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SUMMARY 
 
 
Modelling of stress development and fault slip in and around a 
producing gas reservoir 
 
Many gas fields are currently being produced in the northern Netherlands. Induced 
seismicity related to gas production has become a growing problem in the Netherlands 
in the past two decades. To date, a few hundred induced seismic events occurred. 
Induced seismicity is generally assumed to be the result of induced reactivation of 
discontinuities in the subsurface. Field data of the Groningen and Annerveen gas 
fields as well as other Rotliegend gas fields in the Netherlands are analysed. A large 
amount of seismic cross sections through seismic events is studied. It is very likely 
that the seismic events are the result of reactivation of existing discontinuities (like 
faults) in or near the reservoirs. 
 
The objective of the research presented in this dissertation is to obtain a better 
understanding of the mechanisms of gas production induced reactivation of faults by 
means of 3D geomechanical modelling of gas reservoirs. It is a step towards future 
assessment of expected seismic energy release when (further) developing gas fields in 
the Netherlands. 
 
Furthermore, attention is given to the development of several quantification methods, 
used for the analysis of the calculation results. Quantification methods include relative 
shear displacements, seismic moment, stress paths, mobilised shear capacity and total 
stress changes per unit depletion. 
 
The geomechanical models represent the geometries found in the seismic cross 
sections. The models contain a disk-shaped gas reservoir in an extensional stress 
regime. A steeply dipping normal fault plane intersects the reservoir and divides it 
into two compartments: a footwall and a hanging wall reservoir compartment. Stress 
development and fault slip during gas depletion are analysed.  
 
Gas depletion can lead to both normal and reverse fault slip on the same fault plane. 
In the given setting of a steeply dipping normal fault in an extensional stress regime, 
normal fault slip due to differential reservoir compaction is the dominant mechanism, 
rather than reverse fault slip. The effect of differential reservoir compaction is most 
pronounced for a configuration, where the top of the hanging wall reservoir 
compartment is positioned exactly opposite to the bottom of the footwall reservoir 
compartment, resulting in a relatively large amount of fault slip over a narrow area. 
 
Normal fault slip is supported by equal depletion of both reservoir compartments. 
Reverse fault slip is supported by differential pore pressure development due to 
reservoir compartmentalisation. Especially the combination of a relatively stiff 
surrounding rock and differential pore pressure development due to reservoir 
compartmentalisation can result in relatively large amounts of reverse fault slip. 



 x 

Both normal and reverse fault slip are promoted by a Young’s modulus or Poisson’s 
ratio of the surrounding rock larger than those of the reservoir rock (Esur > Eres or νsur 
> νres). The initial state of stress is relatively closer to the failure line than in case of a 
smaller stiffness contrast. Esur < Eres and νsur < νres oppose the reactivation of the fault. 
Values of νsur lower than 0.2 seem to have no significant influence on the calculated 
maximum normal fault slip. Calculations indicated that the Young’s modulus of the 
surrounding rock is a more important parameter influencing gas depletion induced 
fault slip than the Poisson’s ratio of the surrounding rock. 
 
Calculations with a 3D anisotropic tectonic stress field show a strong dependency of 
the amount of calculated fault slip on the direction of the maximum horizontal stress 
with respect to the fault strike direction. Most normal fault slip occurs when the 
maximum horizontal stress is directed parallel to the fault strike. Minimum normal 
fault slip is calculated for a maximum horizontal stress direction perpendicular to the 
strike direction of the fault. A larger horizontal stress component parallel to the 
azimuth of the fault has a limiting effect on the fault slip. 
 
Total fault slip can consist of a dip slip and a strike slip component. In case of a 
horizontal reservoir, no significant strike slip is observed when the fault strike 
direction is a principal stress direction. A certain amount of strike slip is observed for 
calculations with an angle between the maximum horizontal stress direction and the 
fault strike direction of 31o, 45o and 59o. Strike slip contributes to both normal and 
reverse fault slip. 
 
 
F.M.M. Mulders Delft, 3rd December 2003 
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1 INTRODUCTION 
 
 
 
1.1 Gas production in the Netherlands 
 
Natural gas is, when compared to other fossil fuels, an environmentally relatively 
clean source for energy supply in both winning and usage per energy unit (kWh). For 
environmental and economical reasons, the share of natural gas in the energy supply 
grows within the EU and worldwide. Dutch natural gas has, with more than 50% of 
the EU gas reserves on a central geographical position, an excellent basis for giving 
an important contribution to the future demand of natural gas within the EU. 
 
Many gas fields are currently being produced in the northern Netherlands (187 fields 
at January 1 2003, from which 79 fields are positioned on-shore and 108 fields off-
shore (Ministry of Economic Affairs 2003). Up to January 1 2003, 353 gas fields are 
identified in the Netherlands (153 fields on-shore and 200 fields off-shore). 20 of 
these 353 gas fields are abandoned. 
 
The gas in the Netherlands is dominated by the giant Groningen gas field with an 
initial total capacity of approximately 2800.109 m3 gas. In the Netherlands, 2622.109 
m3 gas has been produced in total since the first production in 1947. An estimation of 
the expected remaining gas reserves amounts 1689.109 m3 (all values valid for January 
1 2003). 
 
 
1.2 Gas production induced seismicity 
 
The gas is in most cases captured in sandstone rocks from the Rotliegend Formation, 
at a depth of approximately -3000 m, as is the case for the giant Groningen field. The 
production of these gas fields causes changes in the effective stress field in the 
reservoir and its surroundings, resulting in compaction of the reservoir rock. This in 
turn leads in most cases to subsidence at the earth’s surface and in some cases to 
induced seismicity. 
 
Induced seismicity is basically the result of reactivation of pre-existing geological 
fault planes in or near the producing reservoirs. When gas is produced from the 
reservoir, the reduction in pore pressure and effective stress changes can cause shear 
stresses along the fault plane to change, eventually creating slip conditions and fault 
movement during gas extraction. As stated by Pennington  et al. (1986), continuous 
movement can cause stresses to accumulate on slip resistant regions at some parts of 
the fault. When these highly stressed regions, which are termed asperities, ultimately 
yield, energy is released seismically. The accumulated energy may also be released 
aseismically through slow visco-plastic deformation (creep) of the asperity, but there 
is no generally accepted method for determining whether slip on a given fault will be 
seismic or aseismic. 
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Gas production induced seismicity has become a growing problem in the Netherlands 
in the past two decades. The first registered seismic event in the northern Netherlands 
associated to gas production occurred in the city of Assen in 1986. After this event, 
KNMI (Royal Dutch Meteorological Institute) extended and refined the existing 
detection network in the northern Netherlands. Intensive observation of the region is 
carried out nowadays with 11 downhole seismometers and 10 accelerometers, besides 
the existing surface seismometer network (Figure 1.1). To date, a few hundred events 
have been registered in this area (Figure 1.2). Approximately 40 events are recorded 
annually, from which 5 to 10 are sensed by the public. The occurrence of these small 
events near producing gas fields in historically aseismic regions, as well as their 
shallow hypocentres (-800 to -3500 m depth) indicate that most earthquakes in these 
parts of the Netherlands are non-tectonic (induced). The induced seismic events are 
with less than 3.8 on the Richter scale relatively small in magnitude (Haak et al. 
2001). From 1989 on, induced seismic events are also registered near gas fields in the 
west of the Netherlands near Purmerend and Alkmaar. The largest induced seismic 
event to date took place on 9th September 2001 near the city of Alkmaar with a 
magnitude of 3.5 on the Richter scale. In few cases, induced seismicity has lead to 
slight damage on buildings, such as damaged plaster, small cracks and the widening 
of existing cracks. So far, induced seismicity has not lead to structural damage to the 
construction of buildings. 
 
In Figure 1.3, a map of the Netherlands and surrounding is shown with seismic events 
as measured by KNMI. The relatively large earthquakes in the south of the 
Netherlands (largest magnitude to date: 5.8 on Richter scale) are the result of tectonic 
movements of the Rhein Graben. Earthquakes occur in this region at a depth of -5 to 
_30 km. 
 

Borehole seismometer
Accelerometer
Surface seismometer

Borehole seismometer
Accelerometer
Surface seismometer

 
Figure 1.1. Present locations of seismometers and accelerometers in the northern 

Netherlands (after Dost 2000). 
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Rotliegend faults
Seismic events
Gas reservoirs

30                  0                   30  kilometers

 
Figure 1.2. Map of the northern Netherlands showing the geographical locations 

of gas reservoirs, Rotliegend faults (at reservoir level) and seismic 
events. Source: TNO-NITG, KNMI. See Appendix 2 for this figure in 
colour. 

 
 
1.3 Gas production and the environment 
 
There exists an increasing awareness about environmental and social consequences of 
gas production and mining activities in general, not only because of induced 
seismicity but also because of subsidence at the earth’s surface. A new Mining Act 
has been installed since January 2003. It makes an extraction plan compulsory for 
every new field that is (going to be) produced, including among others a seismic risk 
analysis. Five components are asked: a hazard analysis of expected induced seismic 
events, the expected size and type of damage, proposed measures concerning 
reduction of seismic events, proposed measures concerning reduction of damage by 
seismic events and the set-up of a monitoring plan. Research after the mechanisms 
and possibilities of gas production induced seismicity may give additional value to the 
first component. 
 
Currently, a system for probabilistic seismic hazard analysis (PSHA) is being set-up 
by several governmental and industrial parties. Based on statistical data, such analysis 
could assess the probability that a certain peak ground acceleration and velocity may 
occur (and the resulting damage); amplification effects in the shallow soil are taken 
into account. 
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Figure 1.3. Map of the Netherlands and surrounding countries with registered 

earthquakes from 1905 to 1996. Source: KNMI. See Appendix 2 for this 
figure in colour. 
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1.4 Research objective 
 
Approximately ten years of research have helped increase the knowledge and 
understanding of the mechanisms of gas production induced seismic events. 
Nevertheless, the exact causes of the events are still not completely clear. For 
instance, faults intersecting a producing reservoir with normal fault geometry are very 
prone to differential reservoir compaction and normal fault reactivation (Roest & 
Kuilman 1994). Such fault geometry is shown in Figure 1.4 for the Bergermeer gas 
field and is representative for most of the gas fields in the northern Netherlands. Four 
relatively large events took place along this fault in 1994 and 2001. Fault plane 
solutions by KNMI revealed however reverse reactivations of this fault (Haak et al. 
2001). 
 
The objective of the research presented in this dissertation is to obtain a better 
understanding of the mechanisms of gas reservoir production induced fault 
reactivation by means of 2D- and 3D-geomechanical modelling of gas reservoirs, 
using the finite element software package DIANA. Geomechanical modelling has 
been found to be an efficient tool in evaluating the causal relationships of gas 
production and fault reactivation.  
 
The study focuses on the influence of several geomechanical parameters on stress 
development and fault slip in and around a disk-shaped gas reservoir intersected by a 
normal fault. Attention is given to the development, implementation and visualisation 
of several quantification methods in DIANA, used for the analysis of the calculation 
results. Quantification methods include relative shear displacements, seismic moment, 
stress paths, mobilised shear capacity and arching. Parameters include reservoir 
geometry (ellipsoid and disk), reservoir size, -depth and -tilt angle, reservoir and 
surrounding rock properties (Young’s modulus and Poisson’s ratio), initial reservoir 
overpressure, throw along fault, reservoir compartmentalisation and 3D-isotropic and 
anisotropic initial tectonic stress fields. 
 
The geomechanical models incorporate a geometry which is based on field data 
analysis and representative for most of the Rotliegend gas fields in the Netherlands, in 
particular the Groningen and Annerveen gas fields but also the Bergermeer gas field. 
For a proper evaluation of the influence of the parameters on stress development and 
fault slip, the models are kept basic and generic. The volume surrounding the 
reservoir is assumed to consist of one homogeneous isotropic rock mass in order to 
keep the model free from any additional effects eventually produced by a layered 
geological structure. 
 
The study focuses on seismic events at reservoir level, since field data analysis 
revealed that the far majority of all events is located at reservoir level. 
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Figure 1.4. Schematic representation of the fault in the Bergermeer gas field in the 

Netherlands, along which four seismic events are observed (after Haak 
et al. 2001). The fault represents a normal fault. According to fault 
plane solutions of KNMI, the deformation mechanism of the seismic 
events is reverse fault slip. 

 
 
1.5 Outline 
 
This dissertation is organised as follows: 
 
Chapters 2-5 give a general introduction in subjects needed for the understanding of 
the work presented in this dissertation, such as stress/strain behaviour, plasticity and 
the finite element method. Chapter 2 gives a general introduction to the theoretical 
concepts of stress, infinitesimal strain, linear elasticity, poroelasticity and the effective 
stress principle. The Haigh-Westergaard stress co-ordinates are introduced here, 
which are needed for the derivation of an expression to calculate the mobilised shear 
capacity in rock volumes. Chapter 3 deals with the theoretical concepts of fault 
reactivation and rock failure in producing hydrocarbon reservoirs, based on the Mohr-
Coulomb failure criterion. Chapter 4 presents the results of a finite element 
calculation, illustrating the stress concentrations around an asperity on a previously 
cut fault plane through a rock sample. The calculation is performed in the framework 
of a research proposal for identification of stress concentrations in the subsurface by 
means of 4D-time lapse seismic, requiring laboratory experiments to monitor such 
stress concentrations in rock samples by acoustic measurements. Chapter 5 describes 
the theoretical background of finite element calculations for geomechanical 
modelling. 
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The results of a literature study on hydrocarbon reservoir induced seismicity are 
summarised in Chapter 6. 
 
Chapter 7 gives a description of the geologic setting and characteristics of the 
Groningen and Annerveen gas fields in the northern Netherlands. It presents the 
conclusions of a field data analysis of seismic cross sections through the hypocentres 
of the seismic events within the boundaries of the fields. The geomechanical models 
used for the calculations in this study are based on the geology as described in 
Chapter 7. Their model set-up is presented in Chapter 8 together with the results of 
some preliminary calculations, performed in order to choose appropriate boundary 
conditions and values for certain geomechanical parameters: initial pore pressure and 
pore pressure development on the fault plane, normal- and shear stiffness of the fault 
plane and model size. 
 
Chapter 9 describes the development, implementation and visualisation of several 
quantification methods in DIANA, used for the analysis of the calculation results. 
Quantification methods include relative shear displacements, seismic moment, stress 
paths, mobilised shear capacity and total stress changes per unit depletion. Newly 
developed formulas for mobilised shear capacity, in order to express the proximity of 
a (principal) state of stress on a fault plane or in a rock volume to the Mohr-Coulomb 
failure criterion, are successfully applied. 
 
The results of 2D- and 3D-geomechanical calculations are presented and discussed in 
Chapters 10 and 11. Chapter 10 gives an overview of stress development in generic 
basic models of ellipsoidal and disk-shaped gas reservoirs without fault. Existing 
analytical solutions as well as numerical modelling results are presented and 
discussed. Differences in stress development between ellipsoidal and disk-shaped gas 
reservoirs are analysed. Chapter 10 zooms furthermore in on disk-shaped gas 
reservoirs and discusses the influence of several parameters on the stress development 
in and around the gas reservoir: reservoir rock properties, surrounding rock properties 
and reservoir tilting. Chapter 11 describes stress development and fault slip on steeply 
dipping normal faults intersecting a disk-shaped gas reservoir as a function of several 
parameters: surrounding rock properties, initial reservoir pore pressure, throw along 
the fault plane, differential pore pressure development due to reservoir 
compartmentalisation and initial tectonic stress field. 
 
Conclusions are summarised and discussed in Chapter 12. Recommendations for 
further research are given as well. 
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2 THEORETICAL CONCEPTS OF STRESS, 
INFINITESIMAL STRAIN, LINEAR 
ELASTICITY AND POROELASTICITY 

 
 
 
The following explanations about stress, strain and poroelasticity are mainly based on 
Brady & Brown 1993, Chen & Han 1988, Fjaer et al. 1992, Oertel 1996 and Ranalli 
1995. For the theoretical background of stress, infinitesimal strain, linear elasticity 
and poroelasticity in Chapter 2, subscript notation for (Cartesian) vectors and tensors 
is used, whereby the subscripts are to be assigned the values 1, 2 and 3. A point in 
space is then defined by the orthogonal Cartesian coordinates x1, x2 and x3 with 
respect to a given orthogonal Cartesian reference frame with origin O and the three 
mutually perpendicular unit vectors i1, i2 and i3 (Figure 2.1a). In the given order, i1, i2 
and i3 form a right-handed system. For repeated subscripts, the summation convention 
holds. 
 
However, although being very convenient for theoretical calculations, this notation is 
not practical for the finite-element calculation purposes of this thesis. Therefore, all 
chapters in this thesis other than 2 refer to an x,y,z-coordinate system for two reasons: 
first, it is in accordance with the coordinate system in the finite-element software 
DIANA used for this research work. Calculation output is in terms of stresses and 
displacements in x-, y- and z-directions. Second, it is commonly used in rock 
mechanics. A point in space is then located by employing the orthogonal Cartesian 
coordinates x, y and z with respect to a given orthogonal Cartesian reference frame 
with origin O and the three mutually perpendicular unit vectors ix, iy and iz (Figure 
2.1b). In the given order, the x-, y- and z-axes form a right-handed system. The 
subscripts x, y and z represent the 1, 2 and 3 of the subscript notation, respectively. 
 
In rock mechanics it is common practice to use different symbols for the diagonal and 
nondiagonal terms of the stress tensor: σij for i=j and τij for i≠j. The same applies to 
the infinitesimal strain tensor: εij for i=j and Γij for i≠j. Such different notation is used 
throughout this thesis except for Chapter 2, since this chapter deals with theoretical 
calculations using subscript notation. Note that in this thesis, like in rock mechanics, 
compressional stress is defined as a positive stress, whereas tensional stress is 
negative. It is important to remember that some other sciences involving elasticity use 
the opposite sign convention. SI-units are used throughout. 
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Figure 2.1. Definition of a point in space by orthogonal Cartesian coordinates with 

respect to a given orthogonal Cartesian reference frame with origin O 
and three mutually perpendicular unit vectors, (a) for the theoretical 
calculations and background theory background of stress, infinitesimal 
strain, linear elasticity and poroelasticity in Chapter 2 and (b) for all 
chapters in this thesis but Chapter 2. Note that the z-axis is upward 
directed and that depth in this thesis has a negative value. 

 
 
2.1 Stress 
 
2.1.1 Definition of stress: the stress tensor 
 
The simplest definition of stress is that of average stress, which is defined as being 
force per surface through which the force is acting. However, the total force may not 
be equally divided over that surface area. Suppose that the area is subdivided into an 
infinite number of subsections, through which an infinitely small part of the total 
force is acting. The part of the total force may vary from one subsection to another. 
 
Stress can therefore at best be defined by way of Euler’s principle. Stress is a tensor 
quantity that describes the mechanical force density (force per unit area) on the 
complete surface of a domain inside a material body. A stress exists wherever one part 
of a body exerts a force on neighbouring parts. This definition of stress depends on 
the concept of a continuum. A continuum is an idealized material whose physical 
attributes are continuous functions of position. A continuum cannot have gaps or 
jumps (discontinuities) in its properties. Real materials are never continua. They are 
discontinuous at the atomic scale, and often at larger scales as well. The notion of a 
continuum is, therefore, only a macroscopic approximation, but it allows useful 
mathematical approaches to the treatment of real phenomena. 
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X1
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Figure 2.2. Euler’s stress principle. The continuous body B contains an element of 

volume V surrounded by the closed surface S. An element dS on that 
surface has the outward normal ni and upon it the surrounding 
material exerts the force dFi. Body force gi acts on volume V. 

 
Consider a continuous body B (Figure 2.2). Let V be an element of volume inside it, 
bounded by the closed surface S. Two kinds of forces act on this volume element: 
body forces and surface forces. Body force gi represents the weight of volume element 
V per unit mass. It is equal to the gravity acceleration. The surface forces result from 
Newton’s third law of motion: whenever two objects interact with each other, they 
exert forces upon each other. Let dS be a small surface element on surface S with 
outward normal unit vector ni. dFi is the surface force that the part of body B outside 
S, on the positive side of ni, exerts on the part inside through dS. This force is a 
function of both the size and the orientation of dS. Assume that as dS goes to zero, 
any moment of force or torque acting about any point on the surface dS vanishes in 
the limit. Then the ratio dFi/dS tends to a finite limit: 
 

dS
dF

limT i
0dS

n
i

→
= , (2.1) 

 
where the vector n

iT  is termed the traction. It represents the force per unit area acting 
on dS with orientation specified by ni. Its dimension is [ml-1t-2] or Pa. It is clear that 

n
iT  depends on the orientation of the surface element dS. Stress at some point 

completely defines the tractions for all orientations of ni at that point by means of a 
stress tensor σij: 
 

















σσσ
σσσ
σσσ

=σ

333231

232221

131211

ij . (2.2) 

 
In fact, the stress tensor gives a complete description of the state of stress at a point by 
identifying the stresses related to three surfaces of a small parallelepiped in an 
orthogonal coordinate system, as shown in Figure 2.3. The dimensions of the 
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parallelepiped are that small, that the parallelepiped should be considered as a point-
sized cube or a cube with finite size inside a region subject to a homogeneous stress. 
Note that the direction of the stress components is valid for the sign convention that 
compressive stresses are positive. The tractions that act on the concealed faces are 
antiparallel to those shown. 
 
The indices i and j indicate the orientation of the single stress components: the first 
subscript denotes the direction of the normal to the surface on which the stress is 
acting and the second subscript denotes the direction of the traction. For a cube at rest, 
meaning that there is no net translational or rotational force acting on it, σij=σji. This 
reduces the number of independent components of the stress tensor to six. 

X1

X3

X2O dx2

dx1

dx3
σ11

σ12

σ13

σ23

σ22
σ21

σ32
σ31

σ33

 
Figure 2.3. Stress components on three faces of infinitesimal parallelepiped of 

volume dx1dx2dx3 for the sign convention that compressive stresses are 
positive. 

 
 
2.1.2 Definition of normal stress and shear stress 
 
If the stress state at a point is known, then it is possible to derive the traction across 
any surface with unit normal ni passing through that point. Consider the small 
tetrahedron OABC inside a continuous body of Figure 2.4. Three surfaces of this 
tetrahedron are each parallel to two coordinate axes. Traction Ti of the fourth surface 
ABC with outer unit normal ni = cosαi is searched. n1, n2 and n3 are the so-called 
direction cosines. Note that n1

2 + n2
2 + n3

2 = 1. Since the stress is homogeneous and 
the size differences of the four bounding surfaces are irrelevant because tractions are 
normalised to unit area, it can be stated that: 
 

Ti = σijnj. (2.3) 
 
Eq. (2.3) is referred to as Cauchy’s formula. It relates the traction across any surface 
within a continuous body with the stress tensor. Ti can be decomposed into a 
component σn normal to the surface and a component τ tangential to the surface. 
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These two components are referred to as normal- and shear stress vector, respectively. 
They can be calculated in terms of Cauchy’s formula according to: 

 
σn = σij nj ni, (2.4a) 
τ = σij nj ti, (2.4b) 

 
where ti is a unit tangent to the surface. Note that the shear stress depends on the 
direction of ti. With eq. (2.4), the normal- and shear stress can be calculated for any 
surface passing through a point, if the stress state is known at that point. 
 
The diagonal terms of the stress tensor are often referred to as normal stresses, since 
their direction is normal to the respective reference surfaces of the parallelepiped. The 
nondiagonal terms are often described as shear- or tangential stresses because of their 
tangential orientation with respect to the reference surfaces of the parallelepiped. 
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x2O

ni

Ti

A

B

C

α2

α3

α1

 
Figure 2.4. Tractions on the front face of a tetrahedron with outward normal ni of 

unit length and traction Ti. 
 
 
2.1.3 Principal stress 
 
For certain orientations of the paralleleppiped of Figure 2.3 in the three-dimensional 
stress system, the nondiagonal terms of the stress tensor vanish, so that the stress 
tensor becomes particularly simple: 
 

















σ
σ

σ
=σ

3

2

1

ij

00
00
00

. (2.5) 

 
In Chapter 2.1.1 it is already shown, that the resultant stress on any surface in a body 
can be expressed in terms of a normal stress component and a shear stress component 
(Figure 2.4 and eq. (2.4)). A principal plane is defined as one on which the shear 
stress components vanish. The normal stress acting on such a plane is then a principal 
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stress, which acts in the direction of the principal stress axis. Since there are, in any 
specification in a state of stress, three reference directions to be considered, there are 
three principal stress axes. There are thus three principal stresses and their orientations 
to be determined to define the principal state of stress at a point. Suppose that in 
Figure 2.4, the cutting plane ABC is oriented such that the resultant traction Ti on the 
plane acts normal to it, in the direction of the outward normal to the plane ni, and has 
a magnitude σp. The traction components on ABC are then defined by: 
 

i
p

i nT σ= . (2.6) 
 
The traction components on plane ABC are through eq. (2.3) also related to the stress 
tensor and the orientation of the plane. Subtracting eq. (2.6) from eq. (2.3) results in: 
 

(σij – σpδij) nj = 0, (2.7) 
 
where δij is the Kronecker delta: δij=1 for i=j and δij=0 for i≠j. The matrix eq. (2.7) 
represents a set of three simultaneous, homogeneous, linear equations in ni: 
 

0nnn)( 3132121
p

11 =σ+σ+σ−σ , (2.8a) 

0nn)(n 3232
p

22121 =σ+σ−σ+σ , (2.8b) 

0n)(nn 3
p

33232131 =σ−σ+σ+σ , (2.8c) 
 
which is a classic eigenvalue problem with σp

 being the eigenvalue and ni the 
eigenvector. In order to find the three values of σp, which are the three principal stress 
magnitudes, the homogeneous eq. (2.7) has to be solved. ni = 0 is a trivial solution, 
but from the theory of eigenvectors, ni has to be a nonzero vector. In the theory of 
matrices (e.g. Kreyszig 1988) it is proved that eq. (2.7) has a non-trivial (or nonzero) 
solution if and only if its coefficient matrix is noninvertible. The coefficient matrix is 
noninvertible if and only if its determinant is equal to zero: 

 

0III 3
p

2
2p

1
3p

ij
p

ij =+σ+σ+σ−=δσ−σ , (2.9) 

 
where I1, I2 and I3 are the first, second and third stress invariant respectively: 
 

I1 = σ11 + σ22 + σ33, (2.10a) 
I2 = - (σ11σ22 + σ22σ33 + σ33σ11) + τ12

2 + τ23
2 + τ31

2, (2.10b) 
I3 = σ11σ22σ33 + 2τ12τ23τ31 - σ11τ23

2 + σ22τ31
2 + σ33τ12

2. (2.10c) 
 
Eq. (2.9) is the so-called ‘characteristic equation’ of σij. Solution of this characteristic 
equation yields the three principal stresses σ1, σ2 and σ3, where by convention 
σ1>σ2>σ3. The principal directions are then obtained by solving eq. (2.8) for n1, n2 
and n3, successively for the case σp=σ1, σp=σ2 and σp=σ3. The stress invariants are 
those combinations of stress components whose values do not change under 
transformation of coordinates. Stress invariants become important when making use 
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of Haigh-Westergaard stress co-ordinates (Chapter 2.1.5). In terms of principal stress 
they become: 
 

I1 = σ1 + σ2 + σ3, (2.11a) 
I2 = - (σ1σ2 + σ2σ3 + σ3σ1), (2.11b) 
I3 = σ1σ2σ3. (2.11c) 
 
 

2.1.4 Mean stress and deviatoric stress 
 
A stress tensor consists actually of two components: an isotropic and a deviatoric 
component. The isotropic stress, often referred to as mean stress, is defined as: 
 

ij13
1

ijkk3
1

ij I
00

00
00

δ=δσ=

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













σ
σ

σ
=σ . (2.12) 

 
The mean stress σ  equals one third of the trace of the stress tensor, which is one third 
of the first stress invariant. The mean stress remains unaltered during any change of 
the coordinate axes. The deviatoric stress tensor sij is defined by: 
 

ijijijs σ−σ= . (2.13) 
 
The deviatoric stress (some literature sources speak about stress deviator or stress 
deviation) is thus what is left of the stress once the isotropic part has been removed. It 
is clear that the mean stress causes uniform compression or extension. Deviatoric 
stress causes distortion. Similar to the stress invariants defined by eq. (2.11), 
invariants of stress deviation J1, J2 and J3 can be defined by: 
 

J1 = s1 + s2 + s3 = 0, (2.14a) 
J2 = - (s1s2 + s2s3 + s3s1), (2.14b) 
J3 = s1s2s3. (2.14c) 

 
Note that J1 = 0. This is because the mean stress is subtracted three times from a value 
which is equal to three times the mean stress. 
 
 
2.1.5 Haigh-Westergaard stress co-ordinates 
 
Assume now an arbitrary state of stress in a 3-dimensional principal stress space, i.e. a 
stress space whereby the coordinate axes are principal stress directions. The stress 
tensor σij can then be described by a principal stress vector p

iσ : 
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According to eq. (2.13), a stress tensor can be described by the sum of its mean and 
deviatoric stress tensor. Similarly, the principal stress vector p

iσ  can be described by 
the sum of its mean stress vector iσ  and principal deviatoric stress vector p

is  (see 
Figure 2.5): 
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where iσ  is located in the direction of the isotropic axis, for which σ1= σ2= σ3, while 

p
is  is always located in a deviatoric plane, i.e. a plane perpendicular to the isotropic 

axis. A state of stress in a 3-dimensional principal stress space can be described by the 
Haigh-Westergaard stress co-ordinates ξ, ρ and θ (Chen & Han 1988). They are 
indicated in Figures 2.5 and 2.6. Figure 2.6a is a deviatoric plane view. *

1σ , *
2σ  and 

*
3σ  are the projections of the principal stress axes on the deviatoric plane. *

1i , *
2i  and 

*
3i  are the unit vectors in the respective directions. Figure 2.6b shows the state of 

stress in a rendulic plane, i.e. a plane containing all three vectors p
iσ , iσ  and p

is . Note 
that for the condition that σ1 > σ2 > σ3, a possible state of stress only can occur in a 
restricted area within the principal stress space, indicated in Figure 2.6a by the shaded 
area. 
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Figure 2.5. Graphical representation of principal stress vector p

iσ , mean stress 
vector iσ , principal deviatoric stress vector p

is  and Haigh-
Westergaard stress co-ordinates ξ, ρ and θ in a 3-dimensional 
principal stress space. Vectors *

1i , *
2i  and *

3i  are unit vectors in the 
direction of the projections of the three principal stress axes onto the 
deviatoric plane *

1σ , *
2σ  and *

3σ  (see Figure 2.6a). Vectors *
1i , *

2i  and 
*
3i  and p

is  all lay in the same plane, which is oriented normal to the 
mean stress vector iσ . 
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Figure 2.6. Haigh-Westergaard stress co-ordinates and stress vectors in (a) 

deviatoric plane view and (b) rendulic plane view. *
1σ , *

2σ  and *
3σ  

are the projections of the principal stress axes on the deviatoric plane. 
*
1i , *

2i  and *
3i  are the unit vectors in the respective directions. Possible 

states of stress under the condition that σ1 > σ2 > σ3 occur in the 
shaded area of figure (a) only. 

 
 
ξ is equal to the magnitude of the mean stress vector: 
 

3I3333 1321 =σ=σ=σ=σ=ξ . (2.17) 
 
ρ is equal to the magnitude of the deviatoric stress vector: 
 

2
3

2
2

2
1 sss ++=ρ . (2.18) 

 
Making use of eq. (2.13) this becomes in terms of principal stresses: 
 

( ) ( ) ( )2
3

2
2

2
1 σ−σ+σ−σ+σ−σ=ρ . (2.19) 

 
Multiplying both right hand- and left hand side of eq. (2.14b) by a factor 2 and adding 
formally the value of J1

2, which equals zero, one obtains: 
 

2J2 = - 2s1s2 - 2s2s3 - 2s3s1 + (s1 + s2 + s3)2 = s1
2 + s2

2 + s3
2 (2.20) 

 
and therefore: 
 

2J2=ρ . (2.21) 
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θ is defined as the angle between the projected vertical principal stress axis and the 
deviatoric stress vector and is positive counter clockwise (see Figures 2.5 and 2.6a). It 
can be determined by: 
 

ρ
=θ

*
1s

cos , (2.22) 

 
where *

1s  is the magnitude of the projection of vector p
is  onto the σ1

*-axis, equal to 
the scalar product of vectors ps  and *

1i : 
 

*
1

p*
1 iss ⋅= . (2.23) 

 
The vector *

1i  can be easily determined from Figure 2.7. Assume that the state of 
stress in point P is defined by the principal stress vector OP={1,1,1}. Vector OQ is 
then {0,1,1), meaning that distance OQ is 2  and QP is 1. Vector RP lies in the 
deviatoric plane through point P in the direction of the σ1

*-axis. Its unit vector is the 
required vector *

1i . Since 
 

2
QP
QR

OQ
QPtan 2

1===ζ , (2.24) 

 
it follows that QR= 22

1 . This means that vector OR=(0,1½,1½). Subtracting vector 
OR from vector OP results in vector RP=(1,-½,-½). The unit vector in the direction of 
the σ1

*-axis becomes then: 
 

















−
−=

1
1

2

6
1i*

1 . (2.25) 

 
Analogously the other two unit vectors can be found: 
 

















−

−
=

1
2
1

6
1i*

2 , (2.26a) 
















−
−

=
2
1
1

6
1i*

3 . (2.26b) 

 
Substituting eq. (2.25) into eq. (2.23) and noting from eq. (2.14a) that s2+s3=-s1 and 
rewriting, we obtain: 
 

12
3*

1 ss = . (2.27) 
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It follows then from eqs. (2.21) and (2.22) that: 
 

2

1

J2
s3

cos =θ . (2.28) 

 
In order to express θ solely in terms of invariants, the goniometric identity       
cos3θ = 4cos3θ - 3cosθ is substituted into eq. (2.28), yielding: 
 

( )21
3

1
22

Jss
JJ2

333cos −=θ . (2.29) 

 
From the expressions for the invariants of stress deviation (eq. (2.14)) it can be 
derived that (s1

3 – s1J2) = J3, so that: 
 

( ) 












=θ 3

2

3

J2

J33
arccos

3
1 . (2.30) 

 
The function f(x) = arccos(x) has a minimum of 0 and a maximum of π, so that: 
 

3
0 π

≤θ≤ . (2.31) 

 
On first sight, this definition of θ seems to be insufficient, since Figure 2.6a suggests 
that θ should vary between 0 and 2π in order to cover the full stress space. This fact is 
accounted for when the principal stress vector is expressed in terms of the Haigh-
Westergaard stress coordinates ξ, ρ and θ. This is the next step to be taken. From eq. 
(2.16) it is known that the principal stress vector is the sum of the mean stress vector 
and the principal deviatoric stress vector. The mean stress vector in terms of Haigh-
Westergaard stress coordinates can be found by combining eqs. (2.16) and (2.17): 
 

















ξ
ξ
ξ

=σ
3

1
i . (2.32) 

 
For the principal deviatoric stress vector sp

i, the term s1 is known from eq. (2.28): 
 

θ= cosJ
3

2s 21 . (2.33) 

 
The other two terms s2 and s3 can be found in a similar way as term s1. Expressions 
similar to eq. (2.22) can be defined for *

2s  and *
3s , see Figure 2.6a, with *

2s  and 
*
3s  being the magnitudes of the projection of vectors sp

i onto the σ2
*- and σ3

*-axis, 
respectively: 
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( )
ρ

=θ−π
i

*2

3
2

s
cos , (2.34a) 

( )
ρ

=θ+π
i

*3

3
2

s
cos . (2.34b) 

 
As in eq. (2.23), *

2s  and *
3s  are equal to the scalar products of vector sp

i and the unit 
vectors *

2i  and *
3i , respectively: 

 
*
2

p
i

*
2 iss ⋅= , (2.35a) 

*
3

p
i

*
3 iss ⋅= . (2.35b) 

 
Combining the eqs. (2.34), (2.35) and (2.26) and knowing that s1 + s2 + s3 = 0 results 
in: 
 

( )θ−= π
3

2
22 cosJ

3
2s , (2.36a) 

( )θ+= π
3

2
23 cosJ

3
2s . (2.36b) 

 
The principal stress vector can now be expressed in terms of Haigh-Westergaard 
stress coordinates by substituting eqs. (2.32), (2.33) and (2.36) into eq. (2.16): 
 

( )
( )
















+θ
−θ
θ

ρ+
















ξ
ξ
ξ

=σ
π

π

3
2
3

2
3
2p

i

cos
cos

cos

3
1 . (2.37) 

 
The expression of a state of stress at a point in terms of Haigh-Westergaard 
coordinates becomes important when we deal with Mobilised Shear Capacity, i.e. the 
proximity of a stress state in a rock volume to failure, in Chapter 9. 
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Figure 2.7. Geometrical relations in the 3-dimensional principal stress space. 
 
 
 
2.2 Infinitesimal strain 
 
Consider the situation shown in Figure 2.8, where a stress σ33 is acting on top of a 
rock sample, which in turn is supported by the ground. Suppose now that the stress 
pushes on the rock to such an extent, that the rock deforms as shown in Figure 2.8.  
The stress causes the height L of the sample to be reduced to L’. Because the sample 
is unconfined at its lateral sides, σ33 causes the width D of the sample to be increased 
to D’. If the relative position of the particles within a sample are changed, so that the 
new positions cannot be obtained simply by a rigid translation and/or rotation of the 
sample, the sample is said to be strained. There exist two kinds of strain: elongation, 
often referred to as normal strain or simply ‘strain’, and shear strain. Normal strain is 
the change in length per unit length. It is the type of strain shown in Figure 2.8: 
 

L
'LL

33
−

=ε , (2.38b) 

D
'DD

2211
−

=ε=ε . (2.38b) 

 
Note that the definitions according to eq. (2.38) bring about that normal strain is 
positive for contraction and negative for expansion, which is in accordance with the 
sign convention for stresses. 
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Figure 2.8. Deformation (dashed line) of an unconfined sample with height L and 

width D under uniaxial load σ33. 
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Figure 2.9. Examples of different types of deformation: (a) undeformed, this stage 

is shown in the other five figures by dotted lines; (b) translation; (c) 
rotation; (d) normal strain; (e) pure shear strain; (f) simple shear 
strain. 

 
Figure 2.9 shows examples of different types of deformation. Figures 2.9b and c show 
two kinds of strainless (rigid body) deformation: translation and rotation. Figure 2.9d 
illustrates normal strain. The situation is similar as that shown in Figure 2.8, but now 
the so-called infinitesimal strain is introduced in order to arrive at the infinitesimal 
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strain tensor εij. Consider the normal strain in the x1-direction ε11. In accordance to eq. 
(2.38) it follows that: 
 

11
1

1

1

1

x
u

dx
du

ε≡
∂
∂

→  as dx1 → 0. (2.39) 

 
Infinitesimal strain means that derivatives such as eq. (2.39) are small relative to one, 
so their products are very small and can be ignored. In practice this means that 
displacements of contiguous particles differ only by an infinitesimal amount, so that 
the absolute distance from the origin of the coordinate system does not affect the 
displacement gradients such as expressed in eq. (2.39). Although infinitesimal strain 
is a mathematical approximation, it is much more amenable to sophisticated 
mathematical treatment (e.g. in the theory of elasticity) than finite strain, in which the 
analysis of strain is concerned with the change of distance between pairs of points. the 
assumption of ignorance of products of displacement derivatives is justified since 
many important geologic deformations are small over short time frames. Rewriting 
eq. (2.39) leads to: 
 

1
1

1
1 dx

x
u

du
∂
∂

≡ . (2.40) 

 
This relation is indicated in Figures 2.9d and e. Figure 2.9e illustrates shear strain. 
Shear strain Γ is defined by: 
 

Γ = ½Ψ = ½(Ψ1 - Ψ2), (2.41) 
 
with Ψ being the angle change between two initially orthogonal directions. Ψ is 
positive counter clockwise. In the case that Ψ2 = -Ψ1, pure shear strain applies: there 
is no rotation. In the case that Ψ2 = Ψ1, there is only rotation without shear strain 
(Figure 2.9c). Note that eq. (2.41) indeed results in a shear strain of zero for this case. 
In fact, it averages the two angles Ψ1 and Ψ2, so that the rotational component is 
filtered out from the deformation and the shear strain remains. Note that simple shear 
strain, as shown in Figure 2.9f, is a combination of pure shear strain and rotation. 
From Figure 2.9e it follows that: 
 









∂
∂

+
∂
∂

=Ψ 1
1

1
11

1

3
1 dx

x
u

dxdx
x
u

tan , (2.42) 

 
which simplifies to: 
 

11

3
1 ux

u
tan

∂+∂
∂

=Ψ . (2.43) 
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Infinitesimal strain implies, although not shown in Figure 2.9e, that dui is actually 
much smaller than dxi. Considering that the same holds for ∂u1 and ∂x1 and that for 
small angles the tangent of an angle equals the angle itself in radians, it is: 
 

1

3
11 x

u
tan

∂
∂

=Ψ≈Ψ . (2.44) 

 
Analogously one finds for Ψ2: 
 

3

1
2 x

u
∂
∂

=Ψ . (2.45) 

 
From eqs. (2.41), (2.44) and (2.45), the shear strain can be defined as: 
 









∂
∂

+
∂
∂

=ε=ε=Γ=Γ
3

1

1

3
2
1

13311331 x
u

x
u

. (2.46) 

 
With similar conditions and procedures for the third dimension, the infinitesimal 
stress tensor becomes: 
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or shortly: 
 












∂

∂
+

∂
∂

=ε
i

j

j

i
ij x

u
x
u . (2.48) 

 
 
2.3 Elasticity and elastic moduli 
 
Consider again the situation in Figure 2.8, where σ33 causes a contractional strain in 
the corresponding direction ε33 and an expansion ε11 = ε22 in the two horizontal 
directions. Assume now that the loaded material behaves as a homogeneous, isotropic, 
solid continuum and that there exists a linear relation between the applied stress σ33 
and the normal strain in the corresponding direction ε33. The rock is then said to 
behave linear elastically according to: 
 

σ33 = E · ε33. (2.49) 
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Eq. (2.49) is known as Hooke’s law. E is termed Young’s modulus or E-modulus. It 
represents the stiffness of a material, i.e. the resistance against compression under 
uniaxial loading conditions such as shown in Figure 2.8. The ratio 
 

33

22

33

11

ε
ε

−=
ε
ε

−=ν , (2.50) 

 
with 0 < ν < 0.5, is the Poisson’s ratio. It is a measure of lateral expansion relative to 
longitudinal contraction. A Poisson’s ratio of 0.5 means that ε33 = -2ε11 = -2ε22, i.e. 
the expansion of the sample is equal to its contraction. It is valid for the theoretical 
case of incompressible materials and is often assumed for fluids or to model a 
hydrostatic state of stress in salt layers/structures. 
 
Note that eqs. (2.49) and (2.50) are valid for unconfined samples, i.e. samples where 
σ33 ≠ 0 and σ11 = σ22 = 0. In reality, rocks in the subsurface are not unconfined such 
as in the previous example, but confined. In the case that the sample is confined and 
no horizontal strain is allowed, a horizontal stress builds up, whereby its magnitude 
depends on the Poisson’s ratio of the sample. The Poisson’s ratio is then a measure of 
the translation of the vertical stress into the horizontal direction. A horizontal stress 
build up, on the other hand, is being ‘translated’ again via the Poisson’s ratio into the 
vertical direction. Summarized, eq. (2.49) becomes, fulfilling eq. (2.50), in terms of 
stress and strain tensor: 
 

])1[(
E
1

ijkkijij δνσ−σν+=ε . (2.51) 

 
In terms of stress this becomes: 
 

ijijkkij 2µε+δλε=σ , (2.52) 
 
where λ and µ are Lamé’s parameters: 
 

( )( )ν−ν+
ν

=λ
211

E , (2.53a) 

( ) G
12
E

≡
ν+

=µ . (2.53b) 

 
Note that eqs. (2.51) and (2.52) are valid for a homogeneous, solid material. When 
dealing with a poroelastic material, i.e. a porous and permeable medium where the 
pores are completely filled (saturated) with pore fluid, the mentioned stress tensors are 
in terms of effective stresses (see Chapter 2.4). 
 
Eq. (2.53) introduces the shear modulus G, which is a measure of the sample’s 
resistance against shear deformation. Another important elastic modulus is the bulk 
modulus K. It is a measure of the sample’s resistance against hydrostatic compression. 
In accordance to eq. (2.49) it is defined as the ratio of isotropic or mean stress σ  
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relative to the volumetric strain εv (note that σ = σ11 = σ22 = σ33 and σ12 + σ23 + σ31 = 
0): 
 

µ+λ=
ε
σ

= 3
2

v

K , (2.54) 

where 
 

εv = εkk. (2.55) 
 
 
2.4 Total and effective stress and poroelasticity 
 
The general relations between stresses and strains according to eq. (2.52) are valid for 
isotropic homogeneous solid materials without pore volume. However, rocks are 
generally composite materials incorporating a pore volume, which influences not only 
their elastic response, but also their yield stresses etc. Especially when dealing with 
hydrocarbon reservoirs, the effective stress concept, introduced first by Terzaghi 
(1943), has to be considered. The effective stress, rather than the total stress, 
determines whether the rock fails or not due to the external load. The theory of 
poroelasticity, introduced by Biot (1962), refines this effective stress concept. 
According to the theory of poroelasticity, where the material considered is a porous 
and permeable medium and the pores are saturatedly filled with fluid, the effective 
stress concept can be expressed as (Biot 1962): 
 

σij = ijσ′  + αpδij, (2.56) 
 
with 
 

s

fr

K
K1−=α , (2.57) 

 
where Kfr and Ks are the bulk modulus of the framework of the rock and solid rock 
particles, respectively. α is termed the Biot-constant. The physical meaning of eq. 
(2.56) is that a total external stress σij acting on a porous rock saturated with fluid is 
subdivided into two parts: an effective stress ijσ′ , working on the framework of the 
rock sample, and a part αpδij, carried by the fluid. The remaining part of the pore 
pressure, (1-α)pδij, is counteracted by internal stresses in the solid. In view of this 
effective stress principle, eqs. (2.51) and (2.52) have to read: 
 

])1[(
E
1

ijkkijij δσ′ν−σ′ν+=ε , (2.58) 

ijijkkij 2µε+δλε=σ′ . (2.59) 
 
The upper limit for Kfr is the so-called Voigt bound (1-ϕ)Ks (Watt et al. 1976). The 
lower limit for Kfr is zero, so that ϕ<α<1. For weak rocks, α is close to 1. Laboratory 
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measurements on Slochteren Sandstone, in which the Groningen gas is captured, give 
a value for α of 0.9 + 0.1 (Hettema et al. 1998). In order to avoid the time consuming 
process of fully coupled mechanical-fluid flow finite element calculations, a value of 
1.0 is assumed in the geomechanical models for this study. For more details on the 
application of effective stress principles on geomechanical modelling see Chapter 3. 
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3 GENERAL CONCEPTS OF FAULT 
REACTIVATION AND ROCK FAILURE IN 
PRODUCING HYDROCARBON RESERVOIRS 

 
 
 
Generally it is assumed, that seismic events associated with pore pressure changes in 
hydrocarbon reservoirs are the result of reactivation of existing faults or joints in or 
near the reservoir (see Chapter 6 for more background on this assumption). Faults and 
joints in rocks are the result of in-situ stress conditions which exceed the strength of 
the rock, so that the rock yields and deforms irreversibly. The rock is said to deform 
plastically. Irreversible rock deformation can be the result of shear failure, tensile 
cracking or pore collapse. Shear failure on pre-existing geological faults is the most 
common failure mechanism in producing hydrocarbon reservoirs and occurs when the 
development of shear stress on a fault plane exceeds its shear resistance. This chapter 
describes the conceptual background of fault reactivation and rock failure as a result 
of stress changes due to production in hydrocarbon reservoirs. First the general 
concepts of failure mechanics are introduced (Chapter 3.1), in particular the Mohr-
Coulomb failure criterion, since this criterion is widespread in rock mechanics and 
used in the finite-element calculations for this thesis. Subsequently the effects of 
hydrocarbon production on the subsurface stress field and their implication on failure 
are discussed. A brief overview of stress regimes and associated types of faulting in 
the subsurface is given in Chapter 3.2. Starting from the theory of poroelasticity (see 
Chapter 2.4), the general concept of differential stress development in hydrocarbon 
reservoirs and its implication on fault reactivation is discussed in Chapters 3.3 and 
3.4, respectively. 
 
 
3.1 General concepts of failure mechanics: the Mohr-Coulomb 

failure criterion 
 
As explained in Chapter 2.1.2, it is possible to derive the shear- and normal stress 
across any surface passing through a point if the stress state at that point is known. 
This means that the stress state in the subsurface results in shear- and normal stresses 
on the fault planes present in the subsurface. When the shear stress along such a fault 
plane is too large, the fault will slip or reactivate and shear failure occurs. In 
accordance to Mohr, the failure could be described by a failure criterion, in general 
expressed by function f: 
 

|τ| = f( ′σn ), (3.1) 
 
where τ is the shear stress magnitude along the plane and ′σn  is the effective normal 
stress magnitude across the plane. Note the use of effective stresses when dealing with 
rock failure, since rocks are generally composite materials incorporating a pore 
volume. As explained in Chapter 2.4, an external total stress acting on a porous rock 
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saturated with pore content is subdivided into two parts: an effective stress, working 
on the framework of the rock sample, and a pore pressure, carried by the fluid 
(internal stresses in the solid are neglected for simplicity, which is the same as 
assuming a Biot-coefficient equal to 1.0). Since failure occurs between particles of the 
rock and therefore concerns failure of the framework of the rock, the effective stress, 
rather than the total stress, determines whether the rock fails or not due to the external 
load. 
 
Consider the situation as shown in Figure 3.1a. Note that, according to definition, 

31 σ′>σ′ . From force equilibrium it can be derived that: 
 

′ = ′ + ′ + ′ − ′σ σ σ σ σ βn
1
2 1 3

1
2 1 3 2( ) ( ) cos , (3.2a) 

τ σ σ β= ′ − ′1
2 1 3 2( ) sin . (3.2b) 

 
Note that, when inserting the expression pα−σ=σ′  into eqs. (3.2a) and (3.2b), only 
the normal stress is affected: we can speak in terms of total normal stress or effective 
normal stress. A shear stress is unaffected by a pore pressure. Plotting the 
corresponding values of ′σn  and τ according to eq. (3.2) in a diagram results in the so-
called Mohr’s circle, which’ radius is equal to the maximum shear stress τmax. The 
latter stress is the largest shear stress possible on the fault plane and occurs in case 
that the orientation of the fault is under an angle of 45o towards the direction of the 
largest principal stress. Note that the situation analysed in Figure 3.1a is in fact a 2-
dimensional situation for the principal stress combination 1σ′  and 3σ′  (plane stress 
assumption). The more complicated Mohr’s construction in three dimensions is not 
treated in detail here, but its basic features are shown in Figure 3.1c. As is visible, 
similar principles in defining the Mohr’s circles occur for the other two principal 
stress combinations. The shaded region contains all possible combinations of τ and ′σn  
for the given effective principal stresses. 
 
In Figure 3.1, possible Mohr functions according to eq. (3.1) are shown: linear 
functions according to the Mohr-Coulomb failure criterion, defined by the two 
parameters c (cohesion) and φ (angle of internal friction or simply called ‘friction 
angle’): 
 

|τ| = c + ′σn tanφ. (3.3) 
 
The term ‘tanφ’ is often referred to as ‘coefficient of internal friction’, described by 
the symbol µ. The cohesion of pre-existing faults is often assumed to be zero. Eq. 
(3.3) defines graphs that separate a safe region from a failure region. Failure occurs 
when a state of stress is located at the failure line. Note that for intact rock this is as 
soon as Mohr’s circle touches the failure line. 
 
Failure for a pre-existing fault plane requires a combination of normal effective- and 
shear stress such that it results in a location on the failure line. This depends on the 
fault dip angle β. From Figure 3.1a it follows, that the most critical angle for β is: 
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βcrit = 45º + φ/2. (3.4) 
 
This angle βcrit is defined with respect to the direction of the smallest principal stress 

3σ′ . The angle between the most critical failure plane and the direction of the largest 
principal stress 1σ′  is 45º - φ/2. When a state of stress on intact rock exceeds the rock 
strength, the orientation of the failure plane is under this angle. The strike direction of 
the failure plane will be in the direction of the intermediate principal stress. Figure 
3.1b shows the state of failure and associated Mohr’s circle for a fault dip angle 
different from the most critical angle. For a fault orientation such that one of the 
principal stress directions is normal to the fault plane, no shear stress is present. 
Failure is then only possible when this normal principal stress exceeds the tensile 
strength of the fault. Assuming a cohesion of zero for the fault this is for the situation 
in Figure 3.1b when 3σ′  = 0. 
 
By inserting the equations for τ and nσ′  (eq. (3.2)) into eq. (3.3), using the relation 
given by eq. (3.4) and rearranging, the Mohr-Coulomb failure criterion can be 
expressed in terms of principal stresses instead of normal effective- and shear stress: 
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Note that eq. (3.5) is only valid for intact rock at failure or for existing failure planes 
with an orientation of 45º - φ/2 with respect to the largest principal stress direction. 
Eq. (3.5) is plotted graphically in Figure 3.2. Note that for 3σ′  = 0, the uniaxial 
compressive strength Cu of a rock is obtained: 
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Note from eq. (3.5), that pure shear failure, as defined by Mohr’s hypothesis, depends 
only on the minimum and maximum principal effective stresses and not on the 
intermediate stress (remember the assumption that 321 σ′≥σ′≥σ′ ). This principle is 
graphically illustrated in Figure 3.1b, where the shaded region contains all possible 
combinations of τ and ′σn  for the given effective principal stresses. 
 
Figure 3.3 shows the Mohr-Coulomb failure surface in a 3-dimensional stress space. 
Figure 3.2 is in fact a projection of this failure surface onto the 1σ′ , 3σ′ -plane and 
contains also the Mohr-Coulomb failure line in accordance to eq. (3.5) for the case 
that 321 σ′<σ′<σ′ . Note the symmetry about 31 σ′=σ′ . 2σ′  is the intermediate stress 
for both failure lines. Projections similar to Figure 3.2 are obtained for the cases that 

1σ′  and 3σ′  are intermediate. Combining these projections results in the hexagonal 
pyramidal shape of the Mohr-Coulomb failure surface in a 3-dimensional stress space 
as shown in Figure 3.3a. The principal effective stress vector, the mean effective 
stress vector and the principal deviatoric stress vector as well as the Haigh-
Westergaard stress coordinates (see Chapter 2.1.5) are shown for reference. 
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Figure 3.1. (a) Shear- and normal effective stress on a plane in dependency of its 

orientation relative to the maximum and minimum principal effective 
stresses shown by a Mohr’s circle. The straight lines in the shear stress 
/ normal effective stress diagram indicate a Mohr-Coulomb failure 
criterion. The figure indicates failure of intact rock or of a pre-existing 
fault plane with the most critical dip angle βcrit=45º+φ/2 (see eq. 
(3.4)). (b) Same as Figure (a), with the difference that the figure 
indicates failure of a fault plane with a dip angle different from the 
most critical dip angle. (c) Mohr’s circles for a 3-dimensional 
anisotropic principal stress state and Mohr-Coulomb failure criterion. 

 
Figure 3.3 also shows the Mohr-Coulomb failure criterion in deviatoric and rendulic 
plane view, respectively. A deviatoric plane is a plane perpendicular to the hydrostatic 
axis. In Figure 3.3 it is chosen such that it contains the principal deviatoric stress 
vector. A rendulic plane is a plane containing the hydrostatic axis. Deviatoric planes 
are often referred to as π-planes, although a π-plane is actually a deviatoric plane 
through the point )0,0,0(),,( 321 =σ′σ′σ′ . Any possible state of stress in a rock volume 
or on a fault plane lies within the hexagonal pyramid (elastic deformation) or at the 
hexagonal pyramid (plastic deformation). A stress state can theoretically never be 
outside of the pyramid. For the condition that 321 σ′≥σ′≥σ′ , a possible state of stress 
only can occur in a restricted area within the principal stress space, indicated in the 
rendulic plane view by the shaded area. 
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Figure 3.2. Failure lines in on the 1σ ′ , 3σ ′ -plane for the cases 31 σσ ′>′  and 

31 σσ ′<′ . 
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Figure 3.3. The Mohr-Coulomb failure surface in 3-dimensional principal stress 

space with indication of an effective stress vector, a mean effective 
stress vector and a deviatoric stress vector. Top right figure: deviatoric 
plane view. Bottom right figure: rendulic plane view. ξ, ρ and θ are 
Haigh-Westergaard stress coordinates (see Chapter 2.1.5). For the 
condition that 321 σσσ ′≥′≥′ , a possible state of stress only can occur 
in a restricted area within the principal stress space, indicated in the 
rendulic plane view by the shaded area. 
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The Mohr-Coulomb failure criterion may also be presented in the form of a so-called 
yield function ),c,,(F 31 φσ′σ′  which takes on values less than zero for states of stress 
within the hexagonal pyramid and zero on the failure surface itself: 
 

F c c( , , , ) ( sin ) ( sin ) cos′ ′ = ′ − − ′ + −σ σ φ σ φ σ φ φ1 3
1
2 1

1
2 31 1 . (3.7) 

 
The yield function becomes important in the derivation of the Mobilised Shear 
Capacity for rock volumes. This is further explained in Chapter 9. 
 
 
3.2 Stress regimes and fault types in the subsurface 
 
Figure 3.4 gives a possible classification of stresses in the subsurface (after Amadei & 
Stephansson 1997). Stresses in rock can be divided into initial or virgin stresses and 
induced stresses. Initial stresses mainly originate from gravity and present-day or past 
tectonic activity. This is also the case for the Northern Netherlands. In addition, 
halokinesis plays a role in this region. Induced stresses are associated with artificial 
disturbance such as mining activities or are induced by changes in natural conditions 
(drying, swelling, consolidation etc.). In the northern Netherlands, gas production and 
storage and salt mining are the main sources of induced stresses. 
 
A 3-dimensional stress field in the subsurface is often described by the three stress 
components σv, σH and σh and the pore pressure p, where σv is the vertical total stress, 
σH is the maximum horizontal total stress and σh is the minimum horizontal total 
stress. This description has to be seen in the perspective of the often made 
assumption, that the vertical stress is a principal stress. σH and σh are then 
automatically principal stresses as well. 

Rock stresses

Initial (virgin) stresses

Gravitational stresses

Active tectonic stresses

Terrestrial stresses
(seasonal temperature variations,
moon pull, Coriolis force, etc.)

Residual stresses
(remnant tectonic stresses,
diagenesis, metasomatism,
metamorphism, etc.)

Induced stresses
(hydrocarbon production,
injection, mining, drilling,
pumping, swelling, etc.)  

 
Figure 3.4. Possible classification of rock stresses (after Amadei & Stephansson 

1997). 
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Horizontal and vertical stresses are often described by the so-called effective stress 
ratio K0. Because later in this thesis it is dealt with 3-dimensional anisotropic stress 
fields, two distinct effective stress ratios K0H and K0h are introduced as: 
 

K H
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with σ'v, σ'H and σ'h being the vertical, maximum horizontal and minimum horizontal 
effective stress, respectively. In most cases, vertical stress at a certain depth originates 
solely from the gravitational weight of the overlying formations. If the density varies 
with depth, the vertical total stress due to gravity becomes: 
 

∫ ρ=σ
0

z iv dzg)z( . (3.10) 

 
In here, gi is the gravity acceleration, z is the depth whereby the z-axis is pointing 
vertically upwards and ρ(z) is the rock density as a function of the depth. The 
horizontal gravitational stresses are usually determined under the assumption that the 
rocks are laterally constrained, so that εh = 0. The rock can then deform solely 
vertically and the horizontal stress results then from the ‘translation’ of the vertical 
stress into the horizontal directions via the Poisson’s ratio. From eq. (2.73) it follows 
with 2211hH σ′=σ′=σ′=σ′ , εh = ε11 = ε22 = 0 and 33v σ′=σ′  that: 
 

vhH 1
σ′

ν−
ν

=σ′=σ′ . (3.11) 

 
For instance for ν = 0.2, this results in K0H = K0h = 0.25. It has to be mentioned here 
that eq. (3.11) is used to determine horizontal gravitational stresses. It should in 
general not be used to estimate present horizontal stresses in a formation. No sediment 
will be exposed to perfectly elastic conditions with constant rock properties over 
millions of years, but tectonic activity and other geological processes have very likely 
put its stamp on the initial in-situ state of stress. K0-values can vary significantly, 
from 0.2 to 1.5 at larger depths (deeper than approximately 1500m) (Fjaer et al. 
1992). 
 
According to the theories of shear failure (e.g. Mohr-Coulomb), fracturing or faulting 
will take place in one or both of a pair of conjugate planes which are parallel with the 
direction of the intermediate principal stress, and are both at equal angles of less than 
45o to the direction of the greatest principal stress (see Chapter 3.1). Under the 
assumption that the vertical stress is a principal stress, this means for the case 

hHv σ′>σ′>σ′ , that normal faulting occurs, whereby the faults have dip angles greater 
than 45o (see Figure 3.5). The stress regime is said to be extensional. In the case that 
the horizontal stresses are high, such that the vertical stress is the smallest principal 
stress ( vhH σ′>σ′>σ′ ), thrust or reverse faulting occurs, whereby the  fault dip angle 
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is less than 45o. A compressional stress regime occurs. If the intermediate principal 
stress is vertical ( hvH σ′>σ′>σ′ ), vertical failure planes are created incorporating 
strike-slip and a strike-slip stress regime occurs. The above descriptions are based on 
the well-known Anderson’s fault classification (Anderson 1951). Stress regimes 
whereby two of the three principal stresses are equal are indicated by different names. 
The stress regimes with 321 σ′=σ′>σ′  or 321 σ′>σ′=σ′  are termed radial extension 
and radial compression, respectively. The consequences of these two stress regimes 
on the shape of the 3-dimensional Mohr-Coulomb failure surface and Mobilised Shear 
Capacity in rock volumes are discussed in Chapter 9. A stress regime where all three 
principal stresses are equal ( 321 σ′=σ′=σ′ ) is an isotropic stress regime. The 
assumption that the vertical stress is a principal stress is reasonable in areas which 
have not been exposed to tectonic activity or are relaxed in the sense that there are no 
remnant stresses from previous tectonic activity. The principal stress directions might 
be significantly different near fault zones or near zones with different rock properties. 
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Figure 3.5. Fault types and stress regimes: (a) normal fault, extensional stress 

regime; (b) thrust fault, compressive stress regime; (c) strike-slip fault, 
strike-slip stress regime. θf is the fault dip angle. It is assumed that the 
vertical stress is a principal stress. Note that 321 σσσ ′>′>′ .  

 
 
3.3 General concepts of stress development in hydrocarbon 

reservoirs 
 
Depletion of a hydrocarbon reservoir causes a reduction of the initial reservoir pore 
pressure. This in turn leads to changes in both total and effective stresses in the 
reservoir and surrounding rock. Generally, effective stresses increase inside of the 
reservoir causing reservoir compaction. Figure 3.6 shows typical compaction 
behaviour of a disk-shaped gas reservoir in cross-sectional view. Depending on the 
reservoir geometry, rock properties of reservoir and surrounding rock, initial stress 
field and pore pressure development, stress concentrations and zones with relatively 
small stresses can develop simultaneously during hydrocarbon production in different 
parts of the reservoir. 
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Figure 3.6. Typical compaction behaviour of a disk-shaped gas reservoir in cross-

sectional view, from elastic 2D axisymmetrical finite-element 
calculations. The left side is the reservoir centre, the right side is the 
lateral reservoir edge. Reservoir radius and thickness are 1500m and 
150m, respectively. Deformations are magnified by a factor 200. The 
rocks surrounding the reservoir have a somewhat higher Young’s 
modulus than the reservoir rock. 

 
 
The effective stress change σ′∆  is related to the pore pressure change ∆p and the total 
stress change ∆σ according to eq. (2.58). In terms of vertical and horizontal stresses 
this equation becomes: 
 

∆σv = vσ′∆  + α∆p, (3.12a) 
∆σH = Hσ′∆  + α∆p, (3.12b) 
∆σh = hσ′∆  + α∆p. (3.12c) 

 
In this thesis, a change in stress/pressure is defined as the stress/pressure after 
hydrocarbon production minus the stress/pressure before production: 
 

σ′∆  = σ′ after – σ′ before. (3.13) 
 
This means that a stress increase during hydrocarbon production has a positive sign 
and a stress decrease has a negative sign. Note that ∆p < 0 for production. 
 
The change in total stress in relation to the pore pressure change is termed arching and 
can be expressed by the ratio γ: 
 

γv = ∆σv / ∆p, (3.14a) 
γh = ∆σh / ∆p. (3.14b) 

 
There exists usually a distinction between vertical and horizontal arching, whereby 
the horizontal arching depends on the direction considered. Basically one could make 
a distinction between γH and γh, but this is not common practice. More often, γ is 
referred to the co-ordinate system used, so that for instance for an x,y,z-co-ordinate 
system the terms γx, γy and γz would apply. 
 
γ-values can be calculated for the reservoir rock itself but also for the rock formations 
surrounding the reservoir. In both cases, ∆p is the pore pressure change in the 
reservoir, regardless eventual pore pressure changes in the surrounding rocks. γ 
expresses then always the total stress change per unit depletion at a certain location. 
The value of γ depends on the rock properties of the reservoir and surrounding rock, 
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the reservoir geometry and the geological setting in which the reservoir is placed. 
Values of γ are characteristic for a hydrocarbon reservoir. They are not constant 
throughout the reservoir but are location dependent. 
 
In general, for reservoirs with a lateral extension larger than the thickness, γh > γv 
inside of the reservoir. Or, in terms of effective stress changes, vh σ′∆<σ′∆ . Such 
direction-dependent (effective) stress development in hydrocarbon reservoirs is a 
common phenomenon and is termed differential stress development. This differential 
stress development in the reservoir, whereby the vertical effective stress increase is 
larger than the horizontal effective stress increase, is of extensional character and 
therefore promotes normal faulting (see Chapter 3.4). This is in line with field 
observations (e.g. Segall 1989), numerical calculations (see Chapters 10 and 11 of this 
thesis) and analytical solutions (Rudnicki 1999 and Segall & Fitzgerald 1998). In the 
theoretical case of a spherical elastic reservoir in an elastic full space, γh = γv. Of 
course a hydrocarbon reservoir will not be infinitely wide or spherical. For small 
reservoirs consisting of weak rocks, a value for γv of 0.5 is quite common. For large 
reservoirs such as the Groningen and Annerveen gas reservoirs, γv is very close to 
zero. 
 
 
3.4 Basic concept of fault reactivation / rock failure by differential 

stress development in a horizontal hydrocarbon reservoir with 
infinite lateral extension 

 
Mechanisms of fault reactivation in producing hydrocarbon reservoirs are manifold 
and are discussed based on a literature study in Chapter 6. The consequences of 
differential stress development on fault reactivation inside of a reservoir are illustrated 
here for the theoretical case of a horizontal reservoir with infinite lateral extension, 
depleting over its entire infinite width. The reservoir compaction in this case is of 
uniaxial nature. Such uniaxial conditions hold also for smaller, realistic reservoir sizes 
(see for more details Chapter 10). It has to be noted here that differential stress 
development alone is in most cases not enough to reactivate existing faults. 
Geometrical anisotropy and differential compaction behaviour on either side of a fault 
are usually necessary to trigger a substantial reactivation of faults. 
 
In the case of a horizontal reservoir with infinite lateral extension, the overburden 
rock keeps on pushing its own weight (σv) on the reservoir rock, without being 
restricted by a less or not compacting sideburden, so that ∆σv = 0. Under the 
assumption that the vertical stress is a principal stress it follows from eq. (3.12) that 
 

pv ∆α−=σ′∆ . (3.15) 
 
For α = 1.0, this means that the amount of vertical effective stress increase is equal to 
the amount of pore pressure decrease. The part ∆p of the vertical total stress, 
previously carried by the pore filling, is entirely loaded to the framework of the 
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reservoir rock. It is then said that no vertical load is arched away. Indeed γv = 0 
according to eq. (3.14). 
 
The uniaxial compaction behaviour of the lateral infinitely extended reservoir requires 
that there is no strain in horizontal directions: εh = 0. Writing eq. (2.58) for εh in terms 
of hσ′∆ , Hσ′∆  and vσ′∆  results in: 
 

0)]()1[(
E
1

vHhhh =σ′∆+σ′∆+σ′∆ν−σ′∆ν+=ε . (3.16) 

 
Substituting eq. (3.12) into eq. (3.16) and assuming for the laterally infinite reservoir 
that ∆σH = ∆σh results in: 
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which is the same as: 
 

vh 1
σ′∆

ν−
ν

=σ′∆ . (3.18) 

 
 
Knowing that ∆σv = 0 it follows then from eqs. (3.14) and (3.17) that in case of a 
laterally infinite extending reservoir with solely elastic deformation: 
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1

21
h . (3.19) 

 
For instance under the condition that α = 1.0 and ν = 0.2, this means a γh-value or 
horizontal arching of 0.75. From combination of eqs. (3.12) and (3.14) it follows that: 
 

p)( hh ∆γ−α−=σ′∆ . (3.20) 
 
From eq. (3.20) it is clear, that the horizontal effective stress increase is less than the 
vertical effective stress increase by an amount of γ∆p. This means for the example 
mentioned above that only 25% of the total horizontal load ∆p, previously carried by 
the pore filling, is loaded to the framework of the reservoir rock. 75% of the 
horizontal load is said to be arched away, expressed by a γh-value of 0.75.  
 
The differential stress development given by eqs. (3.15) and (3.20) is of extensional 
character and can therefore promote normal faulting, such as illustrated in Figure 3.7 
for the case of uniaxial reservoir compaction in an extensional stress regime 
( hHv σ′∆>σ′∆>σ′∆ ), with the vertical stress being a principal stress. 
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Figure 3.7. General concept of fault reactivation as a result of differential stress 

development during hydrocarbon extraction, shown by Mohr circles 
for uniaxial reservoir compaction in an extensional stress regime 
( hHv σσσ ′>′>′ ), with the vertical stress being a principal stress. The 
solid and dotted Mohr circles denote the state of stress before and after 
gas depletion, respectively. The Mohr-Coulomb failure line is of a 
cohesionless fault. The stress path belongs to a fault with the most 
critical fault dip angle of 45º+φ/2. The gradient of the stress path is the 
ratio of the shear stress change and the change in normal effective 
stress on the fault. 
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4 FAULT SLIP, ASPERITIES AND SEISMICITY 
 
 
 
4.1 General mechanisms of seismic and aseismic deformation 
 

When gas is produced from the reservoir, the reduction in pore pressure causes 
compaction and due to differential stress development and differential compaction, 
shear stresses along the fault plane can increase rapidly, creating slip conditions 
during gas extraction. As stated by Pennington et al. 1986, continuous movement 
causes stresses to accumulate on slip resistant regions at some parts of the fault. When 
these highly stressed regions, often referred to as asperities, ultimately yield, energy is 
released seismically. The accumulated energy may also be released aseismically 
through slow visco-plastic deformation (creep) of the asperity, but there is no 
generally accepted method for determining whether slip on a given fault will be 
seismic or aseismic (Nagelhout & Roest 1997, Scholtz 1990). 
 
 
4.2 Finite element modelling of stresses around an asperity 
 

In order to get an idea of stress concentrations around an asperity as described above, 
this section describes the results of a preliminary numerical calculation, which is 
performed in the context of a research project for testing the possibility of 
identification of stress concentrations in the subsurface by means of 4D-time lapse 
seismic. Part of the mentioned research project were laboratory experiments for 
monitoring such stress concentrations in rock samples by acoustic measurements. The 
idea was to create such a stress concentration around an asperity on a previously cut 
fault plane through a rock sample. For an overview of the relation between the applied 
load, the magnitude of the stress concentration around such an asperity and the rock 
properties, preliminary numerical calculations were required. The numerical 
calculation results are described in this section in order to illustrate stress 
concentrations around an asperity. 
 
 
4.2.1 Finite element model set-up 
 

The model geometry is shown in Figure 4.1. It represents a square with dimensions 20 
x 20 cm and is cut  from top to bottom by a fault plane with a dip angle of 60º from 
the horizontal. The model consists of an isotropic, homogeneous and ideal 
elastoplastic rock mass with a Mohr-Coulomb failure criterion. Material properties are 
those measured by Hettema (1996) for Felser Sandstone (Table 4.1). The dilatation 
angle is chosen to be 10o (Charlier 2000). The fault is modelled assuming Coulomb-
friction with negligible cohesion. The fault has zero thickness. Normal- and shear 
stiffness are based on rules of thumb provided by TNO Building and Construction 
Research (eqs. (8.1) and (8.2), see Chapter 8.3.2.1). In the middle of the fault an 
asperity is modelled by assigning a very large cohesion of 1.0 GPa to the two 
interface elements in the centre of the fault plane. Its size is 1.867 cm measured along 
the fault plane. 
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Figure 4.1. Applied load- and boundary conditions. No loads are applied in a 

distance of less than 0.03 cm of the edge of the model. 
 
Table 4.1. Material properties. 
Young’s modulus 
Poisson’s ratio 
Density 
Cohesion 
Friction angle 
Dilatancy angle 
Fault normal stiffness 
Fault shear stiffness 
Fault friction angle 
Fault dilatancy angle 
Fault cohesion (except asperity) 
Fault cohesion (asperity) 

8.1 GPa 
0.22 
2070 kg/m3 
5.0 MPa 
45º 
10º 
9.24 GPa/m 
3.32 GPa/m 
30º 
10º 
1.0 Pa 
1.0 GPa 

 
The element type used for the rock mass is CT30E (triangular plane strain element 
with 15 nodes). This element is based on fourth-order interpolation and area 
integration. The fault is modelled by structural interface elements CL20I (linear, 5+5 
nodes). The model consists of 1690 elements and 13650 nodes. 
 
A vertical load of 11.7 MPa is applied perpendicular on top of the model, whereas a 
horizontal load of 0.4 times the vertical load (4.68 MPa) is applied to the left side 
(Figure 4.1). These loads are 25% of a stress field with σv = 46.8 MPa and σh = 18.72 
MPa, which would occur at 3km depth in case that the vertical stress is gravitational 
with an average rock density of 1590 kg/m3 and a K0-value of 0.4 applies (see Chapter 
3 for background). Application of 100% of the field load results in a divergence of the 
finite element calculation, meaning that no equilibrium can be reached. This is most 



 43

probably due to the large stress differences and concentrations in the model. The loads 
are applied statically to the model in ten equal steps. No gravity forces are applied, 
since these are negligible compared to the applied loads. A pore pressure is not 
modelled. 
 
To take into account the very stiff aluminium platens used in the laboratory 
experiments, the nodes at the top edge of the model are defined to have the exactly the 
same vertical displacements during loading. Their horizontal displacements can differ 
from each other. The same is done for the left edge of the model: the horizontal 
displacements are the same during loading, whereas the vertical displacements can 
vary. To check whether the boundary condition of the same vertical and horizontal 
displacements at the top and the left edge of the model is appropriate, a calculation is 
performed without these restrictions in displacements, so with only a load 
perpendicular to the top and left edge of the model without any additional conditions, 
or in other words, with a load on the top edge remains constant even though the fault 
moves. This calculation diverged. 
 
The boundary conditions on the model are such, that the bottom and the right side of 
the model cannot have displacements in vertical and horizontal direction, respectively. 
The boundary conditions take into account the ‘free’ zones at the edges of the rock 
sample, which are not covered by the platens in the triaxial cell and therefore are not 
loaded. No boundary conditions or loads are applied to a distance of 0.3cm from all 
four model corners in both x- and y-direction. 
 
The advantage of the modelled experimental set-up is, that it incorporates the fault dip 
angle most sensitive for shear stress built-up: βcrit = 45o + φf/2, with βcrit being the 
critical fault dip angle and φf being the friction angle of the fault, which is 30º in our 
calculations. The disadvantage of the experimental set-up is the fact that peak stresses 
do not only build up at the asperity in the middle of the fault, but also at the edges of 
the fault at the top and bottom of the model (see Figure 4.2). This could disturb the 
acoustic measurements. 
 
 
4.2.2 Calculation results 
 

As is clear from Figure 4.2, both the vertical and horizontal stress distribution in the 
model is as good as symmetrical. Stress peaks occur at the asperity and at the edges of 
the fault at the top and bottom of the model. The maximum horizontal stress at the 
asperity is 80.0 MPa, the maximum vertical stress at the asperity is 62.7 MPa. Note 
that this is a local maximum. The absolute vertical stress maximum is about twice as 
high and occurs at the edges of the fault at the top of the model. This clearly shows 
the disadvantage of the modelled experimental set-up for acoustic measurements. 
 
Vector plots of principal stresses in the view plane (Figure 4.3) show a clear 
concentration of stress trajectories in the zone around the asperity. A zone with high 
stresses can be observed more or less perpendicular to the asperity. The weaker 
neighbouring zones on the fault plane are unloaded and show even tensile stresses. An 
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unloading effect is present along the whole fault in the entire model (except for the 
asperity), characterised by tensile stresses (white zones in Figure 4.2). Normal- and 
shear stresses on the fault (Figure 4.4) show a clear concentration at the asperity, 
whereas the rest of the fault is unloaded. Stresses of almost zero magnitude reflect the 
tensile stresses which can be seen in the contour plots of Figure 4.2. Peak stresses 
occur at the ends of the asperity. 
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Figure 4.2. Calculated stresses after loading. (a) Vertical stress; max. value: 115 

MPa; min. value: -7.0 MPa. (b) Horizontal stress; max. value: 66.5 
MPa; min. value: -6.7 MPa. Positive stress values denote compression. 
Contour shapes indicate the location of the fault and the asperity. 
Location of maximum and minimum value is indicated. See Appendix 2 
for this figure in colour. 
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Figure 4.3. Vector plot of calculated principal stresses after loading. The locations 

of the fault and the asperity are indicated by the dashed and solid black 
lines, respectively. The zoom factor is the same as in Figure 4.2. See 
Appendix 2 for this figure in colour. 
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Figure 4.4. Normal- and shear stresses on the fault after loading. The fault and the 

asperity are indicated by the dotted and the solid thick lines, 
respectively. Peak stresses occur at the ends of the asperity, where also 
stress contour plots show local peak values. Stresses of almost zero 
magnitude on the rest of the fault reflect the tensile stresses which can 
be seen in the contour plots of Figure 4.2. 
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Figure 4.5. Calculated relative shear displacements (RSD) on the fault during 

loading. The fault and the asperity are indicated by the dotted and the 
solid thick lines, respectively. RSD in the asperity is the result of elastic 
deformation. The rest of the fault is irreversibly slipping but is hold 
back by the asperity. 
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Figure 4.6. Calculated vertical plastic strain after loading. 
 
 
Displacements in the model are negligible small with maximum values of less than 
0.4 mm. Calculated fault slip or relative shear displacement (see Chapter 9.1.1 for 
background) is with a maximum value of 3.3 mm also very small (Figure 4.5). 
According to the DIANA calculation output file, no plastic fault slip occurred in the 
asperity. Relative shear displacements in the asperity are the result of elastic 
deformation. The rest of the fault, on the other hand, slips plastically but is hold back 
by the asperity. 
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A contour plot of vertical plastic strains (Figure 4.6) shows that plastic deformation 
occurs in the model at the peak stress locations, i.e. at both ends of the asperity and at 
the both ends of the fault at the top and bottom of the model. The direction of the 
contours indicates a tendency for cracking in these regions, whereby the cracks dip 
more or less with the same angle as the fault plane (60º) but in opposite direction. 
 
 
4.2.3 Discussion and conclusions 
 

The numerical calculation results show that the chosen rock samples and loading 
conditions generally provide a satisfying experimental set-up for tests on acoustic 
monitoring of stress concentrations around an asperity. However, a few improvements 
could still be achieved. This is described in the following. 
 
In the modelled experimental set-up, peak stresses do not only build up at the asperity 
in the middle of the fault, but also at the edges of the fault at the top and bottom of the 
model. The vertical stress at the edge of the fault at the top of the model is about 1.5 
times as high as at the asperity. This could disturb the acoustic measurements. A 
model could be designed, in which the fault plane cuts the rock from the top left to the 
bottom right corner. The combination with the unloaded zones at the edges of the 
model would make the asperity the only factor which prevents the fault from slipping. 
Stress build-up is then only present at the asperity. Care has then to be taken that the 
loading of the asperity does not get too large, since free sliding along the fault and 
hardly controlled failure could occur if the stress build-up would become too high and 
the asperity would fail. 
 
An unloading effect is present along the whole fault in the entire model (except for the 
asperity), characterised by tensile stresses. There exists a clear concentration of 
stresses in the zone around the asperity. The fault tends to slip irreversibly but is hold 
back by the asperity. There exists a tendency for cracking at the peak stress locations. 
Considering all this, it seems best to measure beforehand the physical strength of the 
asperity in the laboratory. Loads on the rock sample don’t need to be high. It is 
expected that a small loading achieves sufficient stress concentration around the 
asperity for good acoustic measurements. 
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5 THEORETICAL BACKGROUND OF 
GEOMECHANICAL MODELLING BY MEANS 
OF FINITE ELEMENT CALCULATIONS 

 
 
 
Geomechanical modelling techniques are developed in order to simulate physical 
processes such as stress/strain behaviour, fluid flow, heat transfer and dynamic 
loading in complex situations. They are often used to estimate the effects of mining 
activities on stress/strain behaviour of rocks and environmental issues. Many 
techniques have been developed such as the finite element, finite difference, distinct 
element and boundary element methods. For this thesis the finite element is chosen by 
means of the software code DIANA (DIsplacement ANAlyser), developed by TNO 
Building and Construction Research, since this code is mainly used in the Netherlands 
for geomechanical modelling of subsurface gas reservoirs. In this chapter, the 
theoretical background the finite element method (FEM) is presented. Chapter 5.1 
describes the basic concepts of FEM by linear elastic calculation procedures. Chapter 
5.2 deals with nonlinearity due to plasticity. Chapter 5.3 gives an overview of the 
different element types in DIANA used for this thesis. 
 
 
5.1 General concepts of FEM: linear static analysis 
 
5.1.1 General solution procedure 
 
In the finite element method, the domain of the problem – a line segment, a planar 
region or a volume, depending on whether the problem is one-, two- or three-
dimensional – is divided into smaller sub-regions or elements. The elements can have 
any shape. They are assumed to be connected to each other by nodal points or nodes 
on the element boundaries. A rock volume for instance can be divided into several 
solid elements such as shown in Figure 5.1. Such elements are assumed to represent 
continua. Finite element calculations are therefore continuous calculations. 
Discontinua, such as a geological fault, are modelled by interface elements (see 
Chapter 5.3). 
 
Consider the four-node, three dimensional, solid pyramidal (tetrahedral) element as 
shown in Figure 5.1. Nodal forces act at the nodes of the element. This results in a 
distortion of the element, expressed by nodal displacements (and/or rotations as the 
case may be). For the element to be in equilibrium, the nodal displacements cause 
internal stresses or body forces to be present within the element which counteract the 
nodal forces such, that the resultant of body and nodal forces and the resultant 
moment around any axis vanish (Newton’s third law). Since the element represents a 
continuum, the internal stresses are present at any arbitrarily chosen point throughout 
the whole element. The stresses can be related to the displacements u, v and w at any 
arbitrarily chosen point within the element and therefore to the nodal displacements 
and the nodal forces. 
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In practice, the nodal or external forces are applied to a finite element mesh by 
defining loads such as gravitational loads, surface pressures, pore pressures, 
excavations etc. From these external loads, the displacements and in turn the internal 
stresses are calculated, depending on the chosen rheologies and geometries of the 
elements. Information on the specific rheology and geometry of a single element is 
captured in the so-called element stiffness matrix  [K]el. The superscript el denotes that 
the displacements are for element ‘el’ only. The connection of all elements within a 
finite element mesh via their nodes makes that they all interact. This interaction gives 
rise to the so-called system stiffness matrix [K], which is constructed through the 
superposition of the element stiffness matrices [K]el. It allows the set-up of a system 
of equations which has to be solved: 
 

[K]{u} = {F}. (5.1) 
 
In here {u} is a vector of the nodal degrees of freedom (displacements and rotations) 
and {F} is the vector of nodal forces corresponding with the degrees of freedom {u}. 
In practice, {u} are the unknowns and {F} are known. Eq. (5.1) represents in fact a 
system of n equations with n unknowns. The construction of [K] to solve for the 
unknowns {u} in terms of {F} is basically what the finite element method (as applied 
to elastic problems) is all about. 
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Figure 5.1. Displacements and forces within a four-node, three-side solid pyramid 

element. u, v and w are displacement vector components in an 
arbitrarily chosen point (x,y,z) within the element. (u,v,w)i,j,l,m are the 
nodal displacements at nodes i, j, l and m. (Fx,y,z)i,j,l,m are the nodal 
forces. 
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The solution procedure as described above is based on the equations of equilibrium 
and applies to most finite element packages, among others DIANA. Eq. (5.1) requires 
an implicit calculation scheme, meaning that the system of equations is solved 
simultaneously. The term ‘implicit’ comes from the fact, that the necessary 
force/displacement relationship is defined indirectly: an interpolation is done in order 
to obtain the elemental displacements from the nodal displacements as a function of 
the element geometry. The implicit solution procedure requires eq. (5.1) to 
incorporate a linear relation between the applied forces and the displacements and is 
therefore very suited for linear static (elastic) calculations. Nonlinear relations as is 
the case with plasticity require additional features such as iterating (see Chapter 5.2). 
When stresses are changing rapidly, for instance in seismic wave propagation, 
accelerations come into play and the equations of motion must be considered. DIANA 
is based on a Lagrangian calculation scheme: during each calculation step incremental 
displacements are added to renew the position of given nodes. The Lagrangian 
approach makes this code well suited to describe large distortions of a restricted 
number of nodes. 
 
 
5.1.2 Calculation of stress and strain in solid 3D-finite elements 
 
Figure 5.1 shows an example of a finite element (four-node, three-side solid pyramid) 
with the (nodal) force- and displacement vectors. Its code name in DIANA is TE12L 
and is mainly used for the calculations in this thesis. In Chapter 5.1.1 it is explained, 
that external forces applied at the nodes of a finite element {F} are balanced by 
internal stresses within the element {σ} via the nodal displacements {u}. 
 
In order to set up the system stiffness matrix [K] and solve eq. (5.1), the element 
stiffness matrices of each single element [K]el have to be determined first. To do so, 
the principle of work is invoked. This principle states that if a structure is in 
equilibrium, the work done by the external forces {F}el through a set of displacements 
{u}el must equal the work done by internal stresses {σ} through the strains {ε} caused 
by the displacements. Applying this principle results in the expression: 
 

∫ σε=
V

TelTel dV}{}{}F{}u{ . (5.2) 

 
The superscript el indicates that only one element is considered. Integration of the 
right-hand side of eq. (5.10) is performed over the volume of the element V. {u}el and 
{F}el are vectors containing the nodal displacements and the nodal external forces of 
the considered element, respectively. For an element as shown in Figure 5.1, {u}el and 
{F}el would look like: 
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Strains are the result of displacements (see Chapter 2.2). The strains {ε}can be 
formally linked to the nodal displacements {u}el via the so-called differential matrix 
[B]: 
 

{e} = [B]{u}el. (5.4) 
 
[B] contains constants and/or expressions, which depend on the size and shape of the 
chosen elements. They can be seen as a way of interpolating the nodal displacements 
to strains at a certain position within the element. For the four-node, three-side solid 
pyramid element of Figure 5.1, [B] is a 6x12-matrix solely containing constants, so 
that stress and strain are constant throughout the element. This type of element is 
therefore called a constant-strain element. Varying strain and stress in the element 
require more nodes in the finite element (e.g. midside nodes) for a numerical solution. 
For simplicity, [B] is not shown here in detail. More extensive descriptions can be 
found in e.g. Zienkiewicz (1971), Pande et al. (1990) and Wittke (1990). 
 
Substituting eq. (5.4) into eq. (5.2) results in: 
 

∫ σ=
V

Tel dV}{]B[}F{ . (5.5) 

 
Stresses {σ} can be expressed in terms of strains {ε} via the rheological matrix [D]: 
 

{σ} = [D]{ε}. (5.6) 
 
Matrix [D] contains the stress-strain relation of the material modelled and is in this 
thesis a function of the Young’s modulus and the Poisson’s ratio. It is for 3-
dimensional conditions: 
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For other element types such as plane strain or axisymmetric elements and for other 
rheologies such as orthotropic elasticity, [D] becomes somewhat different. This is not 
explained in detail here but can be found in Zienkiewicz (1971). Substituting eq. (5.6) 
into eq. (5.5) leads to: 
 

elel

V

elTel }u{]K[dV}u]{B][D[]B[}F{ == ∫ , (5.8) 

 
with 
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∫= V

Tel dV]B][D[]B[]K[ . (5.9) 

 
[K]el contains constants depending on the rheological properties and shape of the 
element. Summarising for all the nodal forces and nodal displacements results in a 
solvable system of algebraic equations as given by eq. (5.1). Initial strains {ε0} and 
stresses {σ0} are accounted for by defining the stress vector as 
 

{σ} = [D]{ε} – [D]{ε0} + {σ0}. (5.10) 
 
For simplicity they are not included in the above derivations. Doing so results in: 
 

elelel }u{]K[}R{ = , (5.11) 
 
where 
 

∫∫ σ−ε+=
V 0

T

V 0
Telel dV}{]B[dV}]{D[]B[}F{}R{ . (5.12) 

 
 
 
5.2 Nonlinear material behaviour: plasticity 
 
The implicit calculation scheme as described in Chapter 5.1 requires a linear relation 
between the applied force vector {F} and the displacement vector {u} and is therefore 
very suited for linear static (elastic) calculations. In case of nonlinear analysis (as is 
the case with plasticity) the original relationship (system stiffness matrix) becomes 
time- and path-dependent. Therefore the external loads can no longer be combined at 
once with the internal loads to govern the nodal forces, as is done during an elastic 
analysis. In order to determine the state of equilibrium, the nonlinear problems are not 
only made discrete in space (by finite elements, see Chapter 5.1) but also in time with 
increments. Note that for the static calculations in this thesis this time discretisation is 
virtual, only used to describe a sequence of situations. A purely incremental method 
usually leads to inaccurate solutions in nonlinear analysis, unless very small step sizes 
are used. An iterative solution algorithm is therefore used in order to achieve 
equilibrium at the end of the increment. This procedure is termed an incremental-
iterative solution procedure. 
 
 
5.2.1 Iterative procedures 
 
An example of an incremental-iterative procedure is shown in Figure 5.2. Assume that 
a nonlinear relation between {F} and {u} exists as shown. The external load t{Fext}, 
applied at the virtual time t, is the first increment. In the second increment, the applied 
load is increased to t+∆t{Fext}. For the situation at the start of each increment, the 
system stiffness matrix is determined and solved. If only one increment is considered, 
the time increment ∆t and the situation at the start of the increment are fixed (e.g. for 
the increment t+∆t this would be t{Fext} and t{u}). The equilibrium equation within 
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the increment then only depends on t+∆t{∆u}. The nonlinear problem can then be 
written as: find t+∆t{∆u} such that 
 

t+∆t{u} = t{u} + t+∆t{∆u} (5.17) 
 
and, with {oi} as the out-of-balance force vector for iteration i, 
 

{oi} = t+∆t{Fext} – {Fint, i} = 0, (5.18) 
 
where {Fint, i} is the calculated internal force vector at increment i. The general 
procedure of an iteration process is shown in Figure 5.3. In all procedures, the total 
displacement increment {∆u} is adapted iteratively by iterative increments {δu} until 
equilibrium is reached, up to a prescribed tolerance. 
 
Various iterative solution algorithms are available in DIANA. Their difference is the 
way in which {δu} is determined. Figure 5.2 shows the Modified Newton-Raphson 
method. It evaluates the system stiffness matrix only at the start of each increment. 
The system stiffness matrix can also be evaluated each iteration, as is the case with 
the Regular Newton-Raphson method. It means that Modified Newton-Raphson 
usually converges slower to equilibrium than Regular Newton-Raphson. On the other 
hand, it is not necessary to set up a new stiffness matrix for each iteration. The 
Modified Newton-Raphson method usually needs more iterations, but every iteration 
is faster than in Regular Newton-Raphson. It is up to the user of the software to 
determine the optimal iterative procedure. 
 
For our calculations, a combination of Constant Stiffness and Modified Newton-
Raphson iterative procedures is used. The Constant Stiffness method uses the stiffness 
matrix left behind by the previous increment. If the Constant Stiffness method is used 
since the first increment, it uses the linear stiffness matrix from the previous linear 
static analysis and equals then the Linear Stiffness method. 
 

tFext

t+∆tFext

F
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t+∆tFint, 1

t+∆to1

t+∆t∆u0

t+∆t∆u1

t+∆tδu1

tu t+∆tut+∆t∆u  
Figure 5.2. Example of an incremental-iterative solution procedure for nonlinear 

analyses in DIANA: Modified Newton-Raphson method. 
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Figure 5.3. Flow diagram of a general incremental-iterative solution procedure for 

nonlinear analyses in DIANA. 
 
 
 
5.2.2 Line Search algorithm 
 
The iteration methods described before are based on a reasonable prediction, so that 
the iteration process converges to the ‘exact’ numerical solution. However, if the 
prediction is too far from equilibrium the iteration process will not converge. The 
Line Search algorithm can increase the convergence rate and is used in the 
calculations in this thesis. It uses a prediction of the iterative displacement increment 
{δu} as obtained by one of the ordinary iteration algorithms and scales this vector by 
a value η as follows: 
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{∆ui+1} = {∆ui} + η{δui+1}. (5.19) 
 
i is the iteration number. See Figure 5.2 for reference of the used symbols in eq. 
(5.19). The value η is determined such that 
 

s(η) = {o(η)}T . {δu} = 0. (5.20) 
 
Eq. (5.20) means in words, that the inner product s(η) of the out-of-balance force with 
the iterative displacement increment should be equal to zero. s(η) is first calculated 
for the out-of-balance force at the start (η0=0) and at the end (η1=1) of the iteration. 
η2,3,... are then determined as shown in Figure 5.4, until the absolute value of s(η) is 
less than 0.8 times the value s(0). The value of 0.8 can be adjusted manually in 
DIANA. If both values s(0) and s(1) have the same sign, extrapolation is used to 
determine a new value for η, whereby DIANA bounds η between an upper and lower 
bound (default values 1 and 0.1, respectively). 
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Figure 5.4. Line Search iteration. 
 
 
5.2.3 Convergence criteria 
 
The iteration process must be stopped if the results are satisfactory. The iteration 
process can be stopped if a specified maximum number of iterations has been reached, 
or if a certain tolerance, prescribed by one of the convergence norms, has been 
reached. For the calculations in this thesis, the iteration process is stopped if a 
specified maximum number of iterations has been reached. In order to ensure a good 
quality of the calculation results, it is then checked if convergence occurs during the 
iteration process of each increment and if the out-of-balance force is below an 
acceptable tolerance after each iteration process. For this check, the force norm is 
used, which is defined as (see Figure 5.5 for reference): 

 

Relative out-of-balance force 
}o{}o{

}o{}o{
0T0

iTi

= . (5.21) 
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The relative out-of-balance force compares the out-of-balance force after iteration i 
with the initial unbalance {o0}. As is visible in Figure 5.5, the initial unbalance is 
equal to the applied incremental load, which is equal to t+∆t{Fext} – t{Fext}. The 
relative out-of-balance force basically expresses how much unbalance is allowed in 
terms of applied incremental load. For instance a value of 0.01 means that an 
unbalance of 1% of the applied incremental load is tolerated. Figure 5.5 also indicates 
the other two convergence norms offered by DIANA: the displacement norm and the 
energy norm. They are determined in a way analogous to eq. (5.21). For this thesis, 
only the force norm is used. For more details about number of iterations chosen in the 
calculations and the accepted tolerance in the numerical calculations for this thesis see 
Chapter 8. 
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Figure 5.5. Norm items for convergence criteria in DIANA. 
 
 
5.3 Element types used for the FE-calculations 
 
The finite element method is a continuous calculation method. The structural solid 
elements are assumed to be continua. A geological fault plane is a discontinuous 
structure along which frictional behaviour can occur. This is modelled by interface 
elements. Interface elements consist of two sides, each with a certain number of 
corresponding nodes. These two sides are allowed to move relative to each other. 
Interface elements relate the tractions {t}={tn,ts,tt} and the relative displacements 
{∆u}={∆un,∆us,∆ut} across the interface. The amount of relative displacements 
depends on the constitutive behaviour and the strength properties of the elements, 
which are defined by the user. For the fault plane and thus the interface elements in 
this thesis, Coulomb frictional behaviour is assumed. 
 
The types of elements used in the finite element models in this thesis are shown in 
Figure 5.7. The 3D-geomechanical models in this thesis consist of the DIANA 
element types TE12L and T18IF. TE12L are structural solid pyramids with three sides 
and four nodes used to model the rock volume. T18IF are structural triangular 
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interface elements with two times three nodes to model a fault plane. The four-noded 
pyramid elements are based on linear interpolation of the nodal displacements and 
incorporate therefore a constant strain and stress distribution over the element volume 
(see Chapter 5.1). This element type is chosen for two reasons. First, the 3D-models 
in this thesis are built making use of so-called ‘general bodies’ in the DIANA-pre-
processor ‘iDIANA’, i.e. volumes bounded by multiple structural surfaces. These 
general bodies require the use of pyramidal solid elements and do not allow the use of 
wedge- and brick-shaped elements. Second, the use of the elements is limited by the 
hardware capacity. Higher-order midside noded pyramidal elements required for the 
relatively large geomechanical 3D models too much calculation capacity. Because of 
the use of the three side four node pyramidal elements, triangular two time three 
noded interface elements are used to model the fault plane. These elements relate the 
tractions {t}={tn,ts,tt} and the relative displacements {∆u}={∆un,∆us,∆ut} across the 
interface. The local axes along the surface are {n}, {t} and {s}, with {n} 
perpendicular to the plane and {t} and {s} in the plane. The element is based on linear 
interpolation. 
 
Calculations of 2D finite element models, both plane strain and axisymmetric, are 
performed for this thesis as well. Plane strain elements are characterized by the fact 
that their thickness is equal to unity and that the strain components perpendicular to 
the element face are zero (Figure 5.6). Note that this condition results in a reaction 
stress in this direction. Plane strain models therefore theoretically represent cross 
sections through structures which are infinitely long in the direction perpendicular to 
the cross sectional plane. They are very suited to model cross sections through large 
structures. The plane strain DIANA-elements used in this thesis are T6EPS (triangle, 
3 nodes) and CT12E (triangle, 6 nodes), in combination with the interface elements 
L8IF (line, 2 + 2 nodes) and CL12I (line, 3 + 3 nodes), respectively (Figure 5.7). 
 
Axisymmetric models are considered to contain an axis of rotational symmetry at one 
of the model boundaries (Figure 5.6). Each axisymmetric element therefore models a 
ring. Such models are often referred to as ‘2½D models’. They are very suited to 
model axisymmetric structures such as ellipsoidal and disk-shaped gas reservoirs 
without faults. The axisymmetric DIANA-elements used in this thesis are T6AXI 
(triangle, 3 nodes) and CT12A (triangle, 6 nodes), see Figure 5.7. 
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Figure 5.6. Characteristics of a) plane strain elements and b) axisymmetric 

elements. 
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Figure 5.7. DIANA element types used for the calculations in this thesis. 
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6 LITERATURE STUDY ON HYDROCARBON 
RESERVOIR INDUCED SEISMICITY 

 
 
 
The phenomenon of man-induced seismicity due to several types of engineering 
developments, sometimes referred to as IS, is well known. Numerous literature 
resources refer to one or more specific cases. Induced seismicity can be related with 
the impounding of water reservoirs at the earth’s surface (dam constructions), the 
construction of mines and quarries, fluid or gas injection, extraction of hydrocarbons 
and steam and nuclear underground explosions. Such engineering developments are 
not the sole cause of earthquakes, but they merely induce seismic activity by altering 
stress regimes, so failure occurs (Baranova et al. 1999). Hydrocarbon reservoir 
induced seismicity (HRIS) is a term used for induced seismicity related to water 
injection for enhanced oil recovery and hydrocarbon extraction. Note that the term 
‘Reservoir Induced Seismicity’ (RIS) refers to seismicity associated with water 
reservoirs at the earth’s surface.  
 
Induced seismicity associated with hydrocarbon extraction have been reported for 
numerous cases. A list of 24 hydrocarbon fields and sedimentary basins where 
hydrocarbon recoveries induced earthquakes with magnitudes larger than 3 on Richter 
scale can be found in Grasso (1992). It is not a complete listing of all fields worldwide 
where induced seismicity occurred, but it gives a good overview of the most 
remarkable fields. It is unknown how many basins contain active faults which are 
aseismic (below the resolution of the seismic recording equipment) or go 
unrecognized due to an absence of historical data (Bungum et al. 1991 in Addis et al. 
1996, Davis & Pennington 1989). According to Grasso (1992) “there is no evidence 
for a minimum of 80% of commercially productive basins worldwide for earthquakes 
with magnitudes larger than or equal to a magnitude of 3 on Richter scale”. 
Magnitudes of most of the induced seismic events in the northern Netherlands fall 
within the range of 1.5 – 2.0 on Richter scale (KNMI 2003a). A few larger events 
occurred in the Roswinkel, Bergermeer and Groningen gas fields. The largest induced 
event in the northern Netherlands to date took place in the Bergermeer field near the 
city of Alkmaar with a magnitude of 3.5 on Richter scale (Haak et al. 2001). 
 
Generally it is assumed that induced seismicity is a result of slip on pre-existing 
surfaces that are optimally oriented for frictional sliding (Segall et al. 1994, Grasso 
1992, Segall & Fitzgerald 1998, Roest & Kuilman 1994 and Nagelhout & Roest 
1997). Basically three mechanisms for extraction-induced earthquakes are known 
from literature: triggering of discontinuities within the reservoir by poroelastic stress 
development (Chapter 6.1), triggering of discontinuities associated with reservoir 
contraction (Chapter 6.2) and mass transfer or isostasy (Chapter 6.3). 
 
Fluid or gas extraction can also cause faults that previously were slipping aseismically 
to lock up for periods of time before slipping seismically. Such mechanism has been 
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reported by Grasso (1992) for the Grozny field, where six years of gas production (∆p 
= -30 MPa) stabilised the tectonic seismic instabilities. Stresses seem to be enhanced 
at the “locked” portions of the fault. After six years seismicity occurs as shear strength 
is at its maximum. 
 
Table 6.1. Hydrocarbon fields and sedimentary basins where hydrocarbon 

extraction induced earthquakes with a magnitude equal to or larger 
than 3 on Richter scale (from Grasso 1992 with additions). 

Sedimentary Basin Area or Field Reference 

Alberta, Canada 
Alberta, Canada 
Appalachian, Canada 
 
Aquitaine, France 
 
Aquitaine, France 
 
Los Angeles, CA, USA 
Los Angeles, CA, USA 
Los Angeles, CA, USA 
San Joaquin, CA, USA 
San Joaquin, CA, USA 
 
Caucasus, Tchetcheny 
Central Asia, Uzbekistan 
Russia 
Turkmenistan, Russia 
 
 
Midcontinent, OK, USA 
 
Netherlands 
Rotliegendes, Netherlands 
Rotliegendes, Netherlands 
Rotliegendes, Germany 
North Sea, Norway 
North Sea, Denmark 
Po Valley, Italy 
 
Rocky Mountains, USA 
West Texas, TX, USA 
West Texas, TX, USA 
West Texas, TX, USA 
West Texas, TX, USA 
West Texas, TX, USA 
Southern Alabama, AL, 
USA 
 
 
Kuwait 
 
 
Williston, NE, USA 

Snipe Lake Field 
Strachan Field 
Gobles Field 
 
Lacq Field 
 
Meillon Field 
 
Wilmington Field 
Orcutt Field 
Montebello Field 
Coalinga Field 
Kettleman Field 
 
Grozny Field 
Gasli Field 
Starogroznenskoye Field 
Barsa-Gelmes-Vishka Field 
 
 
El Reno Field 
 
Roswinkel Field 
Groningen Field 
Bergermeer Field 
Salzwedel Field 
Ekofisk Field 
Dan Field 
Caviaga Field 
 
Rangely Field 
Fashing Field 
Imogine Field 
Cogdell Field 
War-Wink Field 
Kermit-Keystone Fields 
Big Escambia Creek, Little 
Rock and Sizemore Creek 
Fields 
 
Minagish/Umm Gudair 
Fields 
 
Sleepy Hollow Field 

Milne 1970 
Wetmiller 1986 
Mereu et al. 1986 
 
Rothé 1977; Grasso & 
Wittlinger 1990 
Grasso 1992 
 
Richter 1958, in Kovach 1974 
Kanamori & Hauksson 1991 
McGarr 1991 
McGarr 1991 
McGarr 1991 
 
Smirnova et al. 1977 
Simpson & Leith 1985 
Kouznetsov et al. 1994 
Kouznetsov et al. 1994 
 
 
Nicholson 1992 
 
De Crook et al. 1998 
KNMI 2003b 
Haak et al. 2001 
Leydecker 1992 
Grasso 1990 
Grasso 1990 
Calloi et al. 1956 
 
Raleigh et al. 1972 
Pennington et al. 1986 
Pennington et al. 1986 
Davis & Pennington 1989 
Doser et al. 1991, 1992 
Doser et al. 1992 
Gromberg & Wolf 1999 
 
 
 
Bou-Rabee 1994 
 
 
Rothé & Lui 1983 
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6.1 Triggering of discontinuities within the reservoir by poroelastic 
stress development 

 
Triggering of discontinuities within the reservoir by poroelastic stress development is 
basically the result of differential stress development: effective stresses within the 
reservoir increase due to the pore pressure reduction, whereby the vertical effective 
stress increase is in most cases larger than the horizontal effective stress increase (see 
Chapter 3.4 for more details and explanations). In most reservoirs, total horizontal 
stresses decrease during hydrocarbon extraction whereas total vertical stresses remain 
as good as equal. Such behaviour has been reported by e.g. Hillis (2001), Hettema et 
al. (1998), Teufel et al. (1991), Engelder & Fischer (1994), Santarelli et al. (1998), 
Khan & Teufel (2000) and is supported by numerical modelling (Nagelhout & Roest 
1997, Roest & Mulders 2000) and analytical solutions (Segall & Fitzgerald 1998, 
Rudnicki 1999). Differential stress development is basically the result from the fact, 
that the reservoir cannot contract as much as it actually wants due to the elastic 
coupling of the reservoir rock to the surrounding rock. The strains induced by the pore 
pressure change are different for an imaginary reservoir which is thought to be 
removed from the earth and for the same reservoir in its in-situ position in the 
subsurface. The elastic earth holds back the reservoir and inhibits a free deformation 
of the reservoir, which would take place in the theoretical case that there is no 
surrounding rock. Differential stress development as described above basically 
induces a relative horizontal tension within the reservoir (Figure 6.1), promoting 
frictional sliding on pre-existing normal faults within the reservoir (Segall & 
Fitzgerald 1998, Rudnicki 1999, Teufel et al. 1991). Normal faulting is promoted if 
the regional stress is extensional and the Biot-coefficient of the reservoir rock is 
sufficiently large (> 0.85, Segall & Fitzgerald 1998). 
 
 
6.2 Triggering of discontinuities associated with reservoir contraction 
 
Triggering of discontinuities associated with reservoir contraction can be the result of 
two submechanisms: triggering of discontinuities outside the reservoir by poroelastic 
stress transfer associated with reservoir contraction and triggering of discontinuities 
inside or outside a reservoir by differential reservoir compaction. The first 
submechanism, triggering of discontinuities outside the reservoir by poroelastic stress 
transfer associated with reservoir contraction, results from contraction of the reservoir 
and the elastic coupling of the reservoir rock to the surrounding rock. Figure 6.1 
shows the relative stress regimes that develop around a reservoir undergoing 
hydrocarbon extraction. Contraction of the reservoir stresses the surrounding rock and 
induces a relative horizontal compression above and below the reservoir and a relative 
horizontal extension in the sideburden, at the lateral reservoir edges. Figure 6.2 shows 
a summary by Segall (1989) of observed faulting associated with hydrocarbon 
extraction. He explained by calculations with simple geometries stress perturbations 
that are consistent with observed earthquake locations and focal mechanisms. Note 
that not all of the faults are developed in any given setting: the style of faulting 
depends on the ambient stress state. The modelled stress changes outside of the 
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reservoir are with ~1 MPa typically small (Segall 1992, Baranova et al. 1999, Wu et 
al. 1998, Glowacka & Nava 1996, Grasso 1992 and Maillot et al. 1999). According to 
Grasso (1992), the magnitudes of these stress changes are independent of the tectonic 
setting and earthquakes with magnitudes of smaller than 5 on Richter scale can occur 
either above or below the reservoir and seismic instabilities can be triggered at 
distances of more than 20 km from the reservoir. 
 

lateral compression 
lateral extension 

free surface 

 
Figure 6.1. Illustration of relative stress changes inside and outside an ellipsoidal 

inhomogeneity undergoing pore pressure decrease (after Segall & 
Fitzgerald 1998). 

 

 
Figure 6.2. Schematic cross section summarising surface deformation and faulting 

associated with fluid withdrawal (from Segall 1989). 
 
 
Fracturing and normal faulting are always promoted, in extensional environments, 
near the edge of the reservoir or in regions of high pore pressure gradient (Segall & 
Fitzgerald 1998, Rudnicki 1999). The maximum shear stress is strongly concentrated 
near the reservoir, and in particular near the edge. If the prior stress is spatially 
uniform the model thus predicts that seismicity would be concentrated near the 
margin of the reservoir, at depths both above and below the reservoir (Segall 1992). 
This is in agreement with the geomechanical modelling results of Brignoli et al. 
(1997) and Roest & Kuilman (1994). From the study of Roest & Kuilman (1994) it 
follows that slip on a vertical reservoir boundary fault occurs in particular at the top of 
a reservoir and to a lesser extent at the bottom of a reservoir (Figure 6.3a). The dip of 
a fault was found to be a major control on local fault activation. If the fault dips 
towards the reservoir, locally normal slip along the fault occurs at the top of the 
reservoir (Figure 6.3b). If the reservoir is located on the other side of the fault plane, 
the hanging wall of the fault is above the reservoir (Figure 6.3c). In these two cases 
reverse slip occurs at a lower level. Normal fault slip is maximum for a fault dip angle 
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of 60 – 70o with the horizontal. The calculated fault slip as shown in Figures 6.3 b and 
c superimpose for the normal fault configuration as shown in Figure 6.3e, where the 
two parts of the reservoir move in opposite directions as result of compaction. 
Displacements occur in opposite directions on either side of the fault at the same 
level. This is termed ‘differential compaction’. Slip can occur in particular if the 
prevailing horizontal stresses in the reservoir rock are relatively low. Fault slip at 
either side of the fault in case of a reverse fault configuration as shown in Figure 6.3d 
are the same as for a single reservoir and do not reinforce each other. Examples of 
induced seismicity in the Netherlands due to differential reservoir compaction are the 
Bergermeer, Eleveld, Groningen and Annerveen gas fields (Roest & Kuilman 1994, 
Roest & Mulders 2000, this dissertation). A good example is also the Lacq gas field in 
France, where the deformation mechanism is the lowering of a summital block above 
the compacting reservoir, whereby the movements are in the reverse direction to the 
original ones: initial normal faults move as reverse faults and initial reverse faults 
move as normal faults (Maury et al. 1992). 
 
Slip along bedding planes is also mentioned as a possible deformation mechanism, 
especially at the top and bottom of the reservoir near its lateral edges (Kenter et al. 
1998, Barends et al. 1995 and Roest & Mulders 2000). 
 
Two additional mechanisms reported by Grasso (1992) are stress diffusion, whereby 
rocksalt acts as a viscoelastic channel for stress changes between a reservoir and 
overburden rocks, and pore pressure diffusion, whereby reservoir depletion can affect 
the aquifer pressure of the area. The first mechanism is also suggested by Barends et 
al. (1995). 

 
Figure 6.3. Influence of geometrical effects on fault reactivation (after Roest & 

Kuilman 1994). 
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6.3 Mass transfer 
 
The third mechanism, mass transfer or isostasy, is related to massive hydrocarbon 
recovery. The removal of load can disturb the existing stress field and induce larger 
earthquakes at larger depths (McGarr 1991, Grasso 1992). Examples are the 1983 
Coalinga, the 1985 Kettleman and the 1987 Whittier earthquake sequences, where a 
maximum magnitude of 6.5 on Richter scale was measured. Each occur at depths of 
the order of 10 km, beneath major producing oil fields. The total seismic deformation 
was just that required to offset the force imbalance caused by oil production (McGarr 
1991). 
 
 
6.4 Deep well fluid injection 
 
The mechanism of induced seismicity of deep well fluid injection is based on the 
reduction in effective normal stresses due to the pore pressure increase, which allows 
faults to slip at ambient levels of shear stress (Healy et al. 1968 and Raleigh et al. 
1976). This causes the Mohr circle in a τ/ nσ′ -diagram to move to the left, causing 
failure in case that the injection pressure is sufficiently large. Hillis (2001) suggests 
that the poroelastic coupling of ∆p and ∆σh as illustrated in Figure 3.7 for gas 
extraction can also play a role for injection activities. Galybin et al. (1998) suppose 
that the pore pressure caused by water injection can propagate down the fault, 
decreasing its shear resistance until shear stresses initiate propagation of shear 
fracture. An overview of well-documented examples of earthquakes induced by deep 
well injection can be found in Nicholson & Wesson (1990). 
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7 GEOLOGICAL SETTING AND 
CHARACTERISTICS OF THE GRONINGEN 
AND ANNERVEEN GAS FIELDS IN THE 
NORTHERN NETHERLANDS 

 
 
 
In order to study the influence of several parameters on the possibility of gas 
depletion induced fault slip for the Groningen and Annerveen gas fields by means of 
finite element calculations, it is necessary to obtain a good overview over the geology 
of the two mentioned fields. A general overview of the geological structural units 
present in the northern Netherlands is given in Chapter 7.1. Chapters 7.2 and 7.3 deal 
with stratigraphy and tectonic history and fault systems, respectively, and are mainly 
based on RGD (1995) and Frikken (1999). Chapter 7.4 describes the current tectonic 
stress field in the northern Netherlands. The occurrence of seismicity in the Groningen 
and Annerveen gas fields is given in Chapter 7.5. Chapter 7.6 concludes with a 
summarising description of the Groningen and Annerveen gas fields for 
geomechanical modelling purposes of this study (see Chapters 8, 10 and 11). 
 
  
7.1 Geological structural units 
 
An overview of the Mesozoic structural geology of the Netherlands is shown in 
Figure 7.1. It is in fact a geological map of the Netherlands where the thick layer of 
sediments of the Tertiary period, covering the structure, is removed. For a geological 
time scale see Figures 7.3 and 7.8. 
 
The Mesozoic rocks in the southeast of the Netherlands is affected by a NW-SE 
striking fault system as spur of fault structures in Germany and Belgium, which 
formed a number of horst and graben blocks during the Tertiary and Quaternary, such 
as the Roer Valley Graben and the Peel Horst structures. This fault system shows a 
high present-day activity and is responsible for a relatively high seismic activity of 
this area. Earthquakes in this area occur at a depth corresponding to that of the fault 
structures, around 20 km to a maximum of approximately -30 km. The largest 
earthquake in the Netherlands to date took place in 1992 to the south of the city of 
Roermond with a magnitude of 5.8 on Richter scale. Its depth was -17 km. For more 
descriptions of seismicity in the Netherlands see Chapter 1. 
 
Most tectonic features in the Netherlands developed during the Late Jurassic and 
Early Cretaceous, such as the N-S oriented Central Graben and the NW-SE oriented 
Broad Fourteens Basin, West Netherlands Basin, Central Netherlands Basin and 
Vlieland Basin. 
 
The Northern Netherlands is dominated by the Friesland Platform and the Groningen 
High (Figure 7.2). In between the Friesland Platform and Groningen High is the 
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Lauwerszee Trough. It is a Tertiary subsidence area, bounded to the west and east by 
the NW-SE trending Hantum Fault Zone and West Groningen Fault Zone, 
respectively. The West Groningen Fault Zone is not as pronounced as the Hantum 
Fault Zone. It is a narrow zone with only a few faults, the vertical throw of which 
reaches a maximum value of 300 m. The vertical throw along the Hantum Fault Zone 
reaches at some places 1100 m. The Hantum Fault Zone is part of a fault system 
which includes also the Holsloot Fault Zone, the Dalen Graben and the Reutum Fault 
to the south. To the southeast of the Groningen High and Lauwerszee Trough are the 
Ems Low and the Lower Saxony Basin. 
 
 

 
Figure 7.1. Mesozoic structural geology of the on- and offshore Netherlands (from 

Rondeel et al. 1996). See Appendix 2 for this figure in colour. 
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Figure 7.2. Geological map of the northern Netherlands where Cretaceous and 

Cainozoic formations have been removed (from RGD 1995). 
 
 
7.2 Stratigraphy 
 
This section describes the lithostratigraphical history and structure of the northern 
Netherlands. An overview over the lithostratigraphical units for the Groningen High, 
the Lauwerszee Trough and the Ems Low is shown in Figure 7.3. In Figure 7.4, a 
geological cross section through the Groningen gas field is displayed, with indication 
of the lithostratigraphical units. 
 
N-S directed compressive stresses of the Variscan Orogeny (Sudetic phase, Late 
Carboniferous, see Figures 7.3 and 7.8) led to the evolution of an E-W oriented 
mountain chain in Europe: the Variscan mountains to the south and southeast of the 
present Netherlands. In response to the compression and the isostatic load of the 
Variscan Mountains, a foreland basin was formed to the north of this fold belt. Large 
quantities of erosional products from the mountain chain were deposited here. A 
regressional tendency during the Late Carboniferous led to the deposition of marine-
influenced delta and pro-delta deposits during the Namurian to paralic and 
subsequently fluvial deposits during the Westphalian. Large-scale peat formation 
occurred during the latest Westphalian A and Westphalian B. These deposits, 
especially the Maurits Formation, form a major source rock for the Dutch natural gas. 
 
In the Early Permian, the Southern Permian Basin came into being to the north of the 
present Netherlands (Figure 7.5). Sedimentation did not take place in the present 
northern Netherlands until the Late Permian. Aeolian and fluvial sands and 
conglomerates of the Upper Rotliegend Group were deposited in arid climate 
conditions. In a north-westerly direction, the ratio of the fluvial sediments decreased 



 70 

in favour of aeolian and lacustrine sediments (Figure 7.6). During more humid 
periods, lacustrine conditions extended more towards the south and resulted in the 
deposition of the Ameland and Ten Boer Claystones (Figure 7.7). 
 
Graben formation in the North Atlantic/Arctic region combined with a eustatic sea-
level rise initiated the forming of an open passage between the Barentz Sea in the 
north and the Southern Permian Basin. In response to this, a very rapid transgression 
occurred in the basin, which had already subsided below the palaeo sea-level (Glennie 
1986). This initiated the forming of a large inland sea, in which cycles of carbonates 
and evaporites were deposited, as a result of a combination of the arid climate on the 
one hand and an alternating influx of sea water on the other. 
 

 
Figure 7.3. Lithostratigraphical units of three important geological structures in 

the northern Netherlands (from RGD 1995). 
SE NW

 
Figure 7.4. Geological cross section through the Groningen gas field (source: 

NAM). See Appendix 2 for this figure in colour. 
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Figure 7.5. Palaeogeography during the Early Permian with present-day location 

of the Groningen and Annerveen gas fields (from Veenhof 1996). 
 
 

 
Figure 7.6. Schematic representation of the environment during the sedimentation 

of the Upper Rotliegend Group during the Late Permian (from RGD 
1995). 

 
 



 72 

 
Figure 7.7. Lithostratigraphical overview of the Upper Rotliegend Group 

sediments, showing the lateral extension of the different formations 
(from RGD 1995). 

 
The Lower Germanic Trias Group is composed of clastic, continental (fluvial and 
lacustrine) deposits. The carbonates and evaporites of the Upper Germanic Trias 
Group reflect an increasing marine influence. Clastic Jurassic sediments show a very 
limited spreading in the Northern Netherlands due to uplift and erosion. Marine 
sediments were deposited during the entire Cretaceous. The Rijnland Group and the 
Chalk Group consist of clastic sediments and carbonates, respectively. The Cainozoic 
sequence is built up of clastic sediments deposited under varying marine and 
continental conditions. 
 
The late Palaeozoic, Mesozoic and Cainozoic lithostratigraphy as described above is, 
together with the tectonic history of the Netherlands and the Continental Shelf, very 
favourable to capture hydrocarbons. The (stratigraphic) occurrence of oil and gas and 
productive rock units is shown in the geological time scale of Figure 7.8. In total 
approximately 190 gas reservoirs are present in this area. In the Groningen and 
Annerveen gas fields, the gas is captured in the clastic rocks of the Upper Rotliegend 
Group, as is also the case for some 160 additional fields. The Zechstein evaporites are 
responsible for the sealing of most gas reservoirs in the northern Netherlands. On 
burial the Westphalian source rocks generated gas which migrated mainly into the 
overlying Rotliegend reservoirs. Two main charge phases took place for the 
Groningen field, which are also applicable to the Annerveen field: Jurassic and 
Tertiary to Quaternary, before and after Late Kimmerian uplift respectively (Van 
Wijhe et al. 1980). Approximately 25 reservoirs are contained in Zechstein carbonates 
and Carboniferous fluvial channel sandstones. Some gas and oil occurrences 
accumulated in reservoir rocks above the Zechstein. This is most probably due to 
source rocks of Mesozoic age, which are the organic-rich marine Posidonia Shale 
Formation in the Altena Group and lacustrine source rocks in the Coevorden 
Formation. 
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Figure 7.8. Geological time scale with composite stratigraphical column of the 

Netherlands and the Continental Shelf (after Ministry of Economic 
Affairs 2001). See Appendix 2 for this figure in colour. 
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7.3 Tectonic history and fault systems 
 
The different tectonic phases which marked the geologic development of the northern 
Netherlands are indicated in Figures 7.3 and 7.8. During the Late Carboniferous, the 
Variscan Orogeny led in the Sudetic phase with N-S directed compressive stresses to 
the evolution of the Variscan mountains. The compression in the Asturian phase at the 
end of the Westphalian led to a progression of the Variscan orogenic front towards the 
north (Lorentz & Nicholls 1976), resulting in folding and thrust faulting in the 
Carboniferous sediments in the foreland basin. 
 
During the Saalian phase in the Late Carboniferous and Early Permian, a 
transpressional stress regime developed due to dextral movements of Europe relative 
to Africa (Arthaud & Matte 1977, Ziegler 1989): the N-S compressional stress 
regime, characteristic for the Variscan Orogeny, slightly changed into an E-W 
directed extensional stress regime. Tectonic movements during the Permian are 
therefore of wrench and extensional nature. They resulted in major subsidence in the 
Ems Low and pronounced uplift and erosion on the Friesland Platform and the 
Groningen High. Furthermore, a fault pattern developed in the Variscan foreland with 
NW-SE trending fault systems, characterised by dextral strike slip, and E-W and N-S 
trending fault systems. Movements along these fault systems resulted in the coming 
into being of different horst- and graben structures. The development of the 
Lauwerszee Trough was initiated but still very premature. 
 
Transtensional movements of the Tubantian I phase (Geluk 1999) at the beginning of 
the deposition of the Zechstein Group triggered a reactivation of older fault zones. 
The extensional Tubantian II phase at the end of the Permian initiated relative uplift 
of the Friesland Platform and Groningen High. It constituted a period of extensional 
tectonics (Geluk 1999) as a result of the breaking up of Pangaea (Ziegler 1990), which 
would last until the earliest Cretaceous. These extensional tectonic phases were 
responsible for the formation of the major structural units in Figure 7.2. 
 
As a result of two phases of extensional tectonics during the Triassic (Hardegsen and 
Early Kimmerian phases), the Southern Permian Basin was modified and transected 
by several NNE-SSW trending elements, such as the Central North Sea Graben. 
Several tectonic elements were reactivated. During the Early Kimmerian phase in the 
Late Triassic, a N-S oriented complex graben system was formed to the east of the 
Groningen High as a modification of the Ems Low. Movements took also place along 
the Holsloot Fault Zone. The above description illustrates the rift-raft structures, in 
which the Triassic is pulled apart in large blocks. 
 
The Late Jurassic and Early Cretaceous is a period characterised by a number of 
major tectonic events (Late Kimmerian phases). The ENE-WSW trending extensional 
stresses resulted in rifting, whereby the subsidence was concentrated in a number of 
fault-related troughs, such as the Lauwerszee Trough and the Central North Sea 
Graben. These troughs were separated by highs, such as the Friesland Platform and 
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the Groningen High. Transtensional dextral strike slip and dip slip occurred along 
NW-SE trending fault systems such as the Hantum Fault Zone. 
 
The Friesland Platform and the Groningen High became subjected to strong uplift 
especially during the Late Kimmerian II phase in the Early Cretaceous. Very large 
displacements have occurred in the Lauwerszee Trough during the Kimmerian phases 
(maximum vertical throw of 300 m and 1100 m along the West Groningen Fault Zone 
and the Hantum Fault Zone, respectively, see Chapter 7.1). 
 
During the Sub-Hercynian phase in the Late Cretaceous, a compressive stress field 
resulting from the collision of Africa and Europe (Ziegler 1982) was responsible for a 
brief change (inversion) in the direction of movement of the major structural 
elements. The inversion initiated uplift of the former Upper Jurassic/Lower 
Cretaceous basins and pronounced subsidence of the former highs (Baldschuhn et al. 
1991). 
 
The phases during the Tertiary were associated with the Alpine Orogeny. During the 
Tertiary, active faulting and fault reactivation occurred in a few places only and 
relates principally to movements related to the Late Kimmerian fault zones, such as 
the Hantum Fault Zone, the Dalen Graben and the Holsloot Fault Zone (Figure 7.9). 
 

 
Figure 7.9. Base Tertiary dip-map of the northern Netherlands (from Frikken 

1999). 
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7.4 Current fault pattern in the Groningen and Annerveen gas fields 
 
According to the depth contour map of the top of the Groningen gas reservoir as 
shown in Figure 7.10, the Groningen gas field is in general bounded by major graben 
structures on its west, south and east side. This is visually especially pronounced in 
the birds-eye view of the 3D-Groningen gas reservoir (Figure 7.11). The structure of 
the Groningen High, which contains the Groningen gas field, is clearly visible. The 
graben structure on the west side is the NW-SE trending Lauwerszee Trough. The 
graben structures on the south- and east side are E-W and N-S trending, respectively. 
Graben systems in the three mentioned directions can be found throughout the entire 
Groningen gas field. Their distribution is not even, but location-dependent. 
 
Very remarkable are the major NW-SE striking normal faults which cut through the 
reservoir (Figure 7.11). Their throw can be very large: up to 300 m (see Chapter 7.1). 
These faults are concentrated in the west part of the field and are related to two major 
graben structures which cut the field here (Figure 7.10). The southernmost graben 
structure is part of the West Groningen Fault Zone bounding the Lauwerszee Trough. 
The NW-SE grabens in the west part of the field are intersected by N-S trending 
grabens, resulting in a complicated fault pattern in this part of the field. The NW-SE 
trending grabens are much more pronounced and show a larger throw than the N-S 
trending grabens (Figures 7.12 and 7.13). 
 
The northernmost major graben structure branches towards the southeast. One branch 
continues in south-eastern direction and forms the graben structure in which the well 
clusters Amsweer (AMR) and Schaapbulten (SCB) are located. Another branch runs 
southwards. The well clusters Overschild (OVS) and Noordbroek (NBR) are located 
within this N-S trending graben structure. Many N-S striking normal faults, which can 
incorporate a relatively large throw, are present in this graben structure (Figure 7.14). 
 
The southern major graben structure neighbours the highest part of the Groningen gas 
field around the well clusters Kooipolder (KPD), Slochteren (SLO) and Froombosch 
(FRB), which is part of a horst structure that covers a large area in the southern part of 
the Groningen gas field. Close to the southern major graben, the horst structure is 
mainly characterised by NW-SE trending normal faults (Figure 7.15). Also N-S and 
W-E striking normal faults occur frequently. Further to the eastern part of the field, a 
rhomboidal fault pattern of N-S and E-W striking normal faults becomes very 
characteristic. NW-SE trending faults are as good as absent here. 
 
The northern part of the Groningen gas field is structural geologically seen a quiet 
area, as is visible in a seismic cross section through this part of the field (Figure 7.16). 
Not many faults occur here. The most remarkable are some NW-SE trending grabens 
in between the well Uithuizermeeden-1A (UHM-1A) and the well cluster ’t Zandt 
(ZND) and an E-W trending graben structure which is visible to the south of the well 
clusters ’t Zandt (ZND) and Bierum (BIR). The density of the grabens and the throw 
along their normal faults is less than in the other parts of the Groningen gas field. The 
northern boundary of the field is formed by northwards dipping of the reservoir blocks 
below the gas-water contact level of -2976 m depth. 
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Figure 7.10. Top reservoir depth contour map of the Groningen gas field (source: 

NAM). White squares denote the location of some well clusters. 
Coloured dots denote the location of seismic events as determined by 
KNMI. Profile lines AA’, BB’, CC’, DD’ and EE’ are shown, 
corresponding to Figures 7.12 – 7.15 and 7.21. See Appendix 2 for this 
figure in colour. 
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Figure 7.11. Birds-eye view from south-western direction on the Groningen gas 

field. Contours indicate the top reservoir depth (source: NAM). See 
Appendix 2 for this figure in colour. 
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Figure 7.12. Seismic cross section AA’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). See Appendix 2 for this figure in colour. 
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Figure 7.13. Seismic cross section BB’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). See Appendix 2 for this figure in colour. 

 

0 0.5 1 2 3 km

W E

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth

Rotliegend

-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km

0 0.5 1 2 3 km0 0.5 1 2 3 km0 0.5 1 2 3 km

W E

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth

Rotliegend

-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km

 
Figure 7.14. Seismic cross section CC’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). See Appendix 2 for this figure in colour. 
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Figure 7.15. Seismic cross section DD’ through the Groningen field (for location 

see Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). See Appendix 2 for this figure in colour. 

 
 

 
Figure 7.16. Generalised top reservoir depth contour map of the Annerveen gas 

field (after Veenhof 1996). White dots denote the location of seismic 
events as determined by KNMI. Profile lines are shown, corresponding 
to Figures 7.17 and 7.18. 

 
 
The Annerveen gas field shows a fault pattern which is somewhat different from the 
Groningen gas field. It consists mainly of N-S trending normal faults (Figure 7.16). 
None of these N-S trending faults has a large enough throw to completely offset the 
reservoir. Throws are mostly in the range of 10 – 20 m (Veenhof 1996). These faults 
may represent older, reactivated Carboniferous lineations (Veenhof 1996). In fact, this 
trend matches well with the rhomboidal fault pattern characteristic for the southern 
part of the Groningen gas field. The N-S trending grabens continue to the Annerveen 
gas field (Figure 7.17; note the effect of the travel time or velocity pull-up, caused by 
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the Veendam salt wall). The E-W trending graben structures, which bound the 
Annerveen gas field to the north and south, seem not to have affected the E-W 
trending elongate horst block in which the Annerveen gas is captured (Figure 7.18). 
NW – SE trending faults of extensional nature are rare. They are interpreted to be of 
post-Permian age (probably Late Kimmerian, Stauble & Milius 1970 in Veenhof 
1996). The field is dip-closed to the west. Overall, the horst block is tilted towards the 
south. 
 
Overall in the Groningen and Annerveen gas fields, NE-SW trending structures are 
virtually absent. 
 
 

 
Figure 7.17. Seismic WE cross section through well ANV-1 (for location see Figure 

7.16) in the Annerveen field (from Veenhof 1996). 
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Figure 7.18. Seismic NS cross section through the Annerveen field (for location see 

Figure 7.16). The vertical scale is in two way travel time in seconds. 
The black dot indicates the location of a seismic event as determined by 
KNMI (source: NAM, KNMI). See Appendix 2 for this figure in colour. 
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7.5 Current tectonic stress field in the northern Netherlands 
 
The rather complex tectonic history with associated fault generation and reactivation 
of the northern Netherlands is described in Chapter 7.3. It consists of a complex 
interplay of both compressional and extensional tectonics, including wrench tectonics. 
The current stress field in the northern Netherlands can be assumed to result mainly 
from the Tertiary Alpine Orogeny. 
 
The present-day in situ state of stress in the northern Netherlands is not directly 
measured. Current insights in the in situ stress field are based on borehole breakout 
studies (Frikken 1999, Frikken 2000, Rondeel & Everaars 1993) and hydraulic 
fracturing (Frikken 1999). Insights of the intraplate stresses of the area are well 
documented by the World Stress Map (Zoback et al. 1991, Zoback 1992, Müller et al. 
2000) and are supported by finite element modelling of the recent crustal stress field 
of Central Europe (Grünthal & Stromeyer 1994). 
 
The World Stress Map shows data (Figure 7.19) in eight locations on the onshore 
Netherlands: three in the northern Netherlands and five in the southern Limburg area. 
The latter are derived from earthquake focal mechanisms. The northern Netherlands 
data are taken from the study from Draxler & Edwards (1984). They observed a very 
consistent borehole breakout direction in Carboniferous rocks of N050E + 10 in the 
area between Slochteren and Hamburg. Hydraulic fracture propagation in north-
western Germany is NNW-SSE. World Stress Map data therefore indicate that the 
stress field is marked by largest principal horizontal stresses oriented NW-SE, which 
is supported by earlier studies (Rondeel & Everaars 1993, Gruenthal & Stromeyer 
1994, Klein & Barr 1986). Frikken (1999) mentions a wider range for the horizontal 
maximum principal stress direction, based on borehole breakouts from several 
Borehole Imaging Logs: NW-SE to N-S, whereby the direction depends on the local 
stress regime of individual blocks. A rose diagram of hydraulic fracture strike 
orientation of the Slochteren Sandstone in well BLF-104 (NE-Netherlands) as shown 
by Frikken (1999) indicates a N28W orientation of the present-day horizontal 
maximum principal stress on this location (Figure 7.20). Rondeel & Everaars (1993) 
mention an average orientation of N55W and N20W for Carboniferous rock and rock 
formations above the Carboniferous, respectively. Conclusions in a report for NAM 
(Frikken, 2000), based on breakout observations and various assumptions, mention 
that the orientation of the maximum horizontal stress could range from N8E to N16W. 
 
Although still under discussion it is generally assumed, that the present-day direction 
of the largest horizontal stresses in the Netherlands is NW-SE. It is very likely that 
due to geological structures in the subsurface this direction can locally be different.  
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Figure 7.19. Stress maps of the North Sea and central Europe (from Reinecker et al. 

2003). Stress symbols display the orientations of the maximum 
horizontal stress σH. The length of the stress symbols represents the 
data quality, with A as the best quality category. A-quality data are 
believed to record the orientation of the horizontal tectonic stress field 
to within + 10o-15o, B-quality data to within + 15o-20o and C-quality 
data to within + 25o. D-quality data are considered to yield 
questionable tectonic stress orientations (Zoback 1992). The tectonic 
regimes are: NF for normal faulting, SS for strike-slip faulting, TF for 
thrust faulting and U for an unknown regime. See Appendix 2 for this 
figure in colour. 

 

 
Figure 7.20. Rose diagram of hydraulic fracture strike orientation of the Slochteren 

Sandstone in well BLF-104, north-eastern Netherlands (from Frikken 
1999). 
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A state of stress is besides the direction of the stress components determined by the 
magnitude of the components. The vertical stress is generally assumed to be the result 
of the weight of the rock mass. The magnitudes of the maximum and minimum 
horizontal stresses in the subsurface of the northern Netherlands are not known in 
detail. The tectonic setting of the Netherlands suggests an extensional stress regime 
influenced by the Alpine Orogenesis. In previous research on geomechanical 
modelling of gas reservoirs in the northern Netherlands, a K0-value of 0.4 is therefore 
often assumed (Roest & Kuilman 1993, Nagelhout & Roest 1997, Schreppers 1998, 
Glab 2001). Frikken (2000) points to the occurrence of both strike slip and dip slip 
components on regional faults and concludes that the maximum horizontal stress 
should be close to the vertical stress, meaning that K0H would be close to 1.0. 
 
It has to be mentioned here that the horizontal stress magnitudes are very difficult to 
estimate and that they are very sensitive to local variations due to geological 
structures in the subsurface. 
 
 
7.6 Seismicity in the Groningen and Annerveen gas fields 
 
To date, a few hundred seismic events occurred within the lateral boundaries of the 
Groningen and Annerveen gas fields. For each event up to January 2001, seismic 
cross sections are studied by making use of the 3D-seismic database of NAM and the 
hypocentre data of KNMI. The hypocentre location of each event incorporates an 
uncertainty in depth of + 500 m and a lateral uncertainty of + 1500m. This is indicated 
by the ellipses in Figures 7.12 – 7.15 and 7.21. Despite this uncertainty in location, it 
is clear from Figures 7.12 – 7.15 and 7.21 that the majority of these events is located 
in the vicinity of steeply dipping normal faults at reservoir level. 
 
Events are not necessarily always related to reactivation of normal faults at reservoir 
level. In literature, some examples exist of reactivation of subhorizontal thrust faults 
just above and/or below the reservoir (Baranova et al. 1999), reactivation of faults at 
shallower levels related to salt structures (Roest & Kuilman 1994, BOA 1993), and 
reactivation of faults at greater depth by mass transfer (McGarr 1991), see Chapter 6. 
The latter mechanism can be excluded for the northern Netherlands, since the depth 
estimation of all events in the Groningen and Annerveen gas fields is at reservoir level 
(appr. -3 km depth). This depth estimation also makes the mechanism of reactivation 
of faults at shallow levels related to salt structures very unlikely. An event such as 
shown in Figure 7.21 could possibly be related to the salt structure above the reservoir 
but is much more likely to be related to the reservoir boundary. Faults in the 
Groningen and Annerveen gas fields are predominantly subvertical normal faults, 
making the mechanism of reactivation of subhorizontal reverse faults unlikely. 
Furthermore, a compressional stress regime with relatively high K0-values is needed 
for reactivation of this type of faults. Such a stress regime is absent in the northern 
Netherlands (Chapter 7.4). 
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It can therefore be concluded that the seismic events in the Groningen and Annerveen 
gas fields are in general related to the reactivation of steeply dipping (subvertical) 
normal faults at reservoir level. It has to be mentioned here that reactivation of a 
normal fault does not necessarily mean normal fault movement. A normal fault can 
also be reactivated by reverse movement. Fault plane solutions of KNMI indicate 
reverse fault reactivation along steeply dipping faults for some seismic events in the 
Roswinkel and Bergermeer gas fields. The reactivated fault in the Bergermeer gas 
field is a normal fault (see Chapter 1). 
 
The majority of the seismic events in the Groningen field is related to the two major 
NW-SE trending graben structures which intersect the field at its west side (Figure 
7.10). Another important group of events occurs in the two NW-SE and N-S trending 
branches of the northernmost major grabenstructure. Seismic events are virtually 
absent in the south-eastern part of the field, where the rhomboidal fault structure 
consisting of N-S and E-W trending faults is present. Seismic events are also virtually 
absent in the northern part of the field. This is most probably due to the relatively 
simple geology in this area, consisting of (sub)horizontal layering and low fault 
density. Seismic events in the Annerveen gas field are restricted to the central and 
western part of the field (Figure 7.16). Most events occur in the central part. The fault 
pattern in the Annerveen field indicates that these events are mainly the result of 
reactivation of N-S trending normal faults. Some seismic events may be related to 
reactivation of E-W trending reservoir bounding faults. 
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Figure 7.21. Seismic cross section EE’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). See Appendix 2 for this figure in colour. 
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7.7 Summarising description of the Groningen and Annerveen gas 
fields 

 
In this section, a  summarising description of the Groningen and Annerveen gas fields 
for geomechanical modelling purposes of this study is given. This description forms 
the bases of the chosen geometry of the finite element models, rock property values 
and initial pore pressure. The models are described in Chapter 8. 
 
Both Groningen and Annerveen gas fields are very large in size and cut by numerous 
faults (Groningen field: approximately 900 km2). It is virtually impossible to make a 
detailed 3-dimensional geomechanical model of the entire fields including their faults 
and expect a detailed analysis of fault reactivation and stress development as a result 
of gas depletion. It is therefore decided to build generic reservoir models which 
incorporate the basic features of the two fields and study the effects of different 
parameters on stress development and fault reactivation. 
 
The Groningen block is generally tilting towards the north. NW-SE striking normal 
faults, which can have large amounts of throw (up to 300 m, see Chapter 7.3), are the 
dominant trend in Groningen. N-S and E-W trending faults with lesser amounts of 
throw are also frequent. The horst block capturing the Annerveen gas is overall tilted 
towards the south. N-S trending normal faults with relatively small amounts of throw, 
mostly between 10 – 20 m, form the dominant fault type in the Annerveen gas field. 
 
The Annerveen and Groningen gas reservoirs do not consist of a homogeneous rock 
mass but each is subdivided into several units, as can be for instance seen in the N-S 
stratigraphical profile through the Upper Rotliegend Group through the Groningen gas 
field (Figure 7.22). The rocks of the Annerveen and Groningen gas fields are mainly 
sandstones with intercalations of conglomerates and shales. The upper unit in both 
Annerveen and Groningen is the Ten Boer Claystone. In Groningen, this unit consists 
mostly of non-reservoir shales and silts and forms a shaly reservoir seal. In 
Annerveen, the Ten Boer member shows a clear trend from coarse to fine clastics 
from southeast to northwest since this region was located closer to the Southern 
Permian Basin margin. It comprises continuous shale layers with intercalations of fine 
sandstones, silts and shaly sands, whereby the lower sequences contain reservoir 
quality sands. The unit represents the southernmost incursion of the Rotliegend desert 
lake (Figure 7.6). In the northern part of the Groningen field, the relatively thick 
Ameland Claystone member divides the reservoir sandstones in a lower and an upper 
part. Some thin Carboniferous (Westphalian) sandstones subcrop locally at the base of 
the Rotliegend and contribute to gas production. 
 
The thickness of the Slochteren Sandstone, containing most of the Groningen gas 
field, varies between 70 m in the extreme southeast of the field to 240 m in the 
northwest. Reservoir thickness of the Annerveen gas field is 100 – 150 m. The 
Slochteren Sandstone is situated at an average depth of about -2900 m. The 
Annerveen gas field is located somewhat deeper, but almost at the same level. The 
average gas-water contact in the Groningen gas reservoir is -2970 m deep. This value 
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is -3060 m for the Annerveen gas field. All depths mentioned are below MSL (Mean 
Sea Level). The original average reservoir pore pressure was 34.7 MPa (347 bar) for 
the Groningen gas field and 34.5 MPa (345 bar) for the Annerveen gas field (Mobach 
& Gussinklo 1994, Veenhof 1996). 
 
For the finite element models of this research, the following characteristics have been 
chosen. The chosen reservoir thickness in the models is 150 m, with its top located at 
a depth of -2900 m. The initial pore pressure is chosen to be 35.0 MPa (350 bar). A 
less or non-producing intercalation such as the Ameland Claystone and a gas-water 
contact are not modelled. The reservoir is 3000 m wide, which is in the range of 
reservoir compartments as observed in the Groningen and Annerveen gas fields. Most 
of the geomechanical reservoir models incorporate a normal fault intersecting the 
reservoir with varying amounts of throw. In view of the intended parameter study, the 
volume surrounding the reservoir is assumed to consist of one homogeneous isotropic 
rock mass in order to keep the model generic and free from any additional effects 
eventually produced by a layered geological structure. 
 
Rock property values are based on previous geomechanical compaction and 
subsidence studies of Rotliegend gas reservoirs (Schreppers 1998, NAM 1998 and 
NAM 2000). The default reservoir rock properties are: E = 13.0 GPa, ν = 0.2, c = 5 
MPa and φ = 30º. The default rock property values for the surrounding rock are: E = 
18.5 GPa, ν = 0.25, c = 5 MPa and φ = 25º. These values are used in NAM (1998) as 
average values for the overburden rocks above the Zechstein evaporites. The 
properties of the surrounding rock can be considered as being representative for the 
Ten Boer Claystone. The Ten Boer Claystone is usually modelled using a Young’s 
modulus of 18.0 GPa and a Poisson’s ratio of 0.25 (NAM 2000). The dilatancy angle 
ψ is assumed to be 10º for both reservoir and surrounding rocks, a typical value for 
sandstone rocks at field conditions (Charlier 2000). 

 
Figure 7.22. Stratigraphical NS profile of the Upper Rotliegend Group through the 

Groningen field; for location see Figure 7.23 (from RGD 1995). 
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Profile line (see Figure 7.22)Profile line (see Figure 7.22)  
Figure 7.23. Map showing outlines of gas fields and main faults at reservoir level 

(after Doornhof 1992). 
 
 
In the geomechanical models for this study, faults are modelled incorporating the 
same initial pressure as the neighbouring rock formations. During reservoir depletion, 
the part of the faults in contact to reservoir rock deplete with the same amount as the 
reservoir rock. This is based on the following. Figure 7.23 shows a map of the 
Groningen area with indications of the sealing properties of the main faults through 
the Slochteren Sandstone. Sealing faults are basically restricted to the east and west of 
the Groningen and Annerveen fields, relatively far outside of the fields. The southern 
bounding fault of the Annerveen gas field is a sealing fault as well. Faults within this 
area and thus within the Groningen and Annerveen gas fields are considered to be 
non-sealing. This is in accordance with the statement of Veenhof (1996), that most of 
the Annerveen gas field is well drained and that the numerous faults which are 
mapped in the main field do not form transmissibility barriers. An exception occurs at 
the eastern flank of the field, where semi-transmissive faults are present. This is clear 
from the pressure development in the well ANV-1 (Annerveen), which follows the 
pressure trend of the nearest well in the Groningen field (Zuidwending, ZWD-1), see 
Figure 7.24. Neighbouring wells in the Annerveen field (Zuidlaren, ZLN-1, and 
Annerveenschekanaal, ANS-1) follow the Annerveen field depletion trend. Currently 
the fault or fault zone between ANV-1 and the nearby part of the Annerveen field is 
holding a pressure differential of more than 10 MPa (100 bar). As the quality of the 
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seal is difficult to estimate, the risk exists that the fault could be breached once the 
pressure differential exceeds the faults’ sealing capacity. Subsequently, the ANV-1 
gas would flow to the Annerveen main field (Veenhof 1996). 
 
The effect of ‘aquifer depletion’, whereby the pressure in a small associated aquifer 
will decrease gradually with the pressure in a large gas bearing reservoir, as is the 
case in the Groningen gas field (Doornhof 1992), is not modelled. The pore pressure 
in the rock formations surrounding the reservoir are assumed to be initially 
hydrostatic and to remain constant during depletion of the gas reservoir. 
 
For a detailed description of the finite-element model setup and model properties see 
Chapter 8. 
 

 
Figure 7.24. Pressure development in time for the Annerveen field and the southern 

margin of the Groningen field (from Veenhof 1996). 
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8 MODEL SET-UP 
 
 
 
This chapter describes the chosen model geometry and (default) geomechanical 
properties and loading conditions. The model geometry is chosen based on field data 
analysis (Chapter 7). The reservoir depth and thickness and the normal fault setting 
are representative for most of the Rotliegend gas fields in the Netherlands. The size of 
the reservoir is in the range of reservoir compartments as observed in the Groningen 
and Annerveen gas fields. The volume surrounding the reservoir is assumed to consist 
of one homogeneous isotropic rock mass in order to keep the model generic and free 
from any additional effects eventually produced by a layered geological structure. The 
generic model character is also the reason for choosing a relatively simple disk-
shaped geometry of the reservoir. Rock properties are based on based on previous 
geomechanical compaction and subsidence studies of Rotliegend gas reservoirs 
(Schreppers 1998, NAM 1998 and NAM 2000). Initial pore pressure and tectonic 
stress field are based on field data analysis, literature and personal communication 
(see Chapters 7.5 and 7.7). 
 
In the following, the geometries of the 3D models and their generation in DIANA’s 
pre-processor ‘iDIANA’ are described firstly in Chapter 8.1. Subsequently the 
geometries of the 2D models are described in Chapter 8.2. Chapter 8.3 gives the 
default geomechanical properties and loading conditions applied to the models and 
evaluates the applicability of the assumed model size. 
 
 
8.1 3D-model geometry 
 
The 3D finite element models consist basically of a box of 12,000x12,000x5000m 
(Figure 8.1). A disk-shaped reservoir is horizontally centred within this box. It is 
intersected by a fault plane. A Cartesian x,y,z co-ordinate system is applied as shown 
in Figure 8.1. The x-, y- and z-axes form in the given order a right-handed system. 
The x-axis points in the dip direction of the fault plane, the y-axis points in the strike 
direction of the fault plane and the z-axes points vertically upwards. The origin O of 
the co-ordinate system is positioned horizontally centred at the top of the model. 
 
Chapter 8.1.1 zooms in on a description of nine different reservoir geometries and the 
nine corresponding 3D finite element models which are built for this thesis. Chapter 
8.1.2 describes the details and assumptions on the fault geometry. In Chapter 8.1.3 the 
total model size as given above and boundary conditions are discussed. 
 
 
 
 
 
 
 



 92 

50
00

 m
12,000 m

12,000 m

fault plane

transition zone

reservoir70o

Z Y
X

 
Figure 8.1. Basic geometry of the 3D finite element models, shown by model 

‘throw_var’ (see Chapter 8.1.1.2). 
 
 
8.1.1 Reservoir geometry 
 
The 3D models incorporate a disk-shaped gas reservoir with a radius of 1500m and a 
thickness of 150m (see Figures 8.1 and 8.2). The aspect ratio of the disk is thus 0.05. 
The top of the reservoir is located at a depth of -2900m. The volume surrounding the 
reservoir is assumed to consist of one homogeneous isotropic rock mass. A fault plane 
intersects the reservoir through its centre and divides the reservoir in two distinct 
compartments: a footwall reservoir compartment and a hanging wall reservoir 
compartment. The fault plane is created such that it runs always through the centre of 
the disk at a depth of -2975m, through the point (0,0,-2975). 
 
Nine different 3D models are built, each with a different amount of throw (vertical 
separation) along the fault (Chapters 8.1.1.1 and 8.1.1.2). For values of throw larger 
than zero, the hanging wall reservoir compartment is located deeper than the footwall 
reservoir compartment, thus creating a normal fault setting. The top of the footwall 
reservoir compartment is in all models located at a depth of -2900m. Each model is 
referred to by a specific name. 
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Figure 8.2. Geometry of the disk-shaped gas reservoirs in the 3D models. A fault 

plane intersects the reservoir through its centre and divides it in a 
footwall and hanging wall reservoir compartment. (a) Model series 
‘throw_const_...D’. (b) Model ‘throw_var’; point S is the point on the 
fault plane where the top of the hanging wall reservoir compartment is 
exactly opposite to the bottom of the footwall reservoir compartment. 
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8.1.1.1 Model series ‘throw_const_...D’ 
 
Models ‘throw_const_...D’ incorporate a throw which is constant along the strike of 
the fault (Figure 8.2a). D stands for the reservoir thickness, which is not varied and 
has a constant value of 150m. The number which appears in the model name at the 
before last position indicates the amount of throw. For instance ½ means that the 
amount of throw is ½ times the reservoir thickness: 75m. A value of 1 indicates a 
throw which is equal to the reservoir thickness: 150m. For this specific case, the top 
of the hanging wall reservoir compartment is located at the same depth as the bottom 
of the footwall reservoir compartment. The value 0 indicates that there is no throw 
along the fault plane. Model series ‘throw_const_...D’ consists in total of eight models 
(Table 8.1). 
 
Table 8.1. Definition of eight models of model series ‘throw_const_...D’. 
Model name Throw (m) Throw / D 

(D=150m) 
throw_const_0D 
throw_const_¼D 
throw_const_½D 
throw_const_¾D 
throw_const_1D 
throw_const_1¼D 
throw_const_1½D 
throw_const_2D 

0 
37.5 
75 
112.5 
150 
187.5 
225 
300 

0 
¼ 
½ 
¾ 
1 
1¼ 
1½ 
2 

 
 
8.1.1.2 Model ‘throw_var’ 
 
In model ‘throw_var’, the throw varies along the strike of the fault plane (Figure 
8.2b). A clear example of such geometry is situated in the Bergermeer gas field in the 
Netherlands (see e.g. Roest & Mulders, 2000). Top reservoir depth contour maps of 
the Groningen gas field, such as shown in Figure 7.10 (Chapter 7.4), indicate that 
such geometry occurs in the Groningen gas field as well. The throw variation results 
from a partly dipping of the hanging wall reservoir compartment towards the negative 
Y-direction of the model, whereas the footwall reservoir compartment remains 
horizontal. The dipping of the reservoir compartment is defined by an angle around an 
imaginary rotation axis, which runs perpendicular to the strike of the fault at 2975 m 
depth, 750 m in positive Y-direction from the reservoir centre (see Figure 8.2b). This 
rotation angle is chosen to be 7.6o. The reason of this choice is a maximum throw of 
almost two times the reservoir thickness (297.95m) at the lateral reservoir edge. Note 
that a part of the hanging wall reservoir compartment is not dipping, making that the 
two reservoir compartments in this region are located exactly opposite to each other. 
In fact, model ‘throw_var’ summarises the eight models of series ‘throw_const_...D’ 
in one model. 
 
 
 
 

Fault plane 

Footwall reservoir 
compartment

Hanging wall reservoir 
compartment 

Throw 

D=150m
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8.1.2 Fault geometry 
 
The fault plane intersects the reservoir and divides the reservoir in two distinct 
compartments. The fault plane is positioned such, that it runs through the very centre 
of the reservoir, through point (0,0,-2975). The fault plane strikes parallel to the 
model y-axis. The fault dip direction is equal to the model x-axis direction. The 
default fault dip angle β is 70º. The fault thickness is 0m. 
 
The fault plane does not extend until the model boundaries but has a limited extent 
(see Figures 8.1 and 8.3). The connection of hanging and footwall by continuous rock 
volume at the boundaries of the model prevents slipping of the entire hanging wall, 
which would result in divergence during iterating in the nonlinear analysis. 
 
The fault is modelled using interface elements. As is explained in Chapter 5.3, 
interface elements consist of two sides, each with a certain number of corresponding 
nodes. These two sides are allowed to move relative to each other. They are indicated 
in Figure 8.3b by ‘f1’ and ‘f2’, respectively. Note that the physical thickness of the 
fault plane is 0 m. Figure 8.3 suggests that the fault plane has a physical thickness, but 
the figure is only imaginary in order to explain the numerical geometry of the fault 
plane. In the model, planes f1 and f2 coincide initially. 
 
The fault plane is surrounded by a transition zone and an outer edge of continuous 
surrounding rock. The transition zone connects the pairs of nodes of the interface 
elements to the solid elements, which are used to model the continuous rock volume. 
Figure 8.3b shows this concept in cross-sectional view. Figure 8.3c shows the 
construction of the transition zone at the upper left corner of the fault plane. The fault 
plane ends with an interface element T18IF, situated in between the footwall and 
hanging wall rock volumes consisting of TE12L-elements. The pair of nodes at the 
end of the fault plane has to be reduced to one node for a proper connection of the 
TE12L-elements in the continuous rock zone. No element is defined for the shaded 
zone in Figure 8.3b. It represents therewith an empty space. It is important that the 
shaded zone is bounded solely by three nodes. In case of lower order elements without 
midside nodes this shaded zone is then bound by one solid element on either side. In 
case of higher order elements with midside nodes, the shaded zone only continues 
until the first midside node. 
 
The used technique as described above is based on TNO Building & Construction 
Research 1999. It is especially justified for the fault thickness of 0 m, since the 
numerical ‘gap’ in the transition zone is than physically absent. 
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Figure 8.3. (a) Numerical geometry of the fault plane. Note that the physical 

thickness is zero. (b) Cross sectional view. Interface elements T18IF 
are bounded by the two surfaces f1 and f2. The surfaces f1 and f2 
coincide initially in the numerical models. TE12L are solid finite 
elements; the shaded zone, representing the transition zone, is not 
defined by a finite element. Note that this zone physically vanishes for a 
fault thickness of 0 m. (c) Detail of the element structure at the top left 
corner of the fault plane. Note again that the thickness shown in the 
figure is only imaginary. 

 
 
8.1.3 Total model size and boundary conditions 
 
At the four lateral sides of the model, horizontal translations normal to the respective 
sides are constrained. Vertical translations are constrained at the bottom of the model. 
The top surface is free from any constraints and represents so with the earth’s surface. 
 
As a rule of thumb, a total lateral model size of 3-6 times the size of the reservoir 
should be taken. For the modelled reservoir with a diameter of 3,000m, this would 
mean a model size of 9,000 – 18,000m. As described before, the total model size is 
12,000x12,000x5,000m, meaning that the lateral boundaries are located at a distance 
of 6,000m from the centre of the reservoir. It is investigated whether this distance is 
appropriate and how it affects the calculated fault slip and stress development in and 
around the reservoir. This investigation is described in Chapter 8.3.8. 
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8.1.4 Mesh density and element types 
 
The fault plane consists of a large number of hexahedral and triangular prism bodies 
(a body is a volume surrounded by a closed set of surfaces). This allows the 
generation of a regular mesh (Figure 8.4) with a consistent node and element 
numbering, which is indispensable for the production of contour plots of relative shear 
displacements on the fault plane (see Chapter 9.1.1). 
 
Because of the multiple bodies and thus multiple surfaces on both sides of the fault 
plane, reservoir and surrounding are built using general bodies. General bodies are 
volumes bounded by multiple structural surfaces. The use of general bodies generally 
limits the generation of bad shaped elements. A disadvantage is that besides line 
divisions no direct control on the element density is possible. Line divisions determine 
how many nodes and thus elements are created along a specific line. Furthermore, the 
number of elements which are generated in a general body strongly depends not only 
on the meshing divisions of the lines bounding the general body, but also on the 
meshing divisions of other lines elsewhere in the model and on the sequence in which 
the different bodies are created. Figure 8.5 shows the mesh structure of the reservoir 
for model ‘throw_var’. Table 8.2 gives an overview of the number of elements 
generated in each of the nine different models. Element types are TE12L (structural 
solid pyramids with three sides and four nodes) for the rock volume and T18IF 
(structural triangular interface elements with two times three nodes) for the fault 
plane, see Chapter 5.3. The number of elements and choice of element type is 
determined by the hardware provided. 3D-models with higher order elements were 
not possible. 
 

x

z

y

 
Figure 8.4. Finite element mesh structure on the fault plane, shown for model 

‘throw_var’. View direction is normal to the fault plane. 
 
Table 8.2. Number of elements and nodes in the 3D models. 

No. of elements No. of nodes Model 
TE12L T18IF  

throw_const_0D 
throw_const_¼D 
throw_const_½D 
throw_const_¾D 
throw_const_1D 
throw_const_1¼D 
throw_const_1½D 
throw_const_2D 
throw_var 

44,390 
50,005 
49,934 
46,974 
52,436 
52,245 
55,399 
61,768 
57,677 

1876 
2048 
2228 
2408 
2510 
2362 
2550 
2772 
2572 

8518 
9545 
9618 
9208 
10,172 
10,072 
10,690 
11,846 
11,051 
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Figure 8.5. Finite element mesh structure of the reservoir, shown for model 
‘throw_var’. 

 
 
8.1.5 Creation of model geometry in ‘iDIANA’ 
 
The models are created in ‘iDIANA’, DIANA’s pre-processor for model generation, 
by first constructing the necessary shapes in form of planes, cylinders and boxes. With 
the iDIANA-options ‘geometry surface intersect…’ and ‘geometry point intersect…’, 
the whole model geometry can be built relatively easy. The ‘geometry surface 
intersect...’ option creates intersection surfaces on a predefined analytical shape such 
as a plane or cylinder. The ‘geometry point intersect...’ option positions an existing 
point to be on the intersection of up to three shapes. This way allows the creation of 
various models with different sizes, fault dip angles and reservoir compartment dip 
angles by simply changing some co-ordinate values in a batch file, which contains all 
necessary commands for the model set-up. 
 
The fault plane is created by means of the ‘geometry sweep…’-option. Its thickness is 
0 m. Sweeping a geometry to its location requires the tolerance to be either switched 
off or set to 0. When a new geometry is generated due to a copy or sweep operation, 
‘iDIANA’ checks if a point already exists within the current tolerance before 
generating a new point. For the surface intersection option to function, the tolerance 
must be switched on again or set at its default value, which is a relative tolerance of 
0.001. ‘Relative’ indicates that the tolerance is given as a factor to be applied to the 
length of the largest diagonal of the workbox. 
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8.2 2D-model geometry 
 
2D models are built for two reasons. First, stress trajectories cannot be plotted 
conveniently in DIANA for 3D models. This option becomes important for the 
analysis of initial state of stress and stress development as a function of surrounding 
rock properties (see Chapter 11.2). Second, some basic calculations on reservoirs 
without an intersecting fault can be performed with axisymmetric models (see Chapter 
10). An overview of the used geometries is given in this chapter (Figures 8.6 - 8.8). 
Note that model ‘2D_throw_½D’ represents in fact a cross-section through the 3-
dimensional model ‘throw_const_½D’. 
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Figure 8.6. Geometry of the 2-dimensional plane strain model ‘2D_throw_½D’. It 

represents in fact a cross section through the 3-dimensional model 
‘throw_const_½D’. 

z

x

10,000m

50
00

m

1500m

15
0m

 
Figure 8.7. Geometry of the 2-dimensional axisymmetric model of a disk-shaped 

gas reservoir. 
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Figure 8.8. Geometry of the 2-dimensional axisymmetric model of an ellipsoidal 

gas reservoir. 
 
 
8.3 Default geomechanical properties and loading conditions 
 
8.3.1 Default rock properties 
 
Both reservoir and surrounding rock are assumed to behave elastoplastically with 
Mohr-Coulomb failure as described in Chapters 2 and 3. No hardening, cracking or 
other options such as nonlinear elasticity or cap are modelled. Default rock properties 
of both reservoir and surrounding rock are given in Table 8.3. They are based on 
previous geomechanical compaction and subsidence studies of Rotliegend gas 
reservoirs (Schreppers 1998, NAM 1998 and NAM 2000). The default rock property 
values for the surrounding rock are used in NAM (1998) as average values for the 
overburden rocks above the Zechstein evaporites. The dilatancy angle ψ is assumed to 
be 10º, a typical value for sandstone rocks in field conditions (Charlier 2000). The 
properties of the surrounding rock can be considered as being representative for the 
Ten Boer Claystone, which forms a shaly reservoir seal above the Groningen and 
Annerveen gas reservoirs. The Ten Boer Claystone is usually modelled using a 
Young’s modulus of 18.0 GPa and a Poisson’s ratio of 0.25 (NAM 2000). 
 
Note that the rock mechanical input parameters as described above represent a 
generic, idealised situation. Subsurface data are usually obtained by laboratory 
measurements, indirect (dynamic) measurements and interpretations. This leads to an 
uncertainty in the assessment of the in-situ geomechanical rock behaviour. 
Furthermore, the reservoir and surrounding rock are described as isotropic, 
homogeneous continua. Natural gas fields incorporate variations in lithology, leading 
to variations in their geomechanical properties. The volume surrounding the reservoir 
consists in reality consisting of a layered geological structure. Together with the 
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generic shape of the reservoir (disk or ellipsoid) and surrounding this allows an 
analysis of the effects of parameter variation on stress development and fault slip in 
and around the reservoir, free from any additional effects eventually produced by 
specific, case dependent features. 
 
A less or non-producing intercalation such as the Ameland Claystone in the northern 
part of the Groningen field, thin producing Carboniferous sandstones and Zechstein 
evaporites in the overburden (Chapter 7) are not modelled. 
 
Table 8.3. Default geomechanical rock properties used for the FE-calculations in 

this study. Calculations with different rock properties are explicitly 
described in the respective chapters. 
Rock property Reservoir rock Surrounding rock 

Symbol Description   
E 
ν 
ρbulk  
cr 
φr 
ψr 

Young’s modulus 
Poisson’s ratio 
Bulk density 
Rock cohesion 
Rock friction angle 
Rock dilatancy angle

13.0 GPa 
0.20 
2400 kg/m3 
5.0 MPa 
30o 
10o 

18.5 GPa 
0.25 
2400 kg/m3 
5.0 MPa 
25o 
10o 

 
 
8.3.2 Default fault properties 
 
Plastic fault slip on the fault plane is modelled using Coulomb friction. Before plastic 
slip occurs, the fault deforms elastically, to a degree that is controlled by the normal 
stiffness (Dn) and shear stiffness (Ds) of the fault. The choice of default values for 
normal and shear stiffness are described in Chapter 8.3.2.1. Default values for plastic 
fault properties are given in Chapter 8.3.2.2. Strain softening, displacement 
weakening, the forming of asperities and time-dependent relaxation of built-up 
stresses are not included in the modelling of faults. 
 
 
8.3.2.1 Elastic fault properties 
 
Before slip occurs, the fault deforms elastically, to a degree that is controlled by the 
normal and shear stiffness of the fault. The shear stiffness Ds of interface elements 
sets the relation between shear traction and elastic shear relative displacement, before 
the stress state on this fault reaches its yield criterion. The same applies for the normal 
stiffness Dn with normal traction and normal relative displacement. The unit of normal 
and shear stiffness is that of stress per length. 
 
Published data on stiffness properties for rock joints are limited. Summaries of data 
can be found in Bandis et al. (1983), Kulhawy (1975) and Rosso (1976). Values for 
both shear- and normal stiffness typically range from roughly 10 to 100 MPa/m for 
weak faults with soft clay in-filling, to over 100 GPa/m for tight joints in granite and 
basalt (Itasca 1995). 



 102 

Appropriate values of Dn and Ds are in the range of the elastic properties of the rock 
formations surrounding the fault. TNO Building & Construction Research (1999) 
advices the following equations for determining appropriate values in DIANA: 
 

( )
( )( )h211

E1Dn ν−ν+
ν−

= ; (8.1) 

( )h12
EDs ν+

= . (8.2) 

 
In here E and ν are the Young’s modulus and Poisson’s ratio of the modelled rock 
mass surrounding the fault and h is the fault thickness. For a fault thickness smaller 
than 1 m, a value of 1 m can be used for h in order to avoid extremely large stiffness 
values. Extremely large stiffness values can in the finite element calculations lead to 
‘glued’ interfaces, i.e. interfaces on which any slip or separation is prevented. 
 
Eqs. (8.1) and (8.2) are the basic expression of Hooke’s Law for elastic stress-strain 
behaviour for normal- and shear strain (see eq. (5.3)). Note that Ds is calculated by 
dividing the shear modulus of the rock neighbouring the fault by the fault thickness 
(see also eq. (2.53b)). The seismic moment (see Chapter 9.1.2 for definition) is a 
function of among others the shear modulus of the rock neighbouring the fault. 
Calculation of the seismic moment in DIANA uses the shear stiffness of the fault 
instead for technical reasons, making the use of eq. (8.2) obligatory in this case. 
 
Default fault stiffness values in this study are calculated according to eqs. (8.1) and 
(8.2). Note that they are not constant along the fault plane for models with differing 
reservoir and surrounding rock properties. The fault plane can, for the majority of the 
models as described in Chapters 8.1 and 8.2, be subdivided in three different regions 
(Figure 8.9): 
- region A, where the fault is bounded on both sides by reservoir rock; 
- region B, where the fault plane is bounded on one side by reservoir rock and on 

the opposite side by surrounding rock; 
- region C, where the fault plane is bounded on both sides by surrounding rock. 
 
The default fault stiffness values as used in the calculations with default rock 
properties (Chapter 8.3.1) are listed in Table 8.4. For the calculations of the stiffness 
values in fault region B, the rock properties of reservoir and surrounding rock are 
averaged. Note that the value for h in the case of zero fault thickness is 1 m. 
Calculations with fault stiffness values deviating from the above described procedure 
are explicitly marked in the respective chapters. 
 
Different values for Dn and Ds can lead to different amounts of fault slip initiated 
during gas depletion. See Chapter 8.3.7 for results of a calculation series on this topic. 
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Figure 8.9. Indication of fault regions A, B and C, shown for model ‘throw_var’, 

and geometrical definition of the vertical effective stress vσ ′ , maximum 
horizontal effective stress Hσ ′  and minimum horizontal effective stress 

hσ ′  (see Chapter 8.3.3). The direction of Hσ ′  is defined by angle λ, i.e. 
the angle between the strike direction of the fault plane and the 
direction of Hσ ′  in clockwise direction. The bottom right figures show 
the fault plane in cross sectional view with the footwall- and hanging 
wall reservoir compartments along the observation lines BB’ and DD’. 
Point S is the point on the fault plane where the top of the hanging wall 
reservoir compartment is exactly opposite to the bottom of the footwall 
reservoir compartment. Point P is a point along observation line BB’ 
(see Chapter 8.3.4.3). 

 
 
 
Table 8.4. Default fault stiffness values for the three fault zones A, B and C as a 

function of the fault neighbouring rock properties according to eqs. 
(8.1) and (8.2) for default rock properties as given in Chapter 8.3.1. 

Fault 
region 

Young’s modulus 
neighbouring rock 
[GPa] 

Poisson’s ratio 
neighbouring rock 
[GPa] 

Normal stiffness  
 
[GPa/m] 

Shear stiffness 
 
[GPa/m] 

A 
B 
C 

13.00 
15.75 
18.50 

0.200 
0.225 
0.250 

14.4 
18.1 
22.2 

5.4 
6.4 
7.4 



 104 

8.3.2.2 Plastic fault properties 
 
The fault plane is modelled using Coulomb friction. It is difficult to estimate the fault 
strength parameters in terms of frictional behaviour at depth. Because these 
parameters will have a major impact on the calculation results, they should be chosen 
with great care. 
 
The fault plane represents an existing plane of weakness along which failure has 
occurred. It is therefore assumed to be cohesionless (cf = 0). A fault dilatancy angle ψf 
of 0º is assumed. 
 
Its strength depends only on the fault friction angle φf. Paterson (1978) suggests that 
most values for the fault friction coefficient fall within the range of 0.4 – 0.7, meaning 
fault friction angles of 20º - 35º. According to Goodman (1989), values for fault 
friction angles typically range between 25° and 35°. When intact rock fails and some 
movement has taken place along the failure plane, the friction angle on this plane is 
not equal to that of the intact rock anymore, but basically reduces to a residual friction 
angle. Considering the default rock properties of Table 8.3, a fault friction angle of 
30º is therefore the upper limit. 
 
A too low friction angle can result in an unstable fault, eventually leading to 
numerical instabilities and divergence during iterating. The fault friction angle should 
be high enough to ensure numerical stability of the model and convergence to a 
solution when iterating and to avoid undesired side effects such as a large movement 
on the entire fault plane adding up to the movements at reservoir level, in which we 
are actually interested. Assuming that the vertical stress is a principal stress, with 

1v σ′=σ′  and 3h σ′=σ′ , it follows from eqs. (3.1) and (3.3) and Figure 3.1 that plastic 
fault slip occurs when 
 

( )
ff

ffff
h

v sin)2sin(
cosc2sin)2sin(

φ−φ−β
φ+φ+φ−βσ′

=σ′ . (8.3) 

 
For a cohesionless fault (cf = 0) this reduces to: 
 

ff

ff

v

h

sin)2sin(
sin)2sin(

φ+φ−β
φ−φ−β

=
σ′
σ′

. (8.4) 

 
Note that eq. (8.4) is an expression for the effective stress ratio K0h (see Chapter 3.2, 
eq. (3.9)). In Chapter 8.3.3 it will be explained that a default tectonic stress regime 
with K0H = K0h = 0.4 will be applied to the models. For a fault dip angle β of 70º, the 
fault is according to eq. (8.2) at failure for φf = 22.3º. For the most critical fault dip 
angle βcrit = 45º + ½φf, the fault is theoretically at failure for φf = 25.4º.  
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These fault friction angle values based on eq. (8.4) have to be considered with care. 
Contrasts in the elastic properties of rocks can cause deflection of stress trajectories 
(Bell & Lloyd 1989, Pourjavad et al. 1998 and Chapter 11.2 in this dissertation), 
affecting the relative orientation of the fault plane with respect to the principal stress 
directions. They also might affect principal stress vector magnitudes. Elastic rock 
property contrasts occur in the majority of the models in this dissertation, where the 
softer reservoir rock of the hanging wall reservoir compartment incorporates a throw 
within a stiffer surrounding. 
 
Based on the foregoing, a fault friction angle of 28º is chosen. 
 
 
8.3.3 Initial tectonic stress field 
 
The initial tectonic stresses applied to the numerical models are based on field data 
analysis, literature and personal communication (see Chapter 7.5). 
 
The effective stress acting in vertical direction is calculated by combining the weight 
of the rocks, which is calculated by applying the gravity acceleration on the model, 
with the pore pressure in the rocks and the fault plane (Chapter 8.3.4). 
 
The K0 –procedure in DIANA is used to impose the initial state of stress onto the 
model. This procedure initiates the horizontal effective stresses Hσ′  and hσ′  into the 
model from the calculated vertical effective stress vσ′  according to the effective stress 
ratios K0H = Hσ′ / vσ′  and K0h = hσ′ / vσ′  (see Chapter 3.2). The effective stress ratios 
are user-specified. The maximum and minimum horizontal stresses Hσ′  and hσ′  are 
always perpendicular to each other. The direction of Hσ′  is user-specified. The 
horizontal principal stress direction is defined with respect to the fault plane in the 
finite-element models by angle λ (Figure 8.9). λ is the angle between the strike 
direction of the fault plane and the direction of Hσ′  in clockwise direction. λ = 0o and 
90o mean a direction of Hσ′  parallel and perpendicular to the strike of the fault plane, 
respectively. 
 
Unless explicitly specified, an initial extensional stress field is assumed before gas 
depletion with effective stress ratios K0H = K0h = 0.4. In this case λ does not need to be 
specified. Further explanations on the initial state of stress for anisotropic tectonic 
stress fields are given in Chapter 11.6.2. 
 
The explanations given above are valid only for 3D-models. For 2D-models, only one 
effective stress ratio K0 can be specified. Its default value is 0.4. During initialisation 
of the effective stresses in the model, deformation of the model was not allowed. This 
was required in order to preserve the initial model geometry. 
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8.3.4 Initial pore pressure and pore pressure development during gas 
depletion 

 
8.3.4.1 Reservoir and surrounding rock 
 
The initial pore pressure in the surrounding rock is hydrostatic and remains constant 
throughout gas depletion. The pore fluid density is assumed to be 1000kg/m3. With a 
gravity acceleration of 9.81m/s2 this results for instance in a pore pressure of 28.5 
MPa at a depth of -2900m. At the start of depletion, the reservoir is per default 
slightly overpressured with an initial pore pressure of 35.0 MPa, in accordance to the 
initial average pore pressures of 34.7 MPa in the Groningen gas field (Mobach & 
Gussinklo 1994) and 34.5 MPa in the Annerveen gas field (Veenhof 1996), see 
Chapter 7.7. A theoretical vertical pressure profile through a 150m thick 
overpressured reservoir with its top at a depth of -2900m is given in Figure 8.10. 
Calculations with a hydrostatic initial pore pressure in the reservoir are performed as 
well. 
 
Gas depletion is modelled by decreasing the initial reservoir pore pressure to 0 MPa in 
several static depletion steps. In the case of a reservoir with a hydrostatic initial pore 
pressure, the pore pressure is depleted linearly in ten static depletion steps. Note that 
since the hydrostatic pressure increases with depth, the depletion at the bottom of the 
reservoir is in this case somewhat higher than at the top of the reservoir. For instance 
the initial hydrostatic pore pressure at the top and bottom of a 150 m thick reservoir 
with its top at a depth of -2900 m is 28.5 and 29.9 MPa, respectively (see Figure 
8.10). Gas depletion to 0 MPa in ten equal depletion steps results in a pore pressure 
decrease of 2.85 MPa per depletion step at the top of the reservoir and 2.99 MPa at the 
bottom of the reservoir. 
 
In the case that the reservoir is initially overpressured (35.0 MPa initial pore pressure 
in the whole reservoir, see Figure 8.10), the reservoir is depleted to 0 MPa in eleven 
static depletion steps. The first ten steps are equal to the case of a hydrostatic initial 
pore pressure as described in the previous paragraph. For the example as shown in 
Figure 8.10 this would mean for the top and the bottom of the reservoir ten depletion 
steps each of 2.85 MPa and 2.99 MPa, respectively. The remaining pore pressure, 
marked by the shaded area in Figure 8.10, is then depleted in a final eleventh step. 
This is done in order to keep the loading equal for both cases (hydrostatic and 
overpressured initial pore pressure). Stress paths and fault slip after these ten 
depletion steps are then comparable. The eleventh depletion step in case of  an 
initially overpressured reservoir is performed in order to study the effect of a 
depletion to 0 MPa. 
 
No fluid flow is modelled. The pressure drop applies equally to the whole reservoir 
part which is depleted. No gas/water contact is modelled. Initial pore pressure and 
depletion scenario are always indicated in the respective chapters on calculation 
results. 
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Figure 8.10. Modelled default pore pressure profile through a 150m thick reservoir 

with a top reservoir depth of -2900m. The reservoir is per default 
initially overpressured with a pore pressure of 35.0 MPa throughout 
the whole reservoir. The pore pressure in the surrounding rock is 
hydrostatic and increases with depth (assumed pore fluid density: 1000 
kg/m3; gravity acceleration: 9.81 m/s2). Some calculations are 
performed with a hydrostatic initial reservoir pore pressure. 

 
 
 
8.3.4.2 Fault plane 
 
As is the case for the rock volumes in the models, an initial pore pressure and pore 
pressure development can be defined for the fault plane. A pore pressure in the fault 
directly affects the normal effective stress acting on the fault. A higher pore pressure 
means a lower effective normal stress and, since the shear stress remains unaffected, 
thus a state of stress closer to the failure criterion. Assumptions on the initial pore 
pressure in the interface elements and its depletion scenario should therefore be taken 
with great care. 
 
The fault plane in the model can be subdivided in three different regions, as described 
before in Chapter 8.3.2.1 in relation to the fault shear and normal stiffness (Figure 
8.9): 
- region A, where the fault is bounded on both sides by reservoir rock; 
- region B, where the fault plane is bounded on one side by reservoir rock and on 

the opposite side by surrounding rock; 
- region C, where the fault plane is bounded on both sides by surrounding rock. 
 
It is assumed that over geological times faults in the subsurface basically incorporate 
the same pore pressure as the neighbouring rock formation. The initial pore pressure 
in fault region C is therefore chosen to be hydrostatic, in accordance to the initial pore 
pressure in the surrounding rock. The initial pore pressure in fault region A is 
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hydrostatic or overpressured, depending whether the initial reservoir pore pressure is 
hydrostatic or overpressured. An initial overpressure of 35.0 MPa is default (Chapter 
8.3.4.1). A question arises for the initial pore pressure in fault region B for the case 
that the reservoir is initially overpressured whereas the initial pore pressure in the 
surrounding rock is hydrostatic: overpresured or hydrostatic? 
 
Another question arises from the pore pressure development during gas depletion. 
Faults within the Groningen and Annerveen gas fields are considered to be non-
sealing, meaning that most of the gas fields is well drained and that most of the 
numerous faults which are mapped do not form transmissibility barriers (see Chapter 
7.7). The pore pressure development during gas depletion in fault region A is 
therefore specified as reservoir-dependent pore pressure development: fault region A 
is modelled as depleting with the same amount as the reservoir rock. The pore 
pressure in the surrounding rock and hence in fault region C remains at its initial value 
during gas depletion. Meanwhile fault region B is bounded on one side by producing 
reservoir rock and on the opposite side by non-producing surrounding rock. the 
question is if the pore pressure in fault region B remains constant at its initial value 
during gas depletion or if it decreases according to the (neighbouring) reservoir 
depletion? 
 
Since the fault plane has a limited thickness (0 m in the calculations) and the complete 
reservoir depletion reflects a time of approximately 50 years, the fault is regarded as a 
drained structure. This has been considered by applying the same initial pore pressure 
and the same pore pressure depletion to fault region B as to the reservoir. In a realistic 
setting, a pore pressure gradient would very likely develop. The interface elements in 
the software require a homogeneous pore pressure for each element. A pore pressure 
gradient cannot be specified. The above assumptions are in accordance with Van 
Wees et al. (2001), who specified the pore pressure along the faults as reservoir-
dependent pore pressure. 
 
The effect of ‘aquifer depletion’, whereby the pressure in a small associated aquifer 
will decrease gradually with the pressure in a large gas bearing reservoir, as is the 
case in the Groningen gas field (Doornhof 1992), is not modelled. The pore pressure 
in the rock formations surrounding the reservoir are assumed to be initially 
hydrostatic and to remain constant during depletion of the gas reservoir. 
 
 
 
8.3.4.3 Evaluation of the assumed initial pore pressure and pore pressure 

depletion scenario in fault region B of the fault plane 
 
In order to check the validity of the assumptions made in Chapter 8.3.4.2, five 
different pore pressure scenarios are studied (Table 8.5). 3D-model ‘throw_var’ is 
used for the calculations with default rock properties and initial reservoir pore 
pressure of 35.0 MPa as given by Table 8.6, except for the fault dip angle (60o), the 
iteration method (Constant Stiffness in depletion phase) and the pore pressure 
depletion scenario (depletion of the overpressured reservoir in ten equal steps each of 
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3.5 MPa instead of eleven steps). Figure 8.11 shows for each scenario the stress path 
in observation point P (see Figure 8.9). For a description of the quantification methods 
used in the following explanations see Chapter 9. 
 
Scenario 1 is calculated in order to investigate whether the definition of a pore 
pressure in the fault can be reasonably avoided. The stress path is located very far to 
the right due to a high effective normal stress. Relative shear displacements are 
restricted to a relatively small zone around point S. It can be concluded, that for 
reasonable calculation results in order to study the effects of different parameters on 
fault reactivation, a pore pressure has to be applied in the interface elements. 
 
The stress paths belonging to depletion scenarios 3, 4 and 5 are for no, half and full 
depletion of fault zone B, respectively. The initial pore pressure for these scenarios is 
hydrostatic. No depletion of the fault leads to decreasing normal effective stresses 
(Figure 8.11, scenario 3). Initially, shear stresses increase but as soon as the stress 
path hits the yield line they are forced to decrease. In some interface elements the 
normal effective stress reaches zero. 
 
The difference between full and half depletion is basically reflected in a difference in 
stress path gradient. The slower depletion in fault region B for scenario 4 leads to 
higher pore pressures and therefore lower effective normal stresses in fault region B. 
The slower effective normal stress increase in scenario 4 leads to a steeper stress path 
and more fault slip than in scenario 5. 
 
The influence of initial pore pressure in fault region B is given by a comparison of 
scenarios 2 and 5, for a depletion of fault region B in accordance to the reservoir 
depletion. The basic difference is the initial state of stress. A higher initial pore 
pressure in fault region B results in a state of stress in this region closer to yielding 
before the start of gas depletion. The full depletion makes that the stress path 
gradients are not as steep as for instance for scenario 4. It avoids the development of 
unrealistically large amounts of fault slip. 
 
Fault slip in observation point P on the fault plane (see Figure 8.9 for location) is 
plotted in Figure 8.12 for each pore pressure scenario. No pore pressure in the fault 
(scenario 1) results in only little fault slip due to the high effective normal stress. No 
depletion of fault region B (scenario 3) leads to an overestimation of the calculated 
fault slip in fault region B (Figure 8.12b). 
 
Scenario 2 is chosen for further calculations. This is based on the assumption that the 
fault can be regarded as a drained structure (see Chapter 7.7). 
 
 
 
 
 



 110 

Table 8.5. Fault pore pressure scenarios. Region C always incorporates a 
hydrostatic pore pressure except for scenario 1 and is never depleted. 

Scenario Fault region A Fault region B 
 Initial pressure Depletion Initial pressure Depletion 
1 
2 
3 
4 
5 

No pressure 
Overpressured 
Overpressured 
Overpressured 
Overpressured 

- 
Full 
Full 
Full 
Full 

No pressure 
Overpressured 
Hydrostatic 
Hydrostatic 
Hydrostatic 

- 
Full 
No 
Half 
Full 
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Figure 8.11. Stress paths in observation point P in model ‘throw_var’ (see Figure 

8.9 for location) for different fault pore pressure scenarios (Table 8.5). 
Arrows indicate the initial stress state and development direction of the 
stress paths. Calculation with default values as given by Table 8.6, 
Chapter 8.3.6, except for the fault dip angle (60o), the iteration method 
(Constant Stiffness in depletion phase) and the pore pressure depletion 
scenario (depletion of the overpressured reservoir in ten equal steps 
each of 3.5 MPa instead of eleven steps). 
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Figure 8.12. Calculated fault slip on the fault plane in model ‘throw_var’ along (a) 

observation line BB’ and (b) observation line DD’ (see Figure 8.9 for 
location), for different fault pore pressure scenarios (Table 8.5). 
Calculation with default values as given by Table 8.6, Chapter 8.3.6, 
except for the fault dip angle (60o), the iteration method (Constant 
Stiffness in depletion phase) and the pore pressure depletion scenario 
(depletion of the overpressured reservoir in ten equal steps each of 3.5 
MPa instead of eleven steps). 

 
 
 
8.3.5 Incremental-iterative solution procedure 
 
Prior to gas depletion, the model is brought into an initial state of equilibrium to the 
initially applied gravity, tectonic stress field and pore pressures. The initial loading is 
applied to the models in two equal steps or increments. This is the consolidation 
phase. Gas depletion is modelled by reducing the pore pressure in the reservoir and 
the adjacent and intersecting parts of the fault (fault regions A and B) in 10 static 
steps or increments to zero. This is the depletion phase. 
 
Prior to a nonlinear analysis, a linear static analysis must be performed in DIANA. 
The stress field, calculated in the preliminary linear static analysis, is then applied as 
initial stress field for the nonlinear analysis. In general the internal forces following 
from initial stresses from the linear static analysis are not in equilibrium with the 
initial external load at the start of the nonlinear analysis. This is because the material 
properties have been extended with nonlinear values and the horizontal effective 
stresses are adjusted according to the effective stress ratios specified (see Chapter 
8.3.3). The initial stresses are adapted incrementally in order to reach an equilibrium 
state in the nonlinear analysis (consolidation phase). During initialisation of the 
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effective stresses in the model, deformation of the model was not allowed. This was 
required in order to preserve the initial model geometry. Superposition of 
displacements and strains during the establishment of the initial equilibrium in the 
consolidation phase are suppressed for the following depletion phase. Only the stress 
state is affected. 
 
The initial load of the consolidation phase is applied to the model in two equal 
increments. This is done since DIANA often indicated plastic fault slip on almost the 
entire fault plane during iterating in the first load increment, also when the defined 
initial stress field should result solely in elastic deformation of fault and rock. A 
relative out-of-balance force (see Chapter 5.2.3 for definition) in the range of 10-5 was 
indicated. For calculations where the initial stress field should not imply plastic 
deformation, such plastic fault slip was absent in the second increment and the 
relative out-of-balance force dropped to values in the range of 10-16. The iterative 
procedure applied to the consolidation phase is the Constant Stiffness method (see 
Chapter 5.2.1). 
 
A calculation series has been performed in order to distinguish the number of 
iterations which should be performed for each of the two increments of the 
consolidation phase. For a description of the quantification methods used in the 
following explanations see Chapter 9. Figure 8.13a shows the calculated maximum 
fault slip as a result of gas depletion along the fault plane as a function of the number 
of iterations during the consolidation phase for the 2D model ‘throw_var’, with 
default geomechanical properties as listed in Table 8.6 (Chapter 8.3.6), except for the 
pore pressure depletion scenario (depletion of the overpressured reservoir in ten equal 
steps each of 3.5 MPa instead of eleven steps). The graph shows a decreasing trend 
with increasing number of iterations. Apparently some fault slip occurs during this 
consolidation, which adds up to the fault slip calculated in the gas depletion phase if 
the consolidation is not long enough. This means that the longer the consolidation 
phase, the less is the calculated fault slip during gas depletion. A high number of 
iterations means a long calculation time. It is therefore decided to keep the number of 
iterations at five per increment, making a total of ten iterations for the whole 
consolidation phase. 
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Figure 8.13. Influence of the number of iterations per increment on the calculated 

maximum fault slip for (a) consolidation phase and (b) depletion 
phase. Model: throw_var; calculations with default values as given by 
Table 8.6, Chapter 8.3.6. The number of iterations in the depletion 
phase for the calculations of figure (a) is 20 per increment. The 
number of iterations in the consolidation phase for the calculations of 
figure (b) is 5 per increment. 

 
 
Gas depletion is modelled by reducing the pore pressure in the reservoir and the 
adjacent and intersecting parts of the fault (fault regions A and B) in 10 static steps or 
increments to zero. The iterative procedure for the depletion phase was the Modified 
Newton-Raphson method (see Chapter 5.2.1). In the same way as for the 
consolidation phase, a calculation series has been performed in order to distinguish 
how many iterations should be performed per increment of the depletion phase. The 
results are plotted in Figure 8.13b. The model, geomechanical properties, loading- and 
boundary conditions are the same as for the calculation series to distinguish the 
number of iterations in the consolidation phase. Two regions can be distinguished in 
the graph: a region where the calculated fault slip is very high for six iterations or less 
and a region with as good as constant RSD-values for seven iterations and more. As 
stated before, the number of iterations should be low in order to save calculation time. 
In view of the very high values for few iterations it is decided to perform twenty 
iterations per load increment in the depletion phase, making a total of 200 iterations 
for the whole phase. 
 
A common feature, used in both consolidation and depletion phase, is DIANA’s Line 
Search algorithm (see Chapter 5.2.2). For the calculation procedure it is chosen for a 
fixed number of iterations per load increment for all calculations rather than iterate 
until the relative out-of-balance force reaches a predefined convergence criterion. This 
is done by setting as convergence criterion a relative out-of-balance force of 1.0.10-20 
and continuing with the next load increment after the specified maximum number of 
iterations has been reached. It is checked for each calculation whether the relative out-
of-balance force is below a value of 1.0.10-2 after each increment. A value of 1.0.10-2 



 114 

means that the out-of-balance force is equal to 1% of the applied load increment. It is 
often used as default value. The development of relative out-of-balance force during a 
calculation is presented in Figure 8.14. The development is acceptable. The relative 
out-of-balance force is below a value of 1.0.10-2 at the end of each increment. The 
development of the relative out-of-balance force as presented in Figure 8.14 is 
representative for all other calculations. 
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Figure 8.14. Development of relative out-of-balance force during the calculation of 

model ‘throw_var’ with default properties (Table 8.6). 
 
 
 
 
8.3.6 Summary: overview geomechanical properties and loading 

conditions 
 
An overview of the geomechanical properties and loading conditions used for most of 
the calculations in this dissertation is given in Table 8.6. Two different scenarios are 
listed: 

- surrounding rock properties equal to the reservoir rock properties (Esur = Eres = 
13.0 GPa; νsur = νres = 0.2; φsur = φres = 30o) and initial hydrostatic reservoir 
pore pressure; 

- default surrounding rock properties (Esur = 18.5 GPa; νsur = 0.25; φsur = 25o) 
and initially slightly overpressured reservoir (initial pore pressure 35.0 MPa). 

 
Values in calculations differing from default are explicitly indicated in the respective 
chapters. 
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Table 8.6. Geomechanical properties and loading conditions for two different 
scenarios used for most of the calculations in this dissertation. 

General properties 
 
Eres 
νres 
cres = csur 
φres 
ψres = ψsur 

sur
bulk

res
bulk ρ=ρ
sur
inip  

∆psur 

13.0 GPa 
0.20 
5.0 MPa 
30o 
10o 

2400 kg/m3 
hydrostatic 
0 Pa 

β 
h 
cf 
φf 
ψf 
K0H 
K0h 
λ 
ρpore fluid 

70o 
0 m 
0 Pa 
28o 
0o 
0.4 
0.4 
0o 
1000 kg/m3 

Iteration method     
- consol. phase 
 
- depletion phase 
 
No. of iterations 
per increment 
- consol. phase 
- depletion phase 

 
Constant 
Stiffness 
Mod. Newton 
Raphson 
 
 
5 
20 

surrounding rock properties equal to the reservoir rock properties and 
initial hydrostatic reservoir pore pressure* 
Esur 
νsur 
φsur 

res
inip  

∆pres 
fault
inip  (region A, B, C) 

∆pfault (region A, B) 
∆pfault (region C) 

13.0 GPa 
0.20 
30o 
hydrostatic 
-hydrostatic 
hydrostatic 
-hydrostatic 
0 Pa 

Dn (fault region A, B, C) 
Ds (fault region A, B, C) 
No. of load increments 
   - consolidation phase 
   - depletion phase 

14.4 GPa/m 
5.4 GPa/m 
 
2 
10 

default rock properties and initial reservoir pore pressure of 35.0 MPa 
 
Esur 
νsur 
φsur 

res
inip  

∆pres 
fault
inip  (region A, B) 
fault
inip  (region C) 

∆pfault (region A, B) 
∆pfault (region C) 

18.5 GPa 
0.25 
25o 
35.0 MPa 
-35.0 MPa 
35.0 MPa 
hydrostatic 
-35.0 MPa 
0 Pa 

Dn (fault)                        
   - region A                        

- region B                         
- region C 

Ds (fault)                         
   - region A                        

- region B                         
- region C 

No. of load increments 
   - consolidation phase 
   - depletion phase 

 
14.4 GPa/m 
18.1 GPa/m 
22.2 GPa/m 
 
5.4 GPa/m 
6.4 GPa/m 
7.4 GPa/m 
 
2 
11 

* Depth of centre of footwall reservoir compartment is -2975 m, meaning an initial 
pore pressure of 29.75 MPa. The superscripts res, sur and f refer to reservoir rock, 
surrounding rock and fault, respectively. 
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8.3.7 A short note on fault slip and fault normal- and shear stiffness 
 
Different values for Dn and Ds can lead to different amounts of fault slip initiated 
during gas depletion. Figure 8.15 shows the maximum relative shear displacement on 
the fault plane in dependence of shear and normal stiffness. Note that in this 
calculation series the shear and normal stiffness are equal. Some rock and fault 
property values differ for this calculation series from the default values: the fault 
friction and dilatancy angle are 22o and 10o, respectively, and the surrounding rock 
has properties which are equal to the default reservoir rock properties. Furthermore, a 
Constant Stiffness iteration method is applied to both consolidation and depletion 
phase, with four iterations per load increment for both phases. The values of other 
strength and load parameters are default as indicated in Table 8.6. The location of 
RSDmax is in all calculations equal and very close to the point where the two reservoir 
compartments start to be geometrically separated from each other (point S, see 
Figures 8.2 and 8.9). 
 
There exists a strong dependence of the amount of relative shear displacement (see 
Chapter 9.1.1 for definition) on the chosen values of Ds and Dn. Values of RSD 
increase for decreasing values of Ds and Dn. Especially for lower stiffness values, 
their influence becomes very significant. Extreme high stiffness values mean glued 
interfaces, i.e. interfaces on which any slip or separation is prevented. RSD-values are 
indeed as good as zero for Ds = Dn = 1000 GPa/m. 
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Figure 8.15. Maximum relative shear displacement on the fault plane as a function 

of shear- and normal stiffness of the interface elements. 
 
 
 
8.3.8 Evaluation of model size 
 
At the four lateral sides of the model, horizontal translations normal to the respective 
sides are constrained. As described before, the total model size is 
12,000x12,000x5,000m, meaning that the lateral boundaries are located at a distance 
of 6,000m from the centre of the reservoir. It is investigated whether this distance is 
appropriate and how it affects the calculated fault slip and stress development in and 
around the reservoir. 
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Eight 2-dimensional plane strain calculations have been performed based on the 
model ‘2D_throw_½D’, each with identical reservoir and fault geometry and 
properties but with different model sizes: 8,000, 10,000, 12,000, 14,000, 17,000, 
20,000, 30,000 and 100,000m. An overview of the model geometries is given in 
Figure 8.16. The model with a size of 100,000m is considered to be a reference model 
with infinitely far model boundaries. Calculation results of the other seven models are 
compared to those of this reference model. 
 
The mesh consists of the lower-order DIANA-element types T6EPS (plane strain, 3-
noded triangular) and L8IF (line interface, 2+2 nodes). Lower-order elements are 
chosen since the 3D models consist of lower-order pyramidal elements with 
corresponding interface elements. Furthermore, eventual deviations in the calculation 
results due to different total model sizes will be most pronounced for lower-order 
elements. Rock properties and loading conditions are default as listed in Table 8.6. 
 
The mesh is identical for all models up to a distance of 2,300m from the centre of the 
reservoir. Gas depletion-induced vertical and horizontal effective stress changes are 
compared along two observation lines as indicated in Figure 8.16. This comparison is 
done by calculating the deviation of the stress changes in each model from the stress 
changes in the reference model of size 100,000m according to: 
 

mrefdev σ′∆−σ′∆=σ′∆ . (8.5) 
 
In here, devσ′∆  is the effective stress change deviation at a certain location on the 
observation lines, refσ′∆  is the calculated effective stress change at that location in the 
reference model (size 100,000m) and mσ′∆  is the calculated effective stress change at 
that location in one of the other seven models, whereby indices m can take the values 
8,000, 10,000, 12,000, 14,000, 17,000, 20,000 or 30,000. Gas depletion-induced fault 
slip is compared on analogous way. An overview of the modelling results is given in 
Figures 8.17 and 8.18 and Table 8.7. 
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Figure 8.16. Overview of the model geometries used for the boundary distance 

study, based on the 2-dimensional plane strain model ‘2D_throw_½D’. 
Gas depletion-induced calculated effective stress changes along the 
two observation lines and fault slip along the fault are compared to 
those of a reference model of 100,000m width. 

 
 
Deviations in the calculated effective stress changes are relatively small in all models. 
Largest deviations occur understandable in the smallest models. The largest deviations 
in the 8000m-wide models are still relatively low: horizontal and vertical effective 
stress changes in this model deviate at most with 0.22 MPa and 0.25 MPa from the 
reference model, respectively. For the 12,000m-wide model these values are 0.15 
MPa and 0.19 MPa, respectively. An effective stress change deviation of 0.25 MPa is 
0.71% of the simulated reservoir pore pressure reduction of 35.0 MPa. 
 
The same can be said for the deviations in calculated relative shear displacement (see 
Chapter 9.1.1 for definition): deviations are relatively small in all models. The 
calculated maximum fault slip in the 8000m-wide model (12.9 cm) is 0.1 cm larger 
than in the 100,000m-wide reference model (12.8 cm). This is a deviation of 0.78% 
from the reference value. For the 12,000m-wide model, the maximum fault slip is 
0.09 cm larger. 
 
Calculated deviations in fault slip and effective stress changes are relatively low for 
all models. They show the applicability of the chosen model size of 12,000m width. 
Significant improvement is not accomplished by a larger model size. 
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Figure 8.17. Deviations in the calculated (a) horizontal effective stress changes and 

(b) vertical effective stress changes along the two observation lines 
(Figure 8.16) for different model sizes. Reference model size is 100,000 
m. 

 
 
Table 8.7. Maximum deviation in horizontal and vertical effective stress changes 

and in relative shear displacement along the two observation lines 
(Figure 8.16) for different model sizes. Reference model size is 100,000 
m. 

Model size [m] 
max

dev
x || σ∆ ′  [MPa] || dev

zσ∆ ′  [MPa] max
dev |RSD|  [cm] 

8000 
10,000 
12,000 
14,000 
17,000 
20,000 
30,000 

0.218 
0.175 
0.150 
0.130 
0.106 
0.088 
0.051 

0.249 
0.225 
0.191 
0.185 
0.161 
0.135 
0.072 

0.11 
0.10 
0.09 
0.09 
0.08 
0.07 
0.03 
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Figure 8.18. Deviations in the calculated relative shear displacements along the 

fault (Figure 8.16) for different model sizes. Reference model size is 
100,000 m. 

 
 
 
8.3.9 Comparison of 2D- and 3D-models 
 
In order to check the validity of the 3D models, which make use of lower order 
elements instead of higher order elements, 3D-calculations of model 
‘throw_const_½D’ with lower order elements (TE12L and T18IF) are compared to 
calculation results of the 2D model ‘throw_½D’ for lower order elements (T6EPS and 
L8IF) and higher order elements (CT12E and CL12I). Calculations are performed for 
two conditions (see Tables 8.6 and 8.8): 

- surrounding rock properties equal to the reservoir rock properties (Esur = Eres = 
13.0GPa; νsur = νres = 0.2; φsur = φres = 30o) and initial hydrostatic reservoir pore 
pressure; 

- default surrounding rock properties (Esur = 18.5GPa; νsur = 0.25; φsur = 25o) and 
initial reservoir pore pressure (35.0 MPa). 

 
For a description of the quantification methods used in the following explanations see 
Chapter 9. First, stress paths calculated for respective locations on the fault are 
compared for the three different models for the case that the reservoir and surrounding 
rock properties are equal (Figure 8.19). For location of observation points 1 – 13 on 
the fault see Figure 8.19. In the 3D-model, the observation points are located along 
observation line EE’, which runs down dip, parallel to the fault plane through the 
centre of the reservoir (see Figure 11.1, Chapter 11.1). 
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Figure 8.19. Calculated stress paths for different observation points for model 

‘2D_throw_½D’ with (a) lower order elements (T6EPS and L8IF) and 
(b) higher order elements (CT12E and CL12I). For further description 
see Figure 8.19 (c). 
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Figure 8.19. (c) Calculated stress paths for different observation points for the 3D-

model ‘throw_const_½D’ with lower order elements (TE12L and 
T18IF). 
Surrounding and reservoir rock properties are equal and the initial 
reservoir pore pressure is hydrostatic (see Table 8.6). The initial state 
of stress is similar for all stress paths and is indicated by an arrow. 
The end of the stress paths is marked by the respective observation 
point letter. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 

 
Two main differences can be observed between the calculated stress paths of the 
different models. Firstly, stress paths in observation point D are in the 3D-model and 
the 2D-model with lower order elements affected by the stress development in point 
E: the stress path for point D becomes steeper after the stress path in point E has 
reached the failure line. This is not the case for the 2D-model with higher order 
elements. As a consequence, calculated normal fault slip is for the 3D-model with a 
maximum value of 6.7 cm slightly larger than in the higher order 2D-model (6.1 cm), 
see Figure 8.20a and Table 8.8. The stress path gradient in the first depletion steps in 
observation points F and G is for the 3D-model somewhat larger than in the higher 
order 2D-model, suggesting that the stress development is calculated as being more 
critical in the 3D-model. Secondly, the stress path in observation point B develops in 
the 3D-model with increasing effective normal stress, whereas nσ′  remains almost 
equal (slightly decreasing) in both of the 2D-models. Because of this, the stress path 
in point B does not reach the failure line for the 3D-model, but reaches failure in the 
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higher order 2D-model just before the complete depletion of the reservoir, during the 
last (10th) depletion step. Calculated (elastic) reverse fault slip is with -0.4 and -0.5 cm 
almost equal for the 3D-model and the 2D-model with higher order elements. The 2D-
model with lower order elements seems to overestimate the shear stress development 
in observation point B: failure is reached during the 7th depletion step. As a 
consequence, a larger reverse fault slip of -1.0 cm is calculated, consisting of an 
elastic and plastic component. 
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Figure 8.20. Calculated RSD-values along the fault for three different models for (a) 

equal reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure and for (b) surrounding rock properties being 
stiffer as reservoir rock properties and initial reservoir overpressure of 
35.0 MPa (see Table 8.6). Pore pressure reduction is for all cases 
according to an initial hydrostatic reservoir pore pressure (10 
depletion steps). 

 
Similar conditions as described above apply for calculations with surrounding rock 
properties stiffer than the reservoir rock, see Table 8.8 and Figure 8.20. 
 
Because of the symmetry of the 3D-model ‘throw_const_½D’, the calculated fault slip 
should be largely the same along a horizontal line in the strike direction of the fault 
plane. It is checked if this is the case. Calculated RSD-values from the 3D-models are 
graphically plotted along a horizontal observation line FF’ in the strike direction of 
the fault plane (Figure 8.21). All graphs show a similar pattern with a peak value at 
the reservoir centre and a local minimum at a distance of 400 m. The difference 
between these local extremes is with 1.1 cm at it largest for the scenario with stiff 
surrounding rock, overpressured reservoir and complete depletion. The RSD-graphs 
along observation line EE’, such as shown in Figure 11.2, thus represent a maximum 
value. The variation is due to an asymmetrical meshing due to the use of the ‘general 
body’-option in DIANA and the use of lower order, constant strain/stress elements. 
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Table 8.8. Comparison of calculated RSD-values in 2D- and 3D-models for three 
different scenarios. 

Scenario description*** RSDmax [cm] RSDmin [cm] 
Surroun-
ding rock 
properties* 

res
inip ** ∆pres 2D 

l.o. 
2D 
h.o. 

3D 
l.o. 

2D 
l.o. 

2D 
h.o. 

3D 
l.o. 

same 
stiff 
stiff 

hydrostatic 
overpressure 
overpressure 

- hydrostatic 
- hydrostatic 
- 35.0 MPa 

6.3 
10.9 
13.4 

6.1 
10.2 
12.0 

6.7 
10.3 
12.9 

-1.0 
-1.1 
-1.6 

-0.5 
-0.8 
-0.9 

-0.4 
-0.7 
-1.1 

l.o. = lower order; h.o. = higher order 
* relative to reservoir rock properties; 
 ‘same’: Esur = Eres = 13.0 GPa, νsur = νres = 0.2 and φsur = φres = 30o 
 ‘stiff’: Esur = 18.5 GPa, νsur = 0.25 and φsur = 25o 
** ‘hydrostatic’: res

inip  is according to a hydrostatic pore pressure gradient with ρfluid 
= 1000 kg/m3 

 ‘overpressure’: res
inip  = 35.0 MPa 

*** Initial pore pressure and pore pressure development in fault regions A and B and 
fault normal- and shear stiffness change accordingly for the different scenarios. 
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Figure 8.21. Calculated RSD-values for 3D-model ‘throw_const_½D’ along 

observation line FF’ for different scenario’s. The scenario descriptions 
correspond to Table 8.8. Values indicate the maximum and minimum 
RSD-values in the central part of the graphs. The lower picture shows 
the position of line FF’. View direction is normal to the fault plane. 
Black lines are intersection lines of the two reservoir compartments 
with the fault plane. 
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9 QUANTIFICATION OF CALCULATION 
RESULTS 

 
 
 
This chapter describes the quantification methods used for the analysis and 
comparison of the calculation results. Most of the methods concern the stress 
development and the movements on the fault plane (Chapter 9.1). Chapter 9.2 deals 
with methods to quantify the proximity to failure and stress development in the 
(reservoir) rock volume. 
 
 
9.1 Fault plane 
 
Three quantitative methods are used to compare the calculation results on the fault 
plane: relative shear displacement (RSD), stress paths and mobilised shear capacity 
(MSC). MSC is also applied for rock volumes (MSC3D, Chapter 9.2.1). 
 
Relative shear displacement is used in this dissertation in order to express the amount 
of fault slip initiated by depletion of a reservoir. Stress paths are used to monitor the 
initial state of stress and stress development on the fault plane in terms of shear- and 
effective normal stress. They are especially useful for a detailed analysis of the state 
of stress throughout depletion at specified locations on the fault plane. Analyses 
dealing with a large number of stress paths can become rather complex and time 
consuming. Mobilised shear capacity provides a way to overcome the complexity of 
an analysis by means of stress paths. Mobilised shear capacity is a scalar quantity 
which expresses the criticalness of a state of stress in terms of proximity to a given 
failure criterion. It is especially useful for a quick analysis of the criticalness of a state 
of stress on a fault plane (MSC) or in a rock volume (MSC3D), but does not provide 
the details as would be obtained by an analysis by means of stress paths. 
 
 
9.1.1 Relative shear displacement (RSD) 
 
Relative shear displacement or slip on a fault plane is defined as the differential 
movement in shear direction of two corresponding nodes on the opposite sides of an 
interface element. 
 
In this thesis we are interested in the amount of fault slip which develops on a gas 
reservoir intersecting fault plane during gas depletion. The basic geometry of such a 
fault plane is shown in Figure 9.1a. The fault plane consists of the two sides f1 and f2. 
Gas depletion can result in differential movement of the two sides f1 and f2, so that 
corresponding nodes on either sides of the fault might experience displacements 
which are different in direction and/or magnitude. Subtracting the displacement vector 
of a node at plane f2 from the displacement vector of the corresponding node at plane 
f1 results in a relative displacement vector. Such a relative displacement vector 
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consists of three components: a normal component n and two tangential components t 
and s (Figure 9.1b). t and s are defined as being the amount of relative displacement in 
the down-dip direction and the strike direction of the fault plane, respectively. For the 
given co-ordinate system in the 3D FE-models of this thesis (see Figure 9.1b and 
Chapter 8), t, s and n can be calculated according to: 
 

)90cos(zcosxt o β−∆−β∆= , (9.1) 
ys ∆= , (9.2) 

β∆−β−∆= cosz)90cos(xn o , (9.3) 
 
with ∆x, ∆y and ∆z being the relative displacements in the global x,y,z-co-ordinate 
system: 
 

2f1f )z,y,x()z,y,x()z,y,x( −=∆ . (9.4) 
 
Note that the component t is defined such, that normal fault slip, whereby the hanging 
wall moves downwards relative to the footwall (Figure 9.1b), has a positive sign and 
reverse fault slip, whereby the hanging wall moves upwards relative to the footwall, 
has a negative sign. Positive and negative values for s indicate sinistral 
(anticlockwise) and dextral (clockwise) movements, respectively. 
 
The relative shear displacement RSD is the resultant of the two components t and s: 
 

22 ts
|t|

tRSD +=  when t ≠ 0, (9.5a) 

|s|RSD =  when t = 0. (9.5b) 
 
Note that the RSD-values are defined as having the same sign as component t. A 
positive RSD-value denotes normal fault slip, whereby the hanging wall moves 
downwards relative to the footwall with or without strike slip component. Pure strike 
slip is positive as well. A negative RSD-value denotes reverse fault slip, whereby the 
hanging wall moves upwards relative to the footwall, with or without strike-slip 
component. 
 
Eqs. (9.1) – (9.4) are only valid for the specific relation between the orientation of the 
fault plane and the co-ordinate system as given in Figure 9.1, whereby 0o < β < 90o. 
Other equations apply for other geometrical relations, but these can be derived fairly 
easy. 
 
Note that the interface elements deform elastically prior to failure according to their 
elastic stiffness properties defined by the normal- and shear stiffnesses Dn and Ds. The 
calculated fault slip as a result of gas depletion therefore contains an elastic and a 
plastic component. The plastic fault slip, representing a physical frictional sliding of 
the two fault surfaces, is responsible for eventual seismicity. In order to give an 
estimate of the maximum dynamic displacement, the elastic component has actually 
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to be subtracted from the total calculated amount of fault slip. However, at the time of 
writing this dissertation, it was technically not possible to distinguish between the 
elastic and plastic displacement components. Calculated RSD-values as presented in 
this dissertation consist therefore of both an elastic and plastic fault slip component. 
 
The maximum amount of elastic fault slip in a certain location on the fault plane 
occurs when the stress path at that location just reaches the failure criterion. Some 
calculations, where some states of stress on the fault plane were very close to the 
failure criterion, indicated that the amount of elastic fault slip was in the range of 0.4 
cm. Only relative shear displacements larger than 0.4 cm are therefore considered 
significant in this dissertation. 
 
RSD-contour plots can be made in DIANA’s post-processor iDIANA. In iDIANA, 
calculations on the attributes of result data sets stored in the database can be 
performed and processed to a new attribute using the option ‘results calculate 
expression…’. However, this option requires the use of results of the same node or 
integration point. Results of different nodes or integration points of the same attribute 
cannot be combined. However, RSD-contour plots require this combination. A way to 
overcome this difficulty is to save the nodal displacements of the interface elements in 
a iDIANA ASCII file (fvi-file). Via the use of a macro in Excel, the displacement 
values of corresponding nodes can be subtracted and processed in order to obtain the 
desired results. These can then be inserted in the fvi-file, which can be imported in 
iDIANA to create the binary file for making contour plots. Although the procedure is 
fairly easy, every new model geometry requires the creation of a new macro. This can 
be a time-consuming process for large models. Furthermore, the importation of the 
fvi-file requires a special format of this file, which must be maintained. 
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z y
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s
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Reverse fault slip
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Dextral fault slip
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Figure 9.1. (a) Basic geometry of the fault plane, bounded by the two surfaces f1 

(hanging wall side) and f2 (footwall side). (b) Definition of the relative 
displacement vector components n, t and s for the normal, down-dip 
and strike direction of the fault plane, respectively. Eqs. (9.1) – (9.4) 
are only valid for the given relation between the orientation of the fault 
plane and the co-ordinate system, whereby 0o < β < 90o.  
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9.1.2 Seismic moment (M0) 
 
RSD-values can be very different over the surface area of a fault plane. An example 
of this is shown in Figure 9.2. Calculated RSD-contours on the fault plane and RSD-
graphs for four different observation lines along the fault plane are plotted for model 
‘throw_var’(Chapter 8.1.1.2 and Figure 11.19, Chapter 11.4) with default properties 
and loading conditions (Table 8.6, Chapter 8.3.6). For instance, RSDmax along 
observation line CC’ is larger than along line BB’, but the sharp peak in the graph 
indicates that fault slip is restricted to a narrower area. 
 
For a good comparison of gas depletion induced fault slip in different calculations 
with different geometries, the calculated RSD-values should be integrated over the 
fault plane area in order to come to a single scalar quantity for each calculation. This 
gives rise to the introduction of the seismic moment M0. The seismic moment is 
defined by Aki (1966) as the product of the amount of fault slip (RSD), the area of the 
fault rupture (A) and the shear modulus of the rock formation through which the fault 
slip takes place (G), see Figure 9.3: 
 

M0
normal = G . A . RSD when RSD > 0, (9.6a) 

M0
reverse = G . A . RSD when RSD < 0. (9.6b) 

 

Gas depletion induced fault slip often leads to both normal and reverse fault slip 
(Figure 9.1) on the same fault plane. During the integration of the RSD-values over 
the fault plane, a dictinction has to be made between negative and positive RSD-
values in order to avoid an underestimation of the seismic moment. Integration solely 
over positive RSD-values leads to a positive seismic moment, M0

normal, representative 
for normal fault slip. Integration solely over negative RSD-values results in a negative 
seismic moment, M0

reverse, representative for reverse fault slip. 
 
Integration of RSD-values over the fault plane in the numerical models gives the total 
amount of fault slip produced by gas depletion times the surface area over which the 
fault slip occurs. The obtained value has then to be multiplied by the shear modulus of 
the neighbouring rock formations in order to arrive at the seismic moment as given by 
eqs. (9.6). This latter step is technically complicated in DIANA’s postprocessor 
iDIANA. iDIANA makes therefore use of the shear stiffness Ds of the respective 
interface elements, which are representative for the shear modulus of the adjacent 
rock formations as long as they are determined according to the equation (see Chapter 
8.3.2.1): 
 

h)1(2
EDs ν+

= , (9.7) 

 
where E and ν are the Young’s modulus and Poisson’s ratio of the adjacent rock 
formations, respectively, and h is the fault thickness. For a fault thickness smaller than 
1 m, a value of 1 m can be used for h in order to avoid extremely large stiffness 
values. Extremely large stiffness values can in the finite element calculations lead to 
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‘glued’ interfaces, i.e. interfaces on which any slip or separation is prevented. It is the 
user’s responsibility to make sure that the input of the fault shear stiffness in the 
DIANA-calculations is correct and based on eq. (9.7) for a proper determination of 
the seismic moment. The input of the fault shear stiffness in the FE-models of this 
dissertation is described in Chapter 8.3.2.1. It is also dealt with the case that two 
different rock formations with distinct rock properties occur on either sides of the 
fault plane. E and ν have than to be averaged. The average values are then inserted 
into eq. (9.7). 
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Figure 9.2. Relative shear displacements (RSD) on the fault plane for model 

‘throw_var’ with default properties and loading conditions and full 
pore pressure reduction (11 depletion steps, see Table 8.6, Chapter 
8.3.6). The maximum RSD-value is 16.7 cm, located in between 
observation lines CC’ and DD’, close to line DD’. View direction of 
the contour plot is normal to the fault plane. Intersection lines of the 
two reservoir compartments with the fault plane are shown. View 
direction of the cross sections is in strike direction of the fault. Pointed 
areas denote the reservoir compartments. See Appendix 2 for this 
figure in colour. 

 
Note that the calculated seismic moments in the numerical models as described above 
represent an upper limit, a maximum seismic potential for the modelled fault(s) under 
the applied conditions, since it is assumed that 100% of the gas depletion induced 
fault slip is translated to those seismic moments. The slip, calculated in the model, 
may in reality occur either aseismically, or as a seismic event or as a combination of 
the two (Chapter 4). Aseismic fault slip does not contribute to a seismic moment. Due 
to the limitations of the method followed, i.e. elastoplastic modelling, it is impossible 
to establish if asperities will form during depletion and whether built-up stresses will 
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be released seismically or aseismically. Even if the seismic moment would be known, 
this seismic energy could be released in one relatively large seismic event or in a 
series of smaller events. It is therefore not recommendable to translate the calculated 
seismic moments to magnitudes on Richter scale. The calculations presented in this 
dissertation can never be a forecast of the magnitude of the events which are going to 
occur when a reservoir with the type of modelled setting is produced. The calculated 
seismic moments are just parameters, which express the criticalness of a fault for 
reactivation under certain circumstances, and which can be used in subsequent 
research for a probabilistic approach of the problem of induced seismicity. 
 

x

z y β

RSD

A

 
Figure 9.3. Parameters for the definition of the seismic moment M0 after eq. (9.6). 
 
 
Because of the integration over the fault plane, the method to calculate the seismic 
moment as described above is only valid for 3-dimensional numerical models. The 
option in DIANA to calculate the seismic moment for 3-dimensional interface 
elements is at the time of writing under construction. For this thesis, a preliminary 
version is used to calculate the seismic moment. A new output option STRAIN 
DISSEI will be available. STRAIN DISSEI stands for the product of Ds and RSD on 
the fault plane. Integration of STRAIN DISSEI over the fault plane results in the 
seismic moment, whereby a distinction needs to be made between M0

normal and 
M0

reverse. This distinction is made in DIANA’s postprocessor iDIANA. 
 
 
9.1.3 Stress paths and stress path gradient 
 
Stress paths are a good way to study the initial state of stress, prior to gas depletion, 
and the stress development on the fault plane in detail. Stress paths in this dissertation 
describe the development of shear- and effective normal stress on the fault plane 
throughout depletion of the reservoir. Each stress path is valid for a certain location on 
the fault. Figure 9.4 shows examples of stress paths for different locations on line EE’ 
on the fault plane of model ‘throw_const_½D’(Chapter 8.1.1.1 and Figure 11.19, 
Chapter 11.4) with surrounding rock properties equal to the reservoir rock properties 
and initial hydrostatic reservoir pore pressure (Table 8.6, Chapter 8.3.6). 
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Stress paths can be used to determine whether a state of stress on a fault plane 
converges to, runs parallel to or diverges from the failure line of the fault. When the 
absolute stress path gradient is larger than the gradient of the failure line, i.e. when 

n/ σ′∆τ∆  > tanφf, the stress path converges and the stress development is said to be 
critical. For absolute stress path gradients equal to or smaller than the gradient of the 
failure criterion ( n/ σ′∆τ∆  < tanφf), the stress path runs parallel to or diverges from 
the failure line, respectively. The stress development in these cases is said to be non-
critical. The stress path gradient can change during the gas depletion (Figure 9.4, 
stress paths 4 and 5). Stress paths which are non-critical in the first part of the 
depletion phase can become critical in a later stage of the depletion and vise versa. 
 
A stress path with a critical gradient does not necessarily need to lead to failure of the 
fault plane. The initial state of stress plays a major role in this matter as well. 
Consider the stress paths 2, 4 and 6 in Figure 9.4. The stress paths have an absolute 
gradient with is larger than the gradient of the failure line. Stress path 6 reaches 
failure already after 1 depletion step, whereas stress paths 2 and 4 do not reach failure 
for the given conditions. Complications on stress paths and research results of a 
parameter study are described by Glab (2001). 
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Figure 9.4. Examples of stress paths, calculated for different observation points 

along observation line EE’ in model ‘throw_const_½D’ (see Figure 
11.19, Chapter 11.4) with surrounding rock properties equal to the 
reservoir rock properties and initial hydrostatic reservoir pore 
pressure (Table 8.6, Chapter 8.3.6). The initial state of stress is similar 
for all stress paths and is indicated by an arrow. The end of the stress 
paths are marked by the respective observation point number. 
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9.1.4 Mobilised shear capacity on faults (MSC) 
 
Mobilised shear capacity (MSC) on a fault expresses quantitatively the proximity of a 
state of stress in a certain location on that fault to a predefined failure criterion. 
Mobilised shear capacity is therefore a function of the shear- and effective normal 
stress present in that location and the assumed strength properties of the fault. In case 
of a Mohr-Coulomb failure criterion, the definition becomes as shown in Figure 9.5: 
 

MSC = AC/BC. (9.8) 
 
A is a point reflecting an arbitrary set of effective normal stress A

nσ′  and shear stress 
τA. AB is the shortest distance between the state of stress and a Mohr-Coulomb failure 
criterion with arbitrary fault friction angle φf and fault cohesion cf. BC is a line 
through point A perpendicular to the failure line, where C is its intersection point with 
the effective normal stress axis and B is its intersection point with the failure line. 

B
nσ′ , C

nσ′ , τB and τC are effective normal- and shear stresses in points B and C, 
respectively. MSC-values fall within the range from 0 to 1. An MSC-value of 1 means 
failure, a value of 0 means that no shear stress is present. 
 
From the geometrical relations as shown in Figure 9.5 the distances AC and BC can 
be calculated according to: 
 

( ) ( )2A2A
n

C
nAC τ+σ′−σ′= , (9.9) 

( ) ( )2B2B
n

C
nBC τ+σ′−σ′= , (9.10) 

 
where 

 
fAA

n
C
n tan'' φτ+σ=σ , (9.11) 

( )
1tan
tanc'' f2

ffAA
nB

n +φ
φ−τ+σ

=σ , (9.12) 

( ) f
f2

f2fAfA
nB c

1tan
tanctan'

+
+φ

φ−τ+φσ
=τ . (9.13) 

 
As stated before, MSC-values are within the range between 0 and 1. An MSC-value 
of 1 in a certain location on the fault means that the fault fails in that location, 
whereas a value of 0 indicates that no shear stress is present in that location. Basically 
one can say that the larger an MSC-value, the closer a state of stress is to failure, but 
there exists a dependency of the effective normal stress. An increase in mobilised 
shear capacity does not necessarily imply a critical stress path. Consider the three 
stress paths A2a, A2b and A2c in Figure 9.6. They all incorporate an increase in 
mobilised shear capacity, but only stress path A2a converges to the failure line and is 
therefore critical. Stress paths A2b and A2c are parallel to and diverge from the failure 
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line, respectively, and are therefore non-critical. In fact, distance AB determines 
whether a stress path is critical or not, so that: 
 

( ) ( ) 0ACBCACBC 12 <−−− : critical (9.14a) 

( ) ( ) 0ACBCACBC 12 ≥−−− : non-critical (9.14b) 
 
Calculations showed that the maximum attainable MSC-value is exactly 1.0, 
according to the theory. No values larger than 1.0 are calculated. It shows the correct 
derivation of the formulas for the calculation of MSC and their proper implementation 
into the DIANA software. The output attributes in iDIANA related to the state of 
stress of interface elements are in terms of tractions in direction of the local element 
co-ordinate system. MSC-values can be directly calculated in iDIANA according to 
eqs. (9.8) – (9.13) using the option ‘results calculate expression…’. 
 
 

A (σ′nA, τA)

τ 

σ′n 

Mohr-Coulomb failure line 

cf 
φf 

B 

C 

MSC = AC/BC 

 
Figure 9.5. Definition of MSC for an arbitrary set of effective normal and shear 

tractions marked by point A. AC and BC can be calculated from A
nσ ′ , 

τA, φf and cf (see formulas in text). The dashed half circle is an 
imaginary Mohr-circle through point A with centre point C. 
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Figure 9.6. Stress paths from stress state A1 to stress states A2a, A2b and A2c all 

incorporate an increasing MSC-value, although the stress path to A2b 
is parallel to and the stress path to A2c is slightly diverging from the 
failure line. 
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9.2 Rock volume 
 
 
9.2.1 Mobilised shear capacity in rock volume (MSC3D) 
 
Mobilised shear capacity in a rock volume (MSC3D) is similarly defined as the 
mobilised shear capacity on a fault (MSC). It expresses quantitatively the proximity of 
a state of stress in a certain location in that rock volume to a predefined failure 
criterion. In this study the Mohr-Coulomb failure criterion, defined by the hexagonal 
pyramid in a 3-dimensional effective principal stress space (Figure 9.7a), is used. The 
central axis of this pyramid is the hydrostatic axis. This axis is characterised by the 
fact that the three (effective) principal stresses are equal. 
 
Any possible state of effective stress in a rock volume lies within or at the hexagonal 
pyramid and can be described by the sum of its mean effective stress vector and 
deviatoric stress vector (see Chapter 2.1.5, eq. (2.16)) and therefore by the Haigh-
Westergaard stress co-ordinates ξ, ρ and θ (Chapter 2.1.5, eq. (2.37)). The mean 
effective stress vector, with magnitude ξ, lies on the hydrostatic axis. The deviatoric 
stress vector is always located in a deviatoric plane, i.e. a plane perpendicular to the 
hydrostatic axis. Its magnitude is equal to ρ. The direction of the deviatoric stress 
vector is defined by θ, which the angle between the projected vertical (effective) 
principal stress axis and the deviatoric stress vector and is positive counterclockwise. 
 
A deviatoric plane view of the Mohr-Coulomb failure criterion is shown in Figure 
9.7b. The principal stress axes are projected on the deviatoric plane, which is 
indicated by an asterix. For the condition that 321 σ′≥σ′≥σ′ , the possible states of 
stress reduce to a restricted area within the principal stress space, indicated by the 
shaded area in Figure 9.7b. 
 
Figure 9.7c shows the state of stress in a rendulic plane, i.e. a plane containing the 
effective principal stress vector, the mean effective stress vector and the deviatoric 
stress vector. The mean effective stress vector runs from point O to B, whereas the 
deviatoric stress vector runs from point B to A. In accordance to eq. (9.8), the 
mobilised shear capacity in this 3-dimensional stress space (MSC3D) can be defined 
as: 
 

*
fail

*
D3MSC

ρ
ρ

= . (9.15) 

 
It is obvious that MSC3D is a function of the Haigh-Westergaard stress co-ordinates 
and the plastic strength properties of the rock in a certain location of that rock volume. 
ξ determines the size of the Mohr-Coulomb failure circumference in the deviatoric 
plane. ρ and θ together determine how close a stress state is located to the failure line 
in the rendulic plane. 
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Figure 9.7. (a) The Mohr-Coulomb failure surface in 3-dimensional effective 

principal stress space with indication of the Haigh-Westergaard stress 
co-ordinates. An effective state of stress σ ′  marked by point A consists 
of a mean effective stress vector σ ′  (marked by point B) and a 
deviatoric stress vector s. (b) Deviatoric plane view. For the condition 
that 1σ ′  > 2σ ′  > 3σ ′ , a possible state of stress only can occur in a 
restricted area within the effective principal stress space, indicated in 
the rendulic plane view by the shaded area. (c) Rendulic plane view, 
containing the three vectors σ ′ , σ ′  and s, for the definition of MSC3D. 

 
 
In order to get to an expression for MSC3D, one needs to express a state of stress and 
the Mohr-Coulomb failure surface in terms of Haigh-Westergaard co-ordinates. In 
Chapter 3.1, the Mohr-Coulomb failure criterion is presented in the form of a yield 
function F( 1σ′ , 3σ′ ,cr,φr), which takes on values less than zero for states of stress within 
the hexagonal pyramid and zero on the failure surface itself (eq. (3.7)). Because 
MSD3D is defined for rock volume, eq. (3.7) becomes with the correct indices for the 
cohesion and the friction angle: 
 

F c cr r r r r r( , , , ) ( sin ) ( sin ) cos′ ′ = ′ − − ′ + −σ σ φ σ φ σ φ φ1 3
1
2 1

1
2 31 1 . (9.16) 

 
The two effective principal stresses can according to eq. (2.37) in Chapter 2.1.5 be 
expressed as a function of the Haigh-Westergaard stress co-ordinates: 
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′ = +σ
ξ ρ

θ1 3
2
3

cos , (9.17a) 

( )3
2

3 cos
3
2

3
π+θ

ρ
+

ξ
=σ′ . (9.17b) 

 
Substituting the expressions for 1σ′  and 3σ′  of eqs. (9.17a) and (9.17b) into eq. (9.16) 
and re-arranging, one obtains the yield function F in terms of Haigh-Westergaard 
coordinates: 
 

( )−+θρ+φξ−=φθρξ π
3rrr sin3sin2),c,,,(F  

 ( ) rr3r cosc6cossin φ⋅−+θφρ π . (9.18) 
 
Failure occurs when F = 0: 
 

( ) ( )3r3

rrr
fail cossinsin3

sin2cosc6
ππ +θφ−+θ

φξ+φ⋅
=ρ . (9.19) 

 
Note that ρfail and thus MSC3D depend both on ξ and θ. The dependency on ξ is clear 
from Figure 9.7a, as the hexagonal pyramid gets wider for larger values of ξ. This 
effect is similar to the dependency of the mobilised shear capacity on faults (MSC) on 
the effective normal stress as described in Chapter 9.1.4. The dependency of ρfail on θ 
is visible in Figures 9.7b and c. The failure line for θ = 0o in the rendulic plane view 
(Figure 9.7c) is steeper than for θ = 60o.  
 
For the limit condition that θ = 0o the effective principal stresses relate to each other 
as 321 σ′=σ′>σ′  (triaxial compression), and ρfail becomes then: 
 

r

rrro
fail sin3

sin22cosc62)0(
φ−

φξ+φ⋅
==θρ . (9.20) 

 
For the other limit condition that θ = 60o triaxial extension applies with 321 σ′>σ′=σ′  
and thus: 
 

r

rrro
fail sin3

sin22cosc62)60(
φ+

φξ+φ⋅
==θρ . (9.21) 

 
From eqs. (9.20) and (9.21) it follows, that ρfail(θ = 0o) is larger than ρfail(θ = 60o) and 
that: 
 

r

r
o

fail

o
fail

sin3
sin3

)0(
)60(

φ+
φ−

=
=θρ

=θρ
. (9.22) 
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Because the rock friction angle φr varies theoretically between 0o and 90o, the ratio 
given by eq. (9.22) varies between 0.5 (φr = 90o) and 1.0 (φr = 0o). Note that for φr = 0o, 
ρfail(θ = 0o) and ρfail(θ = 60o) become equal and the Mohr-Coulomb criterion reduces 
to the Tresca criterion. 
 
From goniometric relations in Figure 9.7c, it can be easily derived that: 
 

*
r

*

cosφ
ρ

=ρ  and (9.23) 

( ) *
r

fail
*
r

*
fail cos

cos
φ

ρ
+ρ−ρφ=ρ . (9.24) 

 
Recalling the definition of MSC3D of eq. (9.15), it then follows that: 
 

( )2 *
r3D

2 *
fail r

1 tan
MSC

tan
ρ + φ

=
ρ + ρ φ

 (9.25) 

 
ρfail can be calculated with eq. (9.19). ρ can be calculated according to eq. (2.19): 
 

( )323121
2

3
2

2
2

13
2 σ′σ′−σ′σ′−σ′σ′−σ′+σ′+σ′=ρ  (9.26) 

 
*
rtan φ  follows from Figure 9.7c: 

 

r

0*
r cotc3

tan
φ⋅

ρ
=φ  (9.27) 

 
where ρ0 = ρfail(ξ = 0): 
 

( ) ( )3r3

r
0 cossinsin3

cosc6
ππ +θφ−+θ

φ⋅
=ρ  (9.28) 

 
MSC3D-values vary within the range from 0 to 1. When MSC3D = 0, the state of stress 
lies on the hydrostatic axis. For MSC3D = 1, the state of stress lies on the failure 
surface. The maximum value attained in several calculations is exactly 1.0, showing 
the correctness of the derived formulas and their proper implementation in the 
DIANA-software. 
 
As stated described before in Chapter 9.1.4 for mobilised shear capacity on faults, an 
increase in MSC3D does not necessarily imply a stress development towards failure. 
The same principle as shown in Figure 9.6 applies also for MSC3D, whereby the 
distance AB has to be thought replaced by )( **

fail ρ−ρ  (Figure 9.8). In fact, distance 
)( **

fail ρ−ρ  determines whether a stress path is develops towards failure (is critical) or 
not. To judge whether a stress development is critical or not, one should make use of 
the following criterion: 



 138 

( ) ( ) 01
**

fail2
**

fail <ρ−ρ−ρ−ρ : critical (9.29a) 

( ) ( ) 01
**

fail2
**

fail ≥ρ−ρ−ρ−ρ : non-critical (9.29b) 

 
Note that the derivation of the formulas does not take into account tension cut-off or a 
compression failure surface (cap). They are solely based on the Mohr-Coulomb 
failure criterion with a cohesion and a friction angle. Values for MSC3D can be 
directly calculated in iDIANA using the option ‘results calculate expression…’. Its 
application in iDIANA proved to be successful. 
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Figure 9.8. Stress paths from stress state 1 to stress states 2a, 2b and 2c all 

incorporate an increasing MSC3D-value, although the stress path to 2b 
is parallel to and the stress path to 2c is slightly diverging from the 
failure line. 

 
 
 
9.2.2 Effective and total stress changes per unit depletion 
 
In this thesis, a change in stress/pressure is according to eq. (3.13) defined as the 
stress/pressure after hydrocarbon production minus the stress/pressure before 
production: 
 

σ′∆  = σ′  after – σ′  before. (9.30) 
 
This means that a stress increase during hydrocarbon production has a positive sign 
and a stress decrease has a negative sign. Note that ∆p < 0 for hydrocarbon 
production. The effective stress change σ′∆  is related to the total stress change 
∆σ and the pore pressure change ∆p times Biot-constant α (see Chapter 2.4). In terms 
of the co-ordinate system in the DIANA-models this becomes according to eq. (3.12): 
 

xσ′∆  = ∆σx - α∆p, (9.31a) 
yσ′∆  = ∆σy - α∆p, (9.31b) 
zσ′∆  = ∆σz - α∆p, (9.31c) 

 
where z denotes the vertical direction, y denotes the horizontal direction parallel to the 
strike of the fault plane and x denotes the azimuth of the fault plane. 
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The change in total stress in relation to the pore pressure change is often termed 
arching (e.g. Kenter et al. 1998) and can be expressed by the ratio γ (Chapter 3.3, eq. 
(3.14)). Similar to the effective stress changes of eqs. (9.31), γ can be defined for the 
three distinct main directions in the FE-models: 
 
γx = ∆σx / ∆p, (9.32a) 
γy = ∆σy / ∆p, (9.32b) 
γz = ∆σz / ∆p. (9.32c) 
 
Hence, γ-values express the total stress change per unit depletion. They can be 
calculated for the reservoir rock itself but also for the rock formations surrounding the 
reservoir. In both cases, ∆p is the pore pressure change in the reservoir, regardless 
eventual pore pressure changes in the surrounding rocks. γ expresses then always the 
total stress change per unit depletion at a certain location. The value of γ depends on 
the rock properties of the reservoir and surrounding rock, the reservoir geometry and 
the geological setting in which the reservoir is placed. Values of γ are characteristic 
for a hydrocarbon reservoir. They are not constant throughout the reservoir but are 
dependent on rock properties and reservoir geometry. 
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10 STRESS DEVELOPMENT IN GENERIC BASIC 
RESERVOIR MODELS WITHOUT FAULT 

 
 
 
This chapter gives an overview of stress development in ellipsoidal and disk-shaped 
hydrocarbon reservoirs. Analytical solutions as well as numerical modelling results 
are presented and discussed. Existing analytical solutions for calculation of stress 
changes in hydrocarbon reservoirs due to pore pressure and temperature changes are 
presented in Chapter 10.1 for ellipsoidal reservoirs (Rudnicki 1999, 2003 and Segall 
& Fitzgerald 1998) and disk-shaped reservoirs (Geertsma 1973). Differences in stress 
development between ellipsoidal and disk-shaped reservoirs are analysed in Chapter 
10.2. Chapter 10.3 zooms in on disk-shaped reservoirs and discusses the influence of 
several parameters on the stress development in and around the reservoir: reservoir 
rock properties, surrounding rock properties, reservoir geometry (depth and aspect 
ratio) and reservoir tilting. 
 
 
10.1 Analytical solutions 
 
10.1.1 Ellipsoidal reservoirs 
 
Analytical solutions for the calculation of stress changes as a result of pore pressure 
and temperature changes in an elastic axisymmetrical ellipsoidal reservoir embedded 
in an elastic full space are given by Segall & Fitzgerald (1998) and Rudnicki (1999, 
2003). These analytical solutions are based on the Eshelby solution to compute elastic 
strains in an ellipsoidal inclusion in an elastic full space subjected to pore pressure 
and/or temperature changes (Eshelby 1957). The principle of these solutions is that 
the reservoir cannot contract as much as it would like due to the elastic coupling to the 
surrounding rock. There exists a difference in the pore pressure and temperature 
change induced strains between an imaginary reservoir which is thought to be 
removed from the earth and the same reservoir in its in-situ position in the subsurface. 
As there are no stresses applied to the boundary of the reservoir in the first imaginary 
case, the change in pore pressure and/or temperature would induce a ‘stress-free’ or 
‘transformation’ strain εij

T. The elastic earth holds back the reservoir and inhibits a 
free deformation according to the transformation strain. Eshelby (1957) showed that 
the resulting strain in the inclusion is given by 
 

T
klijkl

T
ij

inclusion
ij S ε−ε=ε . (10.1) 

 
Sijkl are rank four tensors known as the ‘Eshelby shape factors’ (e.g. Mura 1982). The 
second term of the right-hand side of eq. (10.1) represents the constraint of the elastic 
surroundings applied to the reservoir. Note that eq. (10.1) is valid for the sign 
convention that compression is positive. 
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Segall & Fitzgerald (1998) and Rudnicki (1999) translate the Eshelby solution into 
analytical solutions which make it possible to calculate pore pressure and temperature 
change induced stress changes in the elastic ellipsoidal reservoir as a function of the 
aspect ratio and rock properties of the reservoir. The aspect ratio e is defined as the 
ratio of the shortest (vertical) half axis and the longest (horizontal) half axis of the 
axisymmetric ellipsoid. Segall & Fitzgerald (1998) give additional solutions for stress 
changes inside and immediate outside of the reservoir. Rudnicki (1999) takes 
additionally the surrounding rock properties into account. 
 
According to Rudnicki (2003), eq. (32) in Rudnicki (1999) should read 
 

( )
( )

1

I
I

I 1
21

12
s/q

−









−
ν−ζ

ν−
=∆∆ . (10.2) 

 
For ζI = 1, this reduces to (1-2νI). In here ζI is the Biot constant (α) of the reservoir 
rock, νI is the Poisson’s ratio of the reservoir rock (νres) and ∆q/∆s is the stress path 
gradient in a p,q-diagram (note that p is replaced by s in order to avoid confusion with 
the pore pressure p). In eq. (30) in Rudnicki (1999), g should be replaced by 1+g, 
which is equal to GI/G∞ (GI and G∞ being the shear modulus of the reservoir rock 
(Gres) and surrounding rock (Gsur), respectively). But, in all the other expressions, 
g=GI/G∞-1 and k=KI/K∞-1 (KI and K∞ being the bulk modulus of the reservoir rock 
(Kres) and surrounding rock (Ksur), respectively). This is easily verified from eq. (11) 
or eq. (15) in Rudnicki (1999): Setting g = 0 and k = 0 (no elastic mismatch between 
reservoir and surrounding rock), the reservoir stress and strain are identical to the far 
field values if the reservoir pore pressure is zero. Furthermore, the numerator of the 
term to the left of the large bracket in the definition of I(e) (eq. 22 in Rudnicki 1999) 
should read e rather than e2. 
 
Horizontal and vertical arching (γh and γv, see Chapters 3.4 and 9.2.2 for definition) 
according to the analytical solutions by Rudnicki (1999) are plotted in Figure 10.2 as 
function of the aspect ratio e of the ellipsoidal reservoir and the Poisson’s ratio of the 
reservoir rock νres. The graphs in Figure 10.2 are valid for Gres/Gsur = 1.0. Using this 
expression and the expression G = E/2(1 + ν), it follows that 
 

( ) ( )sur

sur

res

res

12
E

12
E

ν+
=

ν+
. (10.3) 

 
For a Poisson’s ratio of the surrounding rock νsur of 0.2 and a Young’s modulus of the 
reservoir rock Eres of 13.0 GPa, this results in 
 

( )res
sur

1
6.15E

ν+
=  [GPa]. (10.4) 
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Note that for the condition that Gres/Gsur = 1.0, Esur is a function of νres and varies as 
νres varies. The dependency of Esur on the chosen values of νres for this condition can 
be seen in Table 10.1. 
 
The analytical solutions for ellipsoidal reservoirs, which are based on the Eshelby 
(1957) solutions, result in reservoir stress changes (due to pore pressure and 
temperature changes) which are constant throughout the entire reservoir. Under these 
conditions, there is one value for the vertical stress changes (and thus for γv) and one 
value for the horizontal stress changes (and thus for γh) for the entire reservoir. The 
analytical solutions are compared to numerical FE-calculations to check the validity 
of this result (Chapter 10.2). 
 
 
10.1.2 Disk-shaped reservoirs 
 
Geertsma (1973) derived analytical solutions for both the displacement field and the 
changes in the stress field for disk-shaped reservoirs in an elastic half-space with a 
traction-free surface and with uniform deformation properties throughout the entire 
sedimentary basin, including overburden and basement. These solutions are valid for a 
uniform pressure drop within the reservoir and apply to the surrounding rock, in 
which no change in pore pressure is assumed. Stress changes are expressed in terms of 
γ-values (total stress changes per unit depletion). 
 
For a disk-shaped gas reservoir with a radius of 1960m, a thickness of 150m, a depth 
of the reservoir centre of 2975m, Eres = Esur = 13.0 GPa and νres = νsur = 0.2, calculated 
stress changes outside of the reservoir in terms of γ are as plotted in Figure 10.1. For a 
definition of γ, see Chapters 3.4 and 9.2.2. For a more detailed explanation about the 
shape of the γ-graphs as plotted in Figure 10.1, see Chapter 10.2. The work of 
Geertsma (1973) is extended by Geertsma & Van Opstal (1973), in order to calculate 
the displacement field at the surface above a compacting reservoir of a complicated 
3D-shape and with a given reservoir pressure distribution, based on the linear elastic 
theory of nuclei of strain in the half space. Segall (1992) presented methods for 
computing poroelastic stress changes due to fluid extraction for general axisymmetric 
reservoir geometries, based on the solutions of Geertsma (1973). 
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Figure 10.1. Analytically calculated radial (horizontal) and vertical stress changes 

per unit depletion around a disk-shaped reservoir, outside of the 
reservoir, according to Geertsma (1973); (a) Along a horizontal line at 
the top of the reservoir, just outside of the reservoir. The dotted part of 
the γh-graph is not a direct result of Geertsma’s formulas but an own 
interpolation. (b) Along the vertical central axis of the disk-shaped 
reservoir, outside of the reservoir. The graphs are discontinuous at 
reservoir level (appr. 3 km depth). Reservoir properties are as follows: 
radius 1960 m, thickness 150 m, depth of reservoir centre 2975 m, 
Young’s modulus 13.0 GPa, Poisson’s ratio 0.2. 

 
 
 

10.2 Stress development in ellipsoidal and disk-shaped reservoirs 
from FE-calculations and comparison with analytical solutions 

 
10.2.1 Calculation series 
 
The analytical solutions for ellipsoidal reservoirs result in reservoir stress changes 
(due to pore pressure and temperature changes) which are constant throughout the 
entire reservoir. The analytical solutions as described in Chapter 10.1.1 are compared 
to numerical calculations in order to check the validity of this result and to see how a 
pore pressure drop in the reservoir and different reservoir and surrounding rock 
properties affect stress changes both within and outside of the reservoir. 
 
A series with axisymmetric FE-models is performed, with model geometry according 
to Figure 8.8 in Chapter 8.2. Element type CT12A (axisymmetric, triangular, 6 nodes) 
is used for the calculations. The aspect ratio e of the ellipsoidal reservoir and the 
Poisson’s ratio of the reservoir rock νres are varied. The aspect ratio of the ellipsoidal 
reservoir is varied by adjusting its width according to Table 10.2. The thickness of the 
ellipsoidal reservoir is 150 m at its centre in all calculations. Aspect ratios of 0.05, 0.2 
and 0.7 are taken. Table 10.1 gives an overview of the used rock properties in the 
calculations. Note the dependency of Esur on νres according to eq. (10.4), since the 
calculations are performed for the condition that Gres/Gsur = 1.0 and thus comparable 
to the analytical solutions as shown in Figure 10.2. 
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In order to compare the stress development in disk-shaped and ellipsoidal reservoirs, a 
series of calculations is performed for disk-shaped reservoirs as well for e = 0.05 
(radius 1500 m; thickness 150 m). Rock properties are varied according to Table 10.1. 
The axisymmetric finite element model as shown in Figure 8.7, Chapter 8.2, is used. 
 
All conditions chosen for the numerical FE-calculations are in accordance to the 
analytical solution by Rudnicki (1999), except for the finite size and the free movable 
earth’s surface. The analytical solutions are valid for an elastic full space. 
 
Table 10.1. Rock properties used in the calculations. 
Calculation code 00-156 01-142 02-130 03-120 04-111 049-105 
Eres

 [GPa] 13.0 13.0 13.0 13.0 13.0 13.0 
νres [-] 0.0 0.1 0.2 0.3 0.4 0.49 
Esur

 [GPa] 15.6 14.2 13.0 12.0 11.1 10.5 
νsur [-] 0.2 0.2 0.2 0.2 0.2 0.2 
 
Table 10.2. Size of ellipsoidal reservoirs for different aspect ratios. 
Calculation code e005 e02 e07 
a [m] 75 75 75 
b [m] 1500 375 107 
e=a/b [-] 0.05 0.2 0.7 
 
 

10.2.2 Calculation results and observations 
 
The results of numerical calculations of ellipsoidal reservoirs with different aspect 
ratios are compared to analytical solutions. Analytically calculated γv- and γh-values 
according to Rudnicki (1999) are plotted in Figure 10.2 as a function of the aspect 
ratio of the ellipsoidal reservoir and its Poisson’s ratio νres. γv- and γh-values are 
estimated from this graph for the three aspect ratios 0.05, 0.2 and 0.7. The estimated 
γv- and γh-values are listed in Tables 10.4 and 10.5 and compared to the numerical 
calculation results. The results of the numerical calculations and analytical solutions 
are virtually equal. In Table 10.3, the values of γh and γv calculated in the very centre 
of the reservoir for the different numerical calculations are listed. They are plotted 
graphically in Figure 10.3. γ/e-graphs in Rudnicki (1999) show curvatures and values 
similar to the numerical modelling results. 
 
Table 10.3. γh and γv in the centre of ellipsoidal reservoirs with three different 

aspect ratios from FE-calculations. Eres = 13.0 GPa, νsur = 0.2. 
 Esur

 [GPa] 15.6 14.2 13.0 12.0 11.1 10.5 
 νres

 [-] 0.0 0.1 0.2 0.3 0.4 0.49 
γh [-] 0.963 0.856 0.722 0.550 0.320 0.038 e = 0.05 
γv [-] 0.073 0.065 0.055 0.042 0.024 0.003 
γh [-] 0.875 0.778 0.656 0.500 0.292 0.034 e = 0.2 
γv [-] 0.250 0.222 0.187 0.143 0.083 0.010 
γh [-] 0.716 0.637 0.537 0.409 0.238 0.228 e = 0.7 
γv [-] 0.568 0.506 0.426 0.324 0.189 0.180 
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Figure 10.2. Analytically calculated γv and γh as a function of the aspect ratio e of 

the ellipsoidal reservoir and its Poisson’s ratio νres for Gres/Gsur = 1.0 
(after Rudnicki 1999). 

 
 
Table 10.4. Comparison between γh-values in the reservoir centre for analytical 

calculations (estimated from Figure 10.2) and numerical calculation 
results for ellipsoidal reservoirs. Eres = 13.0 GPa, νsur = 0.2. 

 Esur
 [GPa] 15.6 14.2 13.0 12.0 11.1 10.5 

 νres
 [-] 0.0 0.1 0.2 0.3 0.4 0.49 

γh analytical [-] 0.967  0.725  0.321  e = 0.05 
γh numerical [-] 0.963 0.856 0.722 0.550 0.320 0.038 
γh analytical [-] 0.875  0.658  0.288  e = 0.2 
γh numerical [-] 0.875 0.778 0.656 0.500 0.292 0.034 
γh analytical [-] 0.717  0.525  0.229  e = 0.7 
γh numerical [-] 0.716 0.637 0.537 0.409 0.238 0.228 

 
 
Table 10.5. Comparison between γv-values in the reservoir centre for analytical 

calculations (estimated from Figure 10.2) and numerical calculation 
results for ellipsoidal reservoirs. Eres = 13.0 GPa, νsur = 0.2. 

 Esur
 (GPa) 15.6 14.2 13.0 12.0 11.1 10.5 

 νres
 [-] 0.0 0.1 0.2 0.3 0.4 0.49 

γv analytical [-] 0.079  0.058  0.025  e = 0.05 
γv numerical [-] 0.073 0.065 0.055 0.042 0.024 0.003 
γv analytical [-] 0.250  0.188  0.083  e = 0.2 
γv numerical [-] 0.250 0.222 0.187 0.143 0.083 0.010 
γv analytical [-] 0.567  0.425  0.188  e = 0.7 
γv numerical [-] 0.568 0.506 0.426 0.324 0.189 0.022 
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Figure 10.3. Numerically calculated (a) horizontal arching values (γh) and (b) 

vertical arching values (γv) as a function of the aspect ratio e of the 
ellipsoidal reservoir and its Poisson’s ratio νres for Gres/Gsur = 1.0. 
Markers indicate the calculation results. 

 
 
In order to check the validity of the analytical solutions, which incorporate a pore 
pressure change-induced stress change which is constant throughout an entire 
ellipsoidal reservoir, numerically calculated arching values and associated effective 
stress changes are plotted in Figures 10.4a and b, 10.6a and c and 10.7a and c. γ-
values are virtually constant throughout the entire ellipsoidal reservoir: the contour 
plots of Figures 10.4a and b show no significant variation with 0.71 < γh < 0.75 and 0 
< γv < 0. The graphs in Figure 10.6a, presenting γv- and γh-values along a horizontal 
observation line through the centre of the reservoirs (see Figure 10.5 for 
configuration), show horizontal lines until the lateral reservoir edge. The same 
behaviour could be observed in other calculations of the ellipsoidal reservoir with 
different rock properties and other aspect ratios than the Figures 10.4, 10.6 and 10.7 
are valid for. γh and γv can be assumed constant throughout the reservoir for 
ellipsoidal reservoirs. This observation is in line with the analytical solutions for 
ellipsoidal reservoirs. 
 
Comparison of numerical calculation results of the ellipsoidal and disk-shaped 
reservoirs with e = 0.05 show significant difference in the pattern of calculated stress 
changes (see Figures 10.4, 10.6 and 10.7 and Tables 10.6 and 10.7). Calculated γ-
values and effective stress changes are not constant in disk-shaped reservoirs as is the 
case for ellipsoidal reservoirs, but show significant variation in a zone at the lateral 
reservoir edge. Stress development at the lateral side of the reservoir is very 
influenced by the lateral reservoir boundary. Looking at arching values along a 
horizontal observation line through the reservoir centre (Figure 10.6b), basically four 
zones can be distinguished for the disk-shaped reservoir with a radius of 1500 m and a 
thickness of 150 m (e = 0.05): 
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Zone A covering most of the (central) reservoir, where γh-values are relatively 
large with negligible variation and where γv is as good as zero; 

Zone B at the lateral reservoir edge inside of the reservoir, where γv-values are 
relatively large and γh-values are relatively small; 

Zone C at the lateral reservoir edge outside of the reservoir, where negative γv-
values with relatively large magnitudes can be observed and γh-values are 
relatively small; 

Zone D outside of the reservoir where γ-values approach zero and virtually no 
stress changes occur. 

 
Graphs in Figure 10.6b show that the size of zone B is approximately 200 m for the 
current calculations. This is very similar to the zone with a higher risk on shear failure 
on bedding planes as found in the compaction study of the Shearwater gas field 
(Kenter et al., 1998). Remarkable is the fact, that zone B is absent in ellipsoidal 
reservoirs, whereas zones A, C and D occur. 
 
An observation for both ellipsoidal and disk-shaped reservoirs is that γh-values within 
the reservoirs decrease with increasing values of νres (and in the same time smaller 
values of Esur), whereas hσ′∆ -values increase with increasing νres (Figure 10.3a and 
Tables 10.3, 10.4 and 10.6). γv decreases with increasing values of νres (and in the 
same time smaller values of Esur), see Figure 10.3b and Tables 10.3, 10.5 and 10.7. 
These effects are especially pronounced for larger reservoir aspect ratios (Figure 10.3 
and Table 10.3) and for γv at the lateral edge of the disk-shaped gas reservoirs (Table 
10.7). Furthermore, it follows from Figures 10.2 and 10.3 that the horizontal arching 
decreases with increasing aspect ratio. The vertical arching increases with increasing 
aspect ratio for both numerical and analytical calculations. 
 
In the surrounding rock just above and below the reservoir at centre location, 
horizontal effective stresses slightly increase and vertical effective stresses slightly 
decrease (Figures 10.7c and d). These stress changes are for the modelled conditions 
not more than a few MPa. γ-values are almost zero. 
 
For the disk-shaped reservoir, two small zones just above and below the lateral 
reservoir edge can be observed, where γv-values are relatively large and γh-values 
become more negative (Figure 10.4). 
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Figure 10.4. Comparison of numerically calculated γ-values in (a) and (b) an 

ellipsoidal reservoir and (c) and (d) a disk-shaped reservoir. Black 
lines indicate the circumference of the reservoirs. (a) and (c): γh; (b) 
and (d): γv. Reservoir radius: 1500m; reservoir thickness: 150 m (e = 
0.05); νsur = νres = 0.2; Esur = Eres = 13.0 GPa. See Appendix 2 for this 
figure in colour. 

 
 
Table 10.6. Calculated γh in ellipsoidal and disk-shaped reservoirs. Observation 

points: reservoir centre (1) and lateral reservoir edge (3), see Figure 
10.5. Eres = 13.0 GPa, νsur = 0.2. 

Esur
 [GPa] 15.6 14.2 13.0 12.0 11.1 10.5 

νres
 [-] 0.0 0.1 0.2 0.3 0.4 0.49 

Reservoir centre (observation point 1) 
γh ellipsoid [-] 0.995 0.884 0.745 0.567 0.330 0.040 
γh disk [-] 0.975 0.866 0.731 0.556 0.324 0.042 
Lateral reservoir edge (observation point 3) 
γh ellipsoid [-] 0.946 0.842 0.711 0.540 0.314 0.033 
γh disk [-] 0.377 0.323 0.257 0.178 0.085 0.004 
 
 
Table 10.7. Calculated γv in ellipsoidal and disk-shaped reservoirs. Observation 

points: reservoir centre (1) and lateral reservoir edge (2), see Figure 
10.5. Eres = 13.0 GPa, νsur = 0.2. 

Esur
 [GPa] 15.6 14.2 13.0 12.0 11.1 10.5 

νres [-] 0.0 0.1 0.2 0.3 0.4 0.49 
Reservoir centre (observation point 1) 
γv ellipsoid [-] 0.046 0.042 0.036 0.026 0.013 -0.003 
γv disk [-] 0.048 0.043 0.036 0.027 0.016 0.002 
Lateral reservoir edge (observation point 3) 
γv ellipsoid [-] 0.126 0.114 0.099 0.078 0.047 0.005 
γv disk [-] 0.569 0.519 0.464 0.384 0.253 0.036 
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Figure 10.5. Location of observation lines for the graphs in Figures 10.6, 10.7 and 

10.11. Both lines run through the reservoir centre. Points 1, 2 and 3 
indicate the location of observation for the graphs in Figures 10.8 – 
10.10. 

 
 

10.2.3 Discussion 
 

The observations that γh and γv decrease for increasing νres and that for increasing 
aspect ratio γh and γv decrease and increase, respectively, could be explained as 
follows. In case of an infinitely wide reservoir (e → 0), uniaxial reservoir compaction 
occurs. In Chapter 3.4 it is already explained, that in this case the overburden rock 
keeps on pushing its own weight (σv) on the reservoir rock, without being limited by a 
less or not compacting sideburden. This means that the total vertical load does not 
change during reservoir production (∆σv = 0), resulting in a γv-value of 0. This result 
is also obtained by the analytical solutions for all reservoir and surrounding rock 
properties (Rudnicki 1999, Segall & Fitzgerald 1998). Although not directly 
calculated, this also seems to be the case for the numerical calculations (Figure 10.3). 
 
Horizontal effective stress changes (∆σ′h) are in a one-dimensional, uniaxial case (e = 
0) solely based on the translation of ∆σ′v via the Poisson’s ratio of the reservoir rock: 
 

vh 1
σ′∆

ν−
ν

=σ′∆ . (10.5) 
 

A horizontal arching value can then be calculated according to (see Chapter 3.4, eq. 
(3.18)): 
 









ν−
ν−

α=γ res

res

h 1
21  (10.6) 

 

The equations to calculate γh as presented by Rudnicki (1999 and 2003) reduce to eq. 
(10.6) for e → 0. Results of eq. (10.6) under the assumption that α = 1 are presented 
in Table 10.8. 
 
Table 10.8. γh for uniaxial reservoir compaction (e = 0.0) according to eq. (10.6) 

for different νres, under the assumption that α = 1.0. 
νres

 [-] 0.0 0.1 0.2 0.3 0.4 0.49 
γh eq. (10.6) [-] 1.000 0.889 0.750 0.571 0.333 0.039 
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Figure 10.6 (a) and (b). γh and γv along a horizontal line through the reservoir 

centre in (a) an ellipsoidal and (b) a disk-shaped reservoir. 
 (c) and (d). γh and γv along a vertical line through the reservoir centre 

in (c) an ellipsoidal and (d) a disk-shaped reservoir. 
 The reservoir radius and thickness are 1500m and 150m, respectively 

(e = 0.05). For location of the observation lines see Figure 10.5. νres = 
νsur = 0.2, Eres = Esur = 13.0 GPa. 
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Figure 10.7 (a) and (b). Horizontal and vertical effective stress changes along a 

horizontal line through the reservoir centre in (a) an ellipsoidal and 
(b) a disk-shaped reservoir. 

 (c) and (d). Horizontal and vertical effective stress changes along a 
vertical line through the reservoir centre in (c) an ellipsoidal and (d) a 
disk-shaped reservoir. 

 The reservoir radius and thickness are 1500m and 150m, respectively 
(e = 0.05). For location of the observation lines see Figure 10.5. νres = 
νsur = 0.2, Eres = Esur = 13.0 GPa. 
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Numerically calculated γv- and γh-values at the centre of both the ellipsoidal and the 
disk-shaped reservoir match, for the reservoir radius of 1500 m and e = 0.05, the 
analytical values for uniaxial reservoir compaction conditions very well for all 
Poisson’s ratios of the reservoir rock (Tables 10.6 and 10.7). Stress changes in the 
reservoir centre are thus, for the specified geometries, as if the reservoir were 
infinitely wide. 
 
A larger Poisson’s ratio of the reservoir rock results in a smaller arching in the 
reservoir both vertically and horizontally. Smaller γ-values mean a larger built-up of 
effective stresses. From eq. (10.5) it is clear that a large νres-value leads to a larger 
translation of vertical effective stress built-up into horizontal directions. Furthermore, 
a larger Poisson’s ratio means a material with larger bulk stiffness and smaller shear 
stiffness. Materials with a Poisson’s ratio of 0.5 are incompressible. The larger the 
value of νres, i.e. the larger the bulk stiffness of the reservoir rock, the less stress is 
arched away to the surrounding rocks. Effective stress changes are larger for larger 
values of νres, whereas γh-values are smaller. 
 
As the aspect ratio of the reservoir increases, the reservoir width gets smaller. γv 
increases, due to arching of vertical stresses away from the relatively weak reservoir 
rock into the stiffer sideburden rock. γh decreases, due to an increasing freedom of the 
reservoir rock to contract laterally. The steepest gradients of the γ/e-graphs for both 
horizontal and vertical directions occur for small aspect ratio values (see Figures 10.2 
and 10.3). γ/e-graphs show smaller gradients for larger aspect ratios. This is probably 
due to a drastical change of the reservoir width for small changes in small aspect ratio 
values: as the aspect ratio increases from 0.0 to 0.2, the reservoir width decreases 
from infinite to 375 m (see Table 10.2). The reservoir shape for e = 0.2 has already a 
strong spherical character. As the aspect ratio increases from 0.2 to 0.7, the reservoir 
width decreases from 375 m to 107 m. This change is not so large and γ/e-graphs 
show smaller gradients in this range. Extrapolating the numerical modelling graphs of 
Figure 10.3 points to a good match to the analytical solutions for (almost) spherical 
reservoirs with e → 1. 
 
Throughout the ellipsoidal reservoir, stress changes and thus arching values are 
virtually constant. For the disk-shaped reservoirs, this is only the case in zone A (see 
Figures 10.6 and 10.7). Comparison of Figure 10.6b with Figure 10.7b indicates that 
the relatively large γv-values in zone B of the disk-shaped reservoir are due to a lesser 
increase in vertical effective stress in this part of the reservoir than in the more central 
reservoir part. At the edges of the disk-shaped reservoir, the vertical effective stresses 
tend to be loaded to the non-compacting sideburden rock instead of to the compacting 
reservoir rock itself, resulting in larger values of γv inside of the reservoir at the lateral 
reservoir edge, but smaller (negative) values of γv outside of the reservoir. Stresses are 
said to be arched away from the reservoir. Negative γv-values result from the fact that 
the total vertical stresses in the sideburden rock increase. The definition of γ as total 
stress change per unit depletion (∆p < 0) results then in negative values for γv. 
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Based on eq. (10.5) one could conclude that, due to the lesser increase of the vertical 
effective stresses in the reservoir at the lateral edge, horizontal effective stresses 
would increase less at this location as in the reservoir centre, resulting in larger γh-
values and smaller hσ′∆ -values. However, Figures 10.6 and 10.7 clearly show, that γh-
values are smaller and hσ′∆ -values are larger in zone B than in the reservoir centre 
(zone A). The sideburden rock follows the lateral compaction of the reservoir and 
keeps on pushing on the reservoir rock. Due to this effect, hσ′∆  is larger in the 
reservoir at its lateral edge. The pushing effect is enhanced by a relatively large vσ′∆  
in the sideburden rock, which is translated via the Poisson’s ratio to a certain amount 
of hσ′∆ . The more the inside of the reservoir is approached, the less hσ′∆  gets because 
of shear stress absorption at the lateral reservoir edge, due to the elastic coupling of 
the reservoir rock to the surrounding rock. The lateral edge of ellipsoidal reservoirs is 
not straight but almost follows a spherical shape. Even for the small aspect ratio of 
0.05, the largest amount of curvature in the cross-sectional ellipse occurs at its lateral 
edge. Because of this geometry, arching effects of the vertical stress into the 
sideburden rock are concentrated and restricted to a very small region only at the very 
lateral reservoir edge. Horizontal stresses in the sideburden rock, before reservoir 
depletion counteracted by the pore pressure and horizontal effective stresses in the 
reservoir at its lateral edge, are during depletion relatively easily arched away from 
the reservoir into the over- and underburden rock. This results in arching values at the 
lateral side of the ellipsoidal reservoir which are virtually equal to those in the 
reservoir centre (Figures 10.4a and b and 10.6a), except for somewhat differing 
arching values at the very edge of the reservoir in observation point 3 (see Figure 
10.6a and Tables 10.6 and 10.7). 
 
Horizontal effective stress changes ( hσ′∆ ) at the lateral reservoir edge show a very 
steep gradient for both ellipsoidal and disk-shaped reservoirs (Figures 10.7a and b). 
Horizontal effective stresses increase during gas depletion within the reservoir due to 
the pore pressure decrease, but decrease outside of the reservoir at the lateral reservoir 
edge (zone C) due to the horizontal reservoir contraction. 
 
In the surrounding rock just above and below the reservoir at centre location, 
horizontal effective stresses slightly increase and vertical effective stresses slightly 
decrease (Figures 10.7c and d). These stress changes are for the modelled conditions 
not more than a few MPa. γ-values are almost zero. Induced horizontal effective stress 
increase in the range of a few MPa are in line with the analytical solutions for induced 
effective stress changes just above and below ellipsoidal reservoirs according to 
Segall & Fitzgerald (1998) and the observations in literature sources (Segall 1992, 
Baranova et al. 1999, Wu et al. 1998, Glowacka & Nava 1996, Grasso 1992 and 
Maillot et al. 1999). 
 
For the disk-shaped reservoir, two small zones just above and below the lateral 
reservoir edge can be observed, where γv-values are relatively large and γh-values 
become more negative (Figure 10.4). This is in line with the analytical solution of 
Geertsma (1973), see Figure 10.1a. In these two zones, γv-values are relatively large 
due to unloading of vertical effective stresses, which are arched away to the 
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sideburden of the reservoir. γh-values become more negative and indicate an increase 
of horizontal effective stresses in the two zones. Due to the pore pressure reduction in 
the reservoir and the related horizontal reservoir contraction, which is limited by the 
elastic coupling of the reservoir to over- and underburden, a part of the horizontal 
total stresses, previously carried by the reservoir rock and pore contents, is arched 
away in the stiffer over- and underburden. 
 
 
10.3 Stress development in disk-shaped reservoirs as a function of 

rock property contrast between reservoir and surrounding 
rock and reservoir tilting 

 
In order to obtain insight in the influence of rock property contrast between reservoir 
and surrounding rock and reservoir tilting on the stress development in a disk-shaped 
reservoir, several calculations using 2D-models are performed. Regarding the rock 
properties it is distinguished between Young’s modulus and Poisson’s ratio. The 
calculations in this chapter are performed in the framework of setting up a stress atlas 
at Shell Exploration & Production Rijswijk (Netherlands), describing the 
characteristics of stress development in depleting reservoirs with different geometries 
and (surrounding) rock properties. The calculated results in form of graphs along 
horizontal and vertical observation lines as presented for instance in Figure 10.6 are 
approximated analytically and summarised in an Excel chart named ‘StressKader’ by 
Mahi (2003). With this spread sheet, γ-graphs along several observation lines through 
the disk-shaped reservoir can be easily plotted by simply inserting some parameter 
values in a master sheet within the ranges of the calculations. The chart is available at 
Shell International Exploration & Production BV, Rijswijk, Netherlands. 
 
 
10.3.1 Influence of rock property contrast between reservoir and 

surrounding rock 
 
For the calculations performed for this Chapter 10.3.1, 2D axisymmetric models are 
used for the calculations (element type CT12A) with a geometry similar to the model 
as shown in Figure 8.7, Chapter 8.2, but with different reservoir dimensions: the top 
reservoir depth is 2925 m, the reservoir thickness is 150 m and the reservoir radius is 
500 m. Young’s modulus and Poisson’s ratio of reservoir and surrounding rock are 
varied. Materials behave all elastically. No plasticity is incorporated. The initial 
reservoir pressure is 35.0 MPa, which is reduced to 0 MPa during depletion of the 
reservoir. No pore pressure is assumed in the surrounding rock formations. The 
density of all materials is 2400 kg/m3. The initial stress field in the model is solely 
gravitational. 
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10.3.1.1 Young’s modulus 
 
In order to study the effects of a contrast in Young’s modulus between reservoir and 
surrounding rock on the stress development within the reservoir, a calculation series is 
performed with varying Eres and Esur, whereas νres = νsur = 0.2. For further description 
of the models see Chapter 10.3.1. 
 
In Figures 10.8, 10.9 and 10.10, the dependency of γh and γv on the stiffness contrast 
between the reservoir and surrounding rock Esur/Eres is shown for three different 
locations: location 1 (reservoir centre), location 2 (top of the reservoir above the 
centre, just outside of the reservoir) and location 3 (lateral reservoir edge, just inside 
of the reservoir), see Figure 10.5. 
 
Values for γh and γv in case of uniaxial reservoir compaction with νres = 0.2 are 
theoretically 0.75 and 0.0, respectively (see Chapter 10.2.3). Calculated γ-values in 
the reservoir centre (location 1, see Figure 10.5) approximate these theoretical values 
for uniaxial reservoir compaction for almost all calculated scenarios (Figure 10.8). 
Exceptions can be observed for extremely stiff surrounding rock or soft reservoir 
rock, leading to relatively large γv-values and a slight increase of γh-values, and for 
extremely soft surrounding rock or stiff reservoir rock, leading to relatively small γh-
values. A slight increase in γv and γh can be observed for increasing surrounding rock 
stiffness. Larger γ-values mean a smaller effective stress increase during gas 
depletion. This means that a tendency exists for the stresses to be arched around the 
relatively soft depleted reservoir. Note that for the theoretical case that Esur = 0, free 
deformation of the reservoir would apply ( hσ′∆  = vσ′∆  = -α∆p). The graph in Figure 
10.8b indeed seems to approach γh = 0 for this case, explaining the relatively small γh-
value as the ratio Esur/Eres approaches zero. 
 
Above and below the reservoir centre, in the surrounding rock (location 2), the 
reservoir contraction generally results in an increase of total horizontal stresses in 
these locations and thus negative γh-values (Figure 10.9). These arching effects are 
more pronounced for a softer surrounding rock relative to the stiffness of the reservoir 
rock. For relatively stiff surrounding rocks, γh has a positive sign, indicating that the 
total horizontal stresses decrease during depletion. The transition from an increase to a 
decrease in hσ′∆  is for the modelled conditions (νres = νsur = 0.2) approximately for 
Esur = 2Eres. 
 
A smaller Esur/Eres-ratio results at the lateral reservoir edge, inside of the reservoir 
rock (location 3), to smaller γv- and γh-values (Figure 10.10). Note that γh- and γv-
values are (virtually) equal at location 3 (see e.g. Figure 10.6b). In other words, both 
horizontal and vertical effective stress increase is larger in this location as the 
surrounding rock is softer relative to the reservoir rock. This behaviour is 
understandable when recalling the explanation in Chapter 10.2.3 for the zone at the 
lateral reservoir edge with larger hσ′∆ -values due to the horizontal deformation of the 
sideburden rock, which pushes at the reservoir rock. This effect is stronger as the 
deformation of the surrounding rock easier relative to the reservoir rock, or, in other 
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words, when the surrounding rock is softer relative to the reservoir rock. A softer 
sideburden rock causes the vertical stresses to be arched to the sideburden rock to a 
lesser extent. The vertical effective stress increase within the reservoir at the lateral 
edge becomes larger and thus γv smaller. Note that for the theoretical case that Esur=0, 
free deformation of the reservoir would apply. The graph in Figure 10.10 indeed 
approaches γv = γh = 0 for this case ( vσ′∆  = hσ′∆  = -α∆p). 
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Figure 10.8. γh and γv at the reservoir centre (observation point 1, see Figure 10.5) 

as a function of the ratio Esur/Eres. For this calculation series Eres = 
13.0 GPa and Esur varies. νres = νsur = 0.2; top reservoir depth: 2925 
m; reservoir radius: 500 m; reservoir thickness: 150 m. 
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Figure 10.9. γh at the top of the reservoir above the centre, just outside of the 

reservoir (observation point 2, see Figure 10.5) as a function of the 
ratio Esur/Eres. For this calculation series Eres=13.0 GPa and Esur 
varies. νres = νsur = 0.2; top reservoir depth: 2925 m; reservoir radius: 
500 m; reservoir thickness: 150 m. 
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Figure 10.10. γv = γh at the lateral reservoir edge, just inside of the reservoir 

(observation point 3, see Figure 10.5) as a function of the ratio 
Esur/Eres. For this calculation series Eres=13.0 GPa and Esur varies. νres 
= νsur = 0.2; top reservoir depth: 2925 m; reservoir radius: 500 m; 
reservoir thickness: 150 m. 

 
 
10.3.1.2 Poisson’s ratio 
 
The Poisson’s ratio of the reservoir rock influences the stress development within the 
reservoir since it can be considered as a measure of the translation of the vertical 
effective stress changes into horizontal directions. Eqs. (10.5) and (10.6) give the 
amount of such translation for uniaxial reservoir compaction. For the theoretical case 
that νres = 0.0, γh becomes 1.0 and for the case that νres = 0.5, γh is 0.0. Further 
explanations and details can be found in Chapter 10.2. 
 
In order to study the effects of the Poisson’s ratio of the surrounding rock on the stress 
development within the reservoir, a calculation series is performed with varying νsur, 
whereas νres = 0.2 and Eres = Esur = 13.0 GPa. For further description of the models see 
Chapter 10.3.1. 
 
In Figure 10.11, the influence of the Poisson’s ratio of the surrounding rock on the 
stress development along a horizontal and vertical observation line through the 
reservoir centre is illustrated. νsur hardly influences the stress development for the 
modelled conditions. This result is in agreement with Khan & Teufel (2000). 
According to these studies, stress development in depleting reservoirs is hardly 
affected by νsur for νsur-values < 0.3. 
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Figure 10.11. γh and γv along a horizontal line through the reservoir centre in a disk-

shaped reservoir for different values of νsur. (a) νsur = 0.01, (b) νsur = 
0.25 and (c) νsur = 0.49. The reservoir radius and thickness are 500 m 
and 150 m, respectively. For location of the observation lines see 
Figure 10.6. νres = 0.2, Eres = Esur = 13.0 GPa. 

 
 
10.3.2 Influence of reservoir tilting 
 
The calculations performed so far for Chapter 10 all incorporate a horizontal 
reservoir. A series of calculations is therefore performed in order to study the 
influence of reservoir tilting on the stress development. The tilting makes the use of 
axisymmetric models impossible. Therefore plane-strain models are built, 20,000m 
wide and 5000m high with element types CT12E: plane strain, 6-noded triangle 
(Figure 10.12). Four models are built, each with a different inclination of the 
reservoir: 0, 7.6, 15 and 30º. The reservoir is 150 m thick and 3000 m wide 
(representing a radius of 1500 m). It is horizontally centred, with a depth location of 
the centre of 2975 m in all models. For the reservoir with 0º inclination this means 
that its top is 2900 m deep. Lateral model boundaries and model bottom are 
constrained in horizontal and vertical direction, respectively. Rock properties are as 
follows: νsur = νres = 0.2, Esur = Eres = 13.0 GPa and density = 2400 kg/m3. Materials 
behave all elastically. No plasticity is incorporated. The initial reservoir pore pressure 
is 35.0 MPa, which is reduced to 0 MPa during depletion of the reservoir. No pore 
pressure is assumed in the surrounding rock formations. The initial stress field in the 
model is solely gravitational. 
 
Figure 10.13 shows contour plots of the calculated γh- and γv-values for a reservoir 
inclination of 30o. An overview of observed values is given in Table 10.9. For a 
reservoir inclination angle of 0o (horizontal reservoir), results are basically the same 
as discussed in Chapter 10.2 for a horizontal, disk-shaped reservoir: larger values of γv 
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occur at the lateral side of the reservoir, whereas γh-values are smaller at this location. 
As the reservoir tilts, dipping towards the left, the zone with large γh-values and small 
γv-values, respectively, concentrates at the top right and bottom left edges of the 
reservoir (see Figure 10.12). A zone with small γh-values and large γv-values, 
respectively, develops at the bottom right and top left edges of the reservoir. 
 

It is clear that a zone with small γh-values develops in the top right corner of the 
reservoir during hydrocarbon production, since the reservoir is relatively thin in 
horizontal direction around this location and overburden and sideburden can push 
from both sides on the reservoir rock. γh approaches with a minimum value of only 
0.074 in this location almost zero, meaning that the horizontal effective stress increase 
here is almost equal to the pore pressure decrease. In the bottom right corner of the 
reservoir develops a zone with a horizontal effective stress shade: the position of the 
reservoir is very favourable for horizontal effective stresses to arch around the 
relatively weak reservoir, which is relatively thick around this location. γh-values 
become large in this point, in our calculations even larger than one: 1.02. This means 
that horizontal effective stresses in this point even decrease instead of increase. 
 
Table 10.9. Calculated γ v and γ h in disk-shaped reservoirs with different tilting. 
Reservoir γ h [-] γ v [-] 
tilt angle [o] min* max* centre min* max* centre 
0 
7.6 
15 
30 

0.234 
0.188 
0.150 
0.074 

0.724 
0.727 
0.850 
1.020 

0.724 
0.712 
0.677 
0.548 

0.021 
0.033 
0.035 
-0.053 

0.442 
0.588 
0.726 
0.954 

0.021 
0.033 
0.068 
0.196 

* For the location of minimum and maximum values in the cases that the reservoir tilt 
angle > 7.6o, see Figure 10.13. 
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Figure 10.12. Geometry of the 2D plane strain models used for the calculations in 

Chapter 10.3.2. Lateral boundaries and bottom of the model are 
constrained in horizontal and vertical direction, respectively. 
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Figure 10.13. Contour plots of calculated (a) γh-values and (b) γv-values at the 

reservoir edges for a reservoir tilt angle of 30o. The location of 
maximum and minimum values for the calculations with a tilt angle > 
7.6o are indicated. See Appendix 2 for this figure in colour. 

 
 
Contour plots of the calculated γv-values show a pattern similar to those of the γh-
values, with the difference that a zone with large γv-values develops in the top right 
corner and a zone with small γv-values develops in the bottom right corner of the 
reservoir. Arching of the vertical stresses away from the relatively weak and vertically 
relatively thick zone of the reservoir rock in the top right corner is favoured by the 
inclination of the reservoir. Contrarily, the bottom right reservoir corner experiences 
even negative arching values for a reservoir inclination of 30o, meaning that vertical 
effective stresses in this point increase even more than the pore pressure decreases. 
 
There exists a symmetry of stress development in the model. A zone with large γv-and 
small γh-values occurs in the top right corner and in the bottom left corner of the 
reservoir. A zone with small γv-and large γh-values occurs in the bottom right corner 
and in the top left corner of the reservoir. 
γ-values as observed at the centre point of the reservoir show a more general 
behaviour of arching, valid for most of the reservoir (Figure 10.14). It shows that 
horizontal arching is decreasing for increasing inclination of the reservoir, whereas 
vertical arching increases. It is clear that as the reservoir inclines, the sideburden has 
more area to push sideward on the compacting reservoir rock. This results in a larger 
increase of horizontal effective stresses and thus less horizontal arching for a larger 
reservoir inclination. In the theoretical case of an inclination of 90o, γh should 
approach the value of zero. 
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Figure 10.14. Horizontal and vertical arching in the centre of the reservoir as a 

function of the reservoir tilt angle. 
 
 
 
10.4 Implications of modelling results on induced seismicity 
 
In general it is assumed, that seismic events are the result of reactivation of existing 
discontinuities (like faults) in or near the reservoir (see Chapters 4 and 6). Triggering 
of faults is basically the result of differential stress development: effective stresses 
develop in different directions with different amounts. For instance for a reservoir 
with a horizontal extension larger than the vertical extension, the effective vertical 
stress increase is larger than the effective horizontal stress increase, since the 
horizontal reservoir contraction is more constrained than the vertical due to the elastic 
coupling of the reservoir rock to its surroundings. See Chapter 3.4 for more details 
and explanations on the concept of critical stress development for the case of a 
laterally infinitely extended reservoir (uniaxial reservoir compaction). 
 
The following considerations are valid for the calculations as presented in Chapter 10, 
incorporating reservoirs with a width larger than their thickness in an extensional 
(gravitational) stress regime. 
 
According to the calculation results, differential stress development, which would 
promote the reactivation of normal faults, can be observed throughout the entire 
ellipsoidal reservoirs and throughout most of the disk-shaped reservoirs with 
exception of the lateral edge of the disk-shaped reservoirs (zone A, see Figures 10.6b 
and 10.7b). Calculated γh-values are larger than calculated γv-values, as a result of a 
smaller horizontal than vertical effective stress increase. Such conditions could lead to 
a critical stress development as is for instance illustrated in Figure 3.7 (Chapter 3.4) 
by Mohr circles, promoting the reactivation of normal faults. Reverse faults are 
stabilised. 
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At the lateral edge of the disk-shaped reservoirs within the reservoir (zone B), 
calculated γh-values are larger than calculated γv-values. The horizontal effective 
stress increase is larger than the vertical effective stress increase in this region, which 
would oppose the reactivation of normal faults. Reverse faults in this region should be 
promoted if a compressional stress regime would apply. 
 
At the lateral edge of both ellipsoidal and disk-shaped reservoirs outside of the 
reservoir (zone C), vertical effective stresses increase whereas horizontal effective 
stresses decrease. This would promote the reactivation of normal faults in this region. 
Reverse fault reactivation in this region should be opposed.  
 
Generally, stress changes just above and below the reservoirs are small, except for 
two zones just above and below the lateral edge of the disk-shaped reservoir. With 
∆σ’h > 0 (increasing horizontal effective stress) and ∆σ’v < 0, normal fault 
reactivation should be opposed here, but the reactivation of reverse faults should be 
promoted if a compressional stress regime would apply. 
 
A larger Poisson’s ratio of the reservoir rock, a larger reservoir aspect ratio (smaller 
reservoir width relative to its thickness) and tilting of the reservoir (at least up to a tilt 
angle of 30o) counteract differential stress development at the reservoir centre. 
According to analytical solutions (see Figure 10.2), γh = γv when the reservoir width is 
equal to its thickness (e = 1.0). The difference between horizontal and vertical 
effective stress increase reduces for increasing values of νres, e and reservoir tilt angle. 
Stress paths such as shown in Figure 3.7 therefore become less steep (stabilise), 
opposing the reactivation of normal faults. Calculations incorporating a tilting 
reservoir showed large stress concentrations and stress shades around the reservoir 
corner points (reservoir top and bottom at its lateral edges). γh- and γv-values show 
that especially at these locations significant differential stress development occurs, 
indicating a relatively large potential for fault reactivation at these locations. 
 
The Poisson’s ratio of the surrounding rock hardly influences the stress development 
at the reservoir centre. This is also the case for a contrast in Young’s modulus 
between reservoir and surrounding rock, except for very large or very small values of 
Esur. The latter two cases stabilise the stress development at the reservoir centre. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 164 

 
 
 
 
 
 
 
 
 



 165

11 STRESS DEVELOPMENT AND FAULT SLIP IN 
GENERIC BASIC DISK-SHAPED RESERVOIR 
MODELS WITH FAULT 

 
 
 
This chapter describes stress development and fault slip on steeply dipping normal 
faults intersecting a disk-shaped gas reservoir as a function of several parameters: 
surrounding rock properties, initial reservoir pressure, throw along the fault plane and 
initial tectonic stress field. In Chapter 11.1, stress development and fault slip on a 
normal fault intersecting a disk-shaped gas reservoir is illustrated and explained for 
model ‘throw_const_½D’ (see Chapter 8). Chapter 11.1 also zooms in on the stress 
development in the rock volume and identification of areas in and around the disk-
shaped reservoir with critical stress development. It illustrates the basic mechanics of 
fault slip and stress development in a producing gas reservoir and forms the basis for 
the subsequent Chapters 11.2 – 11.6. These chapters each deal with one of the 
parameters mentioned above. 
 
 
11.1 Stress development and fault slip on a normal fault intersecting 

a disk-shaped gas reservoir (model ‘throw_const_½D’) 
 
This section illustrates the basic mechanics of fault slip and stress development in a 
producing disk-shaped gas reservoir intersected by a normal fault on the basis of two 
calculations of the 3D-model ‘throw_const_½D’, a commonly observed reservoir 
geometry (see Figure 8.2, Table 8.1 and Figure 11.1 for model geometry). Making use 
of the quantification methods developed in Chapter 9, this section forms the basis for 
the discussions and explanations in the subsequent sections. 
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Figure 11.1. Reservoir geometry of model ‘throw_const_½D’ with indication of 

observation line EE’ and observation points 1 - 13 on line EE’. 
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Table 11.1. Geomechanical properties and loading conditions for two different 
scenarios used for most of the calculations in Chapter 11. 

General properties 
Eres 
νres 
cres = csur 
φres 
ψres = ψsur 

sur
bulk

res
bulk ρ=ρ
sur
inip  

∆psur 

13.0 GPa 
0.20 
5.0 MPa 
30o 
10o 

2400 kg/m3 
hydrostatic 
0 Pa 

β 
h 
cf 
φf 
ψf 
K0H 
K0h 
λ 
ρpore fluid 

70o 
0 m 
0 Pa 
28o 
0o 
0.4 
0.4 
0o 
1000 kg/m3 

Iteration method     
- consol. phase 
 
- depletion phase 
 
No. of iterations 
per increment 
- consol. phase 
- depletion phase 

 
Constant 
Stiffness 
Mod. Newton 
Raphson 
 
 
5 
20 

surrounding rock properties equal to the reservoir rock properties and 
initial hydrostatic reservoir pore pressure* 
Esur 
νsur 
φsur 

res
inip  

∆pres 
fault
inip  (region A, B, C) 

∆pfault (region A, B) 
∆pfault (region C) 

13.0 GPa 
0.20 
30o 
hydrostatic 
-hydrostatic 
hydrostatic 
-hydrostatic 
0 Pa 

Dn (fault region A, B, C) 
Ds (fault region A, B, C) 
No. of load increments 
   - consolidation phase 
   - depletion phase 

14.4 GPa/m 
5.4 GPa/m 
 
2 
10 

default rock properties and initial reservoir pore pressure of 35.0 MPa 
Esur 
νsur 
φsur 

res
inip  

∆pres 
fault
inip  (region A, B) 
fault
inip  (region C) 

∆pfault (region A, B) 
∆pfault (region C) 

18.5 GPa 
0.25 
25o 
35.0 MPa 
-35.0 MPa 
35.0 MPa 
hydrostatic 
-35.0 MPa 
0 Pa 

Dn (fault)                        
   - region A                        

- region B                         
- region C 

Ds (fault)                         
   - region A                        

- region B                         
- region C 

No. of load increments 
   - consolidation phase 
   - depletion phase 

 
14.4 GPa/m 
18.1 GPa/m 
22.2 GPa/m 
 
5.4 GPa/m 
6.4 GPa/m 
7.4 GPa/m 
 
2 
11 

* Depth of centre of footwall reservoir compartment is -2975 m, meaning an initial 
pore pressure of 29.75 MPa. The superscripts res, sur and f refer to reservoir rock, 
surrounding rock and fault, respectively. 
 
Geomechanical properties and loading conditions used for the two calculations are as 
listed in Table 11.1. One calculation is performed for surrounding rock properties 
equal to the reservoir rock properties and initial hydrostatic reservoir pore pressure. 
For the model geometry with a reservoir depth between -2900 and -3125 m and a pore 
fluid density of 1000 kg/m3, this means an initial reservoir pore pressure around 30 
MPa. Note that for these property- and loading conditions solely the effect of a 
pressure decrease in the reservoir is modelled. The other calculation incorporates 
default rock properties and initial reservoir pore pressure of 35.0 MPa. 
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11.1.1 Relative shear displacement (RSD) 
 
Calculated gas depletion-induced RSD-values on the fault plane are shown in Figure 
11.2. The graph as presented in Figure 11.2b is along observation line EE’ (see Figure 
11.1), which runs down dip, parallel to the fault plane through the centre of the 
reservoir. In the model the maximum RSD-value is 6.7 cm, located in the centre of 
fault region A, where the two reservoir compartments overlap (at observation point 7). 
The RSD-values are positive and according to their definition (Chapter 9.1.1) this 
means normal fault slip, whereby the hanging wall moves downwards relative to the 
footwall. This is caused by the downward movement of the top of the hanging wall 
reservoir compartment, whereas the bottom of the footwall reservoir compartment 
moves upwards (Figure 11.3). This differential compaction behaviour reaches its 
maximum at observation point 7. 
 
Two local RSD-minima occur at points 2 and 12. The negative values indicate reverse 
fault slip at these two locations, whereby the hanging wall moves upwards relative to 
the footwall. Reservoir compaction causes the top of the footwall reservoir 
compartment to move downwards. The surrounding rock formation on the opposite 
side of the fault plane moves downwards as well due to the compaction of the hanging 
wall reservoir compartment, but to a lesser extent since its location is 75 m above the 
reservoir compartment. The relative movement is therefore of a reverse type. Absolute 
fault slip values in observation points 2 and 12 are very small when compared to the 
maximum value in point 7. This behaviour is related to the fact, that the reservoir not 
only vertically compacts, but also shows a certain amount of horizontal contraction 
(Figure 11.3). For the geomechanical properties and loading conditions used in this 
particular calculation, the reverse movements as illustrated in Figure 11.2 fall in the 
elastic range of fault deformation according to the fault shear- and normal stiffness: 
stress paths do not reach the failure criterion, as is illustrated in Figure 11.4. 
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Figure 11.2. Calculated RSD-values as a result of gas depletion for model 

‘throw_const_½D’ with surrounding rock properties being the same as 
reservoir rock properties and initial hydrostatic reservoir pore 
pressure. (a) contour plot; view direction is normal to the fault plane. 
(b) Graphical plot for observation line EE’; dotted areas denote the 
reservoir compartments. See Appendix 2 for this figure in colour. 
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Figure 11.3. Displacement vectors at the fault plane along observation line EE’ as a 

result of gas depletion for model ‘throw_const_½D’ with properties of 
surrounding rocks being the same as reservoir rock properties and 
initial hydrostatic reservoir pore pressure. Black arrows and grey 
arrows indicate displacements at the footwall and hanging wall, 
respectively. See Appendix 2 for this figure in colour. 

 
 
11.1.2 Stress paths on the fault plane 
 
This section characterises the stress development on the fault plane in relation to the 
observed fault slip as described in the previous section. In this way, a certain initial 
state of stress and stress development can be judged as promoting or opposing normal 
or reverse fault slip. 
 
Figures 11.4a and b show calculated stress paths for different observation points along 
line EE’ as they developed during gas depletion. There exists a symmetry between the 
stress paths of the bottom half (observation points 1 to 7) and the tip half (observation 
points 7 to 13) of the model. Stress paths in corresponding locations, such as points 1 
and 13 or points 2 and 12, are very similar to each other. The slight difference is the 
result of a different depth location. Because of the symmetry of the bottom half and 
tip half of the model, only the top half is considered in the further discussions. 
 
Consider first the initial states of stress, marked in Figure 11.4 by the arrow. Their 
position is at the dotted lines, which indicate the theoretically possible combinations 
of shear- and effective normal stresses on the fault plane for K0 = 0.4, assuming that 
the vertical stress is a principal stress (see eqs. (3.2a) and (3.2b), Chapter 3.1). The 
initial states of stress are represented by this line regardless of the position on the fault 
for the case that Esur = Eres = 13.0 GPa, νsur = νres = 0.2 and the initial reservoir pore 
pressure is hydrostatic. 
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Figure 11.4. Calculated stress paths for different observation points along line EE’ 

for model ‘throw_const_½D’ with surrounding rock properties being 
the same as reservoir rock properties and initial hydrostatic reservoir 
pore pressure (Table 11.1). The initial state of stress is similar for all 
stress paths and is indicated by an arrow. The end of the stress paths 
are marked by the respective observation point number. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 
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K0 is defined as the ratio of horizontal and vertical effective stress: K0 = hσ′ / vσ′  = 
Hσ′ / vσ′ . K0 = 0.4 means that an extensional stress regime is present: hσ′  = Hσ′  = 

0.4 vσ′ . Assuming that the vertical stress is a principal stress this is the same as 3σ′  = 
2σ′  = 0.4 1σ′ . In Chapter 3 we have adopted the assumption that initial shear stresses 

are positive for extensional stress regimes. Extensional stress regimes support normal 
faulting (see Chapter 3.2). A reactivation of the fault in normal sense means that the 
vertical effective stress increase is larger than the increase of horizontal effective 
stress: vσ′∆  > hσ′∆ , meaning that the shear stress will increase. A reactivation of a 
fault in an extensional stress regime in reverse sense, for which vσ′∆  < hσ′∆ , is 
characterised by a decrease of shear stress, followed by an increase of the absolute 
value. 
 
Stress paths in Figures 11.4a and b show an increase in shear stress during gas 
depletion for observation points 4 - 10, meaning that the fault tends to be reactivated 
in a normal sense in these locations. This is in line with the observation of normal 
fault slip at these locations (Chapter 11.1.1). Stress paths in locations 2 and 12 are 
characterised by a decreasing shear stress and thus by a tendency of the fault to be 
reactivated in reverse sense. The observation that calculated RSD-values are negative 
in these locations and thus reverse fault slip applies support this conclusion. Stress 
paths of observation points 2 and 12 cross the normal effective stress axis (when vσ′  
and hσ′  become equal) and develop straight towards the failure line for negative shear 
stresses (when hσ′  becomes larger than vσ′ ). The stress path in points 3 and 11 are 
almost horizontal. These stress paths represent the transition point between fault zones 
with increasing shear stress (normal fault slip) and decreasing shear stress (reverse 
fault slip). 
 
Reactivation with plastic fault slip occurs only if the stress path reaches the failure 
criterion of the fault plane. This is the case for observation points 5 - 10. When 
comparing these stress paths to the calculated RSD-values in Figure 11.2, we see 
indeed a substantial amount of fault slip in these locations. Plastic fault slip is absent 
in observation points 2 and 12: stress paths do not reach the failure line. RSD-values 
are very small and are the result of elastic deformation of the fault according to its 
elastic parameters Dn and Ds. 
 
The stress development in a certain location on the fault plane can be strongly 
influenced by the stress development in neighbouring locations. This is illustrated 
very clearly in observation points 4 and 5 (Figure 11.4a). The stress path in 
observation point 5, initially slightly diverging from the failure line, starts to converge 
strongly from the third depletion step onwards and reaches failure during the fourth 
depletion step. During the second depletion step, the stresses at observation point 6 
reach failure and do not build up further. Stress increase is therefore transferred to 
neighbouring zones, which leads to an increase of the stress path gradient. The same 
effect propagates along on the fault plane: in point 5, failure is reached during the 
fourth depletion step, leading to the knick in the stress path in point 4 after the fourth 
depletion step. The stress development in point 4, initially stabilising (stress path 
diverging from the failure line), becomes destabilising after the fourth depletion step 



 171

because of this propagation effect. The stress path in point 11 (Figure 11.4b) is almost 
horizontal. Only in the last depletion step, this stress path becomes a bit steeper, due 
to failure in observation point 10 during the last depletion step. 
 
In the previous paragraph, examples are given of stress paths that become steeper and 
therefore more destabilising due to the stress development in neighbouring locations. 
The opposite effect, where stress paths become more stabilising, is also observed and 
is illustrated in Figure 11.5 for a calculation of model ‘throw_const_½D’ with default 
properties of the surrounding rocks and initial reservoir overpressure (see Table 11.1). 
Stress paths for observation points 3 and 4 develop along the failure line for most of 
the depletion phase. The stress path in point 2 develops with decreasing shear stresses 
and reaches failure during the eighth depletion step, initiating plastic reverse fault slip 
at this location. This causes the state of stress in observation point 3 to develop from a 
state of failure, causing plastic normal fault slip, to an elastic state of stress: the stress 
development stabilises and moves away from the failure line after the eighth depletion 
step. 
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Figure 11.5. Calculated stress paths for different observation points along line EE’ 

for model ‘throw_const_½D’ with default rock properties and initial 
reservoir overpressure (see Table 11.1). The initial stress state is 
marked by an open square. The end of the stress paths are marked by 
the respective observation point number. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 
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11.1.3 Mobilised shear capacity on the fault plane (MSC) 
 
Rather than relatively complicated stress path plots, which give the stress 
development for specific locations on the fault plane, the criticalness of the state of 
stress on the entire fault plane can be plotted in one contour plot in terms of MSC-
values (Chapter 9). 
 
Contour plots of calculated MSC-values on the fault plane before and after gas 
depletion are shown in Figure 11.6. MSC values prior to depletion are homogeneous 
with values around 0.8. This is accordance with the theoretical value of 0.814 for the 
present conditions (β = 70o, K0 = 0.4, φf = 28o and cf = 0 Pa), which can be calculated 
using the eqs. (3.2a), (3.2b) and (9.8) – (9.13). 
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Figure 11.6. Calculated MSC-values on the fault plane, (a) before gas depletion and 

(b) after gas depletion, for model ‘throw_const_½D’ with surrounding 
rock properties being the same as reservoir rock properties and initial 
hydrostatic reservoir pore pressure. View direction is normal to the 
fault plane. Black lines indicate the intersection of the reservoir 
compartments with the fault plane. See Appendix 2 for this figure in 
colour. 

 
MSC-values on the fault plane vary between 0.23 and 1.00 after gas depletion (Figure 
11.6b). Gas depletion causes the MSC-values on most of the fault plane in contact to 
one or both of the reservoir compartments to be increased to 1.0, meaning that the 
state of stress in these zones has reached the failure criterion and plastic fault slip 
occurs. Three zones of critical stress development on the fault plane can be 
distinguished, where MSC-values become (close to) 1.0 after depletion (light colours 
in Figure 11.6b): a relatively large region where the footwall and hanging wall 
reservoir compartments overlap and the fault is bounded on either side by a reservoir 
compartment, a narrow region at the top of the footwall reservoir compartment and a 
narrow region at the bottom of the hanging wall reservoir compartment. The latter two 
regions are bounded by regions with relatively dark colours, indicating small MSC-
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values after depletion and a stabilising stress development. This is in accordance to 
the stress path plots as shown in Figure 11.4. Stress paths in observation points 2, 4 - 
10 and 12 represent the three zones with light contours in Figure 11.6b. Note that the 
stress paths in observation points 2 and 12 develop with decreasing shear stress, 
crossing the effective normal stress axis. This means that MSC-values decrease in the 
first instance but increase after the stress path has crossed the effective normal stress 
axis. The stress paths in observation points 1, 3, 13 and 11 develop away from failure. 
MSC-values in the corresponding locations are relatively low after gas depletion 
(Figure 11.6b). 
 
Although the mobilised shear capacity provides a useful tool to express the 
criticalness of a state of stress on the fault plane relative to a failure criterion, it is not 
a good tool to analyse in detail the stress development and related fault slip.  
 
 
11.1.4 Mobilised shear capacity in rock volume (MSC3D) 
 
In order to obtain insight in the criticalness of the stress development not only on the 
fault plane but also in the reservoir rock, the mobilised shear capacity in rock volume 
(MSC3D) is a useful tool. 
 
Contour plots of calculated MSC3D-values before and after gas depletion are shown in 
Figure 11.7 for a vertical cross-section through the centre of the reservoir. View 
direction is in the strike direction of the fault plane. The contour plots express the 
vicinity of a principal state of stress to the Mohr-Coulomb failure surface. Light 
colours denote a state of stress close to failure; dark colours denote low deviatoric 
stress. Before gas depletion, MSC3D-values are in the range of 0.67 – 0.68 at the depth 
of the reservoir. Contour plots do not show any disturbances near the reservoir or the 
fault, suggesting that the initial stress field is homogeneous and not affected by the 
geometrical structures. After gas depletion, zones with high MSC3D-values occur in 
the surrounding rock directly bounding the lateral reservoir edge. MSC3D-values reach 
a maximum of 1.0 here, suggesting plastic rock deformation to occur. Similar zones 
occur in the surrounding rock near the fault plane. MSC3D-values are maximum 0.97 
here, indicating solely elastic rock deformation under the modelled circumstances. 
MSC3D-values after gas depletion are typically around 0.82 within the central parts of 
the reservoir and decrease to minimum 0.69 at the lateral edge. 
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Figure 11.7. Calculated MSC3D-values in the rock volume, (a) before gas depletion 

and (b) after gas depletion, for model ‘throw_const_½D’ with 
surrounding rock properties being the same as reservoir rock 
properties and initial hydrostatic reservoir pore pressure. View plane 
is a vertical cross section through the centre of the reservoir, normal to 
the strike direction of the fault. Black lines indicate the reservoir 
boundaries and the fault plane. See Appendix 2 for this figure in 
colour. 

  
An increase in mobilised shear capacity does not necessarily imply a critical stress 
path. Figure 11.8 shows the regions where the stress development is critical (light 
colour) and non-critical (dark colour) according to eq. (9.29), Chapter 9.2.1. The 
lateral parts of the reservoir and most of the surrounding rock above and below the 
reservoir are stabilising, whereas the main part of the reservoir and the surrounding 
rock lateral to the reservoir are destabilising. This is in accordance to the observed 
stress development in disk-shaped reservoirs (Chapter 10). Furthermore, two zones in 
the surrounding rock near the fault plane above and below the reservoir are 
destabilising, whereas two zones within the reservoir near the fault plane at the top 
and bottom of the reservoir stabilise. It is the result of a similar stress development as 
at the lateral reservoir edges. Note that the calculation is made for an extensional 
stress regime. It is expected that for a compressive stress regime, these conclusions 
are exactly inverted. 
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Figure 11.8. Areas with critical stress development (white) and non-critical stress 

development (grey) according to eq. (9.29) for an extensional stress 
regime for model ‘throw_const_½D’ with surrounding rock properties 
being the same as reservoir rock properties and initial hydrostatic 
reservoir pore pressure. View plane is a vertical cross section through 
the centre of the reservoir, normal to the strike direction of the fault. 
Black lines indicate the reservoir boundaries and the fault plane. 
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11.2 Influence of surrounding rock properties 
 
This section describes the effects of varying Young’s moduli and Poisson’s ratios of 
the surrounding rocks on the initial state of stress, stress development and gas-
depletion induced slip on a fault plane. First, the series of calculations is described in 
Chapter 11.2.1. Subsequently the effects of the young’s modulus and the Poisson’s 
ratio are analysed in Chapters 11.2.2 and 11.2.3, respectively. These results are 
discussed in Chapter 11.2.4. 
 

 

11.2.1 Calculation series 
 

For the purposes of evaluating the effect of varying Young’s modulus and Poisson’s 
ratio, the 2D-model ‘2D_throw_½D’ is used (see Figure 8.6), which represents a cross 
section through the previously described 3D-model ‘throw_const_½D’ (Chapter 
11.1). 2D models are used because stress trajectories cannot be visualised clearly in 
DIANA for 3D models. This option becomes important for the analysis of initial 
states of stress and stress development as a function of surrounding rock properties. 
The 2D-models make use of higher order elements: 6-noded plane strain triangles for 
the rock volume (element type CT12E) and 3+3 noded line interface elements for the 
fault (element type CL12I). Some results of the 2D-models are compared to those of 
the 3D-models (Chapter 11.2.4) in order to check the compatibility and validity of the 
higher order 2D and lower order 3D models. 
 
Geomechanical properties and loading conditions are as listed in Table 11.1, with an 
initial hydrostatic reservoir pore pressure. Young’s modulus and Poisson’s ratio of the 
surrounding rock are varied. The following scenarios have been studied: Esur = 8.0, 
10.0, 13.0, 15.0, 18.5, 20.0, 25.0, 30.0, and 40.0 GPa and νsur = 0.0, 0.1, 0.2, 0.25, 0.3, 
0.4 and 0.49. In case of variation of Esur, νsur remains the same at 0.2. When νsur is 
varied, Esur remains constant at 13.0GPa. The friction angle of the surrounding rock is 
taken to be the same as for the reservoir rock: φsur = φres = 30o. Fault normal and shear 
stiffness are always 14.4 and 5.4 GPa/m, respectively, for the entire fault, regardless 
of the surrounding rock properties. These property- and loading conditions are chosen 
so that solely the effects of the two varied parameters are studied, without being 
disturbed/overlapped by other variations. Note that for a Young’s modulus and 
Poisson’s ratio of the surrounding rock equal to the reservoir rock (Esur = Eres = 13.0 
GPa and νsur = νres = 0.2), solely the effect of a pressure decrease in the reservoir is 
modelled. This is considered as a standard case.  
 
 

11.2.2 Young’s modulus 
 

The Young’s modulus of the surrounding rock plays an important role for the initial 
state of stress on the fault. The initial state of stress, in turn, is a very important factor 
in the development of the amount of fault slip. Critical stress paths are more likely to 
reach the failure criterion in an earlier stage of depletion when the initial state of stress 
is closer to failure, eventually leading to more fault slip. Initial states of stress as a 
function of Esur are plotted in Figure 11.9 for five different locations on the fault.  
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Figure 11.9. Initial states of stress for five different locations on the fault (1, 2, 4, 6 

and 7) as a function of the Young’s modulus of the surrounding rock 
(Esur). Calculation results of model ‘2D_throw_½D’ with Eres = 13.0 
GPa, νsur = νres = 0.2 and initial hydrostatic reservoir pore pressure. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 
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Basically two different fault zones can be distinguished: a zone around point 2 (top of 
the footwall reservoir compartment), where an increasing Esur leads to decreasing 
shear- and effective normal stresses on the fault, and a zone marked by the points 4, 6 
and 7, where an increasing Esur leads to increasing values of τ and nσ′  on the fault. 
 
These observations can be explained as illustrated by the effective principal stress 
vector plots of Figures 11.10 and 11.11. Effective principal stress vectors for three 
different cases are shown, for an Esur-value equal to, lower than and larger than the 
Eres-value. For the case that Esur = Eres = 13.0 GPa (Figure 11.10), a very regular stress 
pattern applies with the largest principal stress being vertical and the horizontal 
principal stress determined by the K0-value of 0.4. For this case, eqs. (3.2a) and (3.2b) 
of Chapter 3.1 can be used to calculate the shear- and effective normal stresses on the 
fault plane. Doing so results in the dotted lines in Figure 11.9, which indicate the 
theoretically possible combinations of shear- and effective normal stresses on the fault 
plane. As expected, the initial states of stress for the case that Esur = Eres = 13.0 GPa 
are positioned on this line regardless of the position on the fault. 
 
The difference between the Young’s moduli of reservoir and surrounding rock make 
that the effective principal stress vectors show variations both in direction and 
magnitude (Figure 11.11). For a good visualisation the extreme Esur-values of 1.0 and 
70.0 GPa are taken. Similar patterns occur for the other values of Esur, but to a lesser 
extent. The variations of the effective principal stress vectors in direction and 
magnitude cause the initial states of stress as plotted in Figure 11.9 to differ from the 
τ/ nσ′ -combinations as calculated according to eqs. (3.2a) and (3.2b). 
 
Consider first the fault zone where the two reservoir compartments overlap, around 
the observation points 4 and 7, for the case that Esur > Eres. The originally vertical 
effective principal stress vectors are slightly turned from their originally vertical 
direction, a bit more perpendicular to the fault (compare Figures 11.10 and 11.11b). 
The angle between the fault and the subhorizontal effective principal stress is thus 
somewhat smaller. Recall now the eqs. (3.2a) and (3.2b), used for the calculation of 
shear and normal stress as a function of magnitude and orientation of the smallest and 
largest principal stresses. β in these equations represents the fault dip angle but is in 
fact the angle between the fault and the smallest principal stress direction. This angle, 
originally 70o for the standard case (Figure 11.10), decreases now, becoming closer to 
the most critical angle βcrit = 45o + ½φf = 59o for the assumed fault friction angle of 
28o. According to eqs. (3.2a) and (3.2b), this leads to an increase in both τ and nσ′ . 
 
Furthermore, the calculations indicated that, in the fault zone around the observation 
points 4 and 7, the magnitude of the subvertical effective principal stress became 
somewhat larger whereas the magnitude of the subhorizontal effective principal stress 
remained more or less equal. Both the mean stress ( 1σ′  + 3σ′ ) and the differential 
stress ( 1σ′  - 3σ′ ) in eqs. (3.2a) and (3.2b) increase and therefore the values of τ and 

nσ′ , whereby τ is more affected than nσ′ . 
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Esur = 13.0 GPaEsur = 13.0 GPa

 
Figure 11.10. Calculated effective principal stress vectors for the initial state of 

stress in model ‘2D_throw_½D’ with rock properties and initial pore 
pressure in the surrounding rock being the same as in the reservoir 
rock (Eres = Esur = 13.0 GPa, νsur = νres = 0.2 and initial hydrostatic 
reservoir pore pressure). 

 
For Esur < Eres, things become the other way around (see Figure 11.11a). Originally 
vertical effective principal stress vectors around the observation points 4 and 7 are 
now turned into subvertical directions, more parallel to the fault, thus increasing the 
angle between the fault and the smallest principal stress direction. Furthermore, the 
magnitude of the subvertical effective principal stress became somewhat smaller 
whereas the magnitude of the subhorizontal effective principal stress remained more 
or less equal. Similar to the previously given explanations this leads according to eqs. 
(3.2a) and (3.2b) to a decrease in both τ and nσ′ . 
 
Consider now the fault zone around points 1 and 2 for Esur > Eres, at the top of the 
footwall reservoir compartment. Effective principal stress vectors near observation 
point 2 inside of the reservoir, both subvertical and subhorizontal, show relatively low 
magnitudes when compared to the standard case (see Figures 11.10 and 11.11b). The 
originally vertical effective principal stress vectors are slightly turned into subvertical 
directions, more perpendicular to the fault. At the opposite side of the fault, in the 
surrounding rock, effective principal stress vectors are relatively large in magnitude 
and show a slight turning of the originally vertical effective principal stress vectors 
into subvertical directions, more parallel to the fault. Apparently the stresses are 
attracted to the stiffer surrounding rock and are arched away from the weaker 
reservoir rock, resulting in smaller values of τ and nσ′  in the fault zone around points 
1 and 2. For Esur < Eres, the situation is reversed (Figure 11.11a): the stiffer reservoir 
rock attracts now the stresses, leading to larger effective stresses inside of the 
reservoir and smaller effective stresses outside and an effective principal stress pattern 
as shown in Figure 11.11a. This leads to larger values of τ and nσ′  in the fault zone 
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around points 1 and 2. The above explanations for the fault zone at the top of the 
footwall reservoir compartment apply for reasons of symmetry also the fault zone at 
the bottom of the hanging wall reservoir compartment. 
 
 

(a)
Esur = 1.0 GPa

(b)
Esur = 70.0 GPa

(a)
Esur = 1.0 GPa

(b)
Esur = 70.0 GPa

 
Figure 11.11. Calculated effective principal stress vectors for the initial state of 

stress in model ‘2D_throw_½D’ for (a) Esur = 1.0 GPa and (b) Esur = 
70.0 GPa. Eres = 13.0 GPa and νres = νsur = 0.2 in both calculations. 
The initial pore pressure is hydrostatic in both reservoir and 
surrounding rock. 
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Calculations showed that stress paths in the fault zone where the two reservoir 
compartments overlap develop with increasing shear- and effective normal stress, 
promoting normal fault slip. This is in accordance to the explanations in Chapter 
11.1.2. Esur > Eres causes the initial shear- and effective normal stress in this fault zone 
to be larger and closer to failure than in the standard case with no rock property 
discrepancy. It therefore promotes the reactivation of the normal fault in this zone. 
Esur < Eres, on the other hand, causes the initial shear- and effective normal stresses 
and therefore the maximum fault slip to be less. Calculations indeed show an 
increasing maximum normal fault slip, located in observation point 7 for all 
calculations, with increasing values of Esur (Figure 11.12).  
 
Contrarily, the calculations showed that the stress paths in the fault zones near the top 
of the footwall reservoir compartment and the bottom of the hanging wall reservoir 
compartment develop with decreasing shear stress, promoting reverse fault slip. Esur > 
Eres causes the initial shear- and effective normal stress in this fault zone to be smaller, 
shortening the path from the initial state of stress to the failure line compared to the 
standard case with no rock property discrepancy. It therefore promotes reverse fault 
slip in these zones. Initial shear stresses in observation point 2 even become negative 
for high values of Esur (Figure 11.9), suggesting a local field with reverse shear 
stresses on the fault. It has to be mentioned here that the stresses at the reservoir 
corner points (2 and 4) have to be considered with care, since these are located at 
locations with rock property- and pore pressure jumps and large stress concentrations. 
The numerical calculations results might be exaggerated. Esur < Eres, on the other 
hand, causes the initial shear- and effective normal stresses to be larger and therefore 
the reverse fault slip to be less. Calculations indeed show a larger value of maximum 
reverse fault slip, located in observation point 2 for all calculations, with increasing 
values of Esur (Figure 11.12). 
 
For the modelled conditions it can be stated overall, that a surrounding rock Young’s 
modulus higher than the Young’s modulus of the reservoir rock promotes the 
reactivation of a steeply dipping normal fault intersecting a reservoir with a throw of 
half the reservoir thickness in an extensional tectonic stress regime. Normal fault slip 
is promoted in the fault zone where the two compartments overlap and reverse fault 
slip is promoted at the top of the footwall reservoir compartment and at the bottom of 
the hanging wall reservoir compartment. On the other hand, a surrounding rock 
Young’s modulus smaller than the Young’s modulus of the reservoir rock opposes the 
reactivation of the fault. Note that the explanations given above are valid only for the 
specific conditions modelled for this dissertation, whereby the fault dips with an angle 
of 70o and the initial tectonic stress field is extensional (K0 = 0.4). For compressional 
tectonic stress fields (K0 > 1) and fault dip angles lower than 45o + ½φf, other 
conditions apply. 
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Figure 11.12. Calculated maximum RSD-values (normal fault slip) and minimum 

RSD-values (reverse fault slip) as a function of the Young’s modulus of 
the surrounding rock (Esur) for model ‘2D_throw_½D’ with Eres = 13.0 
GPa and νres = νsur = 0.2. The initial pore pressure is hydrostatic in 
both reservoir and surrounding rock. Maximum values were observed 
in observation point 7 (see Figure 11.1). Minimum values were 
observed in observation points 2 and/or 12. 

 
 
11.2.3 Poisson’s ratio 
 
Initial states of stress as a function of νsur are plotted in Figure 11.13 for five different 
locations on the fault. Like is the case for the Young’s modulus (Chapter 11.2.2), two 
different fault zones can be basically distinguished: a zone around point 2 (top of the 
footwall reservoir compartment), where an increasing νsur leads to decreasing shear- 
and effective normal stresses on the fault, and a zone marked by the points 4, 6 and 7, 
where an increasing νsur leads to increasing values of τ and nσ′  on the fault. In points 
1, 4 and 7 only the larger values of νsur seem to have significant influence on the 
initial state of stress. 
 
As outlined in Chapter 11.2.2, stress paths in the fault zone where the two reservoir 
compartments overlap develop with increasing τ and nσ′ , promoting normal fault slip. 
νsur > νres causes the initial shear- and effective normal stress in this fault zone to be 
larger and closer to failure than in the standard case with no rock property 
discrepancy. It therefore promotes the reactivation of the normal fault in this zone. νsur 
< νres, on the other hand, causes the initial shear- and effective normal stresses and 
therefore the maximum fault slip to be less, although its influence seems to be minor. 
Calculations indeed show an increasing maximum normal fault slip, located in 
observation point 7 for all calculations, with increasing values of νsur (Figure 11.14). 
For the modelled conditions, values of νsur lower than 0.2 does not have a significant 
influence on the calculated maximum normal fault slip. 
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Stress paths in the fault zone around observation point 2 develop with decreasing 
shear stress, promoting reverse fault slip (see Chapter 11.1.2 for explanation). νsur > 
νres causes the initial shear- and effective normal stress in this fault zone to be smaller, 
shortening the path from the initial state of stress to the failure line compared to the 
standard case with no rock property discrepancy. It therefore promotes reverse fault 
slip in this zone. Initial shear stresses in observation point 2 even become negative for 
high values of νsur (Figure 11.13), suggesting a local field with reverse shear stresses 
on the fault. Note that the numerical calculation results at the reservoir corner points 
(2 and 6) might be somewhat exaggerated due to rock property- and pore pressure 
jumps and large stress concentrations. νsur < νres, on the other hand, causes the initial 
shear- and effective normal stresses to be larger and therefore the reverse fault slip to 
be less. Calculations indeed show a larger value of maximum reverse fault slip, 
located in observation point 2 and/or 12 for all calculations, with increasing values of 
νsur (Figure 11.14), whereby the influence of νsur-values smaller than 0.2 is minor. 
Because of symmetry on the fault (see Chapter 11.1), the behaviour around the top of 
the footwall- and the bottom of the hanging wall reservoir compartment is similar. 
 
For more insight in the influence of the initial state of stress on the fault as a function 
of the Poisson’s ratio of the surrounding rock, the initial effective stress field around 
the reservoir-intersecting part of the fault is plotted in Figure 11.15 for the two 
extreme νsur-values of 0.0 and 0.49. These are most suited for a good visualisation of 
the perturbations in the principal stress field from the standard case where νsur = 0.2, 
which is shown in Figure 11.10. Similar patterns occur for the other values of Esur, but 
to a lesser extent. 
 
Initial effective principal stress vectors for νsur = 0.49 show a similar pattern as those 
for Esur = 70.0 GPa (compare Figures 11.15b and 11.11b). This is very reasonable 
since a high Poisson’s ratio means a stiff material: the bulk modulus is high for high 
values of E and/or ν. The stresses are attracted to the stiffer surrounding rock and are 
arched away from the weaker reservoir rock, resulting in smaller values of τ and nσ′  
in the fault zone around points 1 and 2. Subvertical effective principal stresses 
concentrate in the zone where the two reservoir compartments overlap. Their 
magnitudes become somewhat larger when compared to the standard case of Figure 
11.10, whereas the subhorizontal effective principal stress magnitudes become 
somewhat smaller. The description of the initial effective principal stress field and its 
implications on the initial shear- and effective normal stresses on the fault for νsur > 
νres are the same as for Esur > Eres and can be read in Chapter 11.2.2. 
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Figure 11.13. Initial states of stress for five different locations on the fault (1, 2, 4, 6 

and 7) as a function of the Poisson’s ratio of the surrounding rock 
(νsur). Calculation results of model ‘2D_throw_½D’ with νres = 0.2, 
Esur = Eres = 13.0 GPa and initial hydrostatic reservoir pore pressure. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 
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Initial effective principal stress vectors for νsur = 0.0 show minor difference when 
compared to the standard case (Figures 11.15a and 11.10). Directions are hardly 
changed. The differences are mainly in the magnitudes, but are not more than 
approximately 2 MPa (appr. 5% of the subvertical effective principal stress). Effective 
principal stresses become somewhat larger within the reservoir near the fault and 
smaller in the reservoir-near surrounding rock near the fault. Apparently, the stiffer 
reservoir rock attracts the stresses. In the reservoir around observation point 7, 
(sub)horizontal effective principal stresses are somewhat larger whereas (sub)vertical 
effective principal stresses remain unchanged. The differential stress ( 1σ′  - 3σ′ ) in eqs. 
(3.2a) and (3.2b) becomes somewhat smaller, whereas the mean stress ( 1σ′  + 3σ′ ) 
becomes somewhat larger. The values of τ and nσ′  therefore decrease, whereby τ is 
more affected than nσ′ . Because of the small changes in magnitude (< 2 MPa), these 
changes are very small, as indicated in Figure 11.13. 
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Figure 11.14. Calculated maximum RSD-values (normal fault slip) and minimum 

RSD-values (reverse fault slip) as a function of the Poisson’s ratio of 
the surrounding rock (νsur) for model ‘2D_throw_½D’ with νres = 0.2 
and Eres = Esur = 13.0 GPa. The initial pore pressure is hydrostatic in 
both reservoir and surrounding rock. Maximum values were observed 
in observation point 7 (see Figure 11.1). Minimum values were 
observed in observation points 2 and/or 12. 
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(a)
νsur = 0.0

(b)
νsur = 0.49

(a)
νsur = 0.0

(b)
νsur = 0.49

 
Figure 11.15. Calculated effective principal stress vectors for the initial state of 

stress in model ‘2D_throw_½D’ for (a) νsur = 0.0 and (b) νsur = 0.49. 
νres = 0.2 and Eres = Esur = 13.0 GPa in both calculations. The initial 
pore pressure is hydrostatic in both reservoir and surrounding rock. 

 
11.2.4 Discussion 
 

Young’s moduli for sandstones in general typically range from 0.1 – 30 GPa and 
Poisson’s ratios from 0 – 0.45 (Fjaer et al. 1996). For shales these values are 0.4 – 70 
GPa and 0 – 0.30. In the northern Netherlands, reservoir Young’s moduli and 
Poisson’s ratios are typically around 13.0 GPa and 0.2, respectively (NAM 2000). The 
reservoir is underlain by stiffer carboniferous rocks (Limburg Formation), consisting 
of shales and sandstones with Young’s moduli around 20 GPa and Poisson’s ratios of 
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about 0.2. Reservoirs are in most cases covered by a shaly cap rock (Ten Boer 
claystone). E- and ν-values of this cap rock are typically 18.0 – 18.5 GPa and 0.25 
(NAM 2000). The calculated RSD-values (Figures 11.12 and 11.14) indicate that for 
the given ranges the Young’s modulus of the surrounding rock is a more important 
parameter than the Poisson’s ratio of the surrounding rock. νsur only plays a 
significant role for larger values, say for νsur > 0.3. Considering the salt layers above 
the reservoir, this could be the case, since these are commonly modelled with a 
Poisson’s ratio of 0.35. 
 
 
11.3 Influence initial slight reservoir overpressure 
 

11.3.1 Calculation series 
 

The Groningen and Annerveen gas fields were initially slightly overpressured prior to 
depletion (Chapter 7.7) with an initial overpressure of approximately 35.0 MPa. This 
is only slightly larger than a hydrostatic pore pressure at the depth of the reservoirs, 
which would amount approximately 30.0 MPa. It is studied how this slight 
overpressure affects the calculated initial state of stress and stress development on the 
fault plane and fault slip. For this purpose, 2D-model ‘2D_throw_½D’ is used with 
higher-order elements: 6-noded plane strain triangles for the rock volume (element 
type CT12E) and 3+3 noded line interface elements for the fault (element type 
CL12I). 
 
Calculations with an initial pore pressure of 35.0 MPa and an initial hydrostatic pore 
pressure (appr. 30 MPa) in the reservoir and the parts of the fault plane in contact to 
the reservoir are performed for two kinds of surrounding rock properties (Table 11.2): 
equal to reservoir rock (Esur = Eres = 13.0 GPa, νsur = νres = 0.2 and φsur = φres = 30o) and 
stiffer than reservoir rock with default values (Esur = 18.5 GPa, νsur = 0.25 and φsur = 
25o). For all other geomechanical properties and loading conditions values are used as 
listed in Table 11.2, except for the fault normal and shear stiffness. They amount 14.4 
and 5.4 GPa/m for the entire fault for all calculations, respectively, regardless of the 
surrounding rock properties. In this way, the calculations can be compared to those of 
Chapter 11.2 with equal rock properties. 
 
Gas depletion is modelled by decreasing the reservoir pore pressure to 0 MPa in 
several static depletion steps. In the case of a reservoir with a hydrostatic initial pore 
pressure, the pore pressure is depleted linearly in ten static depletion steps. Note that 
since the hydrostatic pressure increases with depth (from 28.4 MPa at the top of the 
footwall to 30.7 MPa at the bottom of the hanging wall), the depletion at the bottom 
of the reservoir (3.07 MPa per depletion step) is in this case somewhat higher than at 
the top of the reservoir (2.84 MPa per depletion step). In the case that the reservoir is 
initially slightly overpressured (35.0 MPa initial pore pressure in the whole reservoir, 
see Figure 8.10), the reservoir is depleted to 0 MPa in eleven static depletion steps. 
The first ten steps are equal to the case of a hydrostatic initial pore pressure: the pore 
pressure decreases per depletion step with an amount from 2.84 MPa at the top of the 
reservoir to 3.07 MPa at the bottom. The remaining pore pressure is then depleted in a 
final eleventh step. Hence, the first ten depletion steps of all calculations incorporate 
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the same ∆p. Stress paths and fault slip after these ten depletion steps are then 
comparable. The eleventh depletion step in case of  an initially overpressured 
reservoir is performed in order to study the effect of depletion to 0 MPa.  
 
Note that for a Young’s modulus and Poisson’s ratio of the surrounding rock equal to 
the reservoir rock (Esur = Eres = 13.0 GPa and νsur = νres = 0.2), solely the effect of an 
initial reservoir overpressure and its depletion is modelled. Note also that the effects 
as presented here are solely the result of a larger initial reservoir pore pressure in the 
FE-models. Other possible effects related to an initial overpressure which could occur 
in reality, such as a higher porosity and therefore different geomechanical properties 
of the reservoir rock, are not taken into account. 
 
 

11.3.2 Calculation results and discussion 
 

In order to compare the stress paths for various locations along the fault for an initial 
hydrostatic pore pressure versus an initially overpressured situation, calculations are 
performed for the case that the surrounding rock properties are equal to the reservoir 
rock properties. The results are shown in Figure 11.16. 
 
The main difference between the two initial pressure conditions is in the initial state 
of stress. Furthermore, the eleventh depletion step in case of initial overpressure is 
absent in the hydrostatic case. A small difference can be observed in the last depletion 
steps in observation point 4. 
 
Initial states of stress for the initially overpressured reservoir are, for the observation 
points in contact with the reservoir, characterised by a effective normal stress ( nσ′ ) 
which is smaller than for the initially hydrostatically pressured reservoir. nσ′  is hardly 
affected in points 1 and 2. Furthermore, initial shear stresses are, for the initially 
overpressured reservoir, smaller in points 6 and 7, larger in point 2 and as good as 
unaffected in points 1 and 4. For symmetry reasons, similar conditions apply to the 
lower half of the reservoir, below point 7 (see Chapter 11.1). 
 
For the initially overpressured reservoir, the initial states of stress lead to a way to 
failure which is longer than for the initially hydrostatically pressured reservoir. Stress 
paths on the fault around observation points 6 and 7, where the two reservoir 
compartments overlap, develop towards failure with increasing shear- and effective 
normal stresses but start with lower values. Stress paths on the fault around point 2, at 
the top of the footwall reservoir compartment, develop towards the failure line for 
reverse fault reactivation but have larger initial values. The failure line for the initially 
overpressured reservoir is, for the case of equal reservoir and surrounding rock 
properties, generally reached one depletion step after it is reached in the initially 
hydrostatically pressured reservoir. Calculated fault slip after ten depletion steps is 
accordingly smaller (Table 11.2 and Figure 11.18). Depletion of the remaining 
reservoir overpressure to 0 MPa in an eleventh depletion step leads to a larger pore 
pressure decrease, further stress development and thus more fault slip than for the 
initially hydrostatically pressured reservoir. Calculated RSD-values are therefore 
larger in this case. 
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Figure 11.16. Calculated stress paths for different observation points for model 

‘2D_throw_½D’ with surrounding rock properties being the same as 
reservoir rock properties for (a) initially hydrostatic reservoir pore 
pressure and (b) initial reservoir overpressure of 35.0 MPa (see Table 
11.1). The initial state of stress for (a) is similar for all stress paths and 
is indicated by an arrow. In (b) it is marked by an open square. The 
end of the stress paths are marked by the respective observation point 
number. * The ‘initial stress line’ is calculated according to eqs. (3.2a) 
and (3.2b), chapter 3.1. 
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Figure 11.17. Calculated stress paths for different observation points for model 

‘2D_throw_½D’ with surrounding rock properties being stiffer as 
reservoir rock properties for (a) initially hydrostatic reservoir pore 
pressure and (b) initial reservoir overpressure of 35.0 MPa (see Table 
11.1). The initial state of stress for (a) is similar for all stress paths and 
is indicated by an arrow. In (b) it is marked by an open square. The 
end of the stress paths are marked by the respective observation point 
number. * The ‘initial stress line’ is calculated according to eqs. (3.2a) 
and (3.2b), chapter 3.1. 
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Similar results as described above apply for calculations with surrounding rock 
properties stiffer than the reservoir rock (Esur=18.5 GPa, νsur=0.2, φsur=25o). 
Comparing the stress paths in Figures 11.16 and 11.17 shows that the calculated initial 
state of stress forms the main difference between the four different scenarios. The 
stiffer surrounding rock leads for the initially hydrostatically pressured reservoir to an 
initial state of stress in observation point 2 which is very close to reverse failure. 
Failure is in this case already reached after the third depletion step. An initial 
overpressure in the reservoir stabilises this behaviour largely. In the latter case, failure 
is only reached in point 2 during the fifth depletion step. 
 
Consider now the stress paths for the following two scenarios: equal surrounding and 
reservoir rock properties with initial hydrostatic reservoir pore pressure and stiffer 
surrounding rock properties with initial reservoir overpressure (Figures 11.16a and 
11.17b). The stiffer surrounding rock causes the initial state of stress on the fault to be 
closer to failure than in case of equal surrounding and reservoir rock properties. An 
initial reservoir overpressure, on the other hand, tends to cause the initial state of 
stress further away from failure. As is visible from the stress path plots, the stiffer 
surrounding rock gives for the given conditions the stronger effect: initial states of 
stress in observation points 4, 5, 6 and 7 are at or very close to failure (Figure 11.17b). 
The initial state of stress in observation point 2 is, regarding the negative stress path 
gradient, with a smaller effective normal stress also closer to failure. Failure with 
reverse plastic fault slip is reached after the fifth depletion step. The reverse 
reactivation of the fault in observation point 2 causes the stress path of observation 
point 4, initially developing along the failure line for normal fault reactivation, to 
stabilise for the last depletion step: it develops away from the failure line. Because of 
states of stress closer to failure, calculated fault slip is accordingly larger (Figure 
11.18 and Table 11.2). 
 
From the foregoing it can be concluded, that a slight initial reservoir overpressure in 
the geomechanical reservoir models causes the initial state of stress on the fault at 
reservoir level to be further away from failure than in case of an initially 
hydrostatically pressured reservoir. An initial reservoir overpressure in the 
geomechanical models reduces therewith the calculated fault slip at reservoir level, 
when the same pore pressure reduction applies. However, depletion of the reservoir 
until the same end pressure provides an additional driving force for fault slip when the 
reservoir embodies a larger initial pore pressure. Calculated RSD-values are therefore 
larger in this case. The effects as presented here are solely the result of a larger initial 
reservoir pore pressure in the reservoir. Other possible effects related to an initial 
overpressure which could occur in reality, such as a higher porosity and therefore 
different geomechanical properties of the reservoir rock, are not taken into account. 
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Table 11.2. Calculated maximum and minimum RSD-values on the fault for 
different scenario’s for model ‘2D_throw_½D’ with higher-order 
elements CT12E and CL12I. 

Scenario description*** RSDmax  RSDmin Scena-
rio no. 

No. of 
depletion 
steps 

Surrounding 
rock properties* 

res
inip ** ∆pres [cm] [cm] 

1 
2 
3 
4 
2 
4 

10 
10 
10 
10 
11 
11 

same 
same 
stiff 
stiff 
same 
stiff 

hydrostatic 
overpressure 
hydrostatic 
overpressure 
overpressure 
overpressure 

-hydrostatic 
-hydrostatic 
-hydrostatic 
-hydrostatic 
-35.0 MPa 
-35.0 MPa 

6.1 
5.1 
10.2 
9.6 
7.6 
12.1 

-0.5 
-0.4 
-0.7 
-0.7 
-0.7 
-0.9 

* relative to reservoir rock properties; 
 ‘same’: Esur = Eres = 13.0 GPa, νsur = νres = 0.2 and φsur = φres = 30o 
 ‘stiff’: Esur = 18.5 GPa, νsur = 0.25 and φsur = 25o 
** ‘hydrostatic’: res

inip  is according to a hydrostatic pore pressure gradient with ρfluid 
= 1000 kg/m3 

 ‘overpressure’: res
inip  = 35.0 MPa 
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Figure 11.18. Calculated RSD-values on the fault for different scenario’s (see Table 

11.2) for model ‘2D_throw_½D’ with higher-order elements CT12E 
and CL12I. 
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11.4 Influence of throw on calculated fault slip and seismic moment 
 
11.4.1 Calculation series 
 
In this section, the influence of throw along the fault plane on calculated RSD-values 
and seismic moment is analysed. Several models are used for this purpose (see Figure 
11.19 and Chapter 8): model series ‘throw_const_...D’ with a constant throw along 
the fault strike, each model with a different amount of throw (Table 11.4), and model 
‘throw_var’, incorporating a varying throw along the strike of the fault. Figure 11.19 
shows the geometries of the reservoir and the location of the observation lines used 
for output in terms of stress paths and RSD-graphs. Two scenarios are considered (see 
Table 11.1): 
- surrounding rock properties equal to the reservoir rock properties (Esur = Eres = 

13.0 GPa; νsur = νres = 0.2; φsur = φres = 30o) and initial hydrostatic reservoir pore 
pressure; 

- default rock properties (Esur = 18.5 GPa; νsur = 0.25; φsur = 25o) and initial reservoir 
pore pressure of 35.0 MPa. 

 
Gas depletion is modelled by reducing the pore pressure in both reservoir 
compartments and the adjacent fault regions A and B (Figure 11.19) with the same 
amount. The (hydrostatic) pore pressure in the surrounding rock and remaining part of 
the fault remains constant at its initial value. The geometry of model ‘throw_var’ is, 
with its scissor-like structure, representative for the in situ geometrical structure of gas 
reservoirs in the northern Netherlands. It has the advantage, that the influence of 
throw on fault slip can be obtained in one calculation run. Models ‘throw_const_...D’ 
are built in the first instance to get a relation between the amount of throw and the 
seismic moment. The seismic moment can only be calculated for the entire fault plane 
in the model, resulting in one value for normal fault slip and one value for reverse 
fault slip. Model ‘throw_var’ can therefore not distinguish the influence of the throw 
on the seismic moment. Comparison of the different models will indicate whether the 
slope of the hanging wall reservoir compartment in model ‘throw_var’ affects the 
calculation results. 
 
Table 11.3. Definition of throw for the 3D-models ‘throw_const_...D’ and 

‘throw_var’. 
Model name Throw (m) Throw / D 

(D=150m)
throw_const_0D 
throw_const_¼D 
throw_const_½D 
throw_const_¾D 
throw_const_1D 
throw_const_1¼D
throw_const_1½D
throw_const_2D 
throw_var 

0 
37.5 
75 
112.5 
150 
187.5 
225 
300 
0 – 297.95 

0 
¼ 
½ 
¾ 
1 
1¼ 
1½ 
2 
0 – 1.99 

 

Fault plane 

Footwall reservoir 
compartment

Hanging wall reservoir 
compartment 

Throw 

D=150m
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Figure 11.19. Reservoir geometry of models ‘throw_const½D’ (left) and ‘throw_var’ 

(right) with indication of observation lines AA’, BB’, CC’, DD’ and 
EE’. The lower figures show the intersection lines of the two reservoir 
compartments on the fault plane for a view direction perpendicular to 
the fault plane with indication of observation line FF’ and the three 
different fault regions (see Chapter 8.1 for a more detailed 
description). 

 
 
11.4.2 Calculation results and discussion 
 
Consider first the calculated fault slip in form of RSD-values on the fault plane for 
model ‘throw_var’ with equal reservoir and surrounding rock properties and initial 
hydrostatic reservoir pore pressure (Figure 11.20 and Table 11.4). View direction of 
the contour plot is normal to the fault plane. Intersection lines of the two reservoir 
compartments with the fault plane are shown. View direction of the cross sections is 
in strike direction of the fault. Pointed areas denote the reservoir compartments. The 
calculated RSD-graph for cross section AA’ does not show any significant fault slip. 
The negligibly small values are within the elastic deformation of the fault. A reservoir 
setting of type AA’ has a low sensitivity to fault reactivation since the two reservoir 
compartments on either side of the fault are located in the same depth position. They 
compact with equal amount on both sides of the fault, resulting in negligible amounts 
of fault slip. Note that this is the case only for equal pore pressure development and 
rock properties on either sides of the fault. 
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Figure 11.20. Calculated RSD-values on the fault plane for model ‘throw_var’ with 

equal reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure. The maximum value is 8.6 cm. View direction 
of the contour plot is normal to the fault plane. Intersection lines of the 
two reservoir compartments with the fault plane are shown. View 
direction of the cross sections is in strike direction of the fault. Dotted 
areas denote the reservoir compartments. See Appendix 2 for this 
figure in colour. 

 
 
Reservoir configuration BB’ is sensitive to fault slip due to differential compaction of 
the two reservoir compartments: the downward movement of the top of the hanging 
wall reservoir compartment interacts with the upward movement of the bottom of the 
footwall reservoir compartment. This interaction is at its maximum in configuration 
CC’, where the top of the hanging wall reservoir compartment is positioned exactly 
opposite to the bottom of the footwall reservoir compartment. A sharp peak in the 
RSD-graph is observed here. In configuration DD’, this maximum seems to be 
extended from a single sharp peak to a broad maximum. This result can be explained 
as follows. Because the throw in configuration DD’ is larger than the reservoir 
thickness, the two reservoir compartments on either side of the fault plane are 
geometrically separated from each other. Between the two compartments exists a fault 
region of type C, which’ pore pressure remains constant at its initial hydrostatic value 
during gas depletion. Because of the compaction of the two reservoir compartments, 
shear stresses increase whereas normal effective stresses show little variation due to 
the non-depleting and thus relatively high pore pressure in this part of the fault plane. 
Stress paths develop virtually vertically and reach the failure line during the third 
depletion step (Figure 11.21). 
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Figure 11.21. Calculated stress paths for different observation points along line DD’ 

for model ‘throw_var’ with equal surrounding and reservoir rock 
properties and initial hydrostatic reservoir pore pressure. The initial 
state of stress is similar for all stress paths and is indicated by an 
arrow. The end of the stress paths are marked by the respective 
observation point number. The enlargement in the bottom right corner 
shows the stress path for observation point 4. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), Chapter 3.1. 

 
 
Table 11.4. Maximum normal fault slip and integrated normal fault slip over depth 

for the RSD-graphs in Figure 11.20. 
Obser-
vation 
line 

Throw 
[m] 

Throw/D 
(D=150m) 

RSDmax [cm] 
(largest nor-
mal fault slip) 

Normal fault 
slip integrated 
over depth [m2] 

(Normal fault slip 
integrated over 
depth) x 3000 x 
Ds [1014 Nm] 

AA’ 
BB’ 
CC’ 
DD’ 

0 
75 
150 
231 

0 
½ 
1 
1½ + 1/25 

0.1 
5.4 
7.2 
8.4 

0.19 
5.83 
4.19 
9.91 

0.03 
0.94 
0.68 
1.61 
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Faults as represented by cross sections BB’, CC’ and DD’ are all three sensitive for 
fault slip due to differential reservoir compaction. It has to be noted, that the effect of 
differential reservoir compaction in configuration DD’ is enhanced in the present 
geomechanical models, due to the constant pore pressure in the part of the fault in 
between the bottom of the footwall and the top of the hanging wall reservoir 
compartment. In configuration BB’, the maximum RSD-value is somewhat lower than 
in CC’, but according to the RSD-graphs and the contour plot, relatively large values 
occur over a larger area. Configuration BB’ seems in spite of its lower RSDmax-value 
to be more critical than configuration CC’ because of the larger area of fault slip. 
 
It is difficult to judge the criticalness of faults for reactivation solely based on the 
maximum RSD-value. A better approach would be to integrate the RSD-values over 
the fault plane or cross section lines. This is done for the four cross sections AA’, 
BB’, CC’ and DD’. The results are listed in Table 11.4 and compared to the RSDmax-
values of the respective graphs. The comparison indicates indeed that the 
configuration BB’ is for the modelled conditions with equal reservoir and surrounding 
rock properties and initial hydrostatic reservoir pore pressure more critical than 
configuration CC’. 
 
In order to come to a more representative quantity as is obtained by the integration of 
RSD-graphs, the seismic moment (M0) is introduced in Chapter 9.1.2. The seismic 
moment is defined by Aki (1966) as the product of the amount of fault slip (RSD), the 
area of the fault rupture and the shear modulus of the rock formation through which 
the fault slip takes place. In the DIANA software, the shear modulus is replaced by 
the fault shear stiffness. This replacement is valid as long as the shear stiffness is 
calculated according to eq. (9.7). 
 
The calculation of M0 in DIANA applies only for 3D-models and applies to the entire 
fault plane. It results in two scalar quantities: a positive value for normal fault slip and 
a negative value for reverse fault slip. In order to determine M0 as a function of throw, 
different models are built, each with a different amount of throw along the fault plane 
(model series ‘throw_const_...D’, see Table 11.3 and Chapter 8.1). The four 
observation lines AA’, BB’ and CC’ in model ‘throw_var’ represent with a throw of 
0, 75 and 150 m the models ‘throw_const_0D’, ‘-_½D’ and ‘-_1D’, respectively. 
 
Calculated RSD-graphs for the different models of series ‘throw_const_...D’ along 
line EE’ are similar to the corresponding graphs along observation lines AA’, BB’, 
CC’ and DD’ in model ‘throw_var’ (see Figures 11.20 and 11.22). The calculated 
RSD-values are for the graphs of models ‘throw_const_...D’ somewhat larger than for 
the corresponding graphs in model ‘throw_var’ (Table 11.5). The differences are 
relatively small and are most probably due to the different meshes in the different 
models and the tilting of the hanging wall reservoir compartment in model 
‘throw_var’. A larger difference is observed for RSD-values in graph BB’ and those 
from model ‘throw_const_½D’, which amounts to 1.3 cm. Comparison of the stress 
paths F and G along observation line EE’ of model ‘throw_const_½D’ with the stress 
paths 5 and 6 along line BB’ of model ‘throw_var’ (see Figures 11.23 and 11.4a) 
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shows a more critical development of stress paths for the first case: stress paths are 
steeper because of a faster shear stress development and reach failure in an earlier 
stage of depletion. This is most probably the result of a slightly different finite 
element mesh in the two models, but also the tilting of the hanging wall reservoir 
compartment in model ‘throw_var’ might play a role. 
 
No significant fault slip develops in model ‘0D’. Model ‘¼D’ shows a large area with 
plastic fault slip, but the RSD-values are relatively low when compared to the other 
models with larger amounts of throw. When the top of the hanging wall reservoir 
compartment is located a bit closer to the bottom of the footwall compartment (model 
‘½D’), RSD-values become clearly larger, whereas the area of movement becomes 
more narrow. Models ‘¾D’ and ‘1D’ show only minor changes in maximum RSD-
values in relation to model ‘½D’. For all the area of movement is affected, which is 
smallest for model ‘1D’, where the top of the hanging wall reservoir compartment is 
located exactly opposite to the bottom of the footwall compartment. Because of this 
specific geometry, one would expect that the maximum RSD-value occurs in model 
‘1D’. However, RSD-graphs for models ‘1¼D’, ‘1½D’ and ‘2D’ show even a slight 
increase in RSDmax. The reason for this behaviour is the combination of differential 
compaction of the two reservoir compartments, which causes shear stresses to 
increase, and a relatively small variation of effective normal stresses due to the non-
depleting and thus relatively high pore pressure in the part of the fault in between the 
bottom of the footwall and the top of the hanging wall reservoir compartment. Stress 
paths develop virtually vertically and reach the failure line during the third depletion 
step. 
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Figure 11.22. Calculated RSD-values along line EE’ as a result of reservoir 

depletion for model series ‘throw_const_...D’ for with equal 
surrounding and reservoir rock properties and initial hydrostatic 
reservoir pore pressure. 
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Calculated M0-values for models with a throw smaller than or equal to the reservoir 
thickness are listed in Table 11.5. According to these values, model 
‘throw_const_½D’ incorporates for the modelled conditions with equal reservoir and 
surrounding rock properties and initial hydrostatic reservoir pore pressure the most 
critical configuration: the largest seismic moment is calculated for this configuration. 
Based on the seismic moment, model ‘throw_const_½D’ incorporates a configuration 
which is more critical than that of model ‘throw_const_1D’, despite the smaller 
RSDmax-value. The results are in good agreement with model ‘throw_var’. RSD-
graphs such as shown in Figure 11.22 occur because of the model geometry over a 
width of approximately 3000 m, which is the reservoir width. The products of the 
integrated RSD-graphs of model ‘throw_var’ (Figure 11.20), the reservoir width of 
3000 m and the shear stiffness of the fault (Ds = 5.4.109 GPa/m) are virtually equal to 
the calculated seismic moments of corresponding models of calculation series 
‘throw_const_...D’ (see Tables 11.4 and 11.5). It shows the validity of the seismic 
moment calculations. 
 
Table 11.5. Calculated largest normal and reverse fault slip and seismic moment 

on the fault as a result of reservoir depletion for different models with 
equal reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure. Pore pressure reduction is with a hydrostatic 
amount until 0 MPa end pressure in 10 depletion steps. 

Model name Throw 
[m] 

Throw/D 
(D = 
150m) 

RSDmax 
[cm] 
(largest 
normal 
fault slip) 

RSDmin 
[cm] 
(largest 
reverse 
fault slip) 

M0
normal 

[1014 Nm] 
M0

reverse 

[1014 Nm] 

throw_const_0D 
throw_var AA’ 
throw_const_¼D 
throw_const_½D 
throw_var BB’ 
throw_const_¾D 
throw_const_1D 
throw_var CC’ 
throw_const_1¼D 
throw_const_1½D 
throw_var DD’ 
throw_const_2D 

0 
0 
37.5 
75 
75 
112.5 
150 
150 
187.5 
225 
231 
300 

0 
0 
¼ 
½ 
½ 
¾ 
1 
1 
1¼ 
1½ 
1½ + 1/25 

2 

0.1 
0.1 
3.5 
6.7 
5.4 
7.4 
7.8 
7.2 
7.9 
8.7 
8.4 
8.7 

0.0 
0.0 
-0.3 
-0.4 
-0.3 
-0.7 
-0.8 
-0.5 
-0.4 
-0.5 
-0.4 
-0.9 

0.04 
 
0.75 
1.10 
 
1.02 
0.69 
 

-0.03 
 
-0.09 
-0.12 
 
-0.13 
-0.14 
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Figure 11.23. Calculated stress paths for different observation points along line BB’ 

for model ‘throw_var’ with equal surrounding and reservoir rock 
properties and initial hydrostatic reservoir pore pressure. The initial 
state of stress is similar for all stress paths and is indicated by an 
arrow. The end of the stress paths are marked by the respective 
observation point number. * The ‘initial stress line’ is calculated 
according to eqs. (3.2a) and (3.2b), Chapter 3.1. 

 
The influence of throw on calculated fault slip is analysed so far for an idealised 
situation: equal reservoir and surrounding rock properties and an initially hydrostatic 
reservoir pore pressure. In order to analyse the influence of throw for surrounding 
rock property values and initial reservoir pore pressure representative for field 
conditions in the northern Netherlands, calculations of model ‘throw_var’ and model 
series ‘throw_const_...D’ have been performed with default rock properties 
(surrounding rock stiffer than the reservoir rock, see Table 11.1) and an initially 
slightly overpressured reservoir ( res

inip  = 35.0 MPa). 
 
The calculated fault slip is shown in Figure 11.24. RSD-contour plots and -graphs 
along the observation lines AA’, BB’, CC’ and DD’ incorporate the same trend as in 
Figure 11.20 (equal reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure): no significant fault slip for reservoir configuration AA’. 
Fault slip increases towards configuration BB’, which concentrates to a single sharp 
peak for configuration CC’ and extends to a broad maximum in configuration DD’. 
Note that the calculated seismic moments indicate, that configuration CC’ 
(corresponding to model ‘throw_const_1D’) is more critical than configuration BB’ 
(corresponding to model ‘throw_const_½D’) for the modelled conditions of default 
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rock properties and an initially slightly overpressured reservoir (Table 11.6). For 
equal reservoir and surrounding rock properties and initial hydrostatic reservoir pore 
pressure, configuration BB’ is more critical than configuration CC’ (Tables 11.4 and 
11.5). Beside this qualitative difference, calculated fault slip is mainly affected in a 
quantitative manner by the different rock properties and initial pore pressure (Figures 
11.20 and 11.24 and Tables 11.5 and 11.6).  
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Figure 11.24. Calculated RSD-values on the fault plane for model ‘throw_var’ with 

surrounding rock being stiffer than the reservoir rock and initial 
reservoir overpressure (see Table 11.1). The upper and lower contour 
plots are for a hydrostatic (10 depletion steps) and full (11 steps) pore 
pressure reduction, respectively. Hydrostatic and full depletion is 
marked in the RSD-graphs by solid and open dots, respectively. 
Maximum normal fault slip amounts 14.2 and 16.7 cm, respectively, 
and maximum reverse fault slip 1.6 and 2.3 cm, respectively. View 
direction of the contour plots is normal to the fault plane. Intersection 
lines of the two reservoir compartments with the fault plane are shown. 
View direction of the cross sections is in strike direction of the fault. 
Dotted areas denote the reservoir compartments. See Appendix 2 for 
this figure in colour. 
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Table 11.6. Calculated largest normal and reverse fault slip and seismic moment 
on the fault as a result of reservoir depletion for different models with 
surrounding rock being stiffer than the reservoir rock and initial 
reservoir overpressure (see Table 11.1). Pore pressure reduction is 
with a hydrostatic amount in 10 depletion steps. The calculation results 
as presented in Tables 11.5 and 11.6 incorporate the same ∆p during 
depletion and are comparable. 

Model name Throw 
[m] 

Throw/D 
(D= 
150m) 

RSDmax 
[cm] 
(largest 
normal 
fault slip) 

RSDmin 
[cm] 
(largest 
reverse 
fault slip) 

M0
normal 

[1014 Nm] 
M0

reverse 

[1014 Nm] 

throw_const_0D 
throw_var AA’ 
throw_const_¼D 
throw_const_½D 
throw_var BB’ 
throw_const_¾D 
throw_const_1D 
throw_var CC’ 
throw_const_1¼D 
throw_const_1½D 
throw_var DD’ 
throw_const_2D 

0 
0 
37.5 
75 
75 
112.5 
150 
150 
187.5 
225 
231 
300 

0 
0 
¼ 
½ 
½ 
¾ 
1 
1 
1¼ 
1½ 
1½ + 1/25 

2 

0.1 
0.1 
6.1 
10.3 
9.5 
11.6 
12.5 
12.8 
13.2 
13.7 
14.0 
13.2 

0.0 
0.0 
-0.1 
-0.7 
-0.2 
-1.2 
-1.4 
-1.3 
-1.2 
-1.5 
-1.1 
-2.0 

0.04 
 
1.47 
2.25 
 
2.43 
2.47 
 

-0.04 
 
-0.10 
-0.19 
 
-0.21 
-0.25 
 

 
Both normal and reverse fault slip are enhanced by the stiffer surrounding rock. This 
enhancement is illustrated in Figures 11.25 and 11.26, where the development of fault 
slip with depletion of the reservoir is shown for the two different scenario’s (equal 
and stiffer surrounding rock). For the scenario with equal surrounding and reservoir 
rock properties (Figure 11.25), fault slip develops very slowly at the beginning of 
depletion for all observation lines. These steps represent stress paths that are not at 
failure (see Figures 11.21 and 11.23 for reference). In the first depletion steps, stress 
paths develop towards the failure line and the fault deforms elastically. When the 
stress paths reach failure, (plastic) fault slip develops faster. This is marked by an 
increase of the gradient of the RSD-graphs. Such an increase can be observed in an 
earlier stage of depletion along observation line CC’ than for the lines BB’ and DD’. 
Line CC’ corresponds to a reservoir configuration where the top of the hanging wall 
reservoir compartment is exactly opposite to the bottom of the footwall reservoir 
compartment (see Figure 11.24). Fault slip develops fastest along observation line 
DD’, due to the almost vertical stress paths in the fault zone in between the two 
reservoir compartments. The stress path in observation point 4 (Figure 11.21) is an 
example of this. Development of reverse fault slip and strike slip on the fault are 
negligible small for the current scenario with equal reservoir and surrounding rock 
properties. Surrounding rock stiffer than the reservoir rock can enhance both normal 
and reverse fault slip (Chapter 11.2). For the modelled conditions (Esur = 18.5 GPa, 
νsur = 0.25), plastic normal fault slip develops relatively fast from the first depletion 
step onwards for all three reservoir configurations (Figure 11.26). This is due to the 
fact that the initial state of stress is at failure for the modelled conditions (see Figure 
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11.17b for reference), in spite of the initial reservoir overpressure of 35.0 MPa. The 
steepening of the graphs in the last depletion step results from the fact that the 
eleventh depletion step incorporates a larger pore pressure drop than the previous ten 
steps (see Chapter 8.3.4 for a description of the modelling of gas depletion). The siffer 
surrounding rock causes also plastic reverse fault slip to develop in a later stage of 
depletion. 
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Figure 11.25. Development of fault slip with reservoir depletion for three different 

observation lines in model ‘throw_var’ with equal reservoir and 
surrounding rock properties and initial hydrostatic reservoir pore 
pressure. Absolute s-values are plotted since these are actually 
negative at reservoir level (dextral movements), but contribute in the 
calculations to normal fault slip. 
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Figure 11.26. Development of fault slip with reservoir depletion for three different 

observation lines in model ‘throw_var’ with surrounding rock being 
stiffer than the reservoir rock and initial reservoir overpressure (see 
Table 11.1). For legend see Figure 11.25. Absolute s-values are plotted 
since these are actually negative at reservoir level (dextral 
movements), but contribute in the calculations to normal fault slip. 
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Very small values for strike slip are calculated for model ‘throw_var’ (maximum 
value: 0.6 cm, see Figures 11.26 and 11.27). They occur along the top of the hanging 
wall reservoir compartment. They are not observed in the calculations of series 
‘throw_const_...D’ and must therefore be the result of the slope of the hanging wall 
reservoir compartment. They are not enhanced by the stiffer surrounding rock 
properties and/or initial reservoir overpresure. 
 
In general the following can be concluded for the given geometry of a steeply dipping 
normal fault (dip angle 70o) in an extensional stress regime: 
- Stiffer surrounding rock (Esur = 18.5 GPa, νsur = 0.25) enhances both normal and 

reverse fault slip. This is the case in spite of an initial reservoir overpressure of 
35.0 MPa, which basically causes the initial state of stress on the fault plane to be 
further away from failure. 

- Significant reverse fault slip does for the given conditions not develop when the 
surrounding and reservoir rock properties are equal. 

- In terms of seismic moment, configuration BB’ is more critical than configuration 
CC’ when the surrounding and reservoir rock properties are equal and the initial 
pore pressure in both reservoir and surrounding rock is hydrostatic. For the 
scenario with default rock properties (stiffer surrounding rock and initially slightly 
overpressured reservoir), configuration CC’ is more critical than configuration 
BB’. 

- Configuration CC’ is most critical for fault slip at the beginning of gas depletion. 
In a later stage of depletion, configuration BB’ becomes eventually more critical. 

- The inclination of the hanging wall reservoir compartment in model ‘throw_var’ 
does not cause significant strike slip to develop during depletion. 

 
 
 
11.5 Influence of differential pore pressure development due to 

compartmentalisation on calculated fault slip 
 
11.5.1 Calculation series 
 
In this section, the influence of compartmentalisation on calculated fault slip is 
analysed. Compartmentalisation occurs when the pore pressure in different reservoir 
compartments develops differentially. Model ‘throw_const_½D’ (Figure 11.19a) is 
used for this purpose. Three different depletion scenario’s are considered: 
- depletion of both footwall and hanging wall reservoir compartments and fault 

regions A and B; 
- depletion of the footwall reservoir compartment, fault region A and fault region B 

in contact to the footwall reservoir compartment; 
- depletion of the hanging wall reservoir compartment, fault region A and fault 

region B in contact to the hanging wall reservoir compartment. 
 
During depletion, the pore pressures in the remaining parts are kept at their initial 
value. Regarding the rock properties and initial reservoir pore pressure, two scenarios 
are considered (see Table 11.1): 
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- surrounding rock properties equal to the reservoir rock properties (Esur = Eres = 
13.0GPa; νsur = νres = 0.2; φsur = φres = 30o) and initial hydrostatic reservoir pore 
pressure; 

- default rock properties (Esur = 18.5GPa; νsur = 0.25; φsur = 25o) and initial reservoir 
pore pressure of 35.0 MPa. 

 
 
11.5.2 Calculation results and discussion 
 
The calculation results are analysed in terms of maximum normal fault slip (RSDmax) 
and reverse fault slip (RSDmin). RSDmax- and RSDmin-values are listed in Table 11.7 
for each calculated scenario. 
 
From the calculation results it follows for the given geometrical setting, that normal 
fault slip is supported by the simultaneous depletion of the two reservoir 
compartments. Maximum normal fault slip is larger for this case as when only the 
footwall or the hanging wall compartment is depleted (see Table 11.7 and Figure 
11.27). This result is understandable when considering, that downward movement of 
the top of the hanging wall reservoir compartment and upward movement of the 
bottom of the footwall compartment both cause normal fault slip. Both movements 
enhance each other when both reservoir compartments are depleted. Such 
enhancement is absent in the case of compartmentalisation. 
 
Beside a larger RSDmax-value, the normal fault slip occurs over a larger area along the 
fault plane in case of simultaneous depletion of both reservoir compartments (Figure 
11.27). RSD-graphs in the left column, valid for depletion of both reservoir 
compartments, are much broader than RSD-graphs in the central and right columns 
(valid for depletion of only the footwall and hanging wall compartment, respectively). 
 
Remarkable is the fact, that in case of footwall depletion only (central column in 
Figure 11.27), normal fault slip is observed mainly on the part of the fault below the 
bottom of the footwall reservoir compartment. A similar but reversed observation can 
be made for the case of hanging wall depletion only (right column in Figure 11.27): 
normal fault slip is observed mainly above the top of the hanging wall reservoir 
compartment. For an explanation of these observations, consider the location at the 
fault corresponding to the top of the hanging wall reservoir compartment for the case 
that only the hanging wall compartment is depleted. Due to the compaction of the 
depleting hanging wall reservoir compartment, this is the location where most of the 
normal fault slip is initiated. The overburden rock at the hanging wall side of the fault 
follows the reservoir compaction and moves downwards as well. Since the footwall 
reservoir compartment does not deplete for the considered case, the overburden rock 
at the footwall side hardly moves vertically. Such differential movement between 
footwall and hanging wall at the level of the overburden rock causes significant 
normal fault slip to occur above the reservoir (Figure 11.27, right column). A similar 
but reversed mechanism occurs at the bottom of the footwall reservoir compartment 
for the case that only the footwall compartment is depleted. The mechanism is 
enhanced by a larger pore pressure in the non-depleting part of the fault (compare 
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Figures 11.27b and c), as could be for instance the case for sealing faults. A larger 
pore pressure means a lower effective normal stress and an unaltered shear stress on 
the fault, thus creating more favourable conditions for frictional sliding. 
 
Reverse fault slip is, for the given geometrical setting, supported by reservoir 
compartmentalisation (see Table 11.7). Consider for instance the cases that the 
footwall reservoir compartment is depleted. The depletion and reservoir compaction 
cause the rocks at the top of this compartment to move downwards, leading to reverse 
fault reactivation at this location. When the hanging wall reservoir compartment is 
depleted as well, a vertical downward movement of the overburden rocks occurs at 
the hanging wall side of the fault. This reduces the differential (downward) movement 
between footwall and hanging wall side of the fault at the level of the top of the 
footwall reservoir compartment and reduces thus the reverse fault slip. When the 
hanging wall reservoir compartment is not depleted, the overburden rocks at the 
hanging wall side of the fault hardly move vertically, enhancing reverse fault slip. 
 
Both normal and reverse fault slip are enhanced by a surrounding rock which is 
relatively stiff in comparison to the reservoir rock. More explanations on this 
behaviour can be found in Chapters 11.3 and 11.2. The combination of a relatively 
stiff surrounding and compartmentalisation can result in relatively large amounts of 
reverse fault slip. According to the values in Table 11.7, this is the case especially at 
the top of the footwall reservoir compartment. 
 
Reverse fault slip remains restricted to relatively small zones around the top of the 
footwall and/or bottom of the hanging wall reservoir compartments. Reverse fault slip 
along the fault intersecting the overburden/underburden rocks as is the case for 
normal fault slip in case of compartmentalisation, is for the given geometrical setting 
not observed. 
 
For the modelled reservoir geometry in an extensional stress regime it can generally 
be concluded that: 
- normal fault slip is supported by the depletion of both reservoir compartments; 
- reverse fault slip is supported by reservoir compartmentalisation (differential 

depletion of foot- and hanging wall); 
- in case of depletion of both reservoir compartments, normal fault slip is restricted 

to the level of the reservoir and does not extend beyond; in case of 
compartmentalisation, significant normal fault slip can occur along the fault above 
and below the reservoir; the mechanism is enhanced by a larger pore pressure in 
the non-depleting part of the fault; the location of reverse fault slip is unaffected 
by reservoir compartmentalisation and remains restricted to relatively small zones 
around the top of the footwall and/or bottom of the hanging wall reservoir 
compartments; 

- both normal and reverse fault slip are enhanced by a surrounding rock which is 
relatively stiff in comparison to the reservoir rock; the combination of a relatively 
stiff surrounding and compartmentalisation can result in relatively large amounts 
of reverse fault slip. 
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Table 11.7. Comparison of calculated RSD-values for different 
(compartmentalisation) scenario’s for the 3D-model 
‘throw_const_½D’. Observations along line EE’. 

Depletion 
scenario 

Surrounding 
rock 
properties* 

res
inip ** ∆pres 

RSDmax 
[cm] 
(normal) 

RSDmin 
[cm] 
(reverse) 

hydrostatic - hydrostatic 6.7 0.4 
- hydrostatic 5.2 0.3 same overpressure 
- 35.0 MPa 7.8 0.6 

hydrostatic - hydrostatic 11.5 1.1 
- hydrostatic 10.3 0.6 

Footwall and 
hanging wall 

stiff overpressure - 35.0 MPa 12.9 1.0 
hydrostatic - hydrostatic 3.4 0.7 

- hydrostatic 4.3 0.5 same overpressure - 35.0 MPa 6.0 1.2 
hydrostatic - hydrostatic 5.4 2.2 

- hydrostatic 5.3 1.7 

Footwall 

stiff overpressure - 35.0 MPa 6.6 2.4 
hydrostatic - hydrostatic 3.4 0.6 

- hydrostatic 4.2 0.7 same overpressure - 35.0 MPa 6.1 1.3 
hydrostatic - hydrostatic 5.4 1.7 

- hydrostatic 5.3 1.3 

Hanging wall 

stiff overpressure - 35.0 MPa 6.7 1.8 
* relative to reservoir rock properties; 
 ‘same’: Esur=Eres=13.0 GPa, νsur=νres=0.2 and φsur=φres=30o 
 ‘stiff’: Esur=18.5 GPa, νsur=0.25 and φsur=25o 
** ‘hydrostatic’: res

inip  is according to a hydrostatic pore pressure gradient with ρfluid 
= 1000 kg/m3 

 ‘overpressure’: res
inip  = 35.0 MPa 

Initial pore pressure and pore pressure development in fault regions A and B and 
fault normal- and shear stiffness change accordingly for the different scenarios. 
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Figure 11.27. Calculated RSD-values along observation line EE’ in model 

‘throw_const_½D’ with indication of the depth position of the reservoir 
for different scenario’s (see Table 11.1): (a) equal reservoir and 
surrounding rock properties and initial hydrostatic reservoir pore 
pressure; (b) surrounding rock being stiffer than the reservoir rock and 
initial hydrostatic reservoir pore pressure and (c) surrounding rock 
being stiffer than the reservoir rock and initial reservoir overpressure. 
‘Both’ indicates depletion of both footwall and hanging wall reservoir 
compartments, ‘Footwall’ and ‘Hanging wall’ indicate depletion of the 
respective reservoir compartments and adjacent fault regions only. 
Pore pressure reduction is for all three cases with a hydrostatic 
amount (10 depletion steps). 
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11.6 Influence of a 3D (an)isotropic initial tectonic stress field 
 
In this section, the influence of a 3D anisotropic initial tectonic stress field on the 
stress development and slip on a normal fault intersecting a disk-shaped gas reservoir 
is analysed.  
 
As outlined in Chapter 3.2, a 3-dimensional stress field in the subsurface can be 
described by the three stress components vσ′ , Hσ′  and hσ′ , where vσ′  is the vertical 
effective stress, Hσ′  is the maximum horizontal effective stress and hσ′  is the 
minimum horizontal effective stress. Horizontal and vertical stresses are related via 
the effective stress ratio’s K0H and K0h according to eqs. (3.8) and (3.9). 
 
The current tectonic stress field in the northern Netherlands is not directly measured, 
but can be assumed to result mainly from the Tertiary Alpine Orogeny (see Chapter 
7.5). Although still under discussion, it is generally assumed that the present-day 
direction of the largest horizontal stresses in the Netherlands is NW-SE. The vertical 
stress is generally assumed to be a principal stress as the result of the weight of the 
rock mass. The magnitude of the two principal horizontal stresses is not known. Based 
on previous research on geomechanical modelling of gas reservoirs in the northern 
Netherlands and personal communication with TNO-NITG (2000), the following 
values are reasonable estimations: K0H = 1.0 and K0h = 0.4 (see also Chapter 7.5). It 
has to be mentioned here that the horizontal stress magnitudes are very difficult to 
estimate and that they are very sensitive to local variations due to geological 
structures in the subsurface. 
 
First, the influence of K0 on stress development and fault slip is studied in Chapter 
11.6.1 for an isotropic tectonic stress field with K0 = K0H = K0h. Model ‘throw_var’ is 
used for this purpose since this model incorporates a varying throw between the two 
reservoir compartments and is very representative for existing reservoir geometries 
occurring in the northern Netherlands. The subsequent chapters deal with 3D 
anisotropic initial tectonic stress fields. A theoretical description of initial stress field 
parameters in relation to the 3D-finite element models is given in Chapter 11.6.2. 
Based on this theoretical description, the influence of anisotropic initial tectonic stress 
fields is analysed in Chapters 11.6.3 and 11.6.4. Chapter 11.6.3 deals with the 
relatively simple model ‘throw_const_½D’ with simplifying assumptions on rock 
properties and initial reservoir pore pressure, in order to obtain good insight in the 
implications of anisotropic initial tectonic stress fields on stress development and fault 
slip during reservoir depletion. Model ‘throw_var’ is more representative for existing 
reservoir geometries occurring in the northern Netherlands. This model is used for 
calculations with realistic rock property- and initial pore pressure values as a kind of 
case study in Chapter 11.6.4. 
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11.6.1 Influence of an isotropic initial tectonic stress field 
 
In order to obtain insight in the influence of K0 on stress development and fault slip, a 
calculation series is performed for an isotropic tectonic stress field with K0 = K0H = 
K0h. Model ‘throw_var’ is used for this purpose since this model is very representative 
for existing reservoir geometries occurring in the northern Netherlands. Rock 
properties and initial pore pressure are chosen to represent the situation in the field 
and are as listed in Table 11.1 for default values (Esur = 18.5 GPa; νsur = 0.25; φsur = 
25o) and initial reservoir pore pressure of 35.0 MPa. Four calculations are performed 
with K0 = 0.40, 0.60, 1.00 and 1.67. 
 
Stress paths along observation line DD’ (see Figure 11.19b for configuration) are 
plotted in Figure 11.28 for different K0-values. The failure line of the fault with cf = 0 
Pa and φf = 28o is indicated. The dotted lines in Figure 11.28 indicate the theoretically 
possible combinations of τ and nσ′  on the fault plane according to eqs. (3.2a) and 
(3.2b), for the case that the vertical stress is principal. As outlined in Chapters 11.2 
and 11.3, spatial variation in rock stiffness and pore pressure can cause the principal 
stress to deviate from a vertical direction. Initial states of stress on the fault plane in 
Figure 11.28 deviate therefore from the graph representing the analytically calculated 
initial states of stress. 
 
From the calculation results it follows, that the K0-values only influence the initial 
states of stress but not the stress development. Differences between stress paths at the 
same location for different K0-values, such as the stress path at the top of the hanging 
wall reservoir compartment for K0 = 0.60 and 1.00, result from the fact that failure is 
reached in one case whereas the other case stays elastic. This affects neighbouring 
stress paths, for instance the stress path directly above this location. The initial states 
of stress in different location on the fault plane vary with varying K0-values, but their 
position relative to each other remain unchanged, as long as their position is not on 
the failure line. The same result was found by Glab (2001) for 2D plane strain models. 
 
Calculated RSD-values along the four observation lines AA’, BB’, CC’ and DD’ are 
plotted in Figure 11.29 for different K0-values. It is obvious that for small values of 
K0, RSD-values are relatively large. The initial state of stress on the fault plane is 
closer to failure. Furthermore, the fault has most freedom to move (extend) since the 
horizontal effective stresses are relatively low (more extensional). 
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Figure 11.28. Calculated stress paths for (a) K0 = 0.40 and (b) K0 = 0.60 for 

different observation points along line DD’ for model ‘throw_var’ with 
surrounding rock properties being stiffer as reservoir rock properties 
and initial reservoir overpressure of 35.0 MPa (see Table 11.1). The 
initial state of stress is marked by an open square. The end of the stress 
paths are marked by the respective observation point number. 

 * The ‘initial stress line’ is calculated according to eqs. (3.2a) and 
(3.2b), chapter 3.1. 
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Figure 11.28. Calculated stress paths for (c) K0 = 1.00 and (b) K0 = 1.67 for different 

observation points along line DD’ for model ‘throw_var’. For further 
explanations see Figures 11.28 a and b. 
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Figure 11.29. Calculated RSD-values along different observation lines in model 

‘throw_var’ for different K0-values. Surrounding rock is stiffer than 
reservoir rock and an initial reservoir overpressure of 35.0 MPa is 
applied (see Table 11.1). Graphs are valid for complete depletion of 
the reservoir (11 depletion steps). 
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11.6.2 Theoretical description of initial stress field parameters in relation 
to the 3D-finite element models 
 
This sections gives a theoretical description of initial stress field parameters in 
relation to the 3D-finite element models. Based on this theoretical description, the 
influence of anisotropic initial tectonic stress fields is analysed in the subsequent 
Chapters 11.6.3 and 11.6.4. 
 
As outlined in Chapter 3.2, a 3-dimensional stress field in the subsurface can be 
described by the three stress components vσ′ , Hσ′  and hσ′ , where vσ′  is the vertical 
effective stress, Hσ′  is the maximum horizontal effective stress and hσ′  is the 
minimum horizontal effective stress. Horizontal and vertical stresses are related via 
the effective stress ratio’s K0H and K0h according to eqs. (3.8) and (3.9): 
 

K H
H

v
0 =

σ
σ

'
'

, 

K h
h

v
0 =

σ
σ

'
'

. 

 
In the case that K0H ≠ K0h, the stress field is said to be anisotropic. For K0H = K0h = K0, 
the horizontal stress are equal and an isotropic stress field applies. 
 
Consider the three effective stresses vσ′ , Hσ′  and hσ′  in Figure 11.30 and the fault 
plane with dip angle β in the x,y,z-co-ordinate system as it is defined in the 3D-finite 
element models in this dissertation. The direction of the two horizontal stress 
components Hσ′  and hσ′  is defined with respect to the fault plane by angle λ. The 
latter is the clockwise angle between the strike direction of the fault plane and the 
direction of Hσ′ . λ = 0o and 90o mean a direction of Hσ′  parallel and perpendicular to 
the strike of the fault plane, respectively. 
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Figure 11.30. Definition of stress directions with respect to the fault plane. For 

reference, the relative displacement vector components s, t and n are 
shown. 
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Assume now that the vertical (effective) stress and thus Hσ′  and hσ′  are principal 
stresses. The effective normal stresses nσ′  and shear stresses τ on the fault plane 
depend then solely on the magnitude and direction of the three effective principal 
stress components and are therewith a function of vσ′ , Hσ′ , hσ′  and λ. In the following 
these functions are analytically derived. The initial states of stress on the fault plane 
calculated in the numerical FE-models can then be compared to the analytical 
calculated effective normal- and shear stresses. 
 
Vertical stress magnitudes are a function of depth due to the weight of the overburden 
rock (see Chapter 3.2). Because the initial horizontal effective stresses are a function 
of the vertical effective stress via K0H and K0h, effective normal- and shear stresses 
can be normalised and expressed in terms of vσ′ . Hence, the stress variation with 
depth can be avoided. This is explained in the following. 
 
The global xyz-co-ordinate system in the finite element models is defined with respect 
to the fault: the x-axis is oriented in the azimuth of the fault, the y-axis is directed in 
the strike direction of the fault and the z-axis is vertical (Figure 11.30). For reference, 
the relative displacement vector components s, t and n are shown. n is normal to the 
fault plane, s is in the strike direction and t is in the down-dip direction of the fault 
plane (Figure 11.30). Firstly, xσ′ , yσ′  and zσ′  are calculated as a function of vσ′ , Hσ′  
and hσ′ . Subsequently, the contributions of xσ′ , yσ′  and zσ′  to effective normal stress 
and shear stress on the fault plane are derived. 
 
Assume now an arbitrary set of two horizontal effective principal stresses in an 
arbitrary direction defined by λ. From the principal stress components the theoretical 
stress components for the x- and y-directions can be derived from force equilibrium: 
 

( ) ( ) λσ−σ−σ+σ=σ 2cos''''' hH2
1

hH2
1

x , (11.1) 
( ) ( ) λσ−σ+σ+σ=σ 2cos''''' hH2

1
hH2

1
y   and (11.2) 

( ) λσ−σ=τ 2sin'' hH2
1

s . (11.3) 
 
τs represents the part of the shear stress on the fault plane produced by Hσ′  and hσ′  
and is directed horizontally in the strike direction of the fault plane. It obviously 
depends on λ and becomes zero in the case that Hσ′  = hσ′ . It follows from the 
assumption that the vertical stress is a principal stress that 
 

vz '' σ=σ . (11.4) 
 
Since σ′y is directed parallel to the strike of the fault plane, this stress component does 
theoretically not contribute to the effective normal and shear stress on the fault. xσ′  
and zσ′  contribute to a normal effective stress component ( nσ′ ) and the shear stress 
component in down-dip direction (τt). nσ′  and τt depend on xσ′  and zσ′  according to 
force equilibrium: 
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( ) ( ) βσ−σ+σ+σ=σ 2cos''''' xz2
1

xz2
1

n   and (11.5) 
( ) βσ−σ=τ 2sin'' xz2

1
t . (11.6) 

 
This is virtually the same as obtained earlier in Chapter 3, eqs. (3.2a) and (3.2b). The 
total shear stress on the fault plane is then: 
 

2
s

2
t τ+τ=τ . (11.7) 

 
By implementing the definitions of K0H and K0h into eqs. (11.1) – (11.6), we can 
normalise the stress tensor in the xyz-co-ordinate system for vσ′  and express it as a 
function of K0H, K0h, λ and β: 
 

( ) ( ) λ−−+=σσ 2cosKKKK'' h0H02
1

h0H02
1

vx ; (11.8) 
( ) ( ) λ−++=σσ 2cosKKKK'' h0H02

1
h0H02

1
vy ; (11.9) 

1'' vz =σσ ; (11.10) 
( ) λ−=στ 2sinKK' h0H02

1
vs ; (11.11) 

( ) ( )[ ] βλ−−λ+−=στ 2sin2cos1K2cos1K2' H0h04
1

vt . (11.12) 
 

vn '' σσ  can then be calculated by implementing eqs. (11.8) and (11.10) into (11.5) or 
according to: 
 
 ( ) ( ) ( ) ( )[ ]λ++λ−β−+β+=σσ 2cos1K2cos1K2cos12cos1'' h0H04

1
2

1
vn . (11.13) 

 
v'στ  can be calculated by implementing eqs. (11.11) and (11.12) into (11.7): 

 
2

v

s
2

v

t
v' 







σ′
τ+







σ′
τ=στ . (11.14) 

 
Table 11.8 presents the normalised values of xσ′ , σ′y, τt, τs, nσ′  and τ as a function of 
λ, for K0H = 1.0 and K0h = 0.4 with β = 70o. These values are chosen based on the 
tectonic stress field analysis (see Chapters 7.5 and 11.6). Figure 11.31 shows the 
normalised shear stresses τt, τs and τ versus the normalised effective normal stress on 
the fault plane for different values of λ for K0H = 1.00 and K0h = 0.40. A Mohr-
Coulomb failure line for cf = 0 Pa and φf = 28o is plotted for comparison. 
 
Table 11.8. Normalised values of σ′x, σ′y, τt, τs, σ′n and τ and MSC as a function of 

λ, for K0H = 1.00, K0h = 0.40 and β = 70o. 
λ [o] σ’x/σ’v σ’y/σ’v τs/σ’v τt/σ’v τ/σ’v σ’n/σ’v MSC 
0 
31 
45 
59 
90 

0.400 
0.559 
0.700 
0.841 
1.000 

1.000 
0.841 
0.700 
0.559 
0.400 

0.000 
0.265 
0.300 
0.265 
0.000 

0.193 
0.142 
0.096 
0.051 
0.000 

0.193 
0.301 
0.315 
0.270 
0.000 

0.470 
0.611 
0.735 
0.859 
1.000 

0.814 
0.942 
0.842 
0.650 
0.000 
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Figure 11.31. Normalised shear stresses τt, τs and τ versus normalised normal 
effective stress σ′n for different values of λ, for K0H = 1.0 and K0h = 
0.4. The open square denotes the initial state of stress for K0H = K0H = 
0.4, which is independent of λ. A Mohr-Coulomb failure line for cf = 0 
Pa and φf = 28o is plotted for comparison. 

 
In case of isotropic principal horizontal stresses ( Hσ′  = hσ′ ), the term (K0H – K0h) in 
eq. (11.11) vanishes and thus τs = 0. Horizontal stresses are equal in all directions and 
are thus independent of angle λ, which becomes clear when inserting Hσ′  = hσ′  in eqs. 
(11.1) and (11.2). Inserting K0H = K0h = K0 into eqs. (11.12) and (11.13) leads to a 
vanishing of all terms with λ. The open square in Figure 11.11 denotes the initial state 
of stress for K0H = K0h = 0.4, which is indeed independent of λ. The normalised values 
of xσ′ , σ′y, τt, τs, nσ′  and τ are the same as for λ = 0o in Table 11.8, with the exception 
that σ′y / v'σ  = 0.400. 
 
Consider now the case of anisotropic principal horizontal stresses ( Hσ′  ≠ hσ′ ). For λ = 
0o, yσ′  is equal to Hσ′  and xσ′  is equal to hσ′ . This is the other way around for λ = 
90o: in this case xσ′  = Hσ′ . Since the strike direction of the fault is a principal stress 
direction for these two cases, the horizontal shear stress component τs is zero (see 
Table 11.8 and Figure 11.31). τ s is at its maximum for λ = 45o. As λ increases from 0o 
to 90o, Hσ′  becomes directed more perpendicular to the strike direction of the fault 
and contributes more to the stress component xσ′ . The effective normal stress 
therefore increases with increasing λ. The dependency of τs and nσ′  on λ is given by a 
‘squeezed’ Mohr’s circle (Figure 11.31). The combination of τs and nσ′  closest to 
yielding occurs for a value of λ equal to 45o – ½φf, where φf is the friction angle of the 
fault. For the chosen value for φf in our calculations of 28o, this means for λ = 31o. 
 
In the foregoing it is explained that xσ′  and nσ′  increase as λ increases from 0o to 90o. 
Normalised values for zσ′  remain constant at the value of 1.0. Looking at eq. (11.6) 
indicates that τt decreases. From Figure 11.31 it follows that the decrease of τt and the 
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increase of nσ′  are almost linearly proportional. For λ = 90o and K0H = 1.0, xσ′  
becomes equal to zσ′  and thus τt = 0. 
 
Combination of τs and τt according to eq. (11.7) leads to the τ / nσ′ -graph as shown in 
Figure 11.31. For the given conditions (K0H = 1.0, K0h = 0.4, β = 70o and φf = 28o) the 
initial state of stress is closest to failure for λ = 31o (Figure 11.31). The MSC-value is 
0.942 in this case (Table 11.8). The initial states of stress are also rather critical for λ 
= 45o and 0o (MSC-values of 0.842 and 0.814, respectively). For λ = 59o and 90o the 
criticalness decreases drastically with MSC-values of 0.650 and 0.0, respectively. 
 
For most combinations of K0H, K0h and β, the most critical angle for λ in terms of 
initial state of stress is 45o – ½φf. However, this is not always the case. For little 
differences between K0H and K0h, the shear stresses in strike direction of the fault (τs) 
become small and the shear stresses in down-dip direction of the fault (τt) play a more 
dominant role. This is especially the case for large differences between the vertical 
and horizontal effective stresses (i.e. relatively large or small values of K0H and K0h). 
An example of such condition is shown in Figure 11.32 for K0H = 0.60 and K0h = 0.33 
(β = 70o). Note that the shear stresses as calculated by eq. (11.7) are always positive 
and that the graphs as given in Figures 11.31 and 11.32 only indicate the magnitude of 
the shear stresses but not their direction. 
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Figure 11.32. Normalised shear stresses τt, τs and τ versus normalised normal 

effective stress σ′n for different values of λ, for different combinations 
of K0H and K0h. The open square denotes the initial state of stress for 
K0H = K0H = 0.4, which is independent of λ. A Mohr-Coulomb failure 
line for cf = 0 Pa and φf = 28o is plotted for comparison. Numbers 
indicate the values of λ in degrees. 
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11.6.3 Influence of anisotropic initial tectonic stress field (model 
‘throw_const_½D’) 

 
Based on the theoretical analysis of 3D anisotropic stress fields as described in 
Chapter 11.6.2, the implications of anisotropic initial tectonic stress fields on stress 
development and fault slip during reservoir depletion are studied. In order to have no 
side effects of other parameters, the relatively simple model ‘throw_const_½D’ is 
used for this purpose with no discrepancy in rock property values and initial pore 
pressure between reservoir and surrounding rocks. Rock property values and pore 
pressures are as listed in Table 11.1 for equal reservoir and surrounding rock 
properties and initial hydrostatic reservoir pore pressure (appr. 30.0 MPa). For reasons 
of comparison, calculations with surrounding rock properties stiffer than the reservoir 
rock and an initially slightly overpressured reservoir ( res

inip  = 35.0 MPa) are performed 
as well (see Table 11.1). 
 
A calculation series with K0H = 1.00 and K0h = 0.40 is performed for five different 
values of λ: 0, 31, 45, 59 and 90o. The values of K0H and K0h are based on the tectonic 
stress field analysis (see Chapters 7.5 and 11.6). The values of λ are chosen based on 
the most critical combination of τs and nσ′  with τs = 45o – ½φf. For φf = 28o this 
results in λ = 31o. The value of 59o is equal to 45o + ½φf. The Groningen and 
Annerveen gas fields in the northern Netherlands are characterised by numerous faults 
at reservoir level with different strike directions, varying from N-S via NW-SE to W-
E (see Chapter 7.4). NE-SW trending faults are virtually absent. Assuming that the 
present-day direction of the largest horizontal stresses in the Netherlands is NW-SE 
(see Chapters 7.5 and 11.6), this means λ-values ranging from 0o to 45o. Note that not 
all fault strike directions are present throughout the entire fields. Rather certain parts 
of the fields are characterised by certain fault patterns. 
 
In Figure 11.33, calculated stress paths for different values of λ are plotted for 
different locations on the fault plane along observation line EE’. Open squares denote 
the initial states of stress. The theoretical trend of the initial state of stress state as 
shown in Figure 11.31 is visible in the stress path plots. 
 
For the given K0H- and K0h-values of 1.00 and 0.40, respectively, the initial states of 
stress for λ = 0o and 31o are more critical than for the other values of λ: they are 
relatively close to failure before gas depletion starts. The stress development during 
gas depletion is most critical for λ = 0o. The stress paths for λ = 0o develop in straight 
lines towards the failure line right from the first depletion step, with relatively large 
and more or less constant magnitudes per depletion step (Figure 11.33, observation 
points 6 and 7). The stress paths for λ = 31o show a hesitation in the first depletion 
steps: smaller or even negative magnitudes per depletion step and smaller stress path 
gradients, which increase during the progress of depletion. This is also the case for 
values of λ of 45o and 59o. Stress paths for λ = 90o in turn develop in straight lines as 
is the case for λ = 0o, but further away from failure. 
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Figure 11.33. Calculated stress paths at different locations on the fault plane along 

line EE’ (see Figure 11.1) for different values of λ with K0H = 1.0 and 
K0h = 0.4. Model ‘throw_var_½D’ is used for the calculations with 
equal surrounding and reservoir rock properties and initial hydrostatic 
reservoir pore pressure. Open squares denote the initial stress state. 

 
The observation of the smaller stress path magnitudes and gradients in the first 
depletion steps for λ = 31o, 45o and 59o and their increase during the progress of 
depletion can be explained as follows. According to eq. (11.11), initial shear stresses 
in the strike direction of the fault (τs) are zero for λ = 0o and λ = 90o. Because of the 
model geometry, such shear stresses should also not develop during gas production 
along line EE’ since fault movement will be in down dip direction here. This means 
that for λ = 0o and λ = 90o, the initial shear stress vector τ is oriented in the direction 
of movement initiated by the gas depletion: in the down dip shear direction of the 
fault. For the other three values of λ (31, 45 and 59o), the initial shear stress has a 
relatively large horizontal component τs. Consider for example the initial state of 
stress, as shown in Figure 11.31 for λ = 45o. There exists a relatively large initial 
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shear stress component τs in strike direction on the fault plane, whereas the initial 
shear stress component τt in down dip direction of the fault plane is relatively small. 
The resultant of the two vectors, the initial shear stress τ, is mainly determined by τs. 
 
During gas depletion, τs hardly changes, whereas τt develops relatively fast. This 
means that during gas depletion, τt increasingly determines the size of τ. The stress 
path shows for the first few depletion steps low gradients and small magnitudes: τ 
changes initially very little since τs mainly determines its magnitude. The stress path 
represents a curve. In theory, the stress path should run asymptotically towards a 
straight line with the gradient of the stress path for λ = 0 or 90o. The stress paths in 
Figure 11.33 suggest that this is indeed the case. The described effect of initially 
slowly developing stress paths should get smaller as the difference between K0H and 
K0h decreases. 
 
Stress paths for observation point 2 show an initial decrease of shear stresses and an 
increase in a later stage of depletion. In this location, initial shear stresses in the 
down-dip direction of the fault (τt), which support normal faulting due to the initially 
extensional stress regime, are built down due to the tendency of reverse fault 
reactivation in this location (see Chapter 11.1), whereas initial shear stresses in the 
strike direction of the fault (τs) remain more or less constant. When the shear stresses 
supporting normal faulting are reduced to zero, the minimum in the stress paths for 
location B corresponds to the shear stress component τs. This minimum is indeed 
located at the nσ′ -axis for λ = 0o (τs = 0 MPa). For λ = 90o, both τs and τt are initially 
zero since K0H = 1.0. Further gas depletion causes a shear stress τt, supporting reverse 
faulting, to build up. The magnitude of the total shear stress τ, consisting of the two 
components τs and τt, increases again since it is calculated according to eq. (11.7) 
using a square root. Stress paths could be plotted with negative τ-values after the 
minimum of the graphs has been reached and shear stress τt supporting reverse fault 
movement start to develop, but this would lead to discontinuous stress paths in Figure 
11.33. 
 
In general it can be concluded that failure is reached in a later stage of depletion for 
larger values of λ. For the chosen reservoir geometry, the initial shear stress 
component in the strike direction of the fault (τs) hardly contributes to a higher 
sensitivity of the fault plane for reactivation during gas depletion. In fact, the 
restraining effect of a higher normal stress ( nσ′ ) on the fault due to a higher horizontal 
stress in the fault dip direction xσ′  seems to dominate. 
 
This is supported by the RSD-graphs shown in Figure 11.34a and listed in Table 11.9. 
RSD-values are highest for the case where Hσ′  is directed parallel to the strike of the 
fault plane (λ = 0o) and decrease for increasing values of λ. It is obvious that for λ = 
0o, the fault has most freedom to move: it is a normal fault in a stress regime of 
triaxial extension, where the axis of extension (smallest horizontal stress direction) is 
in the fall direction of the fault. Depletion of the reservoir favours extension and thus 
movement of the fault. For λ = 90o, the fault has little freedom to move. 
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Table 11.9. Calculated maximum and minimum total fault slip (RSD) and strike 
slip (s) on the fault plane in model ‘throw_const_½D’ along line EE’ 
(see Figure 11.1) for different values of λ with K0H = 1.0 and K0h = 
0.4. Surrounding and reservoir rock properties are equal and the 
initial reservoir pore pressure is hydrostatic (appr. 30.0 MPa). Pore 
pressure reduction is with a hydrostatic amount until 0 MPa end 
pressure in 10 depletion steps. 

λ [o] RSDmax [cm] 
(normal) 

(-s)max [cm] 
(strike slip*) 

RSDmin [cm]  
(reverse) 

(-s)min [cm] 
(strike slip**) 

0 
31 
45 
59 
90 

6.8 
3.0 
1.3 
0.7 
0.5 

0.1 
1.2 
0.3 
0.1 
0.0 

-0.4 
-0.4 
-0.4 
-0.4 
-0.4 

0.0 
0.0 
0.0 
0.0 
0.0 

* s-values are listed with the opposite sign, since negative s-values (dextral 
movements) are observed in regions where normal fault slip is present and positive 
s-values (sinistral movements) are observed in regions where reverse fault slip is 
present. 

 
Table 11.10. Same as Table 11.9, but for surrounding rock stiffer than the reservoir 

rock with initially slightly overpressured reservoir (35.0 MPa, see 
Table 11.1). Pore pressure reduction is with a hydrostatic amount in 
10 depletion steps. The calculation results as presented in Tables 11.9 
and 11.10 incorporate the same ∆p during depletion and are 
comparable. 

λ [o] RSDmax [cm] 
(normal) 

(-s)max [cm] 
(strike slip*) 

RSDmin [cm]  
(reverse) 

(-s)min [cm] 
(strike slip**) 

0 
31 
45 
59 
90 

10.4 
5.9 
2.8 
1.5 
1.1 

0.1 
2.5 
0.9 
0.3 
0.0 

-0.7 
-1.3 
-1.3 
-1.2 
-1.0 

0.0 
-0.6 
-0.5 
-0.4 
0.0 

 
Table 11.11. Same as Table 11.9, but for surrounding rock stiffer than the reservoir 

rock with initially slightly overpressured reservoir (35.0 MPa, see 
Table 11.1) and for full reservoir depletion to 0 MPa end pressure (11 
depletion steps). 

λ [o] RSDmax [cm] 
(normal) 

(-s)max [cm] 
(strike slip*) 

RSDmin [cm]  
(reverse) 

(-s)min [cm] 
(strike slip**) 

0 
31 
45 
59 
90 

13.1 
8.2 
4.6 
2.5 
1.6 

0.1 
3.1 
1.6 
0.4 
0.0 

-1.2 
-1.8 
-1.8 
-1.7 
-1.5 

0.0 
-0.7 
-0.7 
-0.4 
0.0 
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For λ = 31o, a certain amount of strike-slip is calculated with a maximum value of 1.2 
cm (Table 11.9). Strike-slip is also observed to a lesser extent for λ = 45o. For all 
other values of λ, calculated strike-slip is negligible small. In Figure 11.34, the 
development of maximum fault slip with depletion of the reservoir is shown for λ = 0o 
and 31o. As is discussed in Chapter 11.4.2 (Figures 11.25 and 11.26), fault slip 
develops very slowly at the beginning of depletion since the initial states of stress on 
the fault plane are not at failure for the modelled conditions. When the stress paths 
reach failure, fault slip develops faster. For λ = 31o, the calculated RSD consists partly 
of a strike slip component. Since this strike slip component is zero in the first 
depletion steps it can be concluded that this is not the result of badly consolidated 
stresses before the start of gas depletion. The relatively large initial shear stresses in 
the strike direction of the fault plane (τs) cause some strike slip to develop during gas 
depletion. 
 
Calculations with surrounding rock stiffer than the reservoir rock (Esur = 18.5 GPa, 
νsur = 0.25, see Table 11.1) and initially slightly overpressured reservoir ( res

inip  = 35.0 
MPa) show similar results for calculated fault slip: normal fault slip is largest for λ = 
0o and decreases with increasing values of λ (Figures 11.34b and c and Tables 11.10 
and 11.11). The stiffer surrounding rock enhances both normal and reverse fault slip 
(see Tables 11.9 and 11.10 and Chapter 11.2 for more explanations). 
 
A certain amount of strike slip is calculated for λ = 31o, 45o and 59o and is largest for 
λ = 31o (Table 11.10). Strike-slip contributes to both normal and reverse fault slip. 
Unlike normal fault slip, reverse fault slip is larger for λ = 31o, 45o and 59o than for λ 
= 0o and 90o. This is most probably due to the larger strike slip component. 
 
Based on the calculations in this Chapter 11.6.3 for K0H = 1.00, K0h = 0.40 and β = 
70o, it can be generally concluded, that: 
- the initial state of stress on the fault plane before gas depletion is closest to failure 

(most critical) for λ = 0o and 31o; for λ = 31o, this is due to a relatively large shear 
stress component in the strike direction of the fault; 

- the stress development on the fault plane is most critical for λ = 0o: most fault slip 
is calculated for this case; 

- for some strike slip is observed for λ = 31o; 
- a relatively stiff surrounding rock enhances both normal and reverse fault slip; 
- for a relatively stiff surrounding rock, strike slip could be observed for λ = 31o, 

45o and 59o; 
- for a relatively stiff surrounding rock, reverse fault slip is largest for λ = 31o, 45o 

and 59o, most probably due to the strike slip component. 
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Figure 11.34. Calculated fault slip on the fault plane in model ‘throw_const_½D’ 

along line EE’ (see Figure 11.1) for different values of λ with K0H = 
1.0 and K0h = 0.4. (a) equal surrounding and reservoir rock properties 
and initial hydrostatic reservoir pore pressure (appr. 30.0 MPa). (b) 
and (c) same as (a), but for surrounding rock stiffer than the reservoir 
rock with initially slightly overpressured reservoir (35.0 MPa, see 
Table 11.1). Pore pressure reduction is for case (b) with a hydrostatic 
amount (10 depletion steps) and for case (c) for full reservoir depletion 
to 0 MPa (11 depletion steps). s-values are plotted with the opposite 
sign since negative s-values (dextral movements) are observed in 
regions where normal fault slip is present and positive s-values 
(sinistral movements) are observed in regions where reverse fault slip 
is present. 
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Figure 11.35. Development of fault slip with reservoir depletion for different λ with 

K0H = 1.0 and K0h = 0.4 for model ‘throw_const_½D’ with equal 
reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure. Absolute s-values are plotted since these are 
actually negative at reservoir level (dextral movements), but contribute 
in the calculations to normal fault slip. 

 
 
11.6.4 Influence of anisotropic initial tectonic stress field (model 

‘throw_var’ with default property and loading conditions) 
 
3D anisotropic stress fields as described in the previous Chapter 11.6.3 are also 
applied to model ‘throw_var’ as a kind of case study. Model ‘throw_var’ is more 
representative for existing reservoir geometries occurring in the northern Netherlands 
than model ‘throw_const_½D’. Furthermore, it allows an analysis of the effects of a 
3D anisotropic stress field on stress development and fault slip for different amounts 
of throw. The model incorporates surrounding rock properties stiffer than the 
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reservoir rock and an initially slightly overpressured reservoir ( res
inip  = 35.0 MPa), see 

Table 11.1. The reservoir is depleted to an end pressure of 0 MPa (11 depletion steps). 
A calculation series with K0H = 1.00 and K0h = 0.40 is performed for five different 
values of λ: 0, 31, 45, 59 and 90o. See Chapter 11.6.3 for the reasons of this choice. 
The reservoir geometry and the location of four observation lines AA’, BB’, CC’ and 
DD’ along the fault plane can be seen in Figure 11.19b. Normal fault slip is, for the 
given reservoir geometry and tectonic stress magnitudes, the dominant mechanism 
rather than reverse fault slip, especially for lower values of λ (Figure 11.36 and Table 
11.12). Normal fault slip decreases for increasing values of λ. This result is similar to 
the observations for model ‘throw_const_½D’ in the previous Chapter 11.6.3 (see 
Figure 11.34) and is due the larger effective stress component in the azimuth of the 
fault plane for larger values of λ. Normal fault slip generally approaches zero for large 
values of λ (59o and 90o). An exception occurs for the region along observation line 
CC’ where the top of the hanging wall and the bottom of the footwall reservoir 
compartments are exactly opposite to each other. Relatively large RSD-values can be 
observed here also for λ = 90o, but they are concentrated to a relatively sharp peak 
(Figure 11.36). 
 
Reverse fault slip is observed at the top of the footwall reservoir compartment and the 
bottom of the hanging wall reservoir compartment, indicated by the negative RSD-
values. Unlike normal fault slip, the reverse fault slip does not significantly decrease 
for increasing values of λ and is present for all values of λ. 
 
For λ = 31o, 45o and 59o, a relatively large strike-slip component (s) contributes to the 
calculated fault slip (RSD) as well (Table 11.13 and Figure 11.40). Strike-slip 
contributes to both normal and reverse fault slip. Especially reverse fault slip is 
affected by strike-slip and is accordingly larger for λ = 31o, 45o and 59o. 
 
Stress paths for different locations on the fault plane are plotted in Figures 11.37 – 
11.39. Initial states of stress show patterns similar to the theoretically calculated one 
as shown in Figure 11.31, Chapter 11.6.2. Deviations are due to the rock property 
discrepancy between reservoir and surrounding rock and the initially slightly 
overpressured reservoir. The initial hesitation in stress development as described and 
explained in Chapter 11.6.3, marked by relatively small stress path gradients and 
magnitudes per depletion step at the beginning of reservoir depletion, is especially 
pronounced at location 6 along observation line BB’. The stress path for observation 
point 2 along observation line CC’ develops along the failure line for a large part of 
the reservoir depletion even for λ = 90o, explaining the relatively large RSD-values 
observed here even for λ = 90o. 
 
Generally it can be concluded, that the effects as observed for the calculations with 
model ‘throw_const ½ D’ in the previous Chapter 11.6.3 also apply for model 
‘throw_var’. The conclusions as listed at the end of the previous chapter therefore also 
apply for this chapter. 
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Figure 11.36. Calculated RSD-values along different observation lines in model 

‘throw_var’ for different values for λ with K0H = 1.0 and K0h = 0.4. See 
Figure 11.19b in Chapter 11.4.1 for reservoir geometry and location of 
the observation lines on the fault plane. The model incorporates 
surrounding rock properties stiffer than the reservoir rock and an 
initially slightly overpressured reservoir, see Table 11.1. The reservoir 
is depleted to an end pressure of 0 MPa (11 depletion steps). 
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Table 11.12. Maximum and minimum total fault slip (RSD) in model ‘throw_var’ as 
a function of λ with K0H = 1.0 and K0h = 0.4 for surrounding rock 
properties stiffer than the reservoir rock and an initially slightly 
overpressured reservoir, see Table 11.1. The reservoir is depleted to an 
end pressure of 0 MPa (11 depletion steps). 

λ [o] RSDmax [cm] (largest normal fault 
slip) along observation line: 

RSDmin [cm] (largest reverse fault 
slip) along observation line: 

 AA’ BB’ CC’ DD’ AA’ BB’ CC’ DD’ 
0 
31 
45 
59 
90 

0.3 
0.2 
0.2 
0.2 
0.2 

11.8 
6.9 
3.4 
1.9 
1.2 

15.2 
10.5 
7.7 
5.5 
4.0 

17.2 
10.5 
5.3 
2.1 
1.3 

0.0 
0.0 
0.0 
0.0 
0.0 

-0.3 
-1.1 
-1.1 
-0.9 
-0.5 

-2.0 
-2.6 
-2.5 
-2.2 
-2.0 

-1.7 
-2.4 
-2.5 
-2.1 
-1.7 

 
 
Table 11.13. Maximum and minimum strike slip (s) in model ‘throw_var’ as a 

function of λ with K0H = 1.0 and K0h = 0.4 for surrounding rock 
properties stiffer than the reservoir rock and an initially slightly 
overpressured reservoir, see Table 11.1. The reservoir is depleted to an 
end pressure of 0 MPa (11 depletion steps). 

λ [o] |s|max [cm] (largest strike slip 
associated to normal fault slip) 
along observation line: 

-|s|min [cm] (largest strike slip 
associated to reverse fault slip) 
along observation line: 

 AA’ BB’ CC’ DD’ AA’ BB’ CC’ DD’ 
0 
31 
45 
59 
90 

0.0 
0.0 
0.0 
0.0 
0.0 

0.4 
2.3 
1.0 
0.3 
0.1 

0.6 
2.2 
1.3 
0.6 
0.2 

0.5 
4.3 
2.0 
0.3 
0.2 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
-0.6 
-0.6 
-0.3 
-0.1 

-0.1 
-1.1 
-1.0 
-0.7 
-0.1 

-0.3 
-1.3 
-1.2 
-0.8 
-0.2 
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Figure 11.37. Calculated stress paths for model ‘throw_var’ at different locations on 

the fault plane along line BB’ (see Figure 11.1) for different values of λ 
with K0H = 1.0 and K0h = 0.4. Calculations are performed with 
surrounding rock stiffer than the reservoir rock and initial reservoir 
overpressure (see Table 11.1). Open squares denote the initial stress 
state. 
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Figure 11.38. Calculated stress paths for model ‘throw_var’ at different locations on 

the fault plane along line CC’ (see Figure 11.1) for different values of 
λ with K0H = 1.0 and K0h = 0.4. Calculations are performed with 
surrounding rock stiffer than the reservoir rock and initial reservoir 
overpressure (see Table 11.1). Open squares denote the initial stress 
state. 
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Figure 11.39. Calculated stress paths for model ‘throw_var’ at different locations on 

the fault plane along line DD’ (see Figure 11.1) for different values of 
λ with K0H = 1.0 and K0h = 0.4. Calculations are performed with 
surrounding rock stiffer than the reservoir rock and initial reservoir 
overpressure (see Table 11.1). Open squares denote the initial stress 
state. 
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Figure 11.40. Contour plots of relative shear displacement in strike direction of the 

fault plane (s) for different values of λ with K0H = 1.0 and K0h = 0.4. 
View direction is normal to the fault plane. Black lines indicate the 
intersection of the reservoir compartments with the fault plane (see 
Figure 11.19b). See Appendix 2 for this figure in colour. 
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12 CONCLUSIONS, DISCUSSION AND 
RECOMMENDATIONS 

 
 
 
12.1 Conclusions 
 
The geomechanical models used for the calculations in this thesis are representative 
for gas fields in the northern Netherlands. However, their generic character could 
make the conclusions regarding the calculation results meaningful for other fields in 
the world as well. Geomechanical calculations incorporate a depleting, mostly disk-
shaped reservoir (width larger than thickness) in an extensional stress regime, 
eventually intersected by a steeply dipping normal fault. The surrounding rock 
consists of one homogeneous isotropic rock mass without a layered geological 
structure. 
 
12.1.1 Field data analysis 
 
- To date, a few hundred induced seismic events occurred in the northern 

Netherlands with magnitudes up to 3.5 on the Richter scale. Magnitudes of most 
of the induced seismic events fall within the range of 1.5 – 2.0 on the Richter 
scale. A few larger events, with magnitudes larger than 3.0 on Richter scale, 
occurred in the Roswinkel and Bergermeer gas fields. The largest induced event in 
the northern Netherlands to date took place in the Bergermeer field with a 
magnitude of 3.5 on the Richter scale. 

- Seismic events in the Groningen gas field are mainly observed in the western part 
of the field. They are to a lesser extent observed in the central part of the field. 
Seismic events are virtually absent in the southeastern and northern parts of the 
Groningen gas field. 

- The spatial distribution of seismic events in the Annerveen gas field is at the time 
of writing restricted to the western half of the field. 

- Seismic cross sections through each seismic event up to January 26 2001 in the 
Groningen and Annerveen gas fields are studied. The majority of these events is 
related to the reactivation of steeply dipping (subvertical) normal faults at 
reservoir level. Even taking into account the uncertainties in the location of the 
hypocentres, most events occur at reservoir level with a high degree of 
probability. 

 
12.1.2 Quantification methods 
 
- Several quantitative methods to analyse the sensitivity of a fault for reactivation in 

numerical calculations are presented and developed for use in the software 
package DIANA: relative shear displacements (RSD), seismic moment (M0), 
stress paths and mobilised shear capacity (MSC). MSC is also applied for rock 
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volumes (MSC3D). Another quantity used to analyse stress development in and 
around gas reservoirs is the total stress change per unit depletion (γ). 

- Calculations of different model geometries can lead to different magnitudes and 
distributions of RSD-values over a fault plane. It is therefore difficult to judge the 
criticalness of faults for reactivation solely based on the maximum RSD-value 
(RSDmax). Integration of the calculated RSD over fault plane and multiplication 
with the shear modulus of the neighbouring rock formations gives a single scalar 
quantity for each calculation which is more amenable for comparison purposes: 
the seismic moment.  

- Mobilised shear capacity expresses quantitatively the proximity of a state of stress 
in a certain location on a fault or in a rock volume to a predefined failure criterion. 
Analytical expressions are derived in order to calculate MSC and MSC3D for the 
Mohr-Coulomb failure criterion. The derivation of the formulas does not take into 
account tension cut-off or a compression failure surface (cap). 

- Stress paths in terms of shear- and effective normal stress and relative shear 
displacements are very convenient for a detailed analysis of the stress 
development and fault slip at specified locations on the fault plane throughout 
hydrocarbon extraction. Stress paths and RSD-values should be used in 
phenomenological analyses for obtaining fundamental and detailed insights in 
hydrocarbon extraction induced fault reactivation. Seismic moment and mobilised 
shear capacity are more amenable for parameter studies because of their scalar 
character. 

 
12.1.3 Calculation results 
 
12.1.3.1 Generic basic reservoir models without fault 
 
The following conclusions are valid for depleting reservoirs (width larger than 
thickness) in an extensional stress regime, unless stated otherwise. 
 
 

- Numerically calculated stress changes as a result of hydrocarbon extraction from 
ellipsoidal reservoirs match very well with analytically calculated graphs as 
presented in Rudnicki (1999). 

- Numerical calculations with different reservoir rock properties and aspect ratios 
showed, that stress changes are virtually constant throughout an entire ellipsoidal 
reservoir. This observation is in line with the analytical solutions for ellipsoidal 
reservoirs. 

- Stress changes within disk-shaped reservoirs are not constant throughout the entire 
reservoir, but show a relatively small vσ′∆  and a relatively large hσ′∆  in a zone at 
the lateral reservoir edge. 

- For the modelled reservoir size (1500 m radius and 150 m thickness), calculated 
stress changes within both ellipsoidal and disk-shaped reservoirs are equal and 
reflect conditions of uniaxial compaction, except for a zone within the disk-shaped 
reservoirs at their lateral edge. 

- Generally, stress changes just above and below the reservoirs are small. However, 
stress changes are relatively large in two zones just above and below the lateral 
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edge of the disk-shaped reservoir. Vertical effective stresses become relatively 
small during reservoir depletion due to an arching into the sideburden of the 
reservoir. Horizontal effective stresses increase in these two zones. 

- A larger Poisson’s ratio of the reservoir rock, a larger reservoir aspect ratio 
(smaller reservoir width relative to its thickness) and tilting of the reservoir (at 
least up to a tilt angle of 30o) lead to smaller values of γh (= ∆σh/∆p) and larger 
values of γv (= ∆σv/∆p). They therefore counteract differential stress development 
at the reservoir centre. Stress paths should become less steep (stabilise). 

- Calculations incorporating a tilting reservoir showed large stress concentrations 
and stress shades around the reservoir corner points (reservoir top and bottom at 
its lateral edges). Especially at these locations significant differential stress 
development occurs, indicating a relatively large potential for fault reactivation at 
these locations. 

 
 
12.1.3.2 Generic basic disk-shaped reservoir models with fault 
 
The following conclusions are valid for depleting reservoirs (width larger than 
thickness), intersected by a steeply dipping normal fault in an extensional stress 
regime, unless stated otherwise. 
 
 

Characteristics of stress development and fault slip 
- During depletion, the main part of the reservoir and the sideburden rock lateral to 

the reservoir are destabilising (i.e. the stress development converges to the failure 
surface). The parts inside of the reservoir at its lateral edges and the surrounding 
rock above and below the reservoir are stabilising (i.e. the stress development 
diverges from the failure surface). In case of a steeply dipping normal fault 
intersecting a reservoir with a certain throw, similar zones can be observed in the 
rocks near the fault plane: Two zones in the surrounding rock near the fault plane 
above and below the reservoir are destabilising, whereas two zones within the 
reservoir near the fault plane at the top and bottom of the reservoir stabilise. Note 
that these conclusions are valid for an extensional stress regime. It is expected that 
for a compressive stress regime, these conclusions be reversed. 

- The stress development in a certain location on the fault plane can be strongly 
influenced by the stress development in neighbouring locations. Failure in certain 
locations on the fault can cause gradients of stress paths in neighbouring locations 
to become steeper. Stress paths, initially diverging from failure, can become 
converging to and reaching failure in a later stage of depletion. 

- Stress development on a fault plane intersecting a producing gas reservoir 
promotes normal fault reactivation at the bottom of the footwall reservoir 
compartment and the top of the hanging wall reservoir compartment. It promotes 
reverse fault reactivation at the top of the footwall reservoir compartment and at 
the bottom of the hanging wall reservoir compartment. 

- Gas depletion can lead to both normal and reverse fault slip on the same fault 
plane. In the given setting of a steeply dipping normal fault in an extensional 
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stress regime, normal fault slip due to differential reservoir compaction is the 
dominant mechanism, rather than reverse fault slip. 

 
Influence of throw on induced fault slip 
- The effect of differential reservoir compaction is most pronounced for a 

configuration, where the top of the hanging wall reservoir compartment is 
positioned exactly opposite to the bottom of the footwall reservoir compartment. 
For such configuration, a relatively large amount of fault slip occurs over a narrow 
area. 

- Differential reservoir compaction is absent when the two reservoir compartments 
on either side of the fault are positioned exactly opposite to each other, so that no 
throw is present. The resulting fault slip is negligible for this case. Note that this is 
the case only for equal pore pressure development and rock properties on either 
sides of the fault. 

 
Differential pore pressure changes due to reservoir compartmentalisation 
- In the given setting of a steeply dipping normal fault in an extensional stress 

regime, intersecting a reservoir and causing a certain amount of throw, normal 
fault slip is supported by the depletion of both reservoir compartments. In case of 
depletion of both reservoir compartments, normal fault slip is restricted to the 
level of the reservoir and does not extend beyond. 

- Reverse fault slip is supported by differential pore pressure development due to 
reservoir compartmentalisation. The location of reverse fault slip is unaffected by 
reservoir compartmentalisation and remains restricted to relatively small zones 
around the top of the footwall or bottom of the hanging wall reservoir 
compartments. Reverse fault slip is also supported by a stiffness of the 
surrounding rock larger than the stiffness of the reservoir rock (in terms of 
Young’s modulus and Poisson’s ratio). Especially the combination of a relatively 
stiff surrounding and differential pore pressure development due to 
compartmentalisation can result in relatively large amounts of reverse fault slip. 

 
Young’s modulus and Poisson’s ratio of the surrounding rock 
- A surrounding rock Young’s modulus larger than the Young’s modulus of the 

reservoir rock (Esur > Eres) promotes both normal and reverse reactivation of a 
steeply dipping normal fault intersecting a reservoir with a throw of half the 
reservoir thickness in an extensional tectonic stress regime. It shortens the stress 
path from the initial state of stress to the failure line when compared to the 
standard case with no rock property discrepancy. Esur < Eres opposes the 
reactivation of the fault. 

- The same as in the previous conclusion can be said for the Poisson’s ratio: νsur > 
νres promotes both normal and reverse fault reactivation. νsur < νres opposes fault 
reactivation, although values of νsur lower than 0.2 seem to have no significant 
influence on the calculated maximum normal fault slip. 

- Calculations indicated that the Young’s modulus of the surrounding rock is a more 
important parameter influencing gas depletion induced fault slip than the 
Poisson’s ratio of the surrounding rock. 
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Slight initial reservoir overpressure 
- Geomechanical calculations with a slight initial reservoir overpressure in the 

reservoir showed a reduction in calculated fault slip at reservoir level when 
compared to calculations with an initially hydrostatically pressured reservoir 
incorporating the same pore pressure reduction (∆p). However, depletion of the 
reservoir until the same end pressure provides an additional driving force for fault 
slip when the reservoir embodies a larger initial pore pressure. Calculated RSD-
values are therefore larger in this case. The effects as presented here are solely the 
result of a larger initial reservoir pore pressure in the reservoir. Other possible 
effects related to an initial overpressure which could occur in reality, such as a 
higher porosity and therefore different geomechanical properties of the reservoir 
rock, are not taken into account. 

 
K0-value of an isotropic initial tectonic stress field 
- Calculations with different K0-values showed, that small values of K0 result in a 

relatively large amount of calculated fault slip, because the initial state of stress on 
the fault plane is closer to failure. Furthermore, the fault has most freedom to 
move (extend) since the horizontal effective stresses are relatively low (more 
extensional). 

 
Anisotropic initial tectonic stress field 
- In this dissertation, an anisotropic tectonic stress field is described by its 

maximum and minimum horizontal effective stresses in terms of the effective 
stress ratios vHH0K σ′σ′=  and vhh0K σ′σ′=  and angle λ, which is the angle 
between the largest horizontal stress Hσ′  and the strike direction of the fault plane. 

- Based on the above description, calculations of a reservoir intersected by a steeply 
dipping normal fault with K0H = 1.0 and K0h = 0.4 showed, that the initial state of 
stress on the fault plane before depletion is closest to failure (most critical) for λ = 
0o and 31o. For λ = 31o, this is due to a relatively large shear stress component in 
the strike direction of the fault. This is according to analytical solutions, which 
indicate that λ = 45o – ½φf (= 31o for φf = 28o, φf being the fault friction angle) 
incorporates an initial state of stress is closest to failure for most combinations of 
K0H and K0h, among others for K0H = 1.0 and K0h = 0.4. 

- The stress development on the fault plane is most critical for λ = 0o. It reaches the 
failure line in an earlier stage of depletion than the stress development for larger 
values of λ. Most normal fault slip is calculated for λ = 0o. 

- For λ=31o, a certain amount of strike-slip is calculated (16-18% of the total 
normal fault slip). Strike-slip is also observed to a lesser extent for λ = 45 and 59o, 
but is not calculated for λ = 0 and 90o. Strike-slip contributes to both normal and 
reverse fault slip. 

- For surrounding rock stiffer than the reservoir rock, reverse fault slip is largest for 
λ = 31o, 45o and 59o. This is most probably due to the strike slip component. 

- Stress paths for λ = 0 and 90o are, as long as they do not reach the failure line, 
straight lines. Stress paths for other values of λ show an initial hesitation in 
development and run asymptotically towards a straight line with the gradient of 
the stress path for λ = 0 or 90o. This initial hesitation is due to an initial shear 
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stress component in the strike direction of the fault, which hardly changes during 
gas depletion and which is absent for λ = 0 and 90o. The initial hesitation should 
get smaller as the difference between K0H and K0h decreases. 

 
 
12.2 Discussion 
 
Fault orientation with respect to the anisotropic tectonic stress field in the northern 
Netherlands 
From FE-modelling results it could be concluded, that reactivation of a normal fault at 
reservoir level in a 3D anisotropic stress field is most pronounced when the strike 
direction of the fault is parallel to the direction of the maximum horizontal stress. 
World stress map data (World Stress Map, 2001) indicate that the stress field in the 
Northern Netherlands is marked by largest principal horizontal stresses oriented NW-
SE. In this case, NW-SE striking faults would be most sensitive for fault reactivation. 
 
The largest and most of the seismic events in the Groningen gas field occur in the 
west part of the field, which is dominated by two major NW-SE trending graben 
structures, cut by numerous N-S trending grabens, which bound the field on its west 
side. Another important group of events occurs in the two NW-SE and N-S trending 
branches of the northernmost major grabenstructure. Seismic events are remarkably 
absent in the southeastern part of the field, where the rhomboidal fault structure 
consisting of N-S and E-W trending faults is present. Many seismic events in other 
gas fields in the Netherlands are also related to NW-SE striking faults. A possible 
reason could be the favourable orientation of the strike direction of the reactivated 
faults with respect to the anisotropic tectonic stress field. However, the orientation of 
a fault is only one out of numerous parameters, which influence the reactivation of 
faults. For instance, seismic events in the Annerveen gas field are mainly the result of 
reactivation of N-S trending normal faults. Some seismic events may be related to 
reactivation of E-W trending reservoir bounding faults. 
 
Normal and reverse fault slip and rock properties of surrounding rocks 
The Royal Dutch Meteorological Institute (KNMI) determined for the 1994 and 2001 
earthquakes in the Bergermeer gas field near the city of Alkmaar a focal mechanism 
indicating gas production-induced reverse reactivation of a steeply dipping normal 
fault (Haak et al. 2001). The fault and reservoir have a geometry very similar to the 
FE-model ‘throw_var’ of this study. Plastic reverse fault slip along steeply dipping 
normal faults in an extensional stress regime as a result of gas production is observed 
in calculations with a stiffness of the surrounding rock larger than the stiffness of the 
reservoir rock. Differential pore pressure development due to reservoir 
compartmentalisation promotes such plastic reverse fault slip. Especially the Young’s 
modulus is hereby important. The Poisson’s ratio of the surrounding rock becomes 
only important for very high values. 
 
In the northern Netherlands, reservoir Young’s moduli and Poisson’s ratios are 
typically around 13.0 GPa and 0.2, respectively (NAM 2000). The reservoir is 
underlain by stiffer carboniferous rocks (Limburg Formation), consisting of shales 
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and sandstones with Young’s moduli around 20 GPa and Poisson’s ratios of about 
0.2. Reservoirs are in most cases covered by a shaly caprock (e.g. Ten Boer Claystone 
for the Groningen and Annerveen gas fields). E- and ν-values of this caprock are 
typically 18.0 – 18.5 GPa and 0.25 (NAM 2000). Calculations with rock properties 
similar to these stiffer units showed enhancement of the reverse reactivation of steeply 
dipping normal faults at the top of footwall reservoir compartments and/or at the 
bottom of hanging wall reservoir compartments. A rising gas-water contact during gas 
production could weaken the fault and support fault slip (Toksöz & Walsh, 1990), a 
mechanism that would affect the bottom of the hanging wall reservoir compartment. 
 
Calculation results showed the possibility of gas depletion induced reverse fault slip 
on a steeply dipping normal fault in an extensional stress regime. Note, that according 
to the same calculations, normal fault slip is the dominant mechanism rather than 
reverse fault slip.  
 
Salt layers are present above many gas reservoirs in the Netherlands. The long-term 
viscoelastic behaviour of these salt layers tends to an isotropic state of stress within 
the salt, in which the horizontal stresses are equal to the vertical stress. Such isotropic 
state of stress is also present in the theoretical case of a Poisson’s ratio of 0.5. 
According to the calculations for this dissertation, a large Poisson’s ratio of the rocks 
surrounding the reservoir affects the initial state of stress on faults in the reservoir 
such that it is close to failure. Salt layers in the overburden of the gas reservoirs in the 
northern Netherlands could have a similar effect. 
 
Seismic moment 
The calculated seismic moments in the numerical models represent an upper limit, a 
maximum seismic potential for the modelled fault(s) under the applied conditions, 
since it is assumed that 100% of the gas depletion induced fault slip is translated to 
those seismic moments. The slip, calculated in the model, may in reality occur either 
aseismically, or as a seismic event or as a combination of the two. Aseismic fault slip 
does not contribute to a seismic moment. Due to the limitations of the method 
followed, i.e. elastoplastic modelling, it is impossible to establish if asperities will 
form during depletion and whether built-up stresses will be released seismically or 
aseismically. Even if the seismic moment would be known, this seismic energy could 
be released in one relatively large seismic event or in a series of smaller events. It is 
therefore not recommendable to translate the calculated seismic moments to 
magnitudes on Richter scale. The calculations presented in this dissertation can never 
be a forecast of the magnitude of the events, which are going to occur when a 
reservoir with the type of modelled setting is produced. The calculated seismic 
moments are just parameters, which express the criticalness of a fault for reactivation 
under certain circumstances, and which can be used in subsequent research for a 
probabilistic approach of the problem of induced seismicity. 
 
Occurrence of induced seismicity in time 
Fault slip needs time to develop: the stress needs to develop from an initial state to the 
failure criterion. Furthermore, a certain amount of fault slip is necessary for a 
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sufficient stress built-up around an asperity and seismic energy release. Seismic 
events are therefore expected to occur in a later stage of field production, especially 
when reverse fault reactivation is involved. 
 
 
12.3 Recommendations 
 
The present study pays attention to the influence of several parameters on stress 
development and the sensitivity of a fault for reactivation. Complex key issues 
occurring in the field, which have a major influence on the development of reservoir 
production induced seismicity, are still largely unknown. Such key issues are for 
instance fault properties and pore pressure development in faults, the effects of 
reservoir overpressure on geomechanical properties of the reservoir, the dynamics of a 
rising gas-water contact and the tectonic stress field in the subsurface of the northern 
Netherlands. Future research could concentrate more on measurement or 
determination and an appropriate geomechanical description of these issues. 
 
The current fault properties, which incorporate Coulomb-friction with a constant 
friction angle during the whole calculation, could be extended with a displacement-
weakening model. This means that after fault movement is initiated, fault sliding takes 
place more easily. This kind of behaviour is more in line with what happens in reality. 
Research on this topic could produce more insight in how seismic events and stress 
concentrations distribute themselves over the fault plane during gas production. 
 
The influence of the salt layer present above the gas reservoirs in the Netherlands on 
gas depletion induced fault slip should be studied, since it can have a major effect on 
the local initial tectonic stress field. 
 
Certain gas fields show seismicity during production whereas other gas fields do not. 
More research on a detailed scale seems necessary in order to explain this behaviour. 
A suggestion is to search for correlations between the occurrence of seismic events 
and as much statical and dynamical properties of the studied field(s) as possible, 
eventually supported by downhole geophone measurements of microseismicity. 
 
It would be useful to set up a stress atlas of simple reservoir/fault geometries, 
incorporating different geometrical and geomechanical parameters. The criticalness of 
certain faults for reactivation relative to a reference case could be judged by inserting 
some parameter values into a spreadsheet. 
 
Geomechanical modelling tools are currently in fast development. Tools allowing 
complex 3D-models with coupled structural/multi-phase fluid flow/thermal/dynamic 
and large strain options are currently entering the market, allowing investigation of 
interesting topics such as a moving gas-water contact, salt deformation and crack 
formation. In case of sufficient hardware capacity, numerical models incorporating 
higher order elements should be used. 
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APPENDIX 1 INDUCED SEISMIC EVENTS IN 
THE NETHERLANDS UP TO 
OCTOBER 23 2003 (SOURCE: 
KNMI) 

 
 
YYMMDD TIME LOCATION LAT LON X_RD Y_RD INT MAG DEPTH 
 
19861226 074751.0 Assen 52.992 6.548 232,924 556,587 IV- 2.8 1.0 
19871214 204951.0 Hooghalen 52.928 6.552 233,266 549,537 IV 2.5 1.5 
19891201 200914.3 Purmerend 52.529 4.971 126,697 504,593 V 2.7 1.2 
19910215 021116.5 Emmen 52.771 6.914 257,992 532,491 III-I 2.2 3.0 
19910425 102631.5 Geelbroek 52.952 6.575 234,788 552,218 III-I 2.6 3.0 
19910808 040114.6 Eleveld 52.965 6.573 234,653 553,624 III-I 2.7 3.0 
19911205 002456.7 Middelstum 53.358 6.657 239,503 597,465 III 2.4 3.0 
19920523 152911.4 Geelbroek 52.953 6.572 234,563 552,325 III-I 2.6 3.0 
19920524 180005.9 Geelbroek 52.957 6.562 233,885 552,685 II 1.6 3.0 
19920611 170937.0 Roswinkel 52.831 7.032 265,802 539,341 3.5 2.7 1.5 
19920722 232313.2 Eleveld 52.961 6.570 234,437 553,158 III 2.6 3.0 
19921206 203432.0 Ten Boer 53.320 6.740 245,107 593,338 1 1.3 3.0 
19921211 130050.0 Slochteren 53.210 6.747 245,782 581,126 1 1.4 3.0 
19930212 114600.7 Noordbroek 53.295 6.868 253,715 590,669 1 1.0 3.0 
19930305 222725.2 Langelo 53.085 6.465 227,177 566,825 2.5 1.5 3.0 
19930312 221241.5 Hoogezand 53.160 6.805 249,789 575,582 1 0.9 3.0 
19930326 183421.1 Overschild 53.285 6.795 248,848 589,495 1 1.1 3.0 
19930505 200832.7 Haren 53.177 6.685 241,729 577,378 1 1.5 3.0 
19930514 193942.0 Ten Post 53.305 6.793 248,692 591,773 1 1.1 3.0 
19930627 020851.8 Bedum 53.317 6.650 239,118 592,839 1 1.4 3.0 
19930627 025710.0 Stedum 53.315 6.660 239,788 592,647 1 1.0 3.0 
19930710 002234.5 Appingedam 53.333 6.837 251,518 594,928 1 1.4 3.0 
19930727 133918.0 Loppersum 53.336 6.808 249,625 595,169 1 0.8 3.0 
19930823 005121.6 Nijenklooster 53.332 6.848 252,297 594,851 1 0.7 3.0 
19930904 022450.1 Oldenzijl 53.363 6.765 246,682 598,117 1 1.4 3.0 
19930922 173703.8 Middelstum 53.368 6.675 240,682 598,562 2.5 2.0 3.0 
19930925 002133.4 Slochteren 53.208 6.812 250,129 580,932 1 0.9 3.0 
19931123 123147.6 Slochteren 53.202 6.820 250,699 580,256 2.5 2.2 3.0 
19931222 020442.7 Ten Post 53.294 6.753 246,050 590,462 1 1.6 3.0 
19940204 213238.9 Winneweer 53.306 6.777 247,581 591,790 1 1.3 3.0 
19940205 151005.8 Roswinkel 52.833 7.045 266,672 539,583 4.5 2.9 1.5 
19940228 210016.5 Garsthuizen 53.370 6.720 243,671 598,895 1 0.6 3.0 
19940302 103638.0 Steendam 53.279 6.807 249,639 588,861 1 1.5 3.0 
19940306 200231.2 Eenrum 53.323 6.805 249,431 593,774 1 1.0 3.0 
19940314 093101.1 't Zandt 53.345 6.808 249,605 596,207 1 1.3 3.0 
19940314 104400.0 Zandeweer 53.390 6.680 240,970 601,053 1 1.6 0.0 
19940314 223209.6 Westerbroek 53.170 6.747 245,866 576,693 1 1.1 3.0 
19940324 052903.8 Delfzijl 53.316 6.962 259,885 593,193 1 0.8 3.0 
19940404 184611.6 Steendam 53.275 6.828 251,094 588,389 1 1.3 3.0 
19940507 200853.6 Kolham 53.194 6.798 249,269 579,374 1 1.0 3.0 
19940510 013411.9 Hellum 53.226 6.835 251,646 583,021 1 0.8 3.0 
19940605 021450.7 Weiwerd 53.295 6.950 259,159 590,784 1 1.0 3.0 
19940606 040826.1 Achterdiep 53.156 6.823 251,022 575,217 1 1.0 3.0 
19940608 222024.5 Garsthuizen 53.359 6.682 241,142 597,625 1 1.5 3.0 
19940626 174438.8 De Klip 53.335 6.852 252,512 595,171 1 1.0 3.0 
19940627 205853.8 Uithuizermeeden 53.424 6.770 246,885 604,892 1 1.7 3.0 
19940701 062742.6 Stedum 53.332 6.577 234,203 594,462 1 2.7 3.0 
19940719 081729.6 't Zandt 53.372 6.743 245,220 599,164 1 2.0 3.0 
19940730 091820.7 Middelstum 53.351 6.628 237,609 596,616 4.5 2.7 1.0 
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YYMMDD TIME LOCATION LAT LON X_RD Y_RD INT MAG DEPTH 
 
19940730 095329.6 Middelstum, naschok 53.365 6.577 234,143 598,134 1 1.3 1.0 
19940806 180219.2 Alkmaar 52.654 4.711 109,221 518,630 4.5 3.0 2.5 
19940816 143739.8 Annen 53.061 6.698 242,855 564,487 4.5 2.3 3.0 
19940907 220604.3 Warffum 53.402 6.575 233,964 602,231 1 1.4 3.0 
19940909 155654.3 Emmen 52.714 6.915 258,193 526,189 1 1.7 3.0 
19940921 011258.1 Alkmaar 52.658 4.708 109,021 519,047 5 3.2 2.5 
19940923 195000.0 Schoonebeek 52.670 6.880 255,931 521,208 2 1.3 3.0 
19941026 214101.8 Schildwolde 53.246 6.737 245,039 585,119 1 1.2 3.0 
19941213 215000.0 No Name 0.000 0.000 249,947 584,526 1 1.0 0.0 
19950124 093839.1 Amsweer 53.316 6.897 255,555 593,044 1 1.3 3.0 
19950131 194755.6 Annen 53.063 6.720 244,303 564,737 4 2.0 3.0 
19950201 003132.0 Veendam 53.079 6.775 247,956 566,531 2 1.2 3.0 
19950321 163744.3 Bierum 53.438 6.913 256,377 606,679 1 1.1 3.0 
19950406 080343.4 Loppersum 53.360 6.680 241,030 597,677 1 2.0 3.0 
19950426 173549.6 Zuidlaren 53.084 6.668 240,799 566,992 1 0.7 3.0 
19950515 095239.3 Weiwerd 53.309 6.945 258,791 592,390 1 1.8 3.0 
19950603 220638.5 Zevenhuizen 53.182 6.363 220,220 577,521 1 0.9 3.0 
19950620 085940.1 Roswinkel 52.832 7.029 265,598 539,414 3 2.7 2.0 
19950715 160539.1 Veenhuizen 53.207 6.823 250,911 580,817  1.0 3.0 
19950721 232440.4 Meedhuizen 53.276 6.963 260,095 588,689 1 1.1 3.0 
19950913 213436.8 Wirdumerdraai 53.335 6.728 244,299 594,974  1.1 3.0 
19951018 003427.3 Altena 53.129 6.492 228,887 571,840  1.3 3.0 
19951102 010700.7 Loppersum 53.352 6.718 243,598 596,835 2 1.6 3.0 
19951104 055043.2 Uithuizerwad 53.470 6.722 243,577 609,986 1 1.8 3.0 
19951120 022054.7 Steendam 53.315 6.762 246,561 592,809 1 1.1 3.0 
19951224 132634.1 Polder Wormer 52.511 4.847 118,279 502,595 1 2.3 3.0 
19960212 140224.2 Schaaphok 53.256 6.767 247,021 586,231 1 0.9 3.0 
19960224 033107.5 Emmen 52.761 6.908 257,635 531,315  1.8 3.0 
19960225 135509.3 Roswinkel 52.838 7.062 267,805 540,166 1 0.9 1.5 
19960229 080734.4 Eppenhuizen 53.343 6.640 238,401 595,721 1 2.0 3.0 
19960306 092050.2 Roswinkel 52.838 7.062 267,805 540,166 2 1.6 1.5 
19960312 005144.6 Eexterveen 53.064 6.790 248,994 564,882 2 1.1 3.0 
19960312 121348.7 Roswinkel 52.838 7.059 267,631 540,117 4 2.6 2.0 
19960312 183412.6 Schuilingsoord 53.072 6.653 239,817 565,676 1 0.8 3.0 
19960314 222358.3 Roswinkel 52.838 7.064 267,947 540,136 1 1.1 2.0 
19960316 041632.7 Appingedam 53.298 6.848 252,374 591,031 1 1.4 3.0 
19960321 181901.8 Roswinkel 52.833 7.054 267,278 539,619 2 1.8 2.0 
19960401 185345.1 Amen 52.940 6.608 237,052 550,845 1 0.6 3.0 
19960401 232818.3 Nieuw Annerveen 53.067 6.790 248,986 565,289 1 0.1 3.0 
19960409 135834.4 Spijkerboor 53.060 6.798 249,561 564,429 1 1.1 3.0 
19960415 034131.2 Ten Boer 53.289 6.688 241,727 589,862 1 0.9 3.0 
19960417 190512.1 Holwierde 53.357 6.883 254,570 597,680 1 0.9 3.0 
19960421 213602.3 Warffum 53.376 6.595 235,342 599,378 1 0.5 3.0 
19960425 232220.4 Delfzijl 53.356 6.863 253,242 597,486 1 0.9 3.0 
19960607 042056.6 Annerveenschekanaal 53.085 6.780 248,278 567,242 1 1.2 3.0 
19960607 083407.0 Garrelsweer 53.309 6.778 247,685 592,143 1 1.3 3.0 
19960607 145910.8 Annerveenschekanaal 53.082 6.832 251,744 567,013 1 0.7 3.0 
19960616 025327.8 Eleveld 52.947 6.568 234,350 551,598 1 1.7 3.0 
19960703 214007.1 Spijkerboor 53.053 6.803 249,911 563,693 1 0.8 3.0 
19960804 004217.8 Wachtum 52.724 6.738 246,237 527,063 1 1.6 3.0 
19960806 133827.7 Weerdinge 52.756 6.917 258,209 530,771 1 1.6 3.0 
19960809 023145.7 Annen 53.057 6.688 242,193 564,031 1 0.3 3.0 
19960809 063847.1 Oterdumerwarven 53.287 6.958 259,734 589,942 1 1.6 3.0 
19960825 222411.1 Geelbroek 52.945 6.570 234,465 551,451 2 1.7 3.0 
19960902 052051.9 Nieuw Roden 53.147 6.422 224,175 573,700 3.5 2.1 3.0 
19961016 050900.1 Amen 52.942 6.610 237,160 551,070 1 1.3 3.0 
19961116 033349.8 't Zandt 53.355 6.755 246,033 597,251 1 1.3 3.0 
19961117 045952.0 Wachtum 52.724 6.732 245,787 527,055 3.5 2.2 3.0 
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19961130 202657.9 Leek 53.165 6.410 223,365 575,746 1 1.0 3.0 
19961206 164648.0 Roswinkel 52.835 7.053 267,220 539,807 1 1.6 1.5 
19961216 160115.1 Annerveenschekanaal 53.072 6.815 250,651 565,823 1 0.5 3.0 
19961216 160650.2 Annerveenschekanaal 53.078 6.822 251,085 566,481 1 -0.1 3.0 
19961226 195205.5 Schaaphok 53.261 6.765 246,898 586,824 1 -0.2 3.0 
19961228 005408.5 Winde 53.107 6.505 229,818 569,369 1 1.9 3.0 
19961228 181652.7 Roswinkel 52.834 7.043 266,548 539,725 4.5 2.7 2.0 
19961228 233946.9 Donderen 53.111 6.502 229,589 569,755 2 1.8 3.0 
19970108 012054.4 Westeremden 53.338 6.713 243,294 595,288 1 1.5 3.0 
19970114 211340.6 Geelbroek 52.943 6.577 234,917 551,199 1 0.7 3.0 
19970116 001246.6 Roswinkel 52.835 7.046 266,708 539,807 4 2.4 2.0 
19970124 040004.5 Annen 53.079 6.678 241,478 566,484 1 0.6 3.0 
19970217 072055.2 Zijldijk 53.387 6.752 245,743 600,826 1 1.6 3.0 
19970217 111600.4 Eleveld 52.948 6.568 234,349 551,691 1 1.2 3.0 
19970219 215350.8 Roswinkel 52.832 7.038 266,230 539,495 6 3.4 2.0 
19970226 193122.4 Coevorden 52.642 6.803 250,808 517,933 1 1.2 3.0 
19970302 152532.5 Kommerzijl 53.289 6.265 213,502 589,361 1 1.3 3.0 
19970308 142904.2 Zuidlaarderveen 53.107 6.815 250,575 569,680 1 -0.8 3.0 
19970308 142916.9 Zuidlaarderveen 53.109 6.812 250,345 569,990 1 0.0 3.0 
19970325 001307.7 Woudbloem 53.252 6.748 245,806 585,726 1 -0.2 3.0 
19970401 003419.0 Emmen 52.768 6.873 255,255 532,137 1 1.4 3.0 
19970409 222143.9 Noordbroek 53.200 6.865 253,708 580,187 1 0.5 3.0 
19970417 202802.9 Roswinkel 52.833 7.055 267,346 539,599 1 0.8 1.5 
19970429 181646.3 Schildwolde 53.249 6.803 249,482 585,519 1 1.4 3.0 
19970504 024239.7 Weiwerd 53.300 6.930 257,813 591,386 1 1.1 3.0 
19970504 042909.8 Kropswolde 53.144 6.737 245,252 573,770 1 0.8 3.0 
19970519 154356.2 Roswinkel 52.836 7.053 267,227 539,911 1 1.3 2.0 
19970606 193918.8 Opwierde 53.293 6.875 254,165 590,455 1 1.2 3.0 
19970619 231925.5 't Zandt 53.364 6.753 245,903 598,231 1 1.8 3.0 
19970620 004538.5 Roswinkel 52.834 7.048 266,894 539,718 2 1.8 2.0 
19970621 003033.0 Oud-Annerveen 53.094 6.752 246,361 568,207  1.9 3.5 
19970709 062312.0 Roswinkel 52.833 7.053 267,234 539,596 1 1.2 2.0 
19970717 025629.7 Oud-Annerveen 53.061 6.717 244,085 564,455 1 -0.7 3.0 
19970723 064436.0 Lageland 53.247 6.753 246,150 585,195 1 1.2 3.0 
19970818 044228.7 Roswinkel 52.834 7.050 267,006 539,739 2 1.6 2.0 
19970818 051732.2 Roswinkel 52.834 7.050 267,006 539,721 3 2.1 2.0 
19970822 102708.8 Spijkerboor 53.063 6.813 250,558 564,857 1 0.2 3.0 
19970823 000156.5 Spijkerboor 53.063 6.813 250,558 564,857 1 0.6 3.0 
19970823 193935.0 Lageland 53.239 6.683 241,494 584,256 1 1.6 3.0 
19970913 213041.0 Wirdum 53.338 6.747 245,513 595,349 1 1.1 3.0 
19970914 193902.6 Annen 53.046 6.740 245,681 562,796 1 0.4 3.0 
19971101 225625.8 Zandeweer 53.427 6.705 242,558 605,164 1 1.4 3.0 
19971103 181248.7 Donderen 53.108 6.513 230,374 569,489 1 1.4 3.0 
19971104 195501.9 Wirdum 53.328 6.793 248,643 594,278 1 1.7 3.0 
19971115 162232.1 Oud-Annerveen 53.104 6.822 251,026 569,429 1 0.3 3.0 
19971120 173521.0 Slochteren 53.206 6.792 248,796 580,756 1 1.2 3.0 
19971126 023537.0 Woudbloem 53.254 6.765 246,913 586,062 1 0.2 3.0 
19971203 144719.7 Meedhuizen 53.279 6.897 255,641 588,947 1 1.8 3.0 
19971203 150103.6 Siddeburen 53.244 6.858 253,164 585,000 1 1.3 3.0 
19971207 070244.4 Zuidlaarderveen 53.075 6.702 243,051 566,012 1 0.3 3.0 
19971223 062132.1 Termunterzijl 53.317 7.015 263,437 593,327 1 1.3 3.0 
19980108 081145.2 Amen 52.937 6.597 236,272 550,573 1 1.2 3.0 
19980122 103155.1 Geelbroek 52.984 6.547 232,828 555,728 1 1.1 3.5 
19980128 213303.8 Roswinkel 52.833 7.040 266,336 539,539 5 2.7 2.0 
19980128 223404.3 Roswinkel 52.833 7.038 266,201 539,583 3 2.0 2.0 
19980131 083939.2 Woudbloem 53.237 6.745 245,615 584,053 1 0.7 3.0 
19980205 211149.3 Meedhuizen 53.291 6.935 258,169 590,317 1 1.1 3.0 
19980215 072416.4 't Zandt 53.356 6.773 247,251 597,367 3 2.6 3.0 
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19980329 060640.5 Westeremden 53.345 6.730 244,390 596,070 1 1.3 3.0 
19980419 080012.0 Zeerijp 53.339 6.723 243,958 595,412 1 1.5 3.0 
19980419 153235.7 Uithuizen 53.425 6.682 241,012 604,894 1 1.6 3.0 
19980428 020225.2 Veendam 53.107 6.865 253,920 569,840 1 0.4 3.0 
19980430 010841.7 Scharmer 53.197 6.707 243,138 579,574 1 0.9 3.0 
19980518 220342.4 Oldenzijl 53.404 6.732 244,378 602,655 1 1.3 3.0 
19980530 094315.1 Slochteren 53.204 6.777 247,800 580,422 1 0.9 3.0 
19980714 121202.2 Roswinkel 52.833 7.053 267,235 539,540 5 3.3 2.0 
19980814 192516.8 Froombosch 53.192 6.803 249,607 579,177  1.1 3.0 
19980824 042858.0 Overschild 53.298 6.810 249,820 590,961 1 2.4 3.0 
19980905 203611.2 Emmen 52.742 6.875 255,427 529,229 2.5 1.9 3.0 
19981004 032832.9 Zeerijp 53.353 6.748 245,593 597,001 1 1.0 3.0 
19981020 213205.0 Deurze 52.974 6.607 236,875 554,682 1 0.8 3.0 
19981101 174829.5 Geelbroek 52.955 6.572 234,560 552,473 1 1.3 3.0 
19981212 075139.5 Oldenzijl 53.392 6.698 242,186 601,261 1 2.0 3.0 
19981226 234802.1 Slochteren 53.215 6.830 251,338 581,716 1 1.6 3.0 
19990111 083609.1 Roswinkel 52.837 7.057 267,471 540,047 1 1.1 2.0 
19990113 193637.0 Zeerijp 53.359 6.777 247,466 597,724 1 2.1 3.0 
19990131 045300.5 Siddeburen 53.255 6.825 250,915 586,215 1 0.4 3.0 
19990305 190040.2 Borgercompagnie 53.101 6.792 249,024 569,074 1 1.0 3.0 
19990306 055639.9 Wirdum 53.325 6.778 247,651 593,906 1 1.6 3.0 
19990312 180644.4 Roswinkel 52.833 7.052 267,111 539,571 1-2 1.3 2.0 
19990317 231425.4 Roswinkel 52.832 7.052 267,124 539,482 1-2 1.5 2.0 
19990421 105956.4 Appingedam 53.312 6.840 251,787 592,577 1 1.4 3.0 
19990422 225802.9 Rottevalle 53.112 6.152 206,154 569,561 1 1.0 3.0 
19990506 181356.3 Roswinkel 52.836 7.055 267,339 539,896 1-2 1.4 2.0 
19990508 204018.9 Stedum 53.325 6.700 242,432 593,845 1 1.6 3.0 
19990514 183020.7 Roswinkel 52.834 7.052 267,118 539,741 2 1.7 2.0 
19990515 192830.3 Roswinkel 52.834 7.052 267,118 539,741 1-2 1.4 2.0 
19990521 000938.8 Sappemeer 53.165 6.815 250,447 576,133 1 0.7 3.0 
19990607 202031.3 Steenbergen 53.097 6.402 222,914 568,191 1 1.1 3.0 
19990707 090311.3 Amen 52.950 6.627 238,264 552,071 1 1.3 3.0 
19990810 232418.3 Garsthuizen 53.382 6.727 244,091 600,201 1 1.4 3.0 
19990811 011800.9 Westeremden 53.346 6.702 242,500 596,202 1 0.7 3.0 
19990907 171623.5 Eexterveen 53.068 6.795 249,319 565,388 1 1.3 3.0 
19990907 194751.0 Eexterveen 53.057 6.813 250,572 564,189 1 0.5 3.0 
19991018 185609.5 Schipborg 53.078 6.718 244,162 566,330 1 0.4 3.0 
19991018 185755.4 Schuilingsoord 53.061 6.678 241,516 564,389 1 0.3 3.0 
19991022 131916.7 Amen 52.941 6.592 235,929 550,994 1 1.7 3.0 
19991208 053928.4 Achterdiep 53.179 6.802 249,524 577,729 1 0.2 3.0 
19991209 093800.0 Schildwolde 53.247 6.803 249,487 585,241 1 1.1 3.0 
19991209 095212.9 Achterdiep 53.184 6.797 249,179 578,242 1 1.0 3.0 
19991210 061332.0 Achterdiep 53.175 6.792 248,865 577,215 1 1.4 3.0 
19991220 122929.6 Westeremden 53.352 6.710 243,042 596,898 1 1.5 3.0 
19991221 045237.7 Kolham 53.190 6.765 247,049 578,905 1 1.0 3.0 
19991224 235241.1 Delfzijl 53.320 6.947 258,876 593,616 1 1.8 3.0 
19991231 110055.3 Roswinkel 52.835 7.048 266,892 539,830 5 2.8 2.0 
20000107 141906.7 Roswinkel 52.834 7.043 266,557 539,711 2 1.1 2.0 
20000110 041807.4 Schipborg 53.077 6.655 239,920 566,197 1 0.6 3.0 
20000212 194810.6 Appingedam 53.321 6.822 250,546 593,554 1 1.7 3.5 
20000319 161336.0 Westeremden 53.343 6.698 242,285 595,827  1.6 3.0 
20000327 102322.0 Roswinkel 52.835 7.045 266,667 539,825 1 0.8 2.0 
20000401 031351.3 Dalen 52.685 6.750 247,108 522,666  1.3 3.0 
20000408 120728.0 Engelbert 53.205 6.632 238,111 580,393  1.2 3.0 
20000408 211317.8 Godlinze 53.370 6.845 251,990 599,056  1.1 3.0 
20000414 230747.7 Ten Boer 53.308 6.772 247,243 592,006  1.2 3.0 
20000516 011114.7 Garsthuizen 53.381 6.710 242,985 600,032  1.9 3.0 
20000609 170347.2 Annerveenschekanaal 53.087 6.813 250,506 567,489 1 1.1 3.0 
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20000611 041220.1 Loppersum 53.348 6.763 246,602 596,483 2 2.0 3.0 
20000612 154823.0 Loppersum 53.340 6.742 245,177 595,546 2 2.5 3.0 
20000615 014224.9 Siddeburen 53.278 6.830 251,197 588,800 2 2.4 3.0 
20000706 230956.7 Loppersum 53.340 6.752 245,843 595,559 1 1.2 3.0 
20000710 150549.1 Vries 53.064 6.575 234,583 564,697  1.0 3.0 
20000713 084152.4 Vries 53.079 6.565 233,886 566,299  1.1 3.0 
20000716 013412.0 't Zandt 53.367 6.782 247,783 598,565  1.5 3.0 
20000922 170516.7 Annerveenschekanaal 53.076 6.820 250,978 566,256  1.0 3.0 
20000922 205206.5 Annerveenschekanaal 53.081 6.772 247,728 566,786 2 2.2 3.5 
20000923 034747.4 Annerveenschekanaal 53.081 6.788 248,845 566,771  1.0 2.7 
20001025 181034.7 Roswinkel 52.832 7.052 267,125 539,463 5 3.2 2.3 
20001112 021636.2 Deurze 52.977 6.608 236,981 555,054  0.3 3.0 
20001223 052006.1 Borgercompagnie 53.108 6.812 250,348 569,842  0.4 3.0 
20001226 163357.6 Meedhuizen 53.294 6.910 256,493 590,708  1.4 3.0 
20010226 113907.3 Annerveenschekanaal 53.072 6.822 251,097 565,887  0.8 3.0 
20010318 031420.7 Lageland 53.244 6.692 242,041 584,766  1.6 3.0 
20010428 100008.2 Geelbroek 52.948 6.567 234,236 551,764  1.5 3.0 
20010428 100055.5 Eleveld 52.959 6.575 234,776 552,978  1.1 3.0 
20010428 230015.8 Roswinkel 52.833 7.053 267,233 539,633 4 2.4 2.1 
20010517 074815.9 Hoornsedijk 53.173 6.612 236,835 576,828  1.4 3.0 
20010610 033533.2 Annen 53.049 6.753 246,567 563,203  0.5 3.0 
20010619 064955.5 Annerveenschekanaal 53.079 6.820 250,971 566,608  1.0 3.0 
20010621 035049.0 Overschild 53.295 6.800 249,158 590,670  1.7 3.0 
20010807 170901.5 Veendam 53.097 6.845 252,605 568,663  0.3 3.0 
20010909 065812.6 Alkmaar 52.651 4.713 109,374 518,265 6 3.5 2.0 
20010910 043015.3 Alkmaar 52.653 4.712 109,274 518,445 5 3.2 2.0 
20011010 064109.3 Bergen aan Zee 52.682 4.648 105,011 521,739 3 2.7 2.9 
20011010 140643.3 Schaaphok 53.239 6.763 246,834 584,355  1.0 3.0 
20011010 140657.2 Schaaphok 53.240 6.763 246,832 584,429  0.8 3.0 
20011204 190831.0 Woudbloem 53.204 6.785 248,355 580,507  0.2 3.0 
20011204 190837.8 Woudbloem 53.204 6.785 248,355 580,507  0.0 3.0 
20011204 223337.9 Woudbloem 53.210 6.743 245,560 581,085  1.0 3.0 
20011211 151717.6 Slochteren 53.217 6.788 248,551 581,902  0.7 3.0 
20011220 012542.9 Veendam 53.081 6.838 252,195 566,818  0.5 3.0 
20011225 232809.4 Noordzee 53.487 6.718 243,320 611,874  1.3 0.0 
20011226 123653.0 Eexterveen 53.057 6.805 250,015 564,104  -0.2 3.0 
20020205 103039.7 Stedum 53.319 6.717 243,555 593,197  2.2 3.0 
20020214 170104.7 Roswinkel 52.832 7.037 266,113 539,496 3 2.1 2.0 
20020227 035214.0 Appingedam 53.337 6.825 250,732 595,339  1.1 3.0 
20020317 011627.9 Donderen 53.094 6.543 232,409 567,908  0.4 3.0 
20020414 011144.0 Annen 53.049 6.770 247,686 563,168  1.9 3.0 
20020510 103348.9 Bierum 53.378 6.857 252,747 599,980  1.7 3.0 
20020511 100723.2 Geelbroek 52.943 6.580 235,141 551,221  1.5 3.0 
20020522 133813.0 Eleveld 52.956 6.585 235,453 552,655  1.0 3.0 
20020628 030647.3 Smilde 52.968 6.450 226,363 553,848  1.8 3.0 
20020718 053116.8 Froombosch 53.188 6.783 248,279 578,687  1.6 3.0 
20020727 150108.6 Geelbroek 52.947 6.565 234,126 551,632  1.6 3.0 
20020805 192810.1 Oudemolen 53.055 6.657 240,074 563,771  0.9 3.0 
20020829 211322.7 Luddeweer 53.247 6.747 245,705 585,205  0.0 3.0 
20020905 000021.4 Mariënberg 52.508 6.563 234,809 502,735  0.9 3.0 
20020906 060705.5 Veendam 53.112 6.842 252,347 570,365  0.6 3.0 
20020922 071333.4 Annen 53.056 6.680 241,636 563,910  0.6 3.0 
20020922 073013.8 Annen 53.035 6.638 238,885 561,486  0.5 3.0 
20021012 023213.6 Veendam 53.107 6.815 250,575 569,680  0.9 3.0 
20021014 234522.5 Roswinkel 52.834 7.045 266,670 539,694 1 0.9 2.0 
20021019 180339.4 Spijkerboor 53.071 6.768 247,527 565,633  1.3 3.0 
20021214 001324.6 Coevorden 52.677 6.832 252,648 521,865  1.4 3.0 
20021216 122339.0 Zuidlaren 53.092 6.718 244,133 567,906  1.4 3.0 
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20021217 002318.7 Tjuchem 53.291 6.860 253,168 590,249  0.9 3.0 
20021218 203109.1 Spitsbergen 53.175 6.847 252,540 577,380  0.8 3.0 
20021224 025722.6 Roswinkel 52.833 7.042 266,449 539,522  1.4 2.0 
20030101 191615.3 Loppersum 53.338 6.743 245,293 595,289  1.0 3.0 
20030113 024545.5 Smilde 52.971 6.413 223,896 554,127  1.7 3.0 
20030118 181243.3 Overschild 53.287 6.770 247,176 589,723  1.0 3.0 
20030123 074616.6 Winneweer 53.307 6.752 245,912 591,906  1.6 3.0 
20030130 002730.2 Leermens 53.342 6.795 248,723 595,875  1.5 3.0 
20030131 152047.7 Denemarken 53.232 6.782 248,072 583,618  0.3 3.0 
20030202 093223.6 Eleveld 52.950 6.588 235,688 552,009  2.0 3.0 
20030206 192524.9 De Paauwen 53.259 6.768 247,124 586,623  0.3 3.0 
20030211 192949.5 Zeerijp 53.353 6.773 247,258 596,996  1.3 3.0 
20030212 062220.0 De Paauwen 53.262 6.812 250,009 586,995  0.8 3.0 
20030214 065424.1 Rottevalle 53.146 6.122 204,107 573,360  1.8 3.0 
20030228 215418.19 Westeremden 53.355 6.730 244,369 597,201  0.7 3.0 
20030303 205121.89 Middelstum 53.360 6.662 239,809 597,73  2.2 3.0 
20030306 201518.67 Hoogezand 53.141 6.753 246,374 573,419  0.9 3.0 
20030309 053126.70 Kantens 53.372 6.640 238,344 598,984  1.1 3.0 
20030323 160003.03 Emmapolder 53.457 6.783 247,698 608,673  1.5 3.0 
20030329 210901.44 Harkstede 53.238 6.682 241,386 584,087  0.4 3.0 
20030401 002552.09 Oldenklooster 53.364 6.852 252,448 598,342  0.3 3.0 
20030402 201948.74 Loppersum 53.340 6.718 243,623 595,517  1.9 3.0 
20030405 164948.33 Engelbert 53.209 6.630 237,991 580,874  0.3 3.0 
20030406 000750.70 Overschild 53.272 6.795 248,877 588,012  0.1 3.0 
20030406 005727.90 Ruiten 53.205 6.750 246,017 580,499  1.0 3.0 
20030406 230204.37 Ruiten 53.206 6.763 246,904 580,683  0.7 3.0 
20030416 162042.53 Overschild 53.281 6.775 247,522 589,079  0.7 3.0 
20030418 235955.00 Schaaphok 53.238 6.753 246,168 584,25  0.0 3.0 
20030420 001939.19 Schaaphok 53.247 6.750 245,928 585,172  0.1 3.0 
20030428 215611.33 Ten-Boer 53.284 6.727 244,294 589,26  1.0 3.0 
20030429 025504.92 Ten-Boer 53.284 6.730 244,516 589,283  1.3 3.0 
20030514 205215.91 Siddeburen 53.254 6.865 253,587 586,121  0.8 3.0 
20030514 222346.52 Siddeburen 53.257 6.847 252,357 586,411  0.8 3.0 
20030521 045709.24 Annen 53.072 6.765 247,301 565,74  1.1 3.0 
20030523 025950.86 Muntendam 53.084 6.823 251,182 567,207  0.6 3.0 
20030531 231225.73 Siddeburen 53.247 6.875 254,27 585,374  0.8 3.0 
20030603 161538.91 Stedum 53.337 6.683 241,299 595,104  1.5 3.0 
20030606 142716.47 Harkstede 53.225 6.682 241,411 582,696  0.7 3.0 
20030608 053047.24 Froombosch 53.192 6.788 248,605 579,139  1.0 3.0 
20030608 081416.55 Woltersum 53.271 6.737 244,988 587,863  1.5 3.0 
20030616 004417.12 Smilde 52.963 6.407 223,46 553,25  2.3 2.6 
20030805 184508.49 Assen 52.975 6.558 233,628 554,703  1.1 3.0 
20030807 082421.12 Zeerijp 53.350 6.758 246,266 596,643  1.7 3.0 
20030807 105639.85 Zeerijp 53.345 6.748 245,611 596,093  1.3 3.0 
20030820 084614.99 Veendam 53.106 6.815 250,575 569,661  0.5 3.0 
20030825 042455.00 Kiel-Windeweer 53.108 6.792 249,01 569,779  0.7 3.0 
20030825 100535.83 Kiel-Windeweer 53.109 6.798 249,454 569,88  0.9 3.0 
20030922 175011.50 Uithuizen 53.395 6.688 241,514 601,638  2.4 3.0 
20030927 135754.15 Westeremden 53.348 6.697 242,164 596,381  2.7 3.0 
20031011 114408.34 Roswinkel 52.835 7.055 267,34 539,858  1.6 2.0 
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APPENDIX 2 COLOUR FIGURES 
 
 

Rotliegend faults
Seismic events
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30                  0                   30  kilometers

 
Figure 1.2. Map of the northern Netherlands showing the geographical locations 

of gas reservoirs, Rotliegend faults (at reservoir level) and seismic 
events. Source: TNO-NITG, KNMI. 
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Figure 1.3. Map of the Netherlands and surrounding countries with registered 

earthquakes from 1905 to 1996. Source: KNMI. 
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Figure 4.2. Calculated stresses after loading. (a) Vertical stress; max. value: 115 

MPa; min. value: -7.0 MPa. (b) Horizontal stress; max. value: 66.5 
MPa; min. value: -6.7 MPa. Positive stress values denote compression. 
Contour shapes indicate the location of the fault and the asperity. 
Location of maximum and minimum value is indicated.  
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24.1
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Figure 4.3. Vector plot of calculated principal stresses after loading. The locations 
of the fault and the asperity are indicated by the dashed and solid black 
lines, respectively. The zoom factor is the same as in Figure 4.2. 
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Figure 7.1. Mesozoic structural geology of the on- and offshore Netherlands (from 

Rondeel et al. 1996). 
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SE NW

 
Figure 7.4. Geological cross section through the Groningen gas field (source: 

NAM). 
 

 
Figure 7.8. Geological time scale with composite stratigraphical column of the 

Netherlands and the Continental Shelf (after Ministry of Economic 
Affairs 2001). 
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Figure 7.10. Top reservoir depth contour map of the Groningen gas field (source: 

NAM). White squares denote the location of some well clusters. 
Coloured dots denote the location of seismic events as determined by 
KNMI. Profile lines AA’, BB’, CC’, DD’ and EE’ are shown, 
corresponding to Figures 7.12 – 7.15 and 7.21. 
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Figure 7.11. Birds-eye view from southwestern direction on the Groningen gas field. 

Contours indicate the top reservoir depth (source: NAM). 
 
 
SW NE

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth

0 0.5 1 2 3 km

Rotliegend

-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km

SW NE

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth

0 0.5 1 2 3 km0 0.5 1 2 3 km0 0.5 1 2 3 km

Rotliegend

-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km

 
 
Figure 7.12. Seismic cross section AA’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). 

 



 264 

Rotliegend

0 0.5 1 2 3 km

W E

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth
-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km
Rotliegend

0 0.5 1 2 3 km0 0.5 1 2 3 km0 0.5 1 2 3 km

W E

Top Zechstein

Top Rotliegend

Zechstein Salt

Depth
-0.0 km

-1.0 km

-2.0 km

-2.5 km

-3.0 km

 
Figure 7.13. Seismic cross section BB’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). 
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Figure 7.14. Seismic cross section CC’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). 
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Figure 7.15. Seismic cross section DD’ through the Groningen field (for location 

see Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). 
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Figure 7.18. Seismic NS cross section through the Annerveen field (for location see 

Figure 7.16). The vertical scale is in two way travel time in seconds. 
The black dot indicates the location of a seismic event as determined by 
KNMI (source: NAM, KNMI). 
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Figure 7.19. Stress maps of the North Sea and central Europe (from Reinecker et al. 

2000). Stress symbols display the orientations of the maximum 
horizontal stress σH. The length of the stress symbols represents the 
data quality, with A as the best quality category. A-quality data are 
believed to record the orientation of the horizontal tectonic stress field 
to within + 10o-15o, B-quality data to within + 15o-20o and C-quality 
data to within + 25o. D-quality data are considered to yield 
questionable tectonic stress orientations (Zoback 1992). The tectonic 
regimes are: NF for normal faulting, SS for strike-slip faulting, TF for 
thrust faulting and U for an unknown regime. 
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Figure 7.21. Seismic cross section EE’ through the Groningen field (for location see 

Figure 7.10). The vertical scale is three times the horizontal scale. 
Black dots indicate locations of seismic events as determined by KNMI. 
A black ellipse around an event denotes the uncertainty in location 
(source: NAM, KNMI). 
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Figure 9.2. Relative shear displacements (RSD) on the fault plane for model 

‘throw_var’ with default properties and loading conditions and full 
pore pressure reduction (11 depletion steps, see Table 8.6, Chapter 
8.3.6). The maximum RSD-value is 16.7 cm, located in between 
observation lines CC’ and DD’, close to line DD’. View direction of 
the contour plot is normal to the fault plane. Intersection lines of the 
two reservoir compartments with the fault plane are shown. View 
direction of the cross sections is in strike direction of the fault. Pointed 
areas denote the reservoir compartments. 
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Figure 10.4. Comparison of numerically calculated γ-values in (a) and (b) an 

ellipsoidal reservoir and (c) and (d) a disk-shaped reservoir. Black 
lines indicate the circumference of the reservoirs. (a) and (c): γh; (b) 
and (d): γv. Reservoir radius: 1500m; reservoir thickness: 150 m (e = 
0.05); νsur = νres = 0.2; Esur = Eres = 13.0 GPa. 
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Figure 10.13. Contour plots of calculated (a) γh-values and (b) γv-values at the 

reservoir edges for a reservoir tilt angle of 30o. The location of 
maximum and minimum values for the calculations with a tilt angle > 
7.6o are indicated. 
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Figure 11.2. Calculated RSD-values as a result of gas depletion for model 

‘throw_const_½D’ with surrounding rock properties being the same as 
reservoir rock properties and initial hydrostatic reservoir pore 
pressure. (a) contour plot; view direction is normal to the fault plane. 
(b) Graphical plot for observation line EE’; dotted areas denote the 
reservoir compartments. 
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Figure 11.6. Calculated MSC-values on the fault plane, (a) before gas depletion and 

(b) after gas depletion, for model ‘throw_const_½D’ with surrounding 
rock properties being the same as reservoir rock properties and initial 
hydrostatic reservoir pore pressure. View direction is normal to the 
fault plane. Black lines indicate the intersection of the reservoir 
compartments with the fault plane. 
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Figure 11.7. Calculated MSC3D-values in the rock volume, (a) before gas depletion 

and (b) after gas depletion, for model ‘throw_const_½D’ with 
surrounding rock properties being the same as reservoir rock 
properties and initial hydrostatic reservoir pore pressure. View plane 
is a vertical cross section through the centre of the reservoir, normal to 
the strike direction of the fault. Black lines indicate the reservoir 
boundaries and the fault plane. 
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Figure 11.20. Calculated RSD-values on the fault plane for model ‘throw_var’ with 

equal reservoir and surrounding rock properties and initial hydrostatic 
reservoir pore pressure. The maximum value is 8.6 cm, located in 
between observation lines CC’ and DD’ close to DD’. View direction 
of the contour plot is normal to the fault plane. Intersection lines of the 
two reservoir compartments with the fault plane are shown. View 
direction of the cross sections is in strike direction of the fault. Dotted 
areas denote the reservoir compartments. 
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Figure 11.24. Calculated RSD-values on the fault plane for model ‘throw_var’ with 

surrounding rock being stiffer than the reservoir rock and initial 
reservoir overpressure (see Table 11.1). The upper and lower contour 
plots are for a hydrostatic (10 depletion steps) and full (11 steps) pore 
pressure reduction, respectively. Hydrostatic and full depletion is 
marked in the RSD-graphs by solid and open dots, respectively. 
Maximum normal fault slip amounts 14.2 and 16.7 cm, respectively, 
and maximum reverse fault slip 1.6 and 2.3 cm, respectively. View 
direction of the contour plots is normal to the fault plane. Intersection 
lines of the two reservoir compartments with the fault plane are shown. 
View direction of the cross sections is in strike direction of the fault. 
Dotted areas denote the reservoir compartments. 
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Figure 11.40. Contour plots of relative shear displacement in strike direction of the 

fault plane (s) for different values of λ with K0H = 1.0 and K0h = 0.4. 
View direction is normal to the fault plane. Black lines indicate the 
intersection of the reservoir compartments with the fault plane (see 
Figure 11.19b). 
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