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Abstract
The Maxwell–Stefan (MS) formulation, as applied to zeolites that contain both weak
and strong adsorption sites, such as ZSM-5, is compared to dynamic Monte Carlo
simulations, for the limiting case of single-component self-diffusion. This study is
intended as a consistency check, and as a step towards an analytical or
semi-analytical theory for self-diffusion in zeolites with multiple types of sites. In its
original form, when it is assumed that ζ , the ratio of the self-exchange coefficient to
the corrected diffusivity, is equal to 1, the MS formulation performs well for
silicalite, the all-Si version of ZSM-5. However, when there are lattice
heterogeneities or the topology of the pore network differs from that of silicalite, it is
necessary to assume ζ �= 1. Because ζ is generally occupancy dependent, the theory
is unsuited as a fully predictive theory for self-diffusion in heterogeneous
microporous solids, unless a theory for ζ is derived. However, since several studies
have demonstrated that the MS formulation is able to predict multi-component
diffusivities from single-component diffusivities for zeolites with one type of site, an
extension to zeolites with multiple types of sites would be very valuable.

Notation

d dimension of the system
D self-diffusivity, m2 s−1

D0 self-diffusivity close to θ = 0, m2 s−1

D– i Maxwell–Stefan (corrected) diffusivity attributed to
interaction of species i with the zeolite matrix, m2 s−1

D– i j Maxwell–Stefan cross-term attributed to
intermolecular interactions between species i and j ,
m2 s−1

f fraction of strong sites, 0 � f � 1
�r position vector, (m, . . . , m)

u absolute fluid velocity, m s−1

R gas constant, 8.314 J mol−1 K−1

T absolute temperature, K
xi mole fraction of component i in adsorbed phase
t time, s

1 Author to whom any correspondence should be addressed.

Greek letters
θ total molecular occupancy or loading
θi molecular occupancy or loading of species i
θs, θw occupancy on strong, resp. weak sites
θβs , θβw occupancy on strong, resp. weak β sites
θα occupancy on α sites
µi molar chemical potential, J mol−1

ζ ratio of self-exchange coefficient to
corrected diffusivity

τs, τw average adsorption time on a strong, resp.
weak site, s

Subscripts
i, j associated to species numbers
s associated to strong sites
w associated to weak sites
Superscripts
MFT prediction using mean-field theory
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1. Introduction

Zeolites are widely used in processes such as separations,
ion exchange and catalysis. Studying diffusion in zeolites
is important, since it is the rate-limiting step in many of
these processes. Due to the limitations of experimental
studies [1], computational methods have been widely used to
study diffusion in zeolites, including dynamic Monte Carlo
simulations [2–5] molecular dynamics [6–8] and transition
state theory [9–11]. Diffusion in zeolites is typically activated,
with molecules hopping from site to site. Analytical theories
have been proposed to estimate self-diffusivities in zeolites,
including a mean field theory (MFT) proposed by us [3],
and the application of Maxwell and Stefan’s theory for multi-
component diffusion of fluids by Krishna and co-workers [12].
We will abbreviate the latter to the Maxwell–Stefan (MS)
formulation for zeolites, with the understanding that it is a
formal extension of a continuum theory to the highly confined
environment of micropores in which molecules cannot pass
each other. These theories may be predictive, once the
single-component diffusivities at zero loading as well as
information on the adsorption isotherm are known. The MS
formulation has been used with reasonable success in the
case of silicalite, which contains adsorption sites that are
all of the same strength [13, 14]. Especially when single-
component diffusivities are known, the MS approach predicts
multi-component diffusivities remarkably accurately [15–17].
This adds to the interest of investigating whether the approach
can be extended even further.

Most of the industrially used zeolites, e.g., ZSM-5, have
‘hetero’ atoms such as Al, in addition to Si and O atoms, so
there are at least two different types of adsorption sites: strong
and weak. In an earlier study [18], we have shown that in
such zeolites the MS approach may be quantitatively or even
qualitatively inaccurate in predicting binary self-diffusivities.
Neither the MFT nor the MS theory accounts for the topology
of the pore network, in particular for the low connectivity of the
pores in many zeolites. The significance of such a topological
effect has been illustrated before [2, 3].

Although the MS theory was developed to describe
multi-component diffusion, one could argue that it should
be consistent in its formulation of single-component self-
diffusion as a special limiting case. In this work, we therefore
test the MS theory for the case of single-component self-
diffusion in ZSM-5 and compare it to a mean field approach
we proposed earlier [3], as well as to data from dynamic Monte
Carlo simulations performed on different lattice models.

Our study is limited to single-component self-diffusion,
i.e., gradient-less diffusion, or the motion of tracer molecules
surrounded by molecules of identical properties, as described
by Einstein’s equation for Brownian motion:

D = lim
t→∞

〈|�r(t) − �r(0)|2〉
2dt

, (1)

where d is the dimension of the system, and �r(t) the position
of a molecule at time t . Since we do not explicitly include
interatomic potentials, as in molecular dynamics (MD) studies,
the theory is not intended as a predictive, ab initio theory. In
particular, we restrict ourselves to diffusion on a lattice model
of the pore space, and assume that the activation energy for

attempted hops of molecules from site to site is independent
of the occupancy of neighbouring sites. This need not be
the case, and the diffusion behaviour may be considerably
affected by the degree of confinement, and all the various
interactions [19, 20]. Nevertheless, we argue that in order
for a (semi-)analytical theory to work in more complicated
situations, it should at least agree for simple lattice models.
Such models can also be extended to calculate the transport
diffusivity of a component, which results from an imposed
gradient in concentration or in chemical potential. One way
to do this is via the adsorption isotherm and the calculation of
the ‘corrected’ diffusivities. It is the latter that appear in the
Maxwell–Stefan formulation.

2. Dynamic Monte Carlo simulations

Our simple simulation model of the zeolite pore network
consists of a lattice in which the nodes are assumed to be sites
where the diffusing molecules adsorb. Diffusion is activated
and occurs by hops of molecules between neighbouring sites.
Every site can be occupied by one molecule only, and every
molecule occupies a single site.

Three different lattices are considered: the square lattice,
the cubic lattice and the ZSM-5 lattice. ZSM-5 has two
different types of pores: straight channels with an elliptical
cross section, and a set of channels which intersect the straight
pores at right angles and have a circular cross section. The unit
cell used in the simulations is shown in figure 1; notice that
this is the unit cell for the pore space, which is half as large as
the unit cell of ZSM-5 itself [2]. In general, ZSM-5 contains
both strong and weak adsorption sites. The sites present in the
channels are called α sites, and are all assumed to be weakly
adsorbing. The β sites are present at the intersections and may
be either strongly or weakly adsorbing. The fraction of strong
sites present in the lattice is denoted by f . Since silicalite and
ZSM-5 share the same topology, f = 0 represents silicalite,
while f is non-zero for ZSM-5. In case of the square and cubic
lattices only β sites are present. In this study, it is assumed
that the adsorption strengths on the weakly adsorbing α sites
and the weak β sites are the same. It is also assumed that there
is only one site per intersection. Both assumptions can easily
be relaxed.

The attempted hopping times of the molecules (events)
are chosen from an exponential distribution of residence times.
The average residence time on a strong site is denoted as τs and
that on a weak site τw. The self-diffusivity is calculated from
Einstein’s equation. Details of the event-oriented, dynamic
Monte Carlo method are discussed in [2, 3].

3. Analytical methods

3.1. Mean field theory (MFT)

A mean field theory [3] was introduced as a simple method
to analytically estimate self-diffusivities. It assumes that the
coverage of the diffusing molecules on sites of the same type is
the same, and equal to the average occupancy, θ . The approach
is based on calculations of the flows to and from the adsorption
sites, and applying the principle of microscopic reversibility to
flows between neighbouring sites. The diffusivity is predicted
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Figure 1. Lattice representation of ZSM-5 unit cell for the pore
network. Each unit cell contains four α sites that are weakly
adsorbing and two β sites that may be strong or weak.

as a function of the occupancy of the species (θ), the relative
adsorption strengths on the sites (τs/τw) and the fraction of
strong sites ( f ). The two main drawbacks of the MFT as a
predictive theory are that the expression does not include any
information on the topology of the system and also does not
take into account the correlation effects present in the system.
In reality, correlations arise due to the fact that a molecule
hopping from one site to another has the tendency to return to
the original site, since the probability of the previous site being
vacant is higher than that of the other sites. Such correlations
become more significant for low lattice connectivities. The
mean field expression for a cubic lattice is given by [3]

DMFT

D0
= {1 + [(τs/τw) − 1] f }(1 − θ)2

f (1 − θs)[(τs/τw) − 1] + (1 − θ)
, (2)

where θs is the occupancy of the molecules on a strong site and
θ is the total occupancy on all sites, and

D0 = lim
θ→0

D(θ). (3)

The occupancy θs is calculated from the flow equations. The
relation θs f + θw(1 − f ) = θ follows from a simple mass
balance, with θw the occupancy of the molecules on weak
sites. Occupancies are real numbers between 0 and 1, with
1 corresponding to full occupancy of all sites of a given type.

In the case of the ZSM-5 lattice, the occupancies for the
three types of adsorption sites are denoted by θα, θβw and θβs .
The mean field expression in this case is more complex, and is
given by

DMFT

D0
= A

(
B

C

)
, (4)

where

A = f (τs/τw) + 2 − f

2
,

B = 2(1 − θα)[(1 − f )θβw + f θβs/(τs/τw)]

+ 4θα[(1 − f )(1 − θβw) + f (1 − θβs)],

C = 2(1 − θα)[(1 − f )θβw + f θβs/(τs/τw)]

(1 − f )(1 − θβw) + f (1 − θβs)

+
4θα[(1 − f )(1 − θβw) + f (τs/τw)(1 − θβs)]

(1 − θα)
.

The consistency of the MFT was demonstrated in [3] by
dynamic Monte Carlo simulations, with multiple sites, q, per
intersection, showing that, in the limit of q → ∞, the MFT is
exact.
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Figure 2. Normalized self-diffusivities for f = 0. Mean-field
theory (line), MS (ζ = 1) (dashed), dynamic Monte Carlo
simulations (symbols): (a) Cubic lattice—MS (ζ = 2.6) (dotted);
(b) square lattice—MS (ζ = 2) (dotted); (c) ZSM-5 lattice—MS
(ζ = 0.5) (dotted).

3.2. Maxwell–Stefan (MS) formulation

The MS formulation for zeolites was proposed by Krishna [15]
as an intuitive extension of the continuum theory for multi-
component diffusion of bulk fluid mixtures. The driving force
for diffusion is the chemical potential gradient, ∇µ. This
gradient is balanced by the friction between the diffusing
species [15]. The force balance is given as

−∇T,pµi =
∑

j

RT

D– i j
x j (ui − u j ). (5)

The term (RT/D– i j ) is the friction coefficient between
components i and j . x j is the mole fraction of the species
j , and u j is its velocity. Since the molecules also interact
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Figure 3. Normalized self-diffusivities on a cubic lattice.
Mean-field theory (line), MS (ζ = 1) (dashed), dynamic Monte
Carlo simulations (symbols), (τs/τw) = 10: (a) f = 0.2 − MS
(ζ = 2) (dotted), (b) f = 0.5 − MS (ζ = 1.5) (dotted).

with the zeolite matrix, the zeolite itself is also considered a
‘species’ in the above expression.

It has been shown [13, 14] that the Maxwell–Stefan
theory works reasonably well for predicting multi-component
diffusivities in silicalite. However, in the case of ZSM-5
we [18] have already given indications that the theory may
break down in the presence of strong lattice heterogeneities
and when correlations are present in the system. The MS
formulation is based on the dusty gas model [21] for diffusion
in porous media, which is adapted to describe activated
diffusion in microporous materials. In the case of multi-
component diffusion, the MS approach assumes that there are
two types of diffusivities in the system:

• D– i , also known as corrected diffusivity, present due to the
interaction of the diffusing species i with the zeolite;

• D– i j , due to intermolecular interactions between species i
and j .

The self-diffusivity is then calculated by the expression

Di =
(

1

D– i
+

∑
j

θ j

D– i j

)−1

(6)

where j is summed over all species including species i
itself [15]. However, in the case of single component diffusion
of a species (1), the expression reduces to

D ≡ D1 =
(

1

D– 1
+

θ1

D– 11

)−1

, (7)
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Figure 4. Normalized self-diffusivities on a square lattice.
Mean-field theory (line), MS (ζ = 1) (dashed), dynamic Monte
Carlo simulations (symbols), (τs/τw) = 10: (a) f = 0.2 − MS
(ζ = 0.9) (dotted), (b) f = 0.5 − MS (ζ = 0.26) (dotted).

which may serve as a definition for D– 11. The following
relationship was proposed in the case of silicalite [15]:

D– i = D– i(0)

(
1 −

∑
j

θ j

)
= D– i(0)(1 − θ). (8)

It is well known [1] that, at very low loadings,

D– i(0) = D0,i . (9)

All the zeolite–molecule interactions, as well as the lattice
topology, are included in D0,i . When molecule–molecule
interactions are ignored, the occupancy dependence is given by
a mean field approximation. This corresponds to a factor (1 −
θ), representing a simple ‘crowding’ effect of the molecules.

To account for strong sites in zeolites such as ZSM-5 in
a consistent way, the corrected diffusivities are modelled by
a mean-field expression, just like for the case of one type of
sites. The mean-field expression was derived in the previous
section. Thus, we propose more generally:

D– i = DMFT
i . (10)

It can be seen that for the case of f = 0, i.e. silicalite, the
expression reduces to equation (8).

Until very recently, studies using this approach, such
as [14], considered that the self-exchange coefficient D– 11 be
equal to D– 1 when calculating the self-diffusivities. However,

S445



M-O Coppens and V Iyengar

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Occupancy, θ

0 0.2 0.4 0.6 0.8 1

Occupancy, θ

D
/D

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
/D

0

MC

MFT

MS (   = 1)

MS (   = 0.37)ζ
ζ

(a)

(b) MC

MFT

MS (  =1)

MS (  = 0.23)ζ
ζ

Figure 5. Normalized self-diffusivities on a ZSM-5 lattice.
Mean-field theory (line), MS (ζ = 1) (dashed), dynamic Monte
Carlo simulations (symbols), (τs/τw) = 10: (a) f = 0.2 − MS
(ζ = 0.37) (dotted), (b) f = 0.5 − MS (ζ = 0.23) (dotted).

most recent results [16, 17, 20] have suggested that this is not
necessarily the case. For silicalite, the ratio

ζ = D– 11

D– 1
(11)

was shown to be a function that depends on occupancy, θ

[16, 20]. When ζ → ∞, there is no friction between the
diffusing molecules (RT/D– 11 → 0), which corresponds to
the mean-field theory. Here, we check the validity of the MS
approach for the cases ζ = 1 and ζ �= 1, as well as ζ → ∞
(MFT) for the square, cubic and ZSM-5 lattices. Since we
consider a single component system, from now on we use the
notation D = D1 and θ = θ1.

4. Results and discussion

Figure 2 compares single component, dynamic Monte Carlo
simulations with MFT and MS predictions in a cubic (a), square
(b) and ZSM-5 lattice (c) respectively, in the case of one type
of adsorption site ( f = 0). The results are normalized with
respect to the diffusivities D0 at very low occupancy (θ → 0).
For f = 0, the MS expression for self-diffusivity, equation (7),
reduces to

D = D– 1

1 + (θ/ζ )
= D0

(1 − θ)

(1 + θ/ζ )
, (12)

where equation (1) was used. A value for ζ can be chosen
in such a way that an excellent fit is obtained: ζ = 2.6
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Figure 6. Normalized self-diffusivities on a cubic lattice.
Mean-field theory (line), MS (ζ = 1) (dashed), dynamic Monte
Carlo simulations (symbols), (τs/τw) = 100: (a) f = 0.2 − MS
(ζ = 1.6) (dotted), (b) f = 0.5 − MS (ζ = 0.6) (dotted).

for a cubic lattice, ζ = 2 for a square lattice and ζ = 0.5
for silicalite. Note that, without additional theory for ζ , this
fit is merely a lucky coincidence, because topological effects
have not been explicitly included in the MS theory. Using the
original assumption that ζ = 1, the prediction is qualitatively
good, but is the same for all lattices, despite the difference in
topology.

Figure 3 shows similar comparisons for f = 0.2 (a)
and f = 0.5 (b) values and for τs/τw = 10 in the case
of a cubic lattice. Corresponding results for the square and
ZSM-5 lattices are shown in figures 4 and 5 respectively.
Changing the relative adsorption strength has an effect on the
diffusivities, as shown in figures 6 and 7 respectively for the
cubic and ZSM-5 lattices for the case where τs/τw = 100.
As shown previously [3], the deviations from MFT are due to
the correlations that are induced in the system because of the
lattice heterogeneities. The MS (ζ = 1) and MFT predictions
for a cubic and square lattice again coincide since the theories
are topology independent. Via a non-trivial ζ , a very good fit
is obtained for the cubic lattice and ZSM-5, in particular for
τs/τw = 10. Also for a square lattice, a non-trivial ζ leads
to quite a good fit. The importance of correlations can be
clearly seen (ζ 	 ∞). There is a trend in the values of ζ as
a function of τs/τw. Correlations appear stronger in the order:
cubic lattice, square lattice, ZSM-5 (decreasing ζ ). It is to be
noted that the lattice connectivities decrease in the same order:
cubic (Z = 6), square (Z = 4) and ZSM-5 (average Z = 8/3).
For τs/τw = 100, i.e., a significant difference in adsorption
strengths between weak and strong sites, the MS theory with a
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Figure 7. Normalized self-diffusivities on a ZSM-5 lattice.
Mean-field theory (line), MS (ζ = 1) (dashed), dynamic Monte
Carlo simulations (symbols), (τs/τw) = 100: (a) f = 0.2 − MS
(ζ = 0.25) (dotted), (b) f = 0.5 − MS (ζ = 0.06) (dotted).

non-trivial, optimal ζ fits the dynamic MC data very well for
f = 0.2 and rather well for f = 0.5. Note that in these cases
even the MFT (ζ → ∞) gives a qualitatively good picture of
the self-diffusivity for cubic lattices, which have a relatively
high connectivity (Z = 6). For ZSM-5, with τs/τw = 100, the
fits are less good. For f = 0.5 a rather good fit can be obtained
with ζ = 0.06 (implying strong correlations), for high values
of θ . This good fit is a result of a quasi-linear dependence of
D on θ at high occupancies (θ � 0.4), where most strong sites
are occupied ( f = 0.5). At lower f values no good fit for any
ζ can be obtained as shown in figure 7. The MS results mostly
follow the MFT prediction, which is quantitatively inaccurate
at low θ . Figure 8 shows ζ as a function of f for ‘best fits’ for
τs/τw = 10 and 100 for the ZSM-5 lattice. Optimal ζ -values
are lower for τs/τw = 100 and for intermediate values of f , as
a result of strong correlations. A similar figure emerges for the
cubic lattice, although the values of ζ are higher in this case,
because of the higher lattice connectivity.

Until now, we have assumed ζ to be independent of θ , so
as to not introduce even more parameters. Skoulidas et al [16]
and Chempath et al [17], however, showed that in the case
of silicalite or faujasite, ζ is actually a function of occupancy
θ . In the case of ZSM-5, ζ can be seen to change widely
with τs/τw and f (figure 8). In general, ζ is dependent on
lattice heterogeneity, occupancy, the fraction of strong sites,
and the relative adsorption strengths. While it is true that
dynamic Monte Carlo simulations do not capture the chemical
specifics, any theory should at least be consistent with these
lattice simulations, which contain fewer parameters than full
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Figure 8. Best fits of ζ as a function of f for the ZSM-5 lattice for
(τs/τw) = 10, (τs/τw) = 100.

MD simulations. This becomes even clearer when we consider
heterogeneous lattices with f > 0. Here, we have considered
only basic parameters such as topology and the presence of
strong adsorption sites. It is seen that the MS formulation, as
adapted to zeolites, may need additional input to be consistent
for single-component diffusion (see, for example, figure 7).
If there are deviations for the lattice model, it means that
there are more parameters to be considered, in which case all
these would have to be accounted for by the single function ζ .
Unless ζ is predictably dependent on all parameters and is only
weakly dependent on θ , which does not seem to be the case
for the ZSM-5 lattice, the MS formulation cannot be trivially
extended to zeolites, without explicit knowledge of D– i i . On
the other hand, this does not rule out that the theory may be
applied to multi-component mixtures, when single-component
parameters are determined by simulation. There is still a need
to derive a theoretical expression for ζ , as this parameter is now
empirically determined. Another possibility is to use different
ways to calculate self-diffusivities, for example, based on
correlation functions.

5. Conclusion

Several studies demonstrate the success of the Maxwell–Stefan
formulation in predicting multi-component diffusivities from
single-component values [14–17]. In our study, we addressed
the limiting case of single-component self-diffusion, which
corresponds to the diffusion of a tracer in the zeolite, amongst
molecules of an indistinguishable species. The zeolite pore
space was represented by a lattice model. Unlike molecular
dynamics studies, dynamic Monte Carlo simulations using
a lattice model are not predictive for diffusion in zeolites,
but they allow us to investigate some of the most essential
ingredients of the diffusion behaviour. Only self-diffusion
was considered here, but lattice models are equally useful to
simulate corrected and transport diffusion.

Our study was aimed at investigating the self-consistency
of the Maxwell–Stefan formulation, as applied to zeolites [12].
Results based on the Maxwell–Stefan formulation were
compared to dynamic Monte Carlo simulations of self-
diffusion on heterogeneous cubic, square and ZSM-5 lattices,
with both strong and weak adsorption sites. This distribution of
adsorption sites introduces heterogeneities that are important
in many applications but are typically not included in studies
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of diffusion in zeolites. Lattice models are particularly
useful to investigate such effects. It was seen that
the ratio of the self-exchange coefficient to the corrected
diffusivity, ζ , plays an important role in the MS expression.
Confirming and extending earlier studies [16, 17, 20], the
MS formulation should involve a factor ζ �= 1, to include
lattice heterogeneities. Different values of ζ yield better
agreement with the dynamic Monte Carlo results, but there
is as yet no coherent theory behind the dependence of ζ

on occupancy, connectivity and the heterogeneity due to the
different adsorption sites.
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