
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer

Science
Delft Institute of Applied Mathematics

Designing a Quantum Algorithm for
Real-Valued Addition Using Posit Arithmetic

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Tim Driebergen
4565320

Delft, The Netherlands
August 2019

Copyright c© 2019 by Tim Driebergen. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Designing a Quantum Algorithm for
Real-Valued Addition Using Posit Arithmetic”

TIM DRIEBERGEN

Delft University of Technology

Supervisor

Dr. M. Möller

Other committee members

Prof.dr.ir. C. Vuik Dr. J. G. Spandaw

August, 2019 Delft

Abstract
Currently there are no efficient quantum algorithms for the addition of real-
valued numbers. In classical computers addition is performed by using barrel
shifters, a concept proven to be very inefficient as a quantum circuit due to its
many garbage outputs when the barrel shifter is made reversible. This thesis
aims to design a quantum algorithm able to perform floating-point arith-
metic. It uses the new Posit format as its number format so the algorithm
can be built on a very small scale, which makes it possible to easily imple-
ment the entire algorithm. The designed Quantum Posit Adding Algorithm
uses a tablebase approach, examining each number checking if it changes
during addition. An optimized version of the algorithm is also designed, re-
moving any unnecessary controls. Finally a method to extend the algorithm
is proposed along with an approach to building a similar subtractor, also
presenting some non-working ideas.

ii

Preface
This thesis was written as the final part of the Bachelor of Science in Applied
Mathematics at Delft University of Technology (TU Delft). I have been
engaged in researching the topics of both Posit and quantum computing since
the start of 2018, originally conducting the research as part of the Honours
Programme Delft. The origin of my interest in these fields of mathematics
comes from a lecture Linear Algebra 2 by Matthias Möller, who covered
an introduction to quantum mechanics with bra-ket notation. Following his
lecture I asked him if he had a project for me on the topic, when he introduced
me to the Posit format. After the Honours programme research continued
under the guidance of Matthias, who eventually became my supervisor.

I would like to thank Matthias for his excellent support and guidance
during this process. Even when he very rarely did not know the answers to
my queries, he always provided a new insight and made time to discuss any
issues. Special thanks also go to Theodore Omtzigt, who taught me much
about the workings of Posit as well as an efficient implementation. Our hour-
long discussion about rounding behaviour and barrel shifters followed by his
presentation greatly helped in advancing the project. Lastly I would like to
thank my parents, whose wise words and encouragement kept me motivated.

I hope you enjoy your reading.
Tim Driebergen

Delft, August 2019

iii

Contents
Abstract ii

Preface iii

1 Introduction 1

2 Relevant Basics of Quantum Computing 2

3 Posit Arithmetic 5
3.1 The IEEE 754 Floating-Point Format 5
3.2 The Posit Format . 6
3.3 The Posit Circle . 9
3.4 Posit Example . 12

4 Quantum Posit Adding Algorithm 13
4.1 Motivation . 13
4.2 Unoptimized QPAA Design 15

4.2.1 Initialization . 16
4.2.2 Calculation . 17

4.3 Optimization . 19
4.3.1 External Optimization 19
4.3.2 Internal Optimization 21

5 Experimental Validation 22

6 Conclusions 24

7 Extensions and non-working ideas 25
7.1 Extensions . 25

7.1.1 Extending to a <n,p> posit 25
7.1.2 Designing a subtractor 26

7.2 Non-Working Ideas . 27
7.2.1 Superpositions as new values 27
7.2.2 Rotating information into a single qubit 28
7.2.3 Projecting the posit circle on a single qubit 29

Appendices 32
Appendix A: Figure 11 in larger scale 32
Appendix B: Figure 15 in larger scale 33
Appendix C: Figure 18 in larger scale 34

iv

1 Introduction
Addition is the most simple operation of arithmetic. Together with subtrac-
tion, multiplication and division it forms the four basic operations and the
concept of counting is believed to be around 20,000 years old. [1]. Nowadays
addition is fundamental to how digital computers operate, and therefore its
efficiency is critical for the performance of these computers. Many different
adders have been designed, the most well known schemes being the Ripple
Carry Adder and the Carry Look-ahead Adder [2], but no absolute best de-
sign is possible due to the many differences between circuits in power, area
and delay. The best adder depends on the application the circuit is used
in; higher performance applications demand more area, while low-power ap-
plications use less area and power at the cost of more delay [3]. Important
to recognize is that adder design is critical, especially now that the world is
busy designing a new kind of computer; the quantum computer.

Quantum computers can perform certain calculations significantly faster
than classical computers. Quantum computers use quantum-mechanical su-
perposition and entanglement to parallelize arithmetic and solve problems
more efficiently. One of the most famous quantum algorithms is Shor’s al-
gorithm, which given an integer N finds its prime factors [4]. Addition is
and will be a part of many quantum algorithms like Shor’s, but the current
adding algorithms are not practical on a quantum computer. Presently num-
bers are saved on a computer via the IEEE 754 Floating-Point format [5].
However, using this format on a quantum computer is not possible at the
moment, as current quantum computers are relatively much smaller than
classical computers. There are simply not enough qubits (quantum bits)
available to run the same algorithm on a quantum computer that is run on
a classical computer.

For that reason in this thesis a different, more recently invented number
format called Posit will be used to design a new adding algorithm. An
algorithm that can handle larger numbers like classical computers, but also
works in the quantum computing environment. First the relevant quantum
computing knowledge necessary to understand the adder will be discussed,
after which an introduction is given into the Posit format. Lastly the adder
itself is presented along with optimizations and further extensions.

1

2 Relevant Basics of Quantum Computing
Classical computers operate with bits. Bits are the units of information in
information theory, and in the case of classical computing only have values
of 0 and 1. Logic gates are devices that have one or more bits as input
and produce a single bit as a binary output value. Multiple logic gates are
used to construct entire logic circuits, the basic building blocks of any digital
system. An example of a logic gate would be the AND gate, which produces
output value 1 if both of its input values are 1. Most of these concepts are
easily translated into the field of quantum computing, except that quantum
computing has some restrictions in its working due to the nature of quantum
physics.

Quantum computers work with quantum bits or ‘qubits’. Qubits can
represent 0 or 1, but also a superposition of those two states. Essentially the
qubits can attain a state in between 0 or 1, but when observed collapse to
only 0 or 1. The best representation of a qubit is the Bloch Sphere, seen in
Figure 1.

Figure 1: The Bloch Sphere [6]

Two classical bits can be in four different states (00, 01, 10 or 11), but can
only be in exactly one of these states at the same time. However, two qubits
can be in a superposition of these four states, so together the two qubits are
in all four states at the same time. In general a qubitstring of n qubits can
be in one superposition of 2n states simultaneously. This is why quantum
computers can be faster than classical computers; a classical computer would
have to do 2n runs to calculate the result of each state, while the quantum
computer can perform the calculation on a superposition of all the states,
effectively calculating the results of all the states at the same time.

2

Logic gates are now quantum logic gates (or just quantum gates) and
operate on a small number of qubits. Unlike most classical gates, quan-
tum gates need to be reversible and also unitary. Any physical implementa-
tion of a quantum computer has to follow the no-go theorems of theoretical
physics, the two most important ones being the no-cloning theorem and the
no-deleting theorem. The no-cloning theorem states that an arbitrary quan-
tum state cannot be copied [7], while the no-deleting theorem states that
when you have two copies of an arbitrary unknown quantum state, it is im-
possible to delete one of the copies while leaving the other untouched [8]. Any
unknown quantum state can not be deleted, so from the output of a quan-
tum gate the input should be deducible, as quantum information cannot be
destroyed.

The previously discussed AND gate is not reversible. When the resulting
output bit is 1, it is clear that both the two input bits were also 1 due to the
definition of the gate. However, if the output bit is 0, the input bits could
have either been 0 and 0, 1 and 0, or 0 and 1. Since this information is lost
within the operation, the gate is not reversible. In contrast, the NOT-gate is
reversible, an output bit of 1 indicates an input bit of 0 and vice versa. No
information is lost, and thus the gate is reversible.

At the end of a quantum circuit a measurement is performed. A mea-
surement collapses a qubit in any superposition to either 0 or 1, which one
depends on the current superposition of the qubit, or its position on the
Bloch Sphere. Important to note is that measurement is not reversible and
therefore usually at the end of an algorithm. It removes the quantum me-
chanical element of the bit and practically makes it a classical bit again.
Measurement is commonly thought of as random and indeterministic, as a
superposition has a chance to be measured as 0 and a chance to be measured
as one.

Although a qubit can take on any state on the Bloch Sphere, the quantum
adder proposed by this thesis only uses quantum gates that keep the states
0 and 1 where they are or swap them. The circuit starts with all 0s and all
qubits have either value 0 or 1 all throughout the circuit (assuming a perfect
quantum environment, so without quantum decoherence) and no superposi-
tion is used. The measurement therefore does not affect the qubits in this
perfect quantum environment. The adder only uses SWAP-gates, which acts
on two qubits and swaps them, and NOT-gates. These gates are controlled
by other qubits, meaning the SWAP or NOT gates are only performed when
the qubits the gate is controlled by have specific values.

3

The different gates used in the designed adder with their meaning and
circuit representation can be seen in Table 1.

Table 1: Relevant quantum gates and controls.
Symbol Meaning

NOT-gate: maps 0 to 1 and 1 to 0

SWAP-gate: swaps two qubits

Flips controlled only if this qubit is 1
Flips controlled only if this qubit is 0
Does nothing

Another important phenomenon in quantum computing is quantum en-
tanglement. It essentially lets qubits be directly influenced by other qubits
during measurement. For instance, it is possible to create superpositions
with entanglement such that if the first of two qubits measures 0 the other
measures 1 and vice versa. The adder designed in this thesis does not use
quantum entanglement or superpositions to their full effect at all, as the goal
is to design an adder that can be used by other quantum algorithms which
do use entanglement and superpositions to their full effect.

All relevant quantum computing knowledge necessary to understand the
adder has now been covered. It remains to find a solution to the fact that
a IEEE 754 Floating-point adder is too large to convert to a quantum algo-
rithm. The next chapter briefly covers the workings of the IEEE 754 Floating
Point format after which the new Posit format will be introduced.

4

3 Posit Arithmetic
This chapter is largely based on the paper Beating Floating Point at its
Own Game: Posit Arithmetic by John Gustafson and Isaac Yonemoto, and
includes both figures and a table from the paper [9].

3.1 The IEEE 754 Floating-Point Format

To thoroughly comprehend how the Posit format works, it is important to
understand the workings of the currently used IEEE 754 Floating-point for-
mat. Although the Posit format is technically also a floating-point format,
from now on both "Floating-point" and "The Floating-point format" will re-
fer to the IEEE 754 Floating-point format. The Floating-point format is 32
bits long and works in base 2, which means every digit is either a 0 or a 1 as
is usually the case with bits. As can be seen in Figure 2, the Floating-point
format works with a sign, exponent and a fraction.

Figure 2: The Floating-point format [10]

A number is represented by 32 bits in total, the first of which is a sign
bit. If the sign bit is a 0, the number is positive, and if the sign bit is 1,
the number is negative. Next is the exponent, which is a string of 8 bits
that multiplies the value of the fraction with a factor of 2e−127 where e is
the value of the exponent (the 127 is due to the fact that the exponent
should be able to be negative as well). For instance, if the exponent was
10000101 (which is 133 in binary) then the fraction would be multiplied
with a factor of 2133−127 = 26. Last is the fraction, where each bit represents
the reciprocal of a factor of 2, so the first bit represents halves, the second bit
quarters, etc. The fraction starts with a "hidden 1", which means a fraction
is always of the form 1. followed by the actual fraction. For example, a
(for illustration purposes 4-bit) fraction of 1010 would indicate the number
1 + 1 × 1

2
+ 0 × 1

4
+ 1 × 1

8
+ 0 × 1

16
= 15

8
. The fraction is always a number

between 1 and 2 and is therefore normalized.

5

Finally one example of a floating-point number will be covered. Take the
bitstring 01000001011000000000000000000000, then the corresponding
value would be

0 10000010 11000000000000000000000

+ 2130−127 × (1 +
1

2
+

1

4
) =

+ 23 × 1
3

4
= 14

The Floating-point format has many other properties such as different
infinities and NaNs (not-a-number), but these are not relevant to understand
when comparing it to the Posit format. Many concepts of the Posit format
are similar to those of the Floating-point format, so understanding Floating-
point is preferred when learning about the Posit format.

3.2 The Posit Format

As discussed before, there simply are not enough qubits available to build a
quantum adder for floating-point numbers with a structure similar to that of a
regular adder. Quantum addition for floating-point numbers however remains
an exciting prospect. Quantum computers or even simulators with millions
of qubits will not be available in the near future, so a possible design for such
quantum adder will need to use as little qubits as possible. Posit provides
a solution in terms of size. Posit arithmetic is a number system designed
to be more flexible and more efficient than Floating-Point Arithmetic, and
its flexibility in size enables us to build a much smaller adder specifically
designed for quantum addition.

The Posit format is very similar to the Floating-point format as can be
seen in Figure 3. The first bit is still a sign bit, and signifies a positive number
with a 0, and a negative number with a 1. In blue there are the exponent
bits, which contribute a factor of 2n, where n is the binary number that the
bitstring represents (the -127 is gone due to the fact negative exponents are
not needed anymore). In black remain the fraction bits, where the first
fraction bit still represents a factor 0.5, the second a factor 0.25 etc.

6

Figure 3: The Posit format [9]

New in contrast to the Floating-point format are the regime bits, whose
purpose is to act as a superexponent. The regime bits multiply the number
by another factor of the exponent, so if the exponent ranges from 0 to 27,
then adding 1 to the value of the regime bits multiplies the number by a
factor 28. Just like with Floating-Point, a two’s complement is used when
dealing with negative numbers. Usually posit numbers will be shown in their
decoded expression (e.g. +0101 instead of 00101), as this is much more
clear and does not make a difference apart from hardware implementation.
However, as will be seen later, the quantum adder proposed in this thesis
only adds positive posits to other positive posits. In this case the decoded
and original bitstrings are identical apart from the preceding 0 of the positive
sign.

The regime consists of a binary string with all 0 or 1 bits in a row. This
string is then terminated by the opposite bit (which will be color coded
brown), or by the end of the string. The numerical meaning k depends on
the length of the recurring 0 or 1 bits. This is best illustrated by Table 2.

Table 2: Different regime bitstrings and their numerical meaning [9]

As seen in the table, if m is the number of 0s or 1s in a row before being
terminated by a 1 or 0 respectively, then if the bits are 0, we have k = −m,
and if the bits are 1, we have k = m−1 due to the fact that a numerical value
of 0 needs a binary string as well. To understand this let us return to the
example of an exponent ranging from 0 to 27. The regime now works with
factors of 28, so a bitstring of 0000 would indicate a factor of (28)−4 and a
bitstring of 110 would indicate a factor of (28)1. There are two exceptions to
this regime rule. A bit pattern of all 0 bits always has a numerical value of 0,

7

and it is also the only bitstring with value 0 in any posit system. In Floating-
point many bitstrings have this value, so by only having one bitstring with
value 0 posit allows other those other bitstrings to take on different values
and therefore improve its efficiency. Likewise ±∞ also has one and only one
bitstring; all 1 bits. This also means there is no +∞ or −∞, only ±∞.

An important difference between the Posit format and Floating-point
format is the flexibility of the Posit format in the sizing of its fraction. The
flexibility of the Posit format allows the user to choose a specific posit for
a specific implementation. While single precision Floating-Point will always
have length 32 (1 bit sign, 8 bit exponent and 23 bit fraction, as prescribed
the IEEE 754 standard) [5], posits of arbitrary length can be implemented.
Hence, posits can be considered as a customizable application-specific number
format, whereas IEEE-754 is a general-purpose one. The letter n will be used
to signify the length of the used posit system. While the length of a posit is
fixed once chosen, the amount of regime and fraction bits used depends on
the bit pattern. The amount of exponent bits does not do this and is always
fixed unless there is no space due to a long regime (e.g. 0001). The letter
p will denote the amount of exponent bits used given a certain posit length
n, and any computer only needs these two inputs to generate an entire posit
system. The system will be denoted by posit <n,p>, inspired by Theodore
Omtzigt’s Stillwater Supercomputing Inc [11].

Lastly, the rounding behaviour in Posit depends on the type of bit the
final bit of the bitstring is. When rounding exponent or regime bits the
‘nearest’ number is the number with the smallest ratio and when rounding
fraction bit the ‘nearest’ number is the number with the smallest difference.
In the case of a tie the number is rounded to the nearest even number, which
always corresponds to the number ending in a 0. Furthermore, posits do not
underflow to 0 or overflow to infinity like floating-point numbers do. This
will be important later in deciding the size of our quantum posit adder. To
give some examples, in a posit <5,1> environment (refer to Figure 7) the
largest number is 64, so the calculation 64 + 64 = 128 would result in 64, as
128 is rounded down, and the calculation 3 + 1

2
= 31

2
would result in 4, as 4

ends in a 0 in this environment while 3 ends in a 1.

8

3.3 The Posit Circle

The real numbers are usually presented on a number line. With the Posit
format however, it is more intuitive to represent the real numbers on a circle
due to its "one infinity". The circle is normalized as can be seen in Figure
4, with 0 on the bottom, ±∞ on the top, −1 one the left and 1 on the right
of the circle. Negative numbers will be on the left side of the circle while
positive numbers will be on the right side. The smallest possible posit, posit
(<2,0>), has now been constructed and its posit circle can be seen in Figure
4. The goal is to extend this circle step by step to a posit <5,1>, the posit
the designed quantum adder will be based on.

Figure 4: The posit <2,0> circle [9] Figure 5: The posit <3,0> circle [9]

To extend the circle first the regime factor is added as seen before, remem-
ber that with 3 exponent bits the exponent could handle factors up to 27 and
thus the regime worked with factors 28. Now, as the goal is a posit<5,1>,
there is only one exponent bit available, so the regime works with factors of
4. The <3,0> posit circle is therefore as seen in Figure 5.

Note that during this first extension (and also with any further exten-
sions) the values which were also in the previous circle have the same bit
pattern with a 0 added to them.

9

Next, between 4 and ±∞ and between 0 and 1
4
the same approach is

followed as before; another regime bit is added here and the values 16 and 1
16

are added. Between 1 and 4 the new bit pattern 101 is added. The regime of
1 is terminated by the 0 and thus our newly added 1 is an exponent bit. This
contributes a factor 2 and so the value added to the circle between 1 and 4
is also 2. Repeating this process on the rest of the circle produces the next
posit<4,1> circle as seen in Figure 6. Note the change to <4,1> instead of
<4,0> due to the addition of the exponent bit.

Figure 6: The posit <4,1> circle [9]

It remains to add fraction bits. Between 16 and ±∞ the value 64 is
added because of the addition of another regime bit, and between 4 and
16 the value 8 is added as a result of the added exponent bit. Between 1
and 2 the bitstring 1001 is added. The regime of 1 is terminated by the
opposing 0, and the exponent bit is also 0, therefore the last remaining bit
will be a fraction bit. Since this is the first fraction bit in the bitstring, it
will contribute a factor 0.5 and the number between 1 and 2 will be 1.5. In
general, when adding a fraction bit the new number is always halfway in
between the previous two. Repeating this process results in the posit <5,1>
circle, as can be seen in Figure 7.

10

Figure 7: The posit <5,1> circle [9]

11

3.4 Posit Example

Lastly, in this section one example of posit decoding will be covered. Consider
the bitstring 0000110111011101, which is color coded in Figure 8 :

Figure 8: An example of a posit bitstring [9]

Note that the posit bit string has length 16 with 3 exponent bits, so this
is a posit <16,3>. The leading 0 means the number is positive. Next there
are three 0s and a 1 terminating the regime, so 0001 means a k value of
−3, this contributes a factor of 256−3. The 3-bit (fixed size) exponent of
101 translates in binary to the value 5, so the exponent is 25. Finally, the
remaining bits are the binary fraction, which translate to the decimal value
221, so our fraction is (1 + 221

256
) (256 is due to the fact that of the 16 bits, 8

remain for the fraction, which means a the last bit adds 1
256

). Thus the value
works out to:

+ 256−3 × 25 × (1 +
221

256
) = 477× 2−27 ≈ 3.55393× 10−6

All properties of the Posit format important for the quantum adder have
now been covered, but this topic is far from being fully explored. Further
explanation and reading on posits, like its comparison to floating-point in
terms of performance, can be found both on posithub.org [12] and in the
paper mentioned in the beginning of the chapter. An efficient implementation
of posits is available at the universal library of Stillwater Supercomputing
[13]. Next the adder itself will be discussed, going into detail about both its
workings and uses, and how it can be optimized for optimal performance.

12

4 Quantum Posit Adding Algorithm

4.1 Motivation

One of the most well known quantum algorithms, Shor’s algorithm, is a
quantum algorithm for integer factorization [4]. Classical computers can not
factorize large integers yet if they are the product of two or three 300 digit
primes, but a quantum computer can solve this problem by using Shor’s al-
gorithm. A part of Shor’s algorithm is adding two different integers together
(during the period-finding subroutine). Addition on a quantum computer
has already been explored for more than two decades now, and many dif-
ferent quantum integer adders have been designed, like the Draper adder
[14], Cuccaro adder [15] and Muños-Coreas Adder [16]. However, to use
these algorithms the quantum computer will need to initialize the original
600 digit number in binary, as all of these algorithms operate in a base-
2 number system. The number 10600 can be represented in binary with
dlog2(10600) + 1e = 1995 bits, though as seen before this many qubits can
not be realized in the near future. For that reason a different quantum adder
based on floating-point arithmetic (not necessarily IEEE 754) will need to
be designed to drastically decrease the number of qubits needed to perform
basic operations.

As most of the current adding algorithms are based on integer adding,
it seems logical to think about quantum addition for real-valued numbers as
well. As seen before addition of real-valued numbers on an ordinary computer
is done with floating-point arithmetic and uses barrel shifters [17], which is
currently not a realistic option on quantum computers as they are based
on multiplexers which are not reversible. Reversible versions of multiplexers
do exist, but these are accompanied by many undesirable garbage output
qubits and a huge increase in size of the algorithm. For these reasons the
Quantum Posit Adding Algorithm (QPAA) was designed, a quantum adding
algorithm based on the Posit format which can perform addition of real-
valued numbers, while also being able to handle larger integers with much
fewer bits. Important to note is that the addition of real-valued numbers
in this algorithm is done in a classical way. The goal was not to design
an addition algorithm that uses quantum mechanics to improve a classical
addition algorithm, but to design an addition algorithm that works on a
quantum computer, so that larger addition can be used in actual quantum
algorithms like Shor’s algorithm. Classical posit adders also work with barrel
shifters, which is why this algorithm uses a tablebase approach instead to
successfully determine the outcome of a calculation, as will be shown in this

13

chapter.

14

4.2 Unoptimized QPAA Design

The QPAA has a total of 8 input bits, which amounts to two <5,1> posits,
since sign bits are omitted as only positive numbers are added. Note that the
top bit in the QPAA corresponds to the least significant bit of the bitstring.
During the operation the first four bits are added to the second four bits,
and the result is stored in the first four bits again. Like any quantum circuit,
the QPAA needs to be reversible because the corresponding matrix has to
be unitary. If the 8 output bits would be 11111111 it would be unclear
what number was added to 1111, because the number did not change at all.
Adding any number to 1111 results in 1111, as there is no rounding to ±∞
as discussed earlier. To achieve this, an extra four ancilla bits are needed to
store information "thrown away" by the operation.

The QPAA has two components, an initialization and the actual calcula-
tion, and is ended by a measurement on every qubit. The full algorithm is
seen in its most high-level form in Figure 9.

Figure 9: The Quantum Posit Adding Algorithm for posit <5,1>

15

4.2.1 Initialization

Posit <5,1> has a total of 162 = 256 possible combinations of numbers to
add. Most of these additions are trivial and do not require any computation
at all. In 215 of these combinations the result is the largest of the two
added numbers. For that reason during initialization the smallest of the two
numbers is swapped into the ancilla qubits. This empties the qubits where
the result will be stored, and next the larger number is copied into the result
bits using controlled-NOT gates. The full initialization circuit can be seen
in Figure 10. This small circuit already executes 215

256
≈ 84% of calculations

correctly. After the initialization both the top 4 and the middle 4 qubits
contain the larger number, and the bottom 4 qubits contain the smaller
number.

Figure 10: Initialization circuit of the QPAA for posit <5,1>

After the larger number is copied into the target qubits only the remaining
41 cases where the larger number is not the correct solution have to be
accounted for. This is done in the remaining 8 blocks. Each block accounts
for a regime-exponent combination (e.g. 1101 or 010) and uses the gates from
Table 1 to transform the largest number into the correct solution. There are a
total of 12 regime-exponent combinations, but only 8 blocks, as some regime-
exponent combinations never see a change when a number equal to or smaller
than that number is added to it, so no block is needed for these combinations:

16

• 1111 or 64; there is no rounding up to ±∞, so any number added to
64 is still 64.

• 1110 or 16; as adding 16 to 16 gives 32 which is again rounded down
to 16. Therefore any number added to 16 will be rounded down to 16
as well, so no block is necessary for this regime-exponent combination.

• 0001 or 1
64
; the only two numbers smaller than or equal to 1

64
are 1

64

itself and 0. Adding 1
64

to 1
64

gives 1
32
, which rounds down to 1

64
again,

and adding 0 to 1
64

is still 1
64

• 0000 or 0; as the only positive number smaller than or equal to 0 is 0,
and 0 + 0 = 0.

4.2.2 Calculation

The calculation is split into 8 different blocks, where each block accounts for
a certain regime-exponent combination. The blocks are separated by spacers
(except for the last two blocks), which are no-ops introduced to improve
readability of the circuit. For a given regime-exponent combination usually
only 1-4 numbers smaller than it will affect the number. The block is a small
quantum circuit that deals with these specific calculations and transforms
the larger number to the correct solution using the gates seen in Table 1.
The circuit checks if the smaller number is of a specific form of 0s and 1s,
and if this is the case it changes the result bits with NOT-gates so that the
solution will be registered there. A combination is only effected by exactly 1
or 0 blocks. If the combination is not changed at all we are dealing with one
of the four combinations mentioned above, otherwise exactly 1 block checks
all possible calculations containing that combination. The full calculation
circuit can be seen in Figure 11 (and in larger scale in Appendix A).

Figure 11: Calculation circuit of the QPAA for posit <5,1>

17

To understand how a single block works, the second block seen in Figure
12 will be explained below. This second block covers the combination 1100,
which is the number 4. The only numbers that will produce a result that
differs from 4 when added to 4 are 3 and 4 itself, as 4+3 = 7 which is rounded
up to 8 and 4 + 4 = 8. Adding any number smaller than 3 to 4 results in 4,
so these calculations are already accounted for by the initialization.

Figure 12: Block 2 of the QPAA for posit <5,1>

When 4 (1100) is added to 4 (1100) and 3 (1011), the 12 bits after initial-
ization are 0011 0011 0011 or 0011 0011 1101 respectively. Remember
that in the algorithm the last bit of the bitstring is the topmost qubit. In the
circuit shown in Figure 12, first it is checked if both the middle 4 qubits (the
larger number) and the final 4 qubits (the smaller number) are 0011 (4), if
this is the case, a NOT-gate is performed on the first qubit, which changes
the first 4 qubits from 0011 to 1011 or 8, as intended. Similarly, the second
column checks if the middle 4 qubits are 0011 (4) and the final 4 qubits are
1101 (3), if this is the case again a NOT-gate is performed on the first qubit,
which changes the first 4 qubits from 0011 to 1011 or 8.

18

The other blocks work in a analogous way, changing the top 4 qubits
dependent on the bottom 8. As expected the blocks which cover regime-
exponent combinations around 1 are larger than the blocks which cover
regime-exponent combinations further away from 1, as the relative size be-
tween numbers is smaller. This means more numbers have a result different
than the larger number and so more cases need to be accounted for. How-
ever, this algorithm is far from optimal, as it contains many multi-controlled
gates which take long to execute. Any form of optimization matters in these
algorithms, and the next section will discuss how and why this algorithm
can be optimized both "externally" (by removing controls in the algorithm)
and "internally" (by changing the way certain gates are implemented when
running the algorithm).

4.3 Optimization

4.3.1 External Optimization

Much of the system can be optimized by removing certain conditions. Even
removing one control in a very large multi-controlled-NOT can have a signif-
icant impact on the speed of the algorithm. The reason for this is that any
unitary n-controlled gate U can be constructed using two (n-1)-controlled-
NOT gates and an (n-1)-controlled version of "square root version" of U, as
can be seen in Figure 13 [18].

Figure 13: An n-controlled gate written as (n-1)-controlled gates

19

On a quantum computer all gates have to be implemented as a sequence
of smaller gates that operate on a maximum of two qubits. A large multi-
controlled-NOT thus has to be written as a circuit of many smaller gates, first
writing the n-controlled gate as multiple (n-1)-controlled gates, then writing
each (n-1)-controlled gate as multiple (n-2)-controlled gates, etc. Therefore
removing the need for extra controls speeds up the execution significantly.
The goal of this external optimization is to remove as many unnecessary
controls as possible from the calculation circuit shown in Figure 11.

All of these removals will use the fact that it is known which of the two
added numbers is larger and that this number is located in the middle 4 qubits
when the algorithm is executed. When executing a certain block different
controls are used to check the bottom qubits, but some of these checks now
redundant and can be removed. To best show this procedure, let us recall
block 2:

Figure 14: Block 2 of the QPAA for posit <5,1> optimized

The only numbers that were checked were 4 (1100) and 3 (1011). How-
ever, checking for the 0 in 1011 is not necessary, as it can not be a 1. If it
was a 1, the number on the bottom would be 1111 (16) which is larger than
4. Yet it was assumed at the start of the algorithm the larger number would
be in the middle 4 qubits, so this is not possible. Similarly, checking for the
two 0s at the end of 1100 is not needed, as they can not be 1s. If one of
them or both were 1s, then the number represented by the bitstring would
be larger than 4.

20

The same logic can be applied to every single block. Controlling for a 1
cannot be removed, as a 0 instead of a 1 would result in a smaller number,
but controls for 0s can be removed if replacing them by a 1 results in a
larger number than the regime-exponent combination of the block. Doing
this results in the optimized calculation circuit shown in Figure 15 (also
visible in larger scale in Appendix B.

Figure 15: Optimized calculation circuit of the QPAA for posit <5,1>

4.3.2 Internal Optimization

The algorithm can also be optimized "internally", meaning that the different
implementations of the gates in the algorithm can be optimized when writing
them in their full form. The multi-controlled gates in the algorithm can be
written out and then optimized by removing unnecessary controls as done
before with external optimization, so that the overall algorithm runs faster.
Usually this happens because certain controls cancel each other out which
makes them redundant.

The problem with this kind of optimization in this algorithm is that the
order in which the operations need to be executed for optimal performance
is extremely unclear. All the blocks and even all the columns within the
blocks can be run in arbitrary order and the results would be the same. The
current order of the blocks and columns is chosen so that the algorithm is
easily readable and understandable, but for an effective implementation of
the algorithm this is not important at all. Different orders will need to be
experimented with to find the order in which this algorithm is best executed.

21

5 Experimental Validation
To show that the QPAA indeed produces the correct result, two examples of
calculations will be shown here, first calculating the correct result by hand
and then comparing it to the result produced by the algorithm.

Example 1
In this first example the calculation 2 (1010) + 11

2
(1001) will be performed.

The result should be 2 + 11
2
= 31

2
which gets rounded to 4. In the algorithm

2 (1010) and 11
2
(1001) are both loaded in back to front with the larger

number first, so together with the last 4 qubits which start as 0, the input
will be 1001 0101 0000.

Figure 16: Calculation example 1

The output can be seen in Figure 16, where a ON signifies a 1 while a
OFF signifies a 0. The first four qubits of the output are the result of the
calculation, the second four the larger number, and the third four the smaller
number. An output of 0011 0101 1001 therefore means the result of the
calculation was 1100 or 4, as expected.

22

Example 2
In this second example the calculation 1

2
(0110) + 3

8
(0101) will be per-

formed. By hand the result should be 1
2
+ 3

8
= 7

8
which gets rounded to 1.

The input of the algorithm will be 1010 0110 0000.

Figure 17: Calculation example 2

The output of this calculation can be seen in Figure 17. An output of
0001 0110 1010 indicates the result of the calculation was 1000 or 1, as
expected.

23

6 Conclusions
The Posit format provides an environment where quantum addition is pos-
sible on a larger scale. While it does not use superpositions or quantum
entanglement, the Quantum Posit Adding Algorithm allows larger numbers
to be added with fewer qubits than before. The adder operates correctly
in a perfect quantum environment, but the question remains how the adder
operates when quantum decoherence is a factor.

The algorithm has been optimized significantly by removing controls, only
leaving it to be optimized even more through implementations of the different
gates used by the algorithm, with the implementation of the multi-controlled
gates being the most important. The multi-controlled gates can be realized
in multiple ways, the most efficient still uncertain, and experimenting with
the order of logic gates in the algorithm depending on this implementation
will be the key to optimizing the algorithm.

24

7 Extensions and non-working ideas
In this chapter extensions of the algorithm will be discussed, as it is clear this
smaller algorithm cannot operate on larger posits yet. Ideas for constructing
a larger adding algorithm, but also a subtractor will be presented, along with
different concepts which were interesting ideas, but proved not to work when
carefully considered.

7.1 Extensions

7.1.1 Extending to a <n,p> posit

The optimized calculation circuit seen in Figure 15 operates on two <5,1>
posits, but designing an algorithm in a similar way that can operate on larger
posits is definitely feasible. Since the algorithm is designed with a tablebase
in mind, the same tablebase approach can be used to form a larger adding
algorithm for any <n,p> posit. The fact that most additions do not change
the larger number remains, and only a certain amount of numbers smaller
than the larger number need to be checked. To illustrate this, a small start
is now made to the algorithm that adds two <7,1> posits. The posit <7,1>
circle can be seen in Figure 18 (and in larger scale in Appendix C).

Figure 18: The posit <7,1> circle [9]

25

The algorithm starts with the same initialization as before. Next the
largest number in the posit <7,1> circle is 1024, but adding anything to
1024 does not change the number. This means nothing needs to be added
to the algorithm, and the same reasoning applies to the next number; 256.
The first addition which gates are needed for is 128 + 128 = 256, so the first
gates will be two controlled NOT-gates on the first two bits to transform 128
(1011110) into 256 (0111110) (note that the bit order is reversed in the
adder). The rest of the algorithm can be constructed in a similar way.

In fact, a program can be written to construct this algorithm. Given a
posit <n,p> circle, a program can determine exactly which numbers change
the larger number and then construct the logic circuit needed to achieve the
correct change. However, this program will most likely not be able to find the
most efficient logic circuit doing so, as sometimes a smaller logic circuit will
be able to perform multiple calculations at the same time which the program
will not be able to recognize. It will still be an effective way to design a
larger adder that works though, the question is if the algorithm designed by
the program will be significantly faster than a directly implemented IEEE
Floating-Point quantum adder using reversible barrel shifters.

7.1.2 Designing a subtractor

A posit <5,1> subtraction algorithm could work very much alike the adder
algorithm, but it does come with some added challenges. The current QPAA
can add positive posits to positive posits, but also negative posits to negative
posits. As long as the sign of the two numbers are the same the QPAA
can correctly determine the outcome, because it just copies the sign of the
larger number into the result. When designing a subtraction algorithm the
sign should be taken into account, first checking which number is larger and
then copying the sign of that larger number into the result sign through a
controlled NOT gate.

An issue is the fact that many more calculations need to be performed
by the subtractor. With the adding algorithm 215

256
≈ 84% of the calculations

could be done instantly with the initialization, but with a subtraction al-
gorithm this number would be much smaller, as more numbers change the
larger number. For example, returning to the posit <5,1> circle shown in
Figure 7, only two numbers change the number 4 when added to it (namely
3 and 4 itself) but six numbers change the number 4 when subtracted from
it (3

4
, 1, 11

2
, 2, 3 and 4). Other numbers act the same way, every number has

at least as many numbers that change the number when subtracted from it
than change the number when added to it.

26

This difference results in a significantly longer algorithm, and it brings
the question if tablebase is still the right approach for this subtractor. Maybe
subtractors should have some kind of inherent calculation or should be com-
bined with the adder instead of designing separate algorithms. One thing is
clear, which is that the classical way of subtracting does not work. In clas-
sical computers Floating-Point adders work with a two’s complement, which
basically turns the subtraction into an addition so that the overflow makes
the number smaller again. However, overflow does not exist in the Posit for-
mat, so any form of adding cannot make the number smaller than it already
is. Furthermore, in the Floating-Point format the exponent is always at the
same place which makes it easy to decide where the two’s complement needs
to begin, but in the Posit format the place of the last digit of the exponent
differs, meaning two’s complements of different numbers have different mean-
ing at the same places in the two’s complement. For these reasons the idea of
two’s complement seems impractical, although the tablebase approach also
might not prove efficient for a quantum subtraction algorithm.

7.2 Non-Working Ideas

7.2.1 Superpositions as new values

Currently superpositions have no specific use in the QPAA, but what if a
superposition could be used as some sort of "in-between value". For instance,
in the posit <4,1> environment (seen in Figure 6) 2+1 = 3 would be rounded
to 4, but the actual value of the number would be exactly between 0101 (2)
and 0110 (4). The first three qubits are exactly the same in both answers,
only the last qubit differs. Now what if the algorithm could be designed
so that the last qubit is in a superposition between 0 and 1, exactly in the
middle as 3 is exactly between 2 and 4. Achieving this superposition is
possible with multiple different gates, most notably the Hadamard gate or
simply a π

2
rotation gate around the x-axis or y-axis.

The problem with assigning new values like this is that the qubit is not
the new in-between value 3, but actually 50% of the time measured as 2 and
50% of the time measured as 4. To give an example why this does not work,
adding 1

2
to this in between value should result in 3 + 1

2
= 31

2
which always

gets rounded to 4, but 50% of the time the actual result of the calculation
will be 2 + 1

2
= 21

2
which gets rounded back down to 2, and 50% of the

time the result will be 4 + 1
2
= 41

2
which gets rounded back down to 4. The

result of the calculation is therefore the superposition we started with; the
in-between value 3, instead of the correct result of 4.

27

To solve this two new qubits could be added to the algorithm to save in-
formation on the other superpositions, which would make the superpositions
as in-between values work. However, those new qubits could also be used
to extend a <n,p> posit to a <n + 1,p> or a <n + 1,p + 1> posit. The
Posit format is specifically designed to maximize both precision and range,
and therefore if the extra qubits were available it would be more beneficial
to extend the posit environment than to introduce in-between values using
superpositions.

7.2.2 Rotating information into a single qubit

Rotating in powers of 2
Classical bits only have values of 0 or 1, but qubits can have values 0, 1, and
a superposition of the two. Using the fact that at the start of the quantum
algorithm all qubits are initialized as 0 or 1, is it possible to take a bitstring
of 0s and 1s and save all that information into a single qubit?

The idea was to perform certain rotations on the single qubit depending
on if the value of the classical bit was a 1 or not. If the nth bit was a 1,
a rotation around the x-axis of π

2n+1 (so the maximal rotation would be π
2
)

would be performed. This process would be repeated for a second number on
the same qubit, and to add them the rotations would simply be added. The
reason this does not work is the fact that this operation is not reversible. For
example, consider the two identical bit strings 01 and 01. As prescribed by
the method above, a turn of π

8
would be performed on a qubit twice, resulting

in a qubit rotated π
4
around the x-axis. However, the same result would be

obtained if 10 and 00 were added. This shows the operation is not reversible,
though there seems to be a fix for the problem.

Rotating using reciprocals of primes
If instead of rotating around the x-axis with turns of π

2n+1
, turns depending

on the primes would be performed, the problem would seemingly be solved, as
from any rotation the previous numbers would be deducible. Sadly, the sum
of the reciprocals of the primes diverges [19], meaning rotating depending on
them would not be possible in a reversible way. To show another way why
the idea of turning information into a single qubit does not work, consider
the operation as a matrix. The information of 0s and 1s is transferred out
of the (in this example 3) qubits containing those values and into the single
target qubit, so the operation has the matrix form seen in Figure 19.

28

0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 · · · · · ·
· ·
· ·

Figure 19: Matrix for rotating classical information into a qubit

Remember that quantum gates are always represented by unitary matri-
ces, and clearly the matrix in Figure 19 is never unitary, effectively dismissing
the idea instantly.

7.2.3 Projecting the posit circle on a single qubit

The thought of projecting a posit circle onto the Bloch Sphere does not seem
like an unreasonable concept. Essentially the idea would be to let different
superpositions on the Bloch sphere represent different numbers on a posit
circle. By rotating the single qubit the value it represents would change,
depending on the distance to the poles of the qubit. If possible this would
even allow two different posit values to be saved into a single qubit by rotating
around the x-axis for one posit and around the y-axis for another. The benefit
of this would be the amount of qubits needed to represent a value. In the
optimized QPAA the same amount of qubits as classical bits is needed, but
only a single qubit would be needed with this concept.

However, this idea directly violates the no-teleportation theorem [20].
The idea would allow classical information (i.e. the bitstring of the posit) to
be extracted directly from an arbitrary state of a qubit, because you would
want the entire circle projected onto the Bloch sphere. In contrast, it is
possible to convert classical information into quantum information and then
back, but to do this you need qubits equal to the amount of classical bits you
want to convert, yet the entire concept was to reduce the number of qubits
needed.

29

References
[1] Brooks, A. S., & Smith, C. C. (1987). Ishango revisited: new age determi-

nations and cultural interpretations. The African Archaeological Review,
5, 65–78.

[2] Ercegovac, M. D., & Lang, T. (2004). Two-Operand Addition. Dig-
ital Arithmetic, 50âĂŞ135. https://doi.org/10.1016/B978-155860798-
9/50004-X

[3] Uma, R., Vijayan, V., Mohanapriya, M., & Paul, S. (2012). Area, delay
and power comparison of adder topologies. International Journal of VLSI
Design & Communication Systems, 3 (1), 153.

[4] Shor, P. W. (1994, November). Algorithms for quantum computation:
Discrete logarithms and factoring. In Proceedings 35th annual symposium
on foundations of computer science (pp. 124-134). IEEE.

[5] IEEE 754-2019 - IEEE Approved Draft Standard for Floating-
Point Arithmetic. (n.d.). Retrieved August 13, 2019, from
https://standards.ieee.org/content/ieee-standards/en/standard/754-
2019.html

[6] The Bloch Sphere. (2012, April 26). Retrieved August 13, 2019, from
http://quantumcomputing101.blogspot.com/2012/04/bloch-sphere.html

[7] Park, J. L. (1970). The concept of transition in quantummechanics. Foun-
dations of Physics, 1 (1), 23–33. https://doi.org/10.1007/BF00708652

[8] Pati, A. K., & Braunstein, S. L. (2000). Impossibility of deleting an un-
known quantum state. Nature, 404 (6774), 164.

[9] Gustafson, J. L., & Yonemoto, I. T. (2017). Beating floating point at its
own game: Posit arithmetic. Supercomputing Frontiers and Innovations,
4 (2), 71-86.

[10] IEEE Standard 754 Floating Point Numbers - Geeks-
forGeeks. (2019, January 31). Retrieved August 13, 2019, from
https://www.geeksforgeeks.org/ieee-standard-754-floating-point-
numbers/

[11] Stillwater | Knowledge Processing Platform. (n.d.). Retrieved August
13, 2019, from http://www.stillwater-sc.com/

30

[12] Unum & Posit- Next Generation Arithmetic. (n.d.-b). Retrieved August
13, 2019, from https://posithub.org/

[13] stillwater-sc/universal. (n.d.). Retrieved August 13, 2019, from
https://github.com/stillwater-sc/universal

[14] Draper, T. G. (2000). Addition on a quantum computer. arXiv preprint
quant-ph/0008033.

[15] Cuccaro, S. A., Draper, T. G., Kutin, S. A., & Moulton, D. P. (2004).
A new quantum ripple-carry addition circuit. arXiv preprint quant-
ph/0410184.

[16] MuÃśoz-Coreas, E., & Thapliyal, H. (2017). T-count optimized design
of quantum integer multiplication. arXiv preprint arXiv:1706.05113.

[17] Barrel-shifter (8 bit). (n.d.). Retrieved August 14, 2019, from
https://tams.informatik.uni-hamburg.de/applets/hades/webdemos/10-
gates/60-barrel/shifter8.html

[18] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus,
N., Shor, P., âĂę Weinfurter, H. (1995). Elementary gates for quan-
tum computation. Physical Review A, 52 (5), 3457–3467. Lemma 7.5.
https://doi.org/10.1103/PhysRevA.52.3457

[19] Euler, L. (1737). Variae observationes circa series infinitas. Commentarii
academiae scientiarum imperialis Petropolitanae, 9 (1737), 160-188.

[20] Gruska, J., & Imai, I. (2001). Power, Puzzles and Properties of Entan-
glment. Machines, Computations, and Universality: Third International
Conference, p. 41.

31

Appendices

Appendix A: Figure 11 in larger scale

32

Appendix B: Figure 15 in larger scale

33

Appendix C: Figure 18 in larger scale

34

	Abstract
	Preface
	Introduction
	Relevant Basics of Quantum Computing
	Posit Arithmetic
	The IEEE 754 Floating-Point Format
	The Posit Format
	The Posit Circle
	Posit Example

	Quantum Posit Adding Algorithm
	Motivation
	Unoptimized QPAA Design
	Initialization
	Calculation

	Optimization
	External Optimization
	Internal Optimization

	Experimental Validation
	Conclusions
	Extensions and non-working ideas
	Extensions
	Extending to a <n,p> posit
	Designing a subtractor

	Non-Working Ideas
	Superpositions as new values
	Rotating information into a single qubit
	Projecting the posit circle on a single qubit

	Appendices
	Appendix A: Figure 11 in larger scale
	Appendix B: Figure 15 in larger scale
	Appendix C: Figure 18 in larger scale

