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Abstract
Continuous Integration, CI, pipelines are widely
used to ensure code quality through automated
builds, tests, and static analysis. While prior work
has examined the overall energy consumption of
CI workflows, the energy consumption of individ-
ual phases remains unexplored. This study investi-
gates the energy consumption of static analysis us-
ing SpotBugs across 10 open-source Java projects.
SpotBugs was selected based on a systematic lit-
erature review, its widespread usage, and its con-
figurable effort levels. Energy measurements were
conducted for the four SpotBugs effort levels on
both Gradle and Maven projects. The results show
that energy consumption differs significantly be-
tween efforts, with the biggest differences between
Min and Less, and Less and More. Performance
analysis shows that increased effort improves bug
detection in projects, but comes with a higher en-
ergy consumption. The most efficient effort is Min,
which found the most warnings with regards to en-
ergy consumption.

1 Introduction
Continuous Integration, CI in short, is a common software
engineering practice. This development philosophy proposes
numerous sub-practices that are synergetic, such as auto-
mated tests, regular builds and frequent commits [1]. It has
multiple benefits, such as consistency of projects and reliable
bug detection [2].

Typically, each commit triggers a CI pipeline to ensure
code quality, consisting of steps such as building, testing, and
static analysis [3]. The focus of this paper is on the static anal-
ysis phase. Static analysis helps software engineers detect po-
tential bugs in code, without actually executing the program
[4]. There are multiple static analysis tools, SATs, available,
all with their own options for configurations and rules.

Although executing this CI pipeline for a single commit
may appear insignificant, it is important to recognise that
CI processes typically occur in large-scale software develop-
ment environments. For example, the Elasticsearch project
recorded over 9.600 commits in the past year [5], correspond-
ing to an equivalent number of CI pipeline executions. Fre-
quent execution of the entire pipeline is computationally ex-
pensive [6].

To reduce these problems, one can look at different config-
urations of different SATs. These can be lightweight, there-
fore requiring relatively little time and resources, but also
heavy, which might be able to provide a deeper analysis, but
comes at the sacrifice of time and resources.

The use of resources also comes with another cost, namely
the environmental impact. Little research has been done on
the environmental implications of configurations of CI pro-
cesses. Previous work has shown that the energy consump-
tion of CI processes is significant [7]. However, this study
focused on the footprint of CI workflows as a whole, with-
out looking at contributions of the different phases with their
different tools and configurations.

Before the environmental impact can be assessed, it is im-
portant to first identify which SATs are most widely used. Se-
lecting a widely adopted tool for a commonly used program-
ming language is essential for the research, as it could make a
significant difference in environmental impact. To ensure the
rest of the research is conducted with the right SAT, we an-
swer the next Research Question, by conducting a literature
survey:

RQ1: “What are the most commonly mentioned static
analysis tools for Java in primary studies?”

Identifying the most frequently mentioned static analysis
tool provides the foundation for analysing its empirical im-
pact. Based on the results of RQ1, this study investigates how
different tool configurations influence energy consumption.

RQ2: “How does energy consumption vary across static
analysis tool configurations?”

As it is probable that energy efficient configurations come
at the cost of performance, we also verify whether this is the
case. We therefore measure and compare the tool’s perfor-
mance. We define performance as the total amount of warn-
ings found by a tool with a certain configuration. The draw-
back will be taken into account with the last Research Ques-
tion:

RQ3: “Is there a trade-off between performance and
energy consumption of different configurations?”

We identified SpotBugs as the most frequently reported
static analysis tool for Java, making it a suitable candidate
for empirical evaluation. Our results indicate that SpotBugs’
energy consumption increases with higher effort levels, with
the most pronounced increases occurring between the lower
effort configurations. Moreover, higher effort levels are less
energy-efficient than the lowest effort setting, which detects
the highest number of warnings per unit of energy consumed.

This paper first analyses previous work related to energy
consumption and SATs in Section 2. Secondly, it discusses
the methodology and the results of the systematic literature
review in Section 3, as an answer to RQ1. This section also
goes into detail on which SAT is discussed in this study, with
its configuration options. Then, in Section 4, we discuss the
experiment setup of the energy measurements, as well as the
methodology of measuring performance. Section 5 reports
the results of the energy and performance measurements. We
discuss the found results, along with threats to validity and
suggestions for future work in Section 6. Section 7 includes
a discussion on the reproducibility and ethics of the research.
Lastly, we report the conclusions in Section 8.

The data and software used for this project are available on
Zenodo [8].

2 Related Work
Multiple research papers studied the combined field of sus-
tainability and static analysis already. Faghih and Jalili inves-
tigated whether SATs can find energy defects in Android [9].
They proposed a framework, which can analyse an Android
application and effectively detect energy anti-patterns, such
as inefficient resource usage or unnecessary background op-
erations. Their work focused on mobile applications and on
improving energy efficiency through static analysis, but did



not address the energy usage introduced by the execution of
the SATs themselves.

Beyond using static analysis to reduce energy impact,
Brosch examined the influence of implementing SAT anno-
tations on the energy consumption of existing projects [10].
Specifically, he studied the Benchmarks Game project and
evaluated whether SAT suggestions affected the energy con-
sumption. He found that three out of eight algorithms showed
an increase in energy consumption after implementation of
the recommendations of the SAT. This research highlighted
that SAT suggestions may have an unintended negative influ-
ence on the energy efficiency of software systems.

With regards to the sustainability of software engineering,
Ailane et al. proposed a Green DevOps Guide, to integrate
sustainable choices throughout the entire DevOps cycle [11].
On the subject of CI pipelines, they mentioned multiple opti-
misation strategies, namely:

• “Reducing redundant builds via change detection

• Leveraging caching layers for dependencies and con-
tainers

• Running tests in parallel or on-demand rather than blan-
ket execution

• Scheduling non-critical builds during off-peak hours or
low-carbon intensity periods” [11, p. 205]

However, Ailane et al. did not quantify energy consumption
of specific CI steps.

As previously mentioned, Zaidman did perform an empiri-
cal investigation into the energy consumption of CI processes
[7]. These results demonstrated that the energy required for
CI pipelines is significant. However, he did not perform re-
search into the energy consumption of the different phases of
the CI pipeline, such as static analysis.

In contrast to aforementioned studies, this research con-
tributes to initial empirical insights into the energy consump-
tion of the static analysis phase of a CI pipeline.

3 Systematic Literature Review on SATs
3.1 Methodology
We performed a systematic literature review to answer RQ1.
There already exists a systematic literature review on the
mentions of SATs in literature, done by Stefanović et al. [12].
The existing literature review was conducted in 2020 and is
therefore no longer fully representative of the current state of
the field. Therefore, we conducted a new systematic literature
survey for this research.

This literature review focused on tools for Java, as Ste-
vanoic et al. [12] discovered that the most supported pro-
gramming language in previous papers on SATs is Java. Java
is also one of the most used programming languages on
GitHub [13].

We used Scopus as the database to be searched. It was one
of the two databases used in the previous systematic litera-
ture review by Stefanović et al. [12], but has less non-journal
and non-English papers than Google Scholar [14], the other
database used in the previous literature survey.

We used the following query, in title, abstract and key-
words: “Static code analysis” AND “tools” AND “detec-
tion” AND “Java”. We chose this query as it is the same
as in the previous literature study, with the exception of Java
being added.

We assumed that the previous literature review covers the
time period before 2020. Therefore, for this research, the
publication year had to be in or after 2020. This search re-
sulted in a total of 89 candidate studies.

The inclusion and exclusion criteria used were the same as
used in the literature review by Stefanović et al. [12], except
when explicitly stated otherwise. Inclusion criteria applied to
these papers were:

• Paper has to be limited to Computer Science. This is
not one of the inclusion criteria in the previous litera-
ture survey, but was used to make the search simpler and
faster.

• Paper has to be written in English.
• Paper has to present static analysis tools.
Exclusion criteria applied to these papers were:
• Duplicate papers should be removed.
• Paper should not already have been included in the sys-

tematic literature by Stefanović et al. [12]. This is not
one of the exclusion criteria in the previous literature
study, but was used for deduplication.

• If one author had more than one paper regarding the
same tool, only one paper should be included in the re-
view. This should be the paper that contains the most
tools.

• Papers focusing exclusively on static analysis security
tools should be excluded. This is not one of the ex-
clusion criteria in the earlier literature study, but was
used because security analysis sometimes represents a
distinct category within the CI pipeline and falls outside
the scope of this study.

This resulted in the following flow:
• 89 after search ->
• 85 after limiting to Computer Science ->
• 81 after limiting to English ->
• 79 after removing duplicates ->
• 78 after removing papers already included in the previ-

ous literature study ->
• 50 after reading title and abstract ->
• 21 after reading ->
• 17 after removing papers of authors with more than one

paper.
After applying the inclusion and exclusion criteria, we ex-

tracted SATs from 17 papers. The tools were not extracted
if:

• They are mentioned in related work, or
• They are not a static analysis tool, or
• They are a static analysis security tool, or
• They are not a tool for Java.



3.2 Results
Table 1 covers the papers of which tools were extracted with
their corresponding publication year.

Year Articles
2020 [15] [16]
2021 [17] [18] [19]
2022 [20] [21]
2023 [22] [23] [24] [25] [26] [27] [28]
2024 [29] [30]
2025 [31]

Table 1: Publication years of articles

Table 2 summarises the three most frequently mentioned
static analysis tools in the reviewed literature.

Tool Articles Mentions Total
in [12]

SpotBugs or [15] [17] [18] [19] [20] 4 13
FindBugs [22] [25] [28] [26]
PMD [17] [18] [19] [22] [25] 3 11

[26] [27] [28]
SonarQube [17] [20] [25] [26] [28] 3 11

[30] [29] [31]

Table 2: Static analysis tools mentions

Overall, 9 of the papers contain the tool SpotBugs, or its
predecessor FindBugs [32]. Together with the 4 mentions of
SpotBugs by Stefanović et al. [12], SpotBugs was the most
often mentioned tool with 13 mentions.

In addition to frequency of use, SpotBugs stands out from
other SATs by offering an easy to set configuration option. It
allows users to set the analysis scope through an effort op-
tion [33]. More information about the effort parameter can be
found in Section 3.3.

In contrast, PMD and SonarQube present several limita-
tions with regards to configurations. PMD has more than 400
built-in rules, which can be extended with custom rules [34].
As a result, choosing a set of configurations is harder, as the
rulesets would mainly differ in number and types of rules,
not analysis precision for the same task, which is the goal of
comparing configurations.

SonarQube, on the other hand, operates as a platform,
rather than an SAT alone [35]. The analysis is done on
servers, making it more opaque and more difficult to set up
for reliable energy measurements. Furthermore, the inclusion
of communication with servers and the internet make it harder
to create a controlled environment for energy measurements.

The benefits of SpotBugs having an easy configuration op-
tion through which analysis precision can be compared and
it being a stand-alone tool works well for this research. The
research is specifically meant to compare different configura-
tion options and measure the impact of those options. There-
fore, Spotbugs was chosen as the tool to use for RQ2 and
RQ3.

3.3 SpotBugs

SpotBugs [36] is an open-source static analysis tool for Java
that supports ten categories of bug patterns, including bad
practices and performance-related issues. It provides plug-
ins for common build tools and development environments,
such as Ant, Eclipse, Gradle and Maven.

Configuration
SpotBugs provides an effort configuration option with four
levels: “Min”, “Less”, “More” and “Max”. The documen-
tation reports that “Effort value adjusts internal flags of Spot-
Bugs, to reduce computation cost by lowering the prediction.”
[33]. Table 3 shows the SpotBugs documentation on the dif-
ferences between each effort [33].

Flags in Effort Level

FindBugs.java Description Min Less More Max

Accurate
Exceptions

Determine (1) what excep-
tions can be thrown on ex-
ception edges, (2) which
catch blocks are reachable,
and (3) which exception
edges carry only “implicit”
runtime exceptions.

✓ ✓ ✓

Model
Instanceof

Model the effect of in-
stanceof checks in type
analysis.

✓ ✓ ✓

Track
Guaranteed
Value Derefs
in Null Pointer
Analysis

In the null pointer anal-
ysis, track null values
that are guaranteed to be
dereferenced on some
(non-implicit-exception)
path.

✓ ✓

Track Value
Numbers in
Null Pointer
Analysis

In the null pointer analysis,
track value numbers that are
known to be null. This al-
lows us to not lose track of
null values that are not cur-
rently in the stack frame but
might be in a heap location
where the value is recover-
able by redundant load elim-
ination or forward substitu-
tion.

✓ ✓

Interprocedural
Analysis

Enable interprocedural anal-
ysis for application classes.

✓ ✓

Interprocedural
Analysis of
Referenced
Classes

Enable interprocedural anal-
ysis for referenced classes
(non-application classes).

✓

Conserve
Space

Try to conserve space at the
expense of precision, e.g.,
prune unconditional excep-
tion thrower edges for con-
trol flow graph analysis, to
reduce memory footprint.

✓

Table 3: Complete list of differences between SpotBugs efforts



Flags in Effort Level

FindBugs.java Description Min Less More Max

Skip Huge
Methods

Skip method analysis if
length of its bytecode is too
long (6,000).

✓ ✓ ✓

Table 3: Complete list of differences between SpotBugs efforts,
continued

4 Methodology
All of the code used for this research can be found on Zenodo
[8].

4.1 Projects and Versions
We conducted the measurements on the same set of projects
as the projects Zaidman examined [7]. These projects, their
build systems, the exact commit hashes used, and the total
amount of commits of the project can be found in Table 4.
For each project, the most recent commit with a successfully
passing CI pipeline was selected, as such commits provide a
higher degree of confidence in successful compilation.

Project Source Build Commit Amount of
System Commits

Cruise-control [37] Gradle #e30eaf3 1014
Elasticsearch [38] Gradle #39d2bb8 91711
JUnit Framework [39] Gradle #464022d 10262
OpenEMS [40] Gradle #fd6a70d 6342
Spring Boot [41] Gradle #0e56cd0 58761
Spring Framework [42] Gradle #8642a39 34130
Apache Flink [43] Maven #b152cde 37297
Apache Maven [44] Maven #a336a2c 15880
Apache Seatunnel [45] Maven #ca6447f 5149
Google Guava [46] Maven #782206b 7121

Table 4: Projects with build system, specific commits used for
measurements, and total amount of commits, sorted by build system

Most projects work with Java 17, except for OpenEMS,
which was configured to use Java 21, and Spring Boot, which
was configured to use Java 25.

Gradle version 9.2.1 was used, as it is the most recent ver-
sion of Gradle as of this moment and worked for all Gradle
projects. Maven version 3.8.6 was used, as this was required
by Apache Flink and worked for the other Maven projects.

For each project, the SpotBugs plug-in was added. Spot-
Bugs version 4.9.8 was used, along with plug-in versions
6.4.7 for Gradle and 4.9.8.2 for Maven. These versions are
all the current latest versions. Both the main and test files are
analysed.

For the Maven-based projects, parameter includeTests
was set to true, as to include the test files in the Spot-
Bugs analysis. Before the first run, we executed the com-
mand mvn clean install -DskipTests, to compile all
the code. Dependencies were also downloaded and cached
beforehand, to increase speed and reduce dependence on
the internet. For the measurements, we ran command mvn
-Dspotbugs spotbugs:spotbugs.

Gradle makes use of incremental builds, which means
that it only runs the tasks which are not up-to-date due to a
change in input or output [47]. As the code is not changed
in between runs, this is not a fair representation of the use
of a static analysis tool in a CI pipeline, where at least some
code is changed. In addition, a measurement of an entirely
up-to-date task would only measure the energy consumption
of checking whether all tasks are up-to-date, but not of
running SpotBugs with a certain configuration. Secondly,
Gradle runs all the tasks the current task depends on, due to
its inferred task dependencies functionality [47]. This means
that for a SpotBugs task, the build of the project is also
included, whilst this is a separate task in the CI pipeline. Be-
cause of these two reasons, we made the decision to first run
.\gradlew clean build -x test. Subsequently, for the
energy measurements, we ran .\gradlew spotbugsMain
spotbugsTest --rerun-tasks -x compileJava -x
compileTestJava -x classes -x processResources
-x testClasses -x processTestResources -x jar.
The command often excluded extra, project specific tasks
that were already run with .\gradlew clean build.

4.2 Setup for Energy Measurements
We performed the measurements with the tool EnergiBridge
[48]. It is simple, makes for reproducible work and is avail-
able for multiple platforms [49]. It measures energy by ac-
cessing the energy information by reading the Model-specific
Register. EnergiBridge is known to panic sometimes due to
an overflow error under high-load conditions [50]. Therefore,
a small change was made to the source code. This change is
explained as an answer to the GitHub issue [50].

We measured the energy consumption on one computer.
This was the Dell OptiPlex 7060 on Windows 10, with an In-
tel i5 8th Gen core. We chose a desktop PC over a laptop, as
the desktop is not battery powered, therefore having more sta-
ble measurements. The computer had a cabled internet con-
nection. We chose cabled internet as the cabled connection
has less interference and has a lower power consumption than
WiFi [51]. Moreover, energy consumption from a cable con-
nection is more stable than the consumption from a wireless
connection.

We placed the computer in an indoor room within a uni-
versity building, where external temperature fluctuations are
limited. We conducted measurements during weekdays when
the building heating system operates continuously, ensuring
relatively stable ambient temperature conditions throughout
the measurement period.

We closed all non-essential user-level applications prior to
the measurements. Furthermore, we turned off notifications
and killed unnecessary services that were running in the back-
ground. Lastly, we removed all external hardware peripher-
als, except for the power and Ethernet cables.

Before each measurement, a 5-minute warm-up of the CPU
was performed. We performed the measurements for each
single ruleset 30 times. A ruleset consists of a project, tool
and configuration. The amount of 30 measurements accounts
for enough measurements to take a reliable average of [52].
One minute of rest was taken between each measurement, to
prevent tail measurements.



One run of measurements consisted of running all the
projects with one effort, with one run being repeated 30 times.
Measurements were interleaved across projects rather than
being conducted in sequence for a single project. This makes
the measurements even less biased to external conditions. We
repeated the runs four times, each with a different effort.

We created automation batch scripts to streamline the exe-
cution of measurements and reduce manual effort.

4.3 Performance
To answer RQ3, we also considered the effectiveness of each
configuration. We assessed the effectiveness by comparing
the number of warnings reported by SpotBugs, which serves
as an indicator of the amount of detected issues. We extracted
the total number of warnings from the SpotBugs reports and
used it for comparison across configurations.

5 Results
5.1 Energy Measurements
For each project and effort, we conducted 30 runs. Runs
in which EnergiBridge failed to report a total energy con-
sumption value were considered invalid and excluded from
the analysis.

The collected data was visualised using a combined box
and violin plot, to illustrate both descriptive statistics and the
shape of the distribution of the data. An example of one of
these can be seen in Figure 1.

Figure 1: Energy consumption of different SpotBugs efforts on
project Apache Seatunnel, before outlier removal. Lower and upper
fences are first quartile and third quartile, with a line at the median.
The whiskers extend from the box to the farthest data point lying

within 1.5x the inter-quartile range from the box.

We removed outliers using the z-score outlier removal, ex-
cluding points that deviate more than three standard devia-
tions from the mean, |x̄ − x| > 3s. This resulted in distribu-
tions closer to normality, as can be seen in Figure 2.

After outlier removal, we compared sample means using a
bar chart. This graph is shown in Figure 3. The means per
project and effort can also be seen in Table 5.

We assessed statistical significance between configurations
using an unbalanced Friedman test. This non-parametric,
repeated-measures test accounts for paired runs across efforts

Figure 2: Energy consumption of different SpotBugs efforts on
project Apache Seatunnel, after outlier removal. Visualisation is the

same as Figure 1.

while handling the possible unequal number of measurements
per effort. The test produced a p-value for each project, which
can be seen in Table 5.

Project p-value
Friedman

test

Avg.
Energy

Min
(Wh)

Avg.
Energy

Less
(Wh)

Avg.
Energy
More
(Wh)

Avg.
Energy

Max
(Wh)

Cruise-
control

1,2× 10−4 0,5581 0,5735 0,6058 0,5837

Elastic-
search

3,4× 10−3 48,27 49,12 50,47 49,90

JUnit 7,0× 10−4 1,627 1,632 1,665 1,668
OpenEMS 2,8×10−12 6,988 7,059 7,223 7,194
Spring
Boot

8,5× 10−4 18,66 18,89 19,05 19,03

Spring
Framework

1,7×10−10 4,895 5,011 5,229 5,207

Apache
Flink

1,2×10−12 7,366 7,698 12,13 12,24

Apache
Maven

9,9×10−10 2,318 2,452 2,428 2,440

Apache
Seatunnel

9,5× 10−3 11,37 11,71 11,67 11,66

Google
Guava

5,8×10−11 0,9509 1,052 1,026 1,059

Table 5: Result Friedman test and average energy consumption per
project

Across all ten projects, effort level shows a statistically sig-
nificant effect on energy consumption. The Friedman test in-
dicates that effort configuration influences energy usage, with
p < 0, 0095 for all projects. This indicates that, in principle,
effort configuration influences energy usage across projects.

Post-hoc pairwise comparisons using Wilcoxon signed-
rank tests with Holm correction identify where those differ-
ences arise. The results of the Wilcoxon tests between in-
creasing effort pairs can be found in Table 6.



Figure 3: Average energy consumption per project per effort

Project Min/Less Less/More More/Max
Cruise-control 0,358 0,036 0,036
Elasticsearch 0,236 0,009 0,192
JUnit
Framework

1,000 0,857 1,000

OpenEMS 1,5 × 10−3 2,3 × 10−8 0,187
Spring Boot 0,014 0,234 0,851
Spring
Framework

0,013 7,7 × 10−7 0,413

Apache Flink 6,4 × 10−4 2,0 × 10−33 0,060
Apache
Maven

1,7 × 10−11 3,4 × 10−3 0,311

Apache
Seatunnel

0,047 1,000 1,000

Guava 2,1 × 10−7 2,0 × 10−5 2,8 × 10−6

Table 6: Holm-corrected Wilcoxon signed-rank post-hoc p-values
for adjacent effort level comparisons. Statistically significant

results (p < 0, 05) are shown in bold.
Statistically significant differences in energy consumption

were primarily observed for the Min/Less and Less/More
comparisons. Several projects, including OpenEMS, Spring
Framework, Apache Flink, Apache Maven and Guava, exhib-
ited highly significant differences for these pairs. In contrast,
most projects did not show a statistically significant increase
in energy consumption when moving from More to Max.
This suggests diminishing energy costs at the highest effort
levels. This pattern was consistent across both Maven and
Gradle builds, although statistically significant effects were

more frequent and pronounced in Maven-based projects.
In a small number of cases, energy consumption decreased

at higher effort levels, and these decreases were sometimes
statistically significant, such as for the More/Max comparison
in Cruise-control and the Less/More comparison in Apache
Maven and Guava. These anomalies indicate that the rela-
tionship between effort level and energy consumption is not
strictly monotonic and may be influenced by project-specific
characteristics or build behaviour.

Collectively, these results indicate that the most conse-
quential energy increases tend to occur when moving from
lower to moderate effort levels, while the marginal energy
cost of escalating from More to Max is typically limited.

5.2 Performance

To address performance for RQ3, we measured the amount
of SpotBugs warnings found per project across effort levels.
In most projects, higher effort yields more warnings, consis-
tent with deeper analysis uncovering additional findings. In
combination with the higher energy consumption for higher
efforts, a trade-off is established between energy consump-
tion and performance.

We divided the warnings by the energy consumption for
each project and each effort, to establish which effort is the
most efficient. These results can be found in Figure 4. The
most efficient effort is Min, which found most warnings per
unit of energy for all projects except Spring Framework. For
Spring Framework, effort Less was the most efficient.



Figure 4: Amount of warnings divided by energy consumption per project per effort

6 Discussion
SpotBugs Most Commonly Mentioned SAT
Whilst SpotBugs was found as the most commonly men-
tioned tool, it is good to note that it is a tool only meant
for Java. Because RQ1 focused exclusively on Java, it is
likely that static analysis tools targeting other programming
languages are more prominent outside the context of Java.
Future work could therefore extend this research by inves-
tigating the energy impact of additional static analysis tools
across a broader range of programming languages.

True Representation Execution CI Pipeline
In this study, Gradle’s incremental build feature was delib-
erately disabled. However, in real-world CI pipelines, incre-
mental builds can be employed, meaning that the experimen-
tal setup does not fully reflect typical CI executions. Future
work could investigate the impact of incremental builds on
energy consumption, comparing scenarios with and without
caching to make CI more sustainable.

Comparison to Previous Work
The amounts of energy consumption found in this research
are similar to the amounts found by Zaidman [7]. The en-
ergy consumption measured in this research show a rough
correspondence with project activity: larger projects with
more commits, such as Elasticsearch and Spring Boot, tend
to require more energy for both building and static analy-
sis, whereas smaller projects like Cruise-control and JUnit
Framework require considerably less.

Energy Consumption in Context
To put the energy consumption as displayed in Table 5 into
context, we took the the largest measured energy consump-
tion and multiplied it by the amount of commits per year. The
largest energy consumption was the consumption of Elastic-
search with effort More. Together with the amount of yearly
Elasticsearch commits [5], we end up with an energy con-
sumption of roughly 485 kWh/year. This represents roughly
32% of average EU household consumption [53].

6.1 Threats to Validity
We used EnergiBridge, a software-based energy measure-
ment, in this study, for its practicality and repeatability. How-
ever, software-based measuring is less accurate than direct
hardware measurements [54]. Consequently, while the results
are suitable for comparative evaluation, the absolute energy
values should be interpreted cautiously.

Furthermore, whilst we attempted to minimise temperature
fluctuations, the temperature could still have influenced the
measurements. The same holds for background tasks.

As EnergiBridge occasionally failed to report the total en-
ergy consumption for a task, it was not always possible to ob-
tain 30 valid measurements per ruleset. Additional measure-
ments can be conducted in future work to ensure a consistent
set of 30 reliable observations for each ruleset.

7 Responsible Research
In terms of sustainability, this research required a substantial
number of SpotBugs executions. Most of them were neces-
sary to ensure both the tool and the automation worked, so



only a few were actually conducted as measurements. As an
estimate, the total amount of executions combined to an en-
ergy consumption of over 8.000 Wh. From a sustainability
perspective, this approach is suboptimal, as a smoother im-
plementation would have reduced the number of runs, and
consequently, reduced the environmental impact. Addition-
ally, a more in-depth manual inspection of bugs, rather than
repeated executions following incremental fixes, could have
further reduced the number of runs. However, the insights
from this research can contribute to more sustainable soft-
ware engineering.

The arguments for excluding and including papers in the
literature review are clearly stated and decisions were made
critically. However, it is still human-decision making, which
may differ per person. To ensure the decision making on
whether or not to include a paper is less biased, this can be
replicated independently by another researcher.

In terms of reproducibility, all relevant configuration and
setup details are fully documented. The scripts and code used
for the research are publicly available on Zenodo [8], which
makes the methodology very reproducible. The collected data
is available on Zenodo [8] as well, as to contribute to open
science.

8 Conclusions
This study provides initial empirical insights into the energy
consumption of static analysis in CI pipelines. The systematic
literature review showed that SpotBugs is the most frequently
mentioned Java static analysis tool. Furthermore, it offers
configurable effort levels suitable for energy measurements.
Energy measurements across 10 projects revealed that energy
consumption is sensitive to SpotBugs effort in all projects,
with almost all higher efforts resulting in higher energy con-
sumptions. The largest energy differences occur at Min/Less
and Less/More, whereas the increase More/Max is rarely sig-
nificant. Performance analysis showed that increased effort
improves bug detection in projects, but comes with a higher
energy consumption. The most efficient effort is Min, which
found the most warnings with regards to energy consumption
for 9 out of 10 projects.

These results highlight a clear trade-off between energy
consumption and analysis depth in static analysis, empha-
sising the potential for energy-efficient configurations in CI
pipelines. Future work could extend this study to other
programming languages, additional static analysis tools,
and real-world CI setups employing incremental builds and
caching strategies, contributing to more sustainable software
engineering practices.
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A LLM Prompts
This section discusses prompts that were given to Large Lan-
guage Models for certain tasks during this project.

A.1 Installing EnergiBridge
“Write a ready-to-run PowerShell script that downloads and
installs Rust, verifies it, and builds EnergiBridge.”

A.2 Added SpotBugs plug-in
The error messages that appeared after attempting to run
SpotBugs were given to ChatGPT and possible fixes were im-
plemented.

A.3 Creating Automation Script
“I want to create a Windows batch script that runs energib-
ridge -o gauva spotbugs.csv –summary guava spotbugs.bat
and then energibridge -o maven spotbugs.csv –summary
flink spotbugs.bat. I want it to repeat that 5 times. Every time
one of the EnergiBridge commands is executed, it leaves a
line like Energy consumption in joules: 2667.103759765625
for 46.30371 sec of execution. at the end. I want to store all of
the lines for the guava command in guava summary.csv and
for the maven command in maven summary.csv, with each
run adding one line to the csv.”

After that, we manually expanded the script. Found bugs
were reported to ChatGPT and recommended fixes were im-
plemented after critical assessment.

A.4 Warming Up CPU
“Can you create a line for a batch script that makes sure the
CPU is warmed up for five minutes?”

A.5 Plots
Box+violin
“Can you create a Python script for a Jupyter notebook that
creates a box+violin plot of the data in the csv column ”en-
ergy”, which is in the file ”guava summary extracted”, which
is in the folder spotbugs/effort min?”

We asked further prompts to make the plots usable for the
poster, with a transparent background and different colours,
and for this paper. After that, the following prompt was asked
to create one figure with four box plots per project:

“I have this ipynb, can you change it such that it creates
one figure per project with four box plots in that for each of
the efforts?”
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Grouped Bar Charts
“Can you now create a bar chart of these dfs? There should
be one bar chart, grouped per project, and the four categories
of that should be min less more and max.”

“Can you change it to have a broken y-axis such that the
differences are clearer? See the image for the cutoff points”

“Can you create a bar chart that’s the same as the previous
ones but divides the warnings by the energy means?”

Statistical Analysis
“Can you give a python script that prints the results of paired
one way ANOVA?”

After providing error messages to ChatGPT, it wrote a
script for Friedman test with post-hoc analysis.
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