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Abstract. A self-supervised classification algorithm is proposed for
detecting and isolating sensor faults of health monitoring devices. This is
achieved by automatically extracting information from failure investiga-
tions. This approach uses (i) failure reports for extracting comprehensive
failure labels; (ii) recorded data of a faulty monitoring device and the
information of the failure type for selecting fault-sensitive features. The
features-label pairs are then used to train a classification algorithm, so
that when a new set of measurements becomes available, the algorithm
is capable of identifying with a high accuracy one of the possible fail-
ure types included in the training data set. The proposed approach is
successfully applied to the failure investigations conducted on a low-cost
wearable device, displaying similar challenges encountered in SHM.

Keywords: Sensor failures · Monitoring device failure ·
Self-supervised machine learning · Natural language processing · SHM

1 Introduction

Advanced monitoring strategies are developed for tracking the health status of
engineering structures (Structural Health Monitoring, SHM) [1,2] and of people
[3,4] to make inferences on the health condition and support decisions, such as
preventive actions to restore normal conditions. Nonetheless, while the recorded
data is enabling the investigation of features, correlations and associational evi-
dence, it is not sufficient for the identification of causal relationships or the
distinction of confounding sources. Domain knowledge and the availability of a
causal model, enable one to move from accurate-but-wrong predictions purely
based on data (obtained from a wrong data-based model and/or corrupted mea-
surements) to explainable and interpretable inferences needed to support deci-
sion making. To make inferences on the health condition of a system, mea-
surements must be informative, reliable and accurate. However, during oper-
ating conditions, a monitoring device might be prone to unnoticeable failures
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caused by poorly manufactured sensors and/or electronics, problems with cable
harnesses, ageing effects, improper handling, electromagnetic interference, and
environmental factors [5]. This is one of the key bottlenecks undermining the
reliable deployment of monitoring technologies. In SHM, a faulty monitoring
device could lead to an accurate-but-wrong assessment of the remaining useful
life of a structure [5]. In health monitoring devices, it can cause fatal conditions
to be missed, over-treated and it might produce health anxiety or fatigue [3,6].

Currently failures of the monitoring device are investigated by (i) periodic
inspection; (ii) implementing an additional monitoring system. These investiga-
tions are costly and do not ensure the detection of a faulty monitoring system [5].
As a result, several approaches have been developed for automatic sensor fault
detection (has a fault occurred?), isolation (what is the type, location and extent
of the fault?) and reconstruction and/or mitigation (can the data be corrected
to reduce the fault effects?). Broadly speaking, they can be grouped into [5,13]:
model-based, knowledge-based and data-driven approaches. These approaches
have been used in different application domains: chemical process monitoring
[7], aircraft control applications [8,9], wearable health monitoring devices [10]
and SHM applications [1,2,5,11,12,23].

The identification of a faulty sensor in SHM is particularly challenging since
it would require the identification and distinction of the monitoring failures
from structural failures and/or operating and environmental conditions. This is
one of the key bottlenecks that cannot be easily circumvented by using only
data-driven approaches [14–19]. One way around this is to employ a supervised
machine learning approach based on discriminative features in the measurements
and directly pair them with failure labels of the structure and/or of the monitor-
ing device. This is extremely challenging, since it would require an engineer to
manually and accurately label measurements in real-time [1,2,20] and to identify
discriminative features.

This paper proposes a self-supervised classification algorithm for sensor fault
detection and isolation that leverages additional information provided in failure
investigations of the monitoring devices. In particular, it is based on exploiting
the domain knowledge on monitoring device failures by automatically extract-
ing comprehensive failure labels from failure reports (exploiting the techniques
developed in [26]). The data recorded with faulty and healthy devices is then
used to select discriminative features required to build a training data set of
features-label pairs. This self-supervised classification algorithm is trained so
that when a new set of measurements becomes available, one of the possible
health conditions included in the training data set can be isolated. The feasi-
bility of the proposed approach is shown through its application to the failure
investigations carried out on a low-cost wearable device based on an Arduino
programmable board with 4 sensors. This application displays similar challenges
encountered in SHM: (i) the sensors record various quantities at different rates;
(ii) operational and environmental conditions affect the measurements; (iii) a
sensor might display similar failure types; (iv) a limited data set of recorded fail-
ures is available (117); (v) imbalanced number of elements in the training data
set. Three classification approaches are compared: Näıve Bayes, Support Vec-
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tor Machines and Artificial Neural Networks. Finally, the implications of using
Natural Language Processing approaches for extracting labels and discriminative
features to train each classification approach within the proposed self-supervised
classification algorithm for sensor fault identification are discussed.

2 Detection and Isolation of a Faulty Sensor in Health
Monitoring Devices

The proposed approach aims at detecting and isolating a faulty sensor in health
monitoring devices with a self-supervised machine learning strategy by automat-
ically extracting information obtained during failure investigations.

Failure investigations of a device, system or structure are carried out by an
expert to identify the failure root-cause and propose remedial actions [21,22]. A
failure investigation include the analysis of the measurements collected in operat-
ing conditions before and after the failure occurred. Moreover, it uses additional
laboratory experiments to identify the root-cause of the failure. Once the failure
has been identified a failure report is written. A failure report has a standard
outline [21,22] and it consists of sections written as free text and images. The
failure effects observed during operating conditions are described, together with
a brief description of the patterns observed in the measurements. Other sec-
tions focus on describing the steps taken to identify the root-cause of failure and
to reproduce it in laboratory conditions and the remedial actions to be imple-
mented. Often it also includes a section on how to manage similar failures in the
future. Currently, the information collected during failure investigations is used
for quality assessment, to support decisions about design changes and schedule
maintenance [21,22]. To the best of the authors’ knowledge, this information
has never been used to detect and isolate the failure of a monitoring device. The
proposed approach consists of three steps, as shown in Fig. 1.
Step 1: Data Collection. It is proposed to use the information obtained during
failure investigations together with the data obtained in operating conditions.

Fig. 1. Schematic representation of the proposed approach
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In particular, failure reports, measurements obtained with the faulty device and
measurements collected with the healthy device are used together to automati-
cally evaluate the relationship between patterns in the data (features) and the
failure type (label). In the remaining of the paper, it is going to be assumed that
the data from failure investigations is available.
Step 2: Automatic extraction of features-label pairs describing the monitoring
device failure types: (i) Labels extraction and failure report clusters identifica-
tion. The strategy based on Natural Language Processing (NLP) proposed in
[26] is employed to extract comprehensive labels from the failure reports; (ii)
Feature extraction from measurements. It is proposed to select discriminative
features based on the information obtained during the failure investigations.
Step 3: Classification of the monitoring device health condition for a new set
of measurements. A classification algorithm is trained and used to detect and
isolate one of the possible sensor fault classes included in the training data set.
Three standard supervised classification algorithms are investigated [27]: Näıve
Bayes, Support Vector Machines and Artificial Neural Networks.

2.1 Review of Labels Extraction and Failure Report Clusters
Identification

Manually extracting comprehensive labels from the failure reports can be time-
consuming. A strategy consisting of four steps for efficiently identifying the fail-
ure types with little input from the user was proposed in [26]:

1. Report to Text: The text is extracted from the failure reports (e.g. by using
the docxpy python package).

2. Preprocessing: Relevant words only are retained by performing: tokenization;
removing stop words; part of speech tagging; and lemmatization.

3. Failure reports as vectors: Term Frequency-Inverse Document Frequency (TF-
IDF) [25] is used in combination with Bag of Words (BoW) [25] to refine the
list of words. These words and their TF-IDF score are then used to represent
each document as a vector by considering those words whose TD-IDF score
is above a user-specified threshold.

4. Failure report clustering: Unsupervised (cluster centres randomly allocated)
or semi-supervised (initial clusters centre assigned by manually selecting one
report from each failure type) K-means clustering is implemented.

5. Failure type label assigned to a cluster: The label is manually extracted from
a single report chosen within each cluster. Alternatively, the TF-IDF Centroid
algorithm can be implemented.

For small failure data sets, with unbalanced classes and similar failure types, the
semi-supervised clustering procedure would lead to more accurate results [26],
and would therefore yield more accurate semi-supervised classification results.
Nonetheless, it is important investigating if the unsupervised clustering would
lead to sufficiently accurate self-supervised classification results.
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2.2 Learning Discriminative Features from Failure Investigations

Preprocessing of the raw data is an essential step to reduce the dimensionality of
the input vector and to improve the accuracy of the results, as well as to reduce
the computational cost required by the algorithm to classify the data. Redundant
features can hinder the classification process. We propose to extract features
of the measurements linked to each failure type taking also into account the
different type of sensors available. These features are critical for differentiating
the failure types within the same sensor, and such, they need be robust with
respect to the varying operational and environmental conditions.

Broadly speaking the features can be grouped into: (i) statistical time domain
features (e.g. average, variance, skew, kurtosis, Root Mean Square); (ii) fre-
quency domain features; (iii) time-frequency domain features (e.g. spectrograms,
wavelet transform); (iv) features related to a particular failure type (e.g. number
of consecutive zeros or constant values; sudden variations in slow varying sen-
sors); (v) features for distinguishing different failure types of the same sensor.
While (i) to (iii) are general, the features in (iv) and (v) are application spe-
cific and require domain knowledge. This is because these features capture the
known effects of each sensor fault on the measurements (see for example those
summarised in Table 2). This domain knowledge is readily available in the failure
reports, since expert technicians exploit these features for isolating the failure
root cause during failure investigations. Therefore, the discriminative features
can be learned by extracting the information from the text in the report and/or
from the figures provided. This can be done manually or automatically.

2.3 Classification Algorithms

The three classification algorithms are briefly reviewed. The reader is referred
to [27] for more in-depth descriptions.

Näıve Bayes [27] is the most simple technique for constructing a classifier. It
is based on assuming statistical independence between the values that certain
features observed in the data will take, and it yields the probability of the data
belonging to a class conditional on the occurrence of a set of values of these
features. In particular, it uses Maximum a Posteriori to assign a class label.
This approach requires specifying the number of classes, and the training data
set for each class. Moreover, it is usually implemented by specifying a distri-
bution of the likelihood function (usually a Gaussian with mean and variance
obtained from the feature values extracted in each class). Näıve Bayes displays
good performances even when the amount of training data available is limited.
This classification is computationally efficient and therefore, this approach can
be readily applied to large test data sets. However, since it assumes independence
between features, the results might not be as accurate as when other methods
are implemented, such as Support Vector Machines.

Support Vector Machine (SVM) is a very popular non-probabilistic super-
vised classification approach [27]. It is based on finding a hyperplane that best
separates the training data. The parameters of this hyperplane are obtained
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by solving a convex optimization problem. In particular, the training data set
is assumed to be separable in the feature space, so that it is possible to iden-
tify a “margin”, that is the smallest perpendicular distance between the deci-
sion boundary and the closest of the data points. The data points closest to
the decision boundary are the so-called support vectors, and they lie on the
maximum-margin hyperplanes in the feature space. In its simplest form, the
margin is approximated by using a hyperplane in the original features space
(linear classification) or by using the so-called “kernel trick” to transform the
features space so that a linear separation can still be employed to address a
non-linear classification problem [27]. The hyperparameters of SVM are tuned
using the cross-validation approach. SVM is usually not efficient when dealing
with large amount of data, as compared to other classification algorithms.

The Artificial Neural Network (ANN) is a versatile approach that uses para-
metric nonlinear functions from a set of input variables to a set of output
variables. These functions are defined as linear combinations of nonlinear basis
functions and adaptive parameters, the so-called weights [27]. The weights are
unknown parameters of the ANN that need to be optimised to improve the
accuracy of classification results. The ANN implementation steps are:

1. ANN architecture setup
Selection of: (i) number of nodes of the output layer (number of classes to
be identified); (ii) performance metric (loss function); (iii) activation function
for the output layer; (iv) number of nodes of the input layer (corresponding
to the input features); (v) number of hidden layers; (vi) number of nodes of
the hidden layer; (vii) activation function for the hidden layers.

2. Optimisation setup
Selection of: (i) optimization algorithm; (ii) learning rate; (iii) batch size; (iv)
number of epochs (complete passes through the training data set).

3. Network training
Steps: (i) Forward propagation: all the training data goes through the network
and labels/class predictions are made; (ii) Error in the predictions is assessed
by using the loss function; (iii) Backward propagation is used to compute
the error for each node of each hidden layer, and to compute the derivatives
of the error with respect to the weights; (iv) parameters of the optimization
setup, such as the optimization algorithm, learning rate, epochs, batch size
and weights initialisation are adjusted to reduce the total loss. Iterations are
continued until a sufficient accuracy is achieved.

4. Tuning of Network parameters on validation data set
The ANN architecture setup parameters, such as the activation function of
the hidden layers, the number of nodes of the hidden layers, number of hidden
layers are adjusted to reduce the total loss; Iterations are continued until the
accuracy does not improve any further.

5. Test on the ANN is performed by using unseen data and assesses the actual
(unbiased) performance of the ANN

Compared to the other approaches presented, ANN requires more model param-
eters to be selected and optimised to increase the accuracy.
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Table 1. The seven induced failures and effects on recorded data [26]

Failure type Effects on measurements Occurrences

F1 = (GSR, analog, pin) Jumps to 521 or constant values 24

F2 = (GSR, ground, pin) Jumps above 1000 or constant values 24

F3 = (GSR, burnt, resistor) Signal distorted 16

F4 = (accelerometer, ground, pin) Jumps to higher values 11

F5 = (accelerometer, power, pin) Jumps to lower values or zeros 11

F6 = (humidity, power, pin) Jumps to different values or −300% 18

F7 = (temperature, ground, pin) Jumps to different values or −127 ◦C 13

3 Case Study: Low-Cost Wearable Device

A low-cost wearable device is chosen for investigating 7 failure types while keep-
ing the costs low. The device consists of a programmable Printed Circuit Board
(Adafruit Metro Mini 328), a temperature sensor (digital Dallas Temperature
Sensor), a humidity sensor (digital Grove - Temperature & Humidity Sensor
Pro), an accelerometer (analog Triple Axis Accelerometer BMA220(Tiny)) and
a Galvanic Skin Response (GSR) sensor. The GSR Serial Port Readings are in
the range 0–1023, not converted into skin resistance (ohms) in post-processing.
The faulty sensors independently investigated, together with the effects on the
measurements caused by the failure, are specified in Table 2.

A total of 117 failure instances were manually induced (same as reported in
[26]), and an imbalanced number of occurrences was considered for each failure
type (Table 1). These failures represent typical failures of small electronic devices
[24]. Solder joints and sensor connectors failures were reproduced by disconnect-
ing wires at the interface with the PCB. The burnt resistors failure type was
induced by adding a resistor to the analog and power pins of the GSR sensor.
Data was recorded during controlled and operating conditions, A failure report
was written each time a failure occurred. Data and reports are stored within a
Structured Query Language database for easy retrieval of information.

For the label extraction, the same analysis reported in [26] was carried out.
Specifically: the TF-IDF score threshold was set to 0.0019. The K-means imple-
mentation from the sklearn package [28] was used where the cluster number was
set to 7. For the unsupervised K-means clustering with 100 starting points [26],
a maximum accuracy of 83.7% was observed, and a lowest of 70.1%. However, it
was noted that a failure type (accelerometer, power, pin) could be entirely miss-
clustered. A higher accuracy was obtained when considering semi-supervised
K-means clustering (assigning one report per failure type), and although a small
number of reports was miss-clustered the overall performance of label extraction
was able to reach a certain target accuracy while at the same time reducing the
setting up time [26]. Based on the information contained in the failure reports,
the discriminative features reported Table 2 were considered. A total of 73 fea-
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Table 2. Discriminative features selected based on failure investigations

Sensor Selected features To detect

All sensors Average, variance, skew, kurtosis Time domain variations

Accelerometer Root Mean Square Baseline changes

Accelerometer Consecutive recorded values of zeros Power pin failure

Accelerometer First two frequencies peak magnitude Failure differentiation

Accelerometer First two frequencies peak position Failure differentiation

Temperature ΔT = max|T(ti) − T(ti+1)| > 2 ◦C Sudden jumps

Temperature Most Frequent T (TMF) when ΔT > 2 ◦C Ground pin failure

Temperature Number of occurrences of TMF Intermittent failure

Humidity ΔH = max|H(ti) − H(ti+1)| > 2% RH Sudden jumps

Humidity HMF when ΔH > 2% RH Power pin failure

Humidity Number of occurrences of HMF Intermittent failure

GSR Maximum value of autocorrelation Analog/Ground failure

GSR Minimum value of autocorrelation Analog/Ground failure

GSR maxΔGSR(ti) = (max|GSR(ti) − GSR(ti+1)|) Analog/Ground failure

GSR maxGSR(t∗) with (t∗) = argmaxΔGSR(ti) A/G/R failure differ

GSR minGSR(t∗) with (t∗) = argminΔGSR(ti) A/G/R failure differ

GSR GSRΔt: constant GSR for maxΔt A/R failure differ

GSR length of maxΔt Detect GSR failures

tures were considered (considering each direction x, y and z measured by the
accelerometer separately), and the min-max normalisation was implemented.

For the classification, the data set includes the 117 failure instances and a set
of 15 measurements obtained with a working device (with 13 used for training).
Therefore, a total of 8 classes are considered: 7 for each type of failure and one for
the working condition. The same training and testing data-split (80–20) is used
in each approach, so that the sums of the predicted failure numbers in each row of
each the confusion matrices are the same. A total of 100 runs for different splits
of the training-validation data sets are evaluated for tuning the hyperparameters
of SVM and ANN. The hyperparameter used were: For SVM: kernel = sigmoid,
C = 1000, γ = auto and the decision function is one versus one. For ANN: 2
hidden layers, 189 hidden nodes, ReLU activation function, regularizer: 0.00199,
learning rate: 0.01703, number of epochs is 159. Early stopping is employed for
the ANN, such that the best performing model on the validation data is saved.
The results obtained in terms of average accuracy (evaluated across the 100
runs of the algorithms) are summarised in Table 3. The supervised classification
refers to the case where all the correct labels are manually assigned, and it is
used to assess the robustness of the discriminative features. The semi-supervised
and self-supervised classification refers to the use of labels extracted with the
semi-supervised and unsupervised K-means, respectively.
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Table 3. Average accuracy obtained with three classification algorithms

Classification Näıve Bayes SVM ANN

Supervised 0.926 0.963 0.967

Semi-supervised 0.852 0.898 0.893

Self-supervised 0.704 0.870 0.874

As expected, all the classification algorithms perform better when the labels
are manually extracted and assigned by the user. It can also be observed that
overall, the SVM and ANN perform better in terms of mean accuracy than Näıve
Bayes in all types of learning even if both SVM and ANN can sometimes achieve
lower accuracy scores across the different training-validation data split. For the
self-supervised case, the ANN yields the best performance while in the semi-
supervised case SVM performs best. Overall, Näıve Bayes has provided a good
compromise in terms of model set-up, computational cost and accuracy.

4 Conclusions

A self-supervised machine learning strategy that enables the detection of a mon-
itoring device failure, and the identification of the failed sensor and the type
of sensor failure has been proposed. This approach uses measurements obtained
with a healthy monitoring device, measurements obtained with a faulty device
and also failure reports obtained during failure investigations. The process of
extracting labels from failure reports is sped up by using an unsupervised NLP
strategy and the classification is improved by selecting discriminative features
based on failure information. Once the features-label pairs are constructed, Näıve
Bayes, SVM and ANN were considered and compared.

A low-cost monitoring device was investigated. A limited data set charac-
terised by four different faulty sensors, two of which displayed multiple failure
types and an imbalanced number of failure were considered. Seven failure types
were manually induced, and measurements with different sensors were recorded
during operating and testing conditions. Failure reports for each failure inves-
tigated were written, and paired with the recorded data. Moreover, 15 sets of
measurements were recorded with the healthy monitoring device.

It was shown that the discriminative features were robust with respect to
the operating and laboratory conditions investigated, with average accuracy of
the failure types (supervised) classification above 90% for all the classification
methods. Regarding the label extraction procedure, it was shown that when
dealing with small failure data sets, with unbalanced classes and similar failure
types, that the unsupervised clustering procedure can lead to sufficiently accu-
rate (self-supervised) classification results, yielding a mean accuracy for health
classification of the monitoring device of above 70% for all the classification
approaches. Semi-supervised classification yielded an average accuracy of above
85%, with ANN and SVM yielding similar performance.
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