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Chapter 1

Preface

The research field of computational finance searches among other things for
new and efficient methods to price financial products. In this thesis we will
discuss the refinement of a method for pricing (American) options using
Monte Carlo simulations. The first chapter will give a short introduction to
the pricing of American options, and why we need Monte Carlo simulations.

The method we will be refining in this thesis is known as the stochastic
grid method and is described by Jain, S. and Oosterlee, C.W. in [9]. The
stochastic grid method is a method that combines Monte Carlo simulations
and least squares regression to obtain prices for American options in par-
ticular. By combining Monte Carlo simulations and least squares regression
the computational effort compared to ordinary Monte Carlo simulations for
American options can be significantly improved. However the current ver-
sion of the stochastic grid method is still computationally rather expensive
as we will see in chapter 3. The first research question we will address in
this thesis is:

”How can we improve the stochastic grid method in order to decrease
computational effort?”

After improving the stochastic grid method so that computational effort is
reduced, we will focus on the second research question:

”How can we adapt the improved stochastic grid method for different
models for the asset price?”

The current version of the stochastic grid method is so far only applicable if
the Black-Scholes dynamics are used to model the asset price. For practical
applications however it is a useful addition when we can also use models in
which the interest rate and/or the volatility is stochastic. In this thesis we
will focus on the Black-Scholes Hull-White model with stochastic interest
rate in chapter 6, the Heston model with stochastic volatility in chapter 7
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and the Heston-Hull-White model with stochastic interest rate and volatility
in chapter 8.

In the conclusion at the end of this thesis we will give a concise answer to
the research questions.
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Chapter 2

Introduction to American
option pricing

In this chapter a short introduction will be given to American option pricing.
In order to do this thoroughly we will take a short look at what an option
actually is, then we will see how we can price these options, and give a short
explanation what the difficulties are if we want to price American options.

2.1 European Options

An option is a contract between two parties for a future transaction on a
prespecified time, for a certain price. To make this formal definition a little
more tangible we will look at the more practical definitions of a European
call option and a European put option, the two most simple forms of options.
Note that in option context we use the term ’asset’ to describe any financial
object whose value is currently known, but can change in the future.

European call option: A European call option is a contract between
the option holder and the option writer, where the option holder has
the right but not the obligation to purchase a certain asset from the
option writer for a prescribed price at a prescribed time.

European put option: A European put option is a contract between the
option holder and the option writer, where the option holder has the
right but not the obligation to sell a certain asset to the option writer
for a prescribed price at a prescribed time.

The prescribed asset in the option contract is also known as the underlying.
The time at which the transaction may take place in the future is known
as the expiration date or simply expiration and the prescribed price in the
contract is known as the strike price or strike. So, mathematically we can
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say that at expiration time, T , we can write the value of an option with
strike X as a function of the asset price at time T , ST :

h(T, ST ) = (Ψ (ST −X))+ Ψ ∈ {−1, 1}

Where Ψ = 1 for a call option and Ψ = −1 for a put option, and the notation
(x)+ stands for max(x, 0).

Now in case of a put option as well as a call option the option writer will
receive a certain amount of money, the option price, from the option holder
when he buys the contract. In order to see why this make sense consider
the following example:

Suppose that today, person A writes a European call option that gives person
B the right to buy 100 shares of Royal Dutch Shell for �2500 a year from
now, so after a year we could have one of two scenario’s:

• The actual value of 100 shares of Royal Dutch Shell is more than
�2500, person B will exercise his option and buy the shares from
person A. If he would wish to do so he could then sell his shares
immediately and make a profit.

• The actual value of 100 shares of Royal Dutch Shell is less than �2500,
person B will let the option expire without exercising, hence making
a loss nor a profit at expiration.

Clearly at expiration the option holder, person B, has no risk of making
a loss. But the option writer, person A, on the other hand will certainly
not make a profit at expiration but might make a potentially unlimited
loss. Clearly the option writer will need some sort of compensation for this
imbalance at expiration. So the person B will need to pay person A a certain
amount now, known as the option price or value of the option. The difficulty
lies in determining this option price.

2.1.1 Determining the European option price

As described above, the challenge is to find a good way to determine the
option price. There are several methods for pricing (European) options.
Which method we can use depends on the model we use for the price of
the underlying. The simpler the model for the asset price, the easier it
is to determine the option price, but at the same time usually the more
inaccurate the results. Because if we take a very simple model for the asset
price, like the Black-Scholes model, where the asset price follows a geometric
Brownian motion with constant drift and variance (in finance governed by
the volatility parameter), we can for European options determine the option
price analytically. In practice however the interest rate and also the variance
aren’t constant. Because we know so much about this model it is usually the
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model that we start from, to later expand the model to stochastic interest
rates and/or volatility.

For a little more involved models analytic solutions usually aren’t available
so we will need to resort to some form of approximation for the option price.
Examples of these type of methods are the COS-method, described by Fang
and Oosterlee ([6]), or Monte Carlo methods, as described by Glasserman
in [8]. The COS-method approximates the option price using Fourier-cosine
expansions. Monte Carlo methods are based on path simulations, in order
to approximate the option value. In this thesis we will be focussing on a
special type of Monte Carlo simulations.

2.2 American options

Now that we have seen a global overview of the simplest form of options, the
European put and call option, it is time to introduce the little more involved
type of option that will be studied in this thesis, the American option. An
American put or call option is the same as a European put or call option,
but in addition the holder may choose to exercise the option at any time
prior to expiration. As can be imagined this makes pricing these options a
lot more involved than pricing European options, because now we will also
need some way of determining when the option will be exercised in order
to obtain an accurate option price. Here we always assume a worst case
scenario for the option writer, hence we assume that the option holder will
exercise optimally.

2.2.1 Determining the American option price

As described above it will be harder to price an American option than it was
to price a European option. This will actually only hold for an American put
option. Because it can be shown that under the assumption of an efficient
market, and the no arbitrage principle (you can never make a riskless profit
bigger than the interest rate on a bank account) that in fact you will never
exercise an American call option before expiration, and hence the price of an
American call option will be the same as the price of a European call option,
providing that no dividends are paid during the lifetime of the option. Then
we can simply determine the price of the European call option in order to
find the price of the American call option. So we will devote our attention
in this thesis to pricing American put options.

For American put options it often is advantageous to exercise before expira-
tion. There will no longer be an analytical solution for the option price, even
if we assume that the asset price can be modeled by a very simple model
like the Black-Scholes model. So now we always need to use some form
of an approximation method. The COS-method, mentioned for European
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options, can also be used for pricing American options, but in this report
we will devote our attention to a Monte Carlo method. Clearly it will be
much harder to price an American option using Monte Carlo methods than
it is to price European options using Monte Carlo. That is because at each
timestep we have to determine whether it is optimal to exercise or hold. We
have to go backwards in time, using the fact that at expiration we have that
the value of the American put is the same as the value of the European put
option hence at time T we have that:

VT = (X − ST )+

But now at each timestep 0 ≤ t ≤ T we need to determine the option value
as:

Vt = max {X − St, Qt(St)}

Where Qt(St) is the so called continuation value of the option at time t with
asset price St. This is the value of the option if we don’t exercise at time
t. The difficulty in pricing American options using Monte Carlo methods
lies in efficient computation of the continuation value, in a way that doesn’t
require the use of too many asset paths and computation time.
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Chapter 3

Stochastic Grid Method

In this chapter we will describe the Monte Carlo method we will be studying
in this report. The stochastic grid method uses Monte Carlo situations in a
clever way, combined with least squares regressions in order to approximate
option prices of (high-dimensional) American options efficiently. After giv-
ing a thorough introduction of the stochastic grid method in its most simple
form we will also do some simulation experiments using this method, and
make a comparison to the Longstaff-Schwartz method (another Monte Carlo
method suitable for American options) in order to gain some insight in the
performance of the stochastic grid method. Finally then we will take a look
at a first opportunity to make the method more efficient in the form of a
bundling strategy, where we bundle asset paths at each time step to gain
computation speed.

The stochastic grid method (SGM) as described in [9] provides us a frame-
work for performing Monte Carlo simulations on (high-dimensional) Ameri-
can options. The SGM computes the option price recursively moving back-
wards in time. By regression a functional approximation of the option price
is obtained which is then used to compute the option price at the previous
time step. First the method computes a direct estimator of the option price
and determines the optimal exercise policy, and then a lower bound value
of the option price is computed by discounting the payoff that is obtained
when this exercise policy is followed. This method is also viable for high-
dimensional options since the regression takes place along the payoff, hence
the dimensionality of the problem is reduced to one in every recursion step.
We will now give a description of the method after first defining the problem
setting.

3.1 Problem

We assume we have the complete probability space (Ω,F ,P) and finite time
interval [0, T ] where T is the expiration time of the option and we want
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to determine the value of the option at time t = 0. Hence we have that
Ω is the set of all possible realizations of our stochastic economy in [0, T ].
Ft, 0 ≤ t ≤ T is the sigma algebra of distinguishable events at time t
and P is the risk-neutral probability measure on F . It is assumed that
the filtration Ft is generated by a d-dimensional Brownian motion, and the
state of our stochastic economy is represented as an Ft-adapted Markov
process St = (S1

t , ..., S
d
t ) ∈ Rd. We discretize our interval, so that t ∈ [t0 =

0, t1, ..., tk = T ]. We define h(t, St) to be the payoff of the option at time
t, that is non-negative and adapted to our filtration. We can define our
problem as the computation of:

V0 = max
τ

E [Dτh(τ, Sτ )]

Here Ds = exp(−
∫ s

0 rudu) is the discount factor from time t = 0 to time
t = s and τ is a stopping time taking values in [t0 = 0, t1, ..., tk = T ].

Note: For functions of the form f(t) or f(t, .) the dependence of t will
be regularly be noted in a subscript i.e. as ft or ft(.) for notational
convenience. Both notations are used interchangeably.

At time T we know that V (T, x) = h(T, x), that is the value of the option
equals the products payoff. Now for all ti < T we can define the continuation
value, Qt(St), i.e. the expected future payoff as:

Q(ti, Sti = x) =
Dti+1

Dti

E
[
V (ti+1, Sti+1)|Sti = x

]
Then the option value at time ti is given by:

V (ti, Sti) = max{h(ti, Sti), Q(ti, Sti)}

3.2 Algorithm

In this section the algorithm followed in the SGM is presented. To simplify
the form of the solution we rewrite our payoff function in the following form:

h(t, St) = max{g(St) +X, 0}

where we have that g : [0, T ]×Rd → R, hence g maps the high-dimensional
St-space to the one-dimensional g(St) space. The stochastic grid method
follows the following scheme:

1. Starting from St0 = S0, generate n sample paths (St0 , ..., Stk) using a
discretization scheme of choice, for instance the Euler scheme.
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2. Compute the option value for each grid point at expiration from:

V (T, ST ) = h(T, ST ) = max{g(ST ) +X, 0}

3. Compute the approximate functional form, Z(T, ST ), by regressing
the option value at the gridpoints over M polynomial basis functions
{ψm}Mm=1 of g(ST ), hence by determining a = (a1, ..., aM ) in order to
minimize: r = mina |Ẑ(T, g(ST |S0))− V (T, ST )|2, where

Ẑ(T, g(ST |S0)) = E
[
V̂ (T, ST )|g(ST )

]
=

M∑
m=0

amψm(g(ST ))

is the approximate functional form.

4. These steps have to be carried out for each time ti moving backwards
in time starting from tk−1 in order to obtain the direct estimator for
V (t0, S0).

(a) Compute the continuation value for each of the grid points at
time ti using the functional approximation Ẑ(ti+1, g(Sti+1)) as
computed in the previous timestep:

Q̂(ti, Sti) =
Dti+1

Dti

E
[
Ẑ(ti+1, g(Sti+1))|Sti

]
In order to perform this computation we need to deter-
mine the conditional riskneutral probability density function
P(g(Sti+1)|Sti = x). A schematic image of how this will be done
is given in figure 3.1. There are three options:

i. The probability density function is known, then we can just
compute the continuation value.

ii. The probability density function is unknown, but we know
the first four non central moments of the distribution
(µ1, µ2, µ3, µ4). In this case we can use the Gram Char-
lier series as described in [12] to approximate the conditional
riskneutral density function:

f̂(x|y) =
1√

2πµ2
exp

[
−(x− µ1)2

2µ2

][
1 +

µ3

3!µ
3/2
2

H3

(
x− µ1√

µ2

)
+

κ4

4!µ2
2

H4

(
x− µ1√

µ2

)]

where: H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3 are
Hermite polynomials and κ4 = µ4 − 3µ2

2. Hence, we have
that (µ1, µ2, µ3, κ4) are the first four cumulants.
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iii. The probability density function and the moments of the dis-
tribution are unknown. Now we can compute the first four
moments by subsimulation, and then the Gram Charlier se-
ries can again be used to approximate the conditional density
function.

(b) Compute the option value for the gridpoints at time ti as:

V (ti, Sti) = max{g(Sti) +X, Q̂(ti, Sti)}

(c) Compute the functional approximation for the conditional expec-
tation as described in step 3 above by regressing again over a set
of M polynomial basis functions of g(Sti).

(d) Now go to the previous timestep and repeat steps 4(a) to 4(c).
When the computations are completed for t0 we have obtained
the direct estimator for the option value.

5. From the computations of the direct estimator of the option value we
have also obtained the optimal exercise policy, so for each path we can
determine the earliest time to exercise i.e. the earliest time where the
continuation value is lower than the value of exercising, so define for
each asset path St(k), k = 1, ..., n:

τ̃(k) = min{t ∈ [0, T ] : ˆQt(St(k)) ≤ ht(St(k))}

Now a lower bound on the option value can be determined by com-
puting:

E0 [Dτ̃hτ̃ ] (3.1)

We can compute the expectation in equation (3.1) in two different
ways, one is to use the same set of asset paths used for computing
the direct estimator for the option price the other is by generating a
new set of paths and use the exercise policy for this set of paths. The
second method will give a better estimate for a lower bound value,
however this will increase computational effort significantly. As we
will be most interested in the direct estimator for the option price and
we will mostly use the lower bound estimator to see if the method
produces consistent results we will in this thesis use the same set of
paths for constructing a lower bound on the option value.
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Figure 3.1: Schematic image of approximating the transition density

This completes the description of the SGM algorithm in its most simple
form. Better results can be obtained using local regression in each timestep
instead of global regression as described above and by bundling points at ti
and then using only the gridpoints in step ti+1 that are associated with the
bundle. The development and implementation of such a technique will be
the basis for answering the first research question of this thesis.

3.3 Comparison to Longstaff-Schwartz method

An alternative way of pricing American options using the Monte Carlo ap-
proach is the algorithm as described by Longstaff and Schwartz [13]. The
Longstaff-Schwartz method (LSM) first computes an optimal exercise policy
for a set of simulated paths and then finds the expected value of the dis-
counted payoff if this strategy is followed using a new set of paths to avoid a
strong bias in the outcome. The option price that is obtained using LSM is
a lower bound for the actual option price as the determined exercise policy
is either inferior or equal to the optimal exercise policy. As with the SGM,
the LSM method uses regression on a set of basis functions to approximate a
functional form of the payoff at each timestep. The big difference is that in
the LSM the dimensionality isn’t reduced before the regression is performed.

So although the LSM is computationally fast in low-dimensional cases and is
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easy to implement (much easier than the SGM), the computation time grows
fast as the dimensionality of the problem at hand increases. The LSM re-
quires a large number of paths to require accurate results and the number of
basis functions required for the regression grows almost exponentially with
the dimensionality. The SGM on the other hand requires far fewer paths to
obtain a good exercise policy and the number of basis functions required for
the regression is independent of the dimensionality of the problem. The only
problem is that the subsimulation used to acquire the moments of the tran-
sition density function can make the algorithm computationally expensive,
this problem only occurs in the SGM and not in the LSM because the LSM
doesn’t reduce the dimensionality of the problem in the regression step.

3.4 A simulation experiment with different initial
stock prices

In order to get some more intuition for the methods described above we
perform a simulation experiment. We will compute the option value of a
one-dimensional American put option for different values of the stock price
at time t = 0 with both the SGM method (which gives us both a lower
bound and a direct estimator) and with the LSM method to be able to
compare both the results and the computation time required. The Black-
Scholes dynamics are used to model the asset price. We will use the following
parameters:

• Initial stock prices S0 = [20, 22, 24, 26, 28, 30]

• Strike X = 25

• Expiration T = 1

• Interest rate r = 0.05

• Volatility σ = 0.4

• Number of time steps N = 50

• Number of replications n = 104

• The option may be exercised at each timestep.

Figure 3.2 shows the computed option prices.
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Figure 3.2: Option prices of American put

As we can see in the figure 3.2, the option prices computed using the different
methods are nearly identical for all starting values S0. We can see this
similarity even better when we look at the results in table 3.1.

Table 3.1: Option prices of American put
S0 SGM lower bound SGM direct estimator LSM

20 6.0275 5.9780 5.9603

22 4.7971 4.7993 4.7913

24 3.8305 3.8290 3.8407

26 3.0105 3.0397 3.0611

28 2.3973 2.4032 2.4081

30 1.8869 1.8945 1.8855

In the table it clearly shows that the option prices computed using the
different methods never differ more than a few cents. Hence at least in this
simple case the the SGM method and the LSM method give very similar
results. However to get a thorough understanding of the accuracy of both
methods we will also need to take a look at the standard deviation of the
results for each method. In order to do this another simulation experiment
will be performed in section 3.5.
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Now we take a look at the running times of the simulations using the two
methods:

Figure 3.3: Computation time of option prices of American put

Figure 3.3, with the computation time of the different methods, shows a sig-
nigicant difference between the two methods. The LSM method is computa-
tionally much faster than the SGM method in such a low-dimensional case,
when we take the same number of paths and timesteps for both methods.
Where each option price computation with SGM takes over 20 seconds, an
option price computation with LSM takes less than 1 second. So the advan-
tages in computation time of the SGM might show in higher-dimensional
cases, or perhaps with a more involved model for the stock price. Further
more the SGM might provide us with significantly more accurate results, so
that for a given level of accuracy we might need fewer paths in SGM than we
need in LSM, leading to a decrease in computation time of SGM compared
to LSM.

3.5 Simulation experiment to determine the accu-
racy

We will now perform a simulation experiment to compare the accuracy of
the SGM and the LSM by means of the standard deviation of the produced
results. In order to do this we will perform a series of 30 simulations using
S0 = 20 and with all other parameters equal to those chosen in section
3.4. From the results of these simulations we will look at the average time
per simulation, the mean of the results of the simulations and the standard
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deviation of the results. The computation time per simulation gives roughly
the same results as in the first simulation experiment. The SGM simulations
take 21.6411 seconds computation time per simulation on average and the
LSM simulations 0.2039 seconds. The mean and standard deviations from
simulation results are given in table 3.2.

Table 3.2: Simulation results American put
Mean St. Dev.

SGM lower bound 5.9792 0.0237

SGM direct estimator 5.9779 5.3933e-5

LSM 5.9842 0.0218

In the table we can see that the mean of the results of both methods are
very close together, the mean of the lower bound and the direct estimator of
SGM are very close together and the mean of the LSM estimator is slightly
higher but not significantly. When we take a look at the standard deviations
of the results we see that the standard deviation of the lower bound estima-
tor of SGM and the LSM estimator are very close, the standard deviation of
the LSM estimator is even slightly smaller than the one of the lower bound
estimate of the SGM. But the standard deviation of the direct estimator of
the SGM is much smaller than that of the other two, the difference is an
astonishing factor 400. Since we are in general more interested in the direct
estimator than in the lower bound estimator we are most interested in the
size of the standard deviation of the direct estimator in comparison with
the size of the standard deviation from the LSM estimator. In order to get
the same accuracy with LSM we would need to use many more paths per
simulation, which would in turn increase the computation time per simula-
tion significantly.For instance one simulation with 106 replications with the
LSM takes over 30 seconds already, and this would probably not even be
sufficient to make the standard deviation as small as the standard deviation
of the direct estimator of the SGM. So now we can conclude that when we
wish to know the direct estimator of the option price that the SGM provides
us with more accurate results than the LSM.

3.6 Bundling algorithm

In order to make the computations more efficient and less time consuming
we will be looking into the possibility of somehow bundling the simulations
at each recursion step and then to perform certain computations such as
determining the probability density function only once for all paths in this
bundle. In order to do this we first take a look at the bundling algorithm as
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described by Tilley in [16]. The general idea of the algorithm is that at each
timestep the paths are ordered by stock price, then partitioned into bundles.
Using these bundles the option’s intrinsic value and continuation value for
each of the paths are computed. Then there is a choice to either determine
a sharp exercise boundary or let a transition zone exist. A sharp exercise
boundary means that we determine at each timestep a certain stock value
so that for all paths where St is below this value the option is exercised.
Because it has been shown in [16] that we get much better results when a
sharp exercise boundary is determined we will only describe the version of
the algorithm with the sharp exercise boundary. In addition the algorithm
without a sharp exercise boundary is identical, except some steps are left
out. After the determination of the exercise boundary we can see what the
option value is for each of the paths. Now we will give a more detailed
description of the algorithm. At the final timestep we can compute the
option value as we are used to at expiration, then at all previous timesteps
going backwards in time we do the following:

1. Reorder the stock paths by stock price at time t, from highest to lowest
price for a put option and the other way around for a call option. Also
re-index the paths according to the reordering.

2. For each of the paths we compute the intrinsic value I(k, t), where
k = 1, ..., n is the index of the path.

3. Partition the set of n paths into Q bundles each containing P paths,
hence the first bundle contains the first P paths, the second contains
path P + 1 to 2P and so on. Here we choose P and Q to be integer
factors of n.

4. For each path k we compute the continuation value of the option as
the expectation of the option value taken over all paths in the bundle
j which contains path k, so we take:

C(k, t) = d(k, t)
1

P

∑
i∈j

V (i, t+ 1)

Where d(k, t) is the discount factor for path k at from time t tot time
t+ 1.

5. For each of the paths, determine whether exercising or continuing is
more advantageous by defining:

x(k, t) =

{
1 if I(k, t) > C(k, t)
0 if I(k, t) ≤ C(k, t)

6. Now we are going to determine the sharp exercise boundary by ex-
amining the sequence {x(k, t); k = 1, ..., n} and then finding the first
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string of ones, of which the length exceeds the length of every sub-
sequent string of zeros. The start of this string of ones is the sharp
exercise boundary, define its index to be k∗(t).

7. Define the new exercise or hold variable that will be used in the com-
putations of the option value to be:

y(k, t) =

{
1 for k ≥ k∗(t)
0 for k < k∗(t)

8. For each of the paths we can now determine the option value at time
t as:

V (k, t) =

{
I(k, t) if y(k, t) = 1
C(k, t) if y(k, t) = 0

When we have completed this steps for all timesteps we can determine the
indicator variable z(k, t) which equals 1 if and only if the option is exercised
at that path at that time, and zero otherwise so we have:

z(k, t) =

{
1 if y(k, t) = 1andy(k, s) = 0∀s < t
0 otherwise

So now finally the option value can be estimated as:

V (0) =
1

n

n∑
k=1

(∑
t

z(k, t)D(k, t)I(k, t)

)

Here D(k, t) is the discount factor for path k, from time 0 to time t this
means that:

D(k, t) =

t∑
j=0

d(k, j)
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Chapter 4

Subsimulation

In this chapter we will consider the possibility that the analytic moments of
the transition density are unknown. So this means that we will need to find
some clever way of approximating the transition density. It will turn out
that this in fact comes down to finding an approximation of the first four
moments of the distribution. So here we propose using so-called subsimu-
lations to approximate this moments. This will entail simulating additional
paths from each datapoint to the next timestep in order to approximate the
moments using these generated subpaths. After describing this procedure
some simulation experiments will be performed to assess computation time
and accuracy if this method is used, then we propose using (part of) the
bundling algorithm above to speed up computations an finally we will test
this possibility with some simulation experiments.

If we now assume that we don’t know the moments of our riskneutral tran-
sition density i.e. P(g(Sti+1)|Sti), we need the first four cumulants of this
stochastic variable to approximate the probability density function using
the Gram-Charlier series as we know from section 3.2. Often we don’t know
these cumulants either, and hence we need a way to approximate the first
four cumulants of the distribution. We can do this by means of subsimula-
tions. When we simulate paths starting at Sti only determining stock values
at ti+1, and then using these simulated values of Sti+1 we can approximate
the first four cumulants. Because if we take Z = logSti+1 we have that:

µ1 = E[Z]

µ2 = E[Z2]− E[Z]2

µ3 = E[Z3]− 3E[Z2]E[Z] + 2E[Z]3

k4 = E[Z4]− 4E[Z3]E[Z]− 3E[Z2]2 + 12E[Z]2E[Z2]− 6E[Z]4

Note that if we have simulated values of Z that then these values can indeed
be very easily approximated.
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So at any given time ti, 0 ≤ i ≤ N − 1, where N denotes the number of
timesteps, we estimate the moments for each of the n asset paths, by simu-
lating subpaths until the next timestep and from these values determining
the first four cumulants µ1, µ2, µ3 and k4 using the formulas given above.
Then we can further follow the regular procedure of SGM using these cumu-
lants and repeating the subsimulations at all places where we need different
cumulants.

4.1 Simulation experiment for running time

As we need to perform many subsimulations if we don’t know the moments
analytically it seems obvious that it will be a very time consuming process.
In order to determine how much time it will cost for different numbers of
replications per subsimulation we will perform a simulation experiment. To
make a good comparison with the situation in which we do not perform
subsimulations we have here implemented the subsimulations for a one-
dimensional American put with the Black-Scholes dynamics for the stock
price. We will choose the following parameters:

• S0 = 10

• X = 12

• r = 0.05

• σ = 0.03

• T = 1

• N = 50

• n = 1000

We will perform runs with 50 up to 1000 replications per subsimulation, with
steps of 50. We will also perform the same simulation using the analytical
moments and compare the running time and make statements about the
different outcomes of the simulations. All different scenario’s are calculated
30 times to be able to determine both mean and standard deviations of the
results. The results are given in table 4.1, where the first line is the reference
value where the analytical moments are used.
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Table 4.1: Simulation results SGM with and without subsimulation 1d
American put
Repl. Running time Lower B. Std. Dev. Dir. Est. Std. Dev.

0 3.2527 2.2603 0.0373 2.2600 0.0053

50 25.6507 2.2665 0.0290 2.2878 0.0049

100 28.5074 2.2700 0.0268 2.2831 0.0050

150 31.6747 2.2639 0.0285 2.2811 0.0028

200 34.6397 2.2607 0.0255 2.2780 0.0026

250 37.9028 2.2652 0.0234 2.2755 0.0037

300 40.9763 2.2626 0.0304 2.2738 0.0037

350 44.2485 2.2602 0.0290 2.2726 0.0036

400 47.3709 2.2663 0.0235 2.2716 0.0039

450 50.5670 2.2665 0.0283 2.2697 0.0049

500 53.7458 2.2564 0.0259 2.2689 0.0057

550 56.8564 2.2645 0.0247 2.2642 0.0106

600 60.0996 2.2604 0.0251 2.2664 0.0042

650 63.2360 2.2585 0.0281 2.2658 0.0069

700 66.3818 2.2729 0.0284 2.2660 0.0062

750 69.6409 2.2646 0.0295 2.2659 0.0087

800 72.7427 2.2615 0.0328 2.2653 0.0049

850 76.1779 2.2667 0.0257 2.2631 0.0064

900 79.0965 2.2594 0.0305 2.2636 0.0063

950 82.5519 2.2706 0.0276 2.2636 0.0037

1000 85.5739 2.2696 0.0270 2.2627 0.0041

We see that as expected the subsimulations have a significant effect on the
computation time. Just 50 replications per subsimulation means that the
computation time grows by a factor 8. Further the computation time seems
to grow almost linearly with the number of replications. As we approach a
thousand replications per subsimulation the computation time per simula-
tion even exceeds 80 seconds. What stands out is that from approximately
200 replications it seems that the results for the lower boundary do not really
improve if we increase the number of replications. The direct estimator on
the other hand seems to converge rather nicely to our reference value as we
increase the number of replications per subsimulation. However from 600
replications per subsimulation onwards it seems that there is no more sig-
nificant improvement in the estimated value of the direct estimator. Hence
for our level of accuracy of SGM it seems suitable to use 600 replications per
subsimulation. However this makes computations expensive, so sometimes
it might be advantageous to lose some accuracy in favor of computational
benefits by performing fewer replications per subsimulation.
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It is very clear from this experiment that in more complicated cases where
we have to resort to subsimulations it is very important to make sure we
have to perform as few subsimulations as possible. There are of course two
aspects to minimizing the time used for subsimulations, namely reducing
the number of times we have to perform subsimulations and reducing the
number of replications per subsimulation. In order to reduce the number
of times a subsimulation has to be performed the bundling algorithm (see
section 3.6) may provide a solution. In order to see how much the accuracy
of the results of the simulation is affected by the number of replications per
subsimulation and hence to be able to make an analysis of the number of
replications per subsimulation we need another simulation experiment to be
performed.

4.2 Reducing the number of subsimulations

A way to reduce the computational effort required for SGM with subsimu-
lations is reducing the number of times that subsimulation is required. In
order to do this bundling will be used. Hence we will no longer perform a
subsimulation to determine the first four cumulants for each asset path at
each timestep. Instead we first sort our simulated paths by the stock price
at the current time step. Then we bundle the stock prices into P bundles
each containing Q paths (so that PQ = n). For each of these bundles we
take:

Sµ =
1

Q

Q∑
i=1

St(i)

where the St(i) are the stock prices at the current time step sorted by
size. Using Sµ we perform a subsimulation to approximate the first four
cumulants of the transition density function of all paths contained in the
bundle, thereby reducing the number of times a subsimulation has to be
performed substantially by making a fine choice for P and Q.

4.2.1 Matlab implementation

Bundling is in fact a rather simple adjustment to the program used for SGM
with subsimulations. At each timestep we sort the stock paths by stock price
at that time, then we divide the paths into the P bundles and perform one
subsimulation for each bundle in order to make the vectors containing the
first four cumulants for all stock paths. This last part is repeated at the
other places where we need the cumulants and hence where subsimulations
have to be performed. At time t = 0, we only have to perform subsimulation
once, for S0 so there there is no need for bundling.
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4.2.2 Simulation experiment

A simulation experiment is performed using the same parameters as in sec-
tion 4.1. We will perform 600 replications per subsimulation, because this
seemed to give very accurate results in previous experiments. Since we have
1000 stock paths, we choose to perform subsimulations with 10, 20, 25, 40,
50 and 100 bundles to see what the results are and also what the computa-
tion time is. As a reference the values and computation time of simulation
without subsimulations and with subsimulations but without bundling are
added to table 4.2.

Table 4.2: Simulation results SGM with and without bundling with subsim-
ulations for American put

Running time Lower B. Std. Dev. Dir. Est. Std. Dev.

No subsim. 3.2527 2.2603 0.0373 2.2600 0.0053

No bundling 60.0996 2.2604 0.0251 2.2664 0.0042

10 bundles 5.9799 2.2879 0.0349 2.2560 0.0230

20 bundles 5.9876 2.4791 0.0497 2.2907 0.0525

25 bundles 6.2213 2.5042 0.0576 2.3097 0.0555

40 bundles 7.0741 2.5597 0.0484 2.3134 0.0510

50 bundles 7.6892 2.5616 0.0453 2.2946 0.0523

100 bundles 10.7341 2.5604 0.0422 2.2983 0.0278

We see in table 4.2 that reducing the number of times we have to perform
subsimulations has the a significant effect on the computation time. Where
the SGM with subsimulations without bundling takes 20 times longer than
SGM with analytic moments, the SGM with bundled subsimulations only
takes about 2 to 3 times longer. There however seems to arise a problem
with the accuracy, as the estimations for the lower bound are all much
higher than when we use analytical moments and than with the ordinary
subsimulations. The direct estimator also turns out rather high (with the
exception of the first result with 10 bundles).
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Chapter 5

Improved bundling algorithm

In this chapter we will refine the bundling strategies used so far in order
to come to a more sophisticated bundling algorithm which gives us better
results, and also gives us more computational advantages then the bundling
strategy used so far. In addition this new algorithm will provide us with a
new framework so that we can avoid subsimulations in most cases, which will
greatly improve the computational performance of our method. In addition
we will provide a mathematical proof that using the bundling algorithm we
construct here the results will in fact converge asymptotically to the true op-
tion value. We will then conclude this chapter with simulation experiments
of the new improved algorithm.

As we have seen the bundling strategy followed in section 4.2 doesn’t give us
results as accurate as we would like. Hence we will develop a new bundling
strategy in order to attain more accurate results. To do this consider the
set of generated asset paths S1(k), S2(k), ..., SN (k), for k = 1, ..., n, where
we take N timesteps i.e. SN = ST for all asset paths. Now at time i, with
1 ≤ i ≤ N we will divide the n asset paths into 2b bundles via a bisection
strategy. We first divide the results into two subgroups where the first
subgroup contains all asset paths with Si(k) < 1

n

∑n
j=1 Si(j) and the second

subgroup contains the rest of the asset paths. For each of this subgroups
we repeat this strategy a total of b times, this way we will attain 2b bundles
where, by nature of the distribution the bundles in the middle will contain
more points than the ones at the boundaries. We will give a simple example
to illustrate the procedure described above.

Suppose at a certain timestep we have the following vector of asset prices:

S = [20, 25, 16, 23, 22, 19, 17, 26]

We compute the mean of S:

1

8

8∑
k=1

Sk =
1

8
(20 + 25 + 16 + 23 + 22 + 19 + 17 + 26) = 21
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Let b = 2, so in total we want to divide S into 22 = 4 bundles. In the first
step the vector S will be split into:

S1 = [20, 16, 19, 17] S2 = [25, 23, 22, 26]

We repeat the procedure for both S1 and S2. The vector S1 has mean 18,
so this will be split into:

S11 = [16, 17] S12 = [20, 19]

The mean of S2 equals 24 so finally we will get:

S21 = [22, 23] S22 = [25, 26]

Figure 5.1 gives an example of the bundled asset prices, each color represents
one bundle for b = 5 so that we have a total of 25 = 32 bundles and n = 1000.
We see in the figure that indeed the bundles in the center of the distribution
contain more paths than the bundles at the boundaries.

Figure 5.1: Asset price bundles, b = 5 and n = 1000

The way the bundles are defined is not the only change we make in the
bundling algorithm described in section 3.6, we will further reduce the com-
putational effort of the algorithm by using only the paths within a bundle
in the regression step. So first we used the bundles only to determine the
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moments of the transition density function and then the method proceeds
the same as in the case with the analytical moments, hence by performing
local regression on predefined intervals independent of the bundles. But now
we will use the bundles further in the regression step of SGM to make the
algorithm more efficient.

5.1 Approximating the continuation value

In order to speed up computations Jin, Tan and Sun in [11] suggest to ap-
proximate continuation values per bundle. Hence instead of defining the
continuation value for each path separately they only approximate the con-
tinuation value once per bundle, taking the center of the bundle as the point
of origin from which they approximate the continuation value. If a(n) re-
presents the number of bundles and n the total number of paths this means
that if cn,i is the center of bundle i, 1 ≤ i ≤ a(n), for all paths in bundle i
they approximate the continuation value as:

Q̂t(cn,i) =
Dt

Dt+1
E
[
V̂t+1(St+1)|the paths that lie in bundle i

]
We will deviate from this strategy, since when using that strategy the quality
of the results depends on how many bundles are used, and we would in
general need many bundles and also simulated asset paths to obtain good
results. To avoid this we will not use this strategy for approximating the
continuation value, but instead we will use a technique based on iterated
conditioning. Consider therefore some set of basis-functions Ψ1, ...,Ψm, for
instance we will use Ψi = Sit for i = 1, ..., 4. We can rewrite the continuation
value at a certain timestep t− 1, for path k, 1 ≤ k ≤ n as:

Qt−1(St−1(k)) = d(t− 1, k)E [Vt(St)|St−1(k)]

= d(t− 1, k)E [E [Vt(St)|Ψ1(St), ...,Ψm(St), St−1(k)] |St−1(k)]

= d(t− 1, k)E [Z(St, St−1)|St−1(k)] (5.1)

We can in fact use the law of iterated conditioning here since it clearly holds
that σ(St−1(k)) ⊆ σ(Ψ1(St), ...,Ψm(St), St−1(k)). We first have to compute
the inner expectation, followed by the outer expectation. As described by
Jain and Oosterlee in [10] we can simply approximate the inner expectation
by a least squares regression on the basis functions, hence for each path j
in bundle i, we can define:

Ẑt(St(j), St−1(k)) =
m∑
l=1

qlΨl(St(j)),

where we choose the parameters ql, l = 1, ...,m such that we minimize the
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sum of the squared residuals:

r = min
ql∈R

∑
j∈bundle i

∣∣∣Ẑt(St(j), St−1(k))− Vt(St(j))
∣∣∣2

A schematic image of the resulting approximation of the inner expectation
is found in figure 5.2.

Figure 5.2: Schematic image of determining the inner expectation

Then we can approximate our continuation value as:

Q̂(St−1(k)) = d(t− 1, k)E [Z(St, St−1)||St−1(k)]

= d(t− 1, k)
m∑
l=1

qlE [Ψl(St)|St−1(k)] (5.2)

This has in fact an added benefit, since usually the expectation in equation
(5.2) is known in closed form which means we can avoid subsimulations
altogether.

5.2 Approximating moments using bundles

As pointed out above, by using the least squares regression to approximate
the inner expectation in equation (5.1) we can in almost all cases avoid

33



subsimulations altogether. In the few cases where we can’t we might still
need some form of subsimulation and hence it will be useful to find a good
protocol for using the bundles within the subsimulations.

The most simple way would be at time ti to take all values in the same
bundle at time ti+1 and use these as datapoints in the next step from which
we can approximate the moments of the distribution as we did with the
subsimulations earlier (see chapter 4). This way we will compute the mo-
ments only one time for each bundle and we assume that the moments of
the datapoints within one bundle are more or less equal and can be approxi-
mated by one single computation. In this case it could very well be that
the number of replications and the number of bundles are of great influence
on the accuracy of our results, and we might need very many paths to get
accurate results.

Another possibility will be to adopt a strategy more like the one described
by Jin et al. ([11]) where we make one central approximation for the bun-
dles by performing subsimulations for the center of each bundle only. This
means that we will need to perform far fewer subsimulations compared to
the situation without bundles, and this might save us a considerable amount
of time. The only problem is that we then also will have the difficulty that
Jin et al. encountered, namely choosing the number of bundles and paths
required for optimal results.

5.3 Theoretical proof of the algorithm

The first thing we would like to know is whether the new algorithm (at
least asymptotically) will give us correct results. In order to do this we will
follow the reasoning given by Jin, Tan and Sun in [11], as far as it will be
applicable. In addition we will need to do some additional steps typical for
our situation. Assume we discretize the interval [0, T ] into t0, ..., tN for some
N > 0, and that we generate n paths. We want to prove that as n tends
to infinity, and also the number of bundles a(n) tends to infinity, we will
eventually have that limn→∞ E[|V̂n,0 − V0(S0)|] = 0. In order to do this we
will first need some auxiliary results, and we will also have to make some
assumptions.

For every timestep ti, let for al x in the state space of the stock price Si,
cn,i(x) denote the center of the bundle to which x belongs. In addition,
for all bundles define S̃ti(j), j = 1, ..., a(n), to be the mean stock value in
bundle j. We will need the following assumptions:

ASSUMPTION 1: For i = 1, ..., N − 1, {S̃ti , j = 1, ..., a(n)} is a dense set
in the state space Si.
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ASSUMPTION 2: For i = 1, ..., N − 1, given y ∈ R, the function
Fi(y|x) is continuous with respect to x ∈ Rd, where Fi(y|x) =
P
[
Vi+1(Sti+1) ≤ y|Sti = x

]
, i = 0, ..., N − 1.

ASSUMPTION 3: Given i ∈ {1, ..., N}, E
[
h2(ti, Sti)

]
< ∞ and E

[
S2
ti

]
<

∞.

ASSUMPTION 4: For all i = 1, ..., N − 1, P (Qi(Sti) = h(ti, Sti)) = 0

ASSUMPTION 5: We assume that as the number of bundles and the
number of asset paths tend to infinity, we will also have that the
minimum number of paths in each bundle will tend to infinity:

lim
n→∞

b(n) =∞,

and also that the minimum number of paths in a bundle will tend to
infinity strictly slower than the number of bundles:

lim
n→∞

a(n)b(n)

n
= 0

We can wonder whether this is an assumption we can make, but by
the nature of the distributions of asset paths we will see that we will
have fewer paths in the bundles near the tails of the distribution and
hence in practical situations this assumption will make sense.

Now we have the assumptions we need to start proving some auxiliary re-
sults. First we start by showing that for all x ∈ R≥0 the center of the bundle
that x belongs to will converge to x. From this we can then conclude that
the approximation we use for the continuation value is asymptotically the
same as approximating the continuation value from the center of the bundle
for the entire bundle at once.

LEMMA 1: As n and a(n) tend to infinity we have for all x ∈ Si, i =
1, ..., N − 1 that:

lim
n→∞

cn,i(x) = x

Proof: Let ε > 0, arbitrary. Denote Bx(ε) the sphere centered at x with
radius ε. We will prove the Lemma 1 by showing that with probability
1 there exists a random Nx ∈ N so that for every n ≥ Nx we have
cn,i(x) ∈ Bx(ε). We choose N1

x , and a(n) sufficiently large so that
S̃ti(j) ∈ Bx(ε/4), for some j < a(n) and n ≥ N1

x . This is possible
because of ASS. 1. It follows by the large number theorem that:

lim
n→∞

1

n

n∑
k=1

1{Sti(k) ∈ Bx(ε/4)} = P(Sti ∈ Bx(ε/4))
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Hence, with probability 1 it will hold for some α > 0, that there is a
value N2

x ∈ N, so that for all n ≥ N2
x :

n∑
k=1

1{Sti(k) ∈ Bx(ε/4)} ≥ αn

This means that there are at least bαnc points in {Sti(j)|j = 1, ..., n}∩
Bx(ε/4). Also by ASS. 5 we have for n sufficiently large, say n ≥ N3,
that a(n)b(n) < bαnc. Now for n ≥ Nx = max{N1

x , N
2
x , N

3} we have
for each point z ∈ {Sti(j)|j = 1, ..., n}∩Bx(ε/4), that there exists some
y ∈ {S̃ti(j)|j = 1, ..., a(n)} ∩ Bx(ε) so that we have that z ∈ By(ε/2).
This in turn tells us that we must have that cn,i(x) ∈ Bx(ε) when
n > Nx, which concludes the proof.

Indeed it follows that we can continue our proof of the method as if we
compute the continuation value of the option at each time for the center of
the bundle only. If we do that, we want to show next that the approximated
continuation value will asymptotically converge to the actual continuation
value. In order to do this we will not only need the result of LEMMA 1, but
we will also need an additional result showing us that the diameter of each
bundle will converge to 0 as n tends to infinity.

LEMMA 2:Assume that the stock prices are bounded almost surely, hence
P(|Sti | ≤M) = 1 for some M > 0, and for all i ∈ {1, ..., N}. Then the
diameter of each bundle, An,i, will converge to 0 as n→∞.

Proof: We will prove this lemma by contradiction. Assume that the di-
ameter of An,i(x) does not converge to 0 with probability 1. Then
there exists a subset Ω1 ⊂ Ω with P(Ω1) > 0 so that for every ω ∈ Ω1

there exists a subsequence {Sti(kn)|n = 1, 2, ...} ⊂ An,i(x) which does
not converge to x. Now because the stock prices are bounded almost
surely we know that given ω0 ∈ Ω1 there exists a convergent subse-
quence in {Sti(kn)|n = 1, 2, ...}. Without loss of generality we can
assume the convergent subsequence is {Sti(kn)|n = 1, 2, ...}. However
by assumption we must have that this sequence converges to some
x′ 6= x. If we define ε0 =‖ x − x′ ‖2 /4 then there exists a number
N1 ∈ N such that for all n ≥ N1 we have that cn,i(x) ∈ Bx(ε0) and
Sti(kn) ∈ Bx′(ε0). But by LEMMA 1, there is a N2 ∈ N such that for
all n ≥ N2 it holds that cn,i(x

′) ∈ Bx′(ε0). Combining these facts gives
us that for n ≥ N3 = max{N1, N2} we have that cn,i(x) ∈ Bx(ε0) and
cn,i(x

′) ∈ Bx′(ε0). This would imply that cn,i(x
′) would be closer to

Sti(kn) than cn,i(x) for n ≥ N3, but by the definition of the bundles
this would mean that Sti(kn) is not in An,i which is a contradiction
and hence the proof is complete.
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We have now seen in LEMMA 1 and LEMMA 2 that for each x ∈ R≥0

the center of the bundle containing x will converge to x and also that the
diameter of each bundle will converge to 0 as n tends to infinity. Whereas
Jin et. al in [11] need to perform a lot of work to prove their approximated
continuation value will indeed converge to the actual continuation value we
won’t have to do that. In order to see that, note that we approximate the
inner expectation in (5.1) using a least squares regression in the improved
bundling algorithm, in order to have an analytic expression for the outer
expectation of the continuation value. In cases where we don’t have the
analytic expression for the last expectation we approximate the expectation
via a Riemann sum, in which case convergence is also apparent. Now from
LEMMA 1 and LEMMA 2 it then follows immediately that for all x ∈ R≥0,
at all timesteps t, 0 ≤ t < T , it holds that:

lim
n→∞

Q̂n,t(x) = Qt(x)

So that we have that result we only need to show that the approximated
stopping time will converge to the actual optimal stopping time and then we
can finally show that asymptotically the method will converge to the actual
option value.

LEMMA 3: The stopping time of the bundling algorithm asymptotically
converges to the actual optimal stopping time:

lim
n→∞

P(τ̂n 6= τ) = 0

Proof: We will construct an upper bound on the probability that the ap-
proximation of the stopping time will not converge asymptotically to
the optimal stopping time and show that this upper bound tends to 0
as n→∞.

P(τ̂n 6= τ) = P(τ̂n < τ) + P(τ̂n > τ)

= P
(
Q̂n,ti(Sti) ≤ hti(Sti) < Qti(Sti)

)
+ P

(
Q̂n,ti(Sti) > hti(Sti) ≥ Qti(Sti)

)
≤

N−1∑
i=0

P
(
Q̂n,ti(Sti) ≤ hti(Sti) < Qti(Sti)

)
+
N−1∑
i=0

P
(
Q̂n,ti(Sti) > hti(Sti) ≥ Qti(Sti)

)

Now we can rewrite ASS. 4 as:

lim
γ→0

P(|h(t, x)−Qt(x)| ≤ γ) = 0
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This means that for every ε > 0 there exists a γ > 0 so that:

P(|h(t, x)−Qt(x)| ≤ γ) ≤ ε

Combining these results yields the following expression:

P(τ̂n 6= τ) ≤ Nε+
N−1∑
i=0

P
(
|Q̂n,i(Sti)−Q(Sti)| ≥ γ

)
Now Broadie and Glasserman have proven in [3] for this last statement
that:

lim sup
n→∞

P(τ̂n 6= τ) ≤ ε,

which then gives us the concluding result that:

lim
n→∞

P(τ̂n 6= τ) = 0

We now have all we need to prove our initial assertion, that we have that
limn→∞ E[|V̂n,0 − V0(S0)|] = 0. Note that we can write:

lim
n→∞

E[|V̂n,0 − V0(S0)|] = lim
n→∞

E

[∣∣∣∣∣V̂n,0 − 1

n

n∑
k=1

e−rτh(τ, Sτ (k)) +
1

n

n∑
k=1

e−rτh(τ, Sτ (k))− V0(S0)

∣∣∣∣∣
]

≤ lim
n→∞

E

[∣∣∣∣∣V̂n,0 − 1

n

n∑
k=1

e−rτh(τ, Sτ (k))

∣∣∣∣∣
]

+ lim
n→∞

E

[∣∣∣∣∣ 1n
n∑
k=1

e−rτh(τ, Sτ (k))− V0(S0)

∣∣∣∣∣
]

(5.3)

It is trivial to see that under ASS. 3, it follows from the large number
theorem and dominated convergence theorem that for the first expectation
in (5.3) we have that:

lim
n→∞

E

[∣∣∣∣∣ 1n
n∑
k=1

e−rτh(τ, Sτ (k))− V0(S0)

∣∣∣∣∣
]

= 0

It remains to show that for the second expectation in (5.3) it holds that:

lim
n→∞

E

[∣∣∣∣∣V̂n,0 − 1

n

n∑
k=1

e−rτh(τ, Sτ (k))

∣∣∣∣∣
]

= 0

From the definition of our approximation for the option value we can write
V̂n,0 as:

V̂n,0 =
1

n

∑
k=1

ne−rτ̂nh(τ̂n, Sτ̂n(k)),
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and it follows that:

E
[∣∣∣V̂n,0− 1

n

n∑
k=1

e−rτh(τ, Sτ (k))

∣∣∣∣∣
]

= E

[∣∣∣∣∣ 1n∑
k=1

n
(
e−rτ̂nh(τ̂n, Sτ̂n(k))− e−rτh(τ, Sτ (k))

)
1{τ̂n 6= τ}

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣∑
k=1

n
(
e−rτ̂nh(τ̂n, Sτ̂n(k))− e−rτh(τ, Sτ (k))

)
1{τ̂n 6= τ}

∣∣∣∣∣
]

≤

E

∣∣∣∣∣∑
k=1

n
(
e−rτ̂nh(τ̂n, Sτ̂n(k))− e−rτh(τ, Sτ (k))

)∣∣∣∣∣
2
1/2

(P(τ̂n 6= τ))1/2

Where the last inequality follows from the Cauchy-Schwarz inequality. From
ASS. 3 it follows that we have that:

max
n

E
[
h2(τ̂n, Sτ̂n)

]
≤ ∞

E
[
h2(τ, Sτ )

]
≤ ∞

It follows directly from LEMMA 3, that we have that:

lim
n→∞

E

[∣∣∣∣∣V̂n,0 − 1

n

n∑
k=1

e−rτh(τ, Sτ (k))

∣∣∣∣∣
]

= 0,

which concludes the proof of the (asymptotic) correctness of the bundling
algorithm.

We are ready to start implementing this new algorithm. In order to check
the correctness of our new algorithm we will first do a test where we use the
Black-Scholes model and the analytical moments.

5.4 Simulation experiment for new bundling algo-
rithm

As we have seen in section 5.3 the algorithm we have now developed will
converge asymptotically to the true option value. Now it is time to see
if this convergence is fast enough as to give us accurate results in reason-
able computation time. We will compare the results to the results of SGM
without bundling for accuracy and computation time, and use a variety of
combinations of the number of bundles and the number of asset paths. This
way we get an idea of what a good combination is of the number of bundles
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and the number of asset paths at the same time. The parameters that will
be equal in all of the simulations are:

• S0 = 10

• X = 12

• r = 0.05

• T = 1

• σ = 0.3

• N = 50, so we take 50 timesteps and at each timestep the option can
be exercised.

First we will create our reference results by performing two normal SGM
simulations, one with n = 103, and one with n = 104 asset paths. For each
of the scenario’s we do 30 runs so that we can base our further conclusions
on the mean and standard deviations of the results. In addition we will
determine the computation time per run for each of the scenario’s as to
be able to make a comparison between the computation time of the SGM
without bundling and the SGM with our new bundling algorithm. The
results of the simulations to obtain reference values are found in table 5.1.

Table 5.1: Simulation results SGM without bundling for American put
Mean Std. dev. Time/run (s)

n = 103 lower bound 2.2620 0.0259 3.5672

direct estimator 2.2608 0.0032

n = 104 lower bound 2.2653 0.0074 21.5850

direct estimator 2.2657 0.0002

Now that we have our reference results we can take a look at the SGM
including the new bundling algorithm. As in the case with without bundling
we will look at n = 103 and n = 104 asset paths. For the number of bundles
we will take b = 2, b = 3, b = 4, b = 5 for n = 103 and n = 104, in addition
for n = 104 we will also take b = 6. This means that the number of bundles
will range from 22 = 4 to 25 = 32 for n = 103, and form 22 = 4 to 26 = 64
for n = 104.

The results for n = 103 asset paths are found in table 5.2, the results for
n = 104 asset paths can be found in table 5.3
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Table 5.2: Simulation results SGM with bundling, n = 103, for American
put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.2605 0.0276 0.2421

direct estimator 2.2667 0.0013

b = 3 lower bound 2.2700 0.0219 0.3623

direct estimator 2.2661 0.0007

b = 4 lower bound 2.2693 0.0256 0.5900

direct estimator 2.2658 0.0009

b = 5 lower bound 1.9068 0.0225 1.0331

direct estimator 7.0545 · 109 3.6221 · 1010

Table 5.3: Simulation results SGM with bundling, n = 104, for American
put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.2666 0.0079 1.2165

direct estimator 2.2659 0.0002

b = 3 lower bound 2.2684 0.0072 1.5498

direct estimator 2.2658 0.0001

b = 4 lower bound 2.2679 0.0084 2.0793

direct estimator 2.2658 0.0001

b = 5 lower bound 2.2663 0.0095 3.0464

direct estimator 2.2658 0.0001

b = 6 lower bound 2.2654 0.0074 4.7790

direct estimator 2.2658 0.0001

If we first compare the results of table 5.2 to the results in table 5.1 the
first thing that stands out is the gain in computation time using the new
method, combined with the gain in accuracy. The new SGM with bundling
has decreased our computation time by a factor 10. With n = 103 asset
paths in the SGM with bundling we can obtain much more accurate results,
with a much smaller standard deviation then we did with the old SGM
without the bundling algorithm. A striking result in table 5.2 is the result
for b = 5, here we clearly see that it is important not to have too many
bundles, since this makes the results very unaccurate. This happens because
then we get bundles containing very little asset paths, which means that we
will perform the regression step based on very little points which can lead
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to very big deviations in the results. Another striking thing in the result
is the relatively small influence of increasing the number of bundles from 4
to 16. The results are a little more accurate, especially the mean value of
the direct estimator, but the standard deviation and lower bound estimators
don’t differ much.

Comparing the results in table 5.3 to the results in table 5.1 gives us more
or less the same picture. Again we see that the computation time decreases
by a factor 10 compared to the SGM algorithm without bundling. The
standard deviation also decreased and just as in the case where n = 103

we see that increasing the amount of bundles hardly improves the results.
Here we don’t see any actual improvement in the direct estimator results for
b ≥ 3, the mean estimate of the lower bound seems to be best for b = 4.

As we have seen from the results the new method gives us substantially
better results than the SGM algorithm without bundling. The convergence
to the true option value is also very fast, since we already get very good
results using a very limited number of bundles and asset paths. This means
that using this new SGM algorithm with bundling we get very accurate
results in very limited computation time.

42



Chapter 6

Black-Scholes Hull-White
model

In this chapter we will implement the Black-Scholes Hull-White model in
the SGM with bundling algorithm. First we will derive an analytic solution
for a European option price under the Black-Scholes Hull-White model, so
that we can use this result as a comparison for our numerical results. We
will conclude this chapter with simulation experiments for the Black-Scholes
Hull-White model.

The Black-Scholes Hull-White model will be implemented within the SGM,
so that we can determine the prices of American options using a more re-
alistic model for the underlying. The Black-Scholes Hull-White model is
such a model, since not only the stock price has a stochastic component,
also the interest rates are stochastic. Hence, we define the state vector
Xt = (St, rt)

T with probability space (Ω,F ,P), so that Xt is adapted to the
filtration Ft. Instead of one stochastic differential equation, we deal with
the system of stochastic differential equations (6.1).

dSt = rtStdt+ σStdW
S
t

drt = λ(rt − rt)dt+ ηdW r
t

dWS
t dW

r
t = ρdt

(6.1)

As can be seen the stock follows geometric Brownian motion, the interest
rate on the other hand follows a mean reverting process, as can be seen in
the drift term. Here rt represents the expected value of rt, λ is the pa-
rameter that determines how strong the mean reversion is and η describes
the volatility of the interest rate. The third equation determines the depen-
dency between S and r, where ρ is the correlation between WS and W r,
hence −1 ≤ ρ ≤ 1. If ρ = 1 then the Brownian motion generating the stock
price and the Brownian motion generating the interest rate are perfectly
correlated, and if ρ = −1 they are perfectly negatively correlated.
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If we use the Black-Scholes Hull-White model an important difference is that
our discount factor is more involved than it is for the ordinary Black-Scholes
dynamics. We have that the discount factor from time t = 0 to time t = s
is given by:

D(s) = e−
∫ s
0 r(u)du

Hence we have to approximate this by a summation in our implementation.

6.1 Analytic solution

By a transformation technique, described by Brigo and Mercurio in [2], it
is possible to acquire an analytic solution for a European option under the
Black-Scholes Hull-White dynamics. The key of this technique is to make a
measure transformation to the so-called forward measure in order to make
the stochastic components under the new measure independent. To simplify
the analysis we will only treat the case where r̄t = r̄, since this is the form
we will use in our implementation and this will make our computations less
involved. Starting from the Black-Scholes Hull-White model as given in the
previous section, we can rewrite the dynamics given in equation (6.1) using
the Cholesky decomposition to get:{

drt = λ(r̄ − rt)dt+ ηdW̃t

dSt = St

(
rtdt+ σρdW̃t + σ

√
1− ρ2dZ̃t

) (6.2)

This means that in our original system we had:{
dW r

t = dW̃t

dWS
t = ρdW̃t +

√
1− ρ2dZ̃t

We will rewrite the differential equation for rt in (6.2), using the fact that
we can write rt = xt + φt with r0 = r(0), where the process xt satisfies the
following differential equation:

dxt = −λxtdt+ ηdW̃t, x0 = 0.

Hence, we can write for 0 ≤ t < u ≤ T :

xu = xte
−λ(u−t) + η

∫ u

t
e−λ(u−s)dW̃s.

The function φt is a well-defined deterministic function on [0, T ] with φ0 =
r(0). If we assume that the term structure of discount factors is given by
the sufficiently smooth function P (0, t) for all t ∈ [0, T ] such that:

P (u, v) = E[exp{−
∫ v

u
rsds}|Fu] for 0 ≤ u < v ≤ T,
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then it follows that the instantaneous forward rate implied by the term
structure must be given by:

f(0, t) = −∂(lnP (0, t))

∂t

It follows, in order to fit the observed term structure, that we have for all
t ∈ [0, T ]:

φt = f(0, t) +
η2

2λ2

(
1− e−λt

)2

To define the new measure we need to know
∫ T
t xudu. We will determine

this integral; note that at time t, the value xt is known. By stochastic
integration by parts we get:∫ T

t
xudu = TxT − txt −

∫ T

t
udxu

=

∫ T

t
(T − u)dxu + (T − t)xt

= −λ
∫ T

t
(T − u)xudu+ η

∫ T

t
(T − u)dW̃u + (T − t)xt. (6.3)

Here, we used in the last step the definition of dxt. We will work out the
first integral in equation (6.3). Using the definition of xt we can write:

−λ
∫ T

t
(T−u)xudu = −λ

(
xt

∫ T

t
(T − u)e−λ(u−t)du+ η

∫ T

t
(T − u)

∫ u

t
e−λ(u−s)dW̃sdu

)
.

(6.4)
The first integral in equation (6.4) can easily be computed as:

−λxt
∫ T

t
(T − u)e−λ(u−t)du =

xt
λ

(
1− e−λ(T−t)

)
− xt(T − t). (6.5)

The computation of the second integral in equation (6.4) is somewhat more
involved. We need to again apply integration by parts to get:

−λη
∫ T

t
(T − u)

∫ u

t
e−λ(u−s)dW̃sdu = −λη

∫ T

t

(∫ u

t
eλsdW̃s

)
d

(∫ u

t
(T − v)e−λvdv

)
= −λη

{(∫ T

t
eλudW̃u

)(∫ T

t
(T − v)e−λvdv

)
−
∫ T

t

(∫ u

t
(T − v)e−λvdv

)
eλudW̃u

}
= −λη

∫ T

t

(∫ T

u
(T − v)e−λvdv

)
eλudW̃u

= −λη
∫ T

t

(
(T − u)e−λu

λ
+
e−λt − e−λu

λ2

)
eλudW̃u

= −η
∫ T

t
T − u+

e−λ(T−u) − 1

λ
dW̃u (6.6)
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Now adding the two expressions in equations (6.5) and (6.6) yields:

−λ
∫ T

t
(T−u)xudu =

xt
λ

(
1− e−λ(T−t)

)
−xt(T−t)−η

∫ T

t
T−u+

e−λ(T−u) − 1

λ
dW̃u

(6.7)
It finally follows from equations (6.3) and (6.7) that:∫ T

t
xudu = −λ

∫ T

t
(T − u)xudu+ η

∫ T

t
(T − u)dW̃u + (T − t)xt

=
xt
λ

(
1− e−λ(T−t)

)
+
η

λ

∫ T

t

(
1− e−λ(T−u)

)
dW̃u. (6.8)

6.1.1 The T -forward measure

We define the new measure QT to be the T -forward (risk-adjusted) measure
as (note that Q denotes the current risk-neutral measure):

dQT

dQ
=

exp
{
−
∫ T

0 rudu
}

P (0, T )

=
exp

{
−
∫ T

0 xudu−
∫ T

0 φudu
}

P (0, T )

=
exp

{
− η
λ

∫ T
0 1− e−λ(T−u)dW̃u −

∫ T
0 f(0, u)du−

∫ T
0

η2

2λ2
(1− e−λu)2du

}
P (0, T )

= exp

{
−η
λ

∫ T

0
1− e−λ(T−u)dW̃u −

∫ T

0

η2

2λ2
(1− e−λu)2du

}
.

Where we have used equation (6.8). We have that the two processes defined
by:

dW̃ T
t = dW̃t +

η

λ

(
1− e−λ(T−t)

)
dt,

dZ̃Tt = dZ̃t,

are independent Brownian motions under the T -forward measure QT . We
can redefine the dynamics of the interest rate and asset price under the
T-forward measure as: drt =

[
λr̄ − η2

λ

(
1− e−λ(T−t))− λrt] dt+ ηdW̃ T

t

dSt = St
[
rt − ρση

λ

(
1− e−λ(T−t))] dt+ St

[
σρdW̃ T

t + σ
√

1− ρ2Z̃Tt

]
(6.9)
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The next step is to determine the expectation and variance of the asset
price. First we integrate the dynamics in (6.9) to get for the interest rate
(0 ≤ s < t ≤ T ):

rt = rse
−λ(t−s) +

∫ t

s
λr̄e−λ(t−u)du− η2

λ

∫ t

s
e−λ(t−u)

[
1− e−λ(T−u)

]
du+ η

∫ t

s
e−λ(t−u)dW̃ T

u

= xse
−λ(t−s) − η2

λ

∫ t

s
e−λ(t−u)

[
1− e−λ(T−u)

]
du+ η

∫ t

s
e−λ(t−u)dW̃ T

u + φt.

For the asset price we can perform a similar integration to get, for t < T :

ST =St exp

{∫ T

t
rudu−

ρση

λ

∫ T

t

(
1− e−λ(T−u)

)
du− 1

2
σ2(T − t)

+σρ
(
W̃ T
T − W̃ T

t

)
+ σ

√
1− ρ2

(
Z̃TT − Z̃Tt

)}
=St exp

{
1− e−λ(T−t)

λ
xt +

η

λ

∫ T

t

[
1− e−λ(T−u)

]
dW̃ T

u

− η2

λ

∫ T

t

∫ u

t
e−λ(u−s)

[
1− e−λ(T−s)

]
dsdu+

∫ T

t
f(0, u)du

+
η2

2λ2

∫ T

t
(1− e−λu)2du− ρση

λ

∫ T

t

(
1− e−λ(T−u)

)
du− 1

2
σ2(T − t)

+σρ
(
W̃ T
T − W̃ T

t

)
+ σ

√
1− ρ2

(
Z̃TT − Z̃Tt

)}
. (6.10)

Note that ST is lognormally distributed, so ln(ST ) is normally distributed.
We will compute here E [ln(ST )|Ft] and consecutively Var(ln(ST )). Using
the expression for ST in (6.10), it follows from simple calculations that we
have:

ET [ln(ST )|Ft] = ln(St) + E
[
ln

(
ST
St

)
|Ft
]

= ln(St) +
1− e−λ(T−t)

λ
xt −

σ2

λ2

{
T − t+

2

λ
e−λ(T−t) − 1

2λ
e−2λ(T−t) − 3

2λ

}
+ ln

(
P (0, t)

P (0, T )

)
+

σ2

2λ2

{
T − t+

2

λ

(
e−λT − e−λt

)
− 1

2λ

(
e−2λT − e−2λt

)}
− ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}
− σ2

2
(T − t).

In order to rewrite the expression, we define:

v(t, T ) :=
η2

λ2

{
T − t+

2

λ
e−λ(T−t) − 1

2λ
e−2λ(T−t) − 3

2λ

}
,
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so that we can rewrite the expression as:

ET [ln(ST )|Ft] = ln(St)− ln(P (t, T )) +
1− e−λ(T−t)

λ
xt − v(t, T ) +

1

2
{v(0, T )− v(0, t)}

− ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}
− σ2

2
(T − t)

= ln

(
St

P (t, T )

)
− ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}
− σ2

2
(T − t)− 1

2
v(t, T ).

(6.11)

By similar computations we can determine VarT (ln(ST )):

VarT (ln(ST )) = V (t, T ) + σ2(T − t) +
2ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}
.

(6.12)

6.1.2 An explicit expression for the option value

We have all information to analytically determine the value of a European
option under the Black-Scholes Hull-White model. To simplify notation we
will define:

• y := ln(ST )

• V 2 := V ar(y)

• M := E[y|Ft]

Note that we already know V 2 and M from equations (6.11) and (6.12).

The value of a European option at time T equals (ψ(ST −X))+, where
ψ ∈ {1,−1} depending on whether we have a call or a put option with
strike X. We will determine the price of a European option at time t with
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expiration T ≥ t and strike X as:

V (t, T,X) = P (t, T )ET
[
(ψ(ST −X))+ |Ft

]
= P (t, T )

∫ ∞
−∞

1√
2πV

(ψ(ey −X))+ e−
1
2

(y−M)2

V 2 dy

= P (t, T )

∫ +∞·ψ

ln(X)

1√
2πV

(ey −X)e−
1
2

(y−M)2

V 2 dy

= P (t, T )

∫ +∞·ψ

ln(X)−M
V

1√
2π

(eM+V z −X)e−
1
2
z2dz

= P (t, T )

{
eM+ 1

2
V 2

∫ +∞·ψ

ln(X)−M
V

1√
2π
e−

1
2

(z−V )2dz −X
∫ +∞·ψ

ln(X)−M
V

1√
2π
e−

1
2
z2dz

}

= P (t, T )

{
eM+ 1

2
V 2

[
Φ(+∞ · ψ)− Φ

(
ln(X)−M − V 2

V

)]
−X

[
Φ(+∞ · ψ)− Φ

(
ln(X)−M

V

)]}
= P (t, T )

{
ψeM+ 1

2
V 2

Φ

(
−ψ ln(X)−M − V 2

V

)
− ψXΦ

(
−ψ ln(X)−M

V

)}

= ψStΦ

ψ ln
(

St
XP (t,T )

)
+ 1

2

[
V (t, T ) + σ2(T − t) + 2ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t))}]√

V (t, T ) + σ2(T − t) + 2ρση
λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}


− ψXP (t, T )Φ

ψ ln
(

St
XP (t,T )

)
− 1

2

[
V (t, T ) + σ2(T − t) + 2ρση

λ

{
T − t− 1

λ

(
1− e−λ(T−t))}]√

V (t, T ) + σ2(T − t) + 2ρση
λ

{
T − t− 1

λ

(
1− e−λ(T−t)

)}
 .

6.1.3 An explicit expression for the bond price

The last step that remains in the derivation of the analytic solution for a
European option under the Black-Scholes Hull-White model is determining
an explicit expression for the discount rate, or zero coupon bond P (t, T ).
In order to do this, recall that the dynamics of the interest rate under the
T -forward measure are given by:

drt =

[
λr̄ − η2

λ

(
1− e−λ(T−t)

)
− λrt

]
dt+ ηdW̃ T

t .

If we define θ = λr̄ − η2

λ

(
1− e−λ(T−t)) then we see P (t, T ) as a function

Y (t, rt), where the function Y (t, r) must solve the boundary value problem:

∂Y

∂t
+ (θ − λr)∂Y

∂r
+

1

2
η2∂

2Y

∂r2
= rY,
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subject to: Y (T, r) = 1 ∀r.
We can guess a solution Y (t, r, T ) of the form Y (t, r, T ) = A(t, T )e−B(t,T )r,
if we see A(t, T ) and B(t, T ) as functions of t then they must solve the
following system of ordinary differential equations:

dA

dt
− θAB +

1

2
η2AB2 = 0,

dB

dt
− λB + 1 = 0,

subject to: A(T, T ) = 1 and B(T, T ) = 0. This leads us to an expression for
B(t, T ):

B(t, T ) =
1

λ

(
1− e−λ(T−t)

)
.

Subsequently it can be derived that for A(t, T ) it holds that:

A(t, T ) = exp

{(
θ

λ
− η2

2λ2

)
(B(t, T )− T + t)− η2

4λ
B2(t, T )

}
.

From this line of reasoning it follows finally that we have for our discount
factor, or zero coupon bond we have the following explicit expression:

P (t, T ) = exp

{(
θ

λ
− η2

2λ2

)
(B(t, T )− T + t)− η2

4λ
B2(t, T )− rtB(t, T )

}
.

6.1.4 Reference value

Now that we have found an explicit expression for the value of a European
put option under the Black-Scholes Hull-White model we can compute a
reference value using the parameters we will use for our simulation further
along. In section 6.3 we will compare the value of a European put from our
simulations to this analytic value in order to see how accurate our results
are. We will choose the following parameters:

• S0 = 10

• X = 12

• r0 = 0.05

• r̄ = 0.06

• η = 0.02

• λ = 2

• ρ = 0.1
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• T = 1

• σ = 0.3

When we substitute these values into the formulas derived above we first
get for time t = 0:

P (0, T ) = 0.945909335495978,

and using this value we can then conclude that the option value at time
t = 0 must be:

V (0, T,X) = 2.061635287422108

6.2 Matlab implementation

Now that we know the details of the Black-Scholes Hull-White model it
is time to implement the model in the SGM. We will use the Hull-White
equation with rt constant to simplify the implementation, this special case
is known as the Vasicek model (see [17]). This means that we have a mean-
reverting interest rate, where the mean will equal r̄ as t → ∞. In order to
implement this we can use large parts of the already existing program for
the SGM with bundling and only adjust the function file that generates the
paths to also generate the interest rate paths and adapt all lines including
the discounting factor or interest rate to use the generated values rt.

6.2.1 Generating paths using Black-Scholes Hull-White
model

As mentioned we will have to adapt the way we generate paths to accom-
modate the stochastic interest rates. In order to do so we now construct one
large matrix containing both the simulated asset paths and the simulated
interest rate paths. If we take N timesteps this means that in this large
matrix the first N + 1 columns constitute the matrix of stock paths and the
last N + 1 columns constitute the matrix of interest rate paths. We will
need to store the interest rate paths as well as the asset price paths because
we will need these paths in our computations.

Next, we need to decide how to simulate the interest rate paths. Since it is
unlikely but not impossible that the interest rate becomes negative, we can
use an Euler discretization to simulate the interest rate paths, just as we
do for the asset price. This means that we will use the following scheme to
generate the asset and interest rate paths:{

St+1 = St + St(rtdt+ ρσWt +
√

1− ρ2σZt)
rt+1 = rt + λ(r̄ − rt)dt+ ηWt

Here we have that Wt and Zt are independent standard Gaussian variables.
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6.2.2 Adjusting the SGM for Black-Scholes Hull-White
model

Using the latest version of the stochastic grid method, including the new
bundling algorithm we will be able to use the analytic moments of the dis-
tribution. We will however need to adjust these moments to accommodate
for the stochastic interest rates. The first moment will now be described by:

µt = ln(St) + (rt − 0.5σ2)dt.

Also in the discounting formulas needed to compute the continuation value
we must use rt instead of r. At the end we must create a vector containing
the discounting values for the optimal exercise step, hence if in path i it is
optimal to exercise at time j we must have that in the discounting vector
the i-th element equals exp(−

∑j−1
k=0 ri,kdt), so that we can use this vector

to compute our final estimators.

6.3 Simulation experiments Black-Scholes Hull-
White model

Three simulation experiments will be performed to assess the quality of the
estimations made using the SGM for the Black-Scholes Hull-White model.
In the first experiment we will determine the price of a standard European
put option using ordinary Monte Carlo simulation and using the SGM. The
results of this experiment we can compare to the analytic solution for the
European option under the Black-Scholes Hull-White model given in section
6.1.4. In the second experiment we will show that if we choose the parame-
ters correctly the price of a European option under the Black-Scholes Hull-
White model will converge to the price under the Black-Scholes model. We
will thus show that by choosing the parameters for Black-Scholes Hull-White
in such a way that the results converge to the Black-Scholes results, the re-
sults of SGM for the Black-Scholes Hull-White model in fact converge to
the results for the Black-Scholes model. Then finally we will perform some
computations for American options using the SGM and the Black-Scholes
Hull-White model.

In order to be able to compare the results to the analytic solution given
in section 6.1.4 we will use the same parameters in all our simulation ex-
periments. In addition we will generally use the following discretization
parameters:

• N = 50, i.e. we will take 50 timesteps

• n = 1000, hence we will generate 1000 asset and interest rate paths
per simulation
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• b = 4, we will make 24 bundles at each timestep

Note that choosing η, the volatility of the interest rate, as small as we have
done reduces the likelihood of getting negative values for the interest rate,
especially since we take relatively large timesteps.

6.3.1 Ordinary MC and SGM for European put

In this experiment we compare the results of a standard Monte Carlo simu-
lation and the SGM for a European put using the Black-Scholes Hull-White
model. The parameters are as defined in sections 6.1.4 and 6.3 and 30 runs
of each of the methods are performed to determine the mean values and the
standard deviations of the results of both methods. The computation time
per simulation is also given for both SGM and the ordinary Monte Carlo
simulation. This gives us the results in table 6.1:

Table 6.1: Simulation results with BSHW for European put
Mean St. Dev. Time/run

SGM lower bound 2.0617 0.0219

SGM direct estimator 2.0608 0.0051 0.7500

Ordinary MC 2.0559 0.0245 0.1325

What we can see here is that the results in terms of the mean of the sim-
ulations are very close for the two methods. More importantly though, the
results of both methods are very close to the results obtained in section
6.1.4. This tells us that the method provides us very accurate results. Not
only do we get very accurate results on average, but we also find a very
small standard deviation in our results from SGM compared to the results
from the ordinary Monte Carlo simulations. The standard deviation of the
direct estimator of the SGM is almost five times smaller than the standard
deviation of the ordinary Monte Carlo estimator. In order to gain the same
amount of accuracy using ordinary Monte Carlo we would need many more
paths and/or much smaller time steps, which will lead to longer computation
time. As we can see the computation time of the SGM currently is longer
than that of the ordinary Monte Carlo simulation, but here it is important
to keep in mind that SGM is mostly meant to price options for which or-
dinary Monte Carlo is too involved. Also SGM might be computationally
somewhat more expensive than ordinary Monte Carlo simulation, but all
computations can still be done in less than a second.
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6.3.2 Convergence of SGM to Black-Scholes model

In the previous experiment, comparing ordinary Monte Carlo results for
a European put to results of SGM for a European put and the analytic
solution for a European put we have seen that our results here are very
accurate. In this section we will exploit some of the mathematical features
of the Black-Scholes Hull-White model, and in particular its relation to the
Black-Scholes model to test the accuracy of the method even further. We
have already seen in section 5.4 that our latest version of SGM, using the
bundles gives us very accurate results under the Black-Scholes model for an
American put option. Here we will show that by choosing the parameters
for the Black-Scholes Hull-White model and the Black-Scholes model in a
clever way, the results of the two methods will converge.

Choosing the parameters

We know that SGM gives us accurate results for the Black Scholes model so
if we choose the parameters appropriately then we can make a comparison
between the results for SGM with Black Scholes and with Black-Scholes Hull-
White to gain more confidence in the results of our method. The next step
is to determine the appropriate parameters. We know that the differential
equation for the interest rate in the BSHW model is given by (with constant
expectation for rt):

drt = λ(r − rt)dt+ ηdW r
t .

If we start at r0 we can approximate rT with:

rT = r0 +

T/dt∑
i=1

(λ(r − ri)dt+ ηdW r
t ) .

Hence it follows:

E[rT ] = r0 +

T/dt∑
i=1

(λ(r − ri)dt) .

If let λ tend to zero and let r0 = r, this will converge to the standard Black-
Scholes model with parameter r = r0. In order to speed up the convergence
it is sensible to also choose ρ = 0 and η to be small to reduce the variance of
rt. We will use in our computations r0 = r̄ = 0.05, ρ = 0, and subsequently
choose the following sets of parameters:

• λ = 0.2, η = 0.2

• λ = 0.1, η = 0.1

• λ = 0.05, η = 0.05

• λ = 0.00001, η = 0.00001
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All other parameters will be the same as in section 6.1.4. Since in this case
we can test the results for an American put option we will use that at every
timestep made the option can be exercised.

Results

We will perform 30 runs with each set of parameters and compare the results
to the results obtained by 30 runs of the SGM for the Black-Scholes model
under the same parameters (so r = r0 = 0.05). The SGM for the Black-
Scholes model gives us the following results:

Direct Estimator: 2.2661, with a standard deviation of 0.0007

Lower Bound: 2.2572, with a standard deviation of 0.0289

First we will take a look at the direct estimator results under the parameters
we have chosen for the Black-Scholes Hull-White model, given in table 6.2.

Table 6.2: Direct estimator results SGM with BSHW and BS for American
put

Mean St. Dev.

λ = 0.2, η = 0.2 2.2777 0.0091

λ = 0.1, η = 0.1 2.2671 0.0045

λ = 0.05, η = 0.05 2.2648 0.0035

λ = 0.00001, η = 0.00001 2.2659 0.0010

As can be seen in table 6.2 the results converge very nicely to the direct
estimator value from the Black-Scholes Hull-White model. In addition we
also see that the standard deviation converges to the value we found in the
Black-Scholes case. Now it is time to take a look at the results for the lower
bound estimator, given in table 6.3.

Table 6.3: Lower bound results SGM with BSHW and BS for American put
Mean St. Dev.

λ = 0.2, η = 0.2 2.4360 0.0298

λ = 0.1, η = 0.1 2.3078 0.0247

λ = 0.05, η = 0.05 2.2795 0.0344

λ = 0.00001, η = 0.00001 2.2606 0.0249
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Just as with the direct estimator, the lower bound estimator converges nicely
to the value for the Black-Scholes model. We see that the convergence seems
to be somewhat slower for the lower bound than for the direct estimator,
but this picture could be influenced by the fact that the standard deviation
of the lower bound is larger than the standard deviation of the direct estima-
tor. Nevertheless the convergence is clearly visible and again the standard
deviation is very close to the one found in the Black-Scholes case.

The results for the convergence of the Black-Scholes Hull-White model to
the Black-Scholes model for the proper choice of parameters shows us that
we can not only obtain good results for European options using the im-
plementation of the Black-Scholes Hull-White model in SGM but also for
American style options.

6.3.3 Computation time and accuracy

Finally we will also perform a simulation experiment to determine compu-
tation time and accuracy for some different combinations of the number of
paths and the number of bundles. Clearly the fewer bundles and paths we
use, the shorter the computation time will be. But if we choose to use too
few paths or bundles the results will be less accurate. This experiment will
make an assessment of the tradeoff that is made between computation time
and accuracy if we change the number of bundles and the number of paths.
As we have seen in section 5.4 there is no point in taking too many bundles
for a certain number of paths. We also saw there that increasing the num-
ber of paths and/or bundles doesn’t give a significant improvement in the
results. To see if this is the case here, we will now take n = 103 and n = 104

asset paths, and look at the results for b = 2, b = 3 and b = 4 if n = 103,
and for b = 3, b = 4 and b = 5 if we have n = 104 asset paths. As with the
experiment in section 6.3.2 we will take N = 50 timesteps, where at each
timestep the option may be exercised. All other parameters will be equal
to those stated in section 6.1.4. As in previous experiments we will perform
30 runs of each scenario to get a good estimate for the mean and standard
deviation of the results. The results for n = 103 asset paths are given in
table 6.4, the results for n = 104 asset paths can be found in table 6.5.
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Table 6.4: Simulation results SGM with bundling for BSHW, n = 103, for
American put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.2461 0.0350 0.2985

direct estimator 2.2499 0.0010

b = 3 lower bound 2.2428 0.0311 0.4239

direct estimator 2.2496 0.0007

b = 4 lower bound 2.2488 0.0281 0.6727

direct estimator 2.2493 0.0014

Table 6.5: Simulation results SGM with bundling for BSHW, n = 104, for
American put

Mean Std. dev. Time/run (s)

b = 3 lower bound 2.2474 0.0104 2.2910

direct estimator 2.2494 0.0002

b = 4 lower bound 2.2486 0.0075 2.9461

direct estimator 2.2494 0.0001

b = 5 lower bound 2.2501 0.0074 4.1621

direct estimator 2.2493 0.0002

If we look at the results in table 6.4 and table 6.5 we see very similar results
to the results in table 5.2 and table 5.3. The result don’t improve much as
we increase the number of bundles, and in this case it seems that we get
the best results for n = 103 asset paths if we take 23 = 8 bundles and for
n = 104 asset paths if we take 24 = 16 bundles. The computation time is
somewhat longer in the Black-Scholes Hull-White case than in the Black-
Scholes case, but this is reasonable since we need to simulate interest rate
paths as well as asset paths, and need to do a little more computations for
each timestep because we have to use the simulated interest rate paths in
stead of the deterministic interest rate. Because there is more uncertainty
in the model we see that in general the standard deviation of the results is
somewhat bigger than in the Black-Scholes case, but that they are still very
small especially for the direct estimator.
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Chapter 7

Heston Model

In this chapter we will introduce the Heston model, where the volatility is
stochastic. In order to be able to use this model under all parameter values
we will need a new discretization scheme. First we will describe this new
scheme. Then we will implement the Heston model in our stochastic grid
method and we will end the chapter with simulation experiments for the
Heston model.

The Heston model helps to make asset paths more realistic, as it allows for
the volatility smile or skew that is often observed in implied volatility curves.
The volatility will be modeled as a mean reverting process, such that we will
have the stochastic differential equations given in equation (7.1)

dSt = rStdt+
√
νtStdW

S
t

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t

dWS
t dW

ν
t = ρdt

(7.1)

In the dynamics in (7.1) we have that νt is the variance of the asset price,
and hence describes the volatility of the asset price, ξ is the volatility of
the variance, θ is the mean reversion parameter for the variance of the asset
price, κ gives us the speed of mean reversion for the variance of the asset
price and ρ is the correlation between the volatility and the asset price.

For notational convenience we rewrite the dynamics for the asset price. By
taking Xt = ln(St), a simple application of Itô’s lemma gives us that the
system in (7.1) is equivalent to:

dXt = (r − 1
2νt)dt+

√
νtdW

S
t

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t

dWS
t dW

ν
t = ρdt

(7.2)

7.1 QE-Scheme

It is clear from the stochastic differential equations in (7.2) that these will
be somewhat more involved to handle numerically, since we can’t allow the
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volatility process to become negative because we would take a square root
from νt in the asset price process and in the volatility process. If νt would
become negative at some point we would get imaginary asset prices and
volatilities and the whole pricing process would fail. The Feller condition
tells us that as long as we have that 2κθ ≥ ξ2 we should never get non-
negative values for νt in the continuous solution of the dynamics, and we
avoid this whole issue. Numerically however, an Euler discretization may
still provide negative values for the variance νt. If the Feller condition is
satisfied and we choose our timesteps sufficiently small the probability of
producing negative values under the Euler discretization is very small.

There is another problem with this condition, because in practical situations
it usually holds that 2κθ � ξ2, so that if we choose the parameters as to
obey the Feller condition we are modeling rather unrealistic values for the
volatility. We must find a smarter way to deal with this problem, and the
answer is to use a different discretization scheme, namely the QE-scheme or
quadratic-exponential scheme. We will now derive the QE-scheme step by
step, where we will follow the line of reasoning as described in [1]. First we do
some observations on the distribution of the volatility, then we will define
an approximation method and approximate density for the approximated
volatility, and then we will define an approximation for νt.

7.1.1 Distribution of the volatility

The volatility as described by the dynamics of the Heston model resemble a
non-central chi-squared distribution, as Broadie and Kaya explain in [4] in
detail. In order to see this, define:

d =
4κθ

ξ2

n(t, T ) =
4κe−κ(T−t)

ξ2
(
1− e−κ(T−t)

) , T > t

For all T > t ≥ 0 we have that conditional on νt, νT follows the distribution
of e−κ(T−t)/n(t, T ) times a non-central chi-square variable with d degrees of
freedom and non-centrality parameter νtn(t, T ). Hence we have that:

P(νT < x|νt) = Fχ

(
xn(t, T )

e−κ(T−t) ; d, νtn(t, T )

)
,

where:

Fχ(z; v, λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!2v/2+jΓ(v/2 + j)

∫ z

0
zv/2+j−1e−x/2dx
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is the distribution function of the non-central chi-squared distribution with
v degrees of freedom and non-centrality parameter λ. We can use this know-
ledge of the non-central chi-square distribution to determine the first two
moments of νT . Conditional on νt, we have for all T > t ≥ 0 that:

E (νT |νt) = θ + (νt − θ) e−κ(T−t),

Var (νT |νt) =
νtξ

2e−κ(T−t)

κ

(
1− e−κ(T−t)

)
+
θξ2

2κ

(
1− e−κ(T−t)

)2
.

7.1.2 Approximation method

Now that we have some more knowledge of the distribution of the volatility,
we can start defining our approximation method. For ν̂t, the approximation
of νt, sufficiently large (we will define ’sufficiently large’ more precisely later
on), we will write:

ν̂(t+ ∆t) = a(b+W ν)2 (7.3)

Where a and b are constants depending on the timestep ∆t, the current
volatility ν̂t and the parameters of the stochastic differential equation for the
volatility. The values of a and b will be determined by moment matching.
This in fact is the reason this approximation can only be used for sufficiently
large values of ν̂t, since otherwise the moment matching will fail. For small
values of ν̂t we will need a different scheme. As νt becomes small we have
that the non-centrality parameter of the non-central chi-squared distribution
approaches zero and hence the distribution of ν(t+∆t) becomes proportional
to that of an ordinary chi-squared distribution with d degrees of freedom,
recall that the density of this distribution is given by:

fχ2(x; d) =
1

2ν/2Γ(ν/2)
e−x/2xν/2−1.

We will use an approximated density for ν̂(t+ ∆t) of the form:

P (ν̂t ∈ [x, x+ dx]) ≈
(
pδ(0) + β(1− p)e−βx

)
dx, x ≥ 0 (7.4)

Here δ denotes the Dirac delta-function, and p and β are non-negative con-
stants that will be determined shortly. Note that the parameter p specifies
the mass concentrated at the origin, this mass at the origin is then supple-
mented by an exponential tail similar to the ordinary chi-squared density.
It can be shown that if p ∈ [0, 1] and β ≥ 0 equation (7.4) indeed gives us
a valid density function. We need to define a way to sample according to
the approximate density. This will turn out to be straightforward. If we
integrate the density to determine the distribution function we find that:

Ψ(x) = P (ν̂(t+ ∆t) ≤ x) = p+ (1− p)
(

1− e−βx
)
, x ≥ 0.
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Clearly we can compute the inverse of Ψ(x) to be:

Ψ−1(u; p, β) =

{
0, 0 ≤ u ≤ p
β−1 ln

(
1−p
1−u

)
, p < u ≤ 1

From this we obtain the simple sampling scheme:

ν̂(t+ ∆t) = Ψ−1(Uν ; p, β) (7.5)

Here we draw Uν from a uniform (0,1)-distribution. Now we have the dis-
cretiziation scheme for both small and large values of νt, so what remains is
to determine the constants a and b for the scheme given in equation (7.3),
p and β for the scheme given in (7.5) and a way to determine when to use
which discretization scheme.

Determining a en b

We start by determining a and b for the scheme in (7.3). For notational
convenience define:

m = θ + (ν̂t − θ) e−κ∆t = E[ν̂(t+ ∆t)], (7.6)

s2 =
ν̂tξ

2e−κ∆t

κ

(
1− eκ∆t

)
+
θξ2

2κ

(
1− e−κ∆t

)2
= Var(ν̂(t+ ∆t)), (7.7)

Υ =
s2

m2
. (7.8)

Because ν̂t ∈ [0,∞) it follows by inserting these values in equation (7.8) that
Υ ∈ (0, ξ2/(2κθ)]. In discretization equation:

ν̂(t+ ∆t) = a(b+W ν)2,

we actually describe the distribution of ν̂(t + ∆t) as a times a non-central
chi-squared distribution with one degree of freedom and non-centrality pa-
rameter b2, so it follows that:

E[ν̂(t+ ∆t)] = a(1 + b2), (7.9)

Var(ν̂(t+ ∆t)) = 2a2(1 + 2b2). (7.10)

Setting these expressions equal to m and s2 as given in equations (7.6) and
(7.7) yields the following system of equations:

a(1 + b2) = m, (7.11)

2a2(1 + 2b2) = s2. (7.12)

So if we set x = b2 then elimination of a from (7.11) and (7.12) yields the
following expression:

x2 + 2x(1− 2Υ−1) + 1− 2Υ−1 = 0.
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By examining the discriminant of this expression, we find that a solution is
only possible if Υ ≤ 2, which is the case for large values of ν̂t. If we assume
this to be true we find that:

b2 = 2Υ−1 − 1 +
√

2Υ−1
√

2Υ−1 − 1 ≥ 0,

a =
m

1 + b2

Determining p and β

For the determination of p and β in the discretization scheme defined in
equation (7.5), let m, s and Υ be defined as in equations (7.6), (7.7) and
(7.8). If we directly integrate the density:

P (ν̂t ∈ [x, x+ dx]) ≈
(
pδ(0) + β(1− p)e−βx

)
dx forx ≥ 0,

we see that:

E[ν̂(t+ ∆t)] =
1− p
β

,

Var(ν̂(t+ ∆t)) =
1− p2

β2
.

Again by moment-matching it follows that:

1− p
β

= m, (7.13)

1− p2

β2
= s2. (7.14)

Elimination of β from the equations (7.13) and (7.14) then yields the fol-
lowing equation:

(1 + Υ)p2 − 2Υp+ Υ− 1 = 0.

Since we need a solution p ≤ 1, we will always have one solution, namely:

p =
Υ− 1

Υ + 1
.

For the solution to make sense we must have that p ≥ 0, which tells us that
Υ ≥ 1. It then follows that for β, we have:

β =
2

m(Υ + 1)
.
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Switching schemes

The thing that remains is to determine when to switch from the discretiza-
tion scheme in (7.3) to the discretization scheme given in (7.5). We have
seen that the quadratic sampling scheme, as given in (7.3) (for high values
of ν̂t) is applicable if Υ ≤ 2, while the exponential sampling scheme, given
in (7.5) (for low values of ν̂t) is applicable for Υ ≥ 1. Clearly, it follows that
under all circumstances at least one of the two schemes can be used, since
these domains overlap. A simple way to decide when to use which sample
scheme is to choose some critical level Υc ∈ [1, 2] and use the quadratic
sampling scheme if Υ ≤ Υc, and to use the exponential sampling scheme
otherwise. It turns out that the exact choice of this critical value has almost
no effect on the overall results, hence a critical value of Υc = 1.5 will be
used.

7.1.3 A discretization scheme for the asset price

In order to make computations more accurate when using the Heston model
to simulate asset prices we will need a more sophisticated discretization
scheme for the asset price. To derive this scheme we will first derive an
analytic expression for the logarithm of the asset price, as was done in 7.1.
Recall the system of stochastic differential equations for Xt = ln(St):

dXt = (r − 1

2
νt)dt+

√
νtdW

S
t ,

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t ,

dWS
t dW

ν
t = ρdt.

If we integrate the stochastic differential equation for the volatility we get
that:

ν(t+ ∆t) = νt +

∫ t+∆t

t
κ(θ − νu)du+ ξ

∫ t+∆t

t

√
νudW

ν
u ,

which can be rewritten as:∫ t+∆t

t

√
νudW

ν
u =

1

ξ

(
ν(t+ ∆t)− νt − κθ∆t+ κ

∫ t+∆t

t
νudu

)
(7.15)

By a Cholesky decomposition of the differential equations we can write:

dXt = (r − 1

2
νt)dt+ ρ

√
νtdW

ν
t +

√
1− ρ2

√
νtdWt (7.16)

Where Wt is a Brownian motion independent of W ν
t . Integrating the

stochastic differential equation for the logarithm of the asset price given in
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equation (7.16) then yields, using the equation for
∫ t+∆t
t

√
νudW

ν
u derived

in equation (7.15):

X(t+ ∆t) = Xt +

∫ t+∆t

t

(
r − 1

2
νu

)
du+ ρ

∫ t+∆t

t

√
νudW

ν
u +

√
1− ρ2

∫ t+∆t

t

√
νudWu

= Xt + r∆t− 1

2

∫ t+∆t

t
νudu+

ρ

ξ

(
ν(t+ ∆t)− νt − κθ∆t+ κ

∫ t+∆t

t
νudu

)
+
√

1− ρ2

∫ t+∆t

t

√
νudWu

= Xt + r∆t+
ρ

ξ
(ν(t+ ∆t)− νt − κθ∆t) +

(
κρ

ξ
− 1

2

)∫ t+∆t

t
νudu

+
√

1− ρ2

∫ t+∆t

t

√
νudWu. (7.17)

In order to be able to use the expression in (7.17) for a discretization of
the asset price we need to find a way to discretize the time-integral of the
volatility. As suggested in [1] we will approximate the time-integral by:∫ t+∆t

t
νudu ≈ ∆t (γ1νt + γ2ν(t+ ∆t)) , (7.18)

with constants γ1 and γ2. Choosing γ1 = 1, γ2 = 0 will give an ”Euler-like”
setting, a central discretization, on the other hand would take γ1 = γ2 = 1

2 .
It is also possible to use a more sophisticated approach to choose the values
of γ1 and γ2 through moment matching. In order to do this the analytic
moments of the time-integral of the volatility are required, these moments
can be found in [5], we will not explore this possibility here. Since the
Brownian motion in the exact solution for Xt is independent of νt, the
integral; ∫ t+∆t

t

√
νudWu,

has a Gaussian distribution with mean zero and variance
∫ t+∆t
t νu du. Com-

bining this knowledge with the approximation of the time-integral in (7.18)
and the analytic expression for Xt in (7.17) leads to the following discretiza-
tion scheme:

X̂(t+ ∆t) = X̂t + r∆t+
ρ

ξ
(ν̂(t+ ∆t)− ν̂t − κθ∆t) + ∆t

(
κρ

ξ
− 1

2

)
(γ1ν̂t + γ2ν̂(t+ ∆t))

+
√

∆t
√

1− ρ2
√
γ1ν̂t + γ2ν̂(t+ ∆t) · Z

= X̂t +K0 +K1ν̂t +K2ν̂(t+ ∆t) +
√
K3ν̂t +K4ν̂(t+ ∆t) · Z,

(7.19)
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Where Z is a standard normal random variable, independent of ν̂ and the
constants K0,K1,K2,K3 and K4 are given by:

K0 =

(
r − ρκθ

ξ

)
∆t,

K1 = γ1

(
κρ

ξ
− 1

2

)
∆t− ρ

ξ
,

K2 = γ2

(
κρ

ξ
− 1

2

)
∆t+

ρ

ξ
,

K3 = γ1

(
1− ρ2

)
∆t,

K4 = γ2

(
1− ρ2

)
∆t.

7.2 SGM for the Heston model

We adapt the SGM for the Heston model. Clearly, we have to make some
changes to the method to accommodate the stochastic volatility. First of all
we need to make a new version of the code that generates the asset prices,
in which we use the QE-scheme, with the adapted discretization scheme
for the asset price, as given in equation (7.19). Also we need to store all
simulated volatilities to be able to adjust the moments of the density in
SGM accordingly. This means that, instead of using a constant volatility
we will need to use the simulated volatilities in all computation steps.

7.3 Simulation experiments

In order to test our method we will start by setting the parameters so that
the Feller condition is satisfied, and hence we can compare results from
the QE-scheme for a European put option with the results of an ordinary
Monte Carlo simulation using an Euler discretization and sufficiently small
timesteps. By taking sufficiently small timesteps we reduce the probability of
getting negative values for the volatility from the Euler scheme. Thereafter
we will also do an experiment to show what happens if the Feller condition
is not satisfied and we hence have a high probability of simulating a negative
value for the volatility if we use the Euler scheme. To test the results of SGM
for the Heston model we will first make a comparison with the results of the
European put by approximating the price of the European put using the
SGM, then we will make a comparison for an American put using reference
values from literature. The last experiment for the Heston model will be
pricing an American put using SGM and the QE-scheme using different
numbers of bundles and asset paths, to compare results and gain insight in
the computation time.
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7.3.1 QE-scheme and Euler discretization for European put

In order to test the QE-scheme we start by performing two ordinary Monte
Carlo simulations for a European put, one using an Euler discretization and
one using the QE-scheme when the Feller condition is satisfied and we have
high probability that if we take sufficiently small timesteps the volatility
will remain positive even when using the Euler scheme. In order to show
the advantages of the QE-scheme we will show thereafter what happens if
the Feller condition is not satisfied, and hence we have a high probability of
simulating negative values for the volatility with the Euler discretization.

Feller condition satisfied

Because we want to be able to use an Euler discretization as a comparison
and test for the implementation of the QE-scheme, we will need to choose
our parameters so that 2κθ ≥ ξ2. We will take:

• S0 = 10

• ν0 = 0.2

• X = 12

• T = 1

• r = 0.05

• κ = 0.4

• θ = 0.3

• ξ = 0.2

• ρ = −0.1

• Ψc = 1.5

• γ1 = γ2 = 0.5

Note that it holds that 2κθ = 2 · 0.4 · 0.3 = 0.24 ≥ 0.04 = ξ2. We will do 30
runs of n=1000 paths, with N=50 timesteps per path. This gives us results
found in table 7.1.

Table 7.1: Simulation results MC for Euler and QE scheme, European put
Mean Std. dev.

Euler 2.7777 0.0755

QE-scheme 2.7587 0.0873
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As we can see in table 7.1 the results of both discretization schemes are very
similar. The difference between the results is so small (about one fourth of
the standard deviation) that these differences can be attributed to random
errors. Hence we can assume that the QE-scheme is implemented correctly,
we will come back further to the correctness of our methods in section 7.3.3.

Feller condition not satisfied

If we change the value of ξ and take for instance ξ = 1 we have that 2κθ =
0.24 < 1 = ξ2 and we no longer have that with the Euler discretization the
simulated values of the volatility are positive with high probability. Using
the QE-scheme however we should have no trouble finding the option price
under these conditions. All other parameters are the same as those used in
the experiment in section 7.3.1. The results are found in table 7.2.

Table 7.2: Simulation results MC for Euler and QE scheme, 2κθ < ξ2,
European put

Mean Std. dev.

Euler 1.2955− 0.0041i 0.3017

QE-scheme 2.4510 0.0217

The advantages of the QE-scheme are visible in the results, where the Euler
discretization fails to give us a realistic estimation of the option price the
QE-scheme still provides us accurate results. This means that using the
QE-scheme we can price options under any choice of parameters. There are
suggestions for using an adapted version of the Euler scheme, but all of these
adaptations include a bias as described in [14].

7.3.2 SGM and ordinary Monte Carlo for a European put

Since we can assume that the QE-scheme is implemented correctly and gives
us the desired results we test the SGM for the Heston model. Because we
can test the method by comparing results to the results of the ordinary
Monte Carlo simulation for the European put we will price a European put
using SGM. The parameters we will choose equal to those in section 7.3.1,
in addition we choose to use b = 3, so that we create 23 = 8 bundles. The
reference value for the European put price, i.e. the price from the Monte
Carlo simulation, can be found in table 7.1. The results from the SGM for
the European put under the Heston model can be found in table 7.3.
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Table 7.3: Simulation results SGM with bundling for Heston, European put
Mean Std. dev.

lower bound 2.7371 0.0785

direct estimator 2.7402 0.0068

At first glance it seems that the results found with the SGM are a little low
compared to those found using ordinary Monte Carlo simulations. However
the standard deviation of the ordinary Monte Carlo simulations is rather
high, around 0.08, which means that we can expect that the results can
differ significantly if we would redo this experiment. To check this hypothesis
we’ve redone the experiment with the ordinary Monte Carlo simulation using
the QE-scheme and found an estimated option price of 2.7172, which is lower
than our SGM estimates. This supports the conclusion that the results for
SGM are in fact correct and that the differences from the ordinary Monte
Carlo results in table 7.1 may be caused by random errors. In order to gain
more certainty on the accuracy of the results we will perform a simulation to
compare the value from SGM with reference value from literature in section
7.3.3.

7.3.3 SGM for American put, comparison to literature

In the paper by Fang and Oosterlee, [7], we find some reference values for
American put options. We will use the following parameters:

• S0 = 8

• ν0 = 0.0625

• X = 10

• T = 0.25

• r = 0.1

• κ = 5

• θ = 0.16

• ξ = 0.9

• ρ = 0.1

The reference value for the American put option than is 2.0000. We perform
30 runs for the SGM with bundling with n = 1000, N = 50, b = 3 and we
assume that we may exercise the option at any timestep. This gives the
results in table 7.4.
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Table 7.4: Simulation results SGM with bundling for Heston, American put
Mean Std. dev.

lower bound 1.9962 0.0071

direct estimator 1.9969 0.0045

We see in table 7.4 that the SGM method with the improved bundling
algorithm gives us very accurate results compared to the reference value.
This tells us that using a limited amount of paths we can already obtain
accurate results.

7.3.4 SGM for American put, computation time and accu-
racy

Since we’ve confirmed in section 7.3.3 that SGM is implemented correctly for
the Heston model using the QE-scheme we can perform an experiment for
an American put using SGM, in order to examine accuracy and computation
time for different numbers of asset paths and bundles. We will perform an
experiment similar to that in section 6.3.3, where we will first take n = 103

asset paths with subsequently b = 2, b = 3 and b = 4 and then take n = 104

asset paths with subsequently b = 2, b = 3, b = 4 and b = 5. Hence the
number of bundles will range from 22 = 4 to 24 = 16 for n = 103 asset
paths and from 22 = 4 to 25 = 32 for n = 104 asset paths. All other
parameters will be equal to the parameters in section 7.3.1, and we assume
that the option can be exercised at each timestep. We will also take a look
at the computation time per run for each of the scenario’s. For each of the
scenario’s 30 runs will be performed to get accurate estimates for the mean
and standard deviation of the results. The results for n = 103 asset paths
are found in table 7.5, the results for n = 104 asset paths are found in table
7.6.

Table 7.5: Simulation results SGM with bundling for Heston, n = 103, for
American put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.8523 0.0653 3.4975

direct estimator 2.8523 0.0086

b = 3 lower bound 2.8298 0.0738 3.6707

direct estimator 2.8508 0.0095

b = 4 lower bound 2.8328 0.0891 3.9233

direct estimator 2.8748 0.1461
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Table 7.6: Simulation results SGM with bundling for BSHW, n = 104, for
American put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.8498 0.0197 33.9872

direct estimator 2.8480 0.0025

b = 3 lower bound 2.8409 0.0231 36.8896

direct estimator 2.8484 0.0018

b = 4 lower bound 2.8523 0.0283 35.4220

direct estimator 2.8472 0.0020

b = 5 lower bound 2.8378 0.0186 36.7184

direct estimator 2.8468 0.0022

The first thing that stands out is that the computation time is significantly
higher than the computation time for the Black-Scholes Hull-White model,
as visible in table 6.4 and 6.5. This difference in computation time occurs
because of the use of the QE-scheme. The path generation with the QE-
scheme is somewhat less efficient than the Euler discretization, which gives
us an increase in computation time. An advantage of the QE-scheme could
be that you can take fewer timesteps and still get accurate results in order to
reduce computational effort. However in our case we are not able to use this
aspect of the QE-scheme since decreasing the amount of timesteps is not a
viable option when we are pricing American options. Since this is the case
SGM has the advantage that we get very accurate results using a relatively
small amount of asset paths. We see that in the Heston case the standard
deviation is larger than in the Black-Scholes and Black-Scholes Hull-White
case (see tables 5.2, 5.3, 6.4 and 6.5) but is still small for such a limited
amount of asset paths. The larger standard deviation can be explained
from the Heston model, since we introduce a higher degree of uncertainty to
the model, resulting in a distribution with fatter tails, making convergence
to the actual value somewhat slower. Also it is clear from the results that it
is even more important in the Heston case not to choose b to be too big, since
this will have a negative influence on the results. If we take n = 103 asset
paths we see that we obtain the best results for b = 2, and the results for
b = 3 are similar, while for b = 4 we already get less accurate results. This
effect is not visible for n = 104 asset paths, but we do see that for n = 104

asset paths the computation time becomes very long compared to the gain
in accuracy in the results. In practical situations it thus will be more viable
to choose n = 103 asset paths, since it is very expensive to generate more
paths which gives very little gain in accuracy.
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Chapter 8

Heston-Hull-White model

In this chapter we will discuss the Heston-Hull-White model. This is a
combination of the Black-Scholes Hull-White model as described in chapter
6 and the Heston model described in chapter 7, which leads to a model with
stochastic interest rate as well as stochastic volatility. First a mathematical
description of the model will be presented, followed by a description of the
discretization scheme that we can use for this model and the chapter will
be concluded with some simulation experiments for the Heston-Hull-White
model.

8.1 Model description

The Heston-Hull-White model is a model where both the interest rate and
the volatility are stochastic as described in [15]. This results in a system
of three stochastic differential equations, one for the interest rate, one for
the volatility and one for the asset price. The dynamics of the interest
rate are described by an Hull-White process as described in chapter 6. The
dynamics of the volatility are given by a Heston process as described in
chapter 7. In order to make computations a little less involved we will here
only consider the special case where the correlation between the volatility
and the interest rate is equal to zero. Intuitively this is a logical assumption
since the probability of a volatile market under both high and low interest
rates seems to be equal. Combining the Heston model with the Hull-White
process for the interest rate then yields us the system of equations given in
(8.1). 

dSt = rtStdt+
√
νtStdW

S
t

drt = λ(rt − rt)dt+ ηdW r
t

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t

dWS
t dW

ν
t = ρ1dt

dWS
t dW

r
t = ρ2dt

(8.1)
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The parameters are given as described for the Black-Scholes Hull-White
model in 6 and the Heston model in 7.
Now for notational convenience we rewrite the dynamics for the asset price.
By taking Xt = ln(St), a simple application of Itô’s lemma gives us that the
system above is equivalent to:

dXt = (rt − 1
2νt)dt+

√
νtdW

S
t

drt = λ(rt − rt)dt+ ηdW r
t

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t

dWS
t dW

ν
t = ρ1dt

dWS
t dW

r
t = ρ2dt

(8.2)

8.2 Discretization scheme

For the discretization of the dynamics of the Heston-Hull-White model we
use a combination of the QE-scheme described in section 7.1 and an Euler
discretization. The interest rate process will be discretized using an Euler
discretization, the volatility process will be discretized using the QE-scheme
described in section 7.1.2. The asset price process will be discretized the
same way as with the QE-scheme in section 7.1.3, but here some additional
work will have to be done to accomodate the stochastic interest rate. In
order to do this we rewrite the dynamics of the Heston-Hull-White model
as given in (8.2) using a Cholesky decomposition. This yields the system of
equations given in (8.3).

dνt = κ(θ − νt)dt+ ξ
√
νtdW

ν
t

drt = λ(rt − rt)dt+ ηdW r
t

dXt = (rt − 1
2νt)dt+ ρ1

√
νtdW

ν
t + ρ2

√
νtdW

r
t + χ

√
νtdZt

(8.3)

where W ν
t , W r

t and Zt are independent Brownian motions and the constant
χ is given by:

χ =

√
1− ρ2

1 −
ρ2

2

1− ρ2
1

Following the same line of reasoning as in section 7.1.3 we can derive the
discretization scheme for the asset price given in equation (8.4).

X̂(t+ ∆t) = X̂t + rt∆t+
ρ1

ξ
(ν̂(t+ ∆t)− ν̂t − κθ∆t)

+ ∆t

(
κρ1

ξ
− 1

2

)
(γ1ν̂t + γ2ν̂(t+ ∆t))

+ χ
√

∆t
√
γ1ν̂t + γ2ν̂(t+ ∆t) · Zt

+ ρ2

√
∆t
√
γ1ν̂t + γ2ν̂(t+ ∆t) ·W r

t

= X̂t +K0 +K1ν̂t +K2ν̂(t+ ∆t) +
√
K3ν̂t +K4ν̂(t+ ∆t) · Zt

+ ρ2

√
∆t
√
γ1ν̂t + γ2ν̂(t+ ∆t) ·W r

t , (8.4)
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where the constants K0,K1,K2,K3 and K4 are given in equation (8.5).

K0 =

(
rt −

ρ1κθ

ξ

)
∆t

K1 = γ1

(
κρ1

ξ
− 1

2

)
∆t− ρ1

ξ

K2 = γ2

(
κρ1

ξ
− 1

2

)
∆t+

ρ1

ξ
(8.5)

K3 = γ1

(
1− ρ2

1

)
∆t

K4 = γ2

(
1− ρ2

1

)
∆t

8.3 Matlab implementation

The Matlab implementation of the Heston-Hull-White model comes down to
combining the implementations of the Heston model described in section 7.2
and the Black-Scholes Hull-White model described in 6.2.2. Using equation
(8.5) to discretize the asset price, in combination with the discretization of
the QE-scheme for the volatility process and an Euler discretization for the
interest rate process we are able to generate paths for the Heston-Hull-White
model. The adaptation of the regression entails the merger of the regression
step in the Black-Scholes Hull-White case and the regression step in the
Heston-case, so that we use both the generated interest rate paths and the
generated volatility paths.

8.4 Simulation experiments

We will perform two simulation experiments, first we will check the im-
plementation of the Heston-Hull-White model in SGM by computing the
price of a European put using the SGM and using ordinary Monte Carlo to
compare the results. Then we will perform a simulation experiment for an
American put option using SGM under the Heston-Hull-White model. For
both simulation experiments we will use the following parameters:

S0 = 10, X = 12, T = 1,

ν0 = 0.2, κ = 0.4, θ = 0.3, ξ = 0.2,

r0 = 0.05, λ = 2, r̄ = 0.06, η = 0.02,

ρ1 = −0.1, ρ2 = 0.1,

Ψc = 1.5, γ1 = γ2 = 0.5.

For all SGM simulations we will in addition use n = 1000, N = 50 and
b = 3.
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8.4.1 SGM and ordinary Monte Carlo for European put

In order to assess the accuracy of the results of SGM we perform a simulation
experiment to determine the price of a European put under the Heston-Hull-
White model. First we determine a reference value by means of an ordinary
Monte Carlo simulation for a European put under the Heston-Hull-White
model. We will perform 30 runs of the simulation to determine the mean and
standard deviation of the estimated option value. Then we can determine
the mean value and standard deviation of the option price obtained using
SGM by performing 30 runs of the simulation. The results are found in
table 8.1.

Table 8.1: Simulation results MC and SGM for Heston-Hull-White, Euro-
pean put

Mean Std. dev.

Monte Carlo 2.7294 0.0628

SGM lower bound 2.7208 0.0889

SGM direct estimator 2.7058 0.0134

The results show that we get very accurate results for the European put
price using the SGM compared to ordinary Monte Carlo simulations. The
estimated value of the option is somewhat lower for SGM than it is with
Monte Carlo but the difference is not significant if we take the magnitude of
the standard deviation into account. The standard deviation is as expected
significantly smaller for the direct estimator of SGM than it is for ordinary
Monte Carlo simulations.

8.4.2 SGM for American put

As we have seen in section 7.3.4 the computation time rises significantly if
we take n = 104 asset paths. Since we use the same discretization scheme
for the volatility process this will also be the case here, and since so far the
gain in accuracy has been very limited if we take n = 104 asset paths instead
of n = 103 asset paths we will here only consider the case where n = 103.
For this number of asset paths we will compare results on accuracy and
computation time if we choose b = 2, b = 3 and b = 4. The results are given
in table 8.2.
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Table 8.2: Simulation results SGM with bundling for Heston-Hull-White for
American put

Mean Std. dev. Time/run (s)

b = 2 lower bound 2.8528 0.0627 3.6268

direct estimator 2.8315 0.0115

b = 3 lower bound 2.8529 0.0720 3.8029

direct estimator 2.8298 0.0136

b = 4 lower bound 2.8384 0.0763 4.0898

direct estimator 3.0524 1.2040

As in the Heston case we see that if we take b = 4 the number of bun-
dles is too large to get accurate results. Also we see a slight increase in
computation time compared to the Heston case (see table 7.5), which is
to be expected. For b = 2 and b = 3 we get very accurate results where
the standard deviation of the direct estimator in particular is very small,
which means that if we use the Heston-Hull-White model the SGM pro-
vides us an accurate method to price American options. We see also that
the results are as we could expect from the results for the Black-Scholes
model in section 5.4, the Black-Scholes Hull-White model in section 6.3.3
and the Heston model in section 7.3.4. There we saw that the price of
the option under the Black-Scholes Hull-White model was very similar to
the price under the Black-Scholes model, while the price under the Heston
model was significantly higher. So it is to be expected that the price un-
der the Heston-Hull-White model is similar to the price under the Heston
model, and significantly higher than the price under the Black-Scholes and
the Black-Scholes Hull-White model, which is exactly what we see in the
results in table 8.2.

75



Chapter 9

Conclusion

In this final chapter we will return to the research questions stated in the
preface of the report. Recall that the first research question was:

”How can we improve the stochastic grid method in order to decrease
computational effort?”

By using a bundling strategy, described in chapter 5, where we divide the
asset paths into bundles for each timestep and then perform the regression
locally for each of the bundles we were able to reduce computation time
significantly. Using the original version of the stochastic grid method it took
21.5850 seconds to do a simulation for an American put option using n =
104 asset paths, under the Black-Scholes model. Using the stochastic grid
method with bundling a similar simulation with n = 104 asset paths only
took 1.2165 seconds for b = 2, i.e. 22 = 4 bundles, and using b = 6, i.e. 26 =
64 bundles, it only took 4.7790 seconds. Meanwhile the standard deviation
of the lower bound estimate remained equal, while the standard deviation
of the direct estimator even decreased somewhat. Another advantage of
the stochastic grid method with bundling is that the estimates for n = 103

paths already have very small standard deviations, the standard deviation
of the direct estimator is significantly smaller than the one obtained using
the stochastic grid method without bundling with n = 103 asset paths.

Besides the very promising simulation results we also gave a formal proof
that the results from the stochastic grid method, with our new bundling
technique, will asymptotically converge to the true option value.

The second research question posed was:

”How can we adapt the improved stochastic grid method for different
models for the asset price?”

After the successful implementation of the new bundling algorithm into the
stochastic grid method, the next step was to adapt the algorithm so that
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asset prices could be driven by dynamics other than Black-Scholes. First we
implemented the Black-Scholes Hull-White model where the interest rate
process is stochastic, as was described in chapter 6. For this model we
could use the analytic solution for a European option as a comparison for
our simulation results. The simulation results were very promising. The
computation time did increase slightly compared to the Black-Scholes case
but not significantly.

Next we worked with the Heston model, described in chapter 7, where the
volatility is stochastic. Because under this model it is vital that the volatil-
ity remains positive at all times we needed a different discretization scheme
known as the QE-scheme, see section 7.1. By using the QE-scheme the
method will give accurate results, regardless of the parameters chosen for
the Heston model. The use of this new discretization scheme did entail an
increase in computation time, since we need the volatility from the previous
timestep in the simulation which makes computations less efficient. Fortu-
nately we can obtain very accurate results using only n = 103 asset paths
which means that the computation time can be limited to just over 3 seconds
for a simulation.

Combining the resulting methods from the Black-Scholes Hull-White model
and the Heston model enabled the implementation of the Heston-Hull-White
model, described in chapter 8, where both the interest rate and the volatil-
ity are stochastic. For computational convenience we have only considered
the case where the correlation between the volatility and the interest rate
is equal to 0. Since we desire to be able to use any choice of parameters for
the dynamics of the volatility process we used the QE-scheme for discretiza-
tion of the volatility process, combined with an Euler discretization for the
interest rate process. The discretization for the asset price is similar to the
one used in the Heston case, adapted to accommodate the stochastic inter-
est rate. For this model we thus saw again a somewhat longer computation
time, but not significantly longer than in the Heston case, however using
n = 103 asset paths we can still get accurate results in less than 4 seconds
per simulation.

Concluding we were able to improve the stochastic grid method by imple-
menting a bundling technique and performing local regressions rather than
global regressions. This way we were able to decrease computation time by
75%, maintaining the same accuracy level. This new stochastic grid method
with bundling also proved to be very useful in pricing options using dynamics
other than the Black-Scholes dynamics for the asset price. Under the Black-
Scholes Hull-White dynamics, the computation time and accuracy remained
almost unchanged. Under the Heston and Heston-Hull-White dynamics we
see an increase in computation time, because of the different discretization
scheme, and a slight increase in the standard deviation of the results due to
the fatter tails of the distribution of the asset prices.
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