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But I, being poor, have only my dreams;

I have spread my dreams under your feet;

Tread softly because you tread on my dreams.
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ABSTRACT

The world population is rapidly growing. As a result, the world energy demand is increas-

ing as well. Currently, many power plants produce greenhouse gases, which contribute to

an increase in global temperature. To meet the increase in energy demand, more efficient

and greenhouse gas-free methods are necessary.

Applying enhanced thermodynamic cycles to, for example, concentrated solar power

plants or nuclear power plants, will lead to energy efficient and low greenhouse gas emis-

sion technologies. The thermal efficiency of a thermodynamic cycle can be enhanced,

by raising the pressure of either a part of the cycle or the whole cycle to supercriti-

cal pressure. At supercritical pressure, a fluid does not undergo a phase change dur-

ing a heating process. It transitions from a fluid with liquid-like properties to a fluid

with gas-like properties. However, heated or cooled fluids at supercritical pressure show

large variations in thermophysical properties. The largest variations are found close the

pseudo-critical temperature, the temperature for which the specific heat capacity has

a maximum. These variations in thermophysical properties may lead to enhanced or

deteriorated heat transfer when compared to similar conditions at sub-critical pressure.

Currently, the mechanisms that lead to enhanced or deteriorated heat transfer are not

fully understood, yet. This thesis aims to help elucidate these mechanisms.

To this end, a numerical code was developed with the aim to perform direct numerical

simulations of turbulent heat transfer to a fluid at supercritical pressure. Direct numerical

simulations were performed of a turbulent flow at super-critical pressure (CO2 at 8 MPa)

in an annulus with a hot inner wall and a cold outer wall. The annular geometry was

chosen, as it is a common geometry found in heat transfer equipment. The pseudo-critical

temperature lies close to the inner wall, which results in strong thermophysical property

variations in that region.

First, the attenuation of turbulence was studied, as turbulence plays a major role in

heat transfer. The turbulence attenuation was studied in two ways; by analysing mean

statistics and by studying coherent structures such as near wall streaks and streamwise

vorticity, which are part of the near wall cycle of turbulence. The turbulent shear stress

v



ABSTRACT

and the turbulent intensities significantly decrease near the hot inner wall, but increase

near the cold outer wall, which can partially be attributed to the mean dynamic viscosity

and density stratification. This leads to a decreased production of turbulent kinetic

energy near the inner wall and vice versa near the outer wall.

By analysing an evolution equation for the coherent streak flank strength, which was

derived by taking the curl of the momentum conservation equation in conservative form,

the generation of streaks was investigated. It was found that thermophysical property

fluctuations significantly affect streak evolution. Near the hot wall, thermal expansion

and buoyancy hinder the formation of streaks, while the viscosity gradient that exists

across the streaks interacts with mean shear to act either as a source or a sink in the

evolution equation for the coherent streak flank strength.

The formation of streamwise vortices was also investigated using an evolution equa-

tion. Streamwise vortices are hindered by the torque that is the result of the kinetic-

energy-and-density-gradients. Near the cold wall, the results are reversed, i.e. the coher-

ent streak flank strength and the stream-wise vortices are enhanced due to the variable

density and dynamic viscosity. The results show that not only the mean stratification,

but also the large instantaneous thermophysical property variations that occur in heated

or cooled fluids at supercritical pressure have a significant effect on turbulent structures

that are responsible for the self-regeneration process in near wall turbulence. Thus, in-

stantaneous density fluctuations are partially responsible for decreased (or increased)

turbulent motions in heated (or cooled) fluids at supercritical pressure.

Subsequently, turbulent heat transfer both near the hot inner wall and near the cooled

outer wall was studied. Mean high values of the specific heat capacity cause the mean

temperature profile to flatten, while mean low values of the specific heat capacity have the

opposite effect. Also, high mean values of the specific heat capacity dampen temperature

fluctuations, while low values enhance temperature fluctuations. When comparing the

probability density functions of the enthalpy fluctuations to that of the temperature

variations, it was found that the turbulent variation of the specific heat capacity may

enhance or dampen extreme temperature fluctuations.

The radial turbulent heat flux is affected by both the attenuation of the wall nor-

mal motions, but also by the enhancement of the enthalpy fluctuations near the heated

surface. The enhancement of the enthalpy fluctuations can be attributed to a large av-

erage molecular Prandtl number. Molecular conduction is affected as the mean thermal

diffusivity changes. A new average heat flux arises due to thermal diffusion fluctuations

and enthalpy gradient fluctuations. This heat flux may be significant locally, but has a

negligible effect on the Nusselt number.

Combining a relation between the Nusselt number and the radial heat fluxes together
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ABSTRACT

with a quadrant analysis of the turbulent heat flux shows that different heat flux quad-

rants are affected differently by the thermophysical properties. These heat flux quadrants

represent different turbulent heat flux events, i.e. hot fluid moving away from the wall

(hot ejections), hot fluid moving toward the wall, cold fluid moving toward the wall (cold

sweeps) and cold fluid moving away from the wall. Conditional averaging shows that

different heat flux quadrants have significant different densities and molecular Prandtl

numbers which means that certain flux quadrants are more effective at transporting heat

than others. The density is an important factor in heat transfer as it determines how

much heat a fluid particle can contain per volume. The Prandtl number is also an impor-

tant factor, as the so-called time-scale ratio scales with the Prandtl number. This ratio

can be thought of as a ratio of the heat decay time to the mechanical decay time. Higher

time-scale ratios mean that hot fluid moving away from the hot wall decays less fast, or

that it penetrates easier into the bulk of the flow. The analysis shows that not only the

mean density and molecular Prandtl number variation, but also their fluctuations are

important in understanding heat transfer to turbulent supercritical fluids.

The observation that hot ejections and cold sweeps have different Prandtl numbers

was used to derive a new analogy between the Nusselt number and the friction factor.

This new analogy was tested against various experiments reported in literature. The

comparisons between results from the new analogy and experimental results suggest that

such an analogy may be valid at low heat flux to mass flux ratios. This result may help

to develop better heat transfer models for heat transfer to fluids at supercritical pressure

in the future.
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SAMENVATTING

De wereldbevolking is snel aan het groeien. Dientengevolge neemt de wereldwijde vraag

naar energie ook toe. Veel krachtcentrales produceren heden ten dage broeikasgassen die

bijdragen aan de opwarming van de aarde. Om te kunnen voldoen aan de wereldwijde

vraag naar energie zijn efficiëntere methoden, die geen broeikasgassen uitstoten, nodig.

Het toepassen van verbeterde thermodynamische cycli op bijvoorbeeld geconcen-

treerde zonnekrachtcentrales of nucleaire krachtcentrales, zal leiden tot energie-efficiënte

technologieën die weinig broeikasgassen uitstoten. De thermische efficiëntie van een ther-

modynamische cyclus kan verbeterd worden door de druk van óf een deel van de cyclus óf

de gehele cyclus te verhogen naar superkritische druk. Bij een flüıdum dat onder superkri-

tische druk staat vind gedurende een verwarmingsproces geen faseovergang plaats. Het

flüıdum verandert van een flüıdum met vloeistof-achtige eigenschappen in een flüıdum

met gas-achtige eigenschappen. Echter, verwarmde of gekoelde flüıda bij superkritische

druk vertonen sterke variaties in de thermofysische eigenschappen. De grootste variaties

zijn dicht bij de pseudo-kritische temperatuur te vinden; de temperatuur waarbij de

specifieke warmtecapaciteit een maximum vertoont. Deze variaties in de thermofysische

eigenschappen kunnen leiden tot verbeterde of verslechterde warmteoverdracht wanneer

deze vergeleken wordt met soortgelijke condities bij sub-kritische druk. De mechanis-

men die tot verbeterde of verslechterde warmteoverdracht leiden zijn nog niet volledig

begrepen. Dit proefschrift beoogt dergelijke mechanismen te verhelderen.

Daartoe is een numerieke code ontwikkeld met het doel om zogeheten directe nu-

merieke simulaties van turbulente warmteoverdracht naar een stroming, die onder su-

perkritische druk staat, uit te voeren. Dergelijke simulaties zijn uitgevoerd voor een tur-

bulente stroming bij superkritische druk (CO2 bij 8 MPa) in een annulus met een hete

binnenwand en een koude buitenwand. Deze geometrie is uitgekozen om zijn veelvuldig

voorkomen in warmteoverdrachtsmachinerie. De pseudo-kritische temperatuur ligt nabij

de binnenwand, hetgeen sterke thermofysische- eigenschaps-variaties in dat gebied tot

gevolg heeft.

De verzwakking van de turbulentie is als eerste onderzocht, omdat turbulentie een
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grote rol speelt in warmteoverdracht. De turbulentieverzwakking is op twee manieren

bestudeerd; door gemiddelde statistieken, als ook coherente structuren zoals ‘streaks’

en stroomsgewijze vorticiteit, welke een onderdeel zijn van een structuur cyclus nabij

de wand te onderzoeken. De turbulente schuifspanning en de turbulente intensiteiten

nemen significant af nabij de hete binnenwand, maar nemen juist toe in de buurt van

de koude buitenwand, hetgeen, op zijn minst ten dele, toegeschreven kan worden aan

de dynamische- viscositeits- en- dichtheids- stratificatie. Dit leidt tot een afgenomen

productie van turbulente kinetische energie nabij de binnenwand en juist het tegen-

overgestelde in de buurt van de buitenwand.

Door een evolutievergelijking voor de coherente ‘streak’ flanksterkte, die afgeleid kan

worden door de rotatie-operator op de impulsbehoudswet in conservatieve vorm toe te

passen, te analyseren, kon de totstandkoming van de ‘streaks’ onderzocht worden. Uit dit

onderzoek kwam naar voren dat de fluctuaties van de thermofysische stofeigenschappen

de ‘streak’ evolutie sterk bëınvloeden. Nabij de hete binnenwand hinderen thermische ex-

pansie en de opwaartse kracht de totstandkoming van de ‘streaks’. De viscositeitsgradiënt

die tussen ‘streaks’ bestaat heeft een interactie met de gemiddelde snelheidsgradiënt wat

óf als een bron óf als een vernietigingsterm kan optreden in de evolutievergelijking van

de coherente ‘streak’ flanksterkte.

De totstandkoming van stromingsgewijze kolken is ook bestudeerd met behulp van

een evolutievergelijking. Stroomsgewijze kolken worden verhinderd door het koppel van

de kinetische-energie-gradiënten en de dichtheidsgradiënten. Nabij de koude buitenwand

zijn de resultaten omgedraaid; de coherente ‘streak’ flanksterkte en de stromingsgewijze

kolken worden versterkt door de variabele dichtheid en de dynamische viscositeit. Deze

resultaten laten zien dat niet alleen de gemiddelde stratificatie, maar ook grote instan-

tane thermofysische stofeigenschapsvariaties, die in verhitte of gekoelde turbulente flüıda

bij superkritische druk kunnen voorkomen, een significant effect hebben op de turbulente

structuren die verantwoordelijk zijn voor het zelf-regeneratie-proces van turbulentie nabij

de wand. Instantane dichtheidsfluctutaties zijn dus verantwoordelijk voor verzwakte of

juist versterkte turbulente bewegingen in verhitte of gekoelde flüıda bij superkritische

druk.

Vervolgens is ook de turbulente warmteoverdracht zowel nabij de hete binnenwand

als ook de koude buitenwand bestudeerd. Gemiddeld hoge waarden van de specifieke

warmtecapaciteit maken het gemiddelde temperatuurprofiel platter, terwijl gemiddeld

lage waarden van de specifieke warmtecapaciteit het tegenovergestelde effect hebben.

Hoge gemiddelde waarden van de specifieke warmtecapaciteit verzwakken de temperatuur

fluctuaties, terwijl lage specifieke warmtecapaciteitswaarden de temperatuurfluctuaties

juist versterken. Door kansdichtheidsfuncties van de enthalpiefluctuaties en de tem-
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peratuurfluctuaties te vergelijken is duidelijk geworden dat de turbulente variatie van

de specifieke warmtecapaciteit extreme temperatuurfluctuaties kan versterken of juist

verzwakken.

Zowel de verzwakking van de wandnormale beweging als de toename van de en-

thalpiefluctuaties bëınvloeden de radiële turbulente warmteflux nabij een verhitte wand.

De versterking van de enthalpiefluctuaties kan toegeschreven worden aan de hoge gemid-

delde waarden van het moleculaire Prandtl-getal. Moleculaire geleiding wordt bëınvloed

door de gemiddelde thermische-diffusiviteitsverandering. Een nieuwe gemiddelde warmte-

flux komt tot stand door de thermische-diffusie-fluctuaties en de enthalpiegradiënt fluc-

tutaties. Deze warmteflux kan lokaal significant zijn, maar heeft een verwaarloosbaar

effect op het Nusselt getal.

Door een relatie tussen het Nusselt-getal en de radiële warmtefluxen te combineren

met kwadrantanalyse van de turbulente warmteflux wordt inzichtelijk hoe verschillende

kwadranten op verschillende manieren bëınvloed worden door de thermofysische eigen-

schappen. De warmteflux kwadranten stellen ieder een bepaald aspect van de warmte-

flux voor, zoals warme vloeistof die van de wand weggaat, warme vloeistof die naar de

wand toegaat, koude vloeistof die naar de wand toegaat en koude vloeistof die van de

wand weggaat. Conditionele gemiddelden laten zien dat verschillende warmteflux kwa-

dranten duidelijk verschillende dichtheden en moleculaire Prandtl-getal-waarden hebben,

wat zoveel betekent dat sommige kwadranten effectiever of juist minder effectief zijn

in warmteoverdracht. De dichtheid bëınvloed de warmteflux direct. Het moleculaire

Prandtl-getal is ook belangrijk, omdat de zogeten tijdschaalverhouding hiermee schaalt.

Deze tijdsschaalverhouding kan gezien worden als de verhouding van de karakteristieke

warmteafname-tijd tot de mechanische afname tijd. Hogere tijdschaal verhoudingen

betekenen dat de warmte die van een hete wand weggaat minder snel afneemt, of makke-

lijker tot in het midden van de stroming door kan dringen. De analyse laat zien dat niet

alleen de gemiddelde variatie van de dichtheid en het moleculaire Prandtl-getal, maar

juist ook de fluctuaties daarvan van belang zijn om warmteoverdracht naar turbulente

flüıda te begrijpen.

De observatie dat warme vloeistof die van de wand weggaat en koude vloeistof die

juist naar de wand toegaat verschillende moleculaire Prandtl-getallen hebben is gebruikt

om een nieuwe analogie tussen het Nusselt-getal en de wrijvingsfactor af te leiden.

Deze nieuwe analogie is gevalideerd aan de hand van verschillende experimenten uit

de literatuur. De vergelijking tussen de resultaten van de nieuwe analogie en de experi-

menten suggereert dat een dergelijke analogie valide zijn kan bij lage verhoudingen tussen

de warmteflux en de massaflux . Dit resultaat kan helpen in het ontwikkelen van betere

warmteoverdrachtsmodellen.
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CHAPTER 1

INTRODUCTION

1.1 The state of the world

The world population has rapidly grown in the last century. In recent years alone,

between the year 1990 and 2010, the population has increased by 30%, or 1.6 billion hu-

man beings according to the United Nations Department of Economic and Social Affairs

[2015]. Due to this population growth, but also due to economic growth and industrial-

ization, the world energy demand has increased in the same time by approximately 50%

as is reported by the International Energy Agency [2015]. Projections indicate that the

world population will increase to 9.7 billion in 2050 and that the electricity demand will

increase by 70% in 2040. In order to maintain or even increase standards of living of

the world population, it is important that the increase in electricity demand will be met

with increased production of electricity.

Currently, burning fossil fuels, such as coal, (natural) gas and (fuel) oil, is the primary

source of electricity worldwide. However, burning fossil fuels is also associated with the

emission of greenhouse gases, such as CO2, into the atmosphere. The accumulation of

such gases in the atmosphere results in an enhanced greenhouse effect as they will absorb

thermal radiation emitted by the earth and re-emit a part of the absorbed radiation back

toward the earth, which results in higher surface temperatures and lower- atmosphere-

temperatures. A rise of 2.5 ◦C in global mean temperature in the current century was

predicted in the late last century by Hansen et al. [1981]. More recently, however, the

International Panel on Climate Change [2014] presented projections showing an increase

in global mean temperature ranging from 3.7 ◦C to 4.8 ◦C over the course of this century

if greenhouse gas emissions are not mitigated. A rise in global mean temperature is

unwanted as it can have dire consequences to global society, such as a rise in sea-levels,

reduced crop yield, an increased rate of occurrence of heat waves or extreme weather and

changes in flora and fauna. It is therefore vital that electricity production methods that

emit less greenhouse gases are researched and subsequently implemented into society.
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1.2. ENHANCED THERMODYNAMIC CYCLES CHAPTER 1. INTRODUCTION

1.2 Enhanced thermodynamic cycles

The International Energy Agency [2015] reports that ”energy efficiency plays a critical

role in limiting world energy demand growth to one-third by 2040.” Therefore, future

energy systems should not only have low greenhouse gas emissions, but should also be

highly energy efficient. Two examples of low greenhouse gas emission energy systems

are concentrated solar power plants and nuclear power plants. Such energy systems rely

on classical sub-critical steam cycles. Modern sub-critical steam cycles for concentrated

power plants typically operate with a thermal efficiency of 37%-42%, according to Dun-

ham and Iverson [2014]. Nuclear power plants that are currently in operation typically

have a lower thermal efficiency of 33% to 35% (see for instance Pioro et al. [2004]). These

efficiencies are rather low when compared to modern fossil-fuelled power plants, which

run at an efficiency in the range of 45%-50%, as such power plants typically operate at

supercritical pressure. Supercritical pressure steam cycles allow for higher temperatures

and pressure, which can increase the thermal efficiency to above 45%. The difference

between a supercritical steam cycle and a sub-critical one is schematically represented in

figure 1.1(a). The main difference between the two cycles is that in a supercritical cycle

during the heating phase, indicated in the figure by 4–1, the working fluid does not enter

the vapour/liquid coexistence region as is the case in a sub-critical steam cycle. In other

words, no vapour is formed in the supercritical cycle.

Applying supercritical cycles to concentrated solar power plants or nuclear power

plants results in highly efficient energy systems with low greenhouse gas emissions. In

fact, new designs for concentrated solar power plants and nuclear power plants already

exist. For instance, the High Performance Light Water Reactor, a new nuclear reactor

concept, is designed to use a supercritical steam cycle and it is envisioned to have a

thermal efficiency of 44 % as is stated by Schulenberg et al. [2011], which is substantially

higher than nuclear power plants that are in operation today. Due to the supercritical

conditions of the design, steam generators, steam separators and dryers are unnecessary,

which is also advantageous when compared to older nuclear reactor designs. Dunham

and Iverson [2014] mention that supercritical steam cycles are also considered for modern

concentrated solar power plants.

Another thermodynamic cycle that has a high thermal efficiency (in the range of 50%

according to Iverson et al. [2013]) is the supercritical carbon dioxide Brayton cycle. This

cycle is similar to the sub-critical Brayton cycle, except for the fact that the working

fluid is in the supercritical phase for the whole cycle rather than in the gaseous phase,

as is shown in 1.1(b). In this cycle, the work that is done by the compressor is reduced

due to the supercritical conditions, as was found by Angelino [1967]. This cycle is also

considered for both concentrated solar power plants (see Iverson et al. [2013] or Garg

2



CHAPTER 1. INTRODUCTION 1.3. SUPERCRITICAL FLUIDS

enthropy

te
m

p
er

a
tu

re

supercritical
subcritical
critical point

Tc

pc

SCF

3,3’

4’

4

1

1’

2’2liquid liquid
+

vapour

va
p

o
u
r

(a) Rankine cycles

enthropy

te
m

p
er

a
tu

re

supercritical
subcritical
critical point

Tc

pc

SCF

3
4

1

2

3’

4’

1’

2’

liquid

liquid
+

vapour vapour

(b) Brayton cycles

Figure 1.1: a) ideal Rankine cycles. The processes are as follows: 1–2: isentropic expan-
sion, 2–3: cooling of the working fluid at constant pressure, 3–4: isentropic compression,
4–1: heating of the working fluid at constant pressure. Accents are reserved for the sub-
critical cycle. Points 3 and 3’ coincide. b) ideal Brayton cycles. The processes are the
same as in the Rankine cycle, except that they occur at different temperatures and en-
tropies. The black line represents the saturation curve, while the blue lines represent the
critical temperature isotherm and the critical isobar, denoted as Tc and pc, respectively.
SCF denotes the supercritical fluid phase.

et al. [2013]) and nuclear power plants (see Dostal et al. [2004]).

In short, more efficient energy systems can be developed if supercritical steam/CO2

cycles are used. However, the current knowledge of the behaviour of heat transfer to

supercritical fluids is rather limited, which will be discussed below.

1.3 Supercritical fluids

At sub-critical pressure, vapour and liquid can coexist in equilibrium. This occurs for

certain combinations of the pressure and the temperature. The collection of these com-

binations is known as the saturation curve. The maximum of this curve is the critical

point, see figure 1.2. At this point, the distinction between vapour and liquid does not

exist. Above the critical values of pressure and temperature, a fluid is supercritical, see

for instance Zappoli et al. [2015].

Supercritical fluids have unique properties. For instance, supercritical fluids have

a large isothermal compressibility, which is beneficial to the CO2 Brayton cycle that

was mentioned in the previous section. Moreover, when a fluid at supercritical pressure

3



1.3. SUPERCRITICAL FLUIDS CHAPTER 1. INTRODUCTION

specific volume (m3/kg)

p
re

ss
u
re

(M
P

a
)

Tc − 10 K
Tc
Tc + 10 K
critical point

SCF

liquid
+

vapour

li
q
u
id

vapour

Figure 1.2: Pressure – specific volume diagram of CO2. The saturation curve is shown
in black. SCF stands for supercritical fluid, while Tc denotes the critical temperature.
The red lines are isotherms.

T (K)

ρ
(k

g
/
m

3
)

P
r

(–
),
c
p

(J
/
k
g
.K

)

ρ
cp × 10−3

Pr

T (K)

k
(W

/
m

.K
),

β
(1

/
K

)

µ
(µ

P
a
.s)

k
β
µ

Figure 1.3: Properties of CO2 at 8 MPa. Shown are the density ρ (kg/m3), the specific
heat capacity cp (J/kg.K), the molecular Prandtl number Pr (–), the thermal conductiv-
ity k W/m.K), the dynamic viscosity µ (µPa.s) and the thermal expansivity at constant
pressure β (1/K). The thermo-physical properties have been obtained from the equation
of state by Kunz et al. [2007] as well as equations from Fenghour et al. [1998] and Vesovic
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is heated, it transitions from a fluid with liquid-like properties to a fluid with gas-like

properties, without undergoing a phase change, which is beneficial to the supercritical

steam cycle, as was mentioned in the previous section. The temperature about which

this continuous transition occurs is called the pseudo-critical temperature Tpc, which is

defined as the temperature for which the specific heat capacity has its maximum value.

Close to the pseudo-critical temperature, the thermophysical properties vary sharply with

temperature. This is, for instance, true for CO2 as well as for water. The thermophysical

properties of CO2 at 8 MPa are shown in fiugre 1.3. As temperature increases, the density

decreases as does the dynamic viscosity. The density and dynamic viscosity variation

with temperature is strongest around Tpc = 307.7K. The specific heat capacity, Prandtl

number and the thermal expansivity show a maximum at Tpc. Finally, the thermal

conductivity decreases with temperature, but also shows a maximum at Tpc.

In most heat transfer applications, fluid flows are in a turbulent state and are heated

(or cooled) by a hot (or cold) surface. The variation in thermophysical properties can

have a significant effect on (turbulent) heat transfer to or from that surface. The effects

of the thermophysical properties are two-fold. First of all, the variation in density and

dynamic viscosity can affect the (turbulent) motion of the fluid and therefore also heat

transfer. Secondly, heat transfer may be directly affected by variations in the density, the

specific heat capacity, as well as the thermal conductivity. Heat transfer to supercritical

fluids has been broadly categorised into three regimes:

• normal: the heat transfer is comparable to heat transfer in a similar situation, but

with a fluid that has constant thermophysical properties

• enhanced: the heat transfer is larger than heat transfer in a similar situation, but

with a fluid that has constant thermophysical properties

• deteriorated: the heat transfer is smaller than heat transfer in a similar situation,

but with a fluid that has constant thermophysical properties

The enhanced heat transfer effect can be so strong, that it can cause a local drop

in surface temperatures. On the other hand, the deteriorated heat transfer effect can

be so strong, that it causes a local rise in surface temperature. These characteristics of

heat transfer at supercritical pressure are not satisfactorily captured by both heat trans-

fer correlations (see for instance Pioro et al. [2004] and computational fluid dynamics

with turbulence modelling (see Sharabi and Ambrosini [2009]), because these methods

have either been developed for sub-critical pressure conditions, or perhaps because they

have been developed without fully understanding the mechanisms behind heat transfer

at supercritical pressures. According to a recent review on heat transfer at supercritical

pressure by Yoo [2013] “there has been no consensus on the general trends in supercritical

5



1.4. THESIS GOALS AND OUTLINE CHAPTER 1. INTRODUCTION

heat transfer, particularly with regard to turbulent flow.” However, an enhanced under-

standing of heat transfer to fluids at supercritical pressure is of vital importance to a safe

and optimised design of any heat transfer equipment meant to operate at supercritical

pressure.

1.4 Thesis goals and outline

The aim of this thesis is to elucidate mechanisms that can lead to heat transfer enhance-

ment or deterioration. The tools of choice for this investigation are computational fluid

dynamics methods without using turbulence models, i.e., Direct Numerical Simulation

techniques. Because the thermophysical properties may affect both the turbulent mo-

tion of the fluids and the heat transfer directly, this thesis aims to investigate both how

turbulence is affected and how heat transfer is affected by variable thermophysical prop-

erties. As (concentric) annuli are geometries that are commonly found in heat transfer

equipment, mostly annular turbulent flows are studied.

The outline of this thesis is as follows. Chapter 2 documents the numerical methods

that are used for the direct numerical simulations, such as the time-integration scheme,

the spatial discretisation schemes as well as code-to-code validations, code-to-experiment

validations and numerical tests.

In chapter 3, five different numerical simulations are described which are subse-

quently analysed in order to investigate turbulence attenuation in heated turbulent an-

nular flows at supercritical pressure. Firstly, the mean attenuation of mean statistics by

variations in the density and dynamic viscosity is investigated. Secondly, the attenuation

of turbulent structures that are part of the near wall cycle in turbulent flows is studied.

In chapter 4, attention is given to the effect of the other variable thermophysical

properties on turbulent heat transfer; the specific heat capacity, the thermal diffusivity,

the Prandtl number, but also the density. Differences between enthalpy and temperature

fluctuations in supercritical conditions are explained using probability density functions.

Differences between turbulent heat transfer at sub-critical pressure (constant thermo-

physical properties) and turbulent heat transfer at supercritical pressure are explained

by examining the budgets of heat flux transport equations as well as turbulent heat flux

quadrants.

A new semi-analytical model for predicting heat transfer at supercritical pressure is

presented in chapter 5. This models starts from the observation that the total heat

flux consists of a conductive part as well as a turbulent part, but that the latter has the

largest contribution to heat transfer.

The main conclusions of the work are summarised in Chapter 6. At the end of this

thesis, various appendices can be found that present supplementary material.

6
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CHAPTER 2

NUMERICAL METHODS

It is well accepted within the scientific community that the Navier-Stokes equations are

a valid description of the motion of a fluid with constant thermophysical properties.

Our aim, however, is to investigate the effect of variable thermophysical properties on

turbulence and heat transfer. We will therefore start this chapter with a short remark

on the validity of the Navier-Stokes equations with respect to the goals that were set

in the introduction. Subsequently, numerical methods that are employed in order to

solve the governing equations for heated turbulent fluids at super-critical pressure will be

presented. These methods were used to rewrite a numerical program that was suitable to

solve the incompressible Navier-Stokes equations, see Boersma [2011], to a program that

is tailored to solve the low Mach number approximation of the Navier-Stokes equations.

The numerical methods will be tested and validated at the end of the chapter.

2.1 Governing equations

The Navier-Stokes equations can only describe a heated turbulent fluid flow accurately

if such a flow may be considered to be in local thermodynamic equilibrium. This as-

sumption is valid for length scales Λ that are larger than the correlation length scale ξ; a

length scale that is associated with density fluctuations that arise due to variations in the

number of molecules in a given volume. Under the assumption that Λ > ξ, the fluid state

is described by the hydrodynamic conservation equations for a low Mach number fluid

(Zappoli et al. [2015]). Experiments that were performed by Nishikawa and Tanaka [1995]

in order to calculate ξ in supercritical CO2 suggest that this assumption is reasonable.

It was mentioned in the introduction that this study will be limited to low Mach num-

ber applications. Therefore, the low Mach number approximation of the Navier Stokes

equations is numerically solved to simulate heated and (or) cooled flows at supercritical

pressure in cylindrical geometries. The low Mach number approximation has previously

been used by Bae et al. [2005, 2008], Nemati et al. [2015] and Patel et al. [2015] to simu-

9



2.1. GOVERNING EQUATIONS CHAPTER 2. NUMERICAL METHODS

late such flows and a derivation of this approximation can be found in appendix A.1.1. In

the low Mach number limit of the Navier Stokes equations, the effect of acoustic waves

on the solution is neglected. The pressure is decomposed into a thermodynamic part

p0(t) and a hydrodynamic part phy(t). The thermodynamic pressure is considered to be

constant. The fluctuations of the hydrodynamic pressure are assumed to be very small

compared to the thermodynamic pressure so that all thermophysical property variations

due to hydrodynamic pressure fluctuations can be neglected. Therefore, all thermophysi-

cal properties can be evaluated as a function of the enthalpy only. Well above the critical

pressure, the speed of sound shows a minimum at the pseudo-critical temperature. For

sCO2 at 8 MPa, the minimum value of the speed of sound is 179 m/s. Thus when con-

sidering bulk velocities of 1 m/s, the Mach number is even less than 0.01, which validates

the use of the low Mach number approximation.

Using dyadic notation and denoting a vector with a bold symbol, while denoting a

second order tensor with a capital bold symbol, the governing equations for conservation

of mass, momentum and enthalpy in non-dimensional form read:

∂tρ+∇ · ρu = 0, (2.1)

∂t(ρu) +∇ · (ρuu) = −∇phy + Fr−1ρẑ +Re−1∇ · 2µS + Φ, (2.2)

where,

S ≡ 1/2(∇u+ (∇u)T)− 1/3(∇ · u)I

and

∂t(ρh) +∇ · ρuh = (RePrh)−1∇ · k∇T, (2.3)

in which ρ is the density, u = (u, v, w)T the velocity, Fr the Froude number, ẑ the stream-

wise unit vector, Re the Reynolds number, µ the dynamic viscosity, S the deviatoric

stress tensor, Φ = (0, 0,Φ)T with Φ being the driving force, I the identity tensor, h the

enthalpy, Prh the reference Prandtl number based on a ratio of an enthalpy difference

and a temperature difference, k the thermal conductivity and T the temperature. All

variables in the above presented equations are scaled with bulk quantities, i.e. the spatial

coordinates are scaled with the hydraulic diameter Do
h, the velocity with the bulk stream-

wise velocity wob , and the time was scaled with Do
h/w

o
b . The superscript o denotes a

dimensional quantity. All thermophysical properties were scaled with their respective

values at the pseudo-critical point, i.e. ρ = ρo/ρopc and µ = µo/µopc, where the subscript

pc denotes a property at the pseudo-critical temperature. The hydrodynamic pressure

is therefore scaled with ρopcw
o
b

2. Both the enthalpy and the temperature have been non-

dimensionalised such that 0 ≤ h ≤ 1 and 0 ≤ T ≤ 1:

h =
ho − hocold

∆ho
, T =

T o − T ocold
∆T o

, (2.4)

10
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where T ocold represents the lowest possible temperature in the system and where hocold
equals ho(T ocold). ∆T = T ohot − T ocold, where T ohot is the highest possible temperature.

Similarly, ∆ho = ho(T ohot) − ho(T ocold). By scaling the conservation equations in this

manner, the Reynolds, Prandtl and Froude numbers are defined as:

Re ≡
ρopcw

o
bD

o
h

µopc
, P rh ≡

µopc∆h
o

kopc∆T
o
, F r ≡ wob

2

goDo
h

, (2.5)

where go represents the magnitude of the gravitational vector. go = 9.81 m/s2, ρopc =

4.75 · 102 kg/m3, µopc = 3.37 · 10−5 Pa·s and kpc = 9.04 · 10−2 W/mK, see Kunz et al.

[2007] and equations from Fenghour et al. [1998] and Vesovic et al. [1990].

2.2 Discretisation

In the numerical model, the low Mach number approximation of the Navier-Stokes equa-

tion must be discretised in both time and space, before a solution for the momentum

and the enthalpy can be obtained.

2.2.1 Spatial discretisation

As we envision to investigate an annular geometry, the flow domain is best described by

cylindrical coordinates. Any derivatives with respect to the radial direction are discre-

tised using a 6th order staggered compact finite difference scheme that was previously

outlined by Boersma [2011]. Derivatives with respect to the circumferential direction

and the stream-wise direction are calculated using a pseudo-spectral method. In order

to enhance the stability of the numerical model, the diffusive terms of the momentum-

and enthalpy equations are written in a non-conservative form. The diffusive terms are

written as:

∇ · k∇T = k∇2T +∇k ·∇T (2.6)

∇ · 2µS = 2µ∇ · S + 2∇µ · S (2.7)

To avoid aliasing errors, a skew-symmetric formulation is used for the convective

terms of the Navier-Stokes equations. For a convective term with three independent

variables, numerous skew-symmetric formulations (both quadratic and cubic) are possi-

ble, see Kennedy and Gruber [2008]. In the current study, the quadratic formulation,

reported by Feiereisen et al. [1981], was adopted:

∇ · (ρuh) =
1

2
∇ · (ρuh) +

1

2
ρu ·∇h+

1

2
h∇ · ρu (2.8)

∇ · (ρuu) =
1

2
∇ · (ρuu) +

1

2
ρu · ∇u+

1

2
u(∇ · ρu) (2.9)

11
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This formulation was found to be computationally inexpensive, while yielding stable

solutions.

2.2.2 Temporal discretisation

To obtain a solution for the momentum ρu = (ρu, ρv, ρw)T, which represent the radial,

circumferential and stream-wise direction respectively, and for the values of ρh, equations

(2.2) and (2.3) are numerically integrated using the following algorithm. First, the en-

thalpy transport equation is integrated using a second order Adams-Bashford (explicit)

time integration scheme;

(ρh)n+1 = (ρh)n + ∆t

[
3

2
(A(h))n − 1

2
(A(h))n−1

]
, (2.10)

where A(h) represents the diffusion and convective parts of equation (2.3). The density

at time step n+ 1, ρn+1, cannot be determined from (ρh)n+1 directly. An intermediate

step is therefore required. An estimate ρ∗ of ρn+1 is calculated as is detailed by Najm

et al. [1998]:

ρ∗ = ρn + ∆t

[
3

2

(
∂ρ

∂t

)n
− 1

2

(
∂ρ

∂t

)n−1
]

(2.11)

The enthalpy at n + 1 is then estimated as hn+1 = (ρh)n+1/ρ∗. Subsequently, ρn+1 is

then calculated from hn+1, which will be detailed later in this chapter. Advancing the

momentum is done using an algorithm closely reminiscent of the method employed by

McMurtry et al. [1986]. First, we will require that equation (2.1) holds for every solution

at n+ 1, or:

(∂tρ)n+1 +∇ · (ρu)n+1 = 0 (2.12)

Because the enthalpy transport equation is advanced first, ρn+1 is known, which means

that a second order accurate estimate of (∂tρ)n+1 can be calculated:

(∂tρ)n+1 = (∆t)−1

[
3

2
ρn+1 − 2ρn +

1

2
ρn−1

]
(2.13)

Second, the momentum equation will be advanced, while completely disregarding the

pressure gradient, yielding an intermediate solution for the momentum (ρu)∗;

(ρu)∗ = (ρu)n + ∆t

[
3

2
(A(u))n − 1

2
(A(u))n−1

]
(2.14)

The ’remainder’ of the momentum equation is given by:

(ρu)n+1 = (ρu)∗ −∆t∇pn+1 (2.15)

Taking the divergence of equation (2.15), yields Poisson’s equation:

∇ · (ρu)n+1 = ∇ · (ρu)∗ −∆t∇2pn+1. (2.16)

12



CHAPTER 2. NUMERICAL METHODS 2.3. THERMOPHYSICAL PROPERTIES

h

ρ
,
µ

,
k

c
p

ρ
µ
k
cp

T

ρ
,
µ

,
k

c
p

ρ
µ
k
cp

Figure 2.1: Non-dimensional properties of CO2 at 8 MPa. Shown are the density ρ, the
specific heat capacity cp, the thermal conductivity k, and the dynamic viscosity µ as a
function of the enthalpy h (left) and the temperature T (right).

Equation (2.16) is rewritten using that −∇ · (ρu)n+1 must be equal to equation (2.13);

∇2pn+1 =
(∆t)−1

[
3
2ρ
n+1 − 2ρn + 1

2ρ
n−1
]

+∇ · (ρu)∗

∆t
(2.17)

Equation (2.17) is solved using second order implicit scheme to obtain pn+1, after which

(ρu)n+1 is obtained using equation 2.15.

2.3 Thermophysical properties

In the previous section, it was mentioned that the density is calculated as a function

of the enthalpy. In fact, the density, dynamic viscosity, thermal conductivity and tem-

perature are calculated at each time step (as soon as hn+1 is known) using a 3rd order

spline interpolation along an isobar, as a function of the enthalpy h. Tabulated values of

T, ρ, µ, k have been pre-computed using the Helmholtz equation of state by Kunz et al.

[2007] and the equations by Fenghour et al. [1998] and Vesovic et al. [1990], which are

included in the NIST standard reference database (Lemmon et al. [2013]). Calculating

the thermophysical properties as a function of the enthalpy is advantageous compared to

calculating them as a function of the temperature; the non-dimensional thermophysical

properties show less steep variation around the pseudo-critical temperature with increas-

ing non-dimensional enthalpy than they do with increasing temperature, as is shown in

figure 2.1.

13
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qw

(a) Chung et al. [2002]

qw qw

(b) Ould-Rouiss et al. [2010]

Figure 2.2: Configurations of Chung et al. [2002] and Ould-Rouiss et al. [2010]. Left: an
annular geometry with a constant wall heat flux at the inner and the outer wall. Right:
a pipe geometry with a constant heat flux at the wall.

2.4 Sub-critical validations

The numerical methods that were described in the previous section are validated against

both heated turbulent flows in an annular geometry at different Prandtl numbers as well

as a heated turbulent flow with variable density effects.

2.4.1 Annular geometry

The first validation case concerns a turbulent heated flow in an annular geometry. The

configuration is shown in figure 2.2(a). Simulations were run at a Reynolds number of

Re=8900 with Prandtl numbers of Pr=0.71 (on a 144 × 288 × 288 mesh) and Pr=7 (on a

192 × 576 ×576 mesh). Results of the turbulent intensities are compared in figures 2.3(a)

and 2.3(b) with results reported by Chung et al. [2002] and Ould-Rouiss et al. [2010]. The

comparison shows that there is good agreement between the current numerical methods

and the results reported by Chung et al. [2002] and Ould-Rouiss et al. [2010].

14
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(a) Comparison with Chung et al. [2002]
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Figure 2.3: Comparison between the current DNS code, Chung et al. [2002] as well as
Ould-Rouiss et al. [2010]. On the left, velocity intensities near the inner and outer wall
of an annular geometry. On the right, temperature intensities near the inner wall for two
different Prandtl numbers, Pr.

2.4.2 Variable density

The numerical methods that were discussed before were previously validated by Patel

et al. [2015] against variable density channel flow results that were presented by Nicoud

[2000]. Because the effect of buoyancy is also studied in this present study, the code was

validated against two experiments by Carr et al. [1973]. In these experiments, annotated

as N10 and N12, upward flowing air (at a bulk Reynolds number of 5300) is heated in a

pipe at atmospheric pressure, see figure 2.2(b). The same configuration was simulated

using the numerical methods that were described earlier, using a mesh with 128 × 256

× 256 grid points and a domain length of six hydraulic diameters. Mean velocity and

temperature measurements are compared with the results from the Direct Numerical

Simulation in figure 2.4(a) and the turbulent heat flux is compared in figure 2.4(b). The

results validate the code, since there is good agreement between the DNS results and the

measured experimental data.

2.5 Super-critical tests

In the previous section, it was shown that the numerical methods described in this chapter

yield results that are in line with numerical simulations and experiments of heat transfer
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Figure 2.4: Comparison between the current DNS-code and the experiment described
by Carr et al. [1973]. The symbols denote experimental values, while the lines represent
results of direct numerical simulations.

at sub-critical pressure, that were previously reported in literature. However, before

discussing how variable thermophysical properties of a fluid at super-critical pressure

attenuate turbulence (which will be done in the next chapter), it is useful to test the

validity of the code also in a configuration at super-critical pressure. We will consider a

configuration that will be investigated in the next chapter. The configuration is shown in

figure 2.5(a). The annulus is similar to the one described before, except that the walls are

kept at a constant temperature. Two cases are considered here. The first is a reference

case with constant properties. The second is a case where the thermophysical properties

correspond to that of CO2 at 8 MPa, with Th = 323 K, Tc = 303 K. The pseudo-critical

temperature Tpc is reached in the bulk of the fluid. The grid size of the first case is

192 × 480 × 512, while that of the second case is 256 × 768 × 768. Re = 8000 in both

cases. In the following, we will investigate the conservation of the mass, momentum and

enthalpy of the system.

2.5.1 Conservation of mass and energy

In section 2.2, methods were introduced that should be considered non-conservative: in

particular, equations (2.7) and (2.11). It is important, however, that these methods do

not violate the conservation laws for mass, momentum and enthalpy. In general (while

excluding body forces), the conservation equations for a scalar φ or a vector v can be
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Figure 2.5: Annular configuration.

written in the following form :

∂tφ+∇ · j = 0

∂tv +∇ · J = 0 (2.18)

where,

(mass) φ = ρ : j =ρu (2.19)

(momentum) v = ρu : J =ρuu+ pI − 2µS (2.20)

(enthalpy) φ = ρh : j =ρuh− k∇T (2.21)

Equations (2.18) can be written in integral form as:

∂

∂t

˚

V

φdV +

‹

a

j · da = 0

∂

∂t

˚

V

vdV +

‹

a

J · da = 0 (2.22)

Since convection is zero at the walls, and since the heat flux at the inner wall must

balance that at the outer wall, equations (2.19) and (2.21) imply that in a (statically) fully

developed flow
˝
V

ρdV and
˝
V

ρhdV must be constant. Furthermore, in such situations,

the mean stream-wise pressure gradient should balance the mean shear stresses at the
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Figure 2.6: Variation of the total mass, momentum and enthalpy in the sCO2 case and
the reference case. Values are normalised using the respective averages. Results in grey
indicate results from the constant properties case.

walls, so that
˝
V

ρudV is constant as well. These implications were checked for the

aforementioned simulation. The results are shown in figure (2.6(a)). It is clear that the

total enthalpy variation of the case with simultaneously heated and cooled sCO2 is very

similar to that of the case with constant properties. The variation in the total enthalpy

of the system is the result of a numerical mismatch between the the heat flux at the

inner wall and that at the outer wall. The total mass variation shows an opposite trend

to that of the total enthalpy. The total mass variation with time is therefore the result

of the fact that the heat flux at the inner wall does not (instantaneously) balance that

of the outer wall.

2.6 Summary

The numerical methods that are used to simulate heat transfer to a turbulent fluid at

super-critical pressure have been presented; an 2nd order Adams-Bashford time integra-

tion scheme and a combination of compact finite difference and pseudo-spectral spatial

discretisation methods are used. These methods have been validated against both numer-

ical as well as experimental data of heated flows at sub-critical pressure with satisfactory

results. Furthermore, preliminary tests were conducted to test the numerical methods

with respect to a heated flow at super-critical pressure.
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CHAPTER 3

TURBULENCE ATTENUATION

The contents of this chapter were published before under the title: ”Turbulence attenua-

tion in simultaneously heated and cooled annular flows at supercritical pressure” in the

Journal of Fluid Mechanics, volume 799, pages 505–540, 2016.

3.1 Introduction

In order to understand how the thermophysical property variations of a fluid at super-

critical pressure affect heat transfer, it is important to understand how the flow, and

turbulence in particular, are affected by thermophysical property variations. This is not

fully understood, yet. However, such knowledge will help in the design of better heat

transfer models, such as Nusselt number relations and turbulence models.

To investigate the effect of thermophysical property variations on turbulent flow char-

acteristics, Bae et al. [2005, 2008] simulated heat transfer to supercritical carbon dioxide

(sCO2) at 8 MPa in a pipe and annular geometry, respectively. Bae et al. [2005] reported

significantly decreased vortical motions near the heated surface. This is an important

observation as stream-wise vortices are an integral part of the self regenerating process

of near wall turbulence (see for instance Waleffe [1997] and Hamilton et al. [1995]). Bae

et al. [2008] found that velocity profiles and shear stress profiles are significantly affected

by acceleration and the combined effect of buoyancy and a negative stream-wise pressure

gradient; such findings are qualitatively in line with the experiments by Kurganov and

Kaptil’ny [1992].

More recently, Zonta et al. [2012] and Lee et al. [2013] showed the effect of variable

dynamic viscosity, representative of a fluid at sub-critical pressure, on a channel flow

and a boundary layer flow. They found that the variation in viscosity causes the turbu-

lence intensities to diminish. More specifically, Zonta et al. [2012] report that the streak

characteristics are altered due to the variation in viscosity. Strong variations of dynamic
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viscosity and thermal expansion coefficient were shown to have a large impact on momen-

tum and heat transfer in stably-stratified channel flows (Zonta et al. [2012] and Zonta

[2013]). High viscosity regions dampen the turbulent intensities, whereas low viscosity

regions enhance the intensities. Unstably density stratification in a horizontal channel

flow configuration was found to significantly increase momentum and heat transfer by

Zonta and Soldati [2014]. These studies show that the non-linear thermophysical prop-

erty relations for the thermophysical properties (non-Oberbeck-Boussinesq conditions)

may have a profound effect on flow statistics and flow structures. It is also interesting to

note here that Patel et al. [2015] found that the stability of streaks is significantly affected

by mean density and viscosity stratification. These findings are important as streaks not

only contribute greatly to the turbulent shear stress (Willmarth and Lu [1972]), but are

also an integral part of the self regenerating process of near wall turbulence.

In this chapter, we will investigate how the variable thermophysical properties of a

heated (or cooled) fluid at supercritical pressure affect turbulent motions in a qualitative

as well as a quantitative manner. Firstly, we are interested in what the influence of a

mean density and dynamic viscosity variation is on the flow field. Secondly, we would

like to investigate how instantaneous density- and dynamic viscosity fluctuations affect

the turbulent motions, and more specifically, turbulent structures such as the near wall

streaks and stream-wise vortices, which are important to the self-regeneration of tur-

bulence in the near wall region. Lastly, we want to investigate the role of the variable

Prandtl number with respect to the generation of turbulent structures, as it determines

the magnitude of the thermal fluctuations and therefore the thermophysical property

fluctuations. To this end, results from Direct Numerical Simulations (DNS) of simulta-

neously heated and cooled turbulent supercritical fluids flowing upwards in an annular

geometry at a Reynolds number of 8000 will be shown. A schematic of the investigated

geometry is shown in figure 3.1. The temperature crosses the pseudo-critical point within

the flow field. The inner wall of the annular geometry is kept at a high temperature,

while the outer wall is kept at a low temperature. In this manner, a statistically fully

developed temperature and flow profile can be obtained. This allows us to focus on

local variable thermophysical properties effects on turbulence, because effects such as

a growing thermal boundary layer and mean stream-wise flow acceleration will not be

present.

In the next section, five numerical cases that are suitable to investigate the effect of

variable thermophysical properties on turbulence are described. Subsequently, the effect

of the mean density and viscosity profiles of supercritical carbon dioxide (sCO2) on

mean flow statistics will be discussed first. Thereafter, the influence of the instantaneous

density- and dynamic viscosity variations on turbulent structures will be investigated.

Finally, a summary of the most important conclusions will be presented.
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Figure 3.1: The annular geometry of the simulations. The inner and outer wall radii
(Rin & Rout), the length L and the inner and outer wall temperatures (Thot & Tcold) are
shown.

3.2 Cases

In total, five cases have been simulated. The simulation parameters are summarised in

table 3.1. In case I, all thermophysical properties are constant, which is representative of

a turbulent flow at sub-critical pressure at low heating (or cooling) rates. In cases II and

III, the thermophysical properties correspond to those of CO2 at 8 MPa. Upward mixed

convection (the combination of both forced- and free convection) effects are considered

only in case III; all other cases are forced convection. Cases IV and V are cases with

artificial thermophysical property behaviour, which are used to isolate either ρ- or µ

specific characteristics or effects. In these cases, all properties are constant, except for

the density (case IV) or the dynamic viscosity and thermal conductivity (case V). The

molecular Prandtl number Pr = µcp/k, is equal to 2.85 in the reference case (I) and

the variable density (IV) and viscosity (V) cases, which is equal to the reference Prandtl

number Prh in the sCO2 cases. In case V, the thermal conductivity varies in the same

way as the dynamic viscosity in order to keep the molecular Prandtl number constant.

By doing so, the thermal length scales are of similar magnitude for cases I, IV and V.

It can therefore be expected that the magnitude of thermophysical property variations

is similar in cases IV and V. The molecular Prandtl number only varies in the sCO2

cases. The inner wall of the annulus (r = Rin = 0.5) is kept at a constant temperature

of 323 K, while the outer wall (r = Rout = 1.0) is kept at a lower temperature of 303 K.

By simultaneously heating and cooling the fluid, a statistically fully developed turbulent
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Case Properties Reτ,in Reτ,out Pr = µcp/k

I constant 276 264 Pr = 2.85
II CO2 at 8 MPa 275 220 Pr = 1.6− 14
III CO2 at 8 MPa 310 221 Pr = 1.6− 14
IV variable ρ 185 345 Pr = 2.85
V variable µ 375 180 Pr = 2.85

Case flow condition Fr−1 Nr ×Nθ ×Nz
I forced 0 192× 480× 512
II forced 0 256× 768× 768
III mixed -0.1 256× 768× 768
IV forced 0 192× 480× 512
V forced 0 192× 480× 512

Table 3.1: Summary of direct numerical simulations considered at Reb = 8000. The
reference Prandtl number Prh equals 2.85 in all cases. Reτ,in = (Rout −Rin)/δν,in.

Case (∆r)+
in (r∆θ)+

in (∆z)+
in (∆r)+

out (r∆θ)+
out (∆z)+

out

I 0.55–2.24 3.60 8.60 0.53–2.10 7.22 8.19
II 0.42–1.65 2.25 5.71 0.30–1.32 3.60 4.50
III 0.50–1.97 2.51 6.40 0.33–1.33 3.62 4.62
IV 0.36–1.45 2.37 3.03 0.69–2.75 8.90 11.3
V 0.75–3.00 4.91 11.7 0.34–1.35 4.40 5.27

Table 3.2: Summary of the mesh size w.r.t. the viscous length scale δν,in =
µw,in/(ρw,inuτ,in) near the inner wall and the outer wall δν,out.

flow can be realised. The bulk Reynolds number is kept constant at 8000. The friction

Reynolds numbers at the inner wall and the outer wall, Reτ,in and Reτ,out are listed in

table 3.1. The stream-wise length Lz of the annular geometry equals 8Dh. Note that in

all cases, with the exception of case III, the value of wobD
o
h is fixed as (µopc/ρ

o
pc)Reb m2/s.

For case III, Fr−1 = 0.1, which results in wob = 8.2 cm/s and Do
h = 6.9 mm.

The grid-spacings, with respect to both the viscous length scale δν and the Batchelor

scale ηB = ηK/
√
Pr (the smallest spatial scale of the temperature field), are summarised

in table 3.2 and table 3.3. The grid-spacings are comparable to those of both Zonta

et al. [2012] and Lee et al. [2013]. For reasons of readability, further details regarding

the mesh, such as wall normal cell width and power spectra of the enthalpy fluctuations,

are shown in appendix A.3.1.
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Case ∆r/ηB r∆θ/ηB ∆z/ηB

I 0.57–1.20 1.12–7.00 4.00–8.71
II 0.24–1.75 1.20–7.10 1.69–9.70
III 0.22–1.75 0.60–6.60 1.48–8.40
IV 0.31–1.38 2.00–10.6 4.67–12.5
V 0.20–1.12 2.20–5.40 3.80–12.7

Table 3.3: Summary of the mesh size w.r.t. the Batchelor length scale ηB = ηK/
√
Pr,

where ηK represents the Kolmogorov length scale. The listed values correspond to the
whole computational domain.

3.3 Mean statistics

Our aim in this section is to investigate the effect of variable ρ and µ of a fluid at super-

critical pressure on the turbulent flow field. When discussing the results, the emphasis

will therefore be on the sCO2 cases (cases II and III) in comparison with results of the

reference case (case I). We will first discuss the property variations both qualitatively

and quantitatively. Thereafter, we will investigate the effect of the mean property vari-

ation on the velocity statistics, such as first and second order moments, as well as the

production of the turbulent kinetic energy.

3.3.1 Mean thermophysical property statistics

In all simulated cases, the inner wall was kept at a higher temperature than the outer wall,

which means that there is a mean radial enthalpy gradient inside the flow. As such, the

fluid is of low density and low dynamic viscosity near the inner wall and vice versa near

the outer wall, in the sCO2 cases (II and III). Figure 3.2(a) shows instantaneous values

of the Prandtl number, the density and the dynamic viscosity in the forced convection

sCO2 case (II). Near the walls, low density/low dynamic viscosity fluid is mixed in with

high density/high dynamic viscosity fluid due to the turbulent motions of the fluid. The

Prandtl number is largest at the pseudo-critical temperature. Temperatures close to the

pseudo-critical point can be found near the inner wall.

Because there is a mean radial enthalpy profile, there are also mean density and

dynamic viscosity profiles. The mean density and dynamic viscosity profiles as well as

the mean Prandtl number profiles of the forced convection sCO2 case (II) are shown in

figures 4.3(a) and 4.3(b). The mean variation of the thermophysical properties is most

significant close to the inner wall (y+ < 20), where the flow is heated, and near the outer

wall, where the flow is cooled. The mean property variation further away from the wall

(y+ > 50) is very small, however. The mean variation of the properties in the mixed
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Figure 3.2: Instantaneous cross-sectional visualization of thermophysical properties for
the supercritical fluid cases (II and III). The upper third shows the Prandtl number, the
lower left part the dynamic viscosity and lower right the density.

convection sCO2 case (III) is very similar to these results. Note that in the reference

case (I), all thermophysical properties are equal to unity.

Figures 3.3(c) and 3.3(d) show the root mean square profiles of the property fluctu-

ations. The strongest fluctuations occur close to the walls, especially for y+ < 20. The

fluctuations are much stronger near the hot inner wall of the annulus than near the outer

wall of the annulus. This observation can be attributed to the fact that the pseudo-

critical point lies close to the inner wall. The average Prandtl number is much higher in

the forced convection sCO2 case (II) than it is in the variable density (IV) and dynamic

viscosity (V) cases for approximately y+ > 5. Large values of the molecular Prandtl

number cause large enthalpy fluctuations (see for instance Kawamura et al. [1998]) and

therefore locally steep enthalpy gradients, which in turn lead to locally steep thermo-

physical property gradients. This partially explains why the thermophysical property

fluctuation intensities are much larger in the forced convection sCO2 case (II) than they

are in the variable density (IV) and dynamic viscosity (V) cases. Another contributing

factor is the fact that the turbulence intensities are different in the three aforementioned
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Figure 3.3: Radial profiles of mean properties and property fluctuations in the forced
convection sCO2 case (II). Black lines indicate forced convection sCO2 results. Grey
lines indicate results from the variable density (IV) and dynamic viscosity (V) cases.
The constant grey line in the top figures represents the constant density in cases I and
V or the constant viscosity in cases I and IV.

cases (II, IV and V), which will be shown later. The largest normalised thermophysical

property fluctuation intensity is 22% for the density (= ρrms/ρ) and 18% (= µrms/µ) for

the dynamic viscosity in the forced convection sCO2 case (II). For the variable viscosity

case (V) the largest value of µrms/µ = 14%, while for the variable density case (IV) the
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largest value of ρrms/ρ = 10%. The thermophysical property variations of the mixed

convection sCO2 case (III) are very similar as that of the forced convection sCO2 case

(II) and are not shown here.

3.3.2 Velocity profiles

In the previous section we described the variation of the thermophysical properties ρ and

µ in terms of the mean radial profiles and the rms values of the thermophysical property

fluctuations. In this section as well as the subsequent sections, we will describe how

the mean radial thermophysical property variations modulate the turbulent flow using

classical mean flow quantities, such as mean velocity and turbulent stress profiles.

Figures 3.4(a) and 3.4(b) show the mean radial profiles of the stream-wise velocity

w(r), where () denotes a time averaged mean quantity. In all variable property cases,

the maximum of w(r) shifts towards the hot wall and increases in magnitude, when

compared with the velocity profile of the reference case (I). This is a consequence of

both the lower mean density and dynamic viscosity values near the hot wall (vice versa

near the outer wall), since both the variable density (IV) and the variable dynamic

viscosity (V) cases show this behaviour. The combination of a radial mean density

profile and a non-zero Froude number (and thus a non-zero gravitational force) in the

mixed convection case (III) causes the maximum of w(r) to move even closer to the hot

inner wall. The mean strain rate ∂rw(r) is increased in the immediate vicinity of the hot

wall and decreased near the cold wall in all cases, except for the variable density case

(IV). In the subsequent section, an in-depth analysis of the (turbulent) shear stress is

presented, which is important in understanding the ‘shifted’ velocity profiles that were

presented here.

3.3.3 Turbulent shear stress

To investigate the shifts in velocity profiles, the shear stress profiles can be analyzed. The

total shear stress τ totrz may be written as the sum of the viscous stresses, a fluctuating

viscosity stress term and the turbulent stress:

τ totrz = Re−1µ∂rw +Re−1µ′S′rw − ρũ′′w′′ (3.1)

Note that in this equation, a ()′ represents a fluctuation with respect to a Reynolds

average and ()′′ stands for a fluctuating quantity with respect to a density weighted

mean (or Favre average) (̃). From equation (3.1), it is clear that the viscous shear stress

scales with µ, while the turbulent shear stress scales with ρ. In all cases with variable

dynamic viscosity (II, III and V), the fluctuating dynamic viscosity stress term was

observed to be negligible, when compared to the other shear stresses, which is in line
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Figure 3.4: Mean velocity profiles of the variable density and viscosity cases (IV and V
respectively, on the left) and the forced and mixed convection sCO2 cases (II and III
respectively, on the right). The grey lines represent results from the reference case (I).

with Lee et al. [2013] and Zonta et al. [2012] and it will therefore not be discussed. By

integrating the time averaged stream-wise component of the momentum equation in the

radial direction from Rin to r, an analytical expression for the total shear stress may be

obtained, assuming that the mean flow is steady state and thus that the mean stream-

wise pressure gradient is balanced by the shear stress at the inner and outer wall and the

gravitational force acting on the flow (Petukhov and Polyakov [1988]):

τ totrz (r) = Rinτin + (r2 −R2
in)∂zp/2 + Fr−1

ˆ r

Rin

ρ(r)rdr (3.2)

where τin is the shear stress at the inner wall. The mean stream-wise pressure gradient

∂zp may be written as:

∂zp/2 =
Routτout −Rinτin

R2
out −R2

in

+
Fr−1

R2
out −R2

in

ˆ Rout

Rin

ρ(r)rdr (3.3)

Equations (3.2) and (3.3) show that the total shear stress profile is dependent on the mean

dynamic viscosity profile, because τin = µ∂rw|r=Rin and τout = µ∂rw|r=Rout , as well as

the effect of a mean radial density stratification in combination with the gravitational

force.

The buoyancy neutral stream-wise pressure gradient (which can be obtained by setting

Fr−1 = 0 in equation (3.3)) can be used to define a velocity scale that is convenient for
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analysing shear stress profiles in annular geometries (Boersma and Breugem [2011]):

u∗ =

(
1

2ρpc)Dh

Routτout −Rinτin
R2
out −R2

in

)1/2

(3.4)

This velocity scale can be thought of as a weighted average of the friction velocities at

the inner wall and the outer wall of the annulus. Figures 3.5(a) to 3.5(d) show the total

shear stress, as well as the turbulent shear stress of all four variable property cases.

In all variable property cases, except for the mixed convection case (III), the total

shear stress profiles are shifted, when compared with the shear stress in the reference

case (I), which is in line with the mean stream-wise velocity results. In all cases, the

magnitude of the wall shear stress is smaller at the inner wall, but is larger at the outer

wall, when comparing these results with the reference case (I). In the variable viscosity

case (V, see figure 3.5(d)), the wall shear stress magnitude is smaller due to the lower

mean dynamic viscosity at the inner wall, even though the magnitude of the mean strain

rate is larger (see inset in figure 3.4(a)), when compared with the reference case. The

reverse is true for the outer wall. The variable density case (IV, see figure 3.5(c)) can be

explained as follows. As the variable density has no direct effect on the viscous stresses,

the changes in the total shear stress profile must be explained by analysing the turbulent

shear stress; as the turbulent shear stress magnitude is smaller near the inner wall region

(when compared to the reference case), less high momentum fluid is transported from the

bulk towards the inner wall, resulting in a smaller mean strain rate magnitude (see the

inset of figure 3.4(a)) and thus a smaller wall shear stress at the inner wall. The reverse of

this argument holds for the outer wall, i.e. due to the fact that the turbulent shear stress

is larger in the variable density case (IV) when compared to that of the reference case

(I), more high speed momentum is transported towards the outer wall, which thereby

increases the magnitude of the outer wall mean strain rate and thus the magnitude of

the shear stress at the outer wall. The effects of the variable viscosity and density on the

shear stress profiles combine in the forced convection case (II, see figure 3.5(a)), which

simply results in a larger shift of the total shear stress profile, when compared with the

variable density (IV) and dynamic viscosity (V) cases. It is interesting to note here

that the effect of the variable viscosity on mean strain rate magnitude in this case are

slightly stronger than that of the density effect (see inset in figure 3.4(b)). In the mixed

convection sCO2 case (III, see figure 3.5(b)), the interplay between the shear stress at

the walls, the mean negative stream-wise pressure gradient and the gravitational force

does not shift, but rather distort the total shear stress profile. In all cases, it is clearly

visible that the turbulent shear stress changes in accordance with the total shear stress

profile, as the magnitude of the turbulent shear stress is bounded by that of the total

shear stress. These results show that the mean profiles of both the dynamic viscosity

and the density change the magnitude and shape of the turbulent shear stress. As a
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Figure 3.5: Total and turbulent stress in the forced and mixed convection sCO2 cases
(cases II and III, upper row) and the variable density and variable viscosity cases (cases
IV and V, lower row). Grey lines indicate results from the reference case (I). Continuous
lines represent the total shear stress, while dashed lines denote the turbulent shear stress.
The turbulent shear stress is normalised in the same manner as the total shear stress.

result, the velocity magnitude increases in a region with less shear stress and decreases

in a region with higher shear stress.
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Figure 3.6: Comparison of the turbulent intensities between the reference case (I) and
the sCO2 forced (II) and mixed (III) convection cases.

3.3.4 Turbulence intensities

The previous section showed that the turbulent shear stress is appreciably affected by the

mean dynamic viscosity and density stratification. Here, we will investigate the turbulent

motions further. The turbulent intensities u′′
2
, v′′

2
, w′′

2
as well as the turbulent kinetic

energy k = 1/2(u′′ · u′′) are shown in figure 3.6. Near the inner wall, for y+ > 10, the

magnitude of the stream-wise fluctuations w′′2 in the forced convection sCO2 case (II,
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see figure 3.6(a)) shows a large decrease when compared to the reference case (I). Closer

to the wall, i.e. y+ < 10, there is almost no change. Similar behaviour is be observed

for the other fluctuations (u′′2 and v′′2). The decrease in the magnitude of the turbulent

intensities is even more apparent near the inner wall in the mixed convection case (III, see

figure 3.6(c)). While in absolute value the decrease is most apparent in the stream-wise

motions, it should be noted that relatively, the other motions are substantially affected as

well. Consequently, the specific turbulent kinetic energy, which is primarily determined

by the stream-wise velocity fluctuations, has decreased as well. The outer wall regions

in both cases (II and III, see figures 3.6(b) and 3.6(d)) show the exact opposite of what

happens near the inner wall. Here, the turbulent intensities and thus the kinetic energy

have increased. Especially the wall normal and circumferential motions have increased

in magnitude, while the stream-wise velocities have only increased slightly in magnitude.

The fact that all the turbulent intensities and the turbulent kinetic energy are ap-

preciably affected in the same manner by sCO2 thermophysical properties suggests that

the turbulent flow can relaminarise near a heated surface, or become more turbulent

near a cooled wall, in both forced convection and buoyancy opposed mixed convection

conditions. The decrease (or increase) in intensities may however come from different

effects, such as changes in local Reynolds number, production of turbulent kinetic energy,

or changes to turbulent structures. This will be discussed in the subsequent sections.

3.3.5 Local Reynolds number effect

As a result of the mean density and dynamic viscosity profiles, the ratio of inertial stress

magnitude to the viscous stress magnitude have changed. A Reynolds number can be

defined that is representative of this ratio locally (Zonta et al. [2012]). With local, we

refer to either the heated side of the flow or the cooled side. We define the following local

mean densities:

ρhot =
2

R2
z −R2

in

ˆ Rz

Rin

ρ(r)rdr and ρcold =
2

R2
out −R2

z

ˆ Rout

Rz

ρ(r)rdr, (3.5)

where Rz is the radial location where the total mean shear stress is zero. The local mean

viscosities and velocities are obtained by replacing the density with the dynamic viscosity

or stream-wise velocity, respectively in equation (3.5). The local mean density and

dynamic viscosity can be used to define a local Reynolds number, or ratio of convective

stress to viscous stress:

Rehot =
ρhot whot Dhot

µhot
and Recold =

ρcold wcold Dcold

µcold
, (3.6)

where Dhot = 2(Rz − Rin) and Dcold = 2(Rout − Rz). The local Reynolds numbers

are shown for the different cases in table 3.4. In all variable thermophysical property
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Case description Rehot Recold max((τ − τ ref )/τ ref )

I reference 3600 (0%) 4400 (0%) 0%
II forced conv. sCO2 2802 (-22%) 5055 (+15%) -43%(hot), +23%(cold)
III mixed conv. sCO2 1860 (-48%) 5911 (+34%) -65%(hot), +28%(cold)
IV variable density 3046 (-15%) 5700 (+30%)
V variable viscosity 3043 (-15%) 5900 (+34%)

Table 3.4: Local Reynolds numbers for the simulated cases. τ in the last column denotes

for the turbulent shear stress ρũ′′w′′.

cases, the local Reynolds number near the hot wall is decreased, while the Reynolds

numbers near the cold wall are increased compared to the constant property reference

case (I). If we compare the turbulent shear stress of the forced convection case (II) to

that of the reference case (I), there is a maximum decrease of 43% near the hot wall.

The change in the local Reynolds number however, shows a decrease of 22%. For the

outer wall, the increase in turbulent shear stress is matched somewhat better by the

increase in local Reynolds number. The mixed convection case (III) shows a similar

trend. These results show that the changes in ratio of the inertial stress to the viscous

stress are not sufficient in order to fully explain turbulence attenuation. This suggests

that thermophysical property variations have an effect on turbulence as well.

3.3.6 Production of turbulent kinetic energy

The shift in turbulent shear stresses and the increase of magnitude of the the strain rate

near the inner wall (and decrease near the outer wall) that were described earlier for the

sCO2 cases lead to changes in the production of turbulent kinetic energy, which may be

written as Pk = −ρ(ũ′′w′′)∂rw̃. Figures 3.7(a) and 3.7(b) show Pk near the inner and

outer wall regions, respectively. From these results, it is clear that, while the mean strain

rate ∂rw̃ may increase locally due to the low dynamic viscosity very close to the hot inner

wall (and decrease very close to the cold outer wall due to high dynamic viscosity), the

decrease in the magnitude of the turbulent shear stress is in fact of higher importance to

the production of turbulent kinetic energy, since the production is smaller in the forced

convection cases (II and III) than it is in the reference case (I).
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Figure 3.7: Production of turbulent kinetic energy in the reference case (I), forced sCO2

(II) and mixed sCO2 (III) convection cases.

3.4 Structures

While the previous section showed that the turbulent motions are affected by the mean

dynamic viscosity and density stratification, it did not show whether the variable ther-

mophysical properties fluctuations can influence the turbulent motions of the fluid. In

this section, we will investigate the effect of instantaneous property fluctuations on the

turbulent motions of the fluid. To that end, we will look at near wall streaks, as well as

stream-wise vortices and how they are affected by the thermophysical property fluctua-

tions.

It has been shown that near wall turbulence may be regarded as a self-regenerating

process, consisting of the formation of stream-wise vortices and near wall streaks as well

as their instabilities (Jimenez and Pinelli [1999], Schoppa and Hussain [2002], Waleffe

[1997]). A flow may relaminarise if this self regenerating process is disrupted (Jimenez

and Pinelli [1999], Kim [2011]). We will investigate here how near wall streaks, which

are largely responsible for w′′
2
, and stream-wise vortices, which contribute to u′′

2
and

v′′
2
, are affected by the fluctuations in thermophysical properties.

In the simulations with variable density, the momentum ρu is a conserved quantity.

Furthermore, the density is continuous (as opposed to multiphase liquid flows, in which

the density is discrete, for example). Therefore, to investigate structures that are relevant

in the self regenerating process, we chose to include the density in the mathematical
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description of a structure. To analyze streaks, we will look at (ρw)′ < 0, which for

instance was also done by Duan et al. [2011]. Similarly, we will use the definition χz =

(∇× ρu)z = r−1(∂r(rρv)− ∂θ(ρu)) to analyze stream-wise vortices. To distinguish from

the classical vorticity ω =∇× u, we will call χ ≡∇× ρu the momentum-vorticity.

An evolution equation can be derived for the momentum-vorticity by taking the curl

of equation (2.2). The result can be written as:

∂tχ = −∇× l+Re−1∇ · µ∇ω

+ Fr−1∇× ρẑ −∇× (ψρu+K∇ρ) (3.7)

+ Re−1∇ · (2∇µ× S),

in which l ≡ χ × u is the Lamb vector, ψ ≡ ∇ · u the divergence of the velocity and

K ≡ (u · u)/2 the kinetic energy. This equation clearly shows the contributions of

the variable thermophysical properties, as the second line is equal to zero in constant

density flows, whereas the last term is equal to zero in constant viscosity flows. For this

reason, this equation will form the basis of our analysis of near wall streak evolution

and the generation of stream-wise vortices. The physical interpretation of each term in

equation (3.7) will be discussed for streaks and stream-wise vortices separately, after an

observational analysis is made first, in the following sections.

3.4.1 Generation of near wall streaks

The variations in thermophysical properties in the sCO2 cases (II and III) are found to

have a clear effect on the streaks. Figure 3.8 shows the streaks both near the hot inner

wall and the cold outer wall for the reference case (I) and the sCO2 cases (II and III). The

magnitude |(ρw)′| of the streaks at the hot inner wall is reduced in the forced convection

case (II, see figure 3.8(b)) when compared to the reference case (I, see figure 3.8(a)).

|(ρw)′| is further decreased in the mixed convection case (III, see figure 3.8(c)). The

reverse, however, is true for the cold wall: |(ρw)′| is increased in the forced convection

(II, see figure 3.8(e)) and mixed convection (III, see figure 3.8(f)) cases. The streaks also

look slightly more disorganised in the forced convection case (II). This is even more so

for the mixed convection case (III). As the ejections of streaks are largely responsible

for the existence of the turbulent shear stress (Corino and Brodkey [1969]), the results

described above are consistent with our earlier observations in section 3.3.3, where we

observed that the magnitude of the turbulent shear stress decreases near the inner wall,

and increases near the outer wall as a result of the variable thermophysical properties.
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Figure 3.8: Visualization of the streaks (defined as (ρw)′ < 0 near the hot (top) and cold
(bottom) near wall region (y+ = 5). Darker colours indicate larger values of |(ρw)′|. The
direction of the flow is upwards. Only a part of the complete circumference is shown for
the cold outer wall region.
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To investigate the effect of variable thermophysical properties on the streaks in a

quantitative manner, we will extract instantaneous density and dynamic viscosity data

from individual streak realizations in a manner that is similar to the method described

by Schoppa and Hussain [2002]:

1. the location of local minima of (ρw)′, with respect to the circumferential direction,

denoted as θ0, are identified at constant y+

2. data near the minima for different time instances is stored

3. the data from the entire length of the streak and for different time instances are

superimposed on each other, so that the minima of (ρw)′ are located at the same

coordinate r−1(θ − θ0).

4. by averaging the data, average thermophysical properties of a streak are acquired.

5. any quantity (...) that has been averaged according to the above described proce-

dure will be denoted as 〈(...)〉.

Figures 3.9(a) and 3.9(b) show the result of the conditional averaging (streak extrac-

tion) procedure near the inner wall and the outer wall region, respectively, in the forced

convection case (II). Just as stream-wise vortices redistribute mean shear to create mo-

mentum streaks, they redistribute the mean density and dynamic viscosity profile, which

in turn exist because of mean heat transfer from the hot inner wall to the cold outer wall.

Therefore, streaks consist of low density and dynamic viscosity fluid, near the hot inner

wall. This is consistent with observations by Cheng and Ng [1982]. The exact opposite

is the case for the streaks near the cold outer wall (i.e. streaks have a high density and

high dynamic viscosity). The thermophysical property gradients across the streaks are

the physical interpretation of the thermophysical property fluctuations that were shown

earlier in figure 3.3(c). The effect of these property gradients on the generation of streaks

will subsequently be discussed.

Jimenez and Pinelli [1999] investigated the evolution of streaks in a minimal box

geometry by first deriving a parameter representative of streaks and subsequently de-

riving a transport equation for that parameter. Jimenez and Pinelli [1999] showed by

artificially damping a source term in their streak evolution equation that turbulence can

be suppressed or even be completely quenched. In the current study, streaks depend

mostly on the radial and circumferential coordinates r and θ and they are coherent in

the stream-wise coordinate z. In this study however, streaks are not as well defined as

they are in Jimenez and Pinelli [1999], because the annulus in this study is not a minimal
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Figure 3.9: Conditionally averaged profiles of the density and dynamic viscosity across
a streak at y+ = 10. The dashed vertical lines represent the edges of the streak where
r−1∂θ(ρw)′ = 0.

box. We will therefore define the streak parameter as the conditional average 〈...〉 of the

radial component of the momentum vorticity χ.

〈χr〉 =
〈
r−1∂θ(ρw)− ∂z(ρv)

〉
=
〈
r−1∂θ(ρw)′ − ∂z(ρv)′

〉
≈
〈
r−1∂θ(ρw)′

〉
(3.8)

where we have used that ∂θ(ρw) = 0. 〈χr〉may therefore be thought of as the stream-wise

coherent streak-flank strength and it is conceptually and physically close to the streak

parameter that was defined by Jimenez and Pinelli [1999]. After applying the conditional

averaging operator 〈...〉 to equation (3.7), an evolution equation for the stream-wise

coherent streak flank strength is obtained. The end result is written as:

∂t〈χr〉 = −〈(∇ · l)r〉+Re−1〈(∇ · µ∇ω)r〉

+ (r Fr)−1〈∂θρ〉 − 〈(∇×K∇ρ)r〉 − 〈(∇× ψρu)r〉 (3.9)

+ Re−1〈(∇ · 2∇µ× S)r〉,

We have assumed here that the operator 〈...〉 is linear. It is clear that for incompressible

flows without variable thermophysical properties, all but the terms on the first line will

be zero. Thus, the first line represents the evolution of streaks under constant thermo-

physical property conditions and it is the cylindrical counterpart to the streak evolution

equation that is presented by Jimenez and Pinelli [1999]. These first terms represent

sources of the generation of streaks and diffusion of streaks, respectively. The terms on
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the second line all represent effects that may arise due to density gradients. The first

term represents buoyancy, the second term involves a torque between kinetic energy and

density gradients, while the third term is representative of thermal expansion effects,

since by equation (2.1), ψ = ∇ · u can be rewritten as ψ = υ−1Dtυ, where υ is the

specific volume. The last term in the equation marks the effect of viscosity gradients on

the evolution of streaks.

This equation however, may not be suited to quantify the effects of variable density

and dynamic viscosity on the streak evolution with respect to the wall normal distance,

because all terms will vanish after circumferential averaging. Therefore, we multiply

equation (3.9) with 〈χr〉 and subsequently average it with respect to the circumferential

direction over an interval that is equal to Rin∆θ+ = 100 and is centred on the streak

centre. This interval is close to the span-wise length of the minimal box that was used

by Jimenez and Pinelli [1999]. The result is an evolution equation of what is in essence

the magnitude of the stream-wise coherent streak flank strength:

∂t〈χr〉2/2 = −〈χr〉〈(∇ · l)r〉︸ ︷︷ ︸
sources

+Re−1〈(∇ · µ∇ω)r〉︸ ︷︷ ︸
diffusion & dissipation

+ Fr−1〈χr〉r−1〈∂θρ〉︸ ︷︷ ︸
buoyancy

−〈χr〉〈(∇×K∇ρ)r〉︸ ︷︷ ︸
torque

−〈χr〉〈(∇× ψρu)r〉︸ ︷︷ ︸
thermal expansion

(3.10)

+ Re−1〈χr〉〈(∇ · 2∇µ× S)r〉︸ ︷︷ ︸
viscosity gradient

,

where (...) represents an average with respect to the circumferential direction. We will

use this equation not only to determine the magnitude of the variable properties effects on

the evolution of streaks, but also to investigate where exactly such effects are important,

with respect to the wall normal distance. By multiplying equation (3.9) with 〈χr〉, we

have changed the meaning of the second term: it now represents the combined effects of

diffusion and dissipation.

The budgets of equation (3.10), B(〈χr〉2/2), are shown for the reference case (I, in

grey lines) and the forced convection and mixed convection sCO2 cases (II and III in

black lines) in figure 3.10. Near the inner wall, see figure 3.10(a), the magnitude of

the regular sources in the sCO2 cases is clearly smaller than that of the reference case

(I). While the sources are balanced by only diffusion and dissipation in the reference

case (I), it is clear that in the sCO2 forced convection case (II), the sources are also

balanced by thermal expansion, a kinetic-energy-gradient-and-density-gradient torque

and a viscosity-gradient-shear-interaction near the inner wall. In the mixed convection

case (III), see figure 3.10(c), the sources are balanced by the effect of buoyancy as well.

The kinetic-energy-gradient-and-density-gradient torque has a modest, yet positive effect

on the coherent flank strength near in the inner wall. The thermal expansion has clearly
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a negative impact on the coherent streak flank strength, while the effect of viscosity-

gradient-shear-interaction has a very small, yet positive effect (near y+ = 8) close to the

inner wall. The influence of the thermal expansion has the largest influence.

Near the outer wall, see figures 3.10(b) and 3.10(d), the variable properties have a

negligible effect, which is logical as the property variations are much smaller near the

outer wall than near the inner wall. At the outer wall, the viscosity-gradient-shear-

interaction acts as a sink term close to the outer wall, and as a source term further

away from it. The thermal expansion and buoyancy effects are positive. The kinetic-

energy-and-density-gradient torque has the smallest contribution to the coherent streak

flank strength near the outer wall or y+ < 10. The thermal expansion, and buoyancy

terms have opposite signs at the outer wall when compared with the inner wall. This can

be explained as follows: the thermophysical property gradients across the streaks and

high speed fluid regions near the outer wall are of opposite sign when compared to the

thermophysical property gradients across the streaks and high speed fluid regions near

the inner wall, as was shown in figure 3.9. From equation (3.10) it follows then that

the variable thermophysical property effects on the coherent streak flank strength should

be of opposite sign as well. These results for the budgets of the coherent streak flank

strength indicate that the variable thermophysical properties have a significant effect on

the formation of streaks. The most prominent variable thermophysical properties effects

are thermal expansion and the kinetic-energy-gradient-and-density-gradient torque.

While equation (3.10) allowed us to quantify the effect of the variable thermophysical

properties on the generation of streaks, it is interesting to investigate the meaning of

equation (3.10) further. The effect of the buoyancy term in the mixed convection case

(III) can be interpreted as follows: as streaks and high speed fluid regions are formed by

the stream-wise advection of a stream-wise vortex, they naturally have different densities,

as was explained before (see also figure 3.9). Because a streak has a low density near

the hot inner wall, the magnitude of the gravitational force that acts on it is smaller

than the magnitude of the same force acting on a high speed, high density region. As a

result, both the streaks, as well as the high speed fluid regions, will be weakened. For

example, |(ρw)′| will be smaller when compared to the forced convection case (II). At

the cold outer wall the opposite is true; the streaks have a high density which results

in a larger gravitational force on them, while the high speed regions have a low density

which results in a smaller gravitational force acting on them. Therefore, the streaks

and high speed regions are enhanced near the cold outer wall (|(ρw)′| is enlarged by the

gravitational force). The combination of density differences that exist across the streaks

and the high speed regions and the downward pointing gravitational force acts in such

a way that it counteracts the shear between the streak and high speed region near the

hot wall, while it enforces it near the cold wall. As streaks are weakened near the hot
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Figure 3.10: Budgets of the coherent streak flank strength B(〈χr〉2/2), equation (3.10)
in the reference case (I), the forced convection sCO2 case (II) and the mixed convection
sCO2 case (III). The results have been scaled with bulk quantities.

wall and enhanced near the cold wall, it can be said that the gravitational force has a

stabilizing effect on the flow field near the hot wall and a destabilizing effect near the cold

wall in the present configuration. This became also clear from examining the attenuated

turbulent intensities in figures 3.6(c) and 3.6(d).

The term containing the divergence of the velocity (ψ =∇·u = r−1∂r(ru)+r−1∂θv+
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Figure 3.11: Contour plots of ∇·u in the (θ, z)-plane in the forced sCO2 case (II). The
white lines indicate iso-lines of (ρw)′ > 0.2.

∂zw) in equation (3.10) suggests that the thermal expansion across the streaks and high

speed regions may be different. Figure 3.11 shows the divergence of the velocity at y+ = 5

and y+ = 10 with iso-lines of high speed momentum superimposed. At y+ = 5 areas

of positive thermal expansion coincide with high speed momentum regions. However,

this connection between thermal expansion and high speed momentum does not seem

to exist further away from the hot inner wall at y+ = 10. Instead, both negative and

positive values of ψ can be find across a high speed region. This observation can be

tested by calculating the expected value of ψ conditioned on the fluctuating stream-wise

momentum (variable conditioning was also used by Wang et al. [2012]). The results

for y+ = 5 and y+ = 10 are shown in figure 3.12. At y+ = 5, the observation that

areas of positive thermal expansion coincide with high momentum fluid is indeed true.

However, further away from the hot wall, this relation no longer exist. At y+ = 10, the

instantaneous values of ψ in figure 3.11 are large compared to the expectancy of ψ shown

in figure 3.12. Therefore, areas of both positive and negative ψ and can be found at a

streak or a high speed fluid region. The thermal expansion term in equation (3.10) can

be interpreted as the effect that a high speed fluid region or streak may consist of both

positively and negatively expanding regions, which interfere with the coherence or the

formation of streaks.

The effect of the viscosity-gradient-shear-interaction was earlier shown to act as a

source term close to the hot inner wall. (∇ · 〈∇µ× S〉)r can be expanded as (see Bladel
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Figure 3.12: Expected value of∇·u conditioned on (ρw)′ in the forced convection sCO2

case (II) at y+ = 5 and y+ = 10.

[2007]):

〈χr〉 (∇ · 〈∇µ× S〉)r =
〈χr〉
r

〈
∂

∂r

(
rSzr

1

r

∂µ

∂θ
− rSθr

∂µ

∂z

)〉
︸ ︷︷ ︸

A

(3.11)

+
〈χr〉
r

〈
∂

∂θ

(
Szθ

1

r

∂µ

∂θ
− Sθθ

∂µ

∂z

)〉
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r

〈
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∂µ

∂z
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∂µ
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〉
︸ ︷︷ ︸

C

+
〈χr〉
r

〈
∂

∂z

(
Sθr

∂µ

∂r
− Srr

1

r

∂µ

∂θ

)〉
︸ ︷︷ ︸

D

Closer investigation of these terms shows that the viscosity-gradient-shear-interaction

term is mostly determined by terms containing r−1∂θµ and ∂zµ. More specifically, terms

A and B in equation (3.11). This is shown in figure 3.13. In other words, the viscosity-

gradient-shear-interaction term is determined by dynamic viscosity fluctuations, instead

of the mean radial dynamic viscosity profile.
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Figure 3.13: Part of 〈χr〉 (∇ · 〈∇µ× S〉)r that is determined by viscosity gradient fluc-
tuations in the forced convection sCO2 case (II). Letters refer to equation (3.11).

3.4.2 Generation of stream-wise vortical motions

Figure 3.14 shows instantaneous values of the stream-wise momentum-vorticity, χz,

for the reference, forced convection sCO2 (II) and mixed convection sCO2 (III) cases.

Stream-wise momentum vorticity is clearly visible at both the inner wall and the outer

wall in the reference case (I), while the stream-wise momentum-vorticity is much less

apparent in the forced convection sCO2 case (II) near the inner wall. The stream-wise

momentum-vorticity magnitude is not visibly decreased in the mixed convection case (III)

near the inner wall. Both sCO2 cases however, show increased momentum-vorticity near

the outer wall, compared to the reference case (I). The decrease of stream-wise momen-

tum vorticity near the inner wall suggests diminished wall-normal and circumferential

motion. Vice versa, an increase of momentum vorticity suggests enhanced wall-normal

and circumferential motion. The observations of the stream-wise momentum vorticity

attenuation in the forced convection and mixed convection sCO2 cases (II and III) are

therefore consistent with our observations of the turbulent intensities in figure 3.6. The

root mean square values of stream-wise momentum-vorticity, χz = r−1(∂r(rρv)−∂θ(ρu)),

near the inner (figure 5.2(a)) and outer wall (figure 5.2(b)) reveal that the stream-wise

momentum-vorticity has substantially decreased as a result of the property variations of

the supercritical fluid near the inner wall and that it has increased near the outer wall.

Near the inner wall, the difference between the inner wall in the forced convection sCO2

(II) and the mixed convection sCO2 (III) case is negligible. Near the outer wall, however,

the stream-wise momentum-vortices appear to be spatially slightly larger in the mixed
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Figure 3.14: Cross-sectional visualization of the instantaneous stream-wise momentum
vorticity in the reference case (I), forced convection sCO2 (II) and mixed convection
sCO2 (III) cases.

convection sCO2 case (III) case than they are in the forced convection sCO2 (II) case.

The magnitude of the stream-wise momentum vortices looks unaltered near the outer

wall between the forced convection and mixed convection sCO2 cases (II and III).

As before with the generation of streaks, we will use the evolution equation for

momentum-vorticity to investigate how variable thermophysical properties affect stream-

wise vortices. This equation is obtained by multiplying the stream-wise component of

equation (3.7) with χz and subsequently averaging the result. The result is written as:

∂t(χ2
z/2) = −χz(∇× l)z︸ ︷︷ ︸

sources

+Re−1
(
∇ · χzµ∇ωz

)︸ ︷︷ ︸
diffusion

−Re−1∇χz · ∇ωz︸ ︷︷ ︸
dissipation

− χz(∇× ψρu)z︸ ︷︷ ︸
thermal expansion

−χz(∇K ×∇ρ)z︸ ︷︷ ︸
torque

(3.12)

+ Re−1χz (∇ · 2∇µ× S)z︸ ︷︷ ︸
viscosity gradient shear interaction

,

where the first line represents sources, diffusion and dissipation of stream-wise momentum-

vorticity, the second line represents the effects of variable density in the form of thermal

expansion and a kinetic-energy-gradient-and-density-gradient torque and where the third
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Figure 3.15: Root mean square values of the stream-wise momentum vorticity in the near
wall regions in the reference case (I), forced convection sCO2 (II) and mixed convection
sCO2 (III) case.

line represents the effect of variable-dynamic-viscosity-shear-interaction, as before. The

buoyancy term is not shown here, because Fr−1(∇ × ρẑ)z = 0, which suggests that

the stream-wise momentum vortices are not directly affected by buoyancy. This is also

supported by the rms-values of the stream-wise momentum-vorticity near the inner wall

in figure 3.15.

The budgets B(χ2
z/2) of equation (3.12) are shown in figure 3.16 for the reference case

(I) and the sCO2 cases (II and III). Near the inner wall (figures 3.16(a) and 3.16(c)),

in both the forced convection and the mixed convection sCO2 cases (II and III), the

contribution of the regular sources is smaller than it is in the reference case, except

for a small region between y+ = 8 and y+ = 23 for the forced convection case and

y+ = 10 and y+ = 18 for the mixed convection case. Near the outer wall however

(figures 3.16(b) and 3.16(d)), the contribution of the regular sources is larger for all

y+. The viscosity-gradient-shear-interaction has a negligible effect on the formation of

stream-wise momentum vortices. The effect of thermal expansion is more significant than

the variable viscosity effect, but only marginally. Both the variable viscosity and thermal

expansion terms act as sink terms. The torque created by the kinetic energy and density

gradients however, has a significant effect, as it is larger than the combined effects of

diffusion and dissipation near the inner wall in both the forced convection case (II) and

the mixed convection case (III). This is not the case near the outer wall, where it is
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Figure 3.16: Budgets of the stream-wise vorticity B(χ2
z/2), equation (3.12). Black lines

are used for the forced convection (II) and mixed convection (III) sCO2 cases, while grey
lines are reserved for the reference case (I).

smaller, yet still substantial compared to regular sources. The torque acts as a sink near

the inner wall, but as a source near the outer wall. The changes in the regular sources

in the sCO2 cases (II and III) compared to the reference case (I) combined with the

effects of the torque explains why the rms-values of the stream-wise momentum vortices

of figure 16 are smaller in the sCO2 cases (II and III) near the inner wall and larger near
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the outer wall. The fact that the regular sources are larger near the outer wall in the

mixed convection case (III) than in the forced convection case (II) is consistent with the

rms values near the outer wall as well.

The torque effect can be further clarified by looking at figure 3.17. In this figure, a

typical ejection of low speed, low density fluid near the hot inner wall is shown. This

ejection generates a region of negative stream-wise momentum vorticity χ−z and a region

of positive stream-wise momentum vorticity χ+
z , which have been marked by black iso-

lines superimposed on the vector field (ρu, ρv)T in figure 3.17(a). The iso-contours of the

kinetic energy and the density, shown in figure 3.17(b), are clearly not parallel, which

indicates that −∇K ×∇ρ = ∇ρ ×∇K is non-zero. Figure 3.17(c) shows the kinetic

energy and density gradient vectors. In the inner part of the mushroom like structure

(region A and A’), the torque acts as to create a region of positive stream-wise momentum

vorticity near A and a region of negative stream-wise momentum vorticity near A’, see

figure 3.17(d). At the top of the mushroom-like structure (region B and B’), the opposite

occurs: the torque acts as to create negative stream-wise vorticity near B’ and positive

stream-wise vorticity near B. Therefore, the torque between the kinetic energy gradient

and the density gradient both counteracts as well as aids the stream-wise momentum

vorticity generated by the unstable low speed region. It is clear that the kinetic energy

and density gradient vectors are almost parallel at the top, yet almost perpendicular

to each other inside the mushroom-like structure. Thus, the magnitude of the torque

is much smaller at the top near B and B’ (as parallel gradients of the kinetic energy

and density result in ∇ρ ×∇K = 0) than the magnitude of the torque near the inner

part near A and A’ (where ∇ρ and ∇K make an almost 90o angle). The net result is

that the torque acts as a sink term to the formation of stream-wise momentum-vorticity

near a hot inner wall, which was also shown in figure 3.16. At the cold outer wall,

high density fluid is ejected instead of low density fluid. This means that for a similar

mushroom-like structure near the outer wall, the density gradient vector is of opposite

sign when compared to the same vector near the inner wall. Therefore, near the outer

wall, the kinetic-energy-gradient-and-density-gradient torque acts as a source term for

the formation of stream-wise momentum vorticity on average, which can also be seen in

figure 3.16. From the direction of the density gradient vector near the inner part of the

mushroom-like structure it is clear that both ∂rρ as well as r−1∂θρ are important here,

which shows that the density fluctuations are important to the generation of stream-

wise vortices and thus in the turbulence attenuation that may occur in heated or cooled

turbulent flows at supercritical pressure.

49



3.4. STRUCTURES CHAPTER 3. TURBULENCE ATTENUATION

χ−z

χ+
z

(a) (b)

AA’
BB’

(c)

χ+
z χ−z

χ−z χ+
z

(d)

ρ

0.4 1.0 1.5
r

θ

Figure 3.17: Four depictions of the same burst of a low speed, low density region near the
inner wall in the wall normal plane. In (a), the momentum vector field is shown (not all
vectors are shown). The solid contour lines indicate positive stream-wise vorticity, while
the dashed contour lines indicate negative stream-wise momentum vorticity. In (b), the
black contour lines are iso-density lines, the white lines represent iso-kinetic energy lines.
Figure (c) shows the gradient vectors (not to scale) of the kinetic energy (white) and the
density (black). Figure (d) shows locations of positive and negative stream-wise vorticity
that are induced by the kinetic-energy-gradient-and-density-gradient torque.
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3.4.3 Molecular Prandtl number effect

In the previous discussion it has become clear that thermophysical property fluctuations

that occur as a result of the self regenerating process play an important role in the gener-

ation of streaks and stream-wise momentum vorticity. In this section, we will investigate

how variable property effects scale between the forced convection sCO2 case (II), the

variable density case (IV) and the variable dynamic viscosity case (V). The magnitude

of the thermophysical property fluctuations is only determined by the magnitude of the

enthalpy fluctuations (under the low Mach number approximation assumption), which

are in turn determined by the Reynolds number and the molecular Prandtl number.

The variable thermophysical property effects on the generation of streaks and stream-

wise momentum-vorticity should then be determined by the Prandtl number as well.

In turbulent flows, gradients of fluctuations are typically larger than gradients of mean

quantities (see for instance Tennekes and Lumley [1972]). Following Tennekes and Lum-

ley [1972], we will choose U to be a reference velocity scale and λ to be the Taylor

micro-scale. The gradient of a velocity fluctuation then is O(U/λ). Then, if λth is the

thermal energy analogue of λ and R the reference density scale, it follows for density

gradient fluctuations that:

∇ρ ∝ O
(
R
λth

)
= O

(
R
λ

λ

λth

)
= O

(
R
λ

√
Pr

)
. (3.13)

We used here that λ/λth =
√
Pr, see Batchelor [1959]. Similar arguments can be made

for the divergence of the velocity:

∇ · u ∝ O
(
U
λth

)
= O

(
U
λ

λ

λth

)
= O

(
U
λ

√
Pr

)
. (3.14)

A similar estimate can be made for viscosity gradient fluctuations, but since the variable

density effects are of greater importance to the generation of streaks and stream-wise

momentum vorticity, we will focus on the variable density effects only. The scaling

estimates (3.13), (3.14) suggest that if R (or U) and λ are kept constant under different

conditions, that any property gradient term in equations (3.10) and (3.12) should scale

with
√
Pr. Qualitatively, this suggests that the magnitude of the variable property effects

between the sCO2 forced convection case (II) and the variable density (IV) or dynamic

viscosity case (V) scale with a factor of γ ≡ (Pr
forced

/Prref )1/2, if λ remains the same

(which is reasonable because the local Reynolds numbers are very similar). Note that

Pr
forced

refers to the average molecular Prandtl number in case II (which varies from 1.6

to 12), while Prref refers to the molecular Prandtl number in cases I, IV and V (which

is equal to 2.85). Figure 3.18 shows the factor γ as function of the wall distance. The

profile of γ suggests that the variable property effects of the sCO2 case (II) should be

51



3.4. STRUCTURES CHAPTER 3. TURBULENCE ATTENUATION

y+

γ

(Pr
forced

/Prref )1/2

Figure 3.18: The factor γ ≡ (Pr
forced

/Prref )1/2 as a function of the inner wall distance.

The vertical dotted line denotes the position where Pr
forced

= Prref .

smaller than those of the variable density and dynamic viscosity cases for y+ < 5 and

vice versa for y+ > 5.

Figure 3.19 shows again the thermal expansion term and the kinetic-energy-gradient-

and-density-gradient torque of equation (3.10), but now for both the sCO2 case (II) and

the variable density (IV) case. The region where the thermal expansion effect in the

variable density case (IV) is larger than that of the sCO2 forced convection sCO2 case

(II) is found for y+ < 6, which is close to the point where Pr
forced

= Prref . It can

be seen that the thermal expansion effect in the forced convection sCO2 case shows a

sudden increase near y+ = 10, when compared with the variable density case (IV). This

is logical according to estimate (3.14), as γ strongly increases around y+ = 10, see figure

(3.18), with respect to the wall normal distance. The physical interpretation is that due

to the increase of the Prandtl number with y+, the thermal fluctuations will increase

with y+ in the forced convection sCO2 case when compared to the variable density case

(IV), which results in the sudden increase in the magnitude of the thermal expansion

term. It should be noted here that differences in turbulence intensities also affect the

magnitude of the thermal fluctuations; this is further discussed in chapter 4.

The kinetic-energy-gradient-and-density-gradient torque shows a similar trend as the

thermal expansion term. The torque is smaller in the forced convection sCO2 case (II)

for y+ < 4.3 than it is in the variable density case (IV). For y+ > 5, the torque effect

is much larger in the sCO2 case (II). Near y+ = 10, the torque is slightly negative in

the variable density case (IV), while in the forced convection sCO2 case, it is slightly
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positive: this difference cannot be explained by the scaling estimate (3.13).

The effect of the kinetic-energy-gradient-and-density-gradient torque on stream-wise

vorticity is shown in figure 3.20. The region where the kinetic-energy-gradient-and-

density-gradient torque is larger in the variable density case (IV) than it is in the forced

convection sCO2 (II) case, is found for y+ < 8.6. Before, we assumed that λ would

be constant between the cases. However, if we assume that this does not hold for the

momentum vorticity length scales, the scaling estimate 3.13 suggests that the effect of

the kinetic-energy-gradient-and-density-gradient torque in the forced convection sCO2

case (II) to that of the variable density case (IV), scales as (λIV /λII)γ. This suggests

that the spatial scales of the stream-wise momentum vorticity are different between the

sCO2 (II and III) and variable density (IV) cases.

While the scaling arguments that were made above should be seen as a qualitative

analysis, it is reasonable to assume that the variable Prandtl number of fluids at super-

critical pressure has a clear effect on the evolution of turbulent structures, through the

magnitude of the variation of the density gradients.
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Figure 3.19: Comparison of the thermal expansion term (left) and kinetic-energy-
gradient-and-density-gradient torque (right) in equation (3.10) between the sCO2 forced
convection case (II) and the constant molecular Pr cases (grey lines). The vertical dotted

line denotes the position where Pr
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Figure 3.20: Comparison of the kinetic-energy-gradient-and-density-gradient torque
equation (3.12) between between the sCO2 forced convection case (black lines), the
variable density case (grey lines). The vertical dotted line denotes the position where

Pr
forced

= Prref .
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3.5 Conclusions

In this chapter, we have investigated the effect of variable thermophysical properties of

supercritical fluids on a turbulent annular flow that is heated at the inner wall and cooled

at the outer wall by means of direct numerical simulations. Near the inner wall, the fluid

has a low density and dynamic viscosity and vice versa at the outer wall. Due to the fact

that both walls are kept at different temperatures, a mean radial dynamic viscosity and

density profile exists. Large density and viscosity variations were found near the inner

wall.

While looking at classical turbulent statistics, it was found that the mean velocity

profiles, turbulent shear stresses and turbulent intensities were significantly affected by

the mean variation in dynamic viscosity and density. The differences in mean strain rate

and turbulent shear stresses lead to a decreased production of turbulent kinetic energy

near the hot inner wall and an enhanced production near the outer wall. However, these

observations did not show how the variable properties have a direct influence on turbulent

motions. To investigate further, turbulent structures were analysed in detail.

As stream-wise momentum vortices interact with the mean velocity to create streaks,

they also interact with the mean density and mean dynamic viscosity. As a result, low

speed streaks near the hot wall have a low density and dynamic viscosity, compared to

the high speed fluid that surrounds them. Both positive and negative thermal expansion

regions existing within the streaks were found to have a negative impact on the coherence

of the streaks. The dynamic viscosity gradient across the streaks was observed to act as

a source term very close to the inner wall and to be negligible to variable density effects.

Buoyancy acts as to counteract the shear between low density momentum streaks and

high density, high speed regions in buoyancy opposed flow. The opposite holds for

the cold outer wall as the thermophysical property gradients across the streaks are of

opposite sign compared to the gradients across the streaks near the inner wall. The

density and dynamic viscosity fluctuations therefore influence the stream-wise momentum

fluctuations directly.

The stream-wise vorticity was found to be negligibly affected by the dynamic viscosity

fluctuations and thermal expansion. However, the torque between the kinetic energy

gradient and the density gradient was found to act as a very large sink term near the inner

wall and as a source term near the outer wall. It was shown that stream-wise momentum

vorticity, created by the instability of a low speed region, is counteracted or enhanced

by this torque. Both the radial density gradient as well as the circumferential density

gradient were found to be important; the density and dynamic viscosity fluctuations

therefore also influence the wall normal and circumferential turbulent motions of the

fluid.
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As both streaks and stream-wise vortices are important to the self regenerating near

wall cycle, it is feasible that a complete disruption of this cycle, and thus relaminarisation,

may occur as a result of thermal expansion, a viscosity-gradient-shear-interaction, buoy-

ancy as well as a kinetic-energy-gradient-and-density-gradient torque in heated supercrit-

ical fluids. In other words, local thermophysical property variations can be responsible

for decreased or increased turbulent motions in heated or cooled fluids at supercritical

pressure.
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CHAPTER 4

HEAT TRANSFER ATTENUATION

4.1 Introduction

In the previous chapter, it was shown that density and dynamic viscosity variations can

either attenuate or enhance turbulent motions in a fluid. The thermophysical property

variation does not only ‘reconstruct’ total shear stress profiles (and therefore turbulent

shear stress profiles), but also the turbulent structures that are integral parts of the self

regenerating cycle. In this chapter, heat transfer attenuation and enhancement by varia-

tions in thermophysical properties are investigated. Specifically, the effects of variations

in the specific heat capacity, thermal diffusivity, density and molecular Prandtl number

on turbulent heat transfer are emphasised. Figure 4.1 show that the specific heat capacity

cp, molecular Prandtl number Pr, thermal diffusivity a and thermal conductivity k vary

significantly with the temperature. Understanding how these thermophysical properties

variations of a fluid at supercritical pressure affect heat transfer may help to develop

better heat transfer models.

The lay-out of this chapter is as follows: firstly, three numerical cases that were

also used in the previous chapters are briefly described again for purposes of readability.

Subsequently, the effects of the thermophysical properties variations on heat transfer is

meticulously analysed. At the end, the conclusions are presented.

4.2 Numerical cases

We will use three of the numerical cases that were described in the previous chapter to

analyse how the variations of the thermophysical properties affect heat transfer. The

annular geometry and simulation methods were described in chapter three and will not

be repeated here. For ease of reading, we will reiterate the specifics of the investigated

cases, though. The details of these cases are summarised in table 4.1. The results of the

sCO2 cases (II and III) will be compared against the results of the reference case (I).
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Figure 4.1: Properties of CO2 at 8 MPa. Shown are the density ρ (kg/m3), the specific
heat capacity cp(J/kg.K), the molecular Prandtl number Pr (–), the thermal conductiv-
ity k (W/m.K), the kinematic viscosity ν (m2/s) and the thermal diffusivity a (m2/s).

case properties Pr

reference (I) constant 2.85
forced sCO2 (II) sCO2 (8 MPa) 1.6–14
mixed sCO2 (III) sCO2 (8 MPa) 1.6–14

case flow condition Fr−1 grid size

reference (I) forced convection 0 192× 480× 512
forced sCO2 (II) forced convection 0 256× 768× 768
mixed sCO2 (III) mixed convection -0.1 256× 768× 768

Table 4.1: Case details of the numerical simulations.

Mixed convection conditions are only considered in the last case (III); heated upward flow

occurs near the inner wall, while cooled upward flow occurs near the outer wall. In all

three cases, the wall temperatures are kept constant; the inner wall is kept at T o = 323

K, while the outer wall is kept at T o = 303 K. In both sCO2 cases, Tpc can be found

close to the inner wall. The reference Prandtl number Prh is equal to 2.85 in all three

cases. The molecular Prandtl number Pr = µocop/k
o, is equal to Prh in the reference

case. In the sCO2 cases, however, the molecular Prandtl number varies by an order of

magnitude. The Reynolds number equals 8000 in all cases.
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4.3 Mean statistics

In this section we aim to characterise the differences between turbulent heat transfer

in fluids at super-critical pressure and fluids with constant thermophysical properties.

We will begin by discussing instantaneous visualizations of the enthalpy, temperature

and thermophysical properties in the forced convection sCO2 case (II). Then, for each

case, we will show mean statistics of the thermophysical property variations as well as

the turbulent intensities. These observations are necessary for the analyses that follow

thereafter.

We will first analyse the effect of the variable specific heat capacity on heat transfer by

comparing the mean thermal statistics (specifically the mean enthalpy and temperature

profiles, the enthalpy and temperature rms values, as well as their respective probability

density functions) between the different cases. We will proceed by analysing how the

molecular and turbulent heat fluxes are affected by the variable thermal diffusivity as

well as the molecular Prandtl number. Subsequently, we will analyse the effect of the

instantaneous variations of the Prandtl number and the density by using conditional

averaging techniques in conjunction with a relation between the Nusselt number and the

turbulent heat flux. This analysis shows how the turbulent heat flux is influenced by

fluctuations of the molecular Prandtl number as well as the density.

4.3.1 Mean thermophysical property and velocity statistics

Before discussing the mean thermophysical property variations, it is convenient to write

equation (2.3) completely in terms of enthalpy (see A.1.4 for a derivation):

∂t(ρh) +∇ · ρuh = (RePrh)−1∇ · ρa∇h. (4.1)

Equation (4.1) shows that the evolution of enthalpy is determined by the Reynolds and

the reference Prandtl number, as well as the variations in the density and the thermal

diffusivity a ≡ k/(ρcp). The variation of the temperature can then be discussed by means

of dh = cpdT (see A.1.4). Therefore, when discussing the effect of variable thermophysical

properties on (turbulent) heat transfer, we will restrict the discussion to the effect of ρ, a

and cp. The molecular Prandtl number Pr = µcp/k will be used to discuss the transport

of heat in relation to the transport of momentum.

Figure 4.2 (left) shows instantaneous values of the enthalpy, temperature and specific

heat capacity. The temperature fluctuations are much less apparent than the enthalpy

fluctuations. Starting at the hot inner wall, the specific heat capacity is small. Further

away from it, however, cp has a much larger value. Qualitatively, this explains why

the temperature fluctuations are much less apparent than the enthalpy fluctuations; the

large value of the specific heat capacity suppresses the temperature fluctuations. Figure
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Figure 4.2: Instantaneous cross-sectional visualization of thermophysical properties for
the super-critical forced convection case. On the left, the enthalpy, temperature and
specific heat capacity are shown. On the right, the molecular Prandtl number, thermal
diffusivity and density are shown.

4.2 shows instantaneous values of the thermal diffusivity, the density and the molecular

Prandtl number. Hot fluid near the inner wall has low thermal diffusivity, density and

a low Prandtl number. Especially the Prandtl number and the thermal diffusivity show

large variations. The Prandtl number has a maximum quite close to the inner wall, while

the thermal diffusivity has a large value at the inner wall, but rapidly decreases with wall

distance.

Figure 4.3 shows the mean variation of the density, thermal diffusivity, density and the

molecular Prandtl number near the inner (left) and the outer wall (right) as a function

of the wall distance y+, which is defined as y+ = (r − Rin)/δν,in and y+ = (Rout −
r)/δν,out for the inner and outer wall respectively. δν,in = µw,in/(ρw,inuτ,in) and δν,out =

µw,out/(ρw,outuτ,out) and uτ,in and uτ,out are the friction velocities at the inner and outer

wall, respectively. The largest mean variation of the thermophysical properties can be

found near the hot inner wall for y+ < 20. The mean variation is much smaller near

the outer wall than it is near the inner wall. Figure 4.4 shows the root mean square

values of the density and the thermal diffusivity near the inner wall (left) and the outer

wall (right). The relative fluctuations of the thermal diffusivity are larger than those
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Figure 4.3: Mean profiles of the density, thermal diffusivity, specific heat capacity and
molecular Prandtl number near the inner wall (left) and the outer wall (right) in the
forced convection sCO2 case (II).
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Figure 4.4: Root mean square values of the density and the thermal diffusivity near the
inner wall (left) and the outer wall (right) in the forced convection sCO2 case (II).

of the density. Relatively, the largest value of arms/ã ≈ 80%, while the largest value

of ρrms/ρ ≈ 20%. The (̃...) denotes a Favre-averaged quantity, while (...) denotes a

Reynolds averaged quantity. The results of the thermophysical property variations of

the mixed convection case (III) are qualitatively similar to that of the forced convection

case (II); these results are therefore not shown here.
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Figure 4.5: Root mean square values of the velocity fluctuations in the forced convection
sCO2 and the mixed convection sCO2 cases. The grey lines indicate rms values of the
velocity fluctuations of the reference case.

The root mean square values of the velocity fluctuations, u′′ = u− ũ, of the wall nor-

mal, circumferential and streamwise motions, denoted as urms, vrms, wrms, respectively,

for the forced convection case (II) and the mixed convection case (III), are shown in figure

4.5. Near the inner wall, the magnitude of the turbulent intensities is clearly smaller in

the forced convection sCO2 case (II) than it is in the reference case (I) for y+ > 7. Near

the outer wall, only urms and vrms are larger in the forced convection sCO2 case (II), but
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Figure 4.6: Mean profiles of the enthalpy and the temperature in the forced convec-
tion sCO2 and the mixed convection sCO2 cases. The grey lines indicate results of the
reference case, where h = T .

for all y+; wrms is near the outer wall in the forced convection sCO2 very similar to that

of the reference case. The magnitudes of wrms and urms near the inner wall in the mixed

convection sCO2 case (III) are smaller than they are in the forced convection sCO2 case

(II). The magnitude of vrms in the mixed convection case (III) is very similar to that

of the forced convection case (II). The magnitude of the turbulent intensities near the

outer wall in the mixed convection sCO2 case are all larger than the magnitudes of the

intensities in the reference case (I). These results show that the turbulent motions are

affected by the variable properties in both sCO2 cases, which can be traced to variable

thermophysical property effects on the near wall self regenerating cycle between streaks

and quasi streamwise vortices. The observation that the momentum intensities are at-

tenuated near the hot wall and enhanced near the outer wall will be referred to later,

when investigating heat transfer characteristics.

4.3.2 Mean thermal statistics

In the previous section, we discussed that the thermophysical properties ρ, cp, a and Pr

show large mean and instantaneous variations near the hot inner wall of the annulus. In

this section, we will investigate how these variations affect the mean profiles, as well as

the fluctuations of the enthalpy and the temperature.

The mean enthalpy and temperature profiles for the forced convection case sCO2 (II)
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Figure 4.7: Root mean square values of the enthalpy in the forced convection sCO2 and
the mixed convection sCO2 cases. The grey lines indicate rms values of the enthalpy in
the reference case, hrms = Trms.

and the mixed convection sCO2 case (III) are shown in figure 4.6a and 4.6b, respectively.

The mean enthalpy values are lower for sCO2 cases (II and III) than they are for the

reference case (I), which shows that heat transfer is affected by the thermophysical prop-

erty variations. This is more clear in the mixed convection sCO2 case (III) than it is in

the forced convection sCO2 case (II). The lower values of the mean enthalpy profile in

the bulk region of the sCO2 case indicates that less heat from the wall is transported to

the bulk region of the flow. This will be addressed further in section 4.4.1. Very close to

the inner wall, however (see the inset of figures 4.6a and 4.6b), the mean enthalpy values

are slightly larger in the forced convection sCO2 case than they are in the reference case.

The mean temperature values are smaller than the mean enthalpy values, which is the

result of the large values of the mean specific heat capacity. Both the temperature and

the enthalpy were non-dimensionalised such, that their values are equal to unity at the

hot inner wall. Since ∂rT = ∂rh/cp, the magnitude of the temperature must be smaller

than the magnitude of the enthalpy for increasing radial distance r, as cp is larger than

unity for y+ > 6.

Large differences are also observed in the root mean square values of the enthalpy

and the temperature fluctuations, h′′ = h − h̃ and T ′ = T − T . hrms and Trms are

shown in figures 4.7(a) and 4.7(b) for the inner and outer wall regions, respectively. The

enthalpy fluctuations are larger in the sCO2 case than they are in the reference case (I)
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for y+ > 5; this is typical of flows with high Prandtl numbers, see for instance Kawamura

et al. [1998]. The region where hrms is larger in the sCO2 case than it is in the reference

case coincides with the region where Pr is larger in the sCO2 case than it is in the

reference case. Due to the non-dimensionalisation of the temperature and the enthalpy,

as well as the constant specific heat capacity, Trms = hrms in the reference case (I). This

does not hold for the sCO2 cases. Near the inner wall, in both sCO2 cases (II and III),

see figure 4.7(a) and figure 4.7(b), the magnitude of hrms is much larger than that of the

reference case. The magnitude of Trms in the sCO2 case is larger than that of hrms for

y+ < 7.1, but smaller for y+ > 7.1 in the forced convection sCO2 case (II). The mixed

convection sCO2 case (III) shows a similar trend. This is logical as large values of the

specific heat capacity will dampen temperature fluctuations. Looking back at figure 4.3a,

cp < 1.0 for y+ < 6.0. Near the outer wall, the magnitude of Trms is much smaller than

that of the enthalpy as well for the sCO2 cases for y+ > 4.7, which is consistent with the

fact that near the outer wall, cp < 1.0 only for y+ < 4.0. These findings indicate that a

high average specific heat capacity dampens the magnitude of Trms.

However, the previous analysis does not show how instantaneous changes in temper-

ature are related to changes in the enthalpy and changes in specific heat capacity. To

investigate the relation between the instantaneous changes of the temperature and the

enthalpy, probability distribution functions of the enthalpy fluctuations and the temper-

ature fluctuations can be compared. Figures 4.8(a) and 4.8(b) show probability density

functions of the enthalpy and temperature fluctuations near the inner wall at y+ = 5

and y+ = 10, respectively. At these locations, the average temperature is higher than

the pseudo-critical temperature, which means that when the enthalpy of a fluid particle

increases, the specific heat capacity decreases. Vice versa, when the enthalpy decreases,

the specific heat capacity increases. This means that for increasing enthalpy, the tem-

perature increases faster due to the decrease of the specific heat capacity. This suggests

that positive extreme temperature fluctuations are more likely to occur than negative

extreme temperature fluctuations. This is clearly the case at y+ = 5; T ′ > 2Trms has a

much higher probability than h′′ > 2hrms and T ′ < 3Trms has a much lower probability

than h′ < 3hrms. At y+ = 10 the differences between the probability density distribu-

tion between the enthalpy fluctuations and the temperature fluctuations are even more

apparent; T ′ < Trms fluctuations are extremely unlikely, when compared to h′′ < hrms

fluctuations, while T ′ > 2Trms values are much more likely to occur than h′ > 2hrms.

Figures 4.8(c) and 4.8(d) show the probability density functions of the enthalpy and

temperature fluctuations in the mixed convection sCO2 case (III), also at a wall distance

of y+ = 5 and y+ = 10, respectively. The probability density functions are broader

in the mixed convection sCO2 case. This may be the result of y+ not being the same

wall distance in the mixed convection sCO2 case (III) as it is in the forced convection
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Figure 4.8: Probability density functions of the enthalpy and the temperature in the
forced convection sCO2 case (II).

case sCO2 (II) case. Alternatively, this suggests that extreme enthalpy or temperature

fluctuations are more likely in the mixed convection case than they are in the forced

convection case. This can be observed for large negative fluctuations of the enthalpy or

the temperature when comparing figures 4.8(c) and 4.8(d) with figures 4.8(a) and 4.8(b),

respectively. This is most clear for h′′/hrms < 2 when comparing figure 4.8(d) with figure

4.8(b).
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4.3.3 Heat fluxes

In the previous section it was shown that the mean enthalpy has a lower magnitude in

the sCO2 cases than it has in the reference case. We will investigate this further by

looking at the heat fluxes that are present. The total heat flux qtot can be written as a

sum of three terms.

qtot = ρãdrh̃+ ρã′′∂rh′′ −RebPrhρũ′′h′′, (4.2)

where dr is the derivative with respect to the radial direction, ∂r the partial deriva-

tive with respect to the same direction. The first term in equation (4.2) represents

conduction, the second term a correlation between thermal diffusivity fluctuations and

enthalpy gradient fluctuations, which we will refer to as turbulent conduction, and the

last term represents the turbulent heat flux. The total heat flux can be expressed as

qtot = qw,inRin/r, where qw,in = ρãdrh̃|r=Rin . Note that the quantity ρã can qualita-

tively be thought of as the average thermal conductivity divided by the average specific

heat capacity. The radial profiles of these fluxes are shown in figures 4.9(a) and 4.9(b) in

the near inner and outer wall region, respectively, for the forced convection sCO2 case.

It is clear that the total heat flux and the turbulent heat flux are smaller in the forced

convection sCO2 case, which means that less heat is transported form the hot wall to the

cold wall. Molecular conduction near the inner wall shows two distinct differences when

compared to the reference case (I). Firstly, at the inner wall it is smaller than it is in the

r

q
(×

R
e b
P
r h

)

molecular conduction
turbulent conduction
turbulent heat flux
total heat flux

(a) inner wall region

r

(b) outer wall region

Figure 4.9: Heat fluxes in the forced convection sCO2 case (II) and the reference case
(I). Grey lines indicate results of the reference case.
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reference case (I), but secondly it increases in magnitude for increasing wall distance up

to y+ < 4. This increase in magnitude must be the result of a relative increase in the

mean enthalpy gradient, as the thermal diffusivity decreases with increasing wall distance,

near the inner wall. This is in agreement with the results presented in figure 4.6(a). At

y+ = 5, the magnitude of molecular conduction is similar between the forced convection

sCO2 case (II) and the reference case (I). For y+ > 5, molecular conduction becomes

smaller again in the forced convection sCO2 case; this can be attributed to the low values

of ρã. Near the outer wall, molecular conduction is smaller in the forced convection sCO2

case than it is in the reference case for all y+.

The heat flux by turbulent conduction is negative both near the inner wall and the

outer wall, which means that, on average, it results in transport of relatively hot fluid

from the bulk region towards the hot wall and relatively cold fluid from the bulk region

towards the cold wall. The reason that the heat flux by turbulent conduction is negative

at both walls can be explained as follows: near the inner wall, as a fluid particle heats up,

the thermal diffusivity will increase as well, while near the outer wall, as a fluid particle

cools down, the thermal diffusivity will decrease as well.

The fact that the turbulent heat flux is smaller in the sCO2 forced convection case

(II) than it is in the reference case (I) can be partially attributed to the low density re-

gion near the inner wall in the sCO2 forced convection case (II). However, the correlation

ũ′′h′′ changes as well. Figure 4.10(a), shows that ũ′′h′′ is altered by the thermophysical

properties of sCO2, as well as the mixed convection condition, near the inner wall of the

annulus. For y+ < 15, ũ′′h′′ is larger in the forced convection sCO2 case (II) than it is

in the reference case (I); for y+ > 15, the opposite is true. ũ′′h′′ is smaller for all y+ in

the mixed convection case (III), when compared to ũ′′h′′ in the forced convection sCO2

case (III), although it is almost equal to ũ′′h′′ in the reference case up to y+ = 10. Even

though the wall normal velocity fluctuations are attenuated, the enthalpy fluctuations

are enhanced for y+ > 5, which was already shown in section 4.3.2. Therefore, oppos-

ing effects are here at play; the high average Prandtl number leads to large enthalpy

fluctuations, but the density and dynamic viscosity variations attenuate the wall normal

velocity.

Although of lesser importance to the current configuration, it is also interesting to

investigate the streamwise turbulent heat flux ρw̃′′h′′, which is an important quantity in

configurations with thermal developing boundary layers. Near the hot wall, the correla-

tion w̃′′h′′ can be physically interpreted to represent near wall streaks (low speed regions,

w′′ < 0) that have a relatively high enthalpy (h′′ > 0). Figure 4.10(b) shows w̃′′h′′ near

the inner wall. w̃′′h′′ has a larger magnitude in the forced convection sCO2 case (II) than

it has in the reference case (I). This is again the result of the larger Prandtl number, as

this leads to higher enthalpy fluctuations close to the inner wall, while wrms is smaller in
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Figure 4.10: ũ′′h′′ and w̃′′h′′ near the inner wall in the reference case (I), the forced
convection case (II) and the mixed convection case (III). Grey lines indicate values of
the reference case.

the sCO2 cases, near the inner wall. The streamwise turbulent heat flux is smaller in the

mixed convection sCO2 case (II) than in the forced convection sCO2 case (III), which

can be attributed to the attenuated streamwise velocity fluctuations, which were shown

in figure 4.5. Thus, the same opposing effects of turbulence attenuation and enthalpy

fluctuation enhancement as before with the radial turbulent heat flux are here at play.

4.3.4 Turbulent heat flux transport equation

To investigate the differences in ũ′′h′′ and w̃′′h′′ further, the transport equation of the

turbulent heat flux can be analysed. The transport equation of the radial turbulent heat

flux can be written as:

ρDtũ′′h′′ = Re−1(∇ · 2ρνh′′S)r︸ ︷︷ ︸
Dνuh

− Re−1(2ρνST · ∇h′′)r︸ ︷︷ ︸
ενuh

+ (RebPrh)−1∇ · ρau′′∇h︸ ︷︷ ︸
Dauh

− (RebPrh)−1ρa(∇u′′ · ∇h′′)︸ ︷︷ ︸
εauh

(4.3)

− r−1dr(rρũ′′u′′h′′) + r−1ρṽ′′2h′′︸ ︷︷ ︸
Dtuh

− ρũ′′2drh̃︸ ︷︷ ︸
Pthuh

− h′′∂rp︸ ︷︷ ︸
Πuh

,

in whichDt represents the material derivative, S = 1/2(∇U+(∇U)T)−1/3(∇·u)I, Dtuh
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represents the turbulent mixing, Pthuh thermal production and Πuh pressure scrambling.

The dissipation and diffusion terms consist of a viscous part and thermal part. For the

dissipation, these terms are ενuh and a thermal part εauh and for diffusion these are Dνuh
and a Dauh. Note that Dauh, ενuh, Dauh and ενuh can be further decomposed, using a = ã+a′′

and ν̃ + ν′′. However, this is not done here, as the fluctuating thermophysical properties

parts of these terms are small. An equivalent transport equation can be derived for

w̃′′h′′, the terms of which will be denoted as (...)wh. The budgets of equation (4.3) will

be denoted with B(ũ′′h′′).

Figures 4.11(a) and 4.11(c) show that the thermal production Pthuh is smaller in the

sCO2 cases than it is in the reference case (I); this is the result of the decreased velocity

fluctuations in the wall-normal direction. The turbulent mixing term and the pressure

scrambling term Πuh are smaller as well. Comparing figures 4.11(a) and 4.11(c), re-

veals that the pressure scrambling term in the forced convection case is only marginally

different from that in the mixed convection case. Πuh can be shown to consist of four

different contributions: a return-to-isotropy term, a rapid part, a buoyancy contribution

and a wall-reflection term, see for instance Dol et al. [1999]. In other words, buoyancy

has no direct influence on the radial turbulent heat flux. There is, however, an increase

in the contribution of the viscous parts of the diffusion and dissipation terms; we will

investigate this below.

The thermal part of the streamwise turbulent heat flux production, Pthwh, is smaller

in the forced convection sCO2 case (II) than it is in the reference case (I), as can be

seen in figure 4.11(b). For y+ < 10, the thermal diffusivity and dissipation contribution,

which acts as a sink, is smaller in the forced convection sCO2 case, which is the result

of the low values of ρã near the inner wall. The contributions of the viscous parts of

the diffusivity and dissipation are substantially smaller as well for y+ > 10, which is

the result of turbulence attenuation due the variation of the density and the dynamic

viscosity. It follows that this analysis does not yield any more insight into the production

of w̃′′h′′ than our analysis in section 4.3.3. However, comparing the budgets of the mixed

convection sCO2 case, figure 4.11(b), with those of the forced convection sCO2 case,

figure 4.11(d), shows that the pressure scrambling term is notably larger in the mixed

convection sCO2 case (III) than it is in the forced convection sCO2 case. Thus, buoyancy

influences the streamwise turbulent heat flux directly and it has a negative effect on w̃′′h′′

near the inner wall. This is intuitive as near wall streaks (low speed regions) tend to

have a relatively high enthalpy and therefore have a relatively low density. Similarly, a

high speed region will have a relatively low enthalpy and therefore have a high density.

Peeters et al. [2016] reasoned that, if the flow direction and the gravitational acceleration

point in opposite direction, buoyancy will hamper the formation of streaks. Buoyancy

therefore acts as a sink to the correlation w̃′′h′′ through the pressure scrambling term.
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(d) B(w̃′′h′′) in the mixed convection sCO2 case
(III)

Figure 4.11: Budgets of the turbulent heat flux transport equation in the forced (top
figures) and mixed convection sCO2 cases (bottom figures).

We observed before that the contribution of the viscous parts of the diffusion and

dissipation terms of B(ũ′′h′′) are increased in the sCO2 cases. Figure 4.12 shows the

viscous parts of the diffusion and dissipation terms separately for the forced convection

case (II). The diffusion term in the forced convection case has shifted away from the wall,

when compared to the same term in the reference case. The dissipation term is larger
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Figure 4.12: Viscous parts of the diffusion and dissipation terms of the radial turbulent
heat flux for reference case (I) and the forced convection sCO2 case. The results of the
reference case (I) are in grey.

in the forced convection case. The increase of the dissipation term is most clear in the

region y+ = 10 − 30. This coincides with the region where Pr > 9, see figure 4.3(a),

which leads to larger enthalpy fluctuations in the same region, which was already shown

in figure 4.7(a). The strong correlation between the velocity gradients and the gradient

of the enthalpy fluctuations is associated with the near wall turbulent structures, such

as quasi-streamwise vortices, streaks and internal shear layers, which was shown by Abe

et al. [2009]. The dissipation of the turbulent heat flux is therefore increased as a result

of larger instantaneous enthalpy gradients across the near wall turbulent structures.

4.4 Nusselt relation

4.4.1 Influences of the heat fluxes on the Nusselt number

By comparing Nusselt numbers for the hot and cold wall of the different cases, we can

determine if the local variations in thermophysical properties cause heat transfer enhance-

ment, or heat transfer deterioration. We will first define two separate Nusselt numbers

for the hot and cold wall respectively, after which we will introduce a relation between

the Nusselt number and the heat fluxes as they were defined in section 4.3.3. The latter

will allow us to connect previous observations to changes in the Nusselt number due to

variable thermophysical properties directly.

Since heating occurs at the inner wall and cooling occurs at the outer wall, we will
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divide the annulus into a hot side and a cold side. This will allow us to compare the

effectiveness of heat transfer at both walls separately. To distinguish between the hot

side and the cold side, we will choose the location where ∂rw̃ = 0, denoted as r = Ra, to

be the boundary between the hot side and the cold side. We can now define a Nusselt

number for both the hot wall and the cold wall;

Nuh =
qowD

o
h

kopc(T
o
h − T ob,h)

and Nuc =
qowD

o
h

kopc(T
o
c − T ob,c)

, (4.4)

where Tb,h is the bulk temperature on the hot side and Tb,c is the bulk temperature on

the cold side. Tb,h and Tb,c are functions of hb,h and hb,c, respectively, which in turn are

defined as;

hb,h =

´ Ra
Rin

ρwhrdr´ Ra
Rin

ρwrdr
and hb,c =

´ Rin
Ra

ρwhrdr´ Rin
Ra

ρwrdr
, (4.5)

respectively. Ra denotes the radial location where the shear stress is equal to zero. Fuku-

gata et al. [2005] showed that a relation between the Nusselt number and the heat fluxes

can be derived for heated turbulent channel flows. A similar relation may be derived for

the hot and cold Nusselt numbers. For the sake of readability, these derivations can be

found in the appendix. The relation between the hot Nusselt number and the heat fluxes

can be written as:

Nuh = ΓhΘh

{ ˆ Ra

Rin

ρãdrh̃dr︸ ︷︷ ︸
molecular conduction

+

ˆ Ra

Rin

ρã′′∂rh′′dr︸ ︷︷ ︸
turbulent conduction

−RebPrh
ˆ Ra

Rin

ρũ′′h′′dr︸ ︷︷ ︸
turbulent heat flux

}
(4.6)

In this relation, the factors Γh and Θh represent a shape factor (1/Rin)/ ln(Rin/Ra) and

the temperature difference ratio (Th − Tl)/(Th − Tb). The relation for the cold Nusselt

number Nuc, is simply obtained by setting Rin to Rout, Γh to Γc = (1/Rout)/ ln(Ra/Rout)

and Θh to Θc = (Th − Tl)/(Tb − Tc). For the reference case, ρ and a are equal to unity,

which may be used to reduce equation (4.6) to:

Nuh = ΓhΘh

{
h̃(Ra)− h̃(Rin)︸ ︷︷ ︸

molecular conduction

−RebPrh
ˆ Ra

Rin

ũ′′h′′dr︸ ︷︷ ︸
turbulent heat flux

}
. (4.7)

Equations (4.6) and (4.7) are useful to determine the contribution of the different heat

fluxes to the Nusselt number. These contributions are listed in table 4.2 for the hot wall

and in table 4.3 for the cold wall, for all cases. In the reference case, the Nusselt number

at the cold wall is slightly larger than the Nusselt number at the hot wall. Intuitively, this

is logical as turbulence intensities near the outer wall are slightly larger than turbulence

intensities near the inner wall in the reference case (I). The hot Nusselt number is smaller

in the sCO2 cases, while the cold Nusselt number is larger. At the hot side, this means
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that less heat is transported from the hot wall to the bulk region of the flow in the

sCO2 cases (II and III) when compared to the reference case (I), which results in a larger

difference between Tw,h and Tb,h as was already clear from figure 4.6. At the cold side,

the increase in the cold Nusselt number indicates that more heat is transported towards

the cold wall, which results in a smaller difference Tw,c and Tb,c, which is also visible in

figure 4.6.

Qualitatively, the differences between the Nusselt numbers between the sCO2 cases

and the reference case (I), are in agreement with our earlier observations that the tur-

bulent intensities have decreased in the sCO2 cases near the inner wall (see figure 4.5(a)

and 4.5(c)), but increased near the outer wall (see figure 4.5(b) and 4.5(d)). However,

this does not mean that the other thermophysical properties, such as the density, ther-

mal diffusivity and molecular Prandtl number have no effect, as was discussed in the

previous sections 4.3.3 and 4.3.4. Furthermore, it is also clear that the mixed convection

conditions only have a small negative effect on the hot Nusselt number, but an appre-

ciably large positive effect on the cold Nusselt number. In the mixed convection sCO2

case (III), the contribution of the turbulent heat flux to the hot Nusselt number has

decreased. However, this decrease is opposed by an increase in the molecular conduction

contribution, which can only be the result of an increase of the mean enthalpy gradient

(with respect to the radial distance), since the product ρã (which occurs in the first term

of equation (4.6)) is smaller than unity for y+ > 5. The contribution of the heat flux by

turbulent conduction is negligible in all cases, both to the Nusselt number at the hot wall

and that at the cold wall. Finally, the results presented in this section show that heat

transfer deterioration or enhancement can occur without mean streamwise acceleration

or mixed convection conditions.
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Table 4.2: Contributions to the Nusselt number at the hot inner wall.

molecular turbulent turbulent
Case Nuh conduction conduction convection
reference 41.7 5.7 - 36.0
forced sCO2 26.4 3.9 -0.3 22.8
mixed sCO2 26.2 5.3 -0.5 21.4

Table 4.3: Contributions to the Nusselt number at the cold outer wall.

molecular turbulent turbulent
Case Nuc conduction conduction convection
reference 44.9 3.6 - 41.3
forced sCO2 52.5 2.3 0.0 50.2
mixed sCO2 56.5 2.3 0.0 54.2

4.4.2 Heat flux events and characteristics

The previous section gave insight how the different heat fluxes contribute to the Nusselt

number at the hot wall and the cold wall. It was shown that the variable thermophysical

properties have a large effect on turbulent heat flux contribution to the Nusselt numbers.

Here, we will investigate the contribution of the turbulent heat flux to the Nusselt number

further by making a quadrant analysis of the turbulent heat flux. For a comprehensive

overview on quadrant analysis, we refer to Wallace [2016]. The turbulent heat flux can

be decomposed into four different terms or quadrants, which can be summarised as:

• F1: u′′ > 0, h′′ > 0, hot ejection

• F2: u′′ > 0, h′′ < 0, cold ejection

• F3: u′′ < 0, h′′ < 0, cold sweep

• F4: u′′ < 0, h′′ > 0, hot sweep

Note that for determining u′′ > 0 or u′′ < 0, we mean to denote positive or negative

radial velocity fluctuations with respect to the wall normal direction. Near the hot wall,

the F1 and F3 quadrants yield a positive product u′′h′′ and thus, these quadrants have

a positive effect on the Nusselt number Nuhot, while the F2 and F4 quadrants yield a

negative product and thus have a negative effect. Near the cold wall, this is reversed;

the F2 and F4 events have a positive effect, while the F1 and F3 have a negative effect.

The turbulent heat flux quadrants can physically be interpreted as follows. Close to

the hot inner wall, characteristic ’mushroom’-like enthalpy (or temperature) structures

can be observed, as can be seen in the top part of figure 4.2(a) and is shown more
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clearly in figure 4.13(a). A schematic of such a structure is shown in figure 4.13(b).

The mushroom structure can be regarded as the result of the near wall cycle that exists

in near wall bounded turbulence. Low speed regions near the hot inner wall generally

have a higher enthalpy than the surrounding fluid; the low speed regions are indicated

by the black contours in figure 4.13(a). Such a low speed region grows unstable which

results in the ejection of hot fluid (indicated in the figure by F1). The ejection leads

to the formation of quasi-streamwise vortices. These vortices than convect hot fluid

towards the wall (indicated in the figure by F4). These vortices also draw in relatively

cold fluid from the bulk region of the flow (indicated by F3). The inrush of cold fluid

is subsequently reflected due to the presence of the wall, which results in relatively cold

fluid moving away from the heated wall (indicated by F2).

We will distinguish between small and large values of the turbulent heat flux, by

defining a hole parameter H (which is similar to the approach of Willmarth and Lu

[1972] for the Reynolds shear stress):

|ρu′′h′′| > H(ρũ′′h′′) (4.8)

The hole parameterH is a real positive number between zero and infinity. For large values

of the hole parameter H, ρu′′h′′ represents extreme events in turbulent heat transfer,

by which we mean large correlations of u′′ and h′′. The hole parameter is graphically

represented in figure 4.14.

The integral of the radial turbulent heat flux of equation (4.6) can be decomposed

into four terms, which represent the different flux quadrants:

ˆ Ra

Rin

ρũ′′h′′dr =

ˆ Ra

Rin

{(
ρũ′′h′′

)
F1

+
(
ρũ′′h′′

)
F2

+
(
ρũ′′h′′

)
F3

+
(
ρũ′′h′′

)
F4

}
dr.

(4.9)

Equations (4.6), (4.8), (4.9) allow us to determine the contributions of the turbulent

heat flux quadrants on the Nusselt number for different values of the hole parameter

H. Figures 4.15(a), 4.15(b) show the Nusselt number contributions of the turbulent

heat flux quadrants F1-F4 in the forced convection sCO2 case near the hot wall and the

cold wall, for the condition given by equation (4.8). Figures 4.16(a) and 4.16(b) show

the same, but then for the mixed convection sCO2 case. Figure 4.15(a) shows that the

positive contributions to Nuhot, F1 and F3, have substantially decreased in the forced

convection sCO2 case, when compared to the same contributions in the reference case

(I). For large values of H (> 8), however, the difference between the F1 and F3 events

is very small; this is especially true for the F3 contributions. The magnitude of the F2

contributions has increased in the forced convection sCO2 case, as has the magnitude of

the F4 contributions for large values of H (> 4). This is surprising, because we have seen

before in figure 4.5(a) that the wall normal motions have decreased in magnitude near the
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Figure 4.13: Left: typical mushroom structures near the hot wall of the annulus in the
forced convection sCO2 case. The black contour lines denote low speed fluid regions
(streaks). Right: a physical interpretation of the the flux quadrants using the mushroom
structure as an example.
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Figure 4.14: Graphic representation of the hole parameter H.

hot wall in the forced convection case (II), when compared to the values of the reference

case (I). In other words, based purely on the observation that the magnitude of wall

normal fluctuations is smaller in the sCO2 cases, one would expect that the contribution

of all flux quadrants to the Nusselt number should be smaller in the sCO2 cases as well.
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Near the cold outer wall, see figure 4.15(b), all flux quadrant contributions to Nucold,

both negative, F1 and F3, and positive, F2 and F4, have increased in magnitude. This

is consistent with the fact that the magnitude of u′′ are enhanced near the outer wall in

the forced convection case (II) than they are in the reference case (I).

The mixed convection condition (heated, upward flow) near the hot inner wall acts

as to decrease the magnitude of all the flux quadrant contributions to Nuhot; this can

be deduced from comparing figures 4.15(a) and 4.16(a). Near the outer wall, however,

the mixed convection condition (cooled, upward flow) enhances the magnitude of all flux

quadrant contributions to Nucold. This is consistent with our earlier observations that

the magnitude of the wall-normal fluctuations near the hot wall in the mixed convection

case (III) is smaller than it is in the forced convection case (II). Similarly, the increase

of the flux quadrant contributions to Nucold is consistent with the increased turbulence

near the outer wall.

It has become clear that the turbulent heat flux quadrants near the hot inner wall in

the sCO2 cases show unexpected results that cannot be fully explained by investigating

the wall-normal turbulent fluctuations. We will therefore investigate how the attenuated

(near the inner wall) or enhanced (near the outer wall) wall normal motions, as well

as the variable thermophysical properties affect the instantaneous turbulent heat flux

ρu′′h′′. Figures 4.17(a) and 4.17(b) show the expected value of the wall normal velocity

u′′ near the hot inner wall and the cold outer wall (both at y+ = 20). Near the hot inner

wall, the magnitude of the wall normal velocity of the forced convection sCO2 case (II)

is clearly attenuated for all the flux quadrants, when compared to that of the reference

case (I). The attenuation of the wall normal velocity magnitude of the F1 quadrant is less

than that of the other quadrants. Near the cold outer wall, the magnitude of the wall

normal motion of the forced convection sCO2 case is enhanced, when compared to that

of the reference case (I). These findings are consistent with the results for the turbulent

intensities, which were shown in figures 4.5(a) and 4.5(b).

The instantaneous density directly influences the magnitude of the turbulent heat

flux ρu′′h′′. Figures 4.18(a) and 4.18(b) show the expected values of the density, E(ρ),

conditioned on the four quadrants of the turbulent heat flux. Near the hot inner wall,

the F1 and F4 turbulent heat flux quadrants of the forced convection sCO2 case (II) have

a low density compared to the density of the reference case (I), the F2 and F3 turbulent

heat flux quadrants have a higher density. The density of the F1 quadrant is generally

lower than that of the F4 quadrant. This can physically be interpreted as follows; the

fluid regions that constitute F1 quadrant are generally hotter than the fluid regions that

constitute the F4 quadrant. Similarly, the density of the F3 quadrant is higher than the

density of F2 quadrant, which means that fluid regions that constitute the F3 quadrant

are colder than regions that constitute the F2 quadrant. At the outer wall, see figure

82



CHAPTER 4. HEAT TRANSFER ATTENUATION 4.4. NUSSELT RELATION

N
u
h

F1

F2

F3

F4

H

(a) hot inner wall

H

N
u
c

(b) cold outer wall

Figure 4.15: Contributions of the turbulent heat flux events as a function of the hole size
H in the reference case(I) and the the forced convection sCO2 case (II).
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Figure 4.16: Contributions of the turbulent heat flux events as a function of the hole size
H in the reference case (I) and the mixed convection sCO2 case (III).

4.18(b), all turbulent heat flux quadrants in the forced sCO2 case have a density that

is higher than the density in the reference case (I). The conditional averaging analysis

shows that different quadrants are affected differently by the density variations. Fluid

regions with relatively low density may result in a smaller instantaneous turbulent heat

83



4.4. NUSSELT RELATION CHAPTER 4. HEAT TRANSFER ATTENUATION

E
(u
′′
)

ρu′′h′′/ρũ′′h′′
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Figure 4.17: Expected value of the wall normal velocity u′′ conditioned on all all four
quadrants of the turbulent heat flux in the forced convection sCO2 case (II). The constant
grey line represents the density in the reference case (I).
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Figure 4.18: Expected value of the density for a given value of the turbulent heat flux
in the forced convection sCO2 case (II). The constant grey line represents the density in
the reference case (I).

flux, while regions with a high density my result in a larger instantaneous turbulent heat

flux.
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Figure 4.19: Expectancy of the molecular Prandtl number for a given value of the tur-
bulent heat flux in the forced convection sCO2 case. Legends are the same as in figure
4.18. The constant grey line represents the molecular Prandtl number in the reference
case (I). Results are shown for y+ = 20.

Another interesting parameter to investigate is the time-scale ratio, which is defined

as:

R =
τθ
τk
≡ h′′2ε

2kεθ
=

(
ν̃

ã

)
h′′2(2S′′ : ∇u′′)

k(∇h′′ · ∇h′′)
, (4.10)

where ε is the dissipation of the turbulent kinetic energy, εθ the dissipation of h′′2 and k =

1/2(u′′ · u′′) the turbulent kinetic energy. This time scale ratio can be regarded as the

ratio of heat decay time to the mechanical (turbulent kinetic energy) decay time. The

factor ν̃/ã suggest that the time scale ratio scales with the Prandtl number. In fact, as

y+ → 0, R → Pr, see Kawamura et al. [1998] and Kawamura et al. [1999]. In other

words, heat will decay slower than momentum in regions with high Prandtl numbers.

Figures 4.19(a) and 4.19(b) show the expected values of the molecular Prandtl num-

ber, E(Pr), conditioned on the turbulent heat flux quadrants, at the inner and outer

wall, respectively. Near both walls, all turbulent heat flux quadrants have a molecular

Prandtl number that is higher than the molecular Prandtl number of the reference case.

Near the inner wall, the F1 quadrant has generally a lower molecular Prandtl number

than the F4 quadrant. The same is true for the F3 quadrant with respect to the F2

quadrant. Near the outer wall, the F4 and the F1 quadrants have very similar molecular

Prandtl numbers, which are lower than the molecular Prandtl number values of the F2

and the F3 quadrants.
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To summarise, all flux quadrants are diminished by the reduced wall normal fluctu-

ations. It is clear that all flux quadrants have different densities and molecular Prandtl

numbers. The density affects the instantaneous turbulent heat flux , ρu′′h′′, directly,

while the Prandtl number affects how fast heat will decay in comparison to how fast

momentum decays. A fluid particle with a high molecular Prandtl number will convect

thermal energy further away from a hot wall, for instance, than a particle with a low

molecular Prandtl number (if both particles have similar density and velocity), which

will result in more effective heat transfer.

The results of the conditional averaging of the density and the molecular Prandtl

number can be used to explain the differences in the turbulent heat flux quadrant contri-

butions to the Nusselt numbers at the hot and cold walls between the sCO2 cases and the

reference case. The high Prandtl number compensates the effect of the low density and

the attenuated velocity of the positive F1 contribution and the negative F4 contribution

to Nuh in the sCO2 case. For the F4 contribution, the effect of the high Prandtl number

outweighs that of the attenuated velocity and the low density for large values of ρu′′h′′

(large H) only. The F2 and F3 quadrants benefit from a high density and molecular

Prandtl number. For F3, this is visible only for very high values of ρu′′h′′ (large H),

but for F2, the increase due the high thermophysical properties is visible for all values of

ρu′′h′′. Near the outer wall, both positive and negative heat flux contributions to Nuc are

enhanced, as all quadrants contributions benefit from relatively high density, molecular

Prandtl number and enhanced wall normal motions. The results show that the Nusselt

number is influenced by both the density and molecular Prandtl number of relatively hot

fluid as well as the density and molecular Prandtl number of relatively cold fluid.

4.5 Conclusions

In this work, we have investigated characteristics of turbulent heat transfer to CO2

at a supercritical pressure of 8 MPa in an annular geometry using Direct Numerical

Simulations. The inner wall of the annulus was kept at a temperature that is higher than

the pseudo-critical temperature, while the outer wall was kept at a lower temperature

than the pseudo-critical temperature. Results of a reference case with constant properties

were compared with results of a forced convection case and a mixed convection sCO2 case.

The variation of the thermophysical properties was found to have a large effect on

mean thermal statistics. The variation of the specific heat capacity causes the mean

profiles of the enthalpy and the temperature to be substantially different. High values of

the specific heat capacity tend to dampen the temperature fluctuations; this is evident

from both instantaneous temperature plots, as well as probability density functions of

the temperature and enthalpy fluctuations. Near the hot wall, it was also found that
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under mixed convection conditions, the probability density functions of enthalpy and

temperature fluctuations are slightly broader than under forced convection conditions.

The thermophysical properties variations also lead to a decrease in the total heat

flux compared to a flow with constant thermophysical properties. The mean thermal

diffusivity profile causes local changes in the mean enthalpy gradient. The turbulent

conduction term, ρã′′∂rh′′, that arises due to fluctuations in the thermal diffusivity and

the enthalpy gradient can have a significant effect locally with respect to molecular con-

duction and the turbulent heat flux. The fact that the turbulent heat flux is reduced

by the sCO2 conditions cannot solely be attributed to a variation in the mean density

profile, as the product of the wall-normal velocity and the enthalpy fluctuations is clearly

affected by both the thermophysical property variations and the mixed convection con-

dition. Near the hot wall, both ũ′′h′′ and w̃′′h′′ are modulated by two different effects.

These correlations can be attenuated due to the attenuation of the turbulent intensities,

which is, in turn, the result of variations in the density and the dynamic viscosity, but

may also be enhanced by a high average molecular Prandtl number, which results in

larger enthalpy fluctuations. While analysing the budgets of w̃′′h′′, it was found that the

pressure-scrambling term has a significant detrimental impact on the production of the

streamwise turbulent heat flux in mixed convection conditions near the hot inner wall of

the annulus. Physically, this is due to the fact that buoyancy forces hinder the formation

of near wall streaks.

Using a relation between the Nusselt number and the radial heat fluxes, molecular

conduction, turbulent conduction and turbulent heat flux, shows that turbulent conduc-

tion, ρã′′∂rh′′, has a negligible contribution to the Nusselt number, even though locally,

it can be significant with respect to molecular condition and the turbulent heat flux. The

Nusselt number at the hot and cold walls of the forced convection sCO2 case show that

heat transfer deterioration or enhancement can occur without mean streamwise acceler-

ation or mixed convection conditions. Using quadrant decomposition of the turbulent

heat flux, which can be physically be interpreted as hot or cold fluid moving towards

or away from a wall, it was found that different quadrants are affected differently by

the variable thermophysical properties. Conditional averaging showed that the different

heat flux quadrants have significantly different densities and molecular Prandtl numbers.

This is important as fluid with high density is more effective at convecting heat than

fluid with low density. High Prandtl numbers raise the heat decay time to mechanical

decay time ratio; therefore, quadrants with a high molecular Prandtl number are more

effective than quadrants with a low molecular Prandtl number. Therefore, different heat

flux quadrants’ contributions to the Nusselt number are affected differently if they have

different properties. This means that the fluctuations of the density and the molecular

Prandtl number are important in understanding heat transfer to fluids at supercritical
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pressure in addition to the mean profiles of the density and the molecular Prandtl num-

ber. Concretely, this means that heat transfer to a fluid at supercritical pressure depends

on the thermophysical properties of both the hot ejections as well as the cold sweeps.
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CHAPTER 5

TOWARDS A NEW MODEL

5.1 Introduction

In chapter 3, it was shown that turbulence can be attenuated or strengthened by the

density and dynamic viscosity variations that occur in heated flows at supercritical pres-

sure. In chapter 4 the influence of the other variable thermophysical properties on heat

transfer was analysed. A relation between the Nusselt number and the turbulent heat

flux quadrants was also presented. The Nusselt relation presented in chapter 4 is useful

for the analysis of (turbulent) heat transfer, but not for predicting heat transfer. In this

chapter, a model is created using heuristic arguments that are based on the observations

and analyses of the two previous chapters. Therefore, by comparison, this chapter will

be more conceptual in nature.

First, a new heat transfer model is explained conceptually. Then, a general heat

transfer model is derived. Subsequently, a new friction factor and Nusselt number analogy

is created from that general model, which accounts for the variations in the molecular

Prandtl number and changes in turbulence through the friction factor. The new analogy

is then demonstrated first, after which the model performance is shown with respect to

experimental results from literature. A short discussion in presented at the end.

5.2 The model

5.2.1 Concept

On a rather simplistic level, wall bounded turbulent flows can be regarded to be locally

either in a quasi-laminar state (i.e. small momentum variations) or a bursting state

(locally large momentum variations). For the heat transfer model, it is assumed that

the quasi-laminar state has a duration tlam, while the bursting phase has a duration

tburst. During the bursting phase, hot fluid moves away from a heated surface, while

cold fluid moves towards it. These motions will be referred to as hot ejections and cold
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sweeps, which have a duration of th and tc, respectively. The total time during which

heat transfer takes place is denoted as t. In reality, hot ejections and cold sweep have

complicated shapes. Following Hetsroni et al. [1996], the hot ejection is modelled as an

axisymmetric jet. The effect of the cold sweep is considered here as well and is likewise

modelled. Figure 5.1 shows the concept of a hot ejection and a cold sweep that occur in

a flow near a heated surface. The hot ejection is assumed to have a cross-sectional area

of Ah with a corresponding radius of ξh,0, wile the cold sweep is assumed to have an area

of Ac and a radius of ξc,0. The burst phase is assumed to constitute both the hot ejection

and the cold sweep. The burst has therefore an cross-sectional area A = Ah +Ac. Both

the hot ejection and the cold sweep have a temperature distribution, as is indicated by

the coloured curves in figure 5.1. The mean temperatures of the hot ejection and cold

burst are denoted as Th and Tc.
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Figure 5.1: Heat transfer model concept. The top part shows a flow past a heated surface
and a hot ejection and a cold sweep with cross-sectional area’s Ah and Ac, respectively.
The bottom part shows conceptually the temperature distributions of the hot ejection
and cold sweep with their respective mean temperatures Th and Tc, as well as their
respective radii ξh,0 and ξc,0.

5.2.2 Derivation

The derivation that was presented by Hetsroni et al. [1996] is largely followed here, except

for the fact that the cold sweep is included and that the hot ejection and cold sweep have

different thermophysical properties.
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The total heat transport transferred is written as Qtot and is split into a contribution

from conduction and a contribution from turbulence:

Qtot =

laminar︷ ︸︸ ︷
Qcond + Qhot +Qcold︸ ︷︷ ︸

turbulent

, (5.1)

in which the turbulence contribution is split into a part that represents hot fluid moving

away from the wall and a part that represents cold fluid moving towards the wall. The

total heat flux can be represented as:

Qtot = HTC (Tw − Tb)×A× t, (5.2)

where HTC is the heat transfer coefficient and Tw the wall temperature. The conduction

part is written as

Qcond = qw ×A× tlam (5.3)

Qhot can be modelled as an axially symmetrical jet, with a radius ξh,0. The total energy

that is transported from the wall is

Qhot = 2π

ˆ ξh,0

0

φh∆hξdξ × th (5.4)

Here, ∆h is the enthalpy difference between that of the fluid moving away from the walll

(h) and that of the bulk region of the fluid (hb). The subscript h refers to the hot part of

the flow. This enthalpy difference corresponds to a temperature difference ∆T = T −Tb.
Defining the non-dimensional radius η ≡ ξ/ξh,0 yields for the hot part:

Qhot = 2πξ2
h,0

ˆ 1

0

φh∆hηdη × th (5.5)

Hetsroni et al. [1996] assume that the velocity profile is a function of η and that the

temperature difference is a function of η and the Prandtl number Pr, based on results

reported by Abramovich [1963]. Similarly, it is assumed here that,

∆h

hw − hb
= f∆h(η, Prh) and

φh
φh,l

= fφh(η) (5.6)

where φ is the wall normal mass flux of the jet and φh,l represents the centreline mass

flux of the jet-like ejection. Equation (5.6) can now be used to rewrite equation (5.5)

into:

Qhot = 2πξ2
h,0φh,l(hw − hb)

ˆ 1

0

f∆h(η, Prh)fφh(η)ηdη︸ ︷︷ ︸
I(Prh)

× th (5.7)
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Making similar assumptions as before for the cold part of the flow,

∆h

hw − hb
= f∆h(η, Prb), and

φc
φc,l

= fφc(η) (5.8)

yields;

Qcold = 2πξ2
c,0φc,l(hw − hb)

ˆ 1

0

f∆h(η, Prc)fφc(η)ηdη︸ ︷︷ ︸
I(Prc)

× tc (5.9)

The result of equations (5.7) and (5.9) is that the hot fluid depends on the molecular

Prandtl number of the hot fluid, while the cold part of the fluid depends on the molecular

Prandtl number of the bulk region of the fluid. Combining equations (5.1), (5.3), (5.2),

(5.7) and (5.9) results in

HTC (Tw − Tb)×A× t = qw ×A× tlam
+ 2φh,l(hw − hb)I(Prh) × πξ2

h,0 × th (5.10)

+ 2φc,l(hw − hb)I(Prc) × πξ2
c,0 × tc

Multiplying the left and right side of equation (5.10) with the length scale d and dividing

by the bulk thermal conductivity λb, Tw − Tb, A and t gives:

Nub =
HTC × d

λb
=

qwd

λb(Tw − Tb)
× αtlam

+ 2

(
φh,l(hw − hb)d
λb(Tw − Tb)

)
I(Prh) × αAh × αth (5.11)

+ 2

(
φc,l(hw − hb)d
λb(Tw − Tb)

)
I(Prc) × αAc × αtc

The fractions, denoted with α(...), here are defined as follows: αtlam ≡ tlam/t, αAc ≡
πξ2
c,0/A, αAh ≡ πξ2

h,0/A, αtc ≡ tc/t, αth ≡ th/t. The relation between the time

constants is 1 = αtlam + αth + αtc . As the burst duration is much smaller than the

quasi-laminar state, it follows that 1 − αth − αtc ≈ 1 for αth + αtc << 1. Defining

Nucond ≡ qwd/λb(Tw − Tb), Reb = ρbwbd/µb and Pr = µb∆h/(λb∆T ), yields;

Nub = Nucond

+ 2

(
φh,l
G

)
RebPrI(Prh) × αAh × αth (5.12)

+ 2

(
φc,l
G

)
RebPrI(Prc) × αAc × αtc

Equation (5.12) represents a general form of a Nusselt relation that could be used to

model heat transfer to fluids with variable thermophysical properties.
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5.2.3 Creating a relation

Equation (5.12) is not ready to be used as a heat transfer model, since the parame-

ters Nucond, uh,l/wb, uc,l/wb, I(Prw), I(Prc), as well as the fractions α(...) need to be

modelled. If a relation that predicts heat transfer to supercritical fluids accurately for a

broad range of conditions (i.e. different pressures, different substances), all mechanisms

that lead to heat transfer attenuation should be included. Direct effects of heat transfer

modulate that were identified in this thesis and in literature are;

• the mean Prandtl number enhances enthalpy fluctuations (chapter 4, section 4.3.2).

• and hot ejections have a different Prandtl number than cold sweeps (chapter 4,

section 4.4.2)

Mechanisms that lead to turbulence attenuation (and therefore affect heat transfer) are;

• the reconstruction of the total shear stresses and thereby the turbulent shear stress

due to mean variations in the density and the dynamic viscosity, but also due to

mixed convection conditions (chapter 3, section 3.2.3 and Jackson [2013]),

• the attenuation of the turbulent near wall cycle, which is visible in streaks (where

ejection occur) and in the wall normal motions (chapter 3, section 3.3),

• and turbulence attenuation due to mean streamwise acceleration in situations with

a developing thermal boundary layer (Jackson [2013]).

A model for the wall-normal motions is sought first. We assume that the wall temperature

and the cold temperature are decent estimates for the hot and cold molecular Prandtl

numbers. φh,l and φc,l are a result of the near wall cycle of a wall bounded turbulent flow.

It is therefore assumed that the magnitude of both can be modelled as φh,l = φc,l = εG,

with ε < 1, where G (kg/m2s) is the mean streamwise mass flux. Furthermore, the

time and surface fractions are left. αth = (th/tburstγ) and αtc = (tc/tburstγ). Hetsroni

et al. [1996] uses experimental observations, see for instance Blackwelder and Haritonidis

[1983], to estimate the burst duration. His reasoning is as follows: the burst duration

scaled with wall units is approximately constant, or t+burst ≡ t(u2
τ/ν) = 91.5. tburst is

modelled as tburst = bν/w2
b , where b is a model constant. This model yields tburst/t =

b2(uτ/wb)
2 = γ. uτ can be estimated from a friction correlation, i.e. uτ ≡

√
τw/ρ =

1/2ρbw
2
bf , where f is the friction factor. This yields γ = (f/2). We make an ‘ad hoc’

assumption here that in a non-isothermal flow with variable thermophysical properties

the same time ratio γ ≈ f/2. Combining this result with φh,l = φc,l = εwb and with
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equation (5.12), yields:

Nub = Nucond

+

(
2ε× αAh ×

th
tburst

)
f

2
RebPrI(Prw) (5.13)

+

(
2ε× αAc ×

tc
tburst

)
f

2
RebPrI(Prc)

If the friction factor reduces to it’s value under (near) isothermal conditions, it may be

possible to construct a relation that reverts to the Colburn–Chilton analogy for constant

thermophysical properties, which may be written as:

Nub =
f

2
RebPr

1/3
b (5.14)

Hetsroni et al. [1996] estimate the integral I(Pr) by using explicit functions of the tem-

perature and velocity distributions of the burst. Simply by requiring that the new re-

lation reverts to the Chilton–Colburn analogy under constant thermophysical property

conditions, I(Pr) can be estimated as I(Pr) ≈ APrn, with n = −2/3, who reports

n =0.57–0.8. This estimate is very close to the result by Hetsroni et al. [1996]. The

factors αAh , αAc , th/tburst and tc/tburst suggest that the contribution of the hot part

to the Nusselt number is different from the contribution by the cold part. In the last

chapter is was shown that this is indeed the case by using a relation between the tur-

bulent heat flux and the Nusselt number. In the reference case (I), the contribution of

the hot part Nuhot is 16.81 and the contribution of the cold part Nucold is 11.83. In

the forced supercritical CO2 case (II), the hot part is 18.66, while the cold part is 13.78.

The fractional contributions of the hot part and the cold part in the reference case are

Nuhot/(Nuhot+Nucold) = 0.58 and Nucold/(Nuhot+Nucold) = 0.42, respectively. In the

supercritical case, the fractional contributions are Nuhot/(Nuhot + Nucold) = 0.59 and

Nuhot/(Nuhot +Nucold) = 0.41. The differences between the fractional contributions of

the hot part and the cold part are very small when comparing the reference case (I) with

the supercritical CO2 case (II). Therefore, it is assumed that 2ε × αAh × th
tburst

= 0.58

and that 2ε× αAc × tc
tburst

= 0.42. Finally, by neglecting the conduction contribution to

the Nussel number, Nucond, the following relation is obtained:

Nub =
f

2
RebPr

{
0.58Pr−2/3

w︸ ︷︷ ︸
hot part

+ 0.42Pr
−2/3
b︸ ︷︷ ︸

cold part

}
(5.15)

We will refer to equation (5.15) as the ejection–sweep analogy. This intermediate result

is a relation in which the contributions of the hot ejections and the cold sweeps are

clearly present. Of course, the analogy reverts to the Chilton–Colburn analogy, if the

thermophysical properties are constant, i.e. when Pr = Prw = Prb. and when f reduces

to the friction factor under isothermal conditions, fiso.
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5.3 Results

5.3.1 A demonstration

In the previous section, a number of heuristic and ‘ad hoc’ assumptions were made in

order to transform equation (5.12) into equation (5.15). Equation (5.15) can be used to

demonstrate the effect of the ejection–sweep analogy on the heat transfer coefficient for

the special case that f = fiso. For now, we will take fiso = 0.046Re−0.2
b . Figure 5.2

shows a comparison between heat transfer coefficients predicted by the Chilton–Colburn

analogy and heat transfer coefficients predicted by equation (5.15) for water at 24.5 MPa

for different heat flux to mass flux ratios. There are two obvious differences; the chilton–

colburn analogy predicts that the maximum of the heat transfer coefficients always occurs

when the bulk enthalpy equals the pseudo-critical enthalpy, while the ejection-sweep

formulation predicts that the maximum heat transfer coefficient shifts towards lower

bulk enthalpy values. Furthermore, there is an obvious change in the maximum heat

transfer coefficient magnitude in the Colburn–Chilton analogy predictions, which is not

seen in the ejection–sweep formulation. Lastly, the ejection–sweep formulation shows

small local maxima both before and after the pseudo-critical enthalpy hpc = 2160. The

first is created due to the sudden drop of the Prandtl number at the wall, after the

wall temperature passes the pseudo-critical temperature. The second is arises when the

bulk Prandtl number decreases, after the bulk enthalpy has passed the pseudo-critical

enthalpy.

This demonstration shows how the variation of the Prandtl number in the ejection–

sweep formulation affects the heat transfer coefficient. In the next section, an attempt is

made to mould this formulation into a useful Nusselt relation.
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Figure 5.2: Predicted heat transfer coefficient values using the Chilton–Colburn analogy
and the ejection–sweep formulation.

5.3.2 Low heat flux

In order to test if the ejection–sweep formulation might be a useful tool to predict heat

transfer to fluids at supercritical pressure, it should be tested against experimental data.

This is rather difficult as heat transfer to fluids at supercritical pressure is affected by

various factors, which were already mentioned in section 5.2.3. Especially at high heat

flux to mass flux ratios, heat transfer can be severely deteriorated as a result of relami-

narisation due buoyancy and acceleration influences. The validity of the ejection–sweep

analogy may therefore only be apparent at low heat fluxes, when the flow is still turbulent,

albeit attenuated. Jackson [2013] provides criteria to determine if buoyancy and acceler-

ation influences have non-negligible effects, which may be used to identify experimental

data that can be used to validate the ejection–sweep formulation:(
Grb
Re2.7

b

)(
µw
µb

)
ρw
ρb

< 10−4 and Acb < 10−6, (5.16)

where Grb = gD3
h(ρb − ρw)/(ρbν

2
b ) is the Grashof number, which represents the ratio

of buoyancy forces to viscous forces. Acb = (qwβbDh/kb)/(Re
1.625
b PrB) is the so-called

acceleration parameter. If the criteria of equation (5.16) hold, then buoyancy and accel-

eration may be considered to be negligible. Typically, cases with low heat flux to mass

flux cases have negligible buoyancy or acceleration effects. However, the attenuation of

turbulence due to variations in the viscosity and the density can also affect heat transfer,

which is modelled by equation (5.15) by the friction factor. A recent literature review by
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Fang et al. [2012] shows that the friction factor is indeed lower for heated turbulent flows

at supercritical pressure than it is for similar isothermal flows. Many proposed friction

factor relations are of the form;

f = fiso ×F
(
ρw
ρb
,
µw
µb

)
, (5.17)

where F is the function that represents the attenuation of the friction factor due to

variations in the density and the dynamic viscosity. We will chose a relation by Fang

et al. [2012] that takes both the variable density and the variable viscosity into account;

f = fiso

(
µw
µb

)s
with s = 0.49

(
ρf
ρpc

)1.31

, (5.18)

where ρf is the density at the film temperature Tf = (Tw + Tb)/2 and ρpc the density

at the pseudo-critical temperature. Equation (5.18), will be used to test the validity of

equation (5.15).

5.3.3 Comparisons

The experimental cases that were selected using the criteria that were described earlier by

equation (5.16) are listed in table 5.1. In all experimental cases, the heated fluid is water

at supercritical pressure. The wall heat flux to mass flux ratio, qw/G varies from 0.2 to

0.4, while the thermodynamic pressure ranges from 24.1 MPa to 31 MPa. The hydraulic

diameter Dh is similar in all cases. The ejection–sweep analogy will be tested against

experimental results, as well as the Colburn–Chilton analogy in conjunction with (5.18).

For the isothermal friction factor, the following relation is used: fiso = 0.046Re−0.2
b . The

bulk temperature of the flow is determined from the bulk enthalpy, which is determined

as:

hb(z) = h0 +
(qw
G

)( P

AG

)
(z − z0), (5.19)

where hb(z) (J) is the bulk enthalpy at location z (m), qw (W/m2)the wall heat flux, G

the average streamwise mass flux (kg/m2s), P (m) the perimeter of the heated geometry,

AG (m2) the cross-sectional area of the flow and h0 (J) the inlet enthalpy at location z0

(m). After the bulk temperatures are known, equation (5.15) is used iteratively to solve

for the wall temperature Tw(z) at a location z.

Figure 5.3 shows a comparison between the heat transfer coefficient from case E–

1, the coefficients as predicted by the Chilton–Colburn analogy and the ejection–sweep

analogy. There are two distinct differences between the Chilton–Colburn analogy and the

ejection–sweep correlation. Firstly, the erroneous deterioration prediction by Chilton–

Colburn between Tf = 360 and Tf = 400 is not present in the ejection–sweep correlation.
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Figure 5.3: Comparison of heat transfer coefficients as predicted by the ejection-sweep
analogy (red) and the Chilton–Colburn analogy with an experiment from Swenson et al.
[1965] (Case E–I). Tf ≡ (Tw + Tb)/2 is the film temperature.

Furthermore, the heat transfer coefficient peak location (with respect to the film tempera-

ture) is different. Overall, the ejection–sweep analogy performs better, both qualitatively

and quantitatively. Qualitatively similar results are obtained for cases E–2 to E–V. Com-

parisons between predicted wall temperatures of both analogies and experimental results

are shown in figures 5.4 and 5.5. It is clear from these results that a sudden rise in wall

temperature, which is the result of a decrease in friction factor (and therefore turbulence),

is suppressed by the ejection–sweep formulation.

Case q/G (kJ/kg) Dh (mm) Pressure (MPa)
1E–I 0.37 9.42 31.0
2E–II 0.28 10 24.1
2E–III 0.39 10 24.1
3E–IV 0.18 8 24.5
3E–V 0.37 8 24.5

Table 5.1: Experimental cases with negligible or small acceleration and/or buoyancy
effects in heated water at supercritical pressure. **For a large range of positive coef-
ficients, excellent predictions may be obtained. 1Swenson et al. [1965], 2Mokry et al.
[2011], 3Yamagata et al. [1972].
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Figure 5.4: Comparison of wall temperatures as predicted by the ejection-sweep analogy
(red) and the Chilton–Colburn analogy with an experiment from Yamagata et al. [1972].
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Figure 5.5: Comparison of wall temperatures as predicted by the ejection-sweep analogy
(red) and the Chilton–Colburn analogy with an experiment from Mokry et al. [2011].

5.4 Discussion

A new analogy between the Nusselt number and the friction factor was derived in this

chapter. This derivation was based on the observation that the most important contribu-
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tions to turbulent heat transfer are hot fluid motions from a heated surface (hot ejections)

and cold fluid motions towards a heated surface (cold sweeps). These observations are lit-

erally present in the new analogy in the form of a molecular Prandtl number based on the

wall temperature and a molecular Prandtl number based on the bulk temperature. The

new analogy (called the ejection–sweep analogy) is intuitive for heated fluids with large

thermophysical property variations; through the friction factor, heat transfer is predicted

by the analogy to be attenuated (in heated flows). The attenuation is mitigated by the

Prandtl numbers at wall temperature and at bulk temperature. The ejection–sweep was

tested against five experimental cases (with a relatively low heat flux) from literature.

Using a friction relation developed for heated flows at supercritical pressure, available

from literature, it was shown that the ejection–sweep analogy gives better predictions

than the Chilton–Colburn analogy. The ejection–sweep analogy results are therefore in

line with the observations and analyses of chapter four. Theses results indicate that the

ejection–sweep analogy may be a valid model for heat transfer to fluids at supercritical

pressure at low heat flux to mass flux ratios. Furthermore, the ejection–sweep formu-

lation may not be valid for situations where the turbulent flow completely laminarises,

since in such a flow there are no ejections and sweeps.
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CHAPTER 6

CONCLUSIONS

Heat transfer to fluids at supercritical pressure is different from heat transfer at lower

pressures due to strong variations of the thermophysical properties with the temperature

(close to the pseudocritical temperature). This is due to the fact that during a heating

process it changes from a fluid with liquid-like properties to a fluid with gas-like prop-

erties. Fluids at supercritical pressure have many industrial applications. However, it

is difficult to accurately predict heat transfer to such fluids. A better understanding of

how the variable thermophysical properties of a fluid at supercritical pressure affect heat

transfer may help to develop more accurate heat transfer models.

Direct Numerical Simulations of a simultaneously heated and cooled annular flow of

carbon dioxide have yielded the following insights with respect to turbulence attenuation

due to thermophysical properties variations in a fully developed thermal boundary layer:

1. Mean velocity profiles, turbulent shear stresses and turbulent intensities are sig-

nificantly affected by the mean variation in dynamic viscosity and density. The

attenuation (near a heated surface) or enhancement (near a cooled surface) of the

turbulent shear stress and the mean strain rate are accompanied by a diminished

production of the turbulent kinetic energy (near a heated surface) or an enhanced

production (near a cooled surface).

2. The self regenerating cycle of near wall turbulence was found to be affected through

the attenuation or enhancement of streaks. Near wall streaks have a lower density

and dynamic viscosity near a heated surface, or a higher density and dynamic

viscosity near a cooled surface than the surrounding fluid. Buoyancy acts as to

counteract the formation of streaks near a heated surface, but as to enhance them

near a cooled surface in gravity opposed flows. Furthermore, positive and negative

thermal expansion regions exist within the streaks, which have a detrimental effect

on streak coherence.
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3. The near-wall turbulence regeneration cycle is also affected through the attenuation

or enhancement of the streamwise momentum vorticity (the curl of the momentum

ρu). Budgets show that the torque between the kinetic energy gradient and the

density gradient act as a sink to the generation of streamwise momentum vorticity

near a heated surface, but as a source term near a cooled surface. Physically, this

means that positive and negative wall normal motions may have different momenta

due to a difference in the density between those motions.

4. A scaling analysis shows that a large Prandtl number enhances the variable density

effects of the streak and streamwise vorticity attenuation.

The Direct Numerical Simulations also yielded insights into how heat transfer is

affected by the variable thermophysical properties of a fluid at supercritical pressure:

5. The variation of the specific heat capacity significantly affects the mean tempera-

ture profile with respect to the mean enthalpy profile. Furthermore, in flow regions

with a a high specific heat capacity, temperature fluctuations are diminished, but

are enhanced in flow regions with a low specific heat capacity. Furthermore, the

variation of the specific heat capacity causes the probability density function of

the temperature fluctuations to be radically different from that of the enthalpy

fluctuations.

6. While a correlation between fluctuating thermal diffusivity and fluctuating enthalpy

gradient (called turbulent conduction) may be locally large with respect to molec-

ular conduction or even the turbulent heat flux, its contribution to the Nusselt

number is negligible.

7. The turbulent heat flux, ρũ′′h′′ is not only affected by the mean density; the correla-

tion ũ′′h′′ is affected by both the attenuation of the wall normal motions, as well as

the enhancement of the enthalpy fluctuations near a heated surface. The enhance-

ment of the enthalpy fluctuations can be attributed to a large average molecular

Prandtl number.

8. Heat transfer deterioration can occur without mean streamwise acceleration or

buoyancy effects.

9. The largest contributions to the Nusselt number come from hot fluid moving away

from a heated surface (hot ejection) and cold fluid moving towards it (cold sweep).

Due to the variations in thermophysical properties, the hot fluid can have a different

density or molecular Prandtl number than the cold fluid has. These contributions

to the Nusselt number are therefore affected differently.
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These insights have been used to develop a new analogy between the Nusselt number

and the friction factor. This analogy is based on the observation that hot ejections

and cold sweeps have different Prandtl numbers and therefore affect the Nusselt number

differently. A decrease in turbulent heat transfer may be mitigated by the Prandtl

numbers of the hot ejections or the cold sweeps. Validations of the new analogy with

experiments from literature suggest that the analogy is valid at low heat flux to mass flux

rates. As such, the new analogy may help to develop a better model for heat transfer to

fluids at supercritical pressure in the future.
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APPENDIX

A.1 Derivations

A.1.1 Low Mach number approximation

The Navier Stokes equations may be written in dimensional form as:

∂ρo

∂t
+∇ · ρouo = 0, (1)

∂ρouo

∂t
+∇ · ρououo = −∇po +∇ · 2µoSo + ρogo, (2)

and
∂ρoho

∂t
+∇ · ρouoho =

∂po

∂t
+ uo ·∇po −∇ · qo + 2µoSo :∇uo (3)

In order to derive the low Mach number approximation of the Navier Stokes equations, the

momentum equation must first be non-dimensionalised. The non-dimensionalisation is

exactly as in section 2.1, except that p = po/(ρpc(c
o)2), where (...)o denotes a dimensional

quantity, (...)pc a property at the pseudo-critical temperature and where co is the speed

of sound in m/s. The result is written as:

∂ρu

∂t
+∇ · ρuu = −Ma−2∇p+Re−1∇ · 2µS + Fr−1ρx̂, (4)

where Ma = wob/c
o is the Mach number, x̂ the unit vector in which the gravitational

vector points. Next, the variables are asymptotically expanded as follows:

f = f (0) +Maf (1) +Ma2f (2) + ...+ higher order terms (5)

The f here denotes ρ, µ, S, u, or p. Terms that have the same order O(Ma) balance

each other out. Collecting the terms of the lowest order gives:

O(Ma−2) : Ma−2∇p(0) = 0

O(Ma−1) : Ma−1∇p(1) = 0 (6)

O(1) : ∂ρ(0)u(0)

∂t +∇ · ρ(0)u(0)u(0) = −∇p(2) +Re−1∇ · 2µ(0)S(0)

+Fr−1ρ(0)x̂
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The higher order terms are neglected. The first part of equation (6) show that p(0)

and p(1) are constant in space. The low Mach number approximation of the momentum

equation is:

∂ρ(0)u(0)

∂t
+∇ · ρ(0)u(0)u(0) = −∇p(2) +Re−1∇ · 2µ(0)S(0) + Fr−1ρ(0)x̂ (7)

Using a similar procedure for the conservation of mass equations, one finds:

∂ρ

∂t
+∇ · ρu = 0, (8)

The enthalpy transport equation is non-dimensionalised using the same relations as be-

fore, as well as h = ho/(co)2 and q = qocopDh/(k
o(co)2):

∂ρh

∂t
+∇ · ρuh =

∂p

∂t
+ u ·∇p− (RebPr)

−1∇ · q + (Ma2/Reb)2µS :∇u (9)

Again making use of asymptotic expansions and subsequently collecting terms of the two

lowest orders yields:

O(1) : ∂t(ρ
(0)h(0)) +∇ · ρ(0)u(0)h(0) =

∂p(0)

∂t
+ u(0) ·∇p(0) − (RebPr)

−1∇ · q(0)

O(Ma) : ∂t(p
(1)) = 0 (10)

By equation (6), u(0) ·∇p(0) = 0, which results in:

∂ρ(0)h(0)

∂t
+∇ · ρ(0)u(0)h(0) =

∂p(0)

∂t
− (RebPr)

−1∇ · q(0) (11)

Equations (7), (8), (11) form the low Mach number approximation to the full Navier

Stokes equations. From (11) and (6) it follows that p(0) is a function of the time only.

The total pressure can be decomposed into two parts, p(0) and p(2), which are the ther-

modynamic and hydrodynamic pressure, respectively. In fluids at supercritical pressure,

p(2) is much smaller than p(0).

A.1.2 Pressure in a simultaneously heated and cooled periodic
annulus

In equation (11), the pressure term can be evaluated as follows. By integrating (11) with

respect to the volume V , one obtains:

∂p(0)

∂t
=

1

V

∂

∂t

˚

V

ρ(0)h(0)dV +
1

V

¨

a

ρu(0)h(0) · da+ (RebPr)
−1 1

V

¨

a

q(0) · da (12)

The divergence theorem was used to rewrite the second and third term on the right hand

side. a represents a surface vector. For the annular geometry that is simultaneously
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heated and cooled of this study, the second term is equal to zero, since there is no mass

flux through the walls of the annulus. For an infinitely long annulus, in which the the

thermal boundary layer is fully developed, the heat flow through the inner wall is equally

large as that at the outer wall, but of opposite sign. The third term is therefore zero as

well. Lastly, for a fully developed thermal field with respect to mean statistics, the first

term should be zero as well; the total heat of the system should not change over time.

This suggests that ∂p(0)/∂t should be zero for a fully developed flow field and thermal

field inside an annulus that is simultaneously heated and cooled .

A.1.3 Derivation of the momentum-vorticity equation

Here, we will show how the derivation of the evolution equation of the momentum-

vorticity can be derived. We will use various vector- and tensor identities that can be

found in Gurtin et al. [2010] or Bladel [2007]. In such identities, f will denote a scalar,

a and b vectors, and T a second order tensor. Furthermore, we will define χ ≡∇× ρu,

ω ≡∇× u, K = (u · u)/2, l ≡ χ× u and ψ ≡∇ · u.

Taking the curl of the Navier-Stokes equations for momentum in conservative form

yields the following terms:

∇× ∂ρu

∂t︸ ︷︷ ︸
I

+∇×∇ · (ρuu)︸ ︷︷ ︸
II

= −∇×∇p︸ ︷︷ ︸
III

+∇× ρg︸ ︷︷ ︸
IV

+∇×∇ · 2µS︸ ︷︷ ︸
V

. (13)

The third term equals 0 as it is the curl of a gradient. The other terms can be rewritten

as follows:

I :∇× ∂ρu

∂t
=
∂(∇× ρu)

∂t
=
∂χ

∂t
(14)

Using the differential dyadic identity ∇ · (ab) = (∇ · a)b+ (a · ∇)b, we can write:

II :∇×∇ · (ρuu) =∇× ((∇ · u)ρu)︸ ︷︷ ︸
IIA

+∇× (u · ∇ρu)︸ ︷︷ ︸
IIB

(15)

from the vector identity ∇(a · b) = a×∇× b+ b×∇× a+ b · ∇a+ a · ∇b, IIB can

be rewritten as:

IIB : u · ∇ρu =∇(ρu · u)− ρu · ∇u− u× (∇× ρu)− ρu× (∇× u) (16)

Using the same vector identity as before to rewrite u · ∇u, together with the identities

for χ and ω yields:

IIB : u · ∇ρu =∇(ρu · u)− ρ∇
(u · u

2

)
+ ρu× ω − u× χ− ρu× ω (17)

Noting that the curl of a gradient equals zero, we may write:

∇× (u · ∇ρu) = −∇× ρ∇
(u · u

2

)
−∇× u× χ (18)
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Thus, with equations (15) and (18) and noting that ∇× ρ∇K = −∇×K∇ρ, term II

becomes:

II :∇×∇ · (ρuu) = −∇× u× χ+∇× (ρψu)−∇× ρ∇K (19)

Finally term V , can be rewritten using the identity ∇× (∇ · T ) =∇ · (∇× TT):

∇× (∇ · 2µS) =∇ · (∇× 2µST) =∇ · (∇× 2µS). (20)

With the identity ∇× fT =∇f × T + f∇× T , we can now write:

∇ · (∇× 2µS) =∇ · (2∇µ× S) +∇ · 2µ(∇× S). (21)

Noting that S = 1
2 (∇u) + 1

2 (∇u)T − 1
3 (∇ · u)I The last term here can further be

simplified using identities ∇× (∇a) = 0, ∇× (∇a)T =∇(∇×a) and ∇· (∇×fI) = 0

and the definitions:

∇ · 2µ(∇× S) =∇ · µ∇ω (22)

Collecting all terms gives:

∂χ

∂t
= −∇× l+∇ · µ∇ω (23)

+ ∇× ρg −∇× (ψρu+K∇ρ)

+ ∇ · (2∇µ× S),

which is the equation that is used in section 3.4.

A.1.4 Fourier’s law in terms of the enthalpy

Under the low Mach number approximation, the transport equation of the enthalpy h

may be written as:

∂to(ρ
oho) +∇o · ρouoho =∇o · ko∇oT o, (24)

where (...)o denotes a dimensional quantity. The diffusive term can be rewritten in terms

of the enthalpy by considering the following thermodynamic relations:

dho =

(
∂ho

∂T o

)
po
dT o +

(
∂ho

∂po

)
T o
dpo (25)

ρo2

(
∂ho

∂po

)
T o

= ρo + T o
(
∂ρo

∂T o

)
po
. (26)

The second of these relations is known as one of the two general thermodynamic equations

of state that are valid for a system in equilibrium, see Zappoli et al. [2015]. Noting that
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the thermal expansion coefficient at constant pressure is defined as βo = (∂ρo/∂T o)/ρo,

we may write;

dho = copdT
o + (1 + βoT o)dpo/ρo. (27)

The last result can be used to write:

∇oho = cop∇oT o + (1 + βoT o)∇opo/ρo. (28)

If the scaling, po ∝ ρpcc
2 (where c is the speed of sound), ρ ∝ ρpc, as well as copdT

o =

w2
bcpdT are used, in addition to p = pth(t) + phy(x, t) (where pth is the thermodynamic

pressure and phy the hydrodynamic pressure), the following is obtained:

∇h = cp∇T + (1 + βoT o)ρ−1Ma−2∇phy, (29)

where quantities without a (...)o denote non-dimensional quantities. Using the following

scaling estimates:

∇h ∝ ∆h

λth
, ∇T ∝ ∆T

λth
and ∇phy ∝

ρw2
b

L
, (30)

where L is the integral length scale, λth ≡ λ/
√
Pr, the thermal equivalent of the Taylor

micro scale λ, which yields:

∆h ∝ cp∆T + w2
b

(
1 + βoT o√

Pr

)(
λ

L

)
(31)

Since in a turbulent flow it holds that λ/L << 1, the second term can be neglected,

which implies that dh ≈ cpdT . This transforms Fourier’s law into:

q = −k∇T = − k

cp
∇h. (32)

A.1.5 Derivation of the Nusselt number relation

We first define the Stanton number as St ≡ qow/(ρ
o
pcw

o
b (h

o
h − hol )). Decomposing all

variables (except the density) of equation (4.1) and subsequently averaging the result

yields:

−r−1dr(rρũ′′h′′) + (rRePrh)−1dr(ρãdrh̃) + (rRePrh)−1dr(ρã′′drh′′) = 0 (33)

Multiplying by r and integrating once, we obtain:

−ρũ′′h′′ + (RePrh)−1ρãdrh̃+ (RePrh)−1ρã′′drh′′ + Cr−1 = 0 (34)

Evaluating this equation at the inner wall r = 0.5 and noting that the fluctuating quanti-

ties are zero at the wall, in addition that (RePrh)−1ρãdrh̃ = (RebPrh)−1qw = St, gives
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C = −St/2. Integrating equation (34) from r = Rin to r = Ra, while noting that the

Stanton number is constant, yields:

StRebPrh = Γ

{ˆ Ra

Rin

ρã
dh̃

dr
dr +

ˆ Ra

Rin

ρ
˜
a′′
dh′′

dr
dr −RebPrh

ˆ Ra

Rin

ρũ′′h′′dr

}
, (35)

were Γ ≡ (1/Rin)/ ln(Rin/Ra). Multiplying by (Th−Tl)/(Th−Tb) yields equation (4.6).
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A.2 Tensors and dyadics

Proofs of the identities that were used in the previous section are given in this section.

It is assumed that the elements of all tensors are twice continuously differentiable. By

Young’s theorem, this implies that:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
. (36)

For a mathematical proof, see Rudin [1976].

A.2.1 Curl of the divergence of a second order tensor

Let T be a second order tensor and let the tensor elements Tij be twice continuously

differentiable. Then, ∇× (∇ · T ) =∇ · (∇× TT).

The divergence of the second order tensor T can be written in index notation as:

(∇T )j =
∂Tjq
∂xq

. (37)

The kth element of the curl of ∇ · T is then:

(∇× (∇ · T ))k = εijk
∂2Tjq
∂xi∂xq

(38)

=
∂

∂xq

(
εijk

∂Tjq
∂xi

)
=

∂

∂xj

(
εiqk

∂Tqj
∂xi

)
=

∂

∂xj

(
εkiq

∂Tqj
∂xi

)
= (∇ · (∇× TT))k

A.2.2 Curl of a gradient- vector- dyadic tensor

Let v be a tensor of order one (a vector) and let the elements vj be twice continuously

differentiable. Then, ∇×∇v = 0.

The (ij)th element of ∇×∇v can be written as:
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∇×∇v = εipq
∂2vj
∂xp∂xq

(39)

= εipq
∂2vj
∂xq∂xp

= −εiqp
∂2vj
∂xq∂xp

= −εipq
∂2vj
∂xp∂xq

and therefore, ∇×∇v = 0.

A.2.3 Curl of the transpose of a gradient- vector- dyadic tensor

Let v be a tensor of order one (vector) and let the elements vj be twice continuously

differentiable. Then, ∇× (∇v)T =∇(∇× v).

(∇× (∇v)T)ij = εipq
∂2uq
∂xp∂xj

(40)

=
∂

∂xp

(
εipq

∂uq
∂xj

)
=

∂

∂xj

(
εipq

∂uq
∂xp

)
=

∂

∂xj

(
−εiqp

∂uq
∂xp

)
=

∂

∂xj

(
εpqi

∂uq
∂xp

)
= (∇(∇× v))ij

Thus,∇×∇v =∇(∇× v).

A.2.4 Curl of a tensor multiplied by a scalar

Let T be a second order tensor and let f be a scalar. Then, ∇×fT =∇f×T +f∇×T .
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(∇× fT )ij = εipq
fTjq
∂xp

(41)

=
∂f

∂xp
εipqTjq + fεipq

∂Tjq
∂xp

= (∇f × T )ij + (f∇× T )ij

Thus, ∇× fT =∇f × T + f∇× T .

A.2.5 Divergence of the curl of the identity tensor multiplied by
a scalar

Let I be the second order identity tensor and let f be a scalar wich is continuously twice

differentiable. Then, ∇ · (∇× fI) = 0.

The (ij)th element of ∇× fI can be written as:

(∇× fI)ij = εipq
fIjq
∂xp

(42)

The ith of ∇ · (∇× fI) is then:

(∇ · (∇× fI))i = εipq
∂2fIjq
∂xj∂xp

(43)

Because the off diagonal elements of Tjq are zero, we can change the index q in εipq to j:

(∇ · (∇× fI)i = εipj
∂2fIjq
∂xj∂xp

(44)

= εipj
∂2fIjq
∂xp∂xj

= −εijp
∂2fIjq
∂xp∂xj

= −εipj
∂2fIjq
∂xj∂xp

Therefore, ∇ · (∇× fI) = 0.
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A.2.6 Dot product of a vector v and the divergence of a second
order tensor T

Let v be a vector and let T be a symmetric second order tensor. Then, the following

identity is true: v ·∇ · T =∇ · (TT · v)− T :∇v.

∇ · (T · v) =
∂

∂xi
(Tijvj) (45)

= vj
∂Tij
∂xi

+ Tij
∂vj
∂xi

= vi
∂Tji
∂xj

+ Tji
∂vi
∂xj

= v · (∇ · TT) + TT :∇v

Therefore, v ·∇ · T =∇ · (TT · v)− T :∇v.

A.2.7 Outer product between a vector and a second order tensor
in cylindrical coordinates

A dyadic tensor A is a second order tensor that is the dyadic product of two vectors. In

cylindrical coordinates, A may be written as:

A = a′
rur + a′

θuθ + a′
zuz, (46)

where ur, uθ and uz are the unit vectors of the cylindrical coordinate system and where

a′
rur ≡ a′

r ⊗ ur. The vectors a′
r, a′

θ, a′
z are written as:

a′
r = arrur + aθruθ + azruz

a′
θ = arθur + aθθuθ + azθuz (47)

a′
r = arzur + aθzuθ + azzuz

A dyadic tensor A ≡ v × T then has the following elements;

(
v × a′

r

)
u′
r = (azrvθ − aθrvz)︸ ︷︷ ︸

Arr

u′
ru

′
r

+ (arrvz − azrvr)︸ ︷︷ ︸
Aθr

u′
θu

′
r

+ (aθrvr − arrvθ)︸ ︷︷ ︸
Azr

u′
zu

′
r
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(
v × a′

θ

)
u′
θ = (azθvθ − aθθvz)︸ ︷︷ ︸

Arθ

u′
ru

′
θ

+ (arθvz − azθvr)︸ ︷︷ ︸
Aθθ

u′
θu

′
θ (48)

+ (aθθvr − arθvθ)︸ ︷︷ ︸
Azθ

u′
zu

′
θ

(
v × a′

z

)
u′
z = (azzvθ − azθvθ)︸ ︷︷ ︸

Arz

u′
ru

′
z

+ (arzvz − azzvr)︸ ︷︷ ︸
Aθz

u′
θu

′
z

+ (aθzvr − arzvθ)︸ ︷︷ ︸
Azz

u′
zu

′
z

The divergence of A is easily determined as:

∇ ·A =
(
∇ · a′

r −
aθθ
r

)
ur +

(
∇ · a′

θ +
aθr
r

)
u′
θ +

(
∇ · a′

z

)
u′
z, (49)

where,

∇ · a′
r =

1

r

(
∂rArr
∂r

)
+

1

r

∂Aθr
∂θ

+
∂Azr
∂z

,

∇ · a′
θ =

1

r

(
∂rArθ
∂r

)
+

1

r

∂Aθθ
∂θ

+
∂Azθ
∂z

, (50)

∇ · a′
z =

1

r

(
∂rArz
∂r

)
+

1

r

∂Aθz
∂θ

+
∂Azz
∂z

.
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n

∆
r

(a) Wall normal mesh width versus gridpoint num-
ber (N = 256).

n
r

(b) Radial distance versus gridpoint number (N =
256).

Figure A.3.1: Wall normal mesh width and radial distance versus grid point number
according to equation (51) for N = 256.

A.3 Additional case details

A.3.1 Mesh generation

The wall normal mesh size is calculated according to:

∆r(n) =
1

0.65

(
1/8

N
+ 6

n4

N5
− 12

n3

N4
+ 6

n2

N3

)
, (51)

where ∆r is the wall normal size, n the grid number and N the total number of grid

points in the wall normal direction. This leads to a modest stretching of the cells, as can

be seen in figure 1(a) and 1(b).

A.3.2 Enthalpy power spectra

Power spectra of the enthalpy fluctuations are shown in figure 2(a) and 2(b) for the

stream-wise and circumferential directions respectively at two different points (A and B)

in the forced convection sCO2 case. Point A refers to the wall normal location where the

enthalpy fluctuations are the largest (near the hot wall), while point B corresponds to the

wall normal location where the mean molecular Prandtl number has its maximum. In

point A at least 6 decades are resolved, while in point B, at least 3 decades are resolved.

There is a small build-up of energy at the highest wave numbers, which is assumed to

be too small to affect the results in this paper. As the momentum scales are larger than
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kηB

E
h
h

A
B

(a) Stream-wise power spectra of enthalpy fluctu-
ations.
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h

(b) Circumferential power spectra of enthalpy
fluctuations.

Figure A.3.2: Wall normal mesh width and radial distance versus gridpoint number
(upper row). Stream-wise and Circumferential power spectra. Point A corresponds to
the location where hrms is largest, point B refers to the location where Pr is largest.

the thermal scales for Prandtl numbers larger than unity, the mesh can be considered to

be sufficient to resolve all momentum scales.
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