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Wave energy is considered one of the most potential renewable energy. In the last two decades, many wave
energy converters (WECs) have been designed to harvest energy from the ocean. Different power take-off
systems are developed to maximize the power generation of WECs. However, the estimation of the power
matrix of the WECs and annual power generation on the different sites is much more complex. A lot of
simulations or experiments are required to obtain the power matrix of one specific WEC. To solve this
problem, this paper proposes an active learning Kriging approach to estimate the WEC power matrix with
less computational cost or experiment test. The efficiency of the proposed approach is demonstrated by two
analytic problems and a point absorber WEC. The results show the proposed approach can efficiently and
accurately estimate the power matrix of the WECs. Using the proposed ALK-PE approach, less than one-fifth
of simulations or experiments are required to construct the whole power matrix of WECs at all the sea states,
and the mean absolute percentage error is around 1%.

1. Introduction

Ocean wave energy is associated with plenty of merits. First, ocean
waves carry a considerable amount of clean energy. The potential of
global wave power is estimated to be in the order of 2 TW (Roberts
et al., 2016). Secondly, ocean waves are a kind of continuous power
input whether in the daytime or night, appealing to consumers. Thirdly,
ocean wave energy is associated with good accessibility since most
countries or regions have coasts. The history of our human beings
attempting to exploit wave energy is long, and the first patent of
utilizing wave energy can be traced back to more than two hundred
years ago (Antonio, 2010). However, ocean wave energy is still char-
acterized as an untapped energy resource. The exploitation of wave
energy is limited compared with other renewable-energy technologies,
such as offshore wind and solar energy (De Andres et al., 2017). One
of the main reasons is that the economic performance of WECs is not
satisfying (Astariz and Iglesias, 2015) since the estimated levelized cost
of energy of WECs is clearly high. To accelerate the utilization of wave
energy converters (WECs), it is of significance to optimize existing WEC
concepts for driving down the levelized cost of energy.

As indicated in previous studies, the design and optimization of
WECs appear to be site-dependent (O’connor et al., 2013; De Andres
et al., 2016). This can be expected since the responses of the captor
of WECs are affected by the wave inputs, including wave periods and
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wave heights. Thus, the distribution of occurrence of wave states could
make a difference to the optimization results of WECs. The statistical
information of wave resources is normally characterized as a form of
scatter diagrams which consist of hundreds of cells to illustrate the
probability of occurrence of each wave state. To assess the suitability of
WEGs for various sea sites, the power performance of WECs inherently
has to be identified for a number of different wave states, which is
then used to formulate a power matrix. Forming a power matrix is a
prevalent way to reflect the power performance of WECs. In the power
matrix, the power production of the device is depicted for a set of
combinations of wave heights and wave periods. Properly evaluating
the power performance of WECs is commonly time-demanding since the
device has to be tuned to fit the variation of wave states. For instance,
the power absorption of WECs is dependent on their power take-off
(PTO) damping (Tan et al., 2021). To best reveal the potential of WECs,
it is important to optimize the PTO damping for each wave state,
where a large number of iterations are required. In addition, given the
considerable number of wave states in scatter diagrams, obtaining a
power matrix with a qualified resolution could even further increase the
computational loads. Furthermore, the design of WECs normally needs
to be optimized for being adapted to various sea sites. Correspondingly,
the power matrix of WECs has also to be updated (Tan et al., 2022c). It
can be expected that developing an efficient way to obtain the power
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matrix of WECs is of great value to the design and optimization of
WEGCs.

Numerical modeling can be used to analyze the performance of
WECs at each wave state. The commonly-used numerical models in
the context of WECs can be classified as computational fluid dynamics
(CFD) modeling, frequency-domain modeling and time-domain mod-
eling (Penalba Retes et al., 2015). In CFD models, the fundamental
equations describing fluid dynamics, namely Navier-Stokes equations,
are solved numerically. Thus, CFD modeling is inherently associated
with high fidelity but its computational costs are considerable. For this
reason, the application of CFD models in estimating the power perfor-
mance of WECs is limited while they are mainly utilized in analyzing
the survivability of WECs. Instead, frequency-domain and time-domain
modeling are widely used to estimate the power performance of WECs,
and both of them are established based on potential flow theory (Folley
et al., 2012). Frequency-Domain modeling can be applied to reveal the
frequency-dependent responses of harmonic motion efficiently, but all
the concerned components have to be linear. Both frequency-domain
modeling and time-domain modeling are established based on potential
flow theory. Comparatively, time-domain modeling is applicable to
cover the nonlinear force components, and the time-dependent re-
sponses of WECs can be described. Thus, time-domain modeling in
principle has higher accuracy in power estimation, particularly for
working regions with large displacement and velocity where nonlinear-
ities are pronounced. For instance, it has been indicated in Folley et al.
(2012) and Nielsen et al. (2018) that the accuracy of frequency-domain
modeling is only limited to mild wave states. At the same time, nonlin-
ear time-domain models present comparable results to the experiment
in a wide range of operating conditions (Nielsen et al., 2018). However,
in time-domain modeling, the partial differential equations must be
solved numerically at each time step (Folley, 2016). The required
computational time of time-domain modeling is typically several orders
of magnitude higher than that of frequency-domain approaches (Tan
et al., 2022a). Therefore, the use of time-domain modeling could make
the whole design process of WECs time-consuming. A few recent studies
have been dedicated to this challenge. As a result, some approaches
have been proposed to cover nonlinear effects in an efficient manner.
In Wei et al. (2019) and Mérigaud and Ringwood (2017), conventional
frequency-domain modeling was extended to incorporate the nonlinear
PTO force in the array of point absorbers. In Suchithra et al. (2019),
a method to implement reduced-order time-domain modeling was pro-
posed and validated for simulating point absorbers with hydraulic PTO
systems. Alternatively, a relatively new modeling technique, namely
spectral-domain modeling, was developed for WECs in Folley and
Whittaker (2010). In spectral-domain modeling, the nonlinear force
components can be represented by statistical linearization. Even though
these alternative models contribute to improved accuracy with regard
to linear models because of the inclusion of nonlinear components, their
computational demands are still considerable for optimizing the WEC
concepts where a large number of iterations are needed.

To reduce the computational cost, machine learning seems a better
way to solve the problem. In the last two decades, many machine-
learning models and tools have been developed, demonstrating an
excellent power to solve engineering problems. Many researchers have
applied ML tools and technologies to solve engineering problems. Zhou
et al. (2022) combined physical modeling and deep neural network for
the wind turbine power estimation. Stetco et al. (2019) summarized the
machine learning methods for wind turbine condition monitoring. Hadi
et al. (2022) applied deep reinforcement learning for adaptive path
planning and control of an autonomous underwater vehicle. Ren et al.
(2020) applied deep learning for the offshore wind turbine jacket stress
prediction considering the corrosion effect. For the wave energy, Bento
et al. (2021) used deep-learning neural networks for ocean wave energy
forecasting. Lu et al. (2022) used a hybrid machine learning model to
predict the short-term wave energy flux. Zhu et al. (2022) conducted
a layout study of WECs using an artificial neural network. The results
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Fig. 1. Schematic of the spherical heaving point absorber with a bottom founded PTO.

show that the ML models can make accurate predictions given enough
data sets. However, in most studies, it requires a lot of simulations to
train accurate ML models. Normally, the “One-shot” training approach
is applied to construct the machine learning models. The training data
are all generated in advance, and the machine learning model is trained
and validated only once or a few times. To guarantee the accuracy of
ML prediction, ten of thousands of training data (simulations) are gen-
erated. That will be much more time-consuming for the WEC numerical
simulation and is inapplicable for the WEC power matrix estimation.

Compared to the “One-shot” training approach, the active learning
training strategies (Ren and Xing, 2023; Settles, 2009; Ren et al., 2022;
Moustapha et al., 2022; Ren et al., 2023) are more efficient. The idea
of active learning approaches is to train the ML models with a small
data set at first. Then, it selects one or several sample points at each
iteration to construct the machine learning models which are updated
at each iteration efficiently until the convergence. Usually, the active
learning approach needs less training data (simulations), which is more
suitable for time-consuming simulation. Additionally, among all the
machine learning models, the Gaussian process regression model (also
named Kriging) is widely used with the active learning approach for the
engineering problem. Ren (2022) applied the Kriging model with active
learning approaches for wind turbine reliability assessment. Sarkar
et al. (2016) also applied Kriging for the WEC array optimization. Both
of the studies demonstrated the efficiency and accuracy of the active
learning approaches. Therefore, this paper proposes an efficient WEC
power matrix estimation approach using an active learning Kriging
approach. A typical variance reduction learning approach is adopted to
update the Kriging model. Also, a classic stopping criterion is applied
to end the updating process. More details can be found in the following
sections.

The layout of this paper is organized as follows. The WEC model,
PTO system, and typical power estimation approach are given in Sec-
tion 2. The overview of the active learning approach and the proposed
ALK-PE approach are provided in Section 3. Also, two analytic prob-
lems are used to demonstrate the proposed approach. Section 4 applies
the proposed approach to the WEC power estimation considering two
different scenarios. At last, the conclusion and discussion are given in
Section 5.

2. Wave energy converter model
2.1. The point absorber wave energy converter

This section describes the considered WEC concept. A generic heav-
ing point absorber is used as the WEC reference in this study. The
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Fig. 2. The diagram of the SD model in estimating the performance of WECs.

schematic of the WEC is shown in Fig. 1. The geometry of the floating
buoy is a sphere with a radius R of 2.50 m and the buoy is semi-
submerged in still water. Given the water density of 1025 kg/m?, the
mass of the buoy is calculated as 33543 kg according to Archimedes’
principle. Besides, the operating condition is assumed to be deep water.
The spherical buoy is connected to the moving part of the PTO, and the
moving part could be a piston or generator translator depending on the
PTO type. Furthermore, a passive control strategy is implemented for
the studied point absorber, which implies that only a force proportional
to the buoy velocity is applied by the PTO system (Tan et al., 2023a,
2020, 2022b).

2.2. Numerical modeling

In this work, a verified spectral-domain model is applied to predict
the power performance of WECs. The model results are used as the data
source as well as the reference to verify the proposed machine learning
method. The formulation of the model is only briefly introduced here.
More details and validation of the numerical model can be found in Tan
et al. (2022a, 2023b). The diagram of the spectral-domain model is
depicted in Fig. 2. In the model, the incoming waves are expressed
based on the linear wave theory, and all the considered waves are
assumed to be irregular and unidirectional. Under linear wave theory,
irregular waves are reasonable to be represented by the superposition
of a set of regular waves with random phases. The regular wave can be
expressed as:

n(t) = ¢, cos(Ax — wt) @

where ¢ is time, A is the wave number, o is the angular frequency of
the incoming wave and ¢, is the wave amplitude. Then, the irregular
wave input can be expressed as

N
00 =Y L)) cos(i(@))x — ot + (@))) @)
j=1

where A(w DRACH! and ¢(w ;) are the wave number, wave amplitude
and phase of the regular wave component corresponding to the fre-
quency component ;. Regarding irregular wave conditions, the JON-
SWAP spectrum together with peakedness factor of 3.3 is applied (Edi-
tion et al., 2001). For each wave state, 500 individual harmonic wave
components with a random set of phases between frequency compo-
nents are considered. The angular frequencies of the wave components
are uniformly spaced from 0.1 to 4.0 rad/s.

In a predefined wave spectrum, the amplitude of the wave compo-
nent is related to the wave energy spectrum S , as

L) = /25 (@))do> ®3)

2

The variance of the wave elevation o}

s calculated as

N
02, = D S, (@) 4o 4
j=1
where Ota is the standard deviation (STD) of the wave elevation.

For a single rigid floating body subjected to ocean waves, its motion
can be described based on Newton’ second law as

M3(1) = Fp (1) + F (1) + Fp (1) + F.(1) + F(0), 5)

where M represents the mass of the oscillating buoy, s is the buoy’s dis-
placement, Fj is the hydrostatic force, F, is the wave excitation force,
F, is the wave radiation force, F,, is the PTO force, F,, is the viscous
drag force. In the spectral-domain approach, the motion of a floating
body can also be characterized as the form of complex amplitudes
since spectral-domain modeling is an extension of frequency-domain

modeling. Thus (5) can be rewritten as
F(0) = $(@){ [0 (M + M (0) + Kp,| +i0[R.(0) + Ry + Ryiseq]} (6)

where R,(w) is the radiation damping coefficient; @ is the angular
wave frequency, M, () is the added mass of the buoy, § is complex
amplitude of the displacement, and K, is the hydrostatic stiffness.
R4 and Ry, are equivalent linear PTO damping and equivalent
linear viscous damping in spectral-domain modeling to represent two
typical nonlinear effects, namely the PTO force saturation and viscous
drag force. The PTO force saturation occurs when the PTO force is
about to violate the designed force limit of the system. Thus, the PTO
force in the time domain is expressed as

=R, 5(1), Sfor R, < F,
Fpm(t) = 7)

sign[— R, S(O1F,,, for |R,S(| > F,

where F,, represents the PTO force limit. The stochastic linearization of
the nonlinear PTO force has been given in Folley and Whittaker (2010),
Tan et al. (2022a), and it can be calculated as

3 f( U )
2R, \/;6j er 7o —u%
Req,pm = e - 0'5'2"‘1 CXP(—Z)]

[
O'? 2 \/E 207
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2R, u V2 —u?
g et VT exp(_;) (8)
O 20 s
where R, is the actual PTO damping set for the system, o; is STD of

the velocity, “erf” represents error function, and u, is the ratio between
the PTO force limit and the PTO damping coefficient, expressed as

The viscous drag force is represented by a quadratic damping term
which is similar to the drag component in Morison’s equation (Edition
et al., 2001), and in the time domain it can be expressed as

1 ..
Fys = —§PCDAD|S|S (10)

where p is the water density, Cp is the drag coefficient, Ap is the
characteristic area of the buoy, and u, is the undisturbed flow velocity
at the centroid of the buoy. Based on the investigation in Giorgi and
Ringwood (2017), the drag coefficient is selected as 0.6 to minimize
the error of the power estimate resulting from the viscous drag force.
The linear equivalent viscous damping in spectral-domain modeling has
been derived in Folley and Whittaker (2010, 2013), as

1 8
Ruis,eq = EPCDADGS\/; (11)

An iterative process is required to solve (6) since o; in the linear
equivalent damping coefficients is unknown. In each iteration, the
complex amplitude of the WEC at each frequency component can be
obtained by solving (6). Then, the complex amplitude of the velocity is
expressed as

S(@) = wS(w) 12)

the corresponding STD of the velocity can be expressed as

13

In this work, the iteration continues until the difference between the
previous and iterative value converges within 0.1%. Then, the mean
absorbed power of the WEC at each wave state can be calculated as:

P= Req,pmcfS2 a4

The PTO damping plays an important role in the dynamics of WECs.
The selection of the PTO damping coefficient could determine the
power absorption of the WEC. To improve the power production of
WEGs, it is important to select the PTO damping coefficient for each
wave state properly. In addition, the PTO force is strongly related to the
PTO damping coefficient. The maximum PTO force should be consid-
ered as a constraint in the tuning of the PTO damping coefficient. Given
the randomness of the wave inputs, the constraint can be characterized
by the occurrence probability of the PTO force exceeding the maximum
PTO force F,,. Considering Rayleigh distribution (Journée et al., 2015),
the probability is calculated by
_F2
B(or) =exp(—;") (15)
204,
where o represents STD of the PTO force, which can be related to the
PTO damping as

OfF = Req,pioo-s (16)

In the present work, the “Interior-Point” algorithm in Matlab envi-
ronment is applied, and the termination criterion of the function is
defined as le-5. In the optimization, the tolerance on the probability
of exceeding the PTO force limit is defined as 20%, referring to Tan
et al. (2022a). The search bound is defined as [0, 50R,(w,)], where w,
represents the corresponding angular frequency of the concerned peak
period of the wave state. To comprehensively illustrate the suitability
of the AL method to power prediction of WECs, two different scenarios
are set up. In the first case, there is no PTO force constraint while a
PTO force limit of 80 kN is implemented in the second case.
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3. Active learning approaches and proposed ALK-PE approach
3.1. Active learning approaches

In this subsection, a brief introduction to active learning approaches
is presented. As mentioned previously, the training strategies of ma-
chine learning models can be divided into (1). One-shot approach (as
shown in Fig. 3) (2). Active learning approach (as shown in Fig. 4).
The one-shot approach is now widely used to construct the data-driven
model, which requires a lot of training data. Contrary to the one-
shot approach, active learning at the beginning only requires a small
training data set and then updating the ML models using the enriched
sample selected by the learning function. The updating process will
stop when the stopping criterion is satisfied. Therefore, the learning
function and stopping criterion are the two most important factors for
an active learning approach. They will directly affect the efficiency of
the approach and the accuracy of ML model prediction. The learning
function and stopping criterion are needed to be carefully designed. The
learning function and stopping conditions of the proposed approach are
given in the following subsection. A brief introduction to the Kriging
model is also given in the next subsection.

3.2. Kriging model

The Kriging model, also known as Gaussian process, was first intro-
duced by Krige (1951) in the field of geostatistics. It is based on the
assumption that the response function consists of a regression model
and a stochastic process, given by:

Gx) =fx)T B+ z(x) a7
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where f(x) is the basic function vector, g is the corresponding re-
gression coefficient vector, and z(x) represents a stationary Gaussian
process with zero mean and the covariance between two points, x; and

X!
cov(z(x;)z(xy)) = 0'2R9 (X;, Xg) (18)

where 6% and R,(x;,X,) are respectively the process variance and a
Gaussian correlation function defined by a vector of parameters 6.
Several correlation functions are available for the Kriging model. In this
paper, the typical squared exponential correlation function is applied
which reads as:

n

Ry (x[,xk) = Hexp [—6’/- (Xi(/‘) - xk(,))z] (19)

Jj=1

where x?) and xE) are the jth values of the vectors x; and xy. 6; is a
scalar that gives the multiplicative inverse of the correlation length in
the jth direction. The unknown parameters (8, o2, 0) of the Kriging
model can be optimized by maximum likelihood estimation. Once the
optimal values of the three parameters are obtained, the expected
value uz and the variance o‘é at a point x can be determined by the

equations:

He(x) = B+ TR, (Y - 1p) (20)
020 =0 (1+u0” (1TR;'1) ™" ux) - r (0" R;'r(x) ) 1)
where r(x) = {R (x,x;),R(x,x;),..., R(x,x,) } represents the correla-

tion vector between the unknown point x and » all known experimental
points and u(x) can be expressed as u(x) = ITREIr(x) — 1. The value ug
is always considered as the Kriging prediction value, and the value oz
is the related predicted error. In this paper, the value ug represents the
predicted mean power value f’, and the oz denotes the predicted error
(a;) of the mean power prediction. Additionally, the o4 value is easily
obtained in most Kriging surrogate modeling toolboxes, e.g., the DACE
toolbox (Lophaven et al.,, 2002) for MATLAB users and Scikit-learn
toolbox (Pedregosa et al., 2011) for Python users.

3.3. Proposed ALK-PE method

In this subsection, the proposed approach is presented. The learning
function and stopping criterion details are given. The general algorithm
of the proposed approach is listed at the end.

3.3.1. Learning function

To get an accurate power matrix prediction of the WEGCs, it is better
to reduce the prediction error (a;.,) of the mean power value at each sea
state case. Therefore, the learning function must reduce the prediction
error to get an accurate prediction. A typical error reduction learning
approach will be used here, which gives:

i*:argmax(a;3 (x/-)) where j=1,2...M 22)

where i* is the enriched sample number, M is the total number of all
the unsimulated samples, and x; represents the different combination
samples of wave height and wave period. As the prediction error is
easily obtained from the Kriging surrogate model, the learning function
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will select the sea state case (x;.) with the maximum prediction error.
The newly selected wave case and the related simulated mean power
value will be used to update the Kriging model.

3.3.2. Stopping conditions

To guarantee the ML prediction at each sea state, the typical
U (Echard et al., 2011) function is adapted here named as U function
that can be used as a factor to ensure the prediction accuracy:

[P

(23)

The UI(x;) denotes the inverse ratio between Kriging prediction error
and prediction value at x;. To end the active learning process and
guarantee the accuracy of Kriging prediction at each sea state, the
minimum value of U I(x;) should be greater than @

minUI(x) > @ 24)

where @ is the threshold of the stopping criterion. Different @ values
will be tested in the following studies. With the learning function and
stopping criterion, the general algorithm of the proposed approach can
be formulated in Algorithm 1. X,,,, X, and P,,, are, respectively, the
initial sea state data set, the whole sea state data set, and the initial
simulated mean power.

Algorithm 1 ALK-PE: An efficient active learning Kriging approach for
wave energy converter power matrix estimation

Input: X;50, Pioes Xai
Ny < m; 1> m; is the number of initial training samples (design of
experiments)
while min(UT) < @ do
1. Train the Kriging model with X,,, and P,,,.
2. Get the Kriging prediction value (ﬁ(x )l and error (o‘;_)(x )] of the
all the sea states (X 4;).
3. Search x;: where i* = argmax(alg(x ;) and simulated the mean
power P...
4. Calculate the Ul(x;) value based on }A_’(xj) and a;(xj)
N, doe < N, doe T 1
)_(doe “ %’doe U_xi*
Pdoe - PderPi*
end while .
Output: Predicted mean power P of all the sea states (X 4,).

3.4. Demonstration for analytic examples

In this subsection, two analytic examples are used to demonstrate
the proposed ALK-PE approach. The first one is a one-dimension prob-
lem, and the second one is a two-dimension problem. In these two
examples, the wave converter power matrix is assumed as an explicit
function of the variables. However, the wave converter power matrix
can hardly be expressed as an explicit function in reality. These two
analytic problems are merely used as simple examples to help readers
to understand the proposed approach and calibrate the convergence
criterion. Additionally, the two examples are easy to repeat and do not
require a long-time simulation or experiment test, allowing readers to
test their codes at the beginning. To measure the accuracy of the pro-
posed approach, the mean absolute percentage error (MAPE) between
the prediction mean power and simulated mean power is calculated,
which gives:

<
o

(x;) = P (x))

MAPE = .
P (x;)

1
— x 100 25
M 4 (25)

where M is the total number of sea states, P (x;) and P (x;) are
respectively the simulated mean power and predicted mean power at
the sea state x;.
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Table 1
ALK-PE approach for 1D analytic problem with different @ values.
Approach Simulation times MAPE (%) Efficiency increased (%)
Ref. 201 - -
ALK-PE (@ =2) 13 0.03 1546.15
ALK-PE (@ =5) 13 0.03 1546.15
ALK-PE (@ = 10) 13 0.03 1546.15

3.4.1. One-dimensional analytic example
In the first example, the mean power P is considered as a function
of variable x as given in the following equation.

?(x) = x + xsin(x) (26)

The x variable interval is from 1 to 11. A total of 201 samples (M =
201) are generated by grid sampling from x, and the simulated mean
power (SMP) values are shown in Fig. 5(a). In this example, four
initial samples (mi = 4) are generated to train the Kriging model
at first. The initial training results and 95% confidence interval are
given in Fig. 5(b). Need to mention in Fig. 5, “IDoEs” and “EDoEs”
respectively represent the initial training points (also known as design
of experiments) and enriched points. The initial prediction mean power
(PMP) has a big difference compared with the simulated mean power.
The MAPE values between SMP and PMP are even greater than 100%,
as shown in Fig. 5(f). Then, the active learning approach starts to
update the Kriging model by reducing the prediction error, as shown
in Fig. 5(c) and (d). The MAPE values will decrease significantly. In
the end, when the stopping criterion is satisfied (min(U) > ®), the
PMP is nearly the same as the SMP, and only 13 points are used
to train the Kriging model as depicted in Fig. 5(e). Additionally, the
results considering different @ values are summarized in Table 1. As
shown in the table, the proposed ALK-PE can efficiently and accurately
estimate the simulated results. The efficiency can increase more than
15 times, and MAPE is less than 0.1%. Here the efficiency is calculated
based on simulation times. However, due to the simplicity of this one-
dimensional problem, the impact of @ is not yet visible. To investigate
the effect of @ on the algorithm, another two-dimension problem is
studied.

3.4.2. Two-dimensional analytic example
In the second example. it is considered that the mean power P is a
function of variable x; and x, as shown in the following equation:

P(xy, x5) = |x;sin(x;) + x,¢08(xy) + 10] (27)

where the x; variable interval is from O to 10, and the x, variable
interval is from O to 5. The total samples and discretization of each
variable are given in Table 2. Also, the initial data set is given in Table 2
and 12 initial samples (mi = 12) are used to construct the Kriging
model at the beginning. The simulated mean power is given in Fig. 6(a).
The initial Kriging prediction and the final prediction are respectively
given in Fig. 6(b) and (c). In Fig. 6(b), the initial Kriging prediction
can well capture the distribution of the mean power but remain a big
difference in details. That is why the MAPE values are bigger than
30% at the beginning, as shown in Fig. 6(d). Then, the active learning
process updates the Kriging model efficiently, and the MAPE values
significantly drop. In the end, the Kriging model can accurately predict
globally and locally. In addition, the results considering different @
are also summarized in Table 3. As shown in Table 3, the value @
will affect the efficiency and accuracy of the ALK-PE approach. With a
bigger @ value, the prediction accuracy will increase, but the efficiency
will decrease. To compromise between the efficiency of the ALK-PE
approach and the accuracy of the Kriging prediction, the @ value equal
to 5 is considered in the following section, which normally can ensure
the MAPE is less than 5%.
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4. WEC power matrix estimation by ALK-PE approach

This section applies the proposed approach to a point absorber WEC.
A general flowchart of applying the proposed approach to WECs is
shown in Fig. 7. At first, the Kriging model is trained with the initial sea
state cases X,,, and the simulated mean power P,,,. Then, the active
learning process will select the sea state case with the maximum Kriging
prediction error for the next simulation. The newly selected case x;-
and the simulated P. value are used to update the Kriging until the
convergence criterion is satisfied. Two different cases are studied in
this part. The first one considers that the maximum PTO force is not
limited, and the second one considers that the maximum PTO force
is limited to 80 kN. The typical wave states and the related initial
training samples are given as shown in Table 4. In this section, the
significant wave height H is considered between 0.5 and 6.5 m, and
the wave peak period 7, is from 3 to 15 s. The interval of H, and T,
are both equal to 0.5, which can be considered a good representation
of most sea states. A total number of 325 sea-state cases is considered
for the power matrix estimation, and only 16 sea-state cases are used
to train the Kriging model initially. Regarding the simulated results
of the WEC, the mean absorbed power and STD of the PTO force at
each wave state are obtained by the spectral-domain model detailed in
Section 2.2. Considering the purpose of this work, the numerical model
is only intended to provide reference data, namely the power matrix,
for demonstrating the performance of the proposed ALK-PE approach.
The accuracy of the spectral-domain model in the power calculation of
WECs has been verified in previous studies (Tan et al., 2022a, 2023b).

4.1. Power matrix of the WEC without PTO force constraint

In the first case, the maximum PTO force is not limited. The WEC
power matrix is obtained by the spectral-domain model. The related
STD of PTO force and the optimized PTO damping in each wave state
is given in Fig. 8. The simulated mean power of the WEC and the ALK-
PE approach prediction are depicted in Fig. 9. Fig. 8(a) depicts the
simulated value of STD of the PTO force. The increased significant wave
height results in larger WEC displacement and therefore higher veloc-
ity. Besides, as shown in Fig. 8(b), the optimized PTO damping clearly
goes up with the peak period. Consequently, referring to Eq. (16) in
mind, it is reasonable that STD of the PTO force increases with the
significant wave height and peak period. Besides, it can be seen in
Fig. 8(b) that the optimized PTO damping tends to be highly linear
with regard to the peak period. This is because the tuning of the PTO
damping is not constrained by the PTO force limit. In Fig. 9(a), the
simulated mean absorbed power is presented. It can be seen that the
absorbed power tends to increase with the significant wave height,
because the increased significant wave height is associated with higher
power input with the same peak period. Comparatively, the power
absorption peaks up around the peak period of 7 s, which can be
explained by the natural frequency of the WEC corresponding to the
value. Furthermore, the nonlinearity of the system is insignificant. As
a consequence, the estimated values of STD of PTO force and the
mean power, as shown in Figs. 8(a) and 9(a), present a tendency of
relatively mild variation between adjacent cases of wave states. Hence,
this scenario can be regarded as a simple case. The results of the ALK-PE
approach are also depicted in Fig. 9. As shown in Fig. 9(b), the initial
prediction of the Kriging model can only capture the global trend of the
distribution of the mean power. However, the prediction is not good
in the local wave states, especially in the boundary wave state. That
is why the MAPE values are much higher in the beginning. With the
enrichment of the ALK-PE process, the MAPE values will decrease. In
the end, the Kiring prediction can accurately predict the power matrix.
The final results are given in Table 5. Trough ALK-PE approach, only
28 simulations are needed to obtain the power matrix of the WEC,
which saves more than 10-time simulations. Also, the MAPE between
simulated mean power and predicted mean power is less than 1%.
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4.2. Power matrix of the WEC with PTO force constraint

In the second case, the PTO force is limited because, in reality,
considering the cost and volume of the PTO system, the PTO system
can only provide limited force. That will change the performance of
WECs and also the power generation. The performance of WECs is also

Total Simulation Times

(f) Mean error between prediction and true value

Fig. 5. 1D analytic problem.

simulated based on the spectral-domain model. The related STD of PTO
force and the optimized PTO damping are given in Fig. 10. As shown
in Fig. 10, due to the limitation of the PTO force, STD of the force will
reach the limit with the increase of wave height. Correspondingly, the
implementation of the PTO force constraint also makes a difference in
the optimization of PTO damping coefficients. It is visible in Fig. 10(b)
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Fig. 6. 2D problem.

Table 2
Parameter description of 2D analytic problem.

Parameter Domain of variation Discretization Number of cases Initial grid samples
X [0, 10] 0.4 25 [1, 4, 7, 10]

X5 [0, 5] 0.2 25 [1, 3, 5]

Total cases M =625 mi =12

Table 3

ALK-PE approach for 2D analytic problem with different & values.
Approach Simulation MAPE (%) Efficiency

times increased (%)

Ref. 625 - -
ALK-PE (& =2) 21 10.82 2976.19
ALK-PE (@ =5) 26 2.16 2403.85
ALK-PE (@ = 10) 32 1.15 1953.13

that the optimized PTO damping sharply decreases after the wave
height is higher than a certain value. This can be explained by the
fact that the PTO force increases with the PTO damping coefficient.
Subject to larger wave heights, the PTO damping of the WEC has to be
reduced to comply with the defined PTO force constraints. Therefore,
the nonlinearity of the WEC system is intensified when the PTO force
constraint is taken into consideration. This is also noted in the estima-
tion of the power matrix, as depicted in Fig. 11(a). In this sense, the
difficulty of the second case for the ALK-PE approach is expected to be

higher than that in the first case. The simulated mean power and ALK-
PE approach prediction are given in Fig. 11. Similarly, at the start, the
Kriging prediction is not accurate but with the enrichment of the active
learning process, the final prediction can predict well the mean power
at each wave state. The final results are summarized in Table 6. Even
though the limited PTO force increases the complexity of the problem,
the proposed approach can also accurately predict the mean power with
less computational cost. Only 59 simulations are required to predict all
the wave states and the mean errors are around 1%, which saves more
than 5-time simulations.

5. Conclusion and discussion

In this paper, an active learning Kriging approach named ALK-PE is
proposed to estimate the WEC power matrix with less computational
cost. At first, the concept of the considered WEC is described and the
derivation of the numerical model used to predict the dynamics of the
WEC is presented. Then, the basic idea of active learning strategies
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Table 4
Typical sea state cases and initial training cases.
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Optimized PTO damping
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(b) Optimized PTO damping

Parameter Domain of variation Discretization Number of cases Initial grid samples
H, (m) [0.5, 6.5] 0.5 13 [1, 2.5, 4, 5.5]

T, (s) [3, 15] 0.5 25 [3.5, 6.5, 9.5, 12.5]
Total cases M =325 mi =16
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is introduced. The learning function and stopping criterion of ALK-
PE are presented. Two analytic examples are used to demonstrate the
efficiency and accuracy of the proposed ALK-PE. The threshold of the
stopping condition is also studied. Finally, the proposed approach is
applied to a point absorber WEC. Two different cases are considered in
the point absorber. The results show:

10

The proposed approach can efficiently and accurately estimate the
power matrix of the WEC. The efficiency can increase by about 11
times in the unlimited PTO force case, and the MAPE between SMP
and PMP is about 1%. In the second case, although the nonlinearity
of the mean power estimation increase with the limitation of PTO
force, the proposed approach can also use less than one-fifth of the
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Table 5
ALK-PE approach for a point absorber WEC without PTO force limit.
Approach Simulation times MAPE (%) Efficiency increased (%)
Ref. 325 - -
ALK-PE (@ =5) 28 0.80 1160.71
Table 6
ALK-PE approach for a point absorber WEC with PTO force limit.
Approach Simulation times MAPE (%) Efficiency increased (%)
Ref. 325 - -
ALK-PE (@ =5) 59 1.02 550.85

simulations to predict the whole power matrix and keep MAPE values
around 1%. In both two cases, more than 5-time simulations are
saved. The ALK-PE approach will save computational or experimental
resources when estimating the power matrix by means of time-domain
modeling or physical experiments. Given the current state of wave
energy converters, achieving large-scale commercialization would in-
volve numerous iterations to fine-tune design parameters. The proposed
approach, thanks to its combined high efficiency and accuracy, is
anticipated to significantly enhance this optimization process.

In the future, the proposed approach will apply the other types of
wave connectors, e.g., the overtopping devices and oscillating water
columns. Also, need to mention; the proposed approach is not only
suitable for the mean power matrix estimation but also can be extended

11

to other WECs’ performance estimations, e.g., optimized PTO damping
estimation. Furthermore, only a single WEC is considered in the present
work. However, for economic consideration, WECs are expected to
appear in the form of wave farms in which plenty of WECs are operating
in one region collectively. The performance identification of wave
farms would be much more complicated than that for a single WEC
because of the interaction between devices. Then, relying on traditional
numerical models, the optimization of the farm layout and device shape
could be extremely time-demanding. In that sense, the application of
the ALK-PE method could significantly accelerate the development of
WEGCs.
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