
Compression Rate
Optimisation for Streaming
of Underwater Video

MSc Thesis
Embedded Systems

Daniël Panis
2023

C O M P R E S S I O N R AT E O P T I M I S AT I O N F O R S T R E A M I N G O F
U N D E R W AT E R V I D E O

A thesis submitted to the Delft University of Technology in partial fulfilment of the
requirements for the degree of

Master of Science in Embedded Systems

by

Daniël Panis

February 2023

Daniël Panis: Compression Rate Optimisation for Streaming of Underwater Video (2023)

The work in this thesis was made in the:

Embedded and Networked Systems group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and
Computer Science
Delft University of Technology

Supervisors: Prof.dr. Koen Langendoen
ir. Igor Dorrestijn

Co-reader: Prof.dr.ir. Inald Lagendijk

A B S T R A C T

Compression of underwater video data can be a challenging task due to the unique
environment of the underwater world. Low visibility, high noise levels, and a spe-
cific colour range all contribute to less efficient video encoding. This research aims
to investigate ways to improve the video compression rate of Fugro’s underwater
Remote Operated Vehicle (ROV) for efficient transmission of video data over limited
bandwidth satellite connections.

The Fugro project started by developing a streaming application for a ROV that
locally processes and encodes the video signal from six onboard surround cameras.
After the development of this application, ways to improve the compression rate
were investigated.

Video codecs often exploit the correlation between neighbouring pixels. That is,
a more homogeneous image in both space and time would require fewer bits to
encode. When light scatters on small particles, such as plankton or sediment, it can
create noise in the form of grains or speckles in the video. This noise can reduce
spatial and temporal correlation in underwater video, which can negatively affect
the encoding process.

In this research, methods to filter the video from this noise are investigated and
optimised for compression efficiency. Therefore, two temporal filters were devel-
oped to remove noise from underwater videos: A weighted moving average filter
and a median filter.

The filters were evaluated using two main metrics: computation time and com-
pression rate improvement. The performance of the filters was evaluated on the
basis of the improvement in compression rate, where the unfiltered compressed
video was taken as the baseline. The temporal filter was able to achieve a signif-
icant reduction in noise and motion blur in the video sequences while preserving
the sharpness of the frames. By increasing the temporal correlation with the tem-
poral filters, the video can be compressed up to 30% more efficiently with respect
to the unfiltered video. The results also showed that the filtered videos were of
comparable or higher quality than the unfiltered video.

Temporal filters are effective in improving the compression rate and the quality
of a video by reducing noise and other unwanted artefacts. They are, however,
computationally inefficient in their current form, making it difficult to apply them
in real-time applications in their current form.

v

C O N T E N T S

1 introduction 1

1.1 Context . 1

1.1.1 Fugro’s remote operated vehicle 1

1.2 Challenges . 2

1.2.1 Low visibility . 2

1.2.2 Colour . 2

1.2.3 Noise . 3

1.3 Problem statement and research questions 3

1.4 Solutions and contributions . 3

1.5 Thesis outline . 4

2 background 5

2.1 Video encoding . 5

2.1.1 Coding Standards . 5

2.1.2 Fundamental encoding techniques 6

2.2 Related work . 8

2.2.1 Adaptive bitrate encoding . 9

2.2.2 Video preprocessing . 9

2.3 Research gap . 10

3 streaming application design 11

3.1 Scope . 11

3.2 Tools and requirements . 11

3.2.1 Requirements . 11

3.2.2 Hardware . 12

3.2.3 GStreamer media pipeline . 12

3.3 Software design . 12

3.3.1 GStreamer pipeline . 13

3.3.2 RTSP server . 14

3.3.3 Implementation . 15

4 compression rate optimisation analysis 17

4.1 Denoising underwater video . 17

4.2 Motion compensation . 18

4.2.1 Global motion estimation . 18

4.2.2 Local motion estimation . 21

4.3 Temporal filter . 23

4.3.1 Moving average filter . 23

4.3.2 Median filter . 25

5 results 27

5.1 Experimental setup . 27

5.2 Configurable parameters . 28

5.2.1 Three-step search . 28

5.2.2 Affine transformation . 29

5.2.3 Moving average filter . 29

5.3 Window size . 30

5.4 Temporal filter results . 31

5.4.1 Compression rate improvement 32

5.4.2 Computation time . 33

5.4.3 Visual quality . 34

6 discussion 37

6.1 Underwater video . 37

6.2 Motion compensation . 37

6.3 Temporal filters . 38

vii

viii contents

7 conclusion 41

7.1 Method . 41

7.1.1 Noise reduction in underwater video 41

7.2 Compression rate improvement . 42

7.3 Computation time and viewing quality 42

7.4 Recommendations . 42

a arithmetic coding example 49

b kalman filter initial state values 51

L I S T O F F I G U R E S

Figure 1.1 (a) Underwater remote operated vehicle, (b) Uncrewed sur-
face vessel . 1

Figure 1.2 Marine snow . 3

Figure 2.1 (a) current frame, (b) previous frame, (c) inverted residual
frame . 7

Figure 2.2 Inter-frame coding . 7

Figure 3.1 Schematic view of GStreamer pipeline used for application . 13

Figure 3.2 Schematic view of GStreamer pipeline after splitting in two
sections. 15

Figure 4.1 Affine transformations, with (a) translate, (b) rotate, (c) scale,
(D) shear . 19

Figure 4.2 Three Step Search, with (a) initial search, (b) refined search,
(c) final search. 22

Figure 5.1 Affect of blocksize on computation time [ms] and size [kB]
after compression. 28

Figure 5.2 The average size per frame [kB] after compression as a func-
tion of gain factor α. 30

Figure 5.3 Average size per frame after filtering and compression. The
blue line indicates the average size of the unfiltered com-
pressed sample. The colors represent the different motion
compensation and filtering combinations, where orange is
affine transformation motion compensation with the moving
average filter, green is the affine transformation motion com-
pensation with the median filter, red is the three-step search
motion compensation with the moving average filter, and
purple is the three-step search motion compensation with
the median filter. 31

Figure 5.4 Compression rate improvement with respect to the unfiltered
baseline. The percentage is an average of the videos A, B, C,
and D. The colors represent the different motion compensa-
tion and filtering combinations, where orange is affine trans-
formation motion compensation with the moving average fil-
ter, green is the affine transformation motion compensation
with the median filter, red is the three-step search motion
compensation with the moving average filter, and purple is
the three-step search motion compensation with the median
filter. 32

Figure 5.5 Average computation time per frame for video C. AT MA
means affine transformation motion compensation with the
moving average filter, AT MED is the affine transformation
motion compensation with the median filter, TSS WA is the
three-step search motion compensation with the moving av-
erage filter, and TSS MED is the three-step search motion
compensation with the median filter. The errorbars indicate
the standard deviation of the measurement data sets. 33

Figure 5.6 Zoomed underwater video snapshot. 34

ix

L I S T O F TA B L E S

Table 5.1 Improvement [%] of compression rate with respect to the un-
filtered baseline. 32

Table A.1 Symbol probabilities and their range 49

Table A.2 Arithmetic encoding procedure 49

Table A.3 Arithmetic decoding procedure 49

Table B.1 Kalman filter initial state values 51

xi

A C R O N Y M S

ROV Remote Operated Vehicle . v

USV Uncrewed Surface Vessel . 1

bps bits per second . 5

AVC Advanced Video Coding . 5

ITU International Telecommunications Union 5

MPEG Motion Picture Experts Group . 5

HEVC High Efficiency Video Coding . 5

JCT-VC Joint Collaborative Team on Video Coding 5

SAO sample adaptive offset . 5

AQ adaptive quantisation . 5

DPCM differential pulse code modulation . 6

BMM block matching method . 7

VLC variable length coded . 8

UAV unmanned aerial vehicle . 9

DASH Dynamic Adaptive Streaming over HTTP 9

GMSL Gigabit Multimedia Serial Link . 12

ABR Adaptive bitrate . 9

RTSP Real-Time Streaming Protocol . 12

V4L2 Video4Linux2 . 13

RTP Real-Time Transport Protocol . 13

TSS Three Step Search . 21

DCT discrete cosine transform . 6

MAD Mean Absolute Difference . 22

ECC Enhanced Correlation Coefficient . 18

xiii

1 I N T R O D U C T I O N

1.1 context

Robotics technology has revolutionised manufacturing, design, and communica-
tion across industries [1]. In particular, video data has become an essential part of
the robotics sensing system because of its ability to provide high-definition images
and real-time visual feedback about the environment and the robot’s surroundings.
These data can be used for navigation, path planning, and to detect objects and
track their movement, so that they can be operated from a remote location or even
fully autonomously.

Today, such remote-operated systems are often equipped with even more video
cameras, while the quality of these cameras continues to increase. This requires
more local storage space and a larger amount of bandwidth to transmit these video
data. Especially the last can be problematic in remote areas, where these data
typically get transmitted wirelessly via a satellite connection. The amount of data
that can be transmitted in real time over a given amount of bandwidth is limited by
the size of the transmitter and the type of subscription in such systems. This factor
drives the need for more efficient video compression and field-specific solutions.

1.1.1 Fugro’s remote operated vehicle

This research will focus on optimising the compression rate for Fugro’s underwater
ROV (Figure 1.1 a). This ROV is designed to be deployed from an Uncrewed Sur-
face Vessel (USV) (Figure 1.1 b). This innovative technology is specifically used to
conduct underwater structure inspections in remote locations and is designed to
improve offshore operations through its remote and autonomous capabilities. It is a
compact, highly flexible, and extremely powerful electric ROV, capable of operating
at a depth of 450 metres.

(a) (b)

Figure 1.1: (a) Underwater remote operated vehicle, (b) Uncrewed surface vessel

1

2 introduction

The ROV is equipped with a sophisticated array of sensors that allows it to capture
detailed data and images underwater. The collected data are then transmitted to
the USV through a cable. From the USV, the data are streamed in real-time via a sat-
telite connection, allowing operators on shore to monitor and analyse the vehicle’s
progress. Additionally, the vehicle is equipped with a robotic arm that can be used
to perform precise operations, such as collecting samples and manipulating objects.

The ROV offers a solution for performing submerged structure inspections, such
as oil and gas platforms, wind turbines, and pipelines. Furthermore, the vehicle can
be used to carry out research and exploration activities in areas difficult to access.
The vehicle is also highly reliable and robust and can operate in harsh conditions,
such as strong currents and low visibility. The ROV provides a safe and efficient way
to inspect submerged structures and can be used to reduce the risk of human error.
It is also a cost-effective solution, as it eliminates the need for expensive divers and
manned vessels.

Fugro’s latest surround vision system featuring embedded processing power will
be embedded within the ROV. This high-fidelity vision system enables visual lo-
calisation, point cloud generation, target tracking, augmented reality, and will aid
in future ROV autonomous navigation. The system will consist of six cameras that
cover all angles around the ROV. To transmit the video data through the limited
bandwidth satellite connection, it is essential to process and compress the video
signal as efficiently as possible.

1.2 challenges
Video compression has a long history and is well understood, but compression of
underwater videos remains a challenging task due to the unique environment of
the underwater world. The lack of light, the lack of colours, the dynamic move-
ment, and the slow shutter speeds all contribute to the difficulty of efficient video
compression.

1.2.1 Low visibility

Underwater video is often characterised by low visibility due to the number of
suspended particles in the water. These particles reduce the amount of light that
reaches the camera and scatter the remaining light, resulting in a low-contrast video.
This makes it difficult to distinguish objects in the video, making it harder to get
good video quality with traditional compression techniques. Even with high bit
rates, there may be significant compression artefacts in the video due to low con-
trast [2]. Low light in underwater environments makes it difficult to capture clear
images; therefore, images are often blurry or distorted.

1.2.2 Colour

As light passes through the water, it changes in intensity and wavelength spectrum,
resulting in a different colour than that seen on the surface. This means that un-
derwater video compression must take into account the different colour palette of
underwater objects to accurately represent them in the compressed video [3]. Fur-
thermore, underwater video compression must also take into account the rapid
changes in light and colour that can occur underwater. As light changes due to the
movement of water, the colours of objects in the video may change rapidly [4]. This
means that the video compression algorithm must be able to accurately represent
these changes to maintain a high level of quality in the resulting compressed video.

1.3 problem statement and research questions 3

1.2.3 Noise

Underwater video is often disturbed by so-called ”marine snow” (Figure 1.2). Ma-
rine snow consists of an aggregation of organic detritus, microorganisms, and clay
minerals [5]. These particles are called marine snow because they have a visual
resemblance to snowflakes falling from the sky. Although marine snow has many
vital applications for marine life, in underwater video it can also be considered as
noise. This noise is caused by the scattering of light on these particles, which can
make it difficult to accurately capture the details of objects in the video, resulting
in a loss of quality.

Figure 1.2: Marine snow

Video codecs often exploit the correlation between pixels, both within a single
frame (spatial) and between pixels in successive frames (temporal). That is, a more
homogeneous image in both space and time would require fewer bits to encode. The
presence of marine snow not only reduces the quality of the video, but also causes
an attenuated spatial and temporal correlation, resulting in a lower performance of
the compression algorithms [6].

1.3 problem statement and research questions
This research will focus on optimising the compression rate for one of Fugro’s un-
derwater Remotely Operated Vehicles. The challenge of this task is compounded
by the unique environment of the underwater world, which is characterised by low
visibility, colour changes, and noise. The goal of this research is to investigate ways
to improve the video compression rate of Fugro’s ROVs for efficient transmission
of video data over limited bandwidth satellite connections. The following research
questions are being investigated in this thesis:

1. What technique can be used to reduce the amount of bandwidth required to
transmit underwater video data wirelessly over a satellite connection?

2. How much bandwidth can be saved using this technique?

3. How does this technique affect other constraints, such as computation time
and video quality?

1.4 solutions and contributions
In order to answer the research questions, first a literature study was conducted to
determine what techniques were already available, providing a baseline for further

4 introduction

development. After extensive research, several filters were developed and tested
to reduce noise and optimise the compression rate. Two types of motion compen-
sation algorithms were compared for improving computational efficiency, quality,
and compression rate. Experiments were conducted to compare the performance of
the proposed filters with each other. Furthermore, an application for Fugro’s ROV

was developed and tested to stream the data of six video cameras in real time.

1.5 thesis outline
In Chapter 2, background information about video compression is described. There,
the fundamental techniques for the encoding of video signals are explained. Also,
existing related research is analysed and described in this chapter. The design
and performance of the streaming application developed for Fugro are described
in Chapter 3. Chapter 4 describes the optimisation of the compression rate by
denoising the video signal using specific filters. In Chapter 5, the results of the
compression rate optimisation filters are presented and in Chapter 7 the results of
this research are discussed and concluded. Future recommendations are also given
in Chapter 7.

2 B A C KG R O U N D

In this chapter, the background is presented, where the tools and concepts used
to analyse the problems stated in Section 1.3 are described. In Section 2.1, the
fundamentals of video encoding are explained, where information is given on some
of the most widely used video encoding standards and the primary techniques of
video encoding are briefly explained. Section 2.2 gives information on relevant
research done by others on this subject. Finally, Section 2.3 discusses the research
gap that this research focusses on.

2.1 video encoding
Video encoding is the process of converting video signals from one format to an-
other for efficient transmission or storage. It involves compressing the video data
to reduce its size, while maintaining its quality as much as possible. This is typi-
cally done using a specific set of standards, which dictate the specific methods and
algorithms used to compress and encode the video data. There are several different
video encoding standards that are used for this purpose, each with its own unique
set of features and capabilities.

A key aspect of video encoding standards is the bitrate, which is the rate at
which the video is encoded. The bitrate is expressed in bits per second (bps) and
is determined by the resolution of the video, the frame rate, and the type of video
encoding used. A higher bitrate will result in higher quality video, but it will also
use more bandwidth, which can increase the cost of streaming services.

2.1.1 Coding Standards

One of the most widely used video encoding standards is H.264, also known as
MPEG-4 Part 10 or Advanced Video Coding (AVC). It was developed by the International
Telecommunications Union (ITU) and the Motion Picture Experts Group (MPEG) [7].
H.264 is a relatively old standard, having been released in 2003, but is still widely
used due to its efficiency and compatibility with many devices. This standard is
commonly used for a variety of applications, including streaming video, video con-
ferencing, and high-definition television.

H.265, also known as High Efficiency Video Coding (HEVC), is a more recent
video encoding standard that was developed by the Joint Collaborative Team on
Video Coding (JCT-VC) [8]. It uses advanced techniques such as sample adaptive
offset (SAO) and adaptive quantisation (AQ) to achieve even higher levels of com-
pression than H.264, making it ideal for applications where bandwidth is limited.
H.265 is supported by many newer devices, including high-end smartphones and
TVs, and is used by some streaming services for its 4K content.

In addition to H.264 and H.265, there are several other video encoding standards
that are commonly used. The VP9 standard, developed by Google, is widely used
to stream video over the internet. It uses a variety of advanced techniques, includ-
ing interframe prediction and multiresolution encoding, to achieve high levels of

5

6 background

compression while maintaining good video quality [9]. The AV1 standard, devel-
oped by the Alliance for Open Media, is a royalty-free successor to VP9 that is also
gaining popularity for streaming video over the Internet [10].

In general, video encoding standards play a crucial role in allowing us to effi-
ciently transmit and store digital video. The development of these standards con-
tinues to evolve with the goal of providing higher video quality at lower bit rates.

2.1.2 Fundamental encoding techniques

Raw video signal consists of the data for each pixel in each separate frame. With a
resolution of 1920x1080, that is, approximately 5 MB per frame. At 30 frames per
second, this builds up to about 150 MB per second. However, video analysis has
shown that there is a strong correlation between both spatial elements within one
frame and temporal elements in successive frames. Most modern video compres-
sion techniques exploit these correlation features by reducing statistical redundancy.
With these techniques, codecs manage to losslessly compress the video size by a fac-
tor of 5 to 12 or even with a factor of 20 to 200 with lossy compression [11]. There are
three redundancy reduction principles that are fundamental for almost any video
codec [12]:

1. Spatial redundancy reduction

2. Temporal redundancy reduction

3. Entropy encoding

These are the principles that will also be exploited in this research.

Spatial redundancy reduction

Spatial redundancy reduction focusses on the encoding and decoding of individual
frames. Within one frame, there are usually large areas of pixels that are more or
less the same. Transform coding and differential pulse code modulation (DPCM)
are techniques that exploit this feature. DPCM uses a prediction of the value of the
neighbouring pixel, based on the value of the previous pixel [13]. This prediction
will be subtracted from the actual pixel value to obtain the prediction error. Due to
spatial correlation, this prediction error is usually much smaller. To save bandwidth,
only the prediction error will be transmitted. In the receiver, the prediction error
can be added to the predicted pixel value to restore the original frame without loss
of information.

Transform coding exploits spatial correlation by mapping pixels from the spatial
domain to another (transform) domain. One of the most commonly used transforms
is the discrete cosine transform (DCT). The DCT transforms the image into the fre-
quency domain. Frames taken from natural scenes have the characteristic that the
image energy is concentrated mainly in the low-frequency region [12]. This results
in fewer transform coefficients. To further compress the image, the transform co-
efficients can be quantised, where the less significant coefficients will be discarded.
This does not significantly affect image quality, but is, however, a lossy technique,
since the original values cannot be recovered.

Temporal redundancy reduction

Temporal redundancy reduction focusses on reducing redundancy in successive
frames. Since there are usually little to no changes in successive frames, it seems
efficient to transmit only the difference in successive frames rather than the whole

2.1 video encoding 7

frame. This is done by creating a prediction of the current frame based on the previ-
ous frames. Then the predicted frame is subtracted from the current frame, leaving
you with the residual frame [13]. Figure 2.1 displays the current frame, the previous
frame, and the inverted residual frame of the two.

(a) (b) (c)

Figure 2.1: (a) current frame, (b) previous frame, (c) inverted residual frame

To reduce the bitrate as much as possible, it is important to make an accurate
prediction. When the prediction frame is accurate, there will be little data in the
residual frame and after compression the frame size will be significantly reduced.
When the frame is received, the decoder has to reverse the process by making the
same prediction and adding the residual frame to the predicted frame [13]. This
technique is called interframe coding (Figure 2.2).

Figure 2.2: Inter-frame coding

Interframe coding is a very efficient technique for frames with little difference.
However, when there is more difference between frames, caused by movement in
the scene, this technique does not perform well. When frames are taken from scenes
with more movement, a better prediction can be achieved by compensating for the
motion first. A motion-compensated prediction usually consists of two steps:

1. Motion estimation is performed by comparing blocks of pixels from the current
frame with neighbouring pixels from the previous frame, until a best match
is found. One of the most basic techniques for motion estimation is the block
matching method (BMM) [14]. Here, the frame is divided into blocks of M × N
pixels, which will be displaced by a maximum of w pixels until the best match
is found.

2. Motion compensation subtracts the region of the best match from the current
frame to produce the residual frame.

To reconstruct the frame in the decoder, knowledge of the displacement is necessary
on the receiving side. Therefore, displacement is usually stored as a motion vector
and is also transmitted.

Entropy coding

Entropy coding is usually the final process in data encoding and is all about repre-
senting the data in the most compact form. A simple example would be to trans-

8 background

mit a sequence of symbols where many successive symbols are equal, as in Exam-
ple 2.1.1. A more compact form of transmitting such a sequence would be, instead
of transmitting every single symbol separately, to transmit the symbol followed by
the number of successive occurrences. This is called run-length encoding.

Example 2.1.1.
Input sequence:
[2, 2, 2, 2, 2, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 8, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6]
Encoded sequence:
[(2, 5)(9, 3)(3, 8)(8, 6)(5, 8)(6, 3)]

For this particular example, this seems like an effective compression method. How-
ever, when there is suddenly more variation in the sequence, run-length encoding
leads to a larger file size.

A variant of run-length coding is run-level coding. This method is effective when
encoding sequences with large numbers of successive zeros. In run-level encoding,
every nonzero coefficient is represented together with the number of zeros preced-
ing it. Since after transformation the image largely consists of zeros, this is an
effective method in image compression.

To further reduce file size, the image coefficients are variable length coded (VLC).
VLC represents the more occurring symbols in short code words, while representing
the fewer occurring symbols in longer code words. The average number of bits
needed to encode every code word can be calculated using Shannon’s entropy [15],
described in Equation (2.1):

H = −
n

∑
i−1

pi log2(pi) (2.1)

Here H is the entropy that can be translated as the average level of information or
the average number of bits needed to describe the information. pi is the probability
of the occurrence of a specific symbol. The minimum number of bits needed to
describe a single symbol is called self-information I(x) and depends solely on the
probability of occurrence p(x). To achieve maximum compression in VLC, the num-
ber of bits used to encode a symbol must be equal to the self-information described
in Equation (2.2).

I(x) = − log2(p(x)) = log2(1/p(x)) (2.2)

Arithmetic coding is one of the most outstanding methods for achieving maximum
compression [16]. An arithmetic encoder divides the data into sequences of symbols
and encodes every sequence into a single fractional number. The length of the
sequence determines the precision of the fractional number. Appendix A shows an
example of arithmetic coding.

2.2 related work
Many recent studies have already focused on reducing the bitrate of remote oper-
ating systems. The techniques proposed in the literature for optimisation of the
bitrate in video encoding can be classified into two main categories. The first cate-
gory mainly focusses on adapting the bitrate in such a way that the average overal
bitrate is reduced. The second category focusses on preprocessing the video signal
in such a way that the full performance of the encoders can be enabled. As de-
scribed in Section 1.2, the lack of light, colours, and dynamic movement and the
presence of noise in underwater video can all lead to decreased compression effi-
ciency. Restoring the colour or removing the noise before encoding might result in
more efficient compression.

2.2 related work 9

2.2.1 Adaptive bitrate encoding

Adaptive bitrate (ABR) is a method of streaming media in which the bitrate of the
video source is automatically adjusted according to the available bandwidth. ABR

can be achieved using many different methods. Zvezdakov et al. [17] proposes a
method of video encoding adapted to video content. Zvezdakov et al. are studying
the selection of sufficient presets with new data sets to achieve maximum compres-
sion speed. They also proposed a method to predict the best coding parameters
for the input video from a pre-defined list. The proposed methodology is indepen-
dent of architecture and implementation and applies to various codecs and coding
standards. Their experimental comparisons with real user video showed a 4–15%
reduction in bitrate compared to standard presets and a similar compression quality
and encoding time.

Another method is to adapt the bitrate according to the available signal. In the
work of Wang et al. [18], the challenges and design of unmanned aerial vehicle (UAV)
streaming in various applications, such as disaster response, surveillance, and gam-
ing, are discussed. The proposed system design consists of two modules: an adap-
tive video streaming module, which adjusts video bitrates according to the drone’s
location and the receiver playback buffer status, and a content-aware compression
module, which only transmits frames with target objects of interest. Preliminary ex-
periments suggest that the proposed system outperforms conventional throughput-
adaptive video streaming in terms of video freezing time and the amount of high-
bitrate video segments received.

The work of Concolato et al. [19] presents a new method for tile-based adap-
tive delivery of HEVC tiled videos using MPEG-Dynamic Adaptive Streaming over
HTTP (DASH). This method allows for streaming of high-resolution videos over
bandwidth-constrained networks, by streaming only a tile or combination of tiles
of interest, or by adaptively varying the quality of each tile. The experiment showed
that the use of 9 or 25 tiles resulted in overheads of at most 3.5% and 7.3%, respec-
tively, compared to when tiles were not used. This approach opens the way to new
streaming possibilities and further research into the design of tile-based adaptive
algorithms.

2.2.2 Video preprocessing

Many methods have already been suggested to improve colour in underwater video.
In the work of Ancuti et al. [20], a novel approach is presented to remove haze from
underwater images based on a single image captured with a conventional camera.
Their approach relies on gamma correction and sharpening to deal with the hazy
nature of the white-balanced image. This approach generally results in good per-
ceptual quality, with significant enhancement of the global contrast, the colour, and
the image structure details.

Methods for denoising underwater video have also been suggested. In the work
of Banerjee et al. [21], a probabilistic approach to remove the so-called marine snow
from underwater images is presented. The proposed method relies only on the
luma channel of the image. A sliding window traverses this channel and calculates
the probability of high luminance for every region of the image. If the region has
a high variance in the pixel values and the probability is high, the high-luminance
pixels are replaced by the median of the region. This method appears to be effective
in reducing the effect of marine snow with an accuracy of more than 98%, while
maintaining the true features of the image intact.

10 background

Although many methods to enhance underwater video and images have already
been suggested, it seems that less research has been done on how this affects the
compression rate. In the work by Rakhshanfar et al. [22] a temporal video denoiza-
tion algorithm is presented that aims to reduce signal-dependent noise. Although
this algorithm is not specifically developed to improve the compression rate, they
mention that their algorithm has the potential to be used in denoiser-codec combina-
tions to reduce the bitrate in noisy video. This algorithm uses temporal information
to estimate motion errors and to better estimate the signal-to-noise ratios of each
pixel. This is done using block motion estimation and then taking a weighted av-
erage of the pixel values. Smoothing filters are applied to further reduce blocking
artefacts. Experiments have shown that the algorithm has promising results while
also being significantly faster than other state-of-the-art temporal filters.

2.3 research gap
There are many techniques to improve the perception of underwater video by pre-
processing the video signal. These techniques can help remove noise from the video,
as well as improve contrast, sharpness, and colour saturation. While much research
has been done on the effects of pre-processing on the perception of underwater
video, less research has been done on how this affects the compression rate.

Given the importance of improving the compression rate of underwater video,
investigating more about improving the compression rate by video pre-processing
seems to be an interesting research opportunity. In particular, more research is
needed to understand the effects of reducing the noise caused by marine snow par-
ticles on the compression rate and video quality.

Marine snow has been found to negatively affect the video quality of underwater
videos. Marine snow particles can obstruct the view of the camera and can distort
the image or make it difficult to view the image. In addition to the negative ef-
fect on video quality, marine snow could negatively affect the video compression
rate. Video codecs often exploit the correlation between pixels, both within a single
frame (spatial) and between pixels in successive frames (temporal). The presence of
marine snow causes an attenuated spatial and temporal correlation, potentially re-
sulting in lower performance of compression algorithms. As Rakhshanfar et al. [22]
also pointed out, denoising the video signal by means of a temporal filter potentially
improves the compression rate. Therefore, this research will focus on improving the
compression rate by reducing the noise caused by the marine snow effect.

3 S T R E A M I N G A P P L I C AT I O N D E S I G N

In this chapter, the design of the streaming application developed for Fugro is
explained. Section 3.1 describes the scope of the project. In Section 3.2, the re-
quirements of the application and the available tools are explained, and Section 3.3
describes the software design for the application.

3.1 scope

The streaming application is being developed for use on Fugro’s Remote Operated
Vehicles (ROV’s). The ROV is a tethered underwater vehicle equipped with video
cameras, sonars, pipe tracking, navigation, and positioning sensors. ROVs inspect
subsea system pipelines and other subsea equipment at depths of water where
divers cannot operate, while manipulators and intervention tools enable them to
carry out project-specific tasks.

At this moment, the ROV’s are controlled from an on-shore station, where each
ROV is controlled by an operator. Six additional surround cameras will be installed
on the ROV to give the operator a better view of its surroundings. This project
focusses on the development of a streaming application that locally processes and
encodes the video signal from the six surround cameras.

3.2 tools and requirements

Each of the cameras will cover one side of the ROV. The video signal is collected
on a locally installed processor, where it can be pre-processed and encoded. The
encoded signal will be streamed to a remote-operated surface vessel via a wired
connection, from where it will be transmitted to the on-shore control station via
satellite. Due to the limited bandwidth of the satellite connection (5-30 Mb/s), it is
essential to encode the video signal as efficiently as possible.

3.2.1 Requirements

The video signal must be encoded in a way that meets the limitations of the satellite
bandwidth. Most of the time, only a couple of cameras capture significant data,
while the other cameras capture only the emptiness of the ocean. This means that it
seems inefficient to always divide the bandwidth between the video signals equally.
To save bandwidth, there should be a possibility to control the bitrate of each in-
dividual video signal manually. In this way, the most significant signals can be
streamed with a higher bitrate than less significant signals.

11

12 streaming application design

3.2.2 Hardware

GMSL cameras

The ROV will be equipped with six NileCAM25 GMSL cameras [23]. Gigabit Mul-
timedia Serial Link (GMSL) is a technology that allows for the digital transmission
of video signals without compression. The GMSL standard is a high speed point-to-
point connection that is used in embedded, automotive, and autonomous driving
applications. It can carry video, data, and power through a small and light coaxial
cable [24].

NVIDIA Jetson AGX Xavier

A Jetson AGX Xavier will be used to process and encode the video signal. The
Jetson AGX Xavier is a high-end single-board System-on-Module, designed for arti-
ficial intelligence and robotics applications. The Xavier is the second most powerful
board in the Jetson family and is designed for applications that require the highest
performance. It features an eight-core NVIDIA Carmel Arm processor, 512 CUDA
cores, and 64 Tensor cores. It also has 32GB of LPDDR4 memory, 32GB of eMMC
storage, and four 4K H.264/H.265 video encoders [25]. A camera platform expan-
sion board is connected to the Jetson to connect up to eight GMSL cameras [26].

3.2.3 GStreamer media pipeline

To process video signals locally, the GStreamer software libraries [27] were used.
GStreamer is a powerful framework for handling multimedia pipelines. The frame-
work is written in the C programming language and is designed to work with a vari-
ety of operating systems. Some of the most popular applications that use GStreamer
include video editors, media players, and streaming media servers. GStreamer can
also be used to create custom applications. The tool comes with a set of plug-ins that
can be used to add functionality to an application. For example, there are plugins
to handle different types of media data, manage pipelines, and provide graphical
user interfaces. The tool is also extensible, which means that new plug-ins can be
added to add new functionality.

3.3 software design
The application is designed to stream video content from multiple onboard cameras
on the ROV in real-time. The main goal of the application is to provide a reliable and
efficient way of streaming the video data to remote operators, while also allowing
them to remotely control certain parameters of the encoder.

To achieve this goal, the application uses the Gstreamer library to create a media
pipeline that can process and stream video frames from the cameras. The pipeline
includes elements for encoding the video, multiplexing the streams from multiple
cameras, and sending the resulting stream to a Real-Time Streaming Protocol (RTSP)
server.

The RTSP server, also built using Gstreamer, is responsible for receiving video
streams and handling RTSP commands from clients. It manages client connections
and forwards RTSP commands to the appropriate components of the application.

In general, the design of the application is focused on being simple, efficient, and
easy to use. The pipeline handles all video processing and streaming, while the
RTSP server handles network communication and authentication. This allows the

3.3 software design 13

user to log into the RTSP server, view video streams, and remotely control certain
parameters of the encoder and ROV.

3.3.1 GStreamer pipeline

The GStreamer pipeline is the core component of the application, responsible for
processing and streaming video frames from the onboard cameras. The pipeline
is built using the Gstreamer library and consists of several elements, graphically
displayed in Figure 3.1, that perform specific tasks.

Figure 3.1: Schematic view of GStreamer pipeline used for application

The pipeline starts with the v4l2src element, which is a Gstreamer element that
allows access to video capture devices such as webcams or cameras connected to
the system through the Video4Linux2 (V4L2) interface. This element is responsible
for capturing video frames from the onboard cameras and passing them to the next
element in the pipeline. The v4l2src element can be configured with various prop-
erties, such as the resolution, frame rate and pixel format of the video device.

The next element in the pipeline is the nvvidconv element, which is a Gstreamer
element that performs video format conversion using the NVIDIA hardware video
codecs. This element receives the video frames from the v4l2src element, converts
the video format, and passes it to the next element. This element uses the NVIDIA
hardware video codecs to perform the conversion, which provides a significant per-
formance boost compared to software-based conversion. The nvvidconv element
can be configured with various properties, such as output resolution, pixel format,
and colour space.

The element nvv4l2h264enc is a Gstreamer element that encodes video frames in
H.264 format using the NVIDIA hardware video codecs. This element receives the
video frames from the nvvidconv element, encodes them to the H.264 format, and
passes them on to the next element in the pipeline. H.264 is a widely supported
video codec that provides a good balance between video quality and compression.
The nvv4l2h264enc element can be configured with various properties, such as out-
put bitrate, intra-refresh mode, and profile.

Finally, the rtph264pay element is a Gstreamer element that takes H.264 encoded
video frames and packages them into Real-Time Transport Protocol (RTP) packets.
This element receives the video frames from the nvv4l2h264enc element, packages
them into RTP packets, and sends them to the RTSP server. RTP is a standard proto-
col for delivering multimedia content over IP networks and is commonly used to
stream video and audio. The rtph264pay element can be configured with various
properties, such as maximum packet size, timestamp offset, and payload type.

The pipeline is designed to be highly modular, allowing for easy modification
and customisation. Each element of the pipeline performs a specific task, and the
pipeline can be extended or modified by adding or removing elements as needed.

14 streaming application design

The pipeline is optimised for efficiency and low latency, ensuring that the video
streams are delivered to the users in real-time with minimal delay. The elements of
the pipeline are connected so that the data flows from the source to the sink, and
each element processes the data and passes them to the next element; in this case,
the pipeline starts with the v4l2src element and ends with the rtph264pay element.

The GStreamer pipeline architecture is a crucial component of the application; it
captures video frames from onboard cameras, converts the format, encodes them,
and packages them into RTP packets, making them ready to be sent to the RTSP

server. The pipeline architecture is designed to be highly modular, efficient and low
latency, ensuring that video streams are delivered to users in real time with minimal
delay.

3.3.2 RTSP server

The GStreamer RTSP server is a crucial component of the application, responsible for
receiving video streams and handling RTSP commands from clients. The server is
built using the Gstreamer RTSP server plugin, which provides a robust and flexible
framework for creating RTSP servers.

The GStreamer RTSP server is based on a modular architecture, where different
components handle specific tasks. The main components of the GStreamer RTSP

server are:

• The RTSP server core: This is the backbone of the GStreamer RTSP server, it is
responsible for managing the server’s state, handling client connections, and
managing the sessions. The server core is also responsible for authenticat-
ing clients, forwarding RTSP commands to the appropriate components, and
receiving commands from the TCP socket to change parameters o pipeline
elements.

• The Media Factory: This component is responsible for creating the media
pipelines to stream video content. The media factory receives a request for
a specific media and creates the pipeline for that media and returns it to the
server core.

• The Media Manager: This component is responsible for managing the media
pipelines and their corresponding sessions. The media manager receives com-
mands from the server core and the TCP socket and forwards them to the
appropriate pipeline.

• The RTP Manager: This component is responsible for managing RTP sessions.
It receives RTP packets from the pipeline and forwards them to the appropri-
ate client.

The GStreamer RTSP server also supports various authentication mechanisms,
such as basic authentication, digest authentication, and token-based authentication.
It also supports different transport protocols, such as TCP, UDP, and HTTP for video
streaming, and a separate TCP socket for handling commands to change pipeline
parameters.

The GStreamer RTSP server is designed to be highly scalable, with the ability to
handle multiple clients and sessions simultaneously. The server can stream video
to clients using various protocols, such as RTP/UDP, RTP/TCP, and HTTP. Ad-
ditionally, the server can handle multiple video streams simultaneously, allowing
different clients to view video streams and handle RTSP commands.

3.3 software design 15

3.3.3 Implementation

For the final implementation, the GStreamer RTSP server application, described in
Section 3.3.2, implements the media pipeline described in Section 3.3.1 to process
and transmit video streams over a network. The RTSP server application listens
for incoming RTSP requests from clients and establishes a connection with the client.
Once the connection is established, the pipeline starts transmitting the media stream
to the client, who can then receive and play the stream.

In a GStreamer-based RTSP server, the RTSP server takes ownership of the media
pipeline by controlling its operation. The RTSP server sets up the pipeline and starts
it running and is responsible for managing the flow of media data through the
pipeline. This makes implementing such a RTSP server relatively straightforward
when there is no need to make adjustments to the properties of the elements on the
fly. Since making on-the-fly adjustments of element properties is a requirement, a
workaround was necessary.

To be able to use the GStreamer RTSP server while maintaining control of the
parameters of the element properties, the pipeline described in Section 3.3.1 had to
be split into two, Figure 3.2.

Figure 3.2: Schematic view of GStreamer pipeline after splitting in two sections.

The elements appsrc and appsink are two GStreamer-provided elements that can
be used to create a connection between an application and a GStreamer pipeline.
The appsrc element acts as the source pad for the RTSP server, allowing it to receive
media data from the pipeline. The appsink element acts as the sink pad for the
pipeline, allowing it to push media data into the server.

To establish a connection between the appsrc and appsink elements, the applica-
tion creates and configures the elements, sets up the callbacks, and then links them
together. The pipeline processes the data and then uses the appsink element to push
the data to the server. The processed media are then available to the server via the
appsrc element. From this, the server can transmit the media to the client via the
rtph264pay element.

In this way, the RTSP server only takes control over the rtph264pay element, al-
lowing it to handle data streaming to the client. The client is able to transmit new
element property parameters to a TCP socket on the server. The server transmits
this command to the pipeline where the adjustment will be made.

4 C O M P R E S S I O N R AT E O P T I M I S AT I O N
A N A LY S I S

In this chapter, techniques to optimise the compression rate are explained. Sec-
tion 4.1 explaines why denoising underwater video can improve the compression
rate. In Section 4.2, two different types of motion compensation algorithms that
were developed for this research are explained. Finally, in Section 4.3, two different
temporal filters used for denoising are described.

4.1 denoising underwater video

When light scatters on small particles, such as plankton or sediment, it can create
noise in the form of grains or speckles in the video. This noise can reduce spatial
and temporal correlation in underwater video, which can negatively affect the en-
coding process.

Spatial correlation refers to the relationship between pixels in an image or video
frame, while temporal correlation refers to the relationship between pixels in suc-
cessive video frames. When an image or video has high correlation, the pixels are
similar to their neighbours in terms of colour and intensity. This makes it easier
to compress the video data, as there is less variation between the pixels. On the
other hand, when an image or video has low correlation, the pixels are more varied,
making it more difficult to compress the data.

Noise caused by light scattering on small particles can reduce both spatial and
temporal correlation in underwater video. Noise can obscure fine details and create
variations in colour and intensity, making it more difficult to compress the video
data. This can increase the file size of the video and make it more difficult to encode
the video efficiently. To increase the efficiency of high-performance video codecs in
underwater video, it seems wise to reduce unwanted noise in raw video frames.
Various types of filters can be used to reduce the amount of noise in the video sig-
nal. Spatial filters are applied to each individual video frame, while temporal filters
are applied to a sequence of video frames.

Marine snow particles often have a larger displacement per frame than their sur-
roundings. Temporal information from successive frames can be used to construct
a noise-free image and improve spatial and temporal correlation. The goal is to
estimate a noise-free frame Ct, using the combined information from the original
frame Ft and its 2n surrounding frames {Ft−n, ..., Ft, ..., Ft+n}. Due to the movement
of the ROV, there is often a small displacement of the scenery between these frames.
Therefore, these frames must first be compensated for their motion, after which the
pixel values can be compared with those at the same location in successive frames
within the window. Only noise-free pixels are chosen to construct the estimated
noise-free frame. For this research, a combination of two different filters and two
different motion compensation algorithms was developed to remove noise from un-
derwater video. The different combinations have been tested and compared for
their performance.

17

18 compression rate optimisation analysis

4.2 motion compensation

As described in Section 4.1, two types of motion compensation algorithms have
been developed and tested for their performance. One uses a global motion estima-
tion method, and the other uses a local motion estimation method. Global motion
estimation refers to the process of estimating and correcting for large-scale move-
ments of a camera or an object in a video sequence. These movements may include
translations, rotations, and zoom-in or zoom-out. Local motion compensation, on
the other hand, refers to the process of estimating and correcting for small-scale
movements of objects within a video frame. These movements may include move-
ments of small parts of an object or movements of an object relative to other objects
in the scene.

4.2.1 Global motion estimation

Global motion estimation refers to the process of determining the overall motion of
an object or scene in an image or video sequence. It is a crucial step in many com-
puter vision and image processing applications, such as video compression, video
stabilisation, and video tracking. There are several methods for estimating global
motion that can often be classified into two categories: feature-based methods and
model-based methods.

Feature-based methods involve the identification and tracking of distinctive points
or features in the image or video sequence. These features can be points, edges, cor-
ners, or any other distinctive visual elements. The motion of these features is then
used to estimate the global motion of the scene. One popular feature-based method
is the Lucas-Kanade algorithm [28][29], which uses gradient information to track
features in an image sequence.

Model-based methods involve the use of a mathematical model to represent the
motion of the scene. Sometimes, these methods require a priori knowledge about
the motion of the scene, such as the camera’s intrinsic parameters and the 3D struc-
ture of the scene. There are several types of motion models that can be used in
model-based global motion compensation, including translational, rotational, and
affine models. Translational models assume that the motion of objects in the im-
age is a simple translation or shift in position. Rotational models assume that the
motion is a rotation around a fixed point. Affine models allow for more complex
motion, including both translation and rotation, as well as scaling and shearing.

To estimate the motion using these models, algorithms typically search for the
parameters of the motion model that best fit the observed motion in the image or
video. This can be done using techniques such as least squares optimisation [30] or
Enhanced Correlation Coefficient (ECC) maximisation [31].

Enhanced Correlation Coefficient Maximisation

For the estimation of global motion, ECC maximisation has been chosen to estimate
the transformation parameters between two frames. ECC maximisation is a method
to estimate the transformation between two images that are related by a geometric
transformation, such as translation, rotation, and scaling [31]. The goal of ECC is
to find the transformation that maximises the correlation between the two images,
which can be used to transform the target frame such that it is approximately the
same as the current frame and, as such, compensated for motion.

4.2 motion compensation 19

ECC has been widely used in a variety of applications, including image registra-
tion, object tracking, and stereo matching. In image registration, ECC can be used
to align two images of the same scene taken at different times or from different
viewpoints. In object tracking, ECC can be used to track the motion of an object in
a video sequence by aligning the object in successive frames. In stereo matching,
ECC can be used to compute the depth map of a scene by aligning the left and right
images of a stereo pair.

ECC is an iterative optimisation method that starts with an initial estimate of the
transformation and then iteratively refines it by maximising the correlation between
the two images. The transformation is parameterised using a set of parameters ppp,
such as the translation and rotation angles, and the optimisation process involves
finding the optimal values of these parameters that maximise the enhanced correla-
tion coefficient ρ(ppp) [32] in:

ρ(ppp) =
fff

t
rfffw(ppp)

∥ fffr ∥∥ fffw(ppp) ∥
, (4.1)

where fffr and fffw are the reference frame and the warped frame, respectively. This
method has been chosen because of one of the key advantages of ECC, its robustness
to noise and outliers [31]. ECC uses a robust cost function that is insensitive to out-
liers, making it less prone to errors caused by noise or occlusions. This makes ECC

particularly well suited for applications where images are of poor quality or have
significant amounts of noise or occlusions.

Affine transformation

In the developed filter, ECC is used to estimate the affine motion transformation
parameters. Affine motion refers to the movement of an object in a plane or in
space, where the object is allowed to translate, rotate, scale, and shear [33]. Affine
transformations preserve parallelism, but not necessarily distances between points
or angles between lines. In other words, if two lines were parallel before an affine
transformation, they would still be parallel after the transformation, but the dis-
tance between the lines may have changed.

(a) (b) (c) (d)

Figure 4.1: Affine transformations, with (a) translate, (b) rotate, (c) scale, (D) shear

The affine transforms rotate (4.3), scale (4.4), and shear (4.5) are all linear trans-
forms and therefore can be represented as a matrix multiplication. The affine trans-
form translate (4.2) is not a linear transform.

20 compression rate optimisation analysis

Translate:
[

x′

y′

]
=

[
x + a
y + b

]
=

[
x
y

]
+

[
a
b

]
, (4.2)

Rotate:
[

x′

y′

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
, (4.3)

Scale:
[

x′

y′

]
=

[
xsx
ysy

]
=

[
sx 0
0 sy

] [
x
y

]
, (4.4)

Shear:
[

x′

y′

]
=

[
x + yhx

xhy + y

]
=

[
1 hx
hy 1

] [
x
y

]
, (4.5)

where θ is the angle of rotation, sx and sy are the horizontal and vertical scale factors,
respectively, and hx and hy are the horizontal and vertical shear factors, respectively.
The rotation, scale, and shear transforms can be conveniently represented by a sin-
gle matrix multiplication in Equation (4.6).

[
x′

y′

]
=

[
a0x + a1y
a2x + a3y

]
=

[
a0 a1
a2 a3

] [
x
y

]
or x′ = Ax, (4.6)

where {a0, ..., a3} are the transform parameters. However, this matrix representation
lacks the translation transform. As translation is not a linear transform, it is not
possible to represent it as a matrix multiplication in two dimensions. This problem
can be solved by representing the affine transform as a plane in three dimensions
and setting the third coordinate to 1 (4.7).

x′

y′

1

 =

a0x + a1y + a2
a3x + a4y + a5

1

 =

a0 a1 a2
a3 a4 a5
0 0 1

x
y
1

 . (4.7)

The translation in two dimensions is now represented as a shear motion in three
dimensions. As such, all affine transformations in two dimensions can be described
using six parameters {a0, ..., a5}. These are the parameters estimated by ECC. To
receive new pixel coordinates for a motion-compensated frame, the pixel coordi-
nates of the target frame can be multiplied by the affine transformation matrix in
Equation (4.7).

Kalman filter

The affine parameters are constantly updated using a Kalman filter [34] on a sepa-
rate thread. The Kalman filter is used to predict the state of a dynamic system from
a series of incomplete and noisy measurements. It works by predicting the state of
the system at the current time t based on the previous state t − 1 and the dynamics
of the system, and then updating this prediction based on new measurements. The
resulting estimates are optimal in the sense that they minimise the mean squared
error between the estimated and actual system states.

The Kalman filter consists of 4 steps:

1. Initialisation

2. Measurement

3. State update

4. Prediction

4.2 motion compensation 21

The initialisation step is performed only at the beginning. Here, the system is
preloaded with a predefined initialisation value x̂0,0 for the affine transformation
parameters and the uncertainty of the initial value p0,0. In the measurement step,
ECC maximisation is performed on the current and previous frame to measure the
affine transformation zn on time stamp n with measurement uncertainty rn. During
the state update, the current state estimate is calculated with the filtering equa-
tion (4.8):

x̂n,n = x̂n,n−1 + Kn(zn − x̂n,n−1), (4.8)

where x̂n,n−1 is the previous state and Kn is the Kalman gain. The Kalman gain is
used to weight the predicted state and the measured state to produce an updated
estimate of the system’s state that is more accurate than either the predicted state or
the measured state alone. If the Kalman gain is high, it means that the measurement
is more reliable and should receive more weight in the update. If the Kalman gain
is low, it means that the predicted state is more reliable and should be given more
weight in the update. The Kalman gain is calculated using the weight equation (4.9):

Kn =
pn,n−1

pn,n−1 + rn
, (4.9)

where pn,n−1 is the uncertainty of the previous predicted state estimate. Then, fi-
nally, in the state update step, the current estimate uncertainty pn,n is calculated
using the corrector equation (4.10):

pn,n = (1 − Kn)pn,n−1. (4.10)

In the last step, the next state is predicted based on the current state and the
dynamic model of the system. Since the motion of the system is mostly constant,
the assumption can be made that the predicted state estimate is equal to the current
state estimate, and the predicted state estimate uncertainty is equal to the current
state estimate uncertainty:

xn+1,n = xn,n, (4.11)

pn+1,n = pn,n. (4.12)

4.2.2 Local motion estimation

The second motion compensation method is a local motion compensation method.
Local motion compensation takes advantage of the fact that objects in a scene tend
to move relatively little over time. Accurate prediction of the motion of objects
within a frame is essential for effective local motion compensation. There are several
methods for local motion estimation, including full search, hierarchical search, and
the three-step search algorithm. In this research, the focus lies on the three-step
search algorithm as a specific method for local motion estimation.

Three-step search block matching

The Three Step Search (TSS) [35] block matching motion compensation algorithm is a
technique used in video compression to predict the motion of blocks within a video
frame. The algorithm works by dividing the image into blocks and then searching
for the best matching block in a small region around the block in the previous frame.

The TSS algorithm operates in three steps:

22 compression rate optimisation analysis

1. Initial search: In this step, the algorithm searches for the best matching block
in the previous frame by comparing the block in the current frame to a number
of different locations in the previous frame (Figure 4.2a). The algorithm uses
a predefined search window to limit the number of possible locations that are
compared.

2. Refined search: In this step, the algorithm refines the search by using a smaller
search window centred on the best matching block of the initial search (Fig-
ure 4.2b). This step is designed to improve the accuracy of the motion predic-
tion by focussing on a more specific region of the previous frame.

3. Final search: In this step, the algorithm performs a final search using an even
smaller search window centred on the best matching block of the refined
search (Figure 4.2c). This step is designed to further improve the accuracy
of the motion prediction by examining an even more specific region of the
previous frame.

(a) (b) (c)

Figure 4.2: Three Step Search, with (a) initial search, (b) refined search, (c) final search.

In each step, the best matching block is selected by choosing the block with the
lowest Mean Absolute Difference (MAD). MAD is a measure of the difference between
two blocks of pixels. It is calculated by taking the absolute value of the difference
between each pixel in one block and the corresponding pixel in the other block and
then averaging these differences. For two blocks of pixels X and Y with size L × L,
the MAD is calculated using Equation (4.13).

MAD =
1
L2

L−1

∑
i=0

L−1

∑
j=0

|Xij − Yij|, (4.13)

MAD is a commonly used measure of difference because it is relatively simple to
calculate and is not affected by the scale of the data. However, it can be sensitive to
outliers, as a single large difference can significantly affect the MAD [36].

After the three steps have been completed, the TSS algorithm uses the results of
the final search to generate a motion-compensated frame of the current frame. This
motion-compensated frame is then used in the temporal filter to remove the noise
in the current frame, reducing the amount of data required to represent the video.

In general, the TSS block matching motion compensation algorithm is a highly
effective technique to improve video compression efficiency. It is widely used in a
variety of video compression standards and has proven to be an important contrib-
utor to the development of modern video encoding and decoding technologies.

4.3 temporal filter 23

4.3 temporal filter
Temporal video filtering refers to the process of applying filters to a sequence of
video frames, rather than just a single frame. These filters are designed to smooth
out or remove unwanted variations or noise in the video over time, such as flicker-
ing or jitter.

There are several different techniques that can be used for temporal video filter-
ing, including:

• Moving average filters: These filters work by calculating the average value of
a group of neighbouring frames and using that value to replace the current
frame [22]. This can help smooth out fluctuations in the video over time.

• Median filters: These filters work by selecting the median value of a group of
neighbouring frames and using that value to replace the current frame. This
can help remove outliers or sporadic noise from the video, which is often used
for background subtraction [37].

• Kalman filters: These are a type of recursive filter that uses a mathematical
model of the video process to predict the value of the current frame based on
past frames. This can be useful to remove noise or compensate for missing
data [38].

• Optical flow: This technique involves tracking the movement of pixels be-
tween frames in the video and using that information to interpolate or extrap-
olate the values of the current frame. This can be useful in removing jitter or
other types of motion artefacts [39].

It is important to note that temporal video filtering can introduce some degrada-
tion in the quality of the video, such as loss of sharpness and resolution. As such,
it is important to carefully balance the trade-off between smoothing the video and
preserving its quality.

For this research, a weighted moving average filter and a median filter have been
developed and compared for their performance.

4.3.1 Moving average filter

A moving average filter is a type of low-pass filter that works by calculating the
average value of a group of neighbouring frames and using that value to replace
the current frame. This process is repeated for each frame in the video. The size of
the group of frames used for the average, also known as the window size, can be
varied to control the amount of smoothing applied to the video. A larger window
size will result in more smoothing, but may also introduce more delay and blur into
the video.

A moving average filter can be modified to use a weighted average instead of a
simple average. With a weighted average, each pixel in the window is assigned a
weight, and the weights are used to influence the contribution of each pixel to the
average. For example, if we want the a pixel in the current frame to have a larger
influence on the average, we can assign it a higher weight. Similarly, if we want the
influence of pixels in the past frames to be more pronounced, we can assign them
higher weights as well.

Using a weighted average allows for more flexibility in the amount of smoothing
applied to the video, as the weights can be adjusted to achieve the desired trade-off
between smoothing and preserving detail. It is important to note that the weights

24 compression rate optimisation analysis

used in the weighted average should sum up to 1, in order to ensure that the overall
brightness of the video is not affected.

Due to motion compensation, the background in all the frames should be more
or less in the same position of the frame. Since the noise caused by light scattering
on the marine snow particles often moves faster and in different directions than the
background, the only difference between the motion-compensated frames should
be the location of these particles, which makes constructing a frame without these
particles more convenient.

After motion compensation, the developed weighted average filter consists of
three steps:

1. Calculation of weights: Outlier pixel values should get a lower weight than
other pixels.

2. Avereging: The weighted average of the pixel values is used to construct the
new frame.

3. Local smoothing: Spatial low-pass filter to smooth out the last local irregular-
ities.

Calculation of weights

There are two factors that are taken into account to calculate the weights. The first
determines whether the pixel value is an outlier or not. This factor dk is determined
by taking the absolute value of the pixel value pk subtracted from the median value
M of pixels with the same spatial coordinates, Equation (4.14).

dk = |M − pk|, (4.14)

where k denotes the kth frame within the window.

To calculate the weights, the exponent of the outlier factor dk from Equation (4.14)
multiplied with an experimentally determined gain factor α is taken, Equation (4.15).

wk = e−αdk = e−α|M−pk |. (4.15)

Averaging

To determine the pixel values of the predicted frame, a weighted average is taken
from the pixels with the same spatial coordinates within the window. The sum of
the weights is multiplied with the pixel values and then divided by the sum of the
weights, as described in Equation (4.16).

p′ =
∑K−1

k=0 wk pk

∑K−1
k=0 wk

, (4.16)

where p′ is the predicted value for the pixel.

Local smoothing

Finally, the resulting frame is smoothed locally to eliminate the last irregularities. A
low-pass filter is applied only to the locations in the frame where the marine snow
particles were in the original frame. To do so, the weights of the target frame are
used as a mask. Since outliers receive low weights and outliers are often caused by
noisy marine snow particles, low weights indicate the location of the marine snow
particles. By thresholding the weights wij, a mask mij is created that indicates the
location where the low-pass filter should be applied.

4.3 temporal filter 25

mij =

{
0, if wij ≥ θ

1, if wij < θ,
(4.17)

where θ is an experimentally determined threshold value. To receive the filtered
frame F′, the predicted frame from Equation (4.16) F is low-pass filtered hlp and
element-wise multiplied with mask array M = (mij) (not to mistake with the me-
dian M in Equation (4.14)). The result of this is added to the element-wise product
of the inverted mask array 1 − M and the predicted frame from Equation (4.16) F,
Equation (4.18).

F′ = M ◦ (hlp ∗ F) + (1 − M) ◦ F (4.18)

4.3.2 Median filter

The median filter is a type of non-linear filter that is used to reduce noise in video
sequences. It works by replacing the intensity value of each pixel in a frame with
the median intensity value of that pixel in a sequence of previous and future frames
within the window. This effectively smooths out noise that may be present in a
single frame while also preserving important temporal information.

There are several variations of temporal median filters, including a simple median
filter, a weighted median filter, and an adaptive median filter. The simple median
filter uses an equal weight for all frames in the sequence, while the weighted me-
dian filter assigns higher weights to more recent frames. The adaptive median filter
adjusts the weights of the frames based on the local noise level.

Since noise is often also present in locations similar to those of the most recent
frames, assigning those frames a higher weight would not be desirable. Further-
more, it was desirable to compare the moving average filter from Section 4.3.1 with
a faster and simpler filter, the simple median filter was chosen for this application.
After motion compensation, this filter takes the median value of the pixels with the
same spatial coordinates in successive frames within the window. This generates a
new frame where all outlier values are filtered out.

5 R E S U LT S

In this chapter, the results of experiments on improving video compression for un-
derwater video using a temporal video filter are presented. First, the setup used
for the experiments is explained in Section 5.1. An overview of configurable pa-
rameters is given in Section 5.2. Here, the effects of these parameters are displayed,
and optimal values for these parameters are given with the experimental results
obtained. The most influential parameter is the window size of the temporal filters;
this parameter is discussed in Section 5.3. Finally, the results of the experiments are
shown in Section 5.4.

5.1 experimental setup
All experiments for the analysis of compression rate optimisation, described in
Chapter 4, were performed on a Dell Precision 7670 workstation, using a virtual
machine with the following specifications:

Virtual machine settings:

• Operating system: Ubuntu 20.04.5 LTS

• Virtual cores: 12th Gen Intel® Core™ i7-12850HX x12

• Virtual memory: 16 GB

• Disk space allocated: 85 GB

Motion compensation algorithms described in Section 4.2 and temporal filters de-
scribed in Section 4.3 were developed in Python 3.8.10 using the OpenCV library,
version 4.2.0.

The data set used in this study consisted of 4 video sequences, with a varying
number of frames and a resolution of 1920x900. The video sequences were acquired
in different scenarios, capturing different types of motions and lighting conditions.

The performance of the filters was evaluated on the basis of the improvement in
compression rate, where the unfiltered compressed video was taken as a baseline.
Since the video data consist of different videos with varying numbers of frames, the
average number of bytes per frame is often used as a metric.

In the experimental setup, FFmpeg was used to encode the video using the H.264

codec and the ”ultrafast” preset. The ultrafast preset is designed for quick encod-
ing, allowing for faster processing times at the cost of slightly lower compression
efficiency.

To encode the video, the following FFmpeg command was used:

ffmpeg − i input . yuv −c : v l i b x 2 6 4 − p r e s e t u l t r a f a s t output . avi

This command was used to encode all the videos in the data set.

27

28 results

5.2 configurable parameters
The two motion compensation algorithms described in Section 4.2 and the two tem-
poral filters described in Section 4.3 each have their own configurable parameters,
except for the median filter. Experiments were performed to individually optimise
those parameters. In addition to algorithm-specific parameters, there is one key
parameter that affects the performance of all algorithms, that is, the window size.
The window size determines the number of frames that are used to compute the
current frame values.

5.2.1 Three-step search

One of the key parameters in the TSS algorithm is the block size, which determines
the size of the blocks used to divide the video frames. To simplify the calculations,
it is conveniant to divide the frame into exactly an integer number of blocks. There-
fore, for square blocks, the block size should be a common divisor of the height and
width of a frame. Figure 5.1 shows how the block size affects the computation time
and the average size per frame after compression. In the experiments, the optimal
block size for the TSS algorithm was determined to be 30x30 pixels.

Figure 5.1: Affect of blocksize on computation time [ms] and size [kB] after compression.

The reason for choosing this block size is that it strikes a balance between compu-
tational complexity, estimation accuracy, and compression efficiency. Larger block
sizes result in fewer blocks to search, which reduces computational complexity, but
can also lead to a loss of accuracy in motion estimation. However, smaller block
sizes increase the number of blocks to search, which improves accuracy, but also in-
creases computational complexity, while there is no significant gain in compression
efficiency.

Experiments have shown that using a block size of 30x30 pixels resulted in a good
trade-off between computation time and the compression efficiency. Experiments
have also shown that using larger block sizes led to a decrease in estimation ac-
curacy and compression efficiency, while using a block size of 15x15 only slightly
improved accuracy, but at a higher computational cost. When the block size is fur-
ther reduced to a 5x5 block, the algorithm is able to track and compensate for all the
specles individually, resulting in decreased filter performance. This explains why

5.2 configurable parameters 29

the size per frame is higher for the 5x5 blocks.

Another configurable parameter for the TSS algorithm is the initial step size. The
TSS algorithm uses a hierarchical search strategy, in which the search begins with a
large step size and progressively decreases the step size at each step. The step size
determines the distance between each search point in the motion estimation process
and affects the accuracy of the algorithm. A smaller step size increases the precision
of the motion estimation, as it allows for a finer search of the motion vector.

Furthermore, the choice of step size also affects the robustness of the algorithm
to noise and errors in the input frames. A larger step size may be less sensitive to
noise, as it allows for larger search areas, but may also miss small motions or details.

For this application, an initial step size of 4 has been chosen. After each step, the
step size is halved to refine the search. Using a larger initial step size resulted in a
significant drop in video quality and a lower compression rate.

5.2.2 Affine transformation

For the affine transformation motion compensation method, a Kalman filter, ex-
plained in Section 4.2.1 was used. One of the key input parameters of a Kalman
filter is the initial state of the system, which is also known as the prior state. This
input parameter is used to set the initial estimate of the state of the system before
any measurements are taken.

The choice of the initial state of a Kalman filter is important as it affects the per-
formance of the filter. If the initial state is accurate and the covariance matrix is
appropriately set, the filter will converge quickly to the true state of the system.
However, if the initial state is not accurate or the covariance matrix is not properly
set, the filter may converge slowly or converge to an incorrect state.

The initial state values were determined by calculating the affine transformation
parameters between frames in video sequences with similar motion and scenery.
The uncertainty of the initial state was based on the variance of these measurements.
The initial values used for the experiments are shown in Appendix B.

5.2.3 Moving average filter

One of the key parameters of the moving average filter is the gain factor α. This
parameter controls the penalty given to outliers in the averaging process. In the
experiments, the optimal value for α was determined to be 8. The value of α deter-
mines the penalty for outliers in the averaging process. A higher gain factor gives a
higher penalty to outliers, whereas a lower value gives a lower penalty to outliers.

Using a gain factor α of 8 resulted in a good balance between preserving the de-
tails of the current frame and reducing noise. Using a higher gain factor increases
the penalty for outliers and reduces noise, but also blurs the details of the current
frame. However, using a lower gain factor not only reduces the penalty for out-
liers and increases the noise, but also preserves the details of the current frame.
Figure 5.2 shows a graphical representation of the average size per frame after com-
pression as a function of the gain factor α. The graph shows how alpha affects the
compression rate.

Experiments have also shown that the optimal value of α depends on the spe-
cific video sequence and its characteristics. In the case of high-movement video

30 results

Figure 5.2: The average size per frame [kB] after compression as a function of gain factor α.

sequences, a lower value of α is recommended to preserve the details of the current
frame, and in the case of low-movement sequences, a higher value of alpha is rec-
ommended to reduce the noise.

5.3 window size
The window size, also known as filter size, is the most important parameter in tem-
poral filtering. The temporal filter is used to reduce noise and improve the stability
of a video sequence by averaging the pixel values of several consecutive frames. The
window size determines the number of frames that are used to compute the average
and affects both the effectiveness of the filtering and the computational complexity
of the algorithm.

A larger window size increases the effectiveness of filtering, as it uses a greater
number of frames to compute the average. This results in a smoother and more
stable video, but also increases computational complexity, as more frames need to
be processed. On the other hand, a smaller window size reduces computational
complexity, but it may also result in less effective filtering, as fewer frames are used
to compute the average.

The window size also affects the temporal resolution of the filtered video, which
is the ability of the filtered video to preserve the temporal variations of the original
video. A larger window size tends to smooth out these variations, resulting in a
lower temporal resolution. A smaller window size preserves temporal variations,
but may also result in a lower noise reduction. In practise, a trade-off between com-
putational complexity and filtering effectiveness must be made when selecting the
window size for temporal filtering.

Furthermore, it should be noted that the choice of window size depends on the
specific requirements of the application and the level of noise present in the video.
In cases where noise is high, a larger window size may be necessary to achieve an
acceptable level of noise reduction. On the other hand, in cases where the temporal
resolution is important, a smaller window size should be used to preserve the tem-

5.4 temporal filter results 31

poral variations of the original video.

For this research, window sizes of 5, 7, 9, and 11 frames have been tested on
several underwater video sequences to measure how they affect the compression
rate and the computation time. The results of this are described below.

5.4 temporal filter results
In this section, the results of experiments on improving video compression for un-
derwater video using a temporal video filter are presented. The most important
parameter of the filter is the window size. The methods were evaluated using two
main metrics: computation time and compression rate improvement as a function
of window size.

To evaluate the results, four short video samples were used from underwater
footage provided by Fugro. The samples have varying lengths, ranging between 10

and 15 seconds.

(a) Video A (b) Video B

(c) Video C (d) Video D

Figure 5.3: Average size per frame after filtering and compression. The blue line indicates the
average size of the unfiltered compressed sample. The colors represent the dif-
ferent motion compensation and filtering combinations, where orange is affine
transformation motion compensation with the moving average filter, green is
the affine transformation motion compensation with the median filter, red is the
three-step search motion compensation with the moving average filter, and pur-
ple is the three-step search motion compensation with the median filter.

32 results

Table 5.1: Improvement [%] of compression rate with respect to the unfiltered baseline.
video A B
window
size

5 7 9 11 5 7 9 11

motion
compensation
filter
combination

at ma 24.8 30.8 34.8 37.4 27.7 33.1 37.4 39.3
at med 7.5 13.6 18.2 22.2 9.7 18.6 24.9 28.4
tss ma 14.3 17.4 19.4 22.0 14.1 16.8 18.8 21.8
tss med -10.6 -8.5 -0.5 -1.4 -0.2 -0.6 -0.7 0.8

video C D
motion
compensation
filter
combination

at ma 13.8 20.1 24.1 27.3 15.4 21.6 25.1 27.4
at med 2.0 9.0 13.9 16.5 1.7 7.1 11.2 14.2
tss ma 7.9 9.9 11.5 14.4 2.2 7.5 10.7 14.6
tss med -9.8 -6.4 -7.1 -3.9 -17.7 -12.4 -8.5 -4.7

5.4.1 Compression rate improvement

The results of the compression rate improvement of the four samples are presented
in a graphical representation in Figure 5.3. The filter was tested with window sizes
of 5, 7, 9, and 11. The results show that as the window size increases, the compres-
sion rate improvement also increases.

Figure 5.3 shows the average size per frame after filtering and compression. The
blue line in the figure indicates the average size of the unfiltered compressed sample.
Figure 5.4 shows the compression rate improvement as a percentage with respect to
the unfiltered baseline. These values are also displayed in Table 5.1.

Figure 5.4: Compression rate improvement with respect to the unfiltered baseline. The per-
centage is an average of the videos A, B, C, and D. The colors represent the dif-
ferent motion compensation and filtering combinations, where orange is affine
transformation motion compensation with the moving average filter, green is
the affine transformation motion compensation with the median filter, red is the
three-step search motion compensation with the moving average filter, and pur-
ple is the three-step search motion compensation with the median filter.

Exclusively looking at the compression rate improvement, the combination of the
affine transformation motion compensation and the moving average filter seems to

5.4 temporal filter results 33

have the best performance in all of the samples.

The combination of the three-step search motion compensation with the median
filter has the worst performance in terms of compression rate improvement. This
combination only shows counterproductive effects. One possible cause of counter-
productive effects is the TSS motion compensation. The same blocks of pixels in
different frames within the window might receive different motion vectors. This
might reduce the temporal correlation even further.

One reason why the moving average filter is less affected by this is that the mov-
ing average filter smoothens the video both spatially and in time and therefore
always improves the correlation between neighbouring pixels. This is also the rea-
son why the moving average performs better, based on compression rate, with the
affine transformation motion compensation.

5.4.2 Computation time

Figure 5.5 displays the average computation time per frame for video C. The graph
displays all possible motion compensation and filter combinations, as well as the
window size used. The average computation time per frame, consumed by the filter,
is displayed in blue, while the average computation time per frame, consumed by
the motion compensation, is displayed in orange.

Figure 5.5: Average computation time per frame for video C. AT MA means affine trans-
formation motion compensation with the moving average filter, AT MED is the
affine transformation motion compensation with the median filter, TSS WA is
the three-step search motion compensation with the moving average filter, and
TSS MED is the three-step search motion compensation with the median filter.
The errorbars indicate the standard deviation of the measurement data sets.

The graph shows that the affine transformation is the most efficient motion com-
pensation method in terms of computation time. The TSS algorithm takes more time
because it has to calculate the motion vector for each block in each frame sepa-
rately while the transformation parameters for the affine transformation are being
updated in the background. Furthermore, with the affine transformation, the whole
frame can be transformed at once, while with the TSS, all blocks need to be displaced

34 results

separatly.

Compared to the moving average filter, the median filter is able to process video
sequences much faster due to its simplicity. The moving average filter can be com-
putationally expensive, especially for larger window sizes, as they consist of more
steps. Where the moving average needs to identify the median to calculate weights,
calculate the average, and apply a low-pass filter, the median filter operates by iden-
tifying the median value of a set of pixels and replacing the value of each pixel with
the median value. This process is much simpler and faster than the moving average
filter, as it only requires the sorting and selection of a small set of data.

5.4.3 Visual quality

A series of subjective evaluations were also conducted to assess the visual quality of
compressed underwater videos. The results showed that with an affine transforma-
tion and a window size of up to and including 9 frames produced videos that were
comparable to or higher quality than unfiltered compressed video. From a window
size of 11 frames, the video tends to get blurry. The three-step search algorithm
causes blocking artefacts, negatively affecting visual quality.

(a) Unfiltered.

(b) Filtered with affine transformation motion compensation and median temporal filter.

Figure 5.6: Zoomed underwater video snapshot.

Figure 5.6 shows a snapshot of the ROV inspecting a pipeline. This snapshot
shows the difference between the unfiltered and filtered videos. In the snapshot of
the filtered video, light scatterings on marine snow particles are almost completely

5.4 temporal filter results 35

gone, whereas other details are still preserved.

With this experimental setup, the filters were able to achieve a noticeable reduc-
tion in noise and motion blur in the video sequences while preserving the sharpness
of the frames. By creating more temporal correlation with the temporal filters, the
video can be compressed up to 37% more efficiently compared to unfiltered video.

The weighted moving average filter outperforms the median filter based on com-
pression rate, however, the median filter seems to be most promessing for streaming
real-time underwater video. Because of the computational complexity, the median
filter looks more promesing for real-time applications. While the median filter does
not achieve the same compression rate improvements as the weighted moving av-
erage filter, it does show a significant improvement compared to the unfiltered
baseline.

6 D I S C U S S I O N

In this chapter, the results of the study will be analysed and compared to determine
the strengths and weaknesses of each filter. This discussion will also provide insight
into the limitations of the filters and highlight areas for improvement. Ultimately,
the goal of this discussion is to provide recommendations for the use of these filters
in real-world scenarios, particularly in the context of Remotely Operated Vehicles
(ROVs) used by Fugro. Section 6.1 describes the challenges specifically for underwa-
ter video compression. The methods used for motion compensation are discussed
in Section 6.2 and Section 6.3 discusses the temporal filters used for this research.

6.1 underwater video
This research is specifically focused on underwater videos. To reduce the amount
of bandwith required to transmit underwater videos, it is wise to consider the spe-
cific challenges of underwater video compression. Underwater video compression
is often less efficient than compression of other types of video due to the unique
characteristics of underwater environments. The main challenges that make under-
water video compression more difficult than compressing any other type of video
are low visibility, high noise levels, and specific colour range.

Temporal video filtering is a technique used to improve the quality of a video by
reducing noise and other unwanted artefacts by analysing multiple frames of the
video over time. A temporal filter can reduce the impact of noise in a video by
averaging the values of multiple pixels in multiple frames to produce a final image
that is less affected by noise. Motion compensation is an important first step when
using a temporal video filter because it enables the filter to align images and take
advantage of interframe information.

For this research, a combination of two types of motion compensation techniques
and two types of temporal filters was tested to assess their effectiveness in improv-
ing the compression rate and quality of underwater video. The motion compensa-
tion techniques that were used were three-step search block matching and affine
transformation. The temporal filters that were used were a weighted moving aver-
age temporal filter and a median temporal filter.

6.2 motion compensation
The three-step search block matching technique is a motion estimation method that
uses a block matching algorithm to find the best match between a block of pixels in
the current frame and a block of pixels in the reference frame. The three-step search
block matching is a local motion compensation method because it only considers a
small region of the frame; therefore, this method is able to accurately estimate the
motion of small objects or regions within the frame.

The affine transformation technique is a motion compensation method that uses
a mathematical model to estimate the motion of an object in a video. Instead of

37

38 discussion

dividing the frame into blocks and compensating the motion for each block individ-
ually, this technique transforms the whole frame at once. Therefore, this method
can be considered as a global motion compensation method.

To remove the noise caused by the marine snow particles, the affine transfor-
mation method seems to be more effective. The three-step search block matching
method compensates for the motion of small blocks individually. Therefore, it also
occurs that it compensates for the motion of the marine snow particles, which makes
it less effective in filtering those particles than the affine transfromation method.

With an average computation time of 22, 64, 125, and 167 ms per frame for win-
dow sizes of 5, 7, 9, and 11 frames, respectively, the affine transformation method
has a lower computation time per frame than the three-step search block matching
method, which has an average computation time of 630, 949, 1264, and 1586 ms per
frame for window sizes of 5, 7, 9, and 11 frames, respectively. As the affine transfor-
mation method uses a mathematical model to estimate the motion of the objects in
the video, this model can be solved using linear algebra techniques, which are less
computationally expensive than the exhaustive search performed by the three-step
search method. It should be noted that the algorithms were not defeloped for effi-
ciency in terms of computation time. This means that the values mentioned above
should mainly be used as a relative comparison.

6.3 temporal filters
The weighted moving average filter is a filter that uses a weighted average of pixels
in multiple frames to produce a final image, while the median temporal filter is
a filter that replaces each pixel in the current frame with the median value of the
corresponding pixels in a set of previous and future frames.

One of the main advantages of the temporal median filter is that it is effective
in removing impulse noise, which is characterised by isolated pixels with inten-
sity values that are significantly different from their neighbours. Since the median
value of a group of pixels is not likely to change dramatically unless there is a
significant change in intensity within the group, the median filter is highly effec-
tive in preserving the edges in the image. This makes a median filter a good choice
for applications where it is important to maintain the integrity of the original image.

With the combination of the moving average filter and the affine transformation
motion compensation method, the highest compression efficiency was achieved.
When filtering video sequences with window sizes of 5, 7, 9, and 11 frames, the
total size after compression could be reduced by an average of 20%, 26%, 30%, and
33%, respectively, compared to the unfiltered video sequence. The median filter
combined with the affine transformation motion compensation method performed
worse in terms of compression rate improvement. When filtering the video se-
quences with the median filter with window sizes of 5, 7, 9, and 11 frames, the total
size after compression could be reduced by an average of 5%, 12%, 17%, and 20%,
respectively, compared to the unfiltered video sequence.

Taking into account the average computation time per frame, the median filter
outperforms the moving average filter. Where the median filter has an average com-
putation time of 204, 259, 371, and 510 ms per frame for window sizes of 5, 7, 9,
and 11 frames, respectively, the moving average has an average computation time
of 885, 1335, 2078, and 3232 ms per frame for window sizes of 5, 7, 9, and 11 frames,
respectively. It should be noted again that the algorithms were not defeloped for ef-
ficiency in terms of computation time. This means that the values mentioned above

6.3 temporal filters 39

should mainly be used as a relative comparison.

The weighted moving average filter can show a better compression rate improve-
ment compared to a median temporal filter. However, this advantage comes at a
cost to viewing quality. The combined filter creates more correlation in the video
stream by blurring, which leads to a higher correlation between neighbouring pix-
els, which improves the compression rate. However, this blurring process also has
a negative effect on viewing quality as it reduces fine details and can create a hazy
or soft appearance.

In contrast, the median temporal filter does not blur the video in the same way
and, therefore, has a lower negative impact on the viewing quality. This makes the
median filter a better choice when viewing quality is a priority, especially in applica-
tions where underwater video needs to be clearly visible and detailed. Furthermore,
the median filter is less computationally expensive, making it better suited for real-
time applications.

In conclusion, when considering compression rate improvement, computation
time, and viewing quality in underwater video, there is a trade-off between the
three. The weighted moving average temporal filter combined with a spatial low-
pass filter can provide a higher compression rate improvement but at the cost of
reduced viewing quality. On the other hand, the median temporal filter may pro-
vide a better viewing quality and lower latency, but with a lower compression rate
improvement. The choice between the two filters will depend on the specific re-
quirements and priorities of the application.

7 C O N C L U S I O N

In conclusion, this thesis has explored techniques to improve the compression rate
for underwater video captured by Fugro’s Remote Operated Vehicles (ROV). The
research focusses on reducing the amount of bandwidth required to transmit video
data wirelessly over a satellite connection. Through the research, the following
research questions were given an answer:

1. What technique can be used to reduce the amount of bandwidth required to
transmit underwater video data wirelessly over a satellite connection?

2. How much bandwidth can be saved using this technique?

3. How does this technique affect other constraints, such as computation time
and video quality?

7.1 method

A number of methods to reduce the amount of bandwidth required to transmit
video data have been suggested and presented in Chapter 2. The technique on
which this research is focused is to reduce the amount of bandwidth required to
transmit underwater video by improving the compression rate of underwater video.
The challenges of underwater video compression can be overcome by preprocessing
the video before encoding. By enhancing the colours and visibilty and by reducing
the noise of underwater video, the video can often be compressed more efficiently.

7.1.1 Noise reduction in underwater video

To reduce the amount of noise present in underwater video, the characteristics of
noise must be taken into account. Noise in underwater video is often caused by
so-called marine snow particles. These particles are types of organic matter that
sink from the surface waters of the ocean to the deep sea. The light reflecting from
those particles into the camera sensor creates high-intensity specles on the frame.
These light scatterings decrease the correlation between neighbouring pixels, as a
result of which the encoder needs more bits to represent these data.

These specific types of noise-inducing particles have the characteristic that they
often displace with a different velocity than the rest of the scenery in the video.
Therefore, a temporal video filter is an efficient method of removing those particles
from video frames.

For this research, a combination of two types of motion compensation techniques
and two types of temporal filters was tested to assess their effectiveness in improv-
ing the compression rate and quality of underwater video. The motion compensa-
tion techniques that were used were three-step search block matching and affine
transformation. The temporal filters that were used were a weighted moving aver-
age temporal filter and a median temporal filter.

41

42 conclusion

7.2 compression rate improvement

With the combination of the moving average filter and the affine transformation mo-
tion compensation method, the highest compression efficiency was achieved. When
filtering video sequences with window sizes of 5, 7, 9, and 11 frames, the total size
after compression could be reduced by an average of 20%, 26%, 30%, and 33%, re-
spectively, compared to the unfiltered video sequence. The median filter combined
with the affine transformation motion compensation method performed worse in
terms of compression rate improvement. When filtering the video sequences with
the median filter with window sizes of 5, 7, 9, and 11 frames, the total size after
compression could be reduced by an average of 5%, 12%, 17%, and 20%, respec-
tively, compared to the unfiltered video sequence.

7.3 computation time and viewing quality

Taking into account the average computation time per frame, the median filter out-
performs the moving average filter. Where the median filter has an average compu-
tation time of 204, 259, 371, and 510 ms per frame for window sizes of 5, 7, 9, and
11 frames, respectively, the moving average has an average computation time of 885,
1335, 2078, and 3232 ms per frame for window sizes of 5, 7, 9, and 11 frames, re-
spectively. It should be noted that the algorithms were not defeloped for efficiency
in terms of computation time. This means that the values mentioned above should
mainly be used as a relative comparison.

The median filter is considered a more efficient and practical choice for real-time
applications where processing speed is a concern and viewing quality is a priority.
Unlike a weighted moving average filter, the median filter does not require any
complex computations for determining the weights, is less sensitive to outliers and,
therefore, does not require low-pass spatial filtering. The median filter does not
negatively impact viewing quality by blurring the video, which can occur with the
combined filter. The median filter is often a better choice when real-time processing
speed and viewing quality are important considerations.

Temporal filters are effective in improving the compression rate and quality of
a video by reducing noise and other unwanted artefacts. However, it should be
noted that improvements are still necessary for both filters to meet the demanding
requirements of real-time applications. The median filter may still be computa-
tionally intensive for large video streams, and the combined filter may still blur
the video to a degree that is unacceptable for some applications. As such, more
research is needed to improve the efficiency and performance of these filters in real-
world scenarios. The goal should be to find a balance between compression rate
improvement and viewing quality, while also ensuring real-time processing speed
and efficiency.

7.4 recommendations

In this thesis, techniques have been investigated to improve the compression rate of
underwater video, with a focus on temporal video filtering methods. The results
have shown that a combination of motion compensation techniques, such as affine
transformation, along with temporal filters, such as weighted moving average and
median filters, can effectively improve the quality of underwater video while reduc-

7.4 recommendations 43

ing the amount of bandwidth required for transmission.

However, it should be noted that these filters may not be well suited in their cur-
rent form for use with the ROVs used by Fugro. The demanding requirements of
ROVs, such as real-time processing speed, stability, and efficiency in varying under-
water environments, may require additional improvements to these filters.

Therefore, it is recommended that further research be carried out to tailor these
filters specifically to the needs of the ROVs used by Fugro. This could involve explor-
ing alternative temporal and spatial filtering techniques, incorporating hardware
acceleration, and improving the efficiency and stability of the filters in challenging
underwater environments. The goal should be to find a filter that provides a good
balance between compression rate improvement and viewing quality, while also
ensuring real-time processing speed and efficiency for the specific requirements of
Fugro’s ROVs.

Based on the findings, future recommended research in this field is focused on
the following areas:

• Development of more advanced motion estimation methods: Although the
affine transformation method has proven to be effective, there is still room
for improvement in terms of motion estimation accuracy and computational
efficiency.

• Exploration of other types of temporal filters: Although weighted moving
average and median filters have been shown to be effective, there may be
other types of temporal filters that can achieve even better results in terms of
noise reduction and compression rate improvement.

• Reducing the computation time: Future research should focus on reducing the
computation time of the proposed methods by exploring techniques such as
parallel processing, approximate methods, and other optimisation techniques.
Further improvements can me made by programming the filters specifically
for the Jetson AGX Xavier in a more efficient programming language.

B I B L I O G R A P H Y

[1] G. C. Fernandez, S. M. Gutierrez, E. S. Ruiz, F. M. Perez, and M. C. Gil,
“Robotics, the new industrial revolution,” IEEE Technology and Society Magazine,
vol. 31, no. 2, pp. 51–58, 2012.

[2] C. Tang, U. F. von Lukas, M. Vahl, S. Wang, Y. Wang, and M. Tan, “Efficient
underwater image and video enhancement based on Retinex,” Signal, Image
and Video Processing, vol. 13, pp. 1011–1018, 7 2019.

[3] S. Raveendran, M. D. Patil, and G. K. Birajdar, “Underwater image enhance-
ment: a comprehensive review, recent trends, challenges and applications,”
Artificial Intelligence Review, vol. 54, pp. 5413–5467, 10 2021.

[4] S. Serikawa and H. Lu, “Underwater image dehazing using joint trilateral fil-
ter,” Computers and Electrical Engineering, vol. 40, no. 1, pp. 41–50, 2014.

[5] A. L. A. Dredge and M. W. Silver, “Characteristics, Dynamics and Significance
of Marine Snow,” tech. rep., 1988.

[6] C. Chen, J. Han, and Y. Xu, “A Non-local Mean Temporal Filter for Video
Compression; A Non-local Mean Temporal Filter for Video Compression,” in
2020 IEEE International Conference on Image Processing (ICIP), 2020.

[7] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, pp. 560–576, 7 2003.

[8] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[9] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu,
and R. Bultje, “The latest open-source video codec VP9 - An overview and
preliminary results,” in 2013 Picture Coding Symposium, PCS 2013 - Proceedings,
pp. 390–393, IEEE Computer Society, 2013.

[10] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen,
H. Su, U. Joshi, C. H. Chiang, Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau,
N. Egge, J. M. Valin, T. Davies, S. Midtskogen, A. Norkin, and P. De Rivaz,
“An Overview of Core Coding Tools in the AV1 Video Codec,” in 2018 Picture
Coding Symposium, PCS 2018 - Proceedings, pp. 41–45, Institute of Electrical and
Electronics Engineers Inc., 9 2018.

[11] D. Vatolin, I. Seleznev, and M. Smirnov, “Lossless Video Codecs Comparison
’2007,” tech. rep., Moscow State University, Moscow, 2007.

[12] M. Ghanbari, Standard Codecs: Image Compression to Advanced Video Coding. In-
stitution Electrical Engineers, 2003.

[13] I. E. Richardson, Video Codec Design: Developing Image and Video Compression
Systems. USA: John Wiley & Sons, Inc., 2002.

[14] T. Ishiguro and K. Iinuma, “Television bandwidth compression transmission
by motion-compensated interframe coding,” IEEE Communications Magazine,
vol. 20, no. 6, pp. 24–30, 1982.

45

46 bibliography

[15] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[16] A. Said, “Introduction to Arithmetic Coding-Theory and Practice,” tech. rep.,
HP, Palo Alto, 4 2004.

[17] S. Zvezdakov, D. Kondranin, and D. Vatolin, “Machine-Learning-Based
Method for Content-Adaptive Video Encoding,” 2021 Picture Coding Sympo-
sium, PCS 2021 - Proceedings, pp. 12–16, 2021.

[18] X. Wang, A. Chowdhery, and M. Chiang, “SkyEyes: Adaptive video streaming
from UAVs,” Proceedings of the Annual International Conference on Mobile Comput-
ing and Networking, MOBICOM, pp. 2–6, 2016.

[19] C. Concolato, J. Le Feuvre, F. Denoual, F. Mazé, E. Nassor, N. Ouedraogo, and
J. Taquet, “Adaptive Streaming of HEVC Tiled Videos Using MPEG-DASH,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 8,
pp. 1981–1992, 2018.

[20] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, “Color Balance
and Fusion for Underwater Image Enhancement,” IEEE Transactions on Image
Processing, vol. 27, pp. 379–393, 1 2018.

[21] S. Banerjee, G. Sanyal, S. Ghosh, R. Ray, and S. N. Shome, “Elimination of ma-
rine snow effect from underwater image-An adaptive probabilistic approach,”
in 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science,
SCEECS 2014, IEEE Computer Society, 2014.

[22] M. Rakhshanfar and A. Amer, “Motion blur resistant method for temporal
video denoising,” in 2014 IEEE International Conference on Image Processing, ICIP
2014, pp. 2694–2698, Institute of Electrical and Electronics Engineers Inc., 1

2014.

[23] e-con systems, NileCAM25 - Full HD GMSL2 Global Shutter color camera with
15m cable support, 2021.

[24] M. Li, H. Zhao, and L. Shi, “Design of high-speed video data transmission
circuit based on GMSL technology,” in Journal of Physics: Conference Series,
vol. 2026, IOP Publishing Ltd, 10 2021.

[25] NVIDIA, NVIDIA Jetson AGX Xavier Series System-on-Module, 2022.

[26] Connect Tech, Connect Tech GMSL CAMERA PLATFORM, 2021.

[27] GStreamer Team, “GStreamer,” 4 2019.

[28] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with
an Application to Stereo Vision,” in Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence, vol. 2, (Vancouver), pp. 674–679, 1981.

[29] B. Lucas, Generalized Image Matching by the Method of Differences. PhD thesis,
Carnegie-Mellon University, Pittsburgh, 7 1984.

[30] G. B. Rath and A. Makur, “Iterative least squares and compression based es-
timations for a four-parameter linear global motion model and global motion
compensation,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 9, no. 7, pp. 1075–1099, 1999.

[31] G. D. Evangelidis and E. Z. Psarakis, “Parametric Image Alignment using
Enhanced Correlation Coefficient Maximization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, pp. 1858–1865, 2008.

bibliography 47

[32] E. Z. Psarakis and G. D. Evangelidis, “An enhanced correlation-based method
for stereo correspondence with sub-pixel accuracy,” in Proceedings of the IEEE
International Conference on Computer Vision, vol. I, pp. 907–912, 2005.

[33] D. House and J. C. Keyser, Foundations of physically based modeling and animation.
AK Peters/CRC Press, 2016.

[34] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems
1,” Journal of Basic Engineering, vol. 82, pp. 35–45, 3 1960.

[35] T. Koga, “Motion compensated interframe coding for video-conferencing,”
Proc. Nat. Telecommun. Conf., pp. G5.3.1–G5.3.5, 1981.

[36] S. Yitzhaki, “Gini’s Mean difference: a superior measure of variability for
non-normal distributions,” METRON-International Journal of Statistics, vol. LXI,
no. 2, pp. 285–316, 2003.

[37] M.-H. Hung, J.-S. Pan, and C.-H. Hsieh, “Speed Up Temporal Median Filter
for Background Subtraction,” in Proceedings - 2010 1st International Conference
on Pervasive2010 First International Conference on Pervasive Computing, Signal Pro-
cessing and Applications, pp. 297–300, 2010.

[38] J. Kim and J. W. Woods, “Spatio-temporal adaptive 3-D Kalman filter for
video,” IEEE Transactions on Image Processing, vol. 6, no. 3, pp. 414–424, 1997.

[39] H. C. Chang, S. H. Lai, and K. R. Lu, “A robust and efficient video stabilization
algorithm,” in 2004 IEEE International Conference on Multimedia and Expo (ICME),
vol. 1, pp. 29–32, 2004.

A A R I T H M E T I C C O D I N G E X A M P L E

In arithmetic coding, every symbol is given a subrange within 0 - 1 based on its
probability of occurrence. Table A.1 shows the symbols ’A’, ’B’, ’C’, ’D’, ’E’ and their
occurrences in some application. Since symbol ’A’ has a probability of occurrence
of 0.1, it has been given the subrange 0 - 0.1. The next symbol in the list ’B’ has a
probability of occurrence of 0.2, so ’B’ will be given the subrange 0.1 - 0.3, and so
on.

Table A.1: Symbol probabilities and their range
Symbol Probability Subrange
A 0.1 0-0.1
B 0.2 0.1-0.3
C 0.4 0.3-0.7
D 0.2 0.7-0.9
E 0.1 0.9-1

Table A.2: Arithmetic encoding procedure
Step Range Symbol Subrange
1. Set initial range 0 - 1

2. Find corresponding subrange C 0.3 - 0.7
3. Set range to this subrange 0.3 - 0.7
4. Find subrange for next symbol B 0.1 - 0.3
5. Set range to this subrange within previous range 0.34 - 0.42

6. Find subrange for next symbol C 0.3 - 0.7
7. Set range to this subrange within previous range 0.364 - 0.396

8. Find subrange for next symbol E 0.9 - 1

9. Set range to this subrange within previous range 0.3928 - 0.396

Table A.3: Arithmetic decoding procedure

Step Range Subrange
Decoded
symbol

1. Set initial range 0 - 1

2. Find subrange in which received fraction falls,
this is the first symbol

0.3 - 0.7 C

3. Set range to this subrange 0.3 - 0.7
4. Find subrange from new range in which received
fraction falls, this is the second symbol

0.34 - 0.42 B

5. Set range to this subrange within previous range 0.34 - 0.42

6. Find subrange from new range in which received
fraction falls, this is the third symbol

0.364 - 0.369 C

7. Set range to this subrange within previous range 0.364 - 0.396

8. Find subrange from new range in which received
fraction falls, this is the fourth symbol

0.3928 - 0.396 E

49

B K A L M A N F I LT E R I N I T I A L S TAT E
VA L U E S

The initial state value depends on the postion of the frame Fn with respect to the
reference frame F0. Therefore, each frame Fn needs its own set of initial state values.
The initial state values used for this experiment are displayed in Table B.1.

Table B.1: Kalman filter initial state values
a0 a1 a2 a3 a4 a5

F−6 0.989695 0.000420 9.980498 -0.000454 0.964372 3.369549

F−5 0.989426 0.000329 10.124234 -0.000338 0.962081 3.692857

F−4 0.991333 0.001398 8.308937 -0.000820 0.970328 1.788813

F−3 0.994273 0.001146 5.421419 -0.000549 0.976860 2.080395

F−2 0.997026 0.000843 2.763927 -0.000268 0.984109 1.923968

F−1 0.998934 0.000408 0.967567 -0.000081 0.992381 1.123456

F1 1.001261 -0.000423 -1.156159 0.000064 1.007683 -1.093070

F2 1.003384 -0.000881 -3.168234 0.000246 1.016157 -1.852247

F3 1.006399 -0.001224 -6.095303 0.000502 1.023783 -1.946351

F4 1.009654 -0.001508 -9.321694 0.000742 1.030651 -1.462865

F5 1.011884 -0.000367 -11.372150 0.000463 1.038223 -3.564496

F6 1.015156 -0.000227 -14.624343 0.000619 1.045639 -3.712919

51

	1 Introduction
	1.1 Context
	1.1.1 Fugro's remote operated vehicle

	1.2 Challenges
	1.2.1 Low visibility
	1.2.2 Colour
	1.2.3 Noise

	1.3 Problem statement and research questions
	1.4 Solutions and contributions
	1.5 Thesis outline

	2 Background
	2.1 Video encoding
	2.1.1 Coding Standards
	2.1.2 Fundamental encoding techniques

	2.2 Related work
	2.2.1 Adaptive bitrate encoding
	2.2.2 Video preprocessing

	2.3 Research gap

	3 Streaming application design
	3.1 Scope
	3.2 Tools and requirements
	3.2.1 Requirements
	3.2.2 Hardware
	3.2.3 GStreamer media pipeline

	3.3 Software design
	3.3.1 GStreamer pipeline
	3.3.2 RTSP server
	3.3.3 Implementation

	4 Compression rate optimisation analysis
	4.1 Denoising underwater video
	4.2 Motion compensation
	4.2.1 Global motion estimation
	4.2.2 Local motion estimation

	4.3 Temporal filter
	4.3.1 Moving average filter
	4.3.2 Median filter

	5 Results
	5.1 Experimental setup
	5.2 Configurable parameters
	5.2.1 Three-step search
	5.2.2 Affine transformation
	5.2.3 Moving average filter

	5.3 Window size
	5.4 Temporal filter results
	5.4.1 Compression rate improvement
	5.4.2 Computation time
	5.4.3 Visual quality

	6 Discussion
	6.1 Underwater video
	6.2 Motion compensation
	6.3 Temporal filters

	7 Conclusion
	7.1 Method
	7.1.1 Noise reduction in underwater video

	7.2 Compression rate improvement
	7.3 Computation time and viewing quality
	7.4 Recommendations

	A Arithmetic coding example
	B Kalman filter initial state values

