trajectories becomes clear as well. The errors propagate to the velocities in the optical flow
while this is not present in the Gaussian noise.

APPENDICES

(a) Gaussian noise trajectory - parameter estimation off (b) Gaussian noise trajectory - parameter estimation low

Fig. 29: Comparison level parameter estimation off and low for the Gaussian noise case.

(a) Gaussian noise trajectory - parameter estimation
medium (b) Gaussian noise trajectory - parameter estimation high

Fig. 30: Comparison level parameter estimation medium and high for the Gaussian noise case.

APPENDICES

Fig. 31: Gaussian noise trajectory - parameter estimation full

(a) Optical flow trajectory - parameter estimation off (b) Optical flow trajectory - parameter estimation low

Fig. 32: Comparison level parameter estimation off and low for the optical flow case.

APPENDICES

(a) Optical flow trajectory - parameter estimation medium (b) Optical flow trajectory - parameter estimation high

Fig. 33: Comparison level parameter estimation medium and high for the optical flow case.

APPENDICES

Fig. 34: Optical flow trajectory - parameter estimation full.

APPENDICES

Appendix D: Domain knowledge module

The domain knowledge module is central to this method. This module primarily computes the similarity
between the input trajectory and the mathematical models for plastic and fish. The class with the highest
similarity is selected as the prediction for the mathematical model. It can be seen that the similarity metric is
crucial to the entire setup; an inappropriate choice can lead to a suboptimal solution. To select the most optimal
metric, two criteria are set: accuracy in predicting the correct class and the alignment between the expected
and observed probability distribution. The accuracy is important such that the method does not hold back the
training, but the probability distribution provides additional information beyond what is offered by the labels.

The accuracy is investigated by running each similarity metric on the entire dataset of 2500 samples. As
mentioned before, the mathematical model has a large impact on the performance of the domain knowledge
module. It is therefore important to investigate the behaviour of each metric on the different data types and
various parameter estimations. The results can be found in Fig. 35, Fig. 36a, Fig. 36b, Fig. 37a, Fig. 37b for
the parameter estimation levels off, low, medium, high and full respectively.

Fig. 35: Comparison accuracy of various similarity metrics for the parameter estimation level off.

The accuracy is lowest with the optical flow data, followed by the Gaussian noise and approaches 100% for the
ideal data. This is expected as the mathematical models align most closely with the ideal data. It is observed
that all metrics, except for the Pearson and Spearman correlations, maintain very similar levels of accuracy. Due
to their significantly lower accuracy, these two metrics are excluded from the remainder of the analysis. In the
higher parameter estimation levels, it can be observed that the accuracy of the MAD (Mean average distance)
decreases for the ideal data.

The second criterion considered is the correspondence between the probability distributions. This ensures
that additional data, not present in the annotations alone, is conveyed to the neural network. To assess the
probability distribution, each of the metrics is applied to the entire dataset and the resulting probabilities are
plotted. Note that each similarity metric is converted to probabilities using the softmax function. The graphs
for the discrete Fréchet distance, dynamic time warping, Hausdorff coefficient, mean average distance and the
mean squared error can be found in Fig. 38, Fig. 39, Fig. 40, Fig. 41, Fig. 42 respectively.

APPENDICES

(a) Comparison accuracy of various similarity metrics for
the parameter estimation level low.

(b) Comparison accuracy of various similarity metrics for
the parameter estimation level medium.

Fig. 36: Histograms of the various similarity metrics for the parameter estimation levels: low and medium.

(a) Comparison accuracy of various similarity metrics for
the parameter estimation level high.

(b) Histograms of the various similarity metrics for the pa-
rameter estimation levels: high and full.

Fig. 37

APPENDICES

The domain knowledge module must accurately reflect the correspondence between the input trajectories
and the mathematical models. Since the mathematical models are made to match the ideal trajectories, the
domain knowledge module must reflect that in the form of uncertainty about classifying the object to each target
category. For instance, if the input object is a fish, in the ideal case, the mathematical model for fish should
match perfectly, while the plastic model should not, resulting in a confidence of 0.95 and 0.05 for fish and plastic,
respectively. However, for the optical flow case, some trajectories are not extracted properly and are wrong.
In this case, the confidences should be low to indicate to the neural network that these trajectories are of low
quality. Since Gaussian noise follows the same trend as the ideal trajectory, just augmented with noise, it is
expected that a similar probability distribution as the ideal data is present.

The first similarity metric evaluated is the Discrete Fréchet distance, detailed in Fig. 38. For the optical flow
case, the probabilities are centred around 0.5, as expected, although the presence of some values at the extremes
would also be anticipated.

A significant difference can be observed between Gaussian noise and the ideal case. This indicates that the
Discrete Fréchet distance is not the best metric. Both the dynamic time warping and the Hausdorff coefficient
produce similar probability distributions. In contrast, the mean average distance presents a different distribution.
Perfectly matching the expectation for the Gaussian noise and the ideal case, but missing the distribution around
0.5 for the optical flow. The final metric evaluated is the mean squared error, which adheres to the expected
distributions for the optical flow, Gaussian noise, and ideal data. This metric is selected as the most optimal
for embedding information into a neural network.

Fig. 38: Violinplot comparing the different parameter estimation levels per data type for the Discrete Fréchet
distance.

APPENDICES

Fig. 39: Violinplot comparing the different parameter estimation levels per data type for the Dynamic time
warping.

Fig. 40: Violinplot comparing the different parameter estimation levels per data type for the Hausdorff coeffi-
cient.

APPENDICES

Fig. 41: Violinplot comparing the different parameter estimation levels per data type for the mean average
distance.

Fig. 42: Violinplot comparing the different parameter estimation levels per data type for the mean squared error.

APPENDICES

Appendix E: Neural network training

The training of the neural network is where all the components come together and is controlled by the main
script train trajectory.py. This script begins by extracting all the values from the parsed data.json, which
are then used to determine the bounds for all of the parameters in the differential equations. Subsequently, this
script initializes the training loop for the k-fold cross-validation. In each iteration of the k-fold, the training with
domain knowledge and the one without domain knowledge are initiated. A single training run is managed by
the script neural_network/main.py which starts by initializing the loss functions and parsing the input data.
A custom dataset iterator is built to ensure that the different kinds of data are accessible during the training.
The default training runs for 50 epochs but has an earlier stopping mechanism. If the validation loss increases
for 6 consecutive epochs, the training process is halted. During the first epoch, the output from the domain
knowledge module is saved to avoid redundant calculations in subsequent epochs. Both losses are calculated and
combined using a weighting factor α. This value is kept constant at 0.5. For each epoch, the loss is calculated
on both the training and validation sets, with the model tracking the lowest validation loss. At the end of the
training process are the weights of the epoch corresponding to the lowest validation loss selected as optimal.
These weights are then applied to the test set to evaluate the final performance.

During development, it is crucial to ensure that all data is logged accurately. In machine learning applications,
this task is notoriously complex with the many different samples and loops present. A custom logging module
is written for this specific purpose. Each experiment comprises 10 k-fold sets, each conducted with and without
domain knowledge training, and each runs for 50 epochs unless terminated early due to the early stopping
criterion. An example of one such training process is illustrated in Fig. 44. The solid lines indicate metrics
on the train set, the dashed lines are from the validation set and the stars are from the test set. These stars
correspond to a single value, as they are computed using the weights from the epoch with the lowest validation
loss. Epoch 4 is the epoch with the lowest validation loss. The blue lines indicate the accuracy of the trained
neural network, while the constant orange line is the accuracy of the domain knowledge module, which remains
static over time. The red and green lines indicate the number of samples that the domain knowledge module
and the neural network, respectively, have correctly predicted.

This metric is plotted to investigate if the neural network and mathematical model make different predictions.
For instance, if both the domain knowledge and the neural network have an accuracy of 80%, the question arises:
do they make the same errors? This metric demonstrates the degree of differences. If both make the same
mistakes, little can be learned from each other; however, if they make different mistakes, there is a significant
opportunity for mutual learning.

In Fig. 44 the loss over the training is depicted. Again, the solid line represents the training process and the
dashed line corresponds to the validation. The blue line indicates the Cross-Entropy (CE) loss, and the red line
represents the Kullback-Leibler (KL) divergence loss. The orange line is the combination of both losses. From
these losses, it can be seen that overfitting begins to occur at epoch 4, indicated by the increasing validation
loss. This behaviour is characteristic of semi-supervised learning which explains why the training loss for the KL
divergence is so low. The KL divergence has already been optimized for this setting. The combined training loss
is significantly more influenced by the CE loss than by the KL divergence. This supports the claim that using
a dynamic alpha in semi-supervised learning has the potential to improve robustness against a poorly labelled
dataset. In the supervised case, illustrated in Fig. 45, the opposite trend can be seen with the KL divergence
higher than the CE loss. This training run also used a higher learning rate of 0.001 compared to the learning of
0.0001 used in Fig. 44. A lower learning rate shows a smoother loss function while a higher learning rate shows
heavy oscillations.

APPENDICES

Fig. 43: Combined accuracy from a training run

Fig. 44: Combined loss from a semi-supervised training run with a learning rate of 0.0001.

APPENDICES

Fig. 45: Combined loss from a supervised training run with a learning rate of 0.001.

Part II
Literature study

Contents

List of Figures v

1 Introduction 1
1.1 Research Objective . 1
1.2 Domain knowledge . 4
1.3 Research Outline . 6

2 Object Detection Networks 7
2.1 Fundamental Neural Network Layers . 7
2.2 Specialized Components of Neural Network Architectures. 10
2.3 Neural Network Architectures . 11
2.4 Training of Neural Networks . 14
2.5 Evaluation metrics . 15
2.6 Conclusion . 16

3 Motion Extraction Techniques 17
3.1 Classical Optical Flow Techniques. 17
3.2 Gaussian Mixture Models (GMM) for Optical Flow . 19
3.3 Machine Learning-based Optical Flow Techniques . 20

4 Object Tracking Methods 23
4.1 Support algorithms . 23
4.2 MOT Challenge Tracking Models . 25
4.3 Underwater Tracking Models . 26
4.4 Conclusion . 27

5 Training Data Sources and Tools 28
5.1 Open source real-world datasets . 28
5.2 SEACLEAR dataset . 28
5.3 Simulators . 29
5.4 Conclusion . 31

6 Research Proposal 32
6.1 Introduction . 32
6.2 Research Questions . 32

7 Conclusion 33

References 40

ii

Nomenclature

List of Abbreviations

AP Average Precision

AUV Autonomous Underwater Vehicle

CNN Convolutional Neural Network

COCO Common Objects in Context

EM Expectation Maximization

EPE Endpoint error

FN False Negative

FP False Positive

FPN Feature Pyramid Network

FSTA Fish-school Tracking Algorithm

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

JAMSTEC Japan Agency for Marine-Earth Sci-
ence and Technology

LSTM Long Short Term Memory

mAP Mean Average Precision

MOT Multiple Object Tracking

MOTA Mutiple Object Tracking Accuracy

R-CNN Region-based Convolutional Neural Net-
work

RAFT Recurrent All-Pairs Field Transforms

RGB Red, Green, Blue

RNN Recurrent Neural Network

RoI Region of Interest

ROV Remotely Operated Vehicle

RPN Region Proposal Network

SORT Simple Realtime Tracking

SOT Single Object Tracking

SOTA State-of-the-art

SPP Spatial Pyramid Pooling

TN True Negative

TP True Positive

VGG Visual Geometry Group

YOLO You Only Look Once

List of Symbols

α Learning Rate

Fm State Transition matrix

Pn+1,n Estimation Uncertainty matrix at time n+1
after measurement n

δ TD-error

ϵ Exploration coefficient

η Entropy Temperature

x̂n+1,n Estimation state vector at time n+1 after
measurement n

ŷi Predicted Value

κ Frame number

κ Huber-loss parameter

Ψ Distortion risk-measure

σv Total error

θ Weights Vector

a⃗n Flow field parameter

c⃗k Motion constraint vector

p⃗n Component Probability Distribution

v⃗ Actual velocity vector

x⃗k Image location vector

ξ Risk-distortion parameter

ξ Total error

iii

Nomenclature iv

ξb Quantification and noise error

A Partial derivative to y of the Pixel Intensity

B Amount of bounding boxes per grid cell

D Depth of the image

F Spatial size of the kernel

G Control Matrix

H Image height in pixels

Hm Observation matrix

Ii Identity matrix

Ix Partial derivative to x of the Pixel Intensity

Iy Partial derivative to y of the Pixel Intensity

Kn Kalman Gain

L Loss function

Lgm Likelihood

mn Mixture probabilities

P Amount of padding

Q Process Noise Uncertainty matrix

R Measurement Uncertainty matrix

S Stride length

Sgs Grid size

t Time-step

u Apparent pixel velocity in the x-axis

un Input variable

v Apparent pixel velocity in the y-axis

vn Measurement Noise Error

W Image width in pixels

wn Process Noise Vector

yi Ground Truth

List of Figures

1.1 Some examples of elements present in the marine environment that affect the use of vision
underwater. (a) Water with high turbidity, (b) Uneven illumination, (c) Low contrast, (d)
Complicated underwater background, and (e) Monotonous colour [12] 2

1.2 Dubious piece of litter . 5
1.3 Difficult to capture marine life . 5

2.1 Convolution of a 3 channel image [38] . 8
2.2 Overview of all the steps in a convolutional layer [39]. ReLu equal Rectified Linear Unit . . 8
2.3 Overview of the residual block [42] . 9
2.4 Architecture of Faster R-CNN [15] . 12
2.5 Peformance of SOTA models [52] . 13
2.6 LSTM Architecture overview [53] . 14
2.7 Intersection over Union [58] . 16

3.1 Two architectures discussed in [64], the top is the default architecture and the bottom is the
custom-designed one. 21

3.2 The FlowNet 2.0 architecture [65] . 21
3.3 The RAFT architecture [69] . 21

4.1 The Sparse Graph Tracker architecture [82] . 25
4.2 The Sparse Graph Tracker architecture [88] . 26
4.3 The FSTA architecture [93] . 27

5.1 Examples of SEACLEAR data, left is an example from Croatia and right is an example from
France. 28

5.2 Example of visual in UWSim simulator with an object modelled in Blender [102] 29
5.3 Architecture UWSim [102] . 30
5.4 Gazebo simulator visual example [103] . 30
5.5 Unity3D simulator visual example [107] . 31

v

1
Introduction

The world is currently grappling with numerous environmental issues, among which marine pollution is
one of the most significant [1]. Currently, 50-75 trillion pieces of plastic and microplastics are present in
the oceans [2] and are estimated to increase by approximately a million tons every year [3]. Organisations
such as The Ocean Cleanup are actively tackling this problem, primarily focusing on floating pollution and
beach cleanups. While the issue of non-floating pollution is addressed by very few, it is estimated that
over 14 million tons of such pollutants are residing on the ocean bed [4]

Plastic constitutes the majority of all marine litter, and it does not decompose but rather degrades into
smaller pieces known as microplastics. It is proven that plastics in the oceans are not only harmful to
humans and marine life, but also have a significant financial impact. The problem of plastic pollution is
estimated to cost the global economy over 13 billion euros annually [5]. If current trends persist, it is
projected that there will be more plastic in the ocean than fish by mid-century [6].

Pollution in the water column and on the seabed is a pressing issue that demands immediate attention.
The longer this problem persists, the more challenging it becomes to address. Removing objects larger
than 10 cm is significantly easier compared to cleaning up plastics that are only a few millimetres in
size. The resources required and the complexity of the problem increase exponentially when dealing with
microplastics.

This project is part of the SEACLEAR initiative 1, a collaboration between universities to enable au-
tonomous trash cleanup.

1.1. Research Objective
Given the scale of plastic pollution and the urgency of addressing it, the most efficient solution lies in the
use of autonomous technologies. Significant advancements have beenmade in the field of autonomy such
as self-driving cars, autopilots, etc. However, research on underwater autonomy has been limited due to
the harsh underwater environment which presents a unique set of challenges. SEACLEAR is a pioneering
project that aims to use autonomous robots for underwater litter collection. The initial step in this process
is the autonomous detection and tracking of litter. The field of computer vision has evolved rapidly in recent
years, with substantial advancements enabling complex tasks such as autonomous driving, surveillance,
wildlife monitoring, and facial recognition [7]–[9].

Computer vision encompasses various fields such as object detection, classification, and segmenta-
tion. For litter collection, identifying the location of objects is essential. This work focuses on the task of
underwater object detection. Due to the nature of the underwater domain, object detection is a difficult
task. Object shapes and light propagation get distorted in the water medium [10]. The quality of the im-
ages is highly dependent on the water quality and clarity. Most objects are situated on the ocean bed, and
capturing images or videos of these objects often disturbs sediment, which then floats and significantly
degrades image quality. The background is also a blurry body which distorts perspectives and decreases
the colours and shapes [11]. Additionally, the presence of marine snow increases the difficulty of under-
water object detection as it clutters the image and leads to many false positives (i.e. wrongfully classifying

1https://seaclear-project.eu/

1

1.1. Research Objective 2

marine life as litter). Underwater currents introduce turbulence, causing ROV shaking and resulting in
unstable footage. Altogether, these factors create a highly challenging environment for computer vision.

Detecting trash presents a complex problem due to the high variability in the objects. Trash can con-
sist of various materials, shapes, colours and sizes. For instance, a fish and a piece of trash might be
similar in size and shape, although their colours may differ. Conversely, another object might share the
same colour as the fish but differ in size and shape. This minimal distinction between classes (plastic
and fish) significantly complicates the detection process. Furthermore, objects found in the underwater
environment may exhibit varying degrees of degradation. The more degraded an object is, the more it
blends into the underwater ecosystem, making detection even more challenging. Examples of problems
associated with underwater vision can be observed in Figure 1.1.

Figure 1.1: Some examples of elements present in the marine environment that affect the use of vision
underwater. (a) Water with high turbidity, (b) Uneven illumination, (c) Low contrast, (d) Complicated

underwater background, and (e) Monotonous colour [12]

Objection detection has come a long way and the performance of current State-of-the-Art models is
truly remarkable [13] [14] [15]. Many models have proven to accurately detect objects in an underwater
environment and these will be discussed in the following sections.

1.1.1. Image Object Detection
Image object detection can be categorised into two main types: single-stage neural networks and multi-
stage neural networks. The current state-of-the-art (SOTA) models of these classes are the YOLO family
(the latest model is YOLOV8) and Faster R-CNN. Both the YOLO and R-CNN families have demonstrated
strong performance in object detection. The following paragraphs review the literature on underwater
image object detection. As datasets are the most important part of computer vision, the paragraphs are
organised according to the datasets used.

One of the most extensively used and largest underwater trash datasets available is the JAMSTEC
(Japan Agency for Marine-Earth Science and Technology) Deep-sea Debris Dataset [16]. A portion of
this dataset is annotated by the authors in [17] and named the part that is annotated ”Trashcan”. The
Trashcan dataset comprises 7,212 images across 22 classes, including crabs, fish, wood, and cups. The
dataset is compiled from nearly 1,000 videos. The authors of the Trashcan dataset employed a Faster
R-CNNmodel on the dataset to achieve benchmark results of 55.4%Mean average precision with at least
50% overlap between the annotation and prediction (mAP50) using all the available classes.

Another study, using all 22 classes of the Trashcan dataset, reported an mAP50 of 65.0% with a
modified version of Mask R-CNN [18]. A separate research effort attained anmAP of 81% using the Faster
R-CNNmodel on an earlier version of the Trashcan dataset, known as Trash-ICRA19, which includes only
5,700 images. This result, however, was based on just three classes: plastic, bio, and ROV [19]. The
Trash-ICRA19 is also utilized by the authors of [20]. Their study optimized a YOLOV5 architecture for run
time and achieved an mAP of over 98.4%. The dataset consists of sequential images, but a random split
was adopted. The issue with applying a random split to sequential images is the small variation between
frames. If frame 1 is included in the training set, frame 2 in the validation set, and frame 3 in the test
set, the minimal differences between these frames mean that the performance on the test set may not be
representative when different footage is used.

Another model by [21] trained on the latest Trashcan dataset achieved a mAP of 90.6% using an
improved YOLOV5 architecture, also, only 3 classes were used. The paper [22] uses YOLOV3 with
a ResNet50 backbone and achieves 83.4% mAP50 across seven classes: cloth, fishing net and rope,
glass, metal, natural debris, plastic, and rubber.

1.1. Research Objective 3

In another study, a new classification model architecture was developed to detect seven classes of
trash, achieving an F1 score (shown in Equation 1.1) of 0.946 [23]. However, this model did not include
object localisation, reducing its applicability for ROVs. The authors of [24] used a binary classification
approach and reported an mAP of 98.15% on the previous version of Trashcan with YOLOv3. The newer
YOLO models, YOLOV6 and YOLOV7, have been applied to the Trashcan dataset in [14], where an mAP
of 77.6% is reached across 4 classes. Comparisons among YOLOv5, YOLOv6, and YOLOv7 indicated
that YOLOv6 performed best with default settings [14].

F1 =
2 · precision · recall
precision+ recall

(1.1)

Besides the widely used Trashcan dataset, also custom datasets are used to train underwater detec-
tors. The study described in [25] trained a YOLOV4 network on a custom dataset of underwater trash
with three classes and tested it on a small ROV in a tank where an mAP of 82.7% is achieved. This result
demonstrates the significant potential of using ROVs to detect underwater trash. Another study utilised
a modified U-Net architecture for image segmentation of underwater trash and reached a mAP of over
94% [26]. Although this is a very impressive result, it should be noted that the custom dataset consists
of images taken in a pool with clear water and a clean bottom, conditions that are unrepresentative of
a realistic natural aquatic environment. Therefore these results cannot be generalised to a real-world
application. In addition, only 3 classes were used making this not directly comparable to other studies.

The authors of [27] developed a YOLOv3 model to detect underwater marine life and achieved an
mAP of 69.6%. Another study annotated a new dataset based on the large JAMSTEC database and
claimed to have higher results than benchmark results provided by the authors of the original Trahscan
dataset [28]. A Mask R-CNN is applied to the new dataset named CleanSea corpus and has achieved
an mAP of 59.7% and 67.1% on all classes and material-grouped classes respectively. Another study
utilised a custom low-quality underwater trash dataset with three classes to train a custom classification
algorithm [29]. The authors have reached an accuracy of 86% using transfer learning. This shows that it
is possible to reach good results on very low-quality images, but no localization is performed thus limiting
the application for autonomous cleanup.

The model described in [30] was trained using a portion of the JAMSTEC dataset [16], achieving an
accuracy of 82% with three classes. Other underwater detectors, such as the one in [31], have achieved
an mAP of over 91% on a six-class fish dataset comprising approximately 6,000 to 7,000 images.

It can be concluded that the achieved mAP has a direct relation with the number of classes used.
The highest performance is observed when the number of classes is minimal. Detection models with a
small number of classes have demonstrated high accuracies, approaching 100%, leaving little room for
improvement. However, the high accuracies are all achieved on either the Trashcan dataset, its variations
or in a controlled environment with a limited number of classes.

1.1.2. Video Object Detection
Video object detection is less prevalent than image object detection. The Trashcan dataset [17] is anno-
tated and split in video frames, making it a viable option for video object detection. However, the objects
are not assigned IDs and are thus not tracked across frames. To the best of the author’s knowledge, no
research has focused on video recognition using the Trashcan dataset or underwater videos.

A more extensively researched area in the same field is underwater fish recognition. In [32], a combi-
nation of Gaussian mixture models (GMM), optical flow, and a YOLO model achieved good results, with
accuracy exceeding 90%, resulting in a robust detector. This approach leverages different techniques
with different strengths and weaknesses. Optical flow performs well in detecting every small difference
between frames but suffers a high number of false positives. GMM has fewer false positives but often
misses the small objects and YOLO performs very well in a static environment. This combination of
techniques has great potential for the application of litter and marine life detection as it adds temporal
information to the image information.

The authors of [33] employed a technique to detect periodic movement using a colour threshold tracker
to identify regions coupled with a Fourier tracker. This study mentions the important note that image de-
tection, especially in the underwater environment, is not able to detect everything in each scenario. By

1.2. Domain knowledge 4

adding a temporal approach to image detection, it complements the pitfalls of object detection. Simi-
larly, [34] notes that relying solely on image detection is challenging and that incorporating temporal data
significantly simplifies the task.

1.1.3. Conclusion
It has been demonstrated using the Trashcan dataset that high results can be achieved in underwater
trash detection when using a small number of classes and controlled scenarios. If more training data
were available, these state-of-the-art networks could potentially be improved to detect a larger number of
classes. However, the question remains how well these models generalize if they are applied to different
underwater environments with various types of objects.

Similar underwater objects can have very different shapes and outlooks due to the nature of the en-
vironment. The movement of litter and marine life in water leads to blurry footage. For example, a rigid
piece of plastic might look a certain way at a certain timestamp, but after a while, this piece will degrade
and overgrow with algae causing it to look very different than before. This results in a need to have a
dataset containing objects at various stages of their lifetime.

The limits are being reached in how much information can be extracted from a single image. If current
state-of-the-art underwater trash detection models are applied in real-world environments, they often fail
to make accurate detections when objects blend with the environment.

In such cases, even humans struggle to make accurate predictions. However, the advantage a human
brain has over an image detectionmodel is the presence of domain knowledgewhich aids in understanding
and interpreting complex scenes. To enable high-accuracy underwater trash detection, domain knowledge
must be used to fill in the gaps. Domain knowledge in underwater trash detection has never been utilized
to the knowledge of the author.

As demonstrated in [32], the temporal domain unlocks additional information beyond the pixel values
extracted from a single image. Authors in [35] have shown that adding the temporal domain greatly
improves the accuracy. The writers of [33] have used a temporal tracking model looking at the periodic
movement of flippers to follow divers underwater. This is combined with colour cues to make it more
robust. These colour cues could be replaced by convolutional neural network (CNN) modules to improve
detections. The periodic tracker exemplifies the value and potential of incorporating the temporal domain,
further underscoring its importance in improving underwater trash detection models.

1.2. Domain knowledge
As discussed in the previous sections, integrating domain knowledge into detection systems has signifi-
cant potential to improve accuracy. This section provides a high-level overview of the domain knowledge
relevant to underwater environments, focusing on its application to trash and marine life detection.

1.2.1. Underwater Environment Knowledge
Lighting
Water is a different medium than air which results in a different behaviour of light underwater. Light is
more refracted and absorbed, causing objects to appear significantly different over time. Understanding
the principles of light absorption and scattering in water can be leveraged to greatly improve image quality.

Setting
An understanding of the underwater environment, such as the spatial distribution of objects, can be highly
beneficial. For instance, if it is known that a certain location contains abundant sea grass beneath which
trash frequently accumulates, this information could be used to specifically calibrate the Convolutional
Neural Network (CNN) for these conditions. The image quality can vary a lot underwater and many errors
can occur such as bubbles/dirt being stuck on the camera. Bubbles can stay in front of the camera
causing false detections as their appearance underwater is very similar to that of plastic pieces. For a
human without temporal information, it is impossible to determine if it is a piece of plastic or not. An
example of this can be observed in Figure 1.2.

1.2. Domain knowledge 5

Figure 1.2: Dubious piece of litter

Figure 1.3: Difficult to capture marine life

Hydrodynamics
Understanding hydrodynamics is crucial for improving underwater object detection. Underwater objects
often move in complex ways due to currents and other hydrodynamic factors. By incorporating hydro-
dynamic models to predict the movement of objects over time, the accuracy of object tracking could be
significantly enhanced.

1.2.2. Object Knowledge
Features
Each object has a distinct combination of features and textures which makes them recognizable. Unfortu-
nately, this is less the case for underwater litter as this can contain every shape, form and colour. There
are some differences between man-made objects and marine life. Marine life often has colours which
blend into the environment while plastics have very bright colours.

Dynamics
Knowing the motion of the objects adds valuable extra information. For example, as shown in Figure 1.3,
a fish is swimming in front of the camera which can clearly be observed in the video footage but almost
not in the frames.

Fish typically exhibit startled high-frequency reactions when an ROV approaches them. Embedding
this behavioural knowledge into detection models can enhance their accuracy. Various studies have
shown the instinctive behaviour of fish to swim against the current [36] [37]. Embedding this information
into models can improve the performance. Additionally, crabs are known to move only within a 2D plane,

1.3. Research Outline 6

and this dynamic can also be integrated into detection models to increase accuracy.

1.3. Research Outline
It is shown that research made significant advancements in the field of underwater image object detection.
However, limited progress has been made in integrating domain knowledge to enhance detection perfor-
mance. As discussed in Section 1.2, temporal domain knowledge, particularly the trajectory of objects,
holds the greatest potential for improving accuracy.

Extracting the trajectory of an object from a video stream requires tracking this object across multiple
sequential frames. This means that initial object detection has to be performed and then a tracking algo-
rithm should be applied to confirm the detection. This approach allows the object detection model and
the tracking model to complement each other. If the object detection model includes uncertainties about
the object’s position and/or class, extracting the trajectory could provide vital information for the object
detector. Conversely, the object detector can enhance the tracking algorithm by providing an initial guess
of the object’s location and class, allowing the tracker to adapt its algorithm for that specific object.

A similar approach is described in [32] which serves as a baseline for this thesis. Both the image level
and temporal information are used to detect the objects. The thesis aims to use a similar architecture with
several modifications to further improve performance.

• An analysis of the state-of-the-art object detection models will be performed. This can be found in
Chapter 2.

• A review of different motion extraction techniques is carried out in Chapter 3.
• A survey about the SOTA tracking algorithms is conducted in Chapter 4

For every machine learning problem, data is incredibly important. An overview of the various avail-
able datasets and techniques to create more data can be found in Chapter 5. The research question is
discussed in Chapter 6, and the report concludes with Chapter 7, which contains the conclusions.

2
Object Detection Networks

With the rapid development of computer vision and deep learning techniques, neural networks have shown
remarkable performance in image and video detection tasks. The ability of deep neural networks to au-
tomatically learn relevant features and patterns from images and videos has enabled significant progress
in various fields, such as autonomous driving, surveillance systems, and medical imaging. This chapter
focuses on different neural networks that exist for image and video detection, which include convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and their variants. CNNs are widely used for
image classification, object detection, and segmentation, while RNNs are applied to video classification
and video object detection. Due to the novelty and data hungriness of video Transformers, these are not
investigated further.

To select the best network for the application of underwater detection, it is important to understand how
it is built up and how it works. Consequently, fundamental elements and layers of CNNs and RNNs are
explained in Section 2.1. More specific neural network parts are described in Section 2.2. This is followed
by an overview of the SOTA architectures in Section 2.3. The chapter concludes with a description of the
training process and evaluation metrics commonly used in Section 2.4 and Section 2.5 respectively.

2.1. Fundamental Neural Network Layers
Neural networks consist of different layers which make up the building blocks of the network. Understand-
ing each of these building blocks is vital in order to select the optimal architecture.

2.1.1. Convolutional layer
The convolutional layer is used to extract features from an image. Features can be viewed as the visual
building blocks of an object. These can include edges, corners, colour gradients, textures, shapes, and
other visual cues characteristic of the object. The convolutional layer typically contains two types of
matrices. The first type is the input matrix. In the application of object detection, this input matrix or
2D array is a matrix of the pixels which is named the input feature map. The second type of matrix is the
kernel (or filter). This is a matrix which consists of learnable parameters and is spatially smaller than the
input feature map. Although the kernel is spatially smaller than the receptive field (or input feature map),
it is often deeper.

The two types of matrices interact with each other by using the convolution operation and a sliding
window approach. The kernel slides over the input feature map. The length the kernel slides every step
is called the stride length. At every step, the kernel is convoluted with a part of the input feature map by
using the convolution operation. This produces an activation map. Note that the number of channels of
the input feature map must be the same as the number of kernel channels. If the input image is of the
RBG format, then the input size is W (width of the image in pixels) x H (height of the image in pixels) x
D (depth, in the case of RBG = 3). In the RGB example, the kernel must have 3 channels as well. The
different activation maps are stacked (summed) such that the output has the same depth as the amount
of filters. A visualization can be found in Figure 2.1 [38] [39].

Wout =
W − F + 2P

S
+ 1 (2.1)

7

2.1. Fundamental Neural Network Layers 8

Figure 2.1: Convolution of a 3 channel image [38]

The output dimension can be calculated using Equation 2.1 where W is the width, F is the spatial
size of the kernel, P is the amount of padding (the amount of 0 units added on the edge) and S is the
stride length. Often more than one feature needs to be extracted from the input image and multiple
kernels are used. Note that all the kernels must have the same depth as the original image. The output
of the convolution operation is the feature output map with a depth equal to the number of kernels used.
The last step in the convolutional layer is applying the activation functions. These functions are required
to introduce non-linearity into the network. Without these functions, the entire network would be linear
which does not represent the physical world. The activation functions transfer the output of one neuron
to another, similar to what happens in a human brain [40]. These functions do not alter the shape of the
feature maps and more information can be found in Section 2.1.7. A bias value is added to the feature
maps before the activation functions. The output is then referred to as activation maps with a depth equal
to the number of kernels. A schematic overview can be found in Figure 2.2.

Figure 2.2: Overview of all the steps in a convolutional layer [39]. ReLu equal Rectified Linear Unit

2.1.2. Pooling layer
The pooling layer is almost always implemented after the convolutional layer with the main purpose of
increasing robustness and reducing the size of the network. This layer works similarly to the convolutional
layer with sliding windows and kernels. The kernel slides over the input array and extracts the maximum
value or takes the average of the values, which is called max-pooling and average-pooling respectively.
The outputs of this layer are feature maps, similar to the input but with reduced size and only the most
prominent features are captured. The output of this layer is called the pooling map where the spatial
dimension is reduced but the depth is preserved [41].

2.1.3. Fully connected layer
This layer often comes after a convolutional neural network. It takes the flattened feature maps as input.
The output is a 1D array of features where all the input neurons are connected to all the output neurons.

2.1. Fundamental Neural Network Layers 9

2.1.4. Spatial Pyramid Pooling (SPP) Layer
In deep neural networks, a fixed input size is only required for the classifier or fully connected layer.
Convolutional layers, on the other hand, are flexible and can accommodate any input image size. The
Spatial Pyramid Pooling (SPP) layer is typically used after the last convolutional layer. It extracts spatial
bins proportional to the input size, producing a total of k×M vectors, where k is the number of kernels and
M is the number of bins. The SPP divides the feature map into multiple non-overlapping bins of different
sizes, which are then max-pooled into a fixed-length feature vector.

2.1.5. Batch Normalization Layer
The batch normalization layer is applied to normalize the activations in a layer. As the output of one layer
is the input of another, often the values can spread a wide range. Batch normalization normalizes all the
values to make sure the distribution of values across all the layers stays within bounds. This ensures that
the training process is stabilized and makes the training less dependent on the initial values.

2.1.6. Residual block
A residual block consists of a stack of layers. Typically these layers are a combination of convolutional
layers, batch normalization layers and pooling layers. The input x of a residual block is the feature maps
produced by the previous layer. The information flows in two ways: one way is through the residual block
of stacked layers. At the output of this flow, a non-linear activation function is added to introduce non-
linearity. The output of this layer is called H(x) with H(x) = F (x) + x and F (x) the activation function.
The second flow is a shortcut from the input directly to the output. The shortcut has two different options:
identity mapping shortcuts or projection mapping shortcuts. The identity mapping shortcuts introduce
a shortcut where the input x is directly connected to the output. The projection mapping shortcuts are
introduced for the cases where H(x) has a different shape than x. The disadvantage of the projection
mapping is that it introduces extra parameters, while the identity mapping adds no extra parameters. The
two flows are added at the end of the block, making the output equal to a sum of H(x) and x. A graph
overview is shown in Figure 2.3.

Figure 2.3: Overview of the residual block [42]

2.1.7. Activation functions
Activation functions are functions that determine what neurons will be activated. They are important to
introduce non-linearity into the network. The activation functions have an effect on the vanishing and
exploding gradients, computational resources required and training time. The most commonly used acti-
vation function is ReLU (Rectified Linear Unit), a piecewise linear function that outputs the input directly if
it is positive; otherwise, it outputs zero. The activation function used in the last layer of a multiclass model
is typically the softmax function. This function computes the probability distribution from the output vector
of real numbers of the previous layer. Activation functions also have the capability to bind the output within
a specific range. Various activation functions are applied to the output feature maps to achieve different
effects [40].

2.2. Specialized Components of Neural Network Architectures 10

2.2. Specialized Components of Neural Network Architectures
The previous section described the most fundamental layers of neural networks. This section will discuss
different concepts which are used in various SOTA models.

2.2.1. Region Proposal Extraction
Region proposal extraction is a technique applied to the input image to identify regions of interest (RoI).
These regions are then fit into the object detector. Using region proposals significantly reduces the search
space, improving the efficiency and accuracy of object detection. Various methods exist for extracting
region proposals, with the selective search algorithm and the family of region proposal networks (RPNs)
being the most common.

Selective Search
Selective Search aims to generate all possible object locations in an image by using exhaustive search
and segmentation. It is designed with the following three principles: capture all scales, diversification, and
fast to compute. A bottom-up approach is used to capture all the different scales. It starts at a small level
and the grouping method keeps grouping parts together until the entire image is one group. By applying
various colour spaces and similarity measures, bounding boxes are constructed. Although this method is
highly accurate, it is also time-consuming and lacks customizability [43].

Regional Proposal Networks (RPN)
Region Proposal Networks (RPNs) are designed to address the high cost of generating region proposals.
This approach makes use of neural networks to generate the region proposals. It uses a CNN to generate
a feature map from the input image, then a sliding window is applied to this feature map to generate
proposals. By default, this sliding window considers a maximum of three scales and three aspect ratios
for the anchors, resulting in k = 9 anchors for each sliding window position. These anchors are translation-
invariant.

The output generates two layers: the box classification layer (cls) and the box regression layer (reg).
The box classification contains a binary variable p which is the predicted probability of an anchor being an
object. p = 1 indicates a high probability and p = 0 indicates a low probability. The overlapping of boxes
is addressed using non-maximum suppression (NMS) on the proposed regions based on their cls scores.
This results in few but accurate proposals. The box regression is only applied to objects with p = 1. The
regression layers output the bounding box coordinates.

The cls and reg layers are normalized and weighted in the loss function. Cls is normalized by the min-
batch and reg by the number of anchor locations. This approach generates high accuracies on datasets
such as the Common Object Context (COCO) dataset [44] and the Pascal Visual Object Classes (VOC)
dataset [45].

COCO is a large-scale object detection, segmentation, and captioning dataset. It contains over
330,000 images, each labelled with object bounding boxes and object segmentation masks captured in
various environments. The VOC dataset is a widely used benchmark dataset for object detection and
segmentation challenges in computer vision. The dataset consists of images containing various objects
such as people, animals, vehicles, and common household objects, labelled with bounding boxes and
masks.

The strength of RPNs lies in the increased speed. This approach enables the initial feature map to be
shared between the region proposal network and the detection network, greatly reducing the number of
parameters involved and increasing the training speed. The training involves several steps:

• RPN training: The first step focuses on training the RPN to generate region proposals.
• Training the Detection Network: In the second step, the detection network is trained separately from
the RPN.

• Layer Sharing: In the third step, the layers between the RPN and the detection network are shared.
During this stage, only the layers unique to the RPN are fine-tuned.

• Fine-Tuning the Detection Network: In the final step, the layers unique to the detection network are
fine-tuned, resulting in a unified network.

The staged training process ensures that both networks are optimally tuned for their respective tasks
while maintaining a high level of integration and efficiency.

2.3. Neural Network Architectures 11

2.2.2. Backbones
A backbone network is a pre-trained network used to extract features from the input image. Multiple
backbones are available, with the VGG [46] and Resnet backbones [42] the most popular.

VGG
The VGG model, which stands for ”Visual Geometry Group” is a neural network used as a backbone in
various models. It employs very small receptive field sizes (3x3) throughout the network. The network
makes use of the rectification function to introduce non-linearity. Multiple different versions of the network
exist with the main difference being the different number of layers. It always has three fully connected
layers and a variable number of convolutional layers [46].

Resnet
Resnet is a very deep neural network making use of residual blocks. These are detailed Section 2.1.6.
Typically, very deep neural networks suffer from the issue of vanishing gradients. Thanks to the use of
residual blocks, this problem is mitigated. ResNet also incorporates batch normalization layers, which
further stabilize and accelerate the training process. During training, the residual function is defined as
F (x) = H(x) − x, where H(x) is the output and x is the input. This residual mapping, which represents
the difference between the output and the input, enhances the network’s robustness to changes in the
input during training. ResNet has demonstrated high performance, even with depths of up to 100 layers
[42].

2.2.3. Bounding Box Regressor
A bounding box regressor is used to refine and improve the localisation of bounding boxes. Several
different regressors are available, with one of the best-performing methods being bounding box regression
with uncertainty, which employs KL Loss [47]. The first step is bounding box parameterization where the
bounding box coordinates of the diagonal vertices are expressed as (x1, x2) and (y1, y2). A probability
distribution is calculated instead of only bounding box locations. For simplicity, a simple single-variate
Gaussian function is used. Note that it is assumed that the bounding box locations are independent. The
ground truth is also represented with the Gaussian function, but here the variance goes to 0, effectively
becoming a Dirac pulse. To find the difference, the KL divergence is used. This is a method to calculate
the difference between the probability function of the prediction and the ground truth. This method works
by measuring how much information is lost between the ideal distribution (ground truth) and the model
prediction (predictions).

2.2.4. Non-maximum suppression (NMS) algorithm
The non-maximum suppression step is essential to remove multiple detections of the same object. Orig-
inally the GreedyNMS is used as a separate step to solve this problem. It is a simple algorithm utilizing
the confidence and proximity of the boxes. Although GreedyNMS performs well in many cases, it tends
to decrease recall and precision when objects are very close together. An alternative non-maximum
suppression technique often used is learning non-maximum suppression named GossipNet [48]. This
method communicates with the neighbouring detections and iteratively reduces the number of bounding
boxes until one remains per object, providing a more robust solution in scenarios with closely packed
objects.

2.3. Neural Network Architectures
In the current computer vision landscape, a variety of different architectures can be found. These can be
grouped into different families: multiple-stage convolutional neural networks, single-stage convolutional
neural networks and recurrent neural networks.

2.3.1. Multiple Stage Convolutional Neural Networks
The most common architectures are:

• Fast R-CNN
• Faster R-CNN

2.3. Neural Network Architectures 12

Fast R-CNN
This architecture is quite straightforward. The first step involves extracting the region proposals using
selective search (Section 2.2.1). Consequently, the CNN is run on all the proposed regions after resizing
and warping the regions to match the desired input size. In the final step, a greedy algorithm is imple-
mented that checks detections for a high Intersection over Union (IoU) to prevent duplicate detections [49]
[50].

Faster R-CNN
The Faster R-CNN is an upgraded network that addresses the limitations of Fast R-CNN. While Fast
R-CNN makes use of the slow selective search as a region proposal extraction method, Faster R-CNN
utilizes a region proposal network. This is a much faster method and it is proven to also have a slight
increase in accuracy compared to Fast R-CNN. The architecture can be observed in Figure 2.4. Instead
of running the CNN on each region proposal, it runs the CNN once on the entire image, extracting region
proposals from the resulting feature map. These region proposals are then used by the Fast R-CNN de-
tector module. The final steps involve applying bounding box regression and non-maximum suppression.
The training process for Faster R-CNN consists of four steps, starting with training the RPN separately,
followed by training the unique CNN layers. Thanks to its high accuracy and fast inference time, Faster
R-CNN has become one of the most widely used architectures in object detection [15].

Figure 2.4: Architecture of Faster R-CNN [15]

2.3.2. Single Stage Neural Networks
Single-stage neural networks work, in contrast to multiple-stage neural networks, by only passing once
over the image without needing a separate region proposal step. The most well-known group of single-
stage neural networks is the YOLO family.

YOLO - Original
The original YOLO (You Only Look Once) architecture is a simple yet fast model that revolutionized the
landscape of object detection. It splits the image up into grid cells and each grid cell is responsible for
detecting the objects which fall in it. Each cell predicts a fixed number of bounding boxes. In the original
YOLO, this number is set to 2. The total output vector size is shown in Equation 2.2, where Sgs is the
grid size, B the amount of bounding boxes per grid cell, 5 is the number of parameters per bounding box
(centre x-coordinate, centre-y coordinate, height, width and confidence (value between 0 and 1 which
indicates how confident the model is in the prediction) and C is the conditional class probability vector
and its size equals the number of classes.

size = Sgs × Sgs × (B · 5 + C) (2.2)

2.3. Neural Network Architectures 13

Often many grid cells do not contain any objects and they are filtered out based on confidence levels.
NMS is also applied to eliminate double predictions. The YOLO architecture has proven to be much faster
than all the other SOTAmodels at that time while also being more accurate. Due to the fixed anchor boxes
approach, the model performs less on small and occluded objects [51].

YOLOV7
The YOLOV7 model slightly increases accuracy over the current state-of-the-art models and greatly in-
creases the inference speed. The existing YOLO network is improved using different methods such as
reparameterization and model scaling. It also allows to use of different backbones and has a novel loss
function. All these improvements lead to a model which has a slightly higher accuracy than SOTA models
but a much higher inference speed [52]. An overview of the AP vs inference speed for the SOTA models
can be found in Figure 2.5.

Figure 2.5: Peformance of SOTA models [52]

2.3.3. Recurrent Neural Networks
Recurrent neural networks (RNN) are designed to process sequential data where the temporal aspect
is of importance. Unlike traditional neural networks, where data flows in only one direction, RNNs allow
data to flow back into the neurons, enabling the network to maintain a memory of previous inputs. A
common problem with recurrent neural networks is the exploding or vanishing gradient. The exploding or
vanishing gradient is a phenomenon where the gradient which is used during training to update the weights
either becomes very large or decreases to zero respectively. To address these problems, two popular
solutions are Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks.
These architectures are designed to mitigate the exploding and vanishing gradient problems, thereby
improving the performance and stability of RNNs.

Long Short Term Memory Networks
Long Short-Term Memory (LSTM) networks aim to solve not only the problem of the vanishing and ex-
ploding gradients but also of the short-term memory. The LSTM has three different ”states”: the input
state (x(t)), the hidden state (h(t)) which is also known as the short-term memory and the cell state (c(t))
or long-term memory. In every iteration, these three values pass through several gates to set new cell
states and hidden states. These gates decide if the new inputs will be saved in the short or long-term
memory and how the memories are affected. A visual representation of the states and the different gates
can be found in Figure 2.6.

The first gate is the Forget Gate. This gate is a multiplication between the cell state and a combination
of the hidden state and input inside a sigmoid activation function. The output of this activation function is a
value between 0 and 1; the closer the value is to zero, the less important that part of the cell state is, and it
can be forgotten. Conversely, the closer the value is to 1, the more it should be remembered. The second

2.4. Training of Neural Networks 14

Figure 2.6: LSTM Architecture overview [53]

gate is the Input Gate which determines how important the input value is to the cell state. This time, both
sigmoid and tanh activation functions are used and the output determines the significance. If it is deemed
significant, it will change the cell state. The third and last gate is the Output gate. This gate multiplies the
cell memory in a tanh activation function with the input in a sigmoid function to determine the new hidden
state. The LSTM network is widely used in various applications with sequential data. Important to note is
that these networks typically require large amounts of data to be trained [54].

Gated Recurrent Unit Networks
Gated Recurrent Unit (GRU) networks are very similar to LSTM networks with the difference that GRU
networks have a simpler architecture making them faster to train. Instead of three gates, the GRU only
has two gates: the Reset Gate (short term) and the Update Gate (long term). In contrast to the two states
present in the LSTM networks, GRU networks only have one state: the hidden State. To learn more
about this architecture, please refer to [55]. This architecture is simpler than LSTMs and it is preferred for
smaller datasets.

2.4. Training of Neural Networks
An essential part of the object detection conversation is model training. As discussed before, a neural
network consists of different layers and each of these layers is built up of neurons. These neurons are
connected to previous and future layers with weight parameters assigned to them. These parameters are
the values which decide how the network will behave and are modified for each application. The training
of a neural network is thus iteratively changing these parameters to get the most optimal combination for
the specific application.

A crucial part of the training process is the loss function. This is a function which compares the target
output with the network output and indicates how well the network models the dataset. One of the most
famous loss functions for multi-class classification is shown in Equation 2.3 where yi is the ground truth
and ŷi is the predicted value.

L(y, ŷ) = − 1

m

m∑
i=1

yi · log (ŷi) (2.3)

The goal of the entire training process is to minimize the loss function, making it an optimisation prob-
lem. The most commonly used optimisers are the Stochastic Gradient Descent (SGD) and the Adam
optimiser.

2.4.1. Stochastic Gradient Descent (SGD)
As the name indicates, this optimisation algorithm uses the gradient descent of the loss function. The
gradient descent is an iterative optimization algorithm which is used to minimize the loss function. The
algorithm starts by calculating the gradient of the loss function for each parameter. The gradient can be
seen as the direction to maximize the loss function. To decrease the loss, a small step is taken in the

2.5. Evaluation metrics 15

opposite direction. This is also shown in Equation 2.4, where θ is the vector of weights to be updated and
α is the learning rate. The learning rate is a hyperparameter which influences the training process.

θ = θ − α · ∂L
∂θ

(2.4)

To find the gradient in a network with millions of parameters is not a straightforward task. The gradient
is calculated using the concept of backpropagation. In simple terms, this means that instead of starting at
the input, it starts at the output of the network. Fully explaining the algorithm is beyond the scope of the
literature review.

2.4.2. Adam Optimiser
The Adam optimiser is widely used in literature. It is based on the SGD and incorporates two techniques
to improve the results. Instead of having a fixed learning rate, an adaptive learning rate is used. The
optimiser works by using biased first and secondmoments of the gradients. Thesemoments are computed
as the exponential moving averages of the gradients and their squared values respectively. This allows the
optimiser to incorporate past gradients to adapt the learning rates for different parameters. Momentum is
also included which provides inertia in the search direction to overcome local minima and noisy gradients
oscillation [56].

The Adam optimizer has proven to converge faster and with fewer oscillations than SGD. It should be
kept in mind that in some cases the results of SGD are superior [57].

2.5. Evaluation metrics
Evaluation metrics are essential for assessing the performance of neural networks on datasets. They
quantify how well a network performs and identify its limitations. Commonly usedmetrics include accuracy,
precision, recall, mean average precision (mAP), and Intersection over Union (IoU). The results of a model
can be categorized into four groups, illustrated here using the example of trash classification:

• TP - True Positive: The model correctly predicted that an image contains trash.
• TN - True Negative: The model correctly predicted that no trash is found on the image.
• FP - False Positive: The model falsely classifies an image containing trash while it does not.
• FN - False Negative: The model classified an image with trash as an image without trash.

2.5.1. Accuracy
Accuracy is the simplest of all metrics. It is calculated by dividing the correct predictions by the total
predictions. Or as in the terms defined above, the true positive and true negative are combined and
divided by the total.

acc =
TP+ TN

TP+ TN+ FP+ FN
(2.5)

2.5.2. Precision and Recall
Precision and recall are two very important metrics to evaluate the performance of a model. The precision
is defined as how many of the positively identified items are actually positive and the formula can be found
in Equation 2.6. The recall shows how many of the predicted results are actually correct and can be
observed in Equation 2.7.

precision =
TP

TP+ FP
(2.6)

recall = TP
TP+ FN

(2.7)

2.6. Conclusion 16

2.5.3. Intersection over Union (IoU)
The IoU is an important metric for object detection as it shows how accurate the localization and size
of the bounding box are. The metric is calculated by dividing the area of overlap by the area of union.
This is displayed in Figure 2.7. The higher the value, the more overlapping is present and the better the
prediction. A value of 0 indicates no overlapping and a value of 1 signifies a perfect match.

Figure 2.7: Intersection over Union [58]

2.5.4. Mean Average Precision (mAP)
The mAP is the most widely used metric to quantify the performance of an object detection network.
Often the mAP is noted as mAP@0.50 or mAP@0.95 which defines to which IoU the mAP corresponds.
By default, an IoU of 0.5 is used.

mAP =
1

N

N∑
i=1

APi (2.8)

The mAP is calculated in Equation 2.8. APi refers to the Average Precision for every class. This value
is found by calculating the area under the precision-recall curve.

2.6. Conclusion
This chapter outlined various key components of the current state-of-the-art (SOTA) neural network ar-
chitectures employed in computer vision tasks. It not only presented the architectures but also explained
the necessary components to fully understand neural networks. This chapter provided essential building
blocks and introduced several concepts that are referenced throughout the document.

3
Motion Extraction Techniques

This chapter discusses various techniques for extracting motion from a sequence of images, often seen as
optical flow. Optical flow describes the motion of objects over consecutive frames, caused by the relative
movement between the object and the observer (camera). It is important to note that optical flow is not
the same as the motion field. An example of this is a rotating sphere with a fixed light source. The optical
flow field will be zero, but the motion field will be non-zero. Conversely, if the sphere has no movement
but the light source moves, the optical flow will be non-zero and the flow field will be zero.

An image provides a 2D representation of a 3D reality, meaning that movement captured by optical flow
attempts to embed 3D movement in a 2D representation [59]. This should be kept in mind while analyzing
optical flow results. Three categories are discussed in this chapter: classical optical flow techniques,
Gaussian Mixture Models and machine learning-based optical flow methods.

3.1. Classical Optical Flow Techniques
In optical flow, the timestamp of a specific frame is referred to as t, and the location of the pixel in the
frame at time t is defined as (x, y). The goal is to compute the apparent velocity or the optical flow vector
of the pixel which is expressed in the x-axis (u) and y-axis (v). The formulas are described in Equation 3.1
and Equation 3.2 respectively and are used to make up the optical flow vector U = [u, v]T .

u(x, y, t) =
△x

△t
(3.1)

v(x, y, t) =
△y

△t
(3.2)

In optical flow, the brightness consistency assumption is used. This assumption states that the appar-
ent intensity of the same object does not change across different frames. The formula which represents
this can be observed in Equation 3.3 where the intensity of a pixel in a frame at time t at location (x, y) is
the same as the intensity of a pixel at the next frame at a slightly different location.

I(x, y, t) = I(x+△x, y +△y, t+△t) (3.3)

By using the small motion assumption, the motion from frame to frame is deemed small. This results
in the possibility to linearize I with a first-order Taylor series expansion. The truncated Taylor expansion
can be found in Equation 3.4

I(x+△x, y +△y, t+△t) ≈ I(x, y, t) +
∂I

∂x
△x+

∂I

∂y
△y +

∂I

∂t
△t (3.4)

If Equation 3.3 and Equation 3.4 are combined, Equation 3.5 is created and known as the Optical Flow
Constraint.

17

3.1. Classical Optical Flow Techniques 18

∂I

∂x
△x+

∂I

∂y
△y +

∂I

∂t
△t = 0

∂I

∂x

△x

△t
+

∂I

∂y

△y

△t
+

∂I

∂t
= 0

Ixu+ Iyv + It = 0

(3.5)

The Optical Flow Constraint equation is an underdetermined system with two unknowns (u and v) and
only one equation. Different methods are available to determine a second constraint that allows for solving
the system. The two most popular algorithms are the Lucas–Kanade method [59] and the Horn–Schunck
method [60].

The Lucas-Kanade method is the most straightforward and fastest method of the two. The degree of
freedom of Equation 3.5 is also known as the aperture problem. This means that the direction of movement
is not known without another equation. In the Lucas-Kanade method, this problem is solved by the spatial
smoothness assumption: the neighbouring points all belong to the same optical flow u. An N ×N area is
defined around the current pixel where it is assumed that the optical flow u is the same. This is captured
in Equation 3.6 with pi referring to the pixel i. This formula makes the system overdetermined and the
least-squares solution is found by minimizing the error. This fully constrains the problem and gives a
unique solution [59]. This method works well in practice but may be subjective to noise.

Au = b
Ix (p1) Iy (p1)

...
...

Ix (pN2) Iy (pN2)


(

u

v

)
= −


It (p1)

...

It (pN2)

 (3.6)

The second approach to constrain the system is the Horn-Schunck method which utilizes the smooth-
ness constraint. This constraint limits the difference between the flow velocity at a point and the average
velocity of a neighborhood which constraints the points. The sum of the squares of the Laplacians of the
x and y components is minimized. The Laplacians can be found in Equation 3.7.

∇2u =
∂2u

∂x2
+

∂2u

∂y2
and ∇2v =

∂2v

∂x2
+

∂2v

∂y2
(3.7)

The image is discretized along the x-axis, y-axis and frames κ. The derivatives of the brightness from
the discrete set are calculated by averaging the adjacent measurements. The Laplacians are estimated
using Equation 3.8 and the local average can be found in Equation 3.9.

∇2u ≈ κ (ūi,j,k − ui,j,k) and ∇2v ≈ κ (v̄i,j,k − vi,j,k) (3.8)

ūi,j,k =
1

6
{ui−1,j,k + ui,j+1,k + ui+1,j,k + ui,j−1,k}

+
1

12
{ui−1,j−1,k + ui−1,j+1,k + ui+1,j+1,k + ui+1,j−1,k}

v̄i,j,k =
1

6
{vi−1,j,k + vi,j+1,k + vi+1,j,k + vi,j−1,k}

+
1

12
{vi−1,j−1,k + vi−1,j+1,k + vi+1,j+1,k + vi+1,j−1,k}

(3.9)

The above formulas are used to construct the error ξc in smoothness in the velocity flow which is
described in Equation 3.10. Due to quantification errors and noise, Equation 3.5 is never equal to zero.
This is set equal to ξb. If ξc and ξb are combined, Equation 3.11 is formed which represents the total error.
The aim is to minimise the total error by finding values for the optical flow velocity (u, v). Equation 3.11 is

3.2. Gaussian Mixture Models (GMM) for Optical Flow 19

differentiated to both u and v and set to zero. By using constrained minimization this is solved to find u
and v [60].

ξ2c = (ū− u)2 + (v̄ − v)2 (3.10)

ξ2 = α2ξ2c + ξ2b (3.11)

3.2. Gaussian Mixture Models (GMM) for Optical Flow
GaussianMixtureModels (GMMs) are clustering algorithms that offer a probabilistic approach to clustering.
Instead of K-means [61] which is a hard clustering method where each point is associated with only one
cluster, GMMs are soft clustering algorithms which associate a probability to each point how close to a
cluster it belongs. Due to the nature of these algorithms, they are often used to determine the optical flow
by clustering pixels which have the same apparent velocity.

GMMs start from the data conservation constraint [62]. This constraint is similar to the brightness
consistency assumption mentioned in Section 3.1, but more general. This data conservation constraint
states that instead of intensity, the information in the image sequence is conserved locally in space and
time in the direction of the motion. Equation 3.12 shows this with Sis being the image sequence. Limita-
tions of this constraint are shading variation, transparency and occlusion boundaries. To cope with these
limitations, outlier robustness is required.

Sis(x+ dx, t+ dt) = Sis(x, t) (3.12)

If Equation 3.12 is differentiated, the motion constraint equation is obtained which expresses v1 and v2
which are the velocities in the x1 and x2 directions respectively. Currently, only one constraint is present
with two unknowns which is insufficient to obtain a unique solution. The aperture problem arises when
attempting to determine the motion direction of a contour or edge from a partial view or limited informa-
tion. The motion direction of a contour or edge can vary depending on the orientation of the contour or
edge relative to the observer. Without additional information, such as knowledge of the edges or other
constraints, it is impossible to determine the true motion direction of the contour or edge.

Multiple motions are often present in an image sequence and similar motions can be found in different
regions of the image. The concept of layers is introduced to keep the discussion streamlined. Each layer
corresponds to a single consistent motion such as for example the movement of a car, the movement of
a pedestrian and the movement of a bicycle which is extracted at the image level but does not say where
exactly in the image each of them are present.

To fit a layered flow model to the set of motion constraint vectors which are measured within an image
match, the parameter values of a⃗n with n = 1, ..., N where N is the total number of distinct flow fields or
layers (N=3 in the previously mentioned example) are searched. The motion constraint vectors refer to
the measurements of motion within a region of the image or image patch. The goal is to match the motion
constraint vectors c⃗k at each location in the image x⃗k with the different flow fields with parameters a⃗n. This
matching is performed using the component probability distribution pn(c⃗k|x⃗k, a⃗n). In words, this means:
what is the probability that a motion constraint vector c⃗k at location x⃗k matches the flow field described by
the parameter a⃗k. The probability for outliers is p0(c⃗k). To get the final probability of selecting a layer, mn

is introduced which represents the mixture probabilities. Note that the sum of all mn is equal to 1. The
total equation can be observed in Equation 3.13.

p (c⃗k | x⃗k, m⃗, a⃗1, . . . , a⃗N) =

N∑
n=0

mnpn (c⃗k | x⃗k, a⃗n) (3.13)

To solve the optical flow, the parameter values {a⃗n}Nn=1 andmixture probabilities {mn}Nn=0 are required.
These provide amaximum likelihood to fit the data set. The log-likelihood of generating these observations
from a specific model is shown in Equation 3.14.

3.3. Machine Learning-based Optical Flow Techniques 20

log Lgm (m⃗, a⃗1, . . . , a⃗N) =
K∑

k=1

log p (c⃗k | x⃗k, m⃗, a⃗1, . . . , a⃗N) (3.14)

For obtaining a maximum likelihood fit, the EM algorithm is used. The EM-algorithm [63] stands for
Expectation Maximization which is a well-known algorithm in statistics to find maximum likelihood using
an iterative approach. For Gaussian distributions (Equation 3.15), the maximization step can be solved
by using the iterative EM algorithm. More details about the derivation can be found in [62]. This method
is an effective and computationally efficient way of extracting motion from a sequence of images.

pn(c⃗ | v⃗) =
1√
2πσv

exp
(
−d2(c⃗, v⃗)

2σ2
v

)
(3.15)

In Equation 3.15, the Gaussian Distribution is shown where σ2
v is equal to the estimate for the combined

variance between the component velocity measurement and the modelling error. The parameter d is the
probability that c⃗ is observed knowing that the actual velocity is equal to v⃗.

3.3. Machine Learning-based Optical Flow Techniques
The trend of the last years has been to apply Deep Neural Networks to different problems in computer
vision including optical flow. This section will discuss the four most popular deep-learning models for
optical flow.

The first model to use CNNs to predict optical flow was FlowNet [64]. The authors of this model
compared two different methods: a default architecture where two images were stacked and fed into the
model and amodified architecture. Themodified architecture consisted of two identical models processing
each image separately and combining them at a deeper stage of the network (Figure 3.1). To assist the
model in the matching process an extra module is added known as the ”correlation layer”. This layer
performs a comparison between two feature maps. It works by convolving data with each other rather than
using a kernel as in the other layers. To decrease the amount of parameters, the maximum displacement
d is limited. The correlations c(x1, x2) are only computed in a neighbourhood of D = 2d + 1. Another
feature of the custom architecture is the upconvolutional layers which aim to improve the resolution of
the prediction. The endpoint error (EPE) is used as training loss. This is a standard error measure for
estimating optical flow. It is calculated by averaging the Euclidean distance between the ground truth
and the predicted flow vector for all the pixels. FlowNet reported competitive results on various datasets,
despite being trained only on synthetic data, indicating good generalization. However, it did not achieve
the accuracy of traditional methods on real-world data, particularly for small displacements.

An improvement of FlowNet is proposed in [65] in the form of FlowNet 2.0. This model is designed to
improve FlowNet. The first improvement made is the addition of dataset schedules, where datasets are
trained in a specific sequence. It is found that starting with a simple dataset to learn the general features
and then fine-tuning on a more realistic dataset yields 25% higher results than the original FlowNet. The
next addition is stacking networks. A stacking architecture is employed with additional warping based on
the iterative methods the other state-of-the-art models use. The improved architecture can be observed
in Figure 3.2. The final addition is solving the issue of low performance on small motion. This is tackled by
adding a custom dataset with small motions in a different network and adding a fusion step to extract the
final flow. This updated version of FlowNet achieves state-of-the-art performance with higher inference
speeds [65].

The third model is PWC-Net designed by NVIDIA [66]. This model is developed to improve the ac-
curacy of optical flow and have real-time capabilities. The key components of this model are the use of
feature pyramid extractors, a warping layer, a cost volume layer, an optical flow estimator and a context
network. From the two input images, L-Level pyramids of features are generated with the input image
at the bottom. The pyramid is built up using convolutional filters for downsampling. The warping layer
uses bilinear interpolation to compute the gradients to the input CNN features and flow for backpropaga-
tion. Warping helps with recognizing large motions. This layer is followed by the cost volume layer which
stores the matching costs for correlating pixels to the corresponding pixels in the next frame. The output
of the warping and cost volume are fed into a multi-layer CNN which calculates the optical flow. The last

3.3. Machine Learning-based Optical Flow Techniques 21

Figure 3.1: Two architectures discussed in [64], the top is the default architecture and the bottom is the
custom-designed one.

Figure 3.2: The FlowNet 2.0 architecture [65]

step is a context network which is a feed-forward CNN that enlarges the receptive field size. PWC-Net
uses the MPI Sintel [67] and KITTI [68] datasets for benchmarking. It reaches high results but often fails
to recover sharp motion boundaries and rapidly moving objects [66].

Figure 3.3: The RAFT architecture [69]

The last model discussed is Recurrent All-Pairs Field Transforms (RAFT) [69] for optical flow. The

3.3. Machine Learning-based Optical Flow Techniques 22

architecture can be seen as learning to optimize where many blocks are used to emulate an optimization
algorithm. It consists of three main elements:

• Feature extraction: The images are applied to a feature encoder network with dense feature maps
as output. Also, a context network is added to extract features from the first image.

• Computing visual similarity: A correlation volume is formed by taking the dot product between all
the pairs of feature vectors. A 4-layer pyramid is constructed by pooling the last two dimensions of
the correlation volume.

• Iteratively updating a flow field initialized at zero, using a recurrent GRU-based update operator.
This operator retrieves values from the correlation volumes to update the flow field.

It is interesting to note that the model, which architecture can be found in Figure 3.3, operates on a
single high-resolution flow. This prevents the errors of missing small fast-moving objects andmany training
iterations because of downsampling and upsampling of the images which is done in the previous models.
Another advantage of this method is the high number of iterations possible. Experiments on Sintel and
KITTI show that this model is superior compared to all the previous models in terms of accuracy on both
these sets. [69]

This chapter discussed three of the most widely used motion extraction techniques used in literature.
Firstly, the classical optical flow techniques such as Lucas-Kanade and Horn-Schunck were discussed.
These methods have been used for many years and have been optimized for computational efficiency.
Gaussian mixture models use a clustering method to extract motion and have good accuracy. Lastly
were the machine learning-based techniques covered. These have proven to outperform all the other
techniques but require quality data for training.

4
Object Tracking Methods

For the application of autonomous underwater cleanup, it is paramount that objects can be tracked across
frames. The object-tracking landscape can be split up into two main parts: Single Object Tracking (SOT)
and Multiple Object Tracking (MOT). It is chosen to focus on MOT as underwater environments are often
cluttered and complex, with numerous objects moving around in the water column. In these situations,
SOT can be limited in its ability to accurately detect and track trash. In contrast, MOT algorithms are better
equipped to deal with multiple objects moving simultaneously and can track each object individually. Also,
MOT algorithms can help to improve the accuracy and reliability of trash detection in underwater environ-
ments. By tracking multiple objects and comparing their movement patterns over time, MOT algorithms
can identify unnatural or irregular object movement, which may indicate the presence of trash. In contrast,
SOT algorithms are limited in their ability to detect such patterns and may miss important information
about the movement of objects in the water.

Tracking algorithms can be online and offline. Online algorithms are defined as only using frames from
the past. Offline tracking algorithms also use future frames to improve performance. These trackers are
used for post-processing data but can not be applied in a real-time situation. To summarize, this chapter
will focus on Multiple Object Tracking algorithms and it will start by explaining common algorithms used in
tracking algorithms (Section 4.1), continued by an overview of the SOTA models from the MOT challenge
in Section 4.2 and concluded by a summary of the tracking algorithms used in the underwater environment
in Section 4.3.

4.1. Support algorithms
This section discusses the Kalman Filter and the Hungarian Algorithm. These algorithms are often used
in object tracking.

4.1.1. Kalman Filter
The Kalman Filter is in its essence a mathematical algorithm which combines the past system states with
the measurements to predict the current and future states [70]. It is widely used in various applications
such as guidance, navigation and control of spacecraft, airplanes etc. The first step of the Kalman Filter
is the initialization. After the initialization, the filter runs in a loop where it continuously predicts the future
state and updates the measurement. During the initialization, the variables x̂0,0,P0,0 are set which are
equal to the estimate of the state vector at time zero after measurement zero and the estimate uncertainty
matrix at time zero after measurement zero respectively. The next step is the prediction which uses
Equation 4.1 and Equation 4.2.

x̂n+1,n = Fmx̂n,n +Gun (4.1)

Pn+1,n = FmPn,nF
T
m +Q (4.2)

The variable x̂n+1,n represents the estimated state vector in the future, Fm is the state transition matrix,
G is the control matrix, un is the input variable and Q is the process noise uncertainty which is equal to

23

4.1. Support algorithms 24

E
(
wnw

T
n

)
where wn is the process noise vector. This completes the prediction step where in the case of

object tracking, the future position of the object is estimated. The third step is the measurement update
where the Kalman Filter is used to improve the accuracy. This is required as no sensor is perfect and is
always subjected to noise. Also in the measurement update, both the state vector and the uncertainty are
calculated. The equations can be found in Equation 4.3 and Equation 4.4 respectively.

x̂n,n = x̂n,n−1 +Kn (zn −Hmx̂n,n−1) (4.3)

Pn,n = (Ii −KnHm)Pn,n−1 (Ii −KnHm)
T
+KnRnK

T
n (4.4)

Kn = Pn,n−1H
T
m

(
HmPn,n−1H

T
m +Rn

)−1 (4.5)

In the above equations is zn equal to Hmxn. Hm the observation matrix, R is the measurement
uncertainty and equal to E

(
vnv

T
n

)
with vn equal to the measurement noise error. Kn is a special variable

and equal to Kalman Gain. This gain is calculated using Equation 4.5 and is a number between 0 and 1.
As it can be seen in Equation 4.3, this gain determines how much weight is given to the measurements
and the predictions. The higher the gain, the more weight is given to the measurements and the filter will
respond more quickly to changes. However, a lower gain puts more weight on the predictions and the filter
will be more robust to noise. The gain is calculated using the covariance matrices which quantifies the
uncertainty of each component (e.g. an inaccurate sensor should have a lower gain). The full derivation
of the Kalman Filter can be found in [71] [72].

4.1.2. Hungarian Algorithm
The Hungarian Algorithm is a matching algorithm using the Bipartite Graph [73]. The Bipartite Graph can
be seen as a matrix with workers as rows and jobs as columns. Each worker can be matched with each
job and this combination has a cost assigned. The goal of the Hungarian Algorithm is to match the workers
with jobs in the most cost-effective way possible. The Bipartite Graph is a N ×N matrix with N workers
and N jobs. The Hungarian Algorithm uses 5-steps to find the most optimal solution:

1. In every row the minimum value is identified and subtracted from the rest of the row.
2. In every column the minimum value identified is subtracted from the rest of the column.
3. The previous steps introduced zero values in the matrix. This step crosses all these zeros while

using a minimal amount of lines. E.g. the row: [5, 0, 0, 0, 6, 2] contains three zeros next to each other,
these can be crossed using 1 line. However the row [5, 0, 0, 8, 0, 2] needs a minimum of 2 lines to
cross all the zeros. If the amount of lines is equal to N , continue with step 5. If the amount of lines
is smaller than N , continue with step 4.

4. The smallest element in the matrix which has not been crossed is identified. Subtract this element
from the other non-crossed elements, but add it to the elements where two lines cross. Continue by
repeating step 3.

5. Start with the column which has only 1 zero. This one is matched with a worker and the column and
row can be crossed out. Continue with the next row which will have 1 zero. Continue until all the
workers are assigned to a job.

By iteratively applying the above steps, themost cost-efficient solution is found. In the case of matching
objects over frames, there are multiple different costs which can be used such as the Euclidean distance,
Intersection over Union (IoU), Convolutional Cost, etc. Also, a combination of different parameters can
be used to create a custom cost function. At first sight, this algorithm seems limited to cases where an
N ×N matrix can be formed and the problem is a minimization. However, these problems can be solved
by adding dummy rows, and columns and switching the maximum and minimum values around. It is
shown that the Hungarian Algorithm is a very powerful tool and is widely used in various applications.
The complexity scales O(n3) which means the computational time drastically increases with the size of
the matrix. Fortunately, in object tracking, the size of the matrix stays reasonably small which makes the
computational complexity less of a concern [74] [75].

4.2. MOT Challenge Tracking Models 25

4.2. MOT Challenge Tracking Models
The MOTChallenge is the most important challenge related to object tracking and provides a good bench-
mark to compare the different SOTA models currently available. Unfortunately, many different datasets
and versions are available making a fair comparison arduous. In total 22 different datasets were pub-
lished from 2015 to 2023. Out of these 22 different challenges only the top-performing models on rele-
vant datasets are included in this discussion. The MOT17 [76], CVPR 2020 [77], TAO Challenge [78],
3D-ZeF [79] and the STEP-ICCV21 [80] are deemed to be the most relevant to the problem of underwater
object tracking as they contain a relatively low number of objects in a dynamic environment. None of the
aforementioned datasets contains underwater objects besides the 3D-ZeF which contains Zebrafish in a
laboratory environment. Caution should be kept when comparing the results of SOTA trackers on open-
air datasets and assuming similar results will be achieved in the underwater domain. In [81], the authors
proposed a new labelled underwater dataset to facilitate further research into underwater tracking. The
paper also sets a benchmark using the current SOTA models on the underwater dataset. Interesting to
note is that the performance these trackers have on open-air datasets does not come close to the perfor-
mance on the underwater dataset. These findings reaffirm the notion that the underwater domain poses
significant hurdles for the field of computer vision. It is still essential to consider and understand these
SOTA models.

Figure 4.1: The Sparse Graph Tracker architecture [82]

In a tracking framework, a detected object is often assigned a state. This state usually has the options:
active, tracked, lost or inactive. This format is followed in [83] where the tracker is formulated as the
Markov Decision Process and uses SOT for each object. Every single tracker consists of four modules:
tracking module, detector module, integrator module and learning module. Optical flow is used as a
tracking module. The detector consists of a sliding window to detect the objects in the frame and the
detection is combined with the tracking output using the integrator. The learning module uses the P-N
learning principle [84] where it updates the positive and negative samples. This tracker reached a MOTA
(Multiple Object Tracking Accuracy) of 44.4 on the MOT 2017 dataset and a MOTA of 58 on the KITTI
dataset. These are good results but currently, better results are available. A different approach is taken
in [85] where the regression step in object detection is exploited. The tracker named Tracktor is built on
the assumption that an object only moves a few pixels over frames. Tracktor uses Faster-RCNN with a
ResNet-101 backbone and FPNs (Feature Pyramid Networks). The bounding boxes detected in frame
t−1 are regressed to frame t. The Region of Interest (RoI) pooling is then performed in the new ”estimated”
area in frame t to find the tracked object. This is a very simple yet effective approach. A MOTA score of
53.5 is achieved on the MOT17 dataset which is considerably higher than the tracker in [83]. This score
is increased to 76.4 by [82]. The tracker uses a combination of a detector and a sparse graph tracker.
The sparse graph tracker has four different steps: Spare Graph Builder, Graph Neural Network, Edge
Classifier and Node Classifier and reached high accuracies on many of the MOT datasets. An overview
of the architecture can be found in Figure 4.1.

In [86], detection and tracking are performed jointly. One branch comprises a ConvNet network based
on the R-FCN network with a ResNet-101 backbone. Candidate regions of interest (RoIs) are proposed by
the region proposal network (RPN), the RoI pooling layer is applied, and the softmax function generates
the output. The second branch applies the same process to the subsequent frame. The last layers of both

4.3. Underwater Tracking Models 26

branches are merged into a RoI tracking layer, where inter-frame bounding box regression is performed.
This layer is included in the loss function. The authors note the limitation of processing high-quality frames,
which reduces the framerate. This approach is also end-to-end trainable, achieving state-of-the-art results
on the ImageNet VID dataset [87].

The most relevant dataset for this project is the 3D-ZeF dataset [88] which can be found in Figure 4.2.
In [88], a method is proposed for 3D tracking Zebrafish. Unfortunately, this method does not apply to the
topic of this literature study as fixed anchor boxes are used and the model is focused on 3D tracking and
not 2D tracking.

Figure 4.2: The Sparse Graph Tracker architecture [88]

4.3. Underwater Tracking Models
Numerous research articles have been identified relating to the application of tracking algorithms in the
underwater domain, but the majority of these studies centre on the tracking of fish. The most used tracking
technique is tracking-by-detection. In this technique, object detection is performed at every frame and
tracking is conducted subsequently over the frames. The final tracking result is heavily influenced by the
performance of the object detection algorithm. A famous online tracking algorithm is the Simple Online
Realtime Tracking (SORT) algorithm [89] that uses the Faster Region CNN [15] as an object detector.
Once the objects are detected, a linear constant velocity model is used to predict future displacements.
A Kalman filter is used to refine the predictions and a Hungarian algorithm is responsible for matching
the predictions with the detections. The Intersection over Union (IoU) metric is used to construct the
assignment cost matrix. The algorithm assigns a large uncertainty value to newly detected objects to
prevent tracking false positives. When objects are lost after 1 frame, they are deleted. This is one of
the main limitations of the SORT algorithm. Exactly this problem is solved by the authors of the Deep
SORT algorithm which is built on the original architecture [90]. The main difference is the change in the
cost matrix. Instead of the IoU, the Mahalanobis distance is used and accompanied by a cosine distance
appearance descriptor. This appearance descriptor is in practice a pre-trained CNN. The appearance
of 100 objects is kept and a cost function based on the cosine distance (which indicates how similar
feature vectors are to each other) is used. The Mahalonobis distance is powerful in the short term where
the object’s location can be estimated and the appearance descriptor has the advantage of recognizing
objects in the case of rapid camera movement and occlusion. The Deep SORT algorithm is applied to
underwater object tracking in [91]. This paper combines the YOLOv3 model for object detection with the
Deep Sort algorithm and an LSTM network. Higher results were achieved on the Fish4Knwoledge [92]
and NOAA dataset compared to the standalone Deep Sort algorithm. It shows that the combination of a
better object detector and LSTM yields better tracking results.

Siamese networks are another popular technique used in tracking. In [94] a Siamese network is used
as a component of the tracking algorithm. Initially, a GMM is used for background modelling followed by
morphological operations to conclude the step of filtering the background out. Subsequently, the Siamese
network is applied to the processed images to extract a feature vector as output. A miniature neural
network is used to quantify the difference between the two input images. A number between 0 and 1 is
constructed with 0 indicating dissimilarity and 1 full similarity. The output of the Siamese network and the
Miniature Network are combined in the cost matrix. A Kalman filter is used to increase the object location
and a Hungarian Algorithm to match the detections across frames. A similar approach using siamese
networks is described in [95], where it is used for feature extraction. These features are then fed into an
RPN to calculate the similarity score. This approach was also implemented on a small AUV and good

4.4. Conclusion 27

Figure 4.3: The FSTA architecture [93]

results were achieved.

Occlusion is always a big problem in tracking especially in the underwater domain. The authors of [93]
present their Fish-school tracking algorithm (FSTA) which uses prior knowledge to reidentify objects. The
architecture can be found in Figure 4.3. It is built up of 4 main components: the detector, the amendment
detection model and the underwater data association algorithm. The detector is a simple object detection
algorithm such as YoloX. The amendment model is responsible for making the detection results more
reliable. Detections over time can drastically decrease in quality due to the nature of the environment.
Also, objects can occlude each other, resulting in a temporary loss of specific objects. The amendment
model uses tracklets as prior knowledge, feeding this into a Kalman Filter to predict future locations. The
confidence scores are then modified with the IoU distance and the detection set of the current frame is
outputted.

The association algorithm consists of the ByteTrack [96] algorithm combined with a re-ID feature ex-
tractor network. ByteTrack is a tracking algorithm built on the principle that every bounding box contains
valuable information not only the ones with a high confidence score. This is a SOTA tracking which uses
YoloX as a detector. This method has a MOTA of 79.1 which is comparable to SOTA MOTA discussed in
the previous section.

All the previously discussed methods require a large amount of data to train. In [97] unsupervised
learning is used to identify fish. Optical flow (RAFT) is used for background subtraction to generate
pseudo-labels. In the second stage, the generated pseudo-labels are refined by a self-supervising model.
The last stage consists of a segmentation model to predict the final label. By using pseudo-labels, the
last step comes very close to a normal supervised model. The tracking is performed by the SORT [89]
algorithm. This method shows good results and proves the feasibility of unsupervised learning.

4.4. Conclusion
This chapter described various tracking techniques with a focus on SOTA models and methods applied
to the underwater domain. Unfortunately, none of the SOTA trackers were applied to the underwater so
a fair comparison is not possible. The FSTA tracking algorithm has shown high results and potential. It
has been applied to the underwater domain and uses a modular approach. This allows for easy reuse of
specific blocks in the pipeline.

5
Training Data Sources and Tools

Data is the most important part of machine learning [98]. Without a high-quality dataset, it is impossible to
get high-quality results. The underwater setting makes generating data a very expensive and complex job.
Even if data is generated, annotating all this data is a very demanding job. Fortunately, some datasets are
made available online for free usage. These datasets are described in Section 5.1. Besides these open
source datasets, SEACLEAR itself also has a dataset which is described in Section 5.2. An alternative
approach involves using a simulation environment to generate artificial data, as discussed in Section 5.3.

5.1. Open source real-world datasets
Since the focus is on sequential data, all non-sequential datasets such as TACO [99], TrashNet [100] or
other open source datasets [101] can not be used.

Fortunately, there are also sequential datasets available. A significant database of underwater footage
captured by remotely operated vehicles (ROVs) is the Deep-sea Debris Database [16]. This database con-
tains only snippets of footage without labels. Multiple efforts have been made to annotate parts of this
dataset. The most widely known is the Trashcan dataset [17], which includes 7,212 images and is an
updated version of the Trash-ICRA19 dataset [19], with 22 different classes labelled with high accuracy.
Another effort is described in [28], where more than 1,200 images were labelled across 19 different cat-
egories. Although many sequential images and labels are available online, they can not be used for this
project as the goal is to extract an object trajectory. The trajectories get compromised by the movement
of the ROV. Without knowing the exact position and orientation of the ROV, it is impossible to determine
the object’s trajectory. Unfortunately, none of the existing datasets provide the precise ROV orientation
and position. Therefore, no suitable datasets are available for this application.

5.2. SEACLEAR dataset
The SEACLEAR team has performed various tests with their ROV named Tortuga in four different loca-
tions: Marseille in France, Dubrovnik Bay of Mali Ston, and Dubrovnik Lokrum which are both situated in
Croatia and in the harbour in Hamburg Germany. In total 3441 images were captured in Marseille and
can be observed in Figure 5.1. In Dubrovnik were 5169 images captured which can be seen in Figure 5.1.

Figure 5.1: Examples of SEACLEAR data, left is an example from Croatia and right is an example from
France.

28

5.3. Simulators 29

Unfortunately, the quality of images from the tests in Hamburg was very low and cannot be used. The
visibility was lower than 15cm which makes detecting plastic impossible. The visibility has a large effect
on the feasibility of underwater trash cleanup. If the visibility is only 50cm, it is impossible to locate the
trash. The images from both France and Croatia are of sufficient level for further use and the position and
orientation of the ROV are known. Unfortunately, the camera also moves independently of the ROV and
no data is available on this movement which renders this dataset also unusable for this study.

5.3. Simulators
As mentioned in the previous sections, no data is available to use for this project. Gathering real-world
data is a very expensive and time-intensive operation which requires much manual data cleaning and
labelling. This is beyond the scope of this research.

Another option is to use simulated data. Simulated data can be generated in controlled conditions
with automatic labelling and with the exact position and orientation of the ROV. Different vision-based
underwater simulators are available and to compare them in a structured manner are the following points
considered:

1. Documentation: For efficient development, a simulator with extensive documentation is required.
The scope of this thesis is not designing a simulator but using it and no additional time should be
lost setting up the environment.

2. Flexibility: the aim is to add different objects to the scene so the simulator should allow for customiza-
tion. Also, automatic data gathering is required, so the simulator should have an API to interact with.

3. Visual realism: this project involves computer vision and it is therefore of high importance that the
simulator includes all the visual aspects which make underwater vision challenging.

4. Dynamics: as the thesis aims to use the trajectory of an object to improve the detection, the trajectory
should be as realistic as possible. The real world is a turbulent environment and this should be
reflected in the simulator. Important dynamics that should be present are the buoyancy, drag force,
gravity, hydrostatic pressure and flow conditions.

The available visual simulators can be split up into three different families: ROS-based simulators,
Gazebo-based simulators and Unity-based simulators. Each of these will be discussed more in detail in
the remainder of this section.

5.3.1. ROS based simulator
UWSim [102] is an underwater simulator which uses ROS for the interface with osgOcean for rendering
the scene. osgOcean shows realistic renders with an example detailed in Figure 5.2).

Figure 5.2: Example of visual in UWSim simulator with an object modelled in Blender [102]

An overview of all the components and how they are linked can be found in Figure 5.3. A modular and
dynamic structure is employed with an XML file to set the scene. Dynamic simulation of rigid body motion
is present and a state-space model is utilized based on two relationships:

5.3. Simulators 30

• Non-linear 6 DOF rigid body motion equations
• Jacobian matrix which maps body velocities in an inertial frame.

Additional dynamics can also be incorporated using a Matlab model developed by researchers at the
IRSLab (Jaume-I University, Castellón). However, the associated wiki was last updated in 2017, raising
concerns about the maintenance of the simulation. Despite this, the simulator includes many key dynam-
ics, offering significant flexibility and a high level of realism. The user community for this simulator is
limited.

Figure 5.3: Architecture UWSim [102]

5.3.2. Gazebo based simulator
There are three Gazebo based simulators available: freefloating-gazebo [103], Rock-gazebo [104] and
UUV simulator [105]. Besides these three, some studies [106] have created extra plugins for the under-
water environment in Gazebo. The advantage of using Gazebo is the presence of a large community,
extensive documentation and active development. The dynamics simulation in Gazebo operates by ac-
cepting inputs of forces and torques acting on a body, allowing for the addition of multiple forces if needed.

Freefloating-gazebo is a combination of UWSim and Gazebo and mainly consists of two plugins:

• World plugin for hydrodynamics: Simulating overall buoyancy, water surface and water current.
• Model plugin for thruster control: Model for low-level control through thruster effort.

Besides the plugins, a PID controller is also developed. As it is integrated with UWSim, the visual
integration is of a high level and an example can be observed in Figure 5.4.

Figure 5.4: Gazebo simulator visual example [103]

The Rock-gazebo plug-in is similar to the free-floating-gazebo in the sense that it also uses XML files to
develop a scene andmakes use of osgOcean classes for the rendering. Themain purpose of these plugins

5.4. Conclusion 31

is to work in the Rock framework in Gazebo. The final plugin is the UUV simulator. This simulator has
to goal of meeting the requirements set by the authors in [105]. Neither one of the previously mentioned
simulators meets all their requirements such as multiple robot simulation and low complexity to set up
real-world scenarios. Therefore UUV developed new packages for Gazebo with the main contributions
of:

• Actuator models
• Underwater sensors
• Hydrodynamic and hydrostatic forces and moments
• Underwater worlds and environmental loads.

Unfortunately, the Github page of this simulator has been archived indicating that no ongoing develop-
ments..

5.3.3. Unity based simulator
Unity is one of the most famous cross-platform gaming engines. It comes with a physics engine and
extensive real-time rendering. The authors of [107] show how Unity3D was used to create an underwater
environment and automatically capture images to build a dataset which is used for computer vision. A
Yolov5 model was trained on these images to create an underwater gate detection model. The graphics
of Unity3D are shown in Figure 5.5. The combination of a large community, the realistic renders and proof
that an object detector can be trained on this data makes it a very attractive choice.

Figure 5.5: Unity3D simulator visual example [107]

5.4. Conclusion
A comprehensive overview of various open-source datasets is provided. Although underwater datasets
are available, none of them meet the requirements of being sufficiently large, containing various objects,
being fully annotated, and having the exact orientation and position of the camera for each frame. Generat-
ing a custom dataset using real-world cameras is deemed infeasible due to time and financial constraints.
Therefore, the only viable option is to use simulated data. To model the environment as accurately as
possible, a simulator with high visual realism is preferred. Among the available options, the Unity-based
simulator is favoured due to its extensive documentation, high-fidelity visuals, and previous work demon-
strating its feasibility.

6
Research Proposal

This chapter will discuss the research proposal for the thesis based on the outcome of the previous chap-
ters.

6.1. Introduction
The introduction has shown that image object detection has reached good performances on the Trash-
can dataset. Instead of improving the processing of the current information available (i.e., pixel values
from the input images) by designing a novel model architecture, it is chosen to increase the amount of
information available and use existing models to reach better results. Increasing the available information
is accomplished by embedding temporal domain knowledge to enhance detections. It is shown that lim-
ited domain knowledge is embedded in the single image frames; however, videos provide a much richer
source of information by incorporating the temporal domain. Information about trajectories and dynamics
can be used to assist the model in making better detections. As concluded in Chapter 5 a simulation will
be used to generate a dataset for model training. Instead of images, this dataset will consist of videos
filmed by a simulated ROV. Consequently, the movement of marine life and vegetation will need to be
accurately modelled.

6.2. Research Questions
The previous section has formulated the identified gap in research which will be formalized into research
questions in this section. The main research question is the following:

”Does including specific temporal domain knowledge into deep learning techniques improve
object detection accuracy applied to underwater applications?”

As Chapter 5 has shown, simulated data will have to be used. This translates into a theoretically unlimited
dataset. These results will be compared to SOTA off-the-shelf trackers. This leads to the subquestions
of the research question:

• What is the feasibility of setting up an underwater simulator to capture temporal data of litter, marine
life and vegetation?

• What is the optimal way to couple a deep-learning-based architecture with temporal domain knowl-
edge?

• What are the limitations of the study, such as the generalisability of the model on real-world data?

The next steps will consist of generating the required data using a simulator, developing an architec-
ture which embeds temporal domain knowledge about the underwater environment and evaluating the
performance. This study aims to identify the effect of domain knowledge on object performance and has
the potential to impact environmental conservation efforts and the broader field of underwater imaging
and analysis.

32

7
Conclusion

This literature review covered a variety of topics related to embedding domain knowledge in an underwater
object detection and tracking algorithm. This work is part of the SEACLEAR project which aims to clean up
the water column and ocean floor from litter. Oceanic litter has been a problem for decades but in the last
years, it has become one of the largest environmental problems humanity has to face. It has a devastating
effect on the marine environment and impacts all life on Earth. As litter degrades, it is consumed by the
lowest organisms in the food chain, resulting in many animals, including humans, having microplastics in
their bodies. Addressing this pressing problem is crucial.

Due to the immense scale of the marine pollution, autonomous cleanup is essential. To enable au-
tonomous cleanup, autonomous tracking and detection are required. A comprehensive study is performed
on current SOTA detection methods. It is concluded that computer vision research has made incredible
advancements in the last decade and great things can be achieved nowadays. Current SOTA models are
highly effective at extracting nearly all information encapsulated in an image. Therefore, the focus is on
embedding domain knowledge in deep learning SOTA architectures to enhance their performance and
compensate for limitations due to a lack of annotated data.

An in-depth analysis was performed on the availability of data. It was concluded that the required data
was not available, leading to the pursuit of creating data artificially.

The goal of this work is to study the existing deep-learning architectures related to object detection in
underwater applications. A comprehensive and in-depth overview of these architectures is provided. It
was noted that none of them considers temporal domain knowledge, and it is proposed that integrating
deep learning methods with temporal domain knowledge should be further explored [108].

33

References

[1] D. Robinson. “14 biggest environmental problems of 2023.” (Jan. 2023), [Online]. Available: https:
//earth.org/the-biggest-environmental-problems-of-our-lifetime/.

[2] M. Fava. “Ocean plastic pollution an overview: Data and statistics.” (May 2022), [Online]. Available:
https://oceanliteracy.unesco.org/plastic-pollution-ocean/#:~:text=Currently%5C%
2C%5C%20there%5C%20are%5C%20about%5C%2050,ends%5C%20u%5C%20forming%5C%20garbage%
5C%20patches..

[3] L. J. J. Meijer, T. van Emmerik, R. van der Ent, C. Schmidt, and L. Lebreton, “More than 1000
rivers account for 80% of global riverine plastic emissions into the ocean,” Science Advances,
vol. 7, no. 18, eaaz5803, 2021. DOI: 10.1126/sciadv.aaz5803. eprint: https://www.science.
org/doi/pdf/10.1126/sciadv.aaz5803. [Online]. Available: https://www.science.org/doi/
abs/10.1126/sciadv.aaz5803.

[4] J. Barrett, Z. Chase, J. Zhang, et al., “Microplastic pollution in deep-sea sediments from the great
australian bight,” Frontiers, Oct. 2020.

[5] K. Amadeo. “How air, water, and plastic pollution affect the economy.” (Jun. 2022), [Online]. Avail-
able: https://www.thebalancemoney.com/pollution-facts-economic-effect-4161042#:~:
text=Plastic%5C%20pollution%5C%20costs%5C%20%5C%2413%5C%20billion,flexible%5C%2C%
5C%20lightweight%5C%2C%5C%20and%5C%20sustainable..

[6] A. Morlet, D. Waughray, and M. R. Stuchtey, “The new plastics economy rethinking the future of
plastics,” Jan. 2016.

[7] W. Fang, L. Ding, P. E. Love, et al., “Computer vision applications in construction safety assurance,”
Automation in Construction, vol. 110, p. 103 013, 2020. DOI: https://doi.org/10.1016/j.
autcon.2019.103013. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0926580519301487.

[8] B. G. Weinstein, “A computer vision for animal ecology,” The Journal of animal ecology, vol. 87,
no. 3, pp. 533–545, May 2018. DOI: 10. 1111 /1365 - 2656. 12780. [Online]. Available: https:
//doi.org/10.1111/1365-2656.12780.

[9] T. Liu, A. W. Burner, T. W. Jones, and D. A. Barrows, “Photogrammetric techniques for aerospace
applications,” Progress in Aerospace Sciences, vol. 54, pp. 1–58, 2012. DOI: https://doi.org/
10.1016/j.paerosci.2012.03.002. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0376042112000267.

[10] D. L. Rizzini, F. Kallasi, F. Oleari, and S. Caselli, “Investigation of vision-based underwater object
detection with multiple datasets,” International Journal of Advanced Robotic Systems, Mar. 2015.

[11] A. Jesus, C. Zito, C. Tortorici, E. Roura, and G. D. Masi, “Underwater object classification and
detection: First results and open challenges,” in OCEANS 2022 - Chennai, IEEE, Feb. 2022. DOI:
10.1109/oceanschennai45887.2022.9775417. [Online]. Available: https://doi.org/10.1109%
5C%2Foceanschennai45887.2022.9775417.

[12] R. A. Dakhil and A. R. H. Khayeat, “Review on deep learning techniques for underwater object
detection,” in Data Science and Machine Learning, Academy and Industry Research Collaboration
Center (AIRCC), Sep. 2022. DOI: 10.5121/csit.2022.121505. [Online]. Available: https://doi.
org/10.5121%5C%2Fcsit.2022.121505.

[13] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” 2021. arXiv:
2107.08430 [cs.CV].

34

References 35

[14] S. Rath. “Yolov6 custom dataset training – underwater trash detection.” (Nov. 2022), [Online]. Avail-
able: https://learnopencv.com/yolov6-custom-dataset-training/.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” 2016. arXiv: 1506.01497 [cs.CV].

[16] J. A. for Marine-Earth Science and T. (JAMSTEC), Deep-sea debris database, (Accessed on
02/03/2023). [Online]. Available: https://www.godac.jamstec.go.jp/dsdebris/e/index.html.

[17] J. Hong, M. Fulton, and J. Sattar, “Trashcan: A semantically-segmented dataset towards visual
detection of marine debris,” CoRR, vol. abs/2007.08097, 2020. arXiv: 2007.08097. [Online]. Avail-
able: https://arxiv.org/abs/2007.08097.

[18] H. Deng, D. Ergu, F. Liu, B. Ma, and Y. Cai, “An embeddable algorithm for automatic garbage
detection based on complex marine environment,” Sensors, vol. 21, no. 19, 2021. DOI: 10.3390/
s21196391. [Online]. Available: https://www.mdpi.com/1424-8220/21/19/6391.

[19] M. Fulton, J. Hong, M. J. Islam, and J. Sattar, “Robotic detection of marine litter using deep visual
detectionmodels,”CoRR, vol. abs/1804.01079, 2018. arXiv: 1804.01079. [Online]. Available: http:
//arxiv.org/abs/1804.01079.

[20] C. Wu, Y. Sun, T. Wang, and Y. Liu, “Underwater trash detection algorithm based on improved
yolov5s,” Journal of Real-Time Image Processing, vol. 19, Jul. 2022. DOI: 10.1007/s11554-022-
01232-0.

[21] X. Teng, Y. Fei, K. He, and L. Lu, “The object detection of underwater garbage with an improved
yolov5 algorithm,” in Proceedings of the 2022 International Conference on Pattern Recognition
and Intelligent Systems, ser. PRIS ’22, Wuhan, China: Association for Computing Machinery, 2022,
pp. 55–60. DOI: 10.1145/3549179.3549189. [Online]. Available: https://doi.org/10.1145/
3549179.3549189.

[22] B. Xue, B. Huang, W. Wei, et al., “An efficient deep-sea debris detection method using deep neural
networks,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 14, pp. 12 348–12360, 2021. DOI: 10.1109/JSTARS.2021.3130238.

[23] B. Xue, B. Huang, G. Chen, H. Li, and W. Wei, “Deep-sea debris identification using deep con-
volutional neural networks,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 14, pp. 8909–8921, 2021. DOI: 10.1109/JSTARS.2021.3107853.

[24] J. C. Hipolito, A. Sarraga Alon, R. V. Amorado, M. G. Z. Fernando, and P. I. C. De Chavez, “Detec-
tion of underwater marine plastic debris using an augmented low sample size dataset for machine
vision system: A deep transfer learning approach,” in 2021 IEEE 19th Student Conference on
Research and Development (SCOReD), 2021, pp. 82–86. DOI: 10.1109/SCOReD53546.2021.
9652703.

[25] Y.-C. Wu, P.-Y. Shih, L.-P. Chen, C.-C. Wang, and H. Samani, “Towards underwater sustainability
using rov equipped with deep learning system,” in 2020 International Automatic Control Confer-
ence (CACS), 2020, pp. 1–5. DOI: 10.1109/CACS50047.2020.9289788.

[26] L. Wei, S. Kong, Y. Wu, and J. Yu, “Image semantic segmentation of underwater garbage with
modified u-net architecture model,” Sensors, vol. 22, no. 17, 2022. DOI: 10 . 3390 / s22176546.
[Online]. Available: https://www.mdpi.com/1424-8220/22/17/6546.

[27] J.-I. Watanabe, Y. Shao, and N. Miura, “Underwater and airborne monitoring of marine ecosystems
and debris,” Journal of Applied Remote Sensing, vol. 13, p. 1, Oct. 2019. DOI: 10.1117/1.JRS.
13.044509.

[28] A. Sánchez-Ferrer, A. J. Gallego, J. J. Valero-Mas, and J. Calvo-Zaragoza, “The cleansea set: A
benchmark corpus for underwater debris detection and recognition,” in Pattern Recognition and
Image Analysis, A. J. Pinho, P. Georgieva, L. F. Teixeira, and J. A. Sánchez, Eds., Cham: Springer
International Publishing, 2022, pp. 616–628.

References 36

[29] A. Balakrishnan, B. S, and S. M H, “Classification of low quality underwater objects using convolu-
tional neural networks and transfer learning,” Feb. 2022, pp. 1–4. DOI: 10.1109/OCEANSChennai45887.
2022.9775387.

[30] R. Bajaj, S. Garg, N. Kulkarni, and R. Raut, “Sea debris detection using deep learning : Diving deep
into the sea,” in 2021 IEEE 4th International Conference on Computing, Power and Communication
Technologies (GUCON), 2021, pp. 1–6. DOI: 10.1109/GUCON50781.2021.9573722.

[31] J. Jia, M. Fu, X. Liu, and B. Zheng, “Underwater object detection based on improved efficientdet,”
Remote Sensing, vol. 14, no. 18, 2022. DOI: 10.3390/rs14184487. [Online]. Available: https:
//www.mdpi.com/2072-4292/14/18/4487.

[32] A. Jalal, A. Salman, A. Mian, M. Shortis, and F. Shafait, “Fish detection and species classification in
underwater environments using deep learning with temporal information,” Ecological Informatics,
vol. 57, p. 101 088, 2020. DOI: https://doi.org/10.1016/j.ecoinf.2020.101088. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1574954120300388.

[33] J. Sattar and G. Dudek, “Where is your dive buddy: Tracking humans underwater using spatio-
temporal features,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 3654–3659. DOI: 10.1109/IROS.2007.4399527.

[34] D. McIntosh, T. P. Marques, A. B. Albu, R. Rountree, and F. De Leo, “Tempnet: Temporal attention
towards the detection of animal behaviour in videos,” 2022. DOI: 10.48550/ARXIV.2211.09950.
[Online]. Available: https://arxiv.org/abs/2211.09950.

[35] H. Måløy, A. Aamodt, and E. Misimi, “A spatio-temporal recurrent network for salmon feeding ac-
tion recognition from underwater videos in aquaculture,” Computers and Electronics in Agriculture,
vol. 167, p. 105 087, 2019. DOI: https://doi.org/10.1016/j.compag.2019.105087. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0168169919313262.

[36] P. Oteiza, I. Odstrcil, G. Lauder, R. Portugues, and F. Engert, “A novel mechanism formechanosensory-
based rheotaxis in larval zebrafish,” Nature, vol. 547, Jul. 2017. DOI: 10.1038/nature23014.

[37] J. C. Liao, “A review of fish swimming mechanics and behaviour in altered flows,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 362, pp. 1973–1993, 2007.

[38] S. Pokhrel, “Beginners guide to convolutional neural networks,” Towards Data Science, Sep. 2019,
(Accessed on 03/29/2023).

[39] M. Mishra, “Convolutional neural networks, explained,” Towards Data Science, Aug. 2020, (Ac-
cessed on 03/29/2023).

[40] V. Jain, “Everything you need to know about “activation functions” in deep learning models,” To-
wards Data Science, Dec. 2019, (Accessed on 03/29/2023).

[41] R. G. Fei-Fei Li Jiajun Wu, Cs231n convolutional neural networks for visual recognition, https:
//cs231n.github.io/convolutional-networks/, 2022.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015. arXiv:
1512.03385 [cs.CV].

[43] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective search for
object recognition,” International Journal of Computer Vision, vol. 104, no. 2, pp. 154–171, 2013.
[Online]. Available: https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013.

[44] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in context,” 2015. arXiv:
1405.0312 [cs.CV].

[45] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object
classes (voc) challenge,” International Journal of Computer Vision, vol. 88, pp. 303–308, Sep. 2009,
Printed version publication date: June 2010. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/the-pascal-visual-object-classes-voc-challenge/.

[46] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion, 2015. arXiv: 1409.1556 [cs.CV].

References 37

[47] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding box regression with uncertainty for
accurate object detection,” 2019. arXiv: 1809.08545 [cs.CV].

[48] J. Hosang, R. Benenson, and B. Schiele, Learning non-maximum suppression, 2017. arXiv: 1705.
02950 [cs.CV].

[49] Y. Ç. Aktaş, “Object detection with convolutional neural networks,” Towards Data Science, Jan.
2022, (Accessed on 03/29/2023).

[50] R. Girshick, “Fast r-cnn,” 2015. arXiv: 1504.08083 [cs.CV].

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” 2016. arXiv: 1506.02640 [cs.CV].

[52] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, Yolov7: Trainable bag-of-freebies sets new state-
of-the-art for real-time object detectors, 2022. arXiv: 2207.02696 [cs.CV].

[53] D. B. Camp, Long short-term memory networks (lstm)- simply explained! https://databasecamp.
de/en/ml/lstms#:~:text=LSTM%20models%20are%20a%20subtype, term%20memory%20or%
20discard%20it., May 2022.

[54] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, Nov. 1997. DOI: 10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.
edu/neco/article- pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735.

[55] K. Cho, B. van Merrienboer, C. Gulcehre, et al., “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014. arXiv: 1406.1078 [cs.CL].

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017. arXiv: 1412.6980
[cs.LG].

[57] P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, and W. E, “Towards theoretically understanding why sgd
generalizes better than adam in deep learning,” 2021. arXiv: 2010.05627 [cs.LG].

[58] A. Rosebrock, Intersection over union (iou) for object detection, https://pyimagesearch.com/
2016/11/07/intersection-over-union-iou-for-object-detection/, 2022.

[59] B. Chiang and J. Bohg, Lecture notes cs231a: Computer vision, from 3d reconstruction to recog-
nition: Optical and scene flow, Feb. 2022.

[60] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1,
pp. 185–203, 1981. DOI: https://doi.org/10.1016/0004-3702(81)90024-2. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370281900242.

[61] S. Na, L. Xumin, and G. Yong, “Research on k-means clustering algorithm: An improved k-means
clustering algorithm,” pp. 63–67, 2010. DOI: 10.1109/IITSI.2010.74.

[62] A. Jepson and M. Black, “Mixture models for optical flow computation,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 1993, pp. 760–761. DOI: 10.1109/
CVPR.1993.341161.

[63] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–
38, 1977. [Online]. Available: http://www.jstor.org/stable/2984875 (visited on 04/12/2023).

[64] A. Dosovitskiy, P. Fischer, E. Ilg, et al., “Flownet: Learning optical flow with convolutional networks,”
in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2758–2766. DOI:
10.1109/ICCV.2015.316.

[65] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolution of optical
flow estimation with deep networks,” 2016. DOI: 10.48550/ARXIV.1612.01925. [Online]. Available:
https://arxiv.org/abs/1612.01925.

[66] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow using pyramid, warping,
and cost volume,” Jun. 2018, pp. 8934–8943. DOI: 10.1109/CVPR.2018.00931.

References 38

[67] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source movie for optical
flow evaluation,” Part IV, LNCS 7577, A. Fitzgibbon et al. (Eds.), Ed., pp. 611–625, Oct. 2012.

[68] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The In-
ternational Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013. DOI: 10.1177/
0278364913491297. eprint: https://doi.org/10.1177/0278364913491297. [Online]. Available:
https://doi.org/10.1177/0278364913491297.

[69] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical flow,” 2020. arXiv: 2003.
12039 [cs.CV].

[70] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application,” in 2015 8th International Confer-
ence on Intelligent Networks and Intelligent Systems (ICINIS), 2015, pp. 74–77. DOI: 10.1109/
ICINIS.2015.35.

[71] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the
ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[72] A. Becker, Kalman filter, https://www.kalmanfilter.net/default.aspx, 2022.

[73] A. Asratian, T. Denley, and R. Häggkvist, Bipartite Graphs and Their Applications (Cambridge
Tracts in Mathematics). Cambridge University Press, 1998. [Online]. Available: https://books.
google.nl/books?id=cImr4BGQ85kC.

[74] J. Cohen, “Exactly how the hungarian algorithm works,” Feb. 2023.

[75] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” vol. 2, no. 1–2, pp. 83–97, Mar.
1955. DOI: 10.1002/nav.3800020109.

[76] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark for multi-object
tracking,” arXiv:1603.00831 [cs], Mar. 2016, arXiv: 1603.00831. [Online]. Available: http://arxiv.
org/abs/1603.00831.

[77] P. Voigtlaender, M. Krause, A. Osep, et al., “Mots: Multi-object tracking and segmentation,” Jun.
2019.

[78] A. Dave, T. Khurana, P. Tokmakov, C. Schmid, and D. Ramanan, “Tao: A large-scale benchmark
for tracking any object,” in European Conference on Computer Vision, 2020. [Online]. Available:
https://arxiv.org/abs/2005.10356.

[79] M. Pedersen, J. B. Haurum, S. H. Bengtson, and T. B. Moeslund, “3d-zef: A 3d zebrafish tracking
benchmark dataset,” arXiv:2006.08466[cs], 2020, arXiv: 2006.08466. [Online]. Available: https:
//arxiv.org/abs/2006.08466.

[80] M. Weber, J. Xie, M. Collins, et al., “Step: Segmenting and tracking every pixel,” 2021. arXiv:
2102.11859 [cs.CV].

[81] L. Kezebou, V. Oludare, K. Panetta, and S. S. Agaian, “Underwater object tracking benchmark and
dataset,” pp. 1–6, 2019. DOI: 10.1109/HST47167.2019.9032954.

[82] J. Hyun, M. Kang, D. Wee, and D.-Y. Yeung, “Detection recovery in online multi-object tracking
with sparse graph tracker,” 2022. arXiv: 2205.00968 [cs.CV].

[83] T. Yang, C. Cappelle, Y. Ruichek, and M. El Bagdouri, “Online multi-object tracking combining op-
tical flow and compressive tracking in markov decision process,” Journal of Visual Communication
and Image Representation, vol. 58, pp. 178–186, 2019. DOI: https://doi.org/10.1016/j.
jvcir.2018.11.034. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S104732031830316X.

[84] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-n learning: Bootstrapping binary classifiers by structural
constraints,” pp. 49–56, 2010. DOI: 10.1109/CVPR.2010.5540231.

[85] P. Bergmann, T. Meinhardt, and L. Leal-Taixé, “Tracking without bells and whistles,” CoRR,
vol. abs/1903.05625, 2019. arXiv: 1903.05625. [Online]. Available: http://arxiv.org/abs/
1903.05625.

References 39

[86] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track to detect,” 2018. arXiv:
1710.03958 [cs.CV].

[87] O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recognition challenge,” 2015.
arXiv: 1409.0575 [cs.CV].

[88] M. Pedersen, J. B. Haurum, S. H. Bengtson, and T. B. Moeslund, “3d-zef: A 3d zebrafish tracking
benchmark dataset,” 2020. arXiv: 2006.08466 [cs.CV].

[89] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016
IEEE International Conference on Image Processing (ICIP), IEEE, Sep. 2016. DOI: 10.1109/icip.
2016.7533003. [Online]. Available: https://doi.org/10.1109%5C%2Ficip.2016.7533003.

[90] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association
metric,” 2017. arXiv: 1703.07402 [cs.CV].

[91] A. Mathias, S. Dhanalakshmi, and R. Kumar, “Occlusion aware underwater object tracking using
hybrid adaptive deep sort-yolov3 approach,” Multimedia Tools and Applications, pp. 1–13, 2022.

[92] R. Fisher, K.-T. Shao, and J. Chen-Burger, “Overview of the fish4knowledge project,” in Mar. 2016,
pp. 1–17. DOI: 10.1007/978-3-319-30208-9_1.

[93] T. Liu, S. He, H. Liu, Y. Gu, and P. Li, “A robust underwater multiclass fish-school tracking algorithm,”
Remote Sensing, vol. 14, no. 16, 2022. DOI: 10.3390/rs14164106. [Online]. Available: https:
//www.mdpi.com/2072-4292/14/16/4106.

[94] M. V. Rahul, R. Ambareesh, and G. Shobha, “Siamese network for underwater multiple object
tracking,” ICMLC 2017, pp. 511–516, 2017. DOI: 10.1145/3055635.3056579. [Online]. Available:
https://doi.org/10.1145/3055635.3056579.

[95] M.-F. R. Lee and Y.-C. Chen, “Artificial intelligence based object detection and tracking for a small
underwater robot,” Processes, vol. 11, no. 2, 2023. DOI: 10.3390/pr11020312. [Online]. Available:
https://www.mdpi.com/2227-9717/11/2/312.

[96] Y. Zhang, P. Sun, Y. Jiang, et al., “Bytetrack: Multi-object tracking by associating every detection
box,” 2022. arXiv: 2110.06864 [cs.CV].

[97] A. Saleh, M. Sheaves, D. Jerry, and M. R. Azghadi, “Unsupervised fish trajectory tracking and
segmentation,” 2022. arXiv: 2208.10662 [cs.CV].

[98] Y. Tkachova, “How important data quality for machine learning,” mastheadata, May 2022, (Ac-
cessed on 28/02/2023).

[99] P. F. Proença and P. Simões, “TACO: trash annotations in context for litter detection,” CoRR,
vol. abs/2003.06975, 2020. arXiv: 2003.06975. [Online]. Available: https://arxiv.org/abs/
2003.06975.

[100] G. Thung and M. Yang, “Classification of trash for recyclability status,” 2016.

[101] P. Machado, Underwater plastic dataset, version 1.0, Jul. 2022. DOI: 10.5281/zenodo.6907230.
[Online]. Available: https://doi.org/10.5281/zenodo.6907230.

[102] M. Prats, J. Pérez, J. J. Fernández, and P. J. Sanz, “An open source tool for simulation and super-
vision of underwater intervention missions,” in International Conference on Intelligent Robots and
Systems, Vilamoura, Algarve, Portugal, Oct. 2012.

[103] O. Kermorgant, “A dynamic simulator for underwater vehicle-manipulators,” vol. 8810, Oct. 2014.
DOI: 10.1007/978-3-319-11900-7_3.

[104] T. Watanabe, G. Neves, R. Cerqueira, et al., “The rock-gazebo integration and a real-time auv
simulation,” in 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium
on Robotics (LARS-SBR), 2015, pp. 132–138. DOI: 10.1109/LARS-SBR.2015.15.

[105] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “Uuv simulator: A
gazebo-based package for underwater intervention and multi-robot simulation,” in OCEANS 2016
MTS/IEEE Monterey, 2016, pp. 1–8. DOI: 10.1109/OCEANS.2016.7761080.

References 40

[106] J. Britto, A. Conceição, S. Joyeux, and J. Albiez, “Improvements in dynamics simulation for under-
water vehicles deployed in gazebo,” in OCEANS 2017 - Anchorage, 2017, pp. 1–6.

[107] P. Szlęg, P. Barczyk, B. Maruszczak, S. Zieliñski, and E. Szymañska, “Simulation environment
for underwater vehicles testing and training in unity3d,” in Intelligent Autonomous Systems 17:
Proceedings of the 17th International Conference IAS-17, Springer, 2023, pp. 844–853.

[108] A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided neural networks (pgnn):
An application in lake temperature modeling,” 2021. arXiv: 1710.11431 [cs.LG].

Part III

Conclusion

Conclusion

This chapter serves as the conclusion to the thesis and revisits the research questions posed in the
literature study.

Revisiting Research Objectives
The research objective is structured as one main research question and three sub-questions. These
are repeated here for clarity and are all discussed individually.

”Does including specific temporal domain knowledge into deep learning techniques improve
object detection accuracy applied to underwater applications?”

This research objective led to the development of an underwater simulator to ensure the availability of
high-quality data for testing the hypotheses. Subsequently, two mathematical models were developed
as part of the domain knowledge module. It is chosen to decouple objection detection and object clas-
sification to reduce complexity. The impact of including temporal domain knowledge on the accuracy is
assessed by training the trajectory classifier using a default training process and the knowledge-infused
process. In the basic case of training, validating and testing on high-quality ideal data the domain knowl-
edge has no benefit. However, a significant improvement was observed when noise was introduced
into the training and validation data.

The first sub-question, which pertains to the setup of the simulator, is formulated as follows:

What is the feasibility of setting up an underwater simulator to capture temporal data of litter,
marine life and vegetation?

Due to the scarcity of data meeting the requirements, a custom underwater simulator was developed
to generate the necessary dataset. The authors of a Unity-based underwater simulator generously
provided the source code and a license. Although comprehending an existing codebase requires time,
the simulator was designed in a modular fashion, which significantly simplifies the process of making
modifications. Additionally, the authors made time to provide information about the architecture and
address any specific questions. Nonetheless, getting familiar with the Unity environment and adapting
the existing infrastructure to the needs of this research was a highly time-consuming endeavour. Firstly,
the simulator was adapted from a dynamic ROV to a static camera setup. Secondly, the scene was
modified to reflect an oceanic environment. The existing physics was revised and updated to meet the
simulator’s goals. Various objects were added to the scene, ensuring they adhered to physical laws.
Finally, a custom scene generator and data-gathering script were developed. Given the modular setup,
it is feasible to start with basic features and progressively add more to enhance visual fidelity and the
realism of the physics.

The second subquestion addresses the most optimal approach to embedding domain knowledge into
a neural network.

What is the optimal way to couple a deep-learning-based architecture with temporal domain
knowledge?

Informedmachine learning is a popular research topic, but it has not yet been applied to temporal under-
water object detection. This study investigated the use of mathematical models as domain knowledge.
It was found that while this approach is the most accurate, it is not the simplest. The models require
input parameters that might be difficult to achieve. Additionally, the effectiveness of this approach
depends on the type of objects being detected. When objects exhibit distinctly different trajectories,
employing simple rules is more efficient. However, when the differences are more nuanced, accurate
modelling is recommended. Furthermore, the modular setup of the system allows for straightforward

cv

cvi

integration of existing modules in the architecture, thereby enabling the inclusion of established and
verified research.

The final subquestion addresses the limitations of the research and the generalizability of the findings.

What are the limitations of the study, such as the generalisability of the model on real-world
data?

Given the absence of a dataset that meets the required specifications, the conclusions of this research
were formulated based on the custom dataset. The approach is anticipated to work in a realistic un-
derwater environment within the assumptions made. The pipeline is designed in a modular fashion,
enabling adaptation to changes in the application by modifying certain elements to fit a specific envi-
ronment.

Currently, the motion extraction module performs optimally when the speed of the object is significantly
higher than the environment. This might not always be the case in reality and the module should be
enhanced to handle such scenarios. Additionally, the method is developed to detect only single objects
at a time, whereas in real-life situations, multiple objects are often present.

This study has proposed a pipeline that combines motion extraction and a domain knowledge-infused
training process to develop a trajectory-classifying neural network. This network is designed to be
robust against noise and poorly annotated data. This pipeline is however not without its limitations
and performs optimally in specific conditions. To enable fully autonomous cleanup, the proposed setup
should be augmented with existing state-of-the-art models to improve overall performance.

	Acknowledgments

