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Abstract The Global Navigation Satellite System

Reflectometry (GNSS-R) concept was conceived as a

means to densify radar altimeter measurements of the sea

surface. Until now, the GNSS-R concept relied on open

access to GNSS transmitted codes. Recently, it has been

proposed that the ranging capability of the technique for

ocean altimetric applications can be improved by using all

the signals transmitted in the bandwidth allocated to GNSS,

which includes open access as well as encrypted signals.

The main objective of this study is to provide experimental

proof of this enhancement through a 2-day experiment on

the Zeeland Bridge (The Netherlands). In the experiment,

we used a custom built GNSS-R system, composed of high

gain GPS antennas, calibration subsystem, and an FPGA-

based signal processor which implemented the new

concepts, an X-band radar altimeter and a local geodetic

network. The results obtained indicate that the new

approach produces a significant improvement in GNSS-R

altimetric performance.

Keywords Ocean altimetry � GNSS reflectometry �
Bistatic radars

Introduction

Space borne bistatic radars using opportunity signals

reflected onto the earth’s surface were proposed in Martı́n-

Neira (1993) to densify, in time and space, the mean sea

level measurements provided by monostatic radar altime-

ters. This concept was described in terms of the measure-

ments of the coherence of the direct and reflected signals,

obtained using radiointerferometric techniques, and was

termed the Passive Reflectometry and Interferometry Sys-

tem (PARIS). A detailed description of such radiointerfe-

rometric techniques and references to related applications,

such as sea interferometry and moon reflectometry, can be

found in Thompson et al. (2004).

When the sources of opportunity are the GNSS, the

PARIS concept is called GNSS-Reflectometry (GNSS-R).

In such a case, because the information to create some of the

components of the transmitted signals is available, we could

cross-correlate the reflected signals with their modeled

replicas. Successful detection of GNSS-R signals from

space has been reported in Lowe et al. (2002) and Gleason

et al. (2005), after the cross-correlation of the reflected

signals with their modeled replicas.

With this standard approach, GNSS-R ignores the

encrypted components of the signals, collects less power in

narrower bandwidth, and thus lowers the achievable per-

formance of the technique. To overcome this limitation, the

European Space Agency (ESA) has announced the PARIS
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In-Orbit Demonstrator (PARIS-IOD) space mission, as

described in Martı́n-Neira et al. (2011), based on the cross-

correlations of GNSS signals collected with two high gain

antennas. In this paper, we will use the term GNSS-Ri to

denote this interferometric approach.

An additional advantage of GNSS-Ri is that it is not

sensitive to distortions in the transmitted signals. In the

GNSS-R implementations, the modeled replicas differ

slightly from the actual transmitted signals. This will dis-

tort the shape of the measured cross-correlations and will

produce SNR losses and uncertainties in the delay mea-

surements, inducing errors in the altimetric information

sought. See a recent discussion in Wong et al. (2010), and

in the references cited there, describing such deformations

and showing that they are common.

We present the first GNSS-Ri proof of concept experi-

ment performed to demonstrate the feasibility of the

technique by sensing the sea tide from a bridge in the

Netherlands. In the following sections, we describe the setup

used to gather GNSS-Ri data and the waveform models

developed to derive the altimetric information from the

observations. Finally, we compare our results with the mean

sea level estimates obtained from independent X-band

radar altimeter measurements performed simultaneously.

Experiment setup

On July 7 and 8, 2010, in two sessions from 10:00 to 18:00

UTC (hereafter, Sessions A and B), we deployed on the

Zealand Bridge (The Netherlands) a system composed of

(a) a custom GNSS-Ri observational system, (b) an X-band

radar altimeter (XBRA), and (c) a local geodetic network,

to tie (a) and (b). The setup is shown in Fig. 1.

GNSS-Ri observational system

The GNSS-Ri system deployed at the Zeeland Bridge was

composed of:

• Two fixed GPS L1-band directional antennas, U (up

looking) and D (down looking), mounted at the end of a

4 m boom over the sea, with boresights (Azimuth,

Elevation) equal to (310�, 70�) and (310�, -70�). This

pointing was the result of a careful a priori study, which

maximized for the experiment site and date the number

of hours per day for which only one GPS space vehicle

(SV) would pass through the antenna’s main beam,

leaving the rest of satellites away from the main beam

with a relative strength with respect to the radiation

pattern peak of -15 dB at most. This amounted to

about 2 h per day. The output of these U and D

antennas is a pair of signals (Yd, Yr), where the

subscripts d and r stand for direct and reflected,

respectively.

• A two-position switch, controlled by the PARIS

Interferometric Receiver (PIR) rack, delivers the signal

pair (Yx, Yy), equal to (Yd, Yr) or (Yr, Yd) depending on

the switch position. This makes it possible to swap the

antenna outputs as inputs of the receiver.

• The PIR-signal processor (PIR-SP), placed inside the

PIR rack, computes in real time the GNSS-Ri complex

cross-correlations Zxy defined in Eq. 1, where (Yx, Yy)

is the analytic representation of the real signals (Yx, Yy).

These waveforms are sent and stored in real time to a

laptop computer, not depicted in Fig. 1, which is

external to the PIR rack.

• A GPS receiver inside the PIR rack, not depicted in

Fig. 1, provides the GPS time frame reference using the

signals captured by the GPS antenna N.

Fig. 1 Logical arrangement of

the Zealand Bridge setup. The

system produced two

independent measurements of

the mean sea level H. It is

composed of a GNSS-Ri

Instrument, and an X-band radar

altimeter (XBRA). A local

reference frame was established

using a TOPCON GPT-7003i

Total Station (R1), and a GPS

reference point (R2). The

hemispherical antenna of a GPS

receiver (N) was used to provide

time reference to the PIR rack

232 GPS Solut (2012) 16:231–241

123



The relevant parameters of the GNSS-Ri instrument are

summarized in Table 1. Antennas only differ in terms of

polarization, U was RHCP and D was LHCP. The gain was

6 dB lower than the directivity, due to the fact that the

antenna had an ohmic efficiency of 0.25.

The main parts of the PARIS Interferometric Receiver

are presented in Fig. 2. It is composed of the RF calibration

switch, the down conversion chains, and the signal pro-

cessor, which includes a 320-lag complex correlator with a

sampling rate of Fs = 80 MHz, continuously delivering

the complex correlations:

Zxyðt; sÞ s¼m�Ts
¼

Zu¼þTc=2

u¼�Tc=2

Yxðt þ uÞY�yðt þ u� sÞdu

�������

�������
s¼m�Ts

ð1Þ

with m [ [80, 239] and Ts : 1/Fs = 12.5 ns. The corre-

lation channel works with a fixed coherent integration time

of Tc = 1 ms. The waveforms are sent in real time to the

PIR laptop through the Ethernet link and saved. The cross-

correlation function has a different meaning depending on

the switch position, as commented previously. The PIR-SP

is autonomous and does not receive any command from

outside. The PIR-signal processor works on a sequence

basis that repeats every GPS minute and controls the switch

position. The GPS receiver inside the PIR rack provides the

GPS time frame to the PIR-SP via a signal of one pulse per

second (1 PPS) and time data logs that are synchronized

with this 1PPS, which provide the GPS time tags in a week

and second-of-week format. The GPS receiver clock is

totally independent and incoherent with respect to the PIR

rack 30 MHz reference clock. The downconverters are

locked to that reference in order to generate their internal

LO tones coherently. Also, the PIR-SP takes that clock

reference and internally boosts it up to 80 MHz to generate

its own working clock. We chose a 30 MHz clock refer-

ence because the 52nd and 53rd harmonics of this fre-

quency fall at ±15 MHz around the GPS L1 carrier,

avoiding the instrument self-interference inside the band

that we experienced with a 20 MHz reference in our pre-

liminary prototype designs of the receiver. Any tone added

to the input signals in both correlator inputs contributes to

the cross-correlation, while in the normal GNSS receiver,

the signal is correlated with a model, removing this effect

of the interference through the correlation process.

X-band radar altimeter

The X-band radar altimeter (XBRA) is a WaveGuide short

range FMCW radar produced commercially by RADAC

BV of The Netherlands. The radar operates in the

9.8–10.3 GHz frequency range and has a distance range of

1–75 m. The width of the radar beam is about 5�. The

X-band radar measures the distance to the water surface, or

heave, at a rate of 2.56 samples per second (391 ms inter-

val). The height of the water level, significant wave height

(SWH) and wave period, as well as several other parameters

including energy density spectra, were computed from the

raw heave (height) measurements. We found that SWH was

in the order of 10 cm during both sessions.

The standard deviation of the raw heave data, computed

from the first differences, was 4.12 cm for July 7 and

4.58 cm for July 8. These standard deviations include,

besides measurement errors, the high frequency part of the

waves. Normalized to 1 s, the precision of the heave data is

better than 2.9 cm. In order to eliminate the effects of

Table 1 GNSS-Ri system parameters

Parameter Value Parameter Value

U/D antenna directivity 15 dBi U/D antenna gain 9 dBi

U polarization RHCP D polarization LHCP

Sidelobes \-35 dB Switching rate 1 Hz

Sampling rate 80 MHz RF signal bandwidth 24 MHz

Yx

Yy

Yy

Yx
UP Antenna

dY

Yr

Switch Position Control

N Antenna

RF1

RF0

NAV
GPS Time Frame

ETHERNET

DW Antenna

Waveforms

LAPTOP

COHERENT
30 MHz REF.

PIR−SP

CORRELATION

320−LAGS

CHANNEL

CONVERTER
DOWN

PIR RACK

DOWN
CONVERTER

RECEIVER
GPS

SWITCH

Fig. 2 PIR receiver parts: the switch, the rack and the laptop
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waves, the raw heave data have been smoothed. We have

compared 10-min averages with 1 min averages and 10-s

averages. The standard deviation of the differences with the

10 min smoothed data was about 0.5 cm for the 1 min

smoothed data and less than 1 cm for the 10-s smoothed

data. As a reference for the GNSS-Ri, we have selected the

10 min average sea level height H10, which is recorded at

1 min intervals. It is estimated that the sea-level height

H10 is precise to less than 1 cm.

The X-band radar data have been compared with tide

gauge data from two nearby tide gauges at distances of 7.4

and 15.3 km. The data from these tide gauges have been

interpolated to the location of the X-band radar. There is a

systematic difference between the interpolated sea level

from the tide gauges and the X-band radar of about

1.3 cm with a slow oscillation of an amplitude of about

2 cm. This difference is well within the accuracy of the

interpolation. According to the manufacturer’s specifica-

tions, the bias in the X-band radar should be within a few

millimeters. The comparison with the tide gauge data

confirms that there are no relevant biases in the X-band

radar data.

Local survey measurements

A local survey was carried out on the bridge every 1–2 h

to monitor the height differences between the antennas

of the GNSS-Ri and the X-band radar, which were

mounted 27 m from the GNSS-Ri and to connect these

instruments to various stable reference points on the

bridge. For the survey, we used a Topcon GPT–7003i

Total Station. The precision of the local survey mea-

surements, including the height difference between PIR

and WG, were better than 1 mm in height. However, the

Total Station measurements revealed that the area of the

bridge where the PIR was mounted, including the boom

itself, moved by 3 cm in height during the day. The

motion of the X-band radar, which was closer to the

main pillar, was smaller. The X-band radar data were

corrected for the zero-point offset between the X-band

and GNSS-Ri (*16 cm) and the smooth diurnal bridge

deformation (*3 cm), in order to provide a ‘‘true’’ data

set for the GNSS-Ri data.

Another part of the local survey measurements consisted

of measuring GPS baselines to a nearby height benchmark

in the national ordnance datum Normaal Amsterdams Peil

(NAP). The GPS measurements were necessary in order to

compare data from nearby tide gauges, which are given in

the NAP datum, to the X-band radar data. The internal

consistency between the completely independent GPS

baselines was at the millimeter level. The measurements

also showed that reference points of the stable part of the

bridge were indeed stable.

Interferometric waveforms model and data analysis

There is a relevant difference between the nature of the

waveforms obtained with GNSS-R or GNSS-Ri. In the first

case, the reflected signal is correlated with a replica which

is associated to a particular transmitter. In the case of

GNSS-Ri, this association does not exist, and we need to

rely on the discrimination provided by the antenna direc-

tivities and the relative delay and Doppler shifts applicable

in the correlator. In our experiment, the relative delay was

less than twice the height of the bridge (*18 m), and the

relative Doppler shift was negligible due to the static nature

of the experiment. Consequently, the discrimination could

only be provided by the antenna directivity. We describe

the analysis performed with our primary observables, the

waveforms, to obtain derived observables like the relative

delays.

Signal model

The GNSS-Ri observables are the mean power waveforms.

The model used in our implementation is based on Za-

vorotny and Voronovich (2000), Garrison et al. (2002), and

Martı́n-Neira et al. (2011). The complex Yx and Yy signals

are divided into consecutive coherent integration periods of

length Tc = 1 ms, to compute the complex cross-correla-

tion Zxy as defined in Eq. 1. The mean hjZxyðt; sÞj2i
computed during an incoherent integration time Tnc are the

waveforms wxy:

wxyðt; sÞ ¼
1

Tnc

ZtþTnc=2

t�Tnc=2

hjZxyðt0; sÞj2idt0 ð2Þ

where t in Eq. 2 is the time tag associated to the incoherent

integration interval, and s is the cross-correlation delay

variable, in the range -1 ls \ s\ 3 ls (or -300 \
s\ 900 m), sampled at a rate of 80 MHz.Assuming that

the complex noise terms in Yx and Yy are uncorrelated, the

waveforms in Eq. 2 are modeled as the sum of signal and

noise terms:

wxyðt; sÞ ¼ wsðt; sÞ þ wnðt; sÞ ð3Þ

with the signal term is

ws ¼
X
all :S

wS
s ðt; s� sSÞ ð4Þ

where wS
s is the signal waveform corresponding to satellite

S, which according to Zavorotny and Voronovich (2000),

Garrison et al. (2002), and Martı́n-Neira et al. (2011) could

be written as:

wS
s ðt; sÞ ¼ PS

T PS
r ðsÞ � jWSðsÞj2 ð5Þ
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For each transmitter S, PS
T is the power of the received

direct signal, the function PS
r ðsÞ is the average reflected

signal power from the sea surface scatterers arriving with a

delay s, and WS(s) is the Woodward Ambiguity Function

(WAF) associated to the complex baseband modulation of

the signal and * is the convolution operator. The use of

Eq. 4 is necessary when the differences between relative

delays sS for different transmitters are smaller than the

width of the WAF function, that is, when the waveforms of

different satellites overlap.

If the footprint of the function PS
r is much smaller than

the footprint of jWSj2 (or PS
r / d, the Dirac function), as in

our experiment, neglecting constant factors and free-space

losses, Eq. 5 takes the simple form:

wS
s ðt; sÞ ¼ CSjWSj2 ð6Þ

with CS ¼ PS
T GS

T

� �2
GR;dGR;rr, where GR,d and GR,r are the

power gain of the transmitter, U and D antennas along the

corresponding link path, and r is a scattering coefficient.

Data analysis

During both sessions, the PIR-SP produced waveforms

continuously, repeating each minute a sequence of different

calibration switch positions. The data used in this research

were collected each minute from seconds 10 through 29;

the calibration switch was set to obtain wxy = wdr for the

ten even seconds (10, 12, …, 28) and wxy = wrd for the ten

odd seconds (11, 13, …, 29). Both data sets were integrated

independently to have two waveforms each minute with an

effective incoherent integration time of 10 s. To simplify

the description, we ignore the 1-s difference between the

time stamps of the waveforms, assuming that both

waveforms wdr(t,s) and wrd(t,s) were obtained at the same

time t, and carry the same altimetric information.

The Session B set of waveforms wdr(t,s) is shown in

Fig. 3, for delays s in the interval [-20:100] m. We nor-

malized each waveform by dividing it by its maximum

value. A similar aspect is obtained for Session A. Figure 4

shows details of six waveforms extracted from this data set,

for delays s in the interval [-300:350] m, with the same

normalization. The M-code component is seen with the

highest contrast during the 14:00–15:00 UTC period in

both Sessions A and B. We will refer to these 1-h intervals

as slices A and B.

We extracted from each waveform w, either wdr or wrd,

its maximum value wmax, the delay associated with this

value speak, the pointing waveform delay spointing =

0.5(s??s-), and the waveform width b(t) = s?-s-,

where s?[s- are the solutions to the equation

w(t,s) = 0.64w(t,speak). The factor 0.64 has been selected

to use data with large slopes to increase the sensitivity

(Figs. 3, 4). These values are presented in the three lower

panels of Fig. 5. With this choice, the width of a 24 MHz

filtered WAF containing C/A, P(Y) and M signals, with the

power levels given in Barker et al. (2000), is approximately

13.5 m. The upper panel of Fig. 5 shows the XBRA

heights H10(t), smoothed with a 10-min sliding window,

and referred to the GNSS-Ri reference point. The uncer-

tainty of these 10-min measurements, including instru-

mental errors, is about 1 cm. According to Fig. 5, Panel 3,

within the noise we have speak
dr ðtÞ ¼ spointing

dr ðtÞ, indicating

that the shape of the waveforms is almost unaffected by the

scattered power function Pr. The same equality is obtained

with the data obtained when the switch was in the other

position. These common values will be designated sPIR
dr ðtÞ

and sPIR
rd ðtÞ, which could be related with an instrument bias

Fig. 3 The normalized

waveforms obtained during

Session B, represented as a

function of cross-correlation

delay s and the UTC). The

M-code autocorrelation has a

narrower peak than the

P(Y) code and has important

sidelobes that are approximately

30 m away from the peak. This

is visible during intervals

including 11:00 UTC, 14:30

UTC and 17:00 UTC. Some of

these waveforms are

represented in Fig. 4
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b and the desired calibrated delay observable sPIR using the

equations:

sPIR ¼ 0:5 sPIR
rd � sPIR

dr

� �
ð7aÞ

b ¼ 0:5 sPIR
rd þ sPIR

dr

� �
ð7bÞ

The main sources for the observed variations of sPIR(t) are

the mean sea level and the relatively faster changes in the

positions of the contributing transmitters, as confirmed by

the changes in wmax and b (Fig. 5, Panels 2 and 4). The

variability of sPIR(t) at shorter scales (min) is noise-like.

The instrumental bias b corresponds to the differential

instrumental delay between the signal paths from the

switch to the signal processor, including the downconver-

sion chains (Fig. 2). The variability of b has been estimated

for the three intervals in which the width b of the waveform

was smaller and stable. The results are given in Table 2:

GNSS-Ri altimetry model

As noted in the previous section, the GNSS-Ri observables

are not assigned unambiguously to a particular satellite. In

the GNSS-R applications, where a single transmitter is

involved, the following expression is used, which relates

the observable sS, the altimetric parameter H, and the

elevation elS of the observed satellite:

sS ¼ �2 � H � sinðelSÞ þ ns þ nmodel ð8Þ

This includes measurement ns and model noise nmodel

terms. Additional terms accounting for differential tropo-

spheric, ionospheric delays are negligible because of the

proximity of the antennas to the sea surface. Due the

smallness of the SWH, the effects of sea roughness have

also been neglected. Because the range of elS is reduced,

the different parameters will show highly correlated effects

with instrumental biases (Rius et al. 2010) and the use of

this equation to obtain H requires additional information.

The purpose now is to derive a generalization of Eq. 8

applicable to our GNSS-Ri observables.

We assume that, as a first approximation, each wave-

form around its peak could be described as a parabola.

Assuming the validity of Eq. 6, Eq. 4 will read:

ws ¼
X
all S

CS � ðs� sSÞ2 ð9Þ

0

 1
11 UTC 12 UTC

   0

   1

−300    0  300 −300    0  300 −300    0  300

13 UTC

0

1
14 UTC 15 UTC

   0

   1

−300    0  300 −300    0  300 −300    0  300

16 UTC

Fig. 4 Six normalized waveforms as a function of the correlator

delay s with the interval [-300:350]. These waveforms have been

extracted from the data set obtained in Session B. The corresponding

UTC epoch is indicated in each panel. Each waveform is the

superposition of the codes present in the correlated signals. Near 11

UTC, 14 UTC and 15 h UTC there were M-code signals in addition to

the C/A and P(Y) components. Because the C/A code contribution

extends ±300 around the peak, the last values at the right end of each

waveform could be taken as the noise to signal power. The changes in

the relative noise level are partly because the transmitters had

changing angular distances to the antennas’ boresight. The red line
corresponds to a relative power equal to 0.64 of the peak power, used

to characterize the waveform width b. Note the apparent reduction in

b and the increase in the SNR when the M-codes are present,

implying a substantial increase in delay resolution
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where

sS ¼ �2 � HPIR � sinðelSÞ

A relation between the delay of the maximum of the

waveform sPIR and the height using PIR data HPIR is easy

to deduce, using a derivative of Eq. 9 at s = sPIR of zero,

and Eq. 8:

sPIR ¼ �2 � HPIR �
X
all S

cS � sinðelSÞ þ ns þ nmodel ð10Þ

where cS ¼ CS
�P

all S CS are the normalized weights, and,

as before, we have included terms to account for the

measurement noise ns and the model noise nmodel. This

model noise term will depend mainly on the direction of

the satellites, with a period of 1 sidereal day in a first

approximation. Ignoring the noise terms, Eq. 10 could be

used to obtain

HPIR ¼ �sPIR

,
2 �
X
all S

cS � sin elS
� � !

In the computation of the weights cS, see Eq. 6, we have

assumed that the transmitter parameters PS
T and GS

T have

common values for all satellites S and GS
R;d and GS

R;r

have been computed assuming that the beam of both U and

D antennas have a Gaussian pattern half-power beamwidth

equal to 30�.

In Table 3, we indicate, for each GPS satellite above

15�, its PRN number, its launch year, approximate values

of its a priori reflected to direct relative delay sapp, eleva-

tion elS and the normalized weights cS at the start and end

times of slices A and B.

After the experiment was performed, we noticed that on

May 28 2010, a few days before our experiment, Block IIF

SV with PRN 25 was launched and positioned in the same

orbit and slot as Block IIR SV with PRN12. Both satellites

were transmitting M-code signals. According to Table 3,

during slices A and B, the relative delays between PRN 12

and PRN 15 changed between ?1.4 and -0.3 m. Because

the differences between the relative delays were smaller

than the width of the autocorrelation of the code and their

angular separation was smaller than the antenna beam-

width, we have applied the model given in Eq. 10 to this

double source.

Comparison of GNSS-Ri and XBRA height estimates

In order to compare the results obtained, we will use the

single and double-difference operators defined as

DHðtÞ ¼ HPIRðtÞ � H10ðtÞ ð11aÞ
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Fig. 5 Observable quantities obtained in both sessions. Blue dots
correspond to Session A, and red dots refer to Session B. Panel 1
contains the XBRA average mean sea level H10, referenced to the

GNSS-Ri instrument. The remainder gives observable quantities

extracted from the waveforms wdr. Panel 2 represents the observed

waveform maximum power wmax. Panel 3 represents the delays

spointing. In the same panel, we have over plotted the delays speak in

green and brown for Sessions A and B respectively, showing that,

within the noise, speak = spointing. Panel 4 gives the waveform width

b(t)

Table 2 Instrumental differential bias b mean and standard deviation

computed for three intervals during Session B

Interval (hours UTC) Bias b (m) SD of b (m)

10.3–11.4 3.64 0.06

14.0–15.0 3.59 0.04

16.9–17.7 3.61 0.08

Table 3 Satellites observed during slices A and B. We show for each

satellite, block type, and launch year with approximate a priori rela-

tive differential delays in meters, elevations el in degrees, and weights

for the start and stop times of slices A and B

Space vehicle 14:00 UTC 15:00 UTC

PRN Block Year sapp el cS sapp el cS

9 IIA 1993 31.4 67 0.00 21.5 39 0.00

12 IIR 2006 31.6 68 0.81 33.7 83 0.18

14 IIR 2000 17.4 30 0.00 24.0 45 0.01

25 IIF 2010 30.2 63 0.19 34.0 87 0.75

27 IIA 1992 28.7 57 0.00 17.9 32 0.00

30 IIA 1996 17.2 30 0.00 28.3 56 0.06
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D2HðtÞ ¼ DHðt þ 1 Sidereal DayÞ � DHðtÞ ð11bÞ

where H10(t) is the 10-min average sea level height mea-

sured by the XBRA.

The single difference will provide a measure of the

goodness of our model, and the double difference should

cancel model uncertainties, in order for the precision of the

method to be determined. Figure 6 shows DH(t) and

D2H(t) computed with the data obtained in slices A and B.

The series of single differences indicates that there is a bias

and a linear variation, and the series of double differences

does not show significant differences.

We have found from D2H(t) in the interval 14:10–14:30

UTC that its mean and standard deviation were D2H
� �

¼
�1:5 cm and rD2H ¼ 3:6 cm, or

ffiffiffiffiffi
10
p

� 3:6 ¼ 11:4 cm if

we reduce the integration time from 10 to 1 s. From

Eq. 11a, we could derive rHPIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

D2H

.
2� r2

H10

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11:4Þ2

.
2� 2:92

r
¼ 7:5 cm, where we have used for

rH10 a value of 2.9 cm, which is the standard deviation of

the XBRA data normalized to 1 s as already shown in the

X-band radar altimeter section.

Conclusions

The first GNSS-R interferometric altimetry experiment

yielded a 7.5 cm uncertainty in 1 s measurements, despite

the nonoptimal conditions of the experiment, driven by the

static and low-altitude position of the receiver. These con-

ditions introduced contamination of the altimetric observ-

ables by simultaneous reception of multiple satellite signals,

with different delays, and difficulties in properly modeling

and correcting this effect. Nevertheless, these results are a

significant improvement in signal envelope-based GNSS-R

altimetric performance with respect to the standard C/A

code correlation approach, which is in the order of 1 m

(Spilker 1996), and still improvable under other more

realistic observation geometries that permit delay-Doppler

filtering of the different satellite contributions.

The results of this experiment consolidate the interfer-

ometric processing as the baseline for a demonstration

space mission. In an orbital scenario, other factors not

present in the bridge experiment will tend to degrade the

performance, mainly the larger free-space loss of the

reflected path, the increased roughness of the ocean sur-

face, and the ionospheric and tropospheric delays. Larger

antennas are needed for an experiment from space, of the

order of 1 m2, as well as careful compensation of the delay

and Doppler shifts between the direct and reflected signals.

On the other hand, the greater delay-Doppler separation

between different GNSS satellites from orbital altitude will

help discriminate different signals from different space

vehicles, something that was not possible from the bridge.
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