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A B S T R A C T   

Safety instrumented systems(SIS) have been widely used in petroleum and chemical plants to detect and respond 
to dangerous events and prevent them from developing into accidents. The in-service time of SIS does not exceed 
its useful life is one of the crucial assumptions of IEC functional safety standards. The testing method recom
mended in the IEC standard is essentially a chi-square testing, where the testing effect is proportional to the 
sample size and, therefore, not suitable for testing the type of data distribution under small samples. In this 
paper, a rapid inference method of useful life (RIUL) is proposed to: i) determine whether the distribution type of 
failure data is exponential under small samples with the help of Anderson-Darling testing, and ii) use the 
Bayesian sequential testing method for estimating the useful life. The sequential posterior odds ratio testing is 
introduced to test the equipment failure rate one by one. The proposed RIUL approach is applied to the liquid- 
level protection circuit of the hot high-pressure separator. The engineering simulation results show that 
compared with IEC standard methods, the proposed method can be performed with fewer failure data, providing 
a theoretical basis for reasonable maintenance and replacement of equipment.   

1. Introduction 

In the chemical industry, Safety instrumented systems (SIS) maintain 
chemical plants in a safe condition by detecting hazardous events and 
performing the required safety actions, in the event of a failure of such 
equipment, the dynamic risk level of the plant will be affected (Zhang 
et al., 2019; Mkhida et al., 2014). The SIS consists of three parts: sensor, 
logic controller and final component (Śliwiński, 2018). Safety integrity 
level (SIL) is one of the key indicators to measure the safety function of 
SIS (Chebila, 2018; Jahanian, 2017), it is determined by calculating the 
average probability of failure on demand (PFDavg) (Wang et al., 2004; 
Chang et al., 2011). In the calculation of PFDavg in IEC standard 
(IEC61508, 2016; Timms, 2009), it is considered that the failure rate of 
SIS is constant, that is, the in-service time of the SIS is in the range of 
useful life. Suppose the in-service time of SIS exceeds its useful life, the 
failure rate will increase rapidly, resulting in meaningless PFDavg 
calculation results (IEC61508, 2016). 

On the other hand, the field failure data of SIS are small (Brissaud 
et al., 2017), The IEC standard requires a large amount of failure data to 

conclude that equipment’s in-service time has exceeded its useful life, 
which is contrary to its high reliability (Meng et al., 2018). 

To ensure the safe operation of SIS in the proof test cycle, Xie et al. 
(2019) demonstrated how data-driven methods identify significant 
influencing factors for SIS failure. It was helpful to obtain a more ac
curate equipment failure rate. Chebila (2020) provided a binomial 
failure rate model for evaluating the performance of safety instrumented 
systems. The calculated PFDavg was more accurate because the effect of 
common cause failure is taken into account. Jahanian and Mahboob 
(2016) introduced a risk-based optimization approach to the SIL deter
mination process to reduce the risk to as low as practically possible. de 
Lira-Flores et al. (2019) proposed an MINLP approach for solving the 
plant layout problem by optimizing the design of safety instrumented 
systems. This method based on the constant failure rate, the loss caused 
by SIS spurious trip and failure action was calculated. Sravanthi et al. 
(2017) proposed an inherently fail-safe electronic logic circuit with very 
low unsafe failure probability to achieve equivalent or lesser unsafe 
failure probability. 

However, the premise of the above research results is that the in- 
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service time of SIS does not exceed its useful life. Therefore, their con
clusions do not apply to the full life cycle of SIS, only to the part where 
the failure rate is constant. Thus, the research results in this paper have 
essential engineering value for the reliability assessment of SIS. 

At present, there are few research results on the useful life of safety 
instrumented systems. ISA TR84.00.03 (2019) defines useful life as the 
portion where the random failure rate can be considered constant. 
IEC61508.2. (2016) indicates that useful life often lies within a range of 
8–12 years. Stephen (2015) summarizes the range of SIS equipment 
useful life and proposes a series of management measures. Shao et al. 
(2022) proposed a multi-stage BNs model to predict the remaining 
useful life of the equipment. This method is only applicable to the late 
stage of equipment operation. Unfortunately, many SIL certificates in 
circulation today do not estimate the useful life, so it is essential to carry 
out this work. 

How to quickly judge whether the in-service time of SIS exceeds its 
useful life in the case of a small failure sample data needs to solve two 
main problems: First, in the case of small samples and unknown distri
bution parameters, determine whether the distribution type of equip
ment failure data is exponential distribution; Second, the need to quickly 
determine whether the reliability index (failure rate) meets the Bayesian 
sequential testing requirements. 

Based on SIS equipment failure data, we propose a method of rapid 
inference of useful life (RIUL) for SIS equipment, the RIUL proposed in 
this paper can use as few failure data as possible to judge whether the in- 
service time of SIS exceeds its useful life. RIUL overcomes the disad
vantage of poor timeliness of IEC testing method. Estimating useful life 
helps the plant to maintain or replace equipment in time. 

To our best knowledge, this is the first attempt to investigate and 
inference the useful life of safety instrumented systems. The rest of the 
paper is organized as follows: The traditional useful life hypothesis 
testing method is introduced in Section 2. Then the RIUL inference 
method is proposed in Section 3. The two methods are applied to the 
level interlock protection circuit of the hot high-pressure separator 
respectively and the differences of the calculated results are compared 
and analyzed in Section 4. Finally, some conclusions are drawn, and 
further works are presented in Section 5. 

2. Traditional useful life hypothesis testing 

The IEC testing method assumes that during the useful life period, 
the equipment failure rate is constant, as shown in Fig. 1 (Catelani et al., 
2018). 

IEC standard points out that the constant failure rate hypothesis 
testing is equivalent to the testing of the exponential distribution, and 
the null hypothesis H is set as: 

H : F(t) = 1 − e− λt (1)  

where λ is the equipment failure rate. To test hypothesis H, the total 
operating time of the equipment T0 need to be collected, which can be 
expressed as (IEC60605.6, 2007): 

T0 =
∑r

i=1
ti +(n − r+ 1)tr (2)  

where r is the number of equipment failures; ti (i = 1,2,3,…,r)is the 
equipment failure time; n is the total number of equipment. 

Tk =
∑k

i=1
ti +(n − r)tk (3)  

where Tk(k = 1,2,3,…r) is the cumulative time when equipment failure 
occurs, statistical test value χ2 is: 

χ2 = 2
∑r− 1

i=1
ln

T0

Tk
(4) 

When H is true, using the memoryless nature of exponential distri
bution, it can be shown that χ2 obeys χ2 distribution with degree of 
freedom 2d. For a given significance level σ，the rejection domain W of 
the hypothesis testing is: 

W =
{

χ2 ≤ χ2
σ/2

(
2d

)
orχ2 ≥ χ2

1− σ/2

(
2d

)}
(5) 

The accuracy of the χ2 testing is positively correlated with the 
number of failure data, and the testing effect is generally more ideal 
when r > 200. 

3. Rapid inference method of useful life 

3.1. Determining the type of distribution of failure data 

In the traditional hypothesis testing methods of data distribution 
type, χ2 and KS testing are commonly used. The test result of χ2 testing is 
ideal when the sample number is large. The effect of KS testing needs to 
be improved when the sample data distribution parameters are un
known. Due to the lack of field failure data of SIS equipment and the 
distribution parameters of the failure data recorded in the field are un
known, the χ2 and KS testing are not suitable. Anderson-darling testing 
can judge the distribution type of equipment failure data in the case of 
small samples (Zhang, 2021). Its testing performance is better than KS 
testing under the same testing conditions. When we use the recorded 
failure data for parameter estimation, related studies show that the 
testing effect of this method is weakly correlated with the accuracy of 
parameter estimation (D’Agostino, 1986). In this paper, we propose a 
method that determines whether the distribution type of small sample 
failure data is exponential distribution. 

Step 1: Assume that the distribution type of SIS equipment failure 
data are exponential distribution. To simplify the calculation process, 
using maximum likelihood estimation or moment estimation to obtain 
the failure rate λ (Toroody et al., 2020). 

Step 2: Calculate the discrete distance A2
n , Compare it with the crit

ical value(CV). A2
n can be used to measure whether the failure data 

belong to the exponential distribution cluster, and its expression can be 
expressed as (Heo et al., 2013): 

A2
n = r

∫ +∞

− ∞

{Fr(t) − F(t)}2

F(t)(1 − F(t))
dF(t) (6)  

where F(t) is the distribution function of failure data; Fr(t) is the 
empirical probability density function of failure data. In practical en
gineering, A2

n can be expressed as: 

A2
n = − r −

∑r

i=1

[(
2i − 1

r

)

{ln Fr(ti)+ ln(1 − Fr(tr+1− i)}

]

(7)  

where Fr(ti) is the probability integral transformation function, and the 
process of determining the critical value is shown in Fig. 2. 

Fig. 1. The range of useful life.  
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After 10,000 cycles, the regression equation for the critical value can 
be expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CV = 0.6278 −
0.0175

̅̅̅
n

√ −
0.1138

n
−

0.5672
n2 σ = 0.01

CV = 0.7441 −
0.0011

̅̅̅
n

√ −
0.0493

n
−

0.3652
n2 σ = 0.02

CV = 0.8648 −
0.0478

̅̅̅
n

√ −
0.2719

n
−

1.2466
n2 σ = 0.05

(8) 

If A2
n is greater than CV, it indicates that the in-service time of the SIS 

has exceeded its useful life. Chemical plant needs to take a series of 
maintenance measures for the SIS. 

3.2. Bayesian sequential testing for failure rate 

The failure rate of SIS may increase gradually in the equipment wear- 
out phase due to fatigue or wear and tear. To guarantee its high- 
reliability requirement, the upper limit of its failure rate needs to be 
limited. If A2

n is less than CV in step 2, continue to record equipment 
failure time ti (i = 1,2,3,…m). To determine whether equipment failure 
rate is greater than upper limit, giving the following hypothetical 
scheme. 

Define the null and alternative hypotheses as follows: null hypothesis 
H0: λn≤ λm; alternative hypothesis H1: λn> λm. where λn is the equipment 
failure rate, λm is the Bayesian estimation of the failure rate. Since the 
risks in the hypothetical scheme are inevitable, thus when defining 
λn≤ λm, accepting H0 with probability no less than 1 − φ, when λn> λm, 
rejecting H0 with probability no higher than ν. Where φ is the producer 
risk, ν is the user risk (φ means the probability that in-service time does 
not exceed useful life, but is judged to exceed it. This error causes 
damage to the producer. ν has the opposite meaning of φ). 

Combined with the OREDA database and Bayesian theory, a more 
accurate equipment failure rate can be obtained (Yang et al., 2015). 
Combined with the idea of Bayesian and sequential test, this paper 

proposes a Bayesian sequential testing method for failure rate. We can 
obtain the upper limit of failure rate based on Bayesian estimation: λm. 
Judging one by one whether the failure rate λn exceeds λm, if λn> λm, the 
in-service time of SIS is considered to have exceeded its useful life. 

Step 3: Determine λm based on Bayesian estimation. Since the failure 
rate of SIS is constant, considering its reparability, its total number of 
equipment failures meets the Poisson distribution (Toroody et al., 2020; 
Yazdi et al., 2022): 

P
(

r|λ) =
(λT)re− λT

r!
(9)  

T =
∑r

i=1
ti +

∑n

j=n− r+1
tj (10)  

where T is the accumulated operating time before the SIS failure; λ is the 
equipment failure rate in the industrial database; and r is the number of 
equipment failures; n is the total number of equipment; ti is the operating 
time before the i-th equipment failure; tj is the operating time before the 
j-th equipment failure. 

Bayesian estimation using the squared loss function (Kiapour and 
Nematollahi, 2011), the Bayesian estimate of the failure rate λ is denoted 
as λm and can be expressed: 

λm =

∫ ∞

0
λg(λ|r)dλ =

Γ(r + α + 1)
Γ(r + α)(T + β)

=
r + α
T + β

(11)  

where r is the number of equipment failures; T is the accumulated 
operating time before the SIS failure. 

When the Mean column and the n/τ column are not identical under 
the same equipment classification in the OREDA database, the prior 
distribution parameters can be expressed as (OREDA, 2015): 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β =
Mean
SD2

α =

(
Mean

SD

)2 (12) 

Step 4: Bayesian sequential testing of failure rate. Based on φ、ν and 
λm, determining one by one whether λn is greater than λm. Let Θ1 
= {θ:λn≤ λm}, Θ2 = {θ:λn> λm}, the prior distribution function of λn is Ga 
(δπ,γπ), by the nature of the conjugate distribution, its posterior distri
bution function is Ga(δ1, γ1). Relevant parameters can be expressed as: 
⎧
⎨

⎩

δ1 = δπ + r

γ1 = γπ +
∑m

i=1
ti

(13)  

⎧
⎪⎨

⎪⎩

E(ti) =
δπ

γπ

Var(ti) =
δπ

γπ
2

(14)  

Where r is the number of equipment failures; ti(i = 1.m)is the equipment 
failure time; E(ti) and Var(ti) are the mathematical expectation and 
variance. The prior failure time can be obtained by Monte Carlo simu
lation (Jiang et al., 2022). For example, using 1/λm as the scaling 
parameter, through Monte Carlo simulation, 50 uniform random num
ber in the interval of (0− 1) are generated. Substituted the random 
number into the inverse function of the failure distribution function to 
calculate a series of failure times, and 20 of them are intercepted and 
recorded as group 1. Use the same method to get other data groups. 
Calculate the mathematical expectation and variance of each group of 
data, the calculations result of each group are summed and then 
averaged. 

The sequential probability ratio method is to make a likelihood ratio, 
where the likelihood ratio is replaced by the posterior odds ratio Sn of 

Fig. 2. Critical value determination process.  
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the likelihood function on Θ1 and Θ2: 

Sn =

∫

Θ2
π
(

λn|x)dλ
∫

Θ1
π
(

λn|x)dλ
=

∫ λm
0 λδ1 − 1

n exp
(
− γ1λn

)
dλ

∫+∞
λm

λδ1 − 1
n exp

(
− γ1λn

)
dλ

(15) 

Let y = 2γ1λn, we can get: 

Sn =

∫ 2γ1λm
0 yδ1 − 1e−

y
2dy

∫+∞
2γ1λm

yδ1 − 1e−
y
2dy

=

∫ 2γ1λm
0 K2δ1 (χ2)dχ2

∫ +∞
2γ1λm

K2δ1 (χ2)dχ2
=

1 − K2δ1 (2γ1λm)

K2δ1 (2γ1λm)
(16)  

where K2α1(2γ1λm) denotes the probability that the random variable is 
less than 2γ1λm. Random variable obeys χ2 distribution with degrees of 
freedom of 2δ1. The decision thresholds A and B are introduced, and the 
following test law is given:  

1) When Sn ≤A, stop recording failure data and accept H0;.  
2) When Sn ≥B, stop recording failure data and accept H1;.  
3) When A<Sn<B, continue to record failure data and do not make a decision. 

According to the idea of the Bayes testing, the decision thresholds A 

and B are: 
⎧
⎪⎪⎨

⎪⎪⎩

A =
γπ1

π0 − δπ0

B =
π1 − γπ1

δπ0

(17)  

where the expressions for π0 and π1 can be expressed as: 

⎧
⎨

⎩

π0 =

∫

λ∈Θ1

dFπ(λ)

π1 =

∫

λ∈Θ2

dFπ(λ)
(18)  

where the expressions for δπ0and γπ1 can be expressed as: 

⎧
⎪⎪⎨

⎪⎪⎩

δπ0 =

∫

λ∈Θ1

[∫

Bn

∏n

i=1
f (xn|θ)dx

]

dFπ(λ)

γπ1
=

∫

λ∈Θ2

[∫

Dn

∏n

i=1
f (xn|θ)dx

]

dFπ(λ)
(19) 

Fig. 3. The flow of the rapid inference method of useful life.  
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When H0 is accepted, the in-service time of the SIS does not exceed its 
useful life; When H1 is accepted, the in-service time of SIS equipment 
exceeds its useful life. The flow of the rapid inference method of useful 
life is shown in Fig. 3. 

4. Case study 

Hydrocracking is a conversion process in which hydrocarbon mole
cules of petroleum distillate are cracked and hydrogenated on the 
catalyst surface at a higher reaction temperature and pressure to form 
smaller hydrocarbon molecules. Due to its advantages of strong adapt
ability of raw materials and clean products, the technology is becoming 
one of the key technologies for improving the quality of oil products and 
the high efficiency of raw oil processing. The process flow of the hy
drocracking unit is shown in Fig. 4. 

The hot high-pressure separator is a critical process equipment in the 
hydrocracking process, and its liquid level control results directly affect 
the effect of hydrogenation reaction (Yousefi and Hernandez, 2019). If 
the liquid level is too high, the liquid is quickly brought into the circu
lating hydrogen compressor, which will damage the compressor. 

The liquid level interlock protection circuit is composed of a liquid 
level sensor of the two out of three (2oo3) voting structure, a logical 
controller of the one out of one (1oo1) voting structure, and a final 
element of the one out of two (1oo2) voting structure. One of its main 
functions is: when the liquid level of the reactor reaches the preset high 
trigger value, the logic controller sends a shutdown signal to the final 
element, and the valves are opened to ensure that the liquid level in the 
reactor is at a safe and controllable level. 

Without loss of generality, the LOPA report (Fang et al., 2007; 
Markowski and Kotynia, 2011) shows that the safety integrity level of 
this level interlock circuit needs to meet the requirements of SIL2. The 
chemical plant perform a three year proof test interval, assuming that 
the PFD of the equipment returns to 0 after the proof test (Wu et al., 
2018). The equipment failure data related to this liquid level interlock 
circuit in the industrial database (OREDA, 2015) are shown in Table 1. 

The instrumentation preventive maintenance strategy developed by 
the plant states that the useful life of the final element ranges from 10 to 
15 years, and the main failure mode considered here is FTO (Failure To 
Open) (ISO14224, 2016). Field equipment failure time of the valves xi 
are shown in Table 2 (Data from a petrochemical plant field project). 

Setting the significant level σ = 0.05 and i = 15, the testing results 
for the type of distribution of small sample failure data can be obtained 
from Eqs. (7)–(8), and the calculated results are shown in Table 3. 

From Table 3, the A2
n of valve B is greater than the CV, the failure data 

do not fit the assumption of exponential distribution (constant failure 
rate), the in-service time of the valve B has exceeded its useful life. The 
chemical plant need to take a series of preventive maintenance measures 

for valve B. The in-service time of valve A still does not exceed its useful 
life, it is necessary to continue to record its failure data. 

For comparison, the calculated results of the useful life hypothesis 
testing in the IEC method can be determined according to Eqs. (1)–(5), 
as shown in Table 4. 

The comparison of Tables 3 and 4 shows that the IEC method has a 
certain lag when the equipment failure data is small (i = 15). According 
to IEC method, it is concluded that the in-service time of valve B does not 
exceed its useful life. However, according to Table 3, the failure rate of 
valve B is no longer constant. Thus, if the IEC method is used, chemical 
plant cannot adjust the maintenance strategy in time. 

Based on the existing failure data in Table 2, valve A can continue to 
be in service. Referring to the plant instrument maintenance strategy, 
valve A has entered the wear-out phase. To ensure safety interlock cir
cuit meets SIL2 level during the proof test cycle, need to limit the upper 
limit of failure rate. Since the Mean value of valve A in the OREDA 
database is 11.3 and the SD value is 7.48, the λm of valve A can be ob
tained as 2.89E-5/h according to Eqs. (11)–(12). 

The subsequent Bayesian sequential testing statistical inference 
needs to analyze its prior information to obtain the prior distribution 
parameters of the failure rate. Using 1/λm as the scaling parameter, 15 
groups of simulation data are generated by Monte Carlo simulation 
(Intercept 20 failure data per group). Some prior simulation data 
generated by the simulation are shown in Table 5. 

According to Eqs. (13)-(14) and the prior simulation data in Table 5, 
the prior distribution parameters can be obtained as δ1 = 13.818, γ1 
= 448,398.28. 

Assume that both φ and ν are 0.1 (The definitions of φ and ν are 
detailed in Section 3.2), two groups failure data xn (n = 1,2,3,4) and yn 
are colleted from the field maintenance records. Where x1 = 91,452 h, 
x2 = 95,037 h, x3 = 98,053 h, and x4 = 102,420 h; y1 = 91,055 h, y2 
= 94,637 h, y3 = 99,053 h, and y4 = 104,755 h. Use the RIUL inference 
method to test xn and yn one by one. According to Eqs. (15)–(19), the 
hypothesis testing results of xn and yn are shown in Fig. 5. 

As seen in Fig. 5, when the equipment failure time is x1, x2, or x3, 
respectively, the posterior odds ratio all satisfies A<Sn <B. According to 
the test law in subsection 2.2, the null hypothesis H0 (failure rate λn≤λm) 
cannot be accepted yet, the relationship between the in-service time and 
useful life cannot be judged. Thus, the decision result is: Record failure 
data continuously and don’t make decision. When the equipment failure 
time is x4 or y4, the posterior odds ratio satisfies Sn >B, according to the 
decision rule, accepts the alternative hypothesis H1 (failure rate λn>λm) 
and concludes that the in-service time of equipment exceeds its useful 
life. 

For comparison, the hypothesis testing results of xn and yn in the IEC 
method are given in Table 6. 

As can be seen from Table 6, when the failure time is x4 or y4, the 
hypothetical testing method in IEC standard still cannot reject the 
assumption of the constant failure rate. The comparison results in Fig. 6 
and Table 6 show that the RIUL method requires only a few (four) failure 
data to conclude that the in-service time of equipment exceeds its useful 
life, however the traditional IEC method requires more failure data to 
reach the same conclusions. 

Poor timeliness of IEC method will lead to an improper estimation of 
useful life. If the Valve A is maintained or replaced according to the 
calculations of this method, in the equipment wear-out phase, the 

Fig. 4. Process flow of hydrocracking unit.  

Table 1 
Failure data of liquid level interlock protection circuit.  

Equipment 
Type 

Component Failure rate/ 
h 

Common cause 
failure β 

MTTR/ 
h 

Level sensor LT A/B/C 2.20E-5 0.02 8 
Logic 

controller 
LC 4.82E-7 – 12 

Final element FE A/B 2.51E-5 0.02 24  
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theoretical calculation of PFDavg and the actual value will have a gap 
(the SIL level of the safety interlock circuit does not meet the SIL2). It 
will lead to serious production safety accidents. 

To illustrate the impact of useful life estimation on PFD, using the 
equipment failure rate in Table 1 as a benchmark, the formula for 
calculating PFD is detailed in Ding et al. (2017). If the failure rate is 
constant in the proof test cycle, the PFD curve of the valve A and liquid 
level interlock protection circuit are shown in Fig. 6. 

From Fig. 6, assuming that equipment failure rate is constant, PFD 

changes little in proof test cycle. The PFDavg of the liquid level interlock 
circuit in the fourth proof test cycle is 0.0097, which meets the SIL2 level 
(0.001 ≤ PFD < 0.01). However, the test results in Table 6 show that the 
failure rate of valve A at x4 has exceeded λm, indicating that the failure 
rate of valve A in the fourth proof test cycle is no longer constant. The 
gradual increase of failure rate will lead to PFDavg greater than 0.01 in 
the fourth proof test cycle. If the equipment is not replaced in time, the 
safety production of the plant will be seriously affected. 

5. Conclusions 

The useful life of a safety instrumented systems is a crucial reliability 
indicator. Since few manufacturers offer this indicator voluntarily, the 

Table 2 
Failure time of the valves in FTO mode.  

Number Failure time/h 

Valve A 1754 3542 6874 10,254 11,245 14,258 20,145 25,478 37,485 52,458 68,452 80,526 85,456 89,214 90,457 
Valve B 1845 3568 5727 11,458 22,457 29,874 38,956 50,231 62,742 71,548 78,956 80,475 82,451 84,753 87,235  

Table 3 
Testing results for the distribution type of failure data.  

Number Discrete 
distance A2

n 

Critical 
value 

Exponential 
distribution 
assumption 

Whether in-service time 
of equipment exceeds 
its useful life 

Valve A  0.411  0.829 Accept No 
Valve B  0.847  0.829 Reject Yes  

Table 4 
Results of useful life hypothesis testing in IEC method.  

Number Statistical 
test value χ2 

Range of reject 
domain W 

Constant 
failure rate 
assumption 

Whether in-service 
time of equipment 
exceeds its useful 
life 

Valve A  28.555 15.308–44.461 Accept No 
Valve B  32.792 15.308–44.461 Accept No  

Table 5 
Partial prior simulation data.   

Failure time/h 

Group 1 1341 4330 6855 7465 9499 11,259 18,871 21,528 24,606 24,622 
25,162 25,231 26,941 34,790 48,007 50,992 56,373 70,485 89,598 93,533 

Group 2 1729 2560 3890 6564 8392 9253 10,731 11,971 15,128 16,163 
20,288 30,637 30,804 43,552 44,049 44,669 67,465 78,085 92,691 94,979 

Group 3 1743 3086 4032 9373 17,571 23,854 27,590 28,730 31,785 33,052  
36,979 45,961 51,205 57,092 68,830 72,959 76,051 83,562 88,754 93,251  

Fig. 5. Hypothesis testing results of xn and yn in RIUL method.  

Table 6 
Hypothesis testing results in IEC method.   

Failure 
time 

Statistical 
test value 
χ2 

Range of reject 
domain W 

Constant 
failure rate 
assumption 

Whether in- 
service time of 
equipment 
exceeds its 
useful life  

x1  29.865 16.791–46.979 Accept No 
xn x2  31.072 18.291–49.480 Accept No  

x3  32.181 19.806–51.966 Accept No  
x4  33.266 21.336–54.437 Accept No  
y1  32.720 16.791–46.979 Accept No 

yn y2  34.096 18.291–49.480 Accept No  
y3  35.416 19.806–51.966 Accept No  
y4  36.739 21.336–54.437 Accept No  
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current IEC standard only gives an approximate range of the useful life. 
The useful life inference method given by IEC is poor timeliness. It re
quires a large amount of equipment failure data to reach a conclusion, 
contrary to SIS equipment’s high reliability. Many scholars do not esti
mate the useful life when assuming a constant failure rate. How to 
accurately infer the useful life of equipment under small samples is of 
great engineering significance. Combined with the characteristics of SIS 
equipment failure data, this paper proposes the RIUL method. Use 
Anderson-Darling testing to determine whether the distribution type of 
failure data is exponential under small samples. After that, propose a 
Bayesian sequential testing method for the failure rate, judging one by 
one whether the failure rate λn exceeds λm. The proposed approach aims 
to overcome the disadvantage of poor timeliness of the IEC testing 
method. It is also convenient for scholars to estimate the useful life of the 
SIS equipment more accurately. 

The case study shows that compared to the IEC method, the RIUL 
method requires only a few equipment failure data to conclude that in- 
service time exceeds useful life. The RIUL method can help the chemical 
plant adjust the equipment maintenance and replacement strategy in 
time and guarantee the SIL level meets the corresponding requirements 
of the LOPA analysis report, avoiding safety accidents caused by 
increasing failure rate. 

The RIUL method still needs some improvement. A large amount of 
credible prior information can guarantee the accuracy of the RIUL 
method. In this paper, only the prior information of simulation data is 
used, which can be combined with various prior information, such as 
expert experience, in future works. For example, D-S evidence theory is 
one of the methods of combining multiple sources of prior information. 
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de Lira-Flores, J.A., López-Molina, A., Gutiérrez-Antonio, C., et al., 2019. Optimal plant 
layout considering the safety instrumented system design for hazardous equipment. 
Process Saf. Environ. Prot. 124, 97–120. 

Markowski, A.S., Kotynia, A., 2011. “Bow-tie” model in layer of protection analysis. 
Process Saf. Environ. Prot. 89 (4), 205–213. 

Meng, H.X., Kloul, L., Rauzy, A., 2018. Modeling patterns for reliability assessment of 
safety instrumented systems. Reliab. Eng. Syst. Saf. 180, 111–123. 

Mkhida, A., Thiriet, J.M., Aubry, J.F., 2014. Integration of intelligent sensors in safety 
instrumented systems (SIS). Process Saf. Environ. Prot. 92 (2), 142–149. 

OREDA, 2015. Offshore Reliability Data Handbook. DNV, Trondheim, Norway. 
Shao, X.Y., Wang, Y.Y., Cai, B.P., et al., 2022. Remaining useful life prediction 

considering degradation interactions of subsea Christmas tree: a multi-stage 
modeling approach. Ocean. Eng. 264, 112455. 
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