
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Space Plane
Trajectory
Optimization
Investigation of a Launch Window
Extension by Lateral Motion

Joël de Vries





Space Plane
Trajectory
Optimization

Investigation of a Launch Window Extension
by Lateral Motion

by

Joël de Vries
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday June 24, 2022 at 14:00.

Student number: 4222571
Project Duration: July 12, 2021 – June 24, 2022
Thesis committee: Prof. Dr. Ir. P.N.A.M. Visser TU Delft, chairman

Ir. M.C. Naeije TU Delft, supervisor
Ir. D. Dirkx TU Delft
Ir. E. van Kampen TU Delft

Cover image: An artist concept of the National AeroSpace Plane (NASP) taking off.1

An electronic version of this thesis is available at http://repository.tudelft.nl/.

1Correll, J.T., 2022, ‘The Spaceplane: 60 Years On.’, Air Force Magazine, https://www.airforcemag.com/article/
the-spaceplane-60-years-on/, accessed June 11, 2022.

http://repository.tudelft.nl/
https://www.airforcemag.com/article/the-spaceplane-60-years-on/
https://www.airforcemag.com/article/the-spaceplane-60-years-on/




Preface
I am proud to present the work that I have done for almost a year. Even though this report is a requirement to
complete my Master of Science at the TU Delft, it has not felt like it. Throughout the year, I have discovered
amazing theories and methods. I have been able to create a piece of software that is capable of simulating the
ascent of a space plane. And I have struggled to find some pesky bugs in the process. Looking back on that
now, I can say that I have learned and grown so much, while having an amazing time.

This report details the investigation of a space plane to ascent to orbit with an increased launch window. In
order to investigate this I have challenged myself to do two things. First, I wanted to be able to define the
space plane equations of motion in six degrees of freedom. And second, I wanted to build a robust guidance
and control system that would be able to guide the space plane towards space. All of the knowledge that I
gained to achieve these to goals is written down in this report. I hope that any reader, perhaps at the cusp of
starting their own Master thesis, finds this information useful.

I also would like to thank a number of amazing people that have helped me throughout this study. First of,
my supervisor Marc Naeije. Thank you for the many hours that you have spent listening to me, guiding me
to achieve my goals, and the accompanying encouragements. The patience and understanding that you have
given me, sometimes throughout difficult times, is very much appreciated. Secondly I would like to thank two
professors that have been helping me. Dominic Dirkx, who helped me in the amazing and difficult realm of
TUDAT. The amount of emails that you have responded to with issues that seemed impossible to solve is
astounding. And Erik-Jan van Kampen who guided me with the guidance and control methods that I have
applied to the space plane. Thirdly, I would like to thank my sister Inez for helping me proofread the report
and my brother Melle for taking the time to listen. I would also like to thank my thesis support group. Weilun,
Gemo and Emilie thank you for your support and the laughs that we had. I am very happy that we were
able to have dinner and drinks together and that we were able to share our enthusiasm of anything related to
space. Last but not least, I would like to thank my girlfriend Kim. The support that you give me to realize
my dreams and goals means the world to me.

Joël de Vries,
Delft, June 2022

iii





Abstract
Single-Stage-To-Orbit (SSTO) launch vehicles are capable of reaching orbit while being potentially fully
reusable. A technology capable of enabling SSTO access to space are air-breathing engines, such as the
Synthetic Air Breathing Rocket Engine (SABRE) and Rocket-Based Combined Cycle (RBCC) engines. These
promise higher engine performance in terms of specific impulse at the cost of a lower thrust-over-weight (T/W)
ratio. These engines necessitate the use of a Horizontal Take-off and Horizontal Landing (HTHL) launch
vehicle with a lifting surface to compensate for the low thrust-over-weight (T/W) ratio. The inclusion of a
lifting surface enables the launch vehicle to use banking maneuvers to manipulate the orbital Right Ascensions
of the Ascending Node (RAAN) that the space plane achieves. This means that the space plane is capable of
advancing or delaying its time of launch, while still achieving a similar orbital RAAN. This effectively increases
the launch window even if a precise orbit insertion is necessary.

In this thesis, the fuel-optimal ascent trajectory for a space plane is investigated that would include an
extended launch window. In order to simulate a banking maneuver the full six Degrees of Freedom (DoF)
Equations of Motion (EoM) have been defined for a theoretical space plane called the National Aero-Space
Plane (NASP), which is developed to enable hypersonic and SSTO space plane research. In order to guide
and control the space plane, a robust Guidance and Control (G&C) system is designed that is capable of
using the nonlinear EoM. The algorithms used are the Non-linear Dynamic Inversion (NDI) and Incremental
Non-linear Dynamic Inversion (INDI) algorithms. The latter has the benefit of reducing its dependency on
the dynamic models, which ensures that the space plane can be effectively controlled even if the vehicle model
has uncertainties in it.

The optimization of the ascent trajectory of a space plane is an optimal control problem. In order to
optimize the ascent, the control problem is converted into a NonLinear Programming (NLP) problem by
defining for specific altitudes the flight path angle. The discrete number of flight path angles is used together
with the Hermite spline interpolation method to define a continuous function of the flight path angle, which
is dependent on the altitude. For the heading angle, a target orbital inclination together with a deviation is
used to compute the heading angle. The deviation is used as an optimization parameter, which is dependent
on the altitude. By using the deviation, it was possible to define the heading angle for the majority of the
ascent with a minimal amount of optimization parameters.

The ascent trajectory is optimized with the global optimization algorithm Multi-Objective Evolutionary
Algorithm with Decomposition (MOEA/D). Two objectives were defined that had to be optimized by the
algorithm. These objectives are the final achieved orbit and the propellant used during the ascent. In addition,
several constraints were implemented, such as the maximum allowable dynamic pressure and heat flux. These
parameters are automatically controlled by the G&C system, which ensures that the constraints are never
violated.

The ascent has been optimized for a number of different launch times ranging from an advanced launch
of two hours to a delayed launch of two hours. The ascent trajectory has been optimized that included a
deviation in the inclination in order to achieve the same RAAN irregardless of the launch time. It was found
that, at the cost of propellant, it is possible to have a launch time delayed are advanced by as much as two
hours. This means that the space plane can manipulate the RAAN by ± 30 degrees. The extra cost in terms
of propellant is related to an increase in drag losses. The banking maneuvers that are done to manipulate
the RAAN require a higher angle of attack to maintain the required flight path angle, which in turn increases
the drag force. The increased propellant cost consequently means that the amount of payload to be inserted
is reduced. For a nominal launch, it was found that approximately 5106 kg of payload could be brought into
orbit. For a one hour advanced launch, the maximum payload would be reduced to 3554 kg. A one hour
delayed launch would result in a maximum payload of 3426 kg. For a two hour advanced launch it was found
that 1514 kg is available as payload. For a two hour delayed launch it was found that the definition of the
heading angle was a limiting factor, which meant that the optimized ascent trajectory with banking maneuver
was sub-optimal. This resulted in a maximum available payload of 772 kg.

Keywords: Space Plane, Multi-Objective Optimization, Ascent Trajectory, Launch Window Extension
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1
Introduction

Throughout the last decades, attempts have been made to develop Single-Stage-To-Orbit (SSTO) launch
vehicles that would be reusable. Initially, even the space shuttle was meant to be a reusable launch vehicle.
Unfortunately, these attempts have been halted due to low technological readiness and high development costs.
At the end of the previous century, the X-33 came close but failed due to difficulties with the construction of
the composite hydrogen fuel tanks (Coppinger, 2005). Currently, reusable booster stages are being developed,
which means that launch vehicles become at least semi-reusable. The main issue with developing a fully
reusable SSTO launch vehicle is the relatively low performance that a conventional rocket engine yields, and
the high structural weight. To mitigate the first issue, altitude compensating nozzles have been developed,
which increases the performance of the engine. However, these do not yield the performance to achieve actual
SSTO access to space. Instead, completely new engines are being developed, which incorporate air-breathing
modes to lower the amount of liquid oxygen that needs to be carried by the launch vehicle. This effectively
increases the engine performance. The downside of using an air-breathing mode is that the thrust-over-weight
ratio (𝑇 /𝑊 ) is lower compared to conventional rocket engines. This necessitates the use of a horizontally
launched launch vehicle with a lifting surface. These so-called space planes will horizontally launch and land.

The inclusion of a lifting surface enables new maneuvers, not available to conventional rockets. A space
plane can more easily maneuver in lateral direction, which enables manipulation of the inclination and Right
Ascensions of the Ascending Node (RAAN) during the ascent trajectory (Zhou, Wang, and Cui, 2020). The
manipulation of the RAAN means that a space plane can potentially increase the launch window, even if the
mission requires a very precise orbit insertion such as a rendezvous with the International Space Station (ISS).
Due to the novelty, not much research has been done on the lateral motion of space planes.

The focus of this MSc thesis is to identify the fuel-optimal trajectory for a space plane that would have a
delayed or advanced launch. The goal of the ascent is to achieve a similar orbit in terms of semi-major axis,
eccentricity, inclination and RAAN irregardless of the launch time, while minimizing the required propellant
to reach that orbit. By minimizing the amount of propellant used, the amount of payload that can be brought
into orbit can be maximized. The following research question has been formulated to guide the identification
of the fuel-optimal trajectory.

Research Question: What is the fuel-optimal ascent trajectory for a Horizontal Take-off and Horizontal
Landing (HTHL) space plane, which includes a change in the Right Ascensions of the Ascending Node (RAAN)
to extend the launch window?

The change in the RAAN is accomplished by initiating a banking maneuver during the ascent, which will
change the heading angle of the space plane. In order to quantify the cost of such a maneuver, the ascent
trajectory with a change in RAAN is compared to a nominal ascent trajectory. The nominal ascent trajectory
will launch at such a time that a change in RAAN is not necessary. The propellant cost of the nominal
ascent trajectory will be compared to the propellant cost of the ascent trajectory that manipulates the RAAN.
Additionally, a simple maneuver to change the RAAN in-orbit is computed, which can be used to quantify the
efficiency of the change in RAAN by the space plane. The following Sub-Questions (SQ) have been formulated
to support the answer to the research question and to enable comparison between the nominal, and advanced
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2 Chapter 1. Introduction

or delayed launch.

SQ1 What is the fuel-optimal ascent trajectory for a Horizontal Take-off and Horizontal Landing (HTHL)
launch vehicle without considering a launch window?

SQ2 How does the required propellant during the ascent trajectory vary due to the inclusion of an extended
launch window?

SQ3 How does the required propellant for a change in the Right Ascensions of the Ascending Node (RAAN) by
a space plane compare to the same change in the right ascension of the ascending node by a traditional
secondary stage?

In order to answer the research question, a number of objectives are identified. First of all, the inclusion
of a banking maneuver requires the inclusion of the full six Degrees of Freedom (DoF) translational and
rotational Equations of Motion (EoM). In practice, the angle of sideslip can be assumed small, which reduces
the EoM by eliminating the side force generated by the space plane. In this study it is chosen to not use this
assumption and incorporate the side force. Second of all, a Guidance and Control (G&C) system needs to
be designed that guides the space plane and controls its orientation. In previous studies, a linearized G&C
system is used, which introduces eigenmotions. In order to eliminate the eigenmotions, it is chosen to design
a robust nonlinear G&C system. The use of this robust system, will support the optimization process and the
sensitivity analysis that will be performed on the obtained results. Third of all, this study will incorporate
a vehicle model that has been used in previous studies. The vehicle model used is the National Aero-Space
Plane (NASP), also named the winged cone configuration. This vehicle has been used by Mooij (1998) to find a
fuel-optimal trajectory. That trajectory is launched along the equator and does not change the heading angle.
In conjunction with the vehicle model, constraints such as the maximum dynamic pressure, heat flux and
maximum axial acceleration are adopted from this study. This enables extensive verification of the integrated
vehicle model and the obtained results. The objectives for the study can be summarized by a number of
Additional Goals (AG):

AG1 Include the full six Degrees of Freedom (DoF) translational and rotational Equations of Motion (EoM).
AG2 Include a G&C system that can deal with the nonlinear translational and rotational Equations of Motion

(EoM).
AG3 Include a vehicle model that has been used before to optimize the longitudinal ascent, which includes

constraints.

This thesis is structured to first give background information on the development of SSTO space planes in
Chapter 2. Additionally, this chapter will discuss engine developments that enable SSTO access to space and
an overview of previous ascent trajectory optimization studies for space planes. In Chapter 3 the theoretical
information that is needed to define the EoM of a space plane and the required transformation matrices
are presented. Chapter 4 discusses the environmental models and vehicle model used to simulate the ascent
trajectory. This includes the forces acting on the space plane.

Chapter 5 gives an overview of the optimization theory of an optimal control problem. This includes
the method to transcribe the problem to a NonLinear Programming (NLP) problem and a general overview
of global optimization theory. Additionally, this chapter discusses the problem definition and a number of
issues that came up during this study. The preliminary results obtained from the initial problem definition
necessitated a number of changes, which have been described in detail. This is done to give the reader insight
into the choices made to define the NLP problem.

Based on the definitive problem definition, a G&C system is designed for the space plane. This system
is presented in Chapter 6, which includes a brief introduction to the theory of Non-linear Dynamic Inversion
(NDI) and Incremental Non-linear Dynamic Inversion (INDI) control algorithms. In Chapter 7 the numerical
methods used to simulate the ascent trajectory of the NASP is discussed. Primarily, the interpolation methods
to determine the vehicle data for given variables and the reference trajectory is discussed. In conjunction, the
simulation architecture is presented, which includes the integration of the vehicle model and G&C system in
the TU Delft Astrodynamics Toolbox (TUDAT) package.

The results of the optimization of the ascent trajectory is presented in Chapter 8. In this chapter, results
are presented and discussed that directly can be used to answer the aforementioned research question and
sub-questions. Chapter 9 discusses the verification and sensitivity analysis of the obtained results. Finally, in
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Chapter 10 the conclusions that can be drawn from the obtained results are discussed. The conclusions drawn
are based on the research question and sub-questions that have been formulated in this chapter. Furthermore,
a number of recommendations for future research are given based on the results of this thesis.





2
Single-Stage-To-Orbit & Space Plane Launch

Vehicles
A Single-Stage-To-Orbit (SSTO) launch vehicle is capable of transporting cargo or personnel from the surface
of a planetary body to space. It does so without expending parts of the rocket. Traditional rockets expend
parts of the rocket, which until recently would not be reused. An SSTO launch vehicle can potentially be
reused and have a low turn-around time since no major parts have to be reconstructed. Alternatively, a space
plane, which uses an initial stage, can be used to achieve a similar goal. The initial stage can be retrieved
after launch and reused, while the space plane itself can land after it has performed a mission in space. In this
chapter, a brief overview will be given of historical and current SSTO and space plane launch vehicles. This
will be followed by a discussion about technologies that will enable SSTO access to space. Finally, the chapter
will conclude by presenting previous ascent trajectory optimization studies and unique investigations that can
still be done.

2.1. Historical SSTO & Space Plane Launch Vehicles
At the end of the 1960s the National Aeronautics and Space Administration (NASA) started development
of the space shuttle. The space shuttle was meant to be a low-cost, reusable transportation launch vehicle
(Launius, 1994). However, due to high technical requirements, the space shuttle was never developed as a fully
reusable launch vehicle (Launius, 2013). Instead, it would expend solid rocket boosters and an external tank
during the launch of the shuttle, while landing as a space plane. During the 1990s, studies were conducted to
assess the options that were available to replace the Space Shuttle. The recommendation, that followed from
the NASA Access To Space (ATS) study, was to develop a new fully reusable system as a replacement for the
Space Shuttle (Freeman et al., 1995). Based on those recommendations, the Reusable Launch Vehicle (RLV)
program was created, which would focus on assessing vehicle concept, maturing required technologies, and
identifying approaches to demonstrate these technologies. Within the program, a number of concepts were
proposed, which can be seen in Figure 2.1. Two of these concepts are Vertical Take-off Horizontal Landing
(VTHL) launch vehicles, of which one is a lifting body and the other is a winged body. The other concept is
a SSTO Vertical Take-off and Vertical Landing (VTVL) launch vehicle.

The lifting body VTHL concept is the X-33 launch vehicle. It was developed as a sub-orbital demonstrator
for advanced technologies, which would increase the safety and reliability of launch vehicles as well as reduce
the payload cost1. Furthermore, the X-33 would enable the development of the VentureStar reusable launch
vehicle, which was proposed by Lockheed Martin. In 2001 NASA stopped funding the program since there were
difficulties with the composite hydrogen tanks. According to Coppinger (2005), the hydrogen tanks failed due
to microcracking in the tank wall. The use of composite hydrogen tanks, aerospike engines, and several other
technological advances were necessary in order to reduce the dry weight of the launch vehicle. The reduction
in dry weight would ensure that it would meet the SSTO performance requirements (Freeman et al., 1995).

The VTVL launch vehicle is the Delta Clipper Experimental (DC-X) developed by McDonnel Douglas. It

1NASA, X-33 Advanced Technology Demonstrator, accessed on 27 Feb 2021, https://www.nasa.gov/centers/marshall/news/
background/facts/x33.html.

5

https://www.nasa.gov/centers/marshall/news/background/facts/x33.html
https://www.nasa.gov/centers/marshall/news/background/facts/x33.html
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Figure 2.1: Concepts of the Reusable Launch Vehicle program (Freeman et al., 1995).

Figure 2.2: Cutaway drawing of the HOTOL space planea.
ahttp://www.aerospaceweb.org/question/spacecraft/q0202.shtml, accessed on 28 Apr 2021.

was a scale model of an SSTO launch vehicle2. In 1995 the DC-X design was procured by NASA and modified
to the Delta Clipper Advanced (DC-XA). The technological advances made with the DC-X and DC-XA would
help the development of the X-33 (National Research Council, 1995). After the DC-XA suffered severe damage
during landing, the program was terminated due to a lack of funding.

Besides the American effort, the British government in combination with British Aerospace and Rolls-Royce
have worked on an SSTO RLV, which was also a space plane, see Figure 2.2. During the 1980s the British
Aerospace HOTOL, a Horizontal Take-off and Horizontal Landing (HTHL) launch vehicle was developed. It
would utilize atmospheric oxygen for part of the launch trajectory, reducing the amount of liquid oxygen
needed during launch (Brown, 1986). In 1989 the development of the HOTOL was terminated after the
British government and Rolls Royce withdrew their support, after which Rocket Engine Limited was formed
to continue the development of an HTHL SSTO launch vehicle (Hempsell, 2013).

The European Space Agency (ESA) has also been working on a space plane called the Hopper, an orbital
space plane conceived during the Future European Space Transportation Initiation Programme (FESTIP)
(Dujarric, 1999). It was intended as an unmanned RLV that would be able to deliver satellite payloads into
orbit3. Several test flights have been performed with a prototype of the Hopper.

2NASA, 2012, The Delta Clipper Experimental: Flight Testing Archive, accessed on 01 Mar 2021, https://www.hq.nasa.gov/
pao/History/x-33/dc-xa.htm.

3BBC News, Launching the Next Generation of Rockets, accessed on 20 Apr 2021, http://news.bbc.co.uk/2/hi/science/
nature/3699848.stm.

http://www.aerospaceweb.org/question/spacecraft/q0202.shtml
https://www.hq.nasa.gov/pao/History/x-33/dc-xa.htm
https://www.hq.nasa.gov/pao/History/x-33/dc-xa.htm
http://news.bbc.co.uk/2/hi/science/nature/3699848.stm
http://news.bbc.co.uk/2/hi/science/nature/3699848.stm
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Figure 2.3: Impression of the SpaceLiner as a rocket-propelled intercontinental passenger transport vehicle
(Sippel, Trivailo, et al., 2016).

Figure 2.4: Rendering of the Dream Chaser docked to the International Space Station (ISS) (Krevor et al.,
2011).

2.2. Current SSTO & Space Plane Launch Vehicles
Currently, a number of SSTO launch vehicles and space planes are being developed. One of these is the
SpaceLiner, a reusable Two-Stage-To-Orbit (TSTO) space plane, a passenger transportation concept based
on rocket propulsion developed by the German Aerospace Center (Sippel, Trivailo, et al., 2016). The design
consists of a fully reusable booster stage and a passenger stage, see Figure 2.3. It is capable of ultra long-haul
distances. Several configurations have been developed which could accommodate approximately between fifty
and one hundred passengers. Furthermore, the SpaceLiner is seen as a technical basis for a TSTO fully reusable
launch vehicle. It can deliver payloads of approximately 26150 kg to Low Earth Orbit (LEO). Furthermore, it
is possible to outfit an upper stage, which could transfer from LEO to Geostationary Transfer Orbit (GTO).
Estimation is that approximately 8250 kg of payload could be transferred to GTO. Similar to the passenger
space plane, the booster will feature wings. It is intended that the booster stage separates at Mach number
12.5. According to Sippel, Trivailo, et al., 2016, such a velocity is too high for a powered fly-back. It is therefore
chosen to use an in-air-capturing method (Sippel, Klevanski, and Kauffmann, 2001).

Another space plane currently under development is the Dream Chaser developed by Sierra Nevada Corpo-
ration, see Figure 2.4. It is a TSTO VTHL space plane that uses an expendable Atlas V rocket booster as a first
stage (Krevor et al., 2011). The space plane itself is a direct continuation of the HL-20, a NASA concept. The
HL-20 was designed as a lifting-body Personnel Launch System (PLS), with operational efficiency, reliability
and safety in mind (Stone and Piland, 1991). The primary mission of the Dream Chaser is to enable crewed
transport to the ISS and back to Earth. It can support a crew of up to seven people for 3.5 days in orbit and
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Figure 2.5: Impression of Skylon in flight (Hempsell and Longstaff, 2009).

has a maximum deceleration of 1.5 g during re-entry. The secondary mission is to transport pressurized cargo
to and from the ISS.

On a smaller scale, a suborbital space plane HTHL is developed by Dawn Aerospace, a start-up located in
the Netherlands and New Zealand. The Dawn Mk-II Aurora is capable of reaching an altitude of approximately
110 km and can deliver 3𝑈 payloads of up to 4 kg. It furthermore has a take-off weight of 280 kg. The Mk-II
is built to demonstrate Dawn’s core technologies4. Based on these technologies an Mk-III is in development
which will be able to deliver 50 to 100 kg satellites to orbit, by utilizing an expendable secondary stage. The
method of delivery and the comparison to the Mk-II capabilities can be seen in Figure 2.6. Dawn Aerospace
markets its space plane as a launch vehicle with a turn-around time of less than a day, meaning that access to
space is possible multiple times per day.

The last SSTO space plane to mention is being developed by Rocket Engine Limited. It is a space plane
called the Skylon and is intended as a hybrid air-breathing HTHL launch vehicle utilising the Synthetic Air
Breathing Rocket Engine (SABRE). The idea behind SABRE is to utilize the oxygen in the air until an altitude
of approximately 25 km is reached and the space plane is accelerated to over Mach 5 (Hempsell, 2013). The
development of Skylon and its SABRE engine is a direct result of the study done for the British Aerospace
HOTOL. The Skylon will feature two SABRE engines attached to the wings, see Figure 2.5. It will both
take-off and land horizontally, enabled by the high specific impulse that the hybrid engines yield during air-
breathing mode (Varvill and Bond, 2003). The space plane is capable to deliver 15 tonnes of payload into a
300 km low earth orbit with a take-off mass of 325 tonnes (Hempsell, 2013).

2.3. SSTO Enabling Technologies
In order for a launch vehicle to reach a Low Earth Orbit (LEO) approximately 9 km/s of Δ𝑉 is needed, which
includes gravity and aerodynamic losses (Varvill and Bond, 2003). The current and historical launch vehicles,
previously discussed, use innovative methods to enable SSTO launch vehicles to reach LEO. Before these
technologies are discussed, a brief introduction should be given in the formulation of the rocket equation.

2.3.1. The Rocket Equation
In order to understand what might enable an SSTO launch vehicle to reach LEO, first the equation that
governs the motion of a rocket needs to be defined. The Tsiolkovsky equation i.e. , the rocket equation, which
describes the available Δ𝑉 of a launch system, is given by:

Δ𝑉 = 𝑣𝑒𝑞 ln 𝑀0
𝑀𝑓

(2.1)

It relates the Δ𝑉 that can be obtained by a launch vehicle to the effective exhaust velocity 𝑣𝑒𝑞 and the
propellant mass fraction, 𝑀0/𝑀𝑓 . The mass fraction relates the initial launcher mass to the final launcher
mass, i.e., the mass at the moment of engine cut-off. Traditional launch vehicles cannot obtain the required
Δ𝑉 with a single stage due to low specific impulse 𝐼𝑠𝑝 of the engines used, which is related to the effective
exhaust velocity 𝑣𝑒𝑞 by:

𝑣𝑒𝑞 = 𝐼𝑠𝑝𝑔0 (2.2)
4Dawn Aerospace, Introducing the Dawn Mk-II Aurora, accessed on 20 Apr 2021, https://www.dawnaerospace.com/

dawn-mkii-aurora.

https://www.dawnaerospace.com/dawn-mkii-aurora
https://www.dawnaerospace.com/dawn-mkii-aurora
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(a) Mk-II

(b) Mk-III

Figure 2.6: Launch envelope for the Dawn Aerospace launch vehiclesb.
bhttps://www.dawnaerospace.com/dawn-mkii-aurora, accessed on 20 Apr 2021.

https://www.dawnaerospace.com/dawn-mkii-aurora
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Figure 2.7: Specific impulse variation with altitude for the aerospike and bell nozzle (Hartsfield et al., 2011).

where 𝑔0 = 9.80665 m/s2 is the standard gravity of the Earth. For instance, the most efficient pure rocket
engine, utilizing liquid hydrogen and oxygen has a specific impulse of approximately 450 s (Varvill and Bond,
2003).

2.3.2. Altitude Compensating Nozzle
In order to increase the specific impulse of a launch vehicle, the effective exhaust velocity, which relates to the
atmospheric pressure and the exhaust pressure, can compensate for the change in atmospheric pressure. The
equation for the effective exhaust velocity is given by:

𝑣𝑒𝑞 = 𝑣𝑒 + 𝐴𝑒(𝑝𝑒 − 𝑝𝑎)
�̇� (2.3)

where 𝑣𝑒𝑞 is the effective exhaust velocity, 𝑣𝑒 is the exhaust velocity, 𝐴𝑒 is the exhaust area, 𝑝𝑒 is the exhaust
pressure, 𝑝𝑎 is the atmospheric pressure, and �̇� is the mass flow (Huang and Huzel, 1971). In order to ensure
optimal thrust, it is necessary that there is no over or under expansion, meaning that the exhaust pressure
and the atmospheric pressure are equal to each other. However, bell-nozzle rocket engines are designed for
one specific altitude, taking into account that the exhaust pressure should not become too low. If the exhaust
pressure would become too low, the exhaust flow would separate and form shock waves (Hartsfield et al., 2011).
Typically, the bell nozzle is designed to have an exit pressure that is not lower than approximately 60 % of
the atmospheric pressure. This means that the performance of the launch vehicle is only optimal for a brief
moment, as can be seen in Figure 2.7. Engine nozzles exist which increase the efficiency, the most notable
altitude compensating nozzle is the aerospike engine. This engine was developed for the X-33 lifting body
launch vehicle, discussed in Section 2.1.

A modern version of the aerospike engine is the Dual-Expander Aerospike Nozzle (DEAN), which utilizes
separate expander cycles for the oxidizer and fuel (Hartsfield et al., 2011). Furthermore, this engine uses an
aerospike nozzle (radial inflow plug) in contrast to the bell nozzle, as can be seen in Figure 2.8. The aerospike
nozzle does not suffer from an increased ambient pressure. In contrast, it reduces the expansion ratio in
such a way that the exhaust pressure matches the ambient pressure. This means that the aerospike nozzle
compensates for the change in pressure up to its design altitude (Hartsfield et al., 2011). Above the design
altitude, the engine functions as a conventional bell nozzle, effectively increasing the thrust due to an excess
in exhaust pressure. The improved performance of the DEAN compared to a conventional bell-nozzle engine
can be seen in Figure 2.7.
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Figure 2.8: Geometry of a rocket engine using an aerospike or bell nozzle (Hartsfield et al., 2011).

2.3.3. Alternative Rocket Engines
Another method in which the specific impulse could be increased is by using engines that use oxygen contained
in the atmosphere. This eliminates the use of liquid oxygen during parts of the ascent, significantly increasing
the specific impulse. This increase in specific impulse can be explained by:

𝐼𝑠𝑝 = 𝑇
�̇�𝑓𝑔0

(2.4)

where 𝑇 is the engine thrust, and �̇�𝑓 is the mass flow rate of the fuel expelled by the engine (Sutton and Biblarz,
2016). Since oxygen is used from the atmosphere, the mass flow rate only includes fuel and is, therefore, lower
compared to a conventional rocket engine. Because of the decreased mass fuel flow, the specific impulse of
the engine is higher. The drawback of these engine types is the relatively low thrust-to-weight ratio (𝑇 /𝑊 ).
Whereas a typical rocket engine has a 𝑇 /𝑊 of approximately 60 − 80, air-breathing engines have a 𝑇 /𝑊 which
ranges approximately between 1 − 14 (Webber, Bond, and Hempsell, 2006). Therefore, it is necessary for a
launch vehicle that utilizes an air-breathing engine to generate lift during the ascent trajectory (Varvill and
Bond, 2003). This means that a vertical take-off launch vehicle cannot employ air-breathing engines, since the
initial 𝑇 /𝑊 would be too low. Instead, a launch vehicle should take off horizontally if it uses air-breathing
engines.

Ramjet and Scramjet Engines
One of the air-breathing engines is the ramjet, an engine capable of creating thrust in supersonic conditions
and up to approximately Mach 6. The supersonic airflow is used in combination with the geometry of the
inlet of the ramjet to create shock waves that increase the pressure and temperature. Within the inlet, a
series of oblique shock waves are created, which end in a normal shock. Figure 2.9 shows a schematic of a
ramjet, including the shock waves that are created. The fact that the shock waves end with a normal shock
guarantees that the velocity of the airflow is decreased to subsonic levels, after which fuel is injected within
the subsonic combustor (Veeran, Pesyridis, and Ganippa, 2018). The use of shock waves eliminates the need
for a compressor, typically used in a jet engine (Mateu, 2013). Above Mach 5 the ramjet loses efficiency due
to dissociation of the flow, reducing the effective heat addition (Varvill and Bond, 2003). Instead, a scramjet
is used, where the flow is slowed from hypersonic speeds to supersonic speeds, ensuring that no dissociation
of the flow occurs. This is done by ensuring that only oblique shock waves exist within the scramjet, see
Figure 2.10. The main issue with the ramjet and scramjet is that they both have distinct Mach numbers at
which the engines can operate. They also have, as mentioned previously, low 𝑇 /𝑊 ratios. This can be seen
in Table 2.1 and compared to the engine performance values for a conventional rocket engine. Furthermore,
both engines are not able to function below a certain Mach number, meaning that these engines are unable to
take-off by themselves. This necessitates the use of an engine that can accelerate a launch vehicle to supersonic
speeds. A combined cycle propulsion method should be used. One such combined cycle method is the Rocket-
Based Combined Cycle (RBCC) engine. The initial acceleration of the RBCC engine is provided by a pure
rocket engine. This engine mode accelerates a launch vehicle to supersonic speeds after which the ramjet and
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Figure 2.9: Schematic of the working principle of a ramjet (Mateu, 2013).

Figure 2.10: Schematic of the working principle of a scramjet engine (Idris et al., 2014).

subsequently the scramjet takes over. Since the ramjet and scramjet both use oxygen from the atmosphere, a
fourth mode is necessary to provide thrust during high altitude and vacuum conditions (Olds and Bradford,
2001). The Combined Propulsion Research Group of Japan Aerospace Exploration Agency (JAXA) have been
working on a scramjet and combined-cycle engine (Hiraiwa et al., 2008). A rocket-ramjet combined cycle
engine model was build and tested under static sea-level conditions (Tomioka et al., 2021).

It is also possible to combine the pure rocket, ramjet and scramjet engine modes together with a turbojet
engine mode. This is called a Turbo-Based Combined Cycle (TBCC). The turbojet engine is used to accelerate
to supersonic conditions followed by the ramjet and scramjet engine modes, and as a fourth mode, the pure
rocket engine is used during the high altitude and vacuum part of the ascent trajectory. The turbojet engine
has a superior specific impulse compared to the ejectorjet mode, as can be seen in Table 2.1.

Table 2.1: Engine performance for several air-breathing engines and for a conventional rocket engine
(Webber, Bond, and Hempsell, 2006).

Engine Mach range [-] Specific Impulse [s] 𝑇 /𝑊 ratio [-]
Rocket (vac) 0 − 27 450 − 475 60 − 80
Ramjet 1 − 6 1500 − 3000 1 − 3.5
Scramjet 4 − 15 1000 − 3000 0.5 − 2
Turbojet 0 − 2.5 2000 − 6000 1 − 4
LACE 0 − 6 600 − 1000 6 − 14
SABRE 0 − 5.5 1500 − 3200 6 − 14

Liquid Air Cycle Engines
Another air-breathing engine is the Liquid Air Cycle Engine (LACE). The engine uses the liquid hydrogen
onboard to liquefy the airflow that is captured in the engine. This is made possible because of the low
temperature and high specific heat of liquid hydrogen (Varvill and Bond, 2003). Due to the way that the
incoming air is used in the engine, the air-breathing and rocket propulsion systems can be combined with only
a single nozzle (Webber, Bond, and Hempsell, 2006). In Figure 2.11 an arrangement can be seen, where the
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Figure 2.11: Arrangement of a Liquid Air Cycle Engine using ambient air and liquid hydrogen (Segal,
2005).

Figure 2.12: RB545 air-breating rocket engine concepta.
ahttp://www.aerospaceweb.org/question/spacecraft/q0202.shtml, accessed on 28 Apr 2021.

airflow is captured and liquefied. Another benefit of LACE is the higher 𝑇 /𝑊 ratio compared to that of a
ramjet or scramjet, see Table 2.1. Also, the engine is capable of functioning from a stand-still. A downside
of LACE is a high fuel consumption compared to the ramjet or scramjet. The high fuel consumption is the
result of the required cooling of the oxygen in the air, where the mass flow of the liquid hydrogen is dictated
by the required capacity rate. According to Webber, Bond, and Hempsell, 2006, “The liquid hydrogen fuel
must have sufficient thermal capacity to absorb the enthalpy equal to the latent heat of condensation of air at
its saturated conditions” (p. 8260). Due to this higher fuel consumption, the specific impulse of the engine is
approximately 600 − 1000 s. Another difficulty of the LACE is the condensation of the other substances in the
air such as water vapor, carbon dioxide and argon, which clog the condenser (Varvill and Bond, 2003).

Based on the LACE concept, the RB545 engine was designed for the British Aerospace HOTOL project,
see Figure 2.12. The design improved in such a way that the major downside of the LACE concepts was
eliminated. The cooling process was terminated close to the vapor boundary of approximately 80 K, creating
a more efficient division between the cooling of the incoming airflow and the work requirements of the engine.
This meant that the amount of liquid hydrogen required to cool the incoming airflow was reduced, creating
a more efficient fuel/air ratio (Varvill and Bond, 2003). However, due to metal temperature limitations in
the pre-cooler caused by hydrogen embrittlement, the improved fuel/air ratio was negated at higher Mach
numbers. With the termination of the development of the HOTOL, the RB545 development was stopped.

With the formation of Rocket Engine Limited (REL), after the development stop of the HOTOL, the
concept of the RB545 was improved upon. The newly developed engine is called the SABRE, see Figure 2.13.

http://www.aerospaceweb.org/question/spacecraft/q0202.shtml
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Figure 2.13: Cutaway of the SABRE engine (Hempsell, 2013).

The engine incorporates a Brayton cycle helium loop between the incoming airflow and the hydrogen stream
(Varvill and Bond, 2003). In air-breathing mode, the atmospheric air is cooled with a pre-cooler heat exchanger,
which is part of the closed cycle helium loop. After the air is cooled to 140 K, it is compressed to approximately
145 bar and 700 K. From there, the compressed air is used in a preburner together with the liquid hydrogen.
The hot exhaust flow then heats the helium with a heat exchanger (HX3) to a constant value, such that the
turbomachinery can operate with constant conditions (Webber, Bond, and Hempsell, 2006). Before the helium
is used again to cool the incoming airflow, it is cooled down by using the hydrogen heat exchanger (HX4).
By using helium instead of the liquid hydrogen, hydrogen embrittlement is avoided in the pre-cooler tubes
(Webber, Bond, and Hempsell, 2006). Furthermore, the fuel/air ratio (12.5) is improved compared to both
the LACE and RB545, since helium is the working fluid (Varvill and Bond, 2003). Due to the improved fuel
efficiency, the specific impulse of the SABRE is improved, see Table 2.1. Above Mach 5 and an altitude of
25 km, the air-breathing mode is disabled (Hempsell, 2013). The intake is closed and the engine switched
to pure rocket engine mode, where the performance of the engine is similar to that of a conventional rocket
engine (Varvill and Bond, 2003). The major new technology needed for the SABRE is the pre-cooler heat
exchanger. The pre-cooler has been successfully tested, demonstrating sustained operation (Hempsell, 2013).
Besides the heat exchanger, REL has been investigating an Expansion Deflection (E/D) nozzle to compensate
for the changing pressure in the atmosphere during the ascent (Taylor et al., 2010).

2.4. Space Plane Ascent Trajectory
During the discussion about the enabling technologies it became apparent that air-breathing engines have a
good specific impulse compared to a traditional rocket engine even when considering an altitude compensating
nozzle. Using an air-breathing engine, however, requires the launch vehicle to launch horizontally due to
the low thrust-to-weight ratio (𝑇 /𝑊 ). A horizontally launched space plane has a different ascent trajectory
compared to a vertically launched rocket.

Previous studies that optimized the ascent trajectory of a space plane have primarily been focusing on
longitudinal flight only. By assuming a constant flight heading and latitude, the longitudinal and lateral
motion could be decoupled, which would reduce the Equations of Motion (EoM) of the space plane to three
Degrees of Freedom (DoF) (Mooij, 2019b). A study that incorporates this assumption is done by Pescetelli
et al. (2012). It studies the fuel-optimal ascent trajectory for an air-breathing engine, similar to the SABRE.
Furthermore, a multi-object optimization method was used to determine the fuel-optimal ascent trajectory. A
study done by Mukundan et al. (2019) did incorporate six DoF, where only the longitudinal control parameters
were used to optimize the ascent trajectory. Similarly, a study done by Maddock and Minisci (2016) focussed on
longitudinal ascent trajectory for the CFASTT-1, while incorporating sixDoF. The CFASTT-1 is a conceptual
test vehicle, which is similar to the Skylon in scale and function. In this study the control parameters, used
for the optimization of the ascent trajectory, were the engine throttle and the angle of attack.

Another study was done by, Zhou, Wang, and Cui (2020), which studied six DoF motion to account for
an extension of the launch window. By incorporating lateral motion, it was shown that a space plane with a
lifting surface could manipulate the Right Ascensions of the Ascending Node (RAAN), successfully extending
the launch window. This is an important finding, since launches that would have a specific target orbit can use
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this adjustment to extend the launch window. For instance, rendezvous with an object in space will require an
instantaneous launch window5. Typically, a launch is postponed due to bad weather or a technical malfunction.
The postponement means that, depending on the target inclination, the next possible moment is at minimum
12 hours later.

2.5. Research Objective
With the development of air-breathing engines and the low 𝑇 /𝑊 characteristics of these engines, it is expected
that reusable HTHL space planes will be developed. A primary example is the Skylon, designed by REL due
to the development of the SABRE. It has been discussed previously that a space plane with a lifting surface
is capable of manipulating the RAAN during the ascent to extend the launch window. This extension could
ensure that a launch is not postponed to another day due to bad weather or technical issues. In the research
done by Zhou, Wang, and Cui (2020) the primary focus was to extend the launch window and to assess the
range and altitude capabilities of a theoretical space plane.

The objective of this MSc study is to extend on the work done by Zhou, Wang, and Cui (2020), by
studying the fuel-optimal ascent trajectory i.e., identify the fuel needs of the space plane to incorporate an
extended launch window. In order to study this, the National Aero-Space Plane (NASP) conceptual vehicle is
used. The conceptual model will be introduced in Chapter 4, and is used in multiple occasions to study the
longitudinal ascent trajectory (Powell et al., 1991; Shaughnessy, 1992; Mooij, 1998). This enables verification
of the longitudinal ascent and the vehicle model, while the study by Zhou, Wang, and Cui (2020) serves to
verify the lateral motion.

The results from this study will compare the ascent of a space plane for multiple launch times, including
a control ascent, where the launch time is zero and the target RAAN is automatically reached. With these
different launch times a comparison can be made to assess the propellant used during the ascent, which in turn
will give insight in the available payload that can be brought into orbit. The difference in available payload
can be compared to the required propellant for a satellite to do a simplified in-orbit maneuver to change the
RAAN.

Additionally, a robust nonlinear control algorithm will be used to guide and control the space plane to
the target orbit. This removes the necessity to linearize the EoM, eliminating eigenmotions that could occur,
and gain scheduling. The robust algorithm will also enable sensitivity analysis of the vehicle model, since the
algorithm is capable of controlling the space plane, even though the vehicle model is uncertain.

In general the research objective can be summarized by:

AG1 Include the full six Degrees of Freedom (DoF) translational and rotational Equations of Motion (EoM).
AG2 Include a Guidance and Control (G&C) system that can deal with the nonlinear translational and

rotational Equations of Motion (EoM).
AG3 Include a vehicle model that has been used before to optimize the longitudinal ascent, which includes

constraints.

5ESA, Getting ready for launch, accessed on 19 Jun 2021, https://www.esa.int/Science_Exploration/Space_Science/
Getting_ready_for_launch.

https://www.esa.int/Science_Exploration/Space_Science/Getting_ready_for_launch
https://www.esa.int/Science_Exploration/Space_Science/Getting_ready_for_launch




3
Flight Dynamics

In this chapter the dynamics and kinematics that apply to a space plane are discussed. Flight dynamics relates
to the motion of a space plane in flight which is subject to forces and moments. These forces and moments
can be due to the aerodynamic, gravitational and propulsive forces. The forces that a space plane in flight is
subjected to results in rotational and translational motions (Mooij, 2019a). In Section 3.1 reference frames,
state variables and transformation matrices will be discussed. In Section 3.2 the translational and rotational
Equations of Motion (EoM) will be derived.

3.1. Reference Frames, State Variables and Transformations
A reference frame is used to define the motion of an object with respect to the origin of the reference frame.
Vectors are used to define the motion of an object, which in a Cartesian coordinate system will yield a vector
with three elements corresponding to the 𝑥, 𝑦 and 𝑧 position. Reference frames can be classified as either
inertial or non-inertial. Originally, Newton’s laws have been defined in an inertial frame and are not suitable
for a rotating reference frame. For the ascent trajectory optimization of a space plane, which moves from the
surface of the Earth to an orbit around the Earth, a number of reference frames are useful. These reference
frames will be discussed here.

Inertial Planetocentric Reference Frame
The origin of the inertial planetocentric reference frame coincides with the Center of Gravity (CoG) of the
central body around which the space plane is moving. Due to the motion of the central body, the reference
frame can be considered pseudo-inertial, where the rotation of the reference frame itself has only a marginal
effect. This inertial reference frame uses index 𝐼. The 𝑂𝑋𝐼𝑌𝐼-plane coincides the the equatorial plane of
the central body, with the 𝑍𝐼-axis pointing north. Figure 3.1 shows the location and orientation of the
reference frame. For a general body, the 𝑋𝐼-axis is defined by the prime meridian at zero time. For an inertial
Earthcentric reference frame, the 𝑋𝐼-axis is pointing at a fixed point in inertial space at a specified time. One
such reference frame is called J2000, with 𝑋𝐼-axis pointing towards the Vernal Equinox at 12h on the 1st of
January 2000 (Mooij, 2019a).

Rotating Planetocentric Reference Frame
The rotating planetocentric reference frame uses index 𝑅, with many similarities to the inertial planetocentric
reference frame. The main difference is the 𝑋𝑅-axis, which intersects with the equator at the prime meridian
i.e., zero longitude. The 𝑌𝑅-axis completes the right-handed system and the 𝑍𝑅-axis points north. Because
of this definition, the rotation of the frame is defined by the rotation of the central body, denoted with 𝜔𝑐𝑏
(Mooij, 2019a). The rotating planetocentric reference frame can be seen in Figure 3.1.

Vertical Reference Frame
For the vertical reference frame, index 𝑉 , the 𝑍𝑉 -axis is pointing towards the CoG of the central body, which
is also the direction of the radial component of the gravitational acceleration. The 𝑋𝑉 -axis points towards
the northern hemisphere, perpendicular to the 𝑍𝑉 -axis, and along a meridian plane. The remaining 𝑌𝑉 -
axis completes the right-handed system by pointing in the eastward direction (Mooij, 2019a). The vertical
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Figure 3.1: Schematic representation of the inertial and rotating planetocentric reference frames, together
with the vertical frame (Dirkx and Mooij, 2017).

reference frame is also referred to as the North, East, Down (NED) reference frame. The 𝑉 -frame can be seen
in Figure 3.1.

Trajectory Reference Frame
The trajectory reference frame can be either groundspeed-based, index 𝑇 𝐺 or airspeed-based, index 𝑇 𝐴. For
the ground speed based reference frame, the 𝑋𝑇 𝐺-axis points in the direction of the velocity vector, which
is relative to the 𝑅-frame. The 𝑍𝑇 𝐺 -axis lies in the vertical plane, pointing downwards and the 𝑌𝑇 𝐺-axis
completes the right-handed system. For the airspeed-based frame, the 𝑋𝑇 𝐴-axis is still positive along the
velocity vector, which is now relative to the atmosphere. The 𝑍𝑇 𝐴-axis still lies in the vertical plane, pointing
downwards and the 𝑌𝑇 𝐴-axis completes the right-handed system. Even though the definition of the 𝑍𝑇 𝐴-axis
and 𝑌𝑇 𝐴-axis are similar for both groundspeed- and airspeed-based reference frame, the absolute orientation
is affected by the different definitions of the 𝑋𝑇 𝐺- and 𝑋𝑇 𝐴-axis (Mooij, 2019a).

Aerodynamic Reference Frame
The aerodynamic reference frame is also defined for both the groundspeed and airspeed, index 𝐴𝐺 and 𝐴𝐴,
respectively. The 𝑋𝐴𝐺- and 𝑋𝐴𝐴-axis are both positive along the velocity vector, where the velocity is either
relative to the 𝑅-frame or to the atmosphere, respectively. Furthermore, the 𝑋𝑇 𝐺- and 𝑋𝐴𝐺-axis are collinear,
and the 𝑋𝑇 𝐴- and 𝑋𝐴𝐴-axis are collinear. The 𝑍𝐴𝐺- and 𝑍𝐴𝐴-axis both are collinear with the lift force, but
opposite in direction. The 𝑌𝐴𝐺- and 𝑌𝐴𝐴-axis complete right-handed system. It should be noted that when
the space plane is not banking, the 𝑇 𝐺- and 𝐴𝐺-frame, and 𝑇 𝐴- and 𝐴𝐴-frame coincide. Furthermore, when
wind speeds are not considered, the 𝐴𝐺- and 𝐴𝐴 frame coincide (Mooij, 2019a).

Body Reference Frame
The body reference frame is a fixed vehicle frame, which is denoted by index 𝐵. The 𝑋𝐵 and 𝑍𝐵 lie in the
plane of symmetry of the body. The 𝑋𝐵-axis is positive in the forward direction of the body, while the 𝑍𝐵-axis
is positive in the downward direction. The 𝑌𝐵-axis completes the right-handed system (Mooij, 2019a).

Propulsion Reference Frame
The propulsion frame is an uncommon reference frame, with index 𝑃 . Usually, the thrust force is defined in
the body frame. However, the thrust force can be defined in its own reference frame, which is useful when
dealing with a thrust vector which does not align with the 𝐵-frame. The 𝑋𝑃 -axis is collinear with the thrust
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Table 3.1: Illustration of the spherical components (Mooij, 2019a).

Spherical Components Description Value Range
𝑅 Distance (0 ≤ 𝑅 < ∞)
𝜏 Longitude (0 rad ≤ 𝜏 ≤ 2𝜋 rad)
𝛿 Latitude (−𝜋/2 rad ≤ 𝛿 ≤ 𝜋/2 rad)
𝑉𝑔 Groundspeed (0 ≤ 𝑉𝑔 < ∞)
𝛾𝑔 Flight-path angle (−𝜋/2 rad ≤ 𝛾𝑔 ≤ 𝜋/2 rad)
𝜒𝑔 Heading (−𝜋 rad ≤ 𝜒𝑔 ≤ 𝜋 rad)

vector, while the 𝑌𝑃 -axis completes the right-handed system and the 𝑍𝑃 -axis lies in the vertical plane with
the positive direction pointing downward (Mooij, 2019a).

3.1.1. State Variables
State variables determine both the position and velocity, and the attitude and angular rates of a space plane.
For the former, the Cartesian and Spherical components as well as the orbital elements will be discussed. For
the latter, classical attitude angles, aerodynamic angles and quaternions will be discussed.

Position and Velocity
The most common method of describing the translational motion of a space plane is with Cartesian or Spherical
components. Within TU Delft Astrodynamics Toolbox (TUDAT), Cartesian coordinates are used to propagate
the space plane. However, Cartesian coordinates do not offer good insight in the current position or velocity
of the space plane with respect to the central body. Conversely, Spherical coordinates are better at giving this
insight. It is therefore beneficial to convert the Carthesian components to Spherical components. Furthermore,
when optimizing the ascent trajectory of a space plane to reach a specific orbit around Earth, it can be
particularly helpful to use the orbital elements to compare the target orbit with the final orbit achieved by the
space plane.

The Cartesian coordinate system is used with respect to the 𝐼-frame. The position is given by components
𝑥, 𝑦, 𝑧, while the velocity is either given by ̇𝑥, ̇𝑦, ̇𝑧 or 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 (Mooij, 2019a). The spherical coordinates are
used to define the initial translational state of the space plane and to interpret the simulated ascent trajectory.
Spherical components consist of six parameters. Table 3.1 shows the parameters, where 𝑅, 𝜏 and 𝛿 are used to
determine the position. The distance is measured from the CoG of the central body to the CoG of the space
plane. The longitude is positive due east, with the latitude being zero at the equator and positive in northward
direction. 𝑉𝑔, 𝛾𝑔 and 𝜒𝑔 are used to determine the velocity. The groundspeed is defined with respect to the
𝑅-frame. The flight-path angle is measured between the local horizontal plane and the velocity vector, while
the heading is measured between local north and the projection of the velocity vector on the local horizontal
plane. The heading is 90 degrees (𝜋/2) when the velocity vector projection is pointing parallel to the equator
due east. Figure 3.2 shows the six spherical components with respect to the 𝑅-frame.

For the orbital elements, a distinction needs to be made between elliptical, parabolic and hyperbolic orbits.
In the case of the space plane ascent trajectory to a Low Earth Orbit (LEO), both the parabolic and hyperbolic
orbits can be neglected. For an elliptical orbit, the position and velocity of a space plane is, according to Mooij
(2019a), defined by six parameters, see Table 3.2. The eccentricity and semi-major axis are properties of the
ellipse, see Figure 3.3. The eccentricity is defined by the semi-major axis, 𝑎, and the semi-minor axis, 𝑏:

𝑒 = √1 − 𝑏2
𝑎2 . (3.1)

The inclination, argument of pericenter and right ascension of the ascending node determine the orientation
of the orbit with respect to the 𝐼-frame, see Figure 3.4. The mean anomaly is a parameter that describes the
location of the space plane along the orbit. It is a product of the mean angular velocity and the time since
the last pericentre passage (Mooij, 2019a). It is defined by:

𝑀 = 𝑛(𝑡 − 𝜏) = 𝑀0 + 𝑛(𝑡 − 𝑡0) (3.2)

with

𝑛 = √𝜇3
𝑎 , (3.3)
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Figure 3.2: Definition of the spherical components w.r.t. the 𝑅-frame, where 𝜏, 𝛿, 𝛾𝑔 and 𝜒𝑔 are positive
(Mooij, 2019a).

Table 3.2: Definition of the orbital elements (Mooij, 2019a).

Orbital Element Description Value Range
𝑒 the eccentricity (0 ≤ 𝑒 < 1)
𝑎 the semi-major axis (𝑎 > 𝑅𝑒)
𝑖 the inclination (0 rad ≤ 𝑖 ≤ 𝜋)
𝜔 the argument of pericenter (0 rad ≤ 𝜔 < 2𝜋 rad)
Ω the right ascension of the ascending node (0 rad ≤ Ω < 2𝜋 rad)
𝑀 mean anomaly (0 rad ≤ 𝑀 < 2𝜋 rad)

where 𝜇 is the gravitational parameter of the central body. Furthermore, 𝜏 is the time of pericentre passage,
which can be replaced with the mean anomaly at epoch 𝑡0, 𝑀0:

𝑀0 = 𝑛(𝑡0 − 𝜏) (3.4)

Figure 3.3: Geometry of an elliptical orbit (K. F. Wakker, 2015).
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Figure 3.4: Definition of the orbital elements that determine the orientation of the orbit w.r.t. the 𝐼-frame
(K. F. Wakker, 2015).

Attitude and Angular Rates
The orientation of a space plane within the 𝐵-frame with respect to another frame is also called the attitude
of a space plane. The attitude can be expressed in a number of different ways, where the most commonly used
ways for aerospace applications are classical attitude angles, aerodynamic angles and quaternions. The first
two expressions both make use of angles which can be defined in both degrees and radians.

The classical attitude angles are the roll, 𝜙, pitch, 𝜃, and yaw angle 𝜓. According to Mooij (1994), these
angles define the attitude of a space plane with respect to the 𝐼-frame. However, it is also possible to define
the classical attitude angles with respect to the 𝐵-frame. In order to construct the transformation matrix,
the correct sequence of basic transformation matrices needs to be used. For aerospace applications it is
common to first rotate about the 𝑧-axis, followed by a rotation about the 𝑦- and 𝑥-axis, respectively. The
resulting transformation matrix is called a type-1 matrix with sequence 3-2-1, where 3-2-1 is analogous to
𝑧-𝑦-𝑥. Additionally, the rotational velocity of the body in the 𝐵-frame with respect to the 𝐼-frame is described
by rotation vector, 𝝎, which consists of the roll rate, 𝑝, pitch rate, 𝑞, and yaw rate, 𝑟 (Mooij, 2019a). The
derivative of the rotation vector is described by Equation 3.33, which is used by the control module of the
Guidance and Control (G&C) module to find appropriate deflection angles for the control surfaces of the space
plane.

In a similar fashion, aerodynamic angles can be used, with angle of attack, 𝛼, angle of sideslip, 𝛽, and bank
angle, 𝜎. The aerodynamic angles relate the 𝐵-, 𝐴- and 𝑇 -frame, see Figure 3.8. The aerodynamic angles are
used to determine the force and moment coefficients of the space plane. Furthermore, the guidance module of
the G&C system computes desired aerodynamic angles and relates these to the orientation of the space plane
expressed in classical attitude angles, see Section 6.2.1.

Quaternions are an alternative to the Euler angles, which are hyper-complex numbers describing a 4-
dimensional sphere (Mooij, 2019a). It consists of a real part and an imaginary parts, where the imaginary
numbers adhere to:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. (3.5)
According to Wie (2008), the quaternions are determined by the Euler axis, a, and the rotation angle about
the Euler axis, Φ. The Euler axis has the specific property that the axis is stationary in both a body and an
inertial reference frame. The quaternions are separated by a vector part, which is defined by:

q = [𝑞1 𝑞2 𝑞3]⊤ = a sin Φ
2 , (3.6)

while the scalar part is only defined by the Euler rotation angle:

𝑞4 = cos Φ
2 . (3.7)

The quaternions are constrained by:

q⊤q + 𝑞2
4 = 𝑞2

1 + 𝑞2
2 + 𝑞2

3 + 𝑞2
4 = 1. (3.8)
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Figure 3.5: Vector transformation from frame A to frame B, using both translation and rotation (Mooij,
2019a).

The rotation described by the quaternions can be seen as a trajectory on a 4-dimensional unit sphere. The
orientation is specified by the vector and scalar part of the quaternions, where the negative or positive quater-
nions yield the same orientation. In the negative case, the rotation is described with the negative Euler axis
and angle. This results in a situation where, if the positive quaternions describe the shortest rotation on the
4-dimensional unit sphere, the negative quaternions describe the longest rotation. If the shortest rotation is
needed, the scalar quaternion should be positive (Mooij, 2019a).

The benefit of using quaternions is to eliminate potential singularities that can occur when using classical
Euler or aerodynamic angles. For instance, when using the classical Euler angles, a singularity occurs when
the pitch angle, 𝜃 = ±90 deg (J. Mulder et al., 2013). For this reason, TUDAT uses quaternions to propagate
the orientation of the space plane.

3.1.2. Transformations
It is possible to express a vector, defined in a reference frame, in another reference frame by transforming the
vector. This can be useful when dealing with forces or moments, which are expressed in the 𝐵- or 𝐴-frame. By
transforming, these forces and moments can, for instance, be expressed in the 𝐼-frame. A vector transformation
is possible by translation and rotation. The equation that corresponds to this transformation can be expressed
in a general term by using a transformation from a generic reference frame, 𝐴, to generic reference frame 𝐵
with:

vB = T + CB,AvA, (3.9)

where T corresponds with the translation vector from the origin in frame A, 𝑂𝐴, to the origin of frame B,
𝑂𝐵. CB,A is the transformation matrix, which defines the rotation from frame A to B. Figure 3.5 shows the
vector transformation from vA to vB.

The transformation matrix is constructed with a number of unit axis-rotations. The matrix is constructed
for each axis in a similar fashion. Figure 3.6 shows the rotation of reference frame A to reference frame B,
which is rotated about the 𝑥-axis. From the figure it can be derived that:

𝑥𝐵 = 𝑥𝐴 (3.10a)
𝑦𝐵 = 𝑦𝐴 cos 𝛼 + 𝑧𝐴 sin 𝛼 (3.10b)
𝑧𝐵 = −𝑧𝐴 sin 𝛼 + 𝑧𝐴 cos 𝛼 (3.10c)

From these equations the basic transformation matrix, about the 𝑥-axis as a function of angle 𝛼, can be
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Figure 3.6: Rotation about the x axis from reference frame A to reference frame B (Mooij, 2019a).

constructed as:

Cx(𝛼) = ⎡⎢
⎣

1 0 0
0 cos 𝛼 sin 𝛼
0 − sin 𝛼 cos 𝛼

⎤⎥
⎦

. (3.11)

In a similar fashion, the basic transformation matrices about the 𝑦- and 𝑧-axis can be found, where the
transformation matrix is a function of angle 𝛼:

Cy(𝛼) = ⎡⎢
⎣

cos 𝛼 0 − sin 𝛼
0 1 0

sin 𝛼 0 cos 𝛼
⎤⎥
⎦

, (3.12)

Cz(𝛼) = ⎡⎢
⎣

cos 𝛼 sin 𝛼 0
− sin 𝛼 cos 𝛼 0

0 0 1
⎤⎥
⎦

. (3.13)

For a multiple axis rotation, a transformation matrix is constructed with the help of multiple basic trans-
formation matrices. It is important to identify the order in which the rotations occurs. Based on this order,
matrix multiplication is applied where the matrices are in reverse order. As an example, suppose the trans-
formation of reference frame A to reference frame B is to be done first about the 𝑥-axis followed by the 𝑧-axis
and 𝑦-axis, respectively. In this case, the transformation matrix is constructed with:

CB,A = CY(𝛼2)CZ(𝛼3)CX(𝛼1). (3.14)

The transformation matrices about a single axis are orthogonal matrices. Furthermore, the product of any
number of orthogonal matrices is also orthogonal. Orthogonal matrices have the property:

C𝑇 C = CC𝑇 = I → C𝑇 = C−1. (3.15)

With this property, the computation for the inverse transformation matrix i.e., the transformation matrix from
reference frame B to reference frame A is simply done with the transpose of transformation matrix CB,A:

CA,B = CB,A
−1 = CB,A

𝑇 (3.16)

3.1.3. Commonly Used Transformation Matrices
Previously, a general description has been given how to construct the transformation matrix. There are
numerous frame transformations that are used to either define the initial state, or throughout the propagation.
In this section, the basic frame transformation will be discussed. Based on these basic transformations, a
combined transformation matrix can be constructed.
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Figure 3.7: Relation between the body and propulsion reference frame (Mooij, 1994).

The first basic transformation matrix is for the transformation from the 𝑃 -frame to the 𝐵-frame. The trans-
formation is done with the elevation and azimuth thrust off-set angle, 𝜖𝑇 and 𝜓𝑇 (Mooij, 2019a). Figure 3.7
depicts the situation. The transformation matrix is given by:

CB,P = CZ(−𝜓𝑇 )CY(−𝜖𝑇 ) = ⎡⎢
⎣

cos 𝜓𝑇 cos 𝜖𝑇 − sin 𝜓𝑇 cos 𝜓𝑇 sin 𝜖𝑇
sin 𝜓𝑇 cos 𝜖𝑇 cos 𝜓𝑇 sin 𝜓𝑇 sin 𝜖𝑇

− sin 𝜖𝑇 0 cos 𝜖𝑇

⎤⎥
⎦

. (3.17)

The second basic transformation matrix is the transformation from the 𝐵- to 𝐴-frame. In this transfor-
mation two angles are defined, which can also be seen in Figure 3.8. The two angles are the angle of attack,
𝛼, and angle of sideslip, 𝛽, which both can be either with respect to the airspeed or the groundspeed (Mooij,
2019a). The transformation matrix is a combination of Equations 3.12 and 3.13, resulting into:

CA,B = CZ(𝛽)CY(−𝛼) = ⎡⎢
⎣

cos 𝛼 cos 𝛽 sin 𝛽 sin 𝛼 cos 𝛽
− cos 𝛼 sin 𝛽 cos 𝛽 − sin 𝛼 sin 𝛽

− sin 𝛼 0 cos 𝛼
⎤⎥
⎦

. (3.18)

The third basic transformation matrix is the transformation from the 𝐴𝐺- to 𝑇 𝐺-frame. The transformation
is defined by the bank angle, 𝜎𝐺. Only a single angle is needed to transform the transformation matrix between
these two frames, which is simply given by:

CTG,AG = Cx(𝜎𝐺) = ⎡⎢
⎣

1 0 0
0 cos 𝜎𝐺 sin 𝜎𝐺
0 − sin 𝜎𝐺 cos 𝜎𝐺

⎤⎥
⎦

. (3.19)

The fourth basic transformation matrix is for the transformation from the 𝑇 𝐺- to the 𝑉 -frame. This frame
transformation is defined by the flight path angle and the heading of the space plane (Mooij, 2019a). The
transformation is defined by a rotation about the 𝑦-axis followed by a rotation about the 𝑧-axis. The total
transformation matrix can be expressed by:

CV,TG = Cz(−𝜒𝑎)Cy(−𝛾𝑎) = ⎡⎢
⎣

cos 𝜒𝐺 cos 𝛾𝐺 − sin 𝜒𝐺 cos 𝜒𝐺 sin 𝛾𝐺
sin 𝜒𝐺 cos 𝛾𝐺 cos 𝜒𝐺 sin 𝜒𝐺 sin 𝛾𝐺

− sin 𝛾𝐺 0 cos 𝛾𝐺

⎤⎥
⎦

. (3.20)

The fifth basic transformation matrix is the transformation between the 𝑉 - and 𝑅-frame. The transforma-
tion matrix is defined by the longitude, 𝜏 , and latitude, 𝛿, as can be seen in Figure 3.1. The transformation is
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Figure 3.8: Relation between the aerodynamic, body and trajectory reference frame. The sideslip and bank
angle are considered positive, while the angle of attack is considered negative (Mooij, 2019a).

defined by first a rotation about the 𝑦-axis followed by a rotation about the 𝑧-axis. The total transformation
matrix is:

CR,V = Cz(−𝜏)Cy(𝜋
2 + 𝛿) = ⎡⎢

⎣

− cos 𝜏 sin 𝛿 − sin 𝜏 − cos 𝜏 cos 𝛿
− sin 𝜏 sin 𝛿 cos 𝜏 − sin 𝜏 cos 𝛿

cos 𝛿 0 𝑠𝑖𝑛𝛿
⎤⎥
⎦

. (3.21)

The sixth and last basic transformation matrix is from the 𝑅-frame to the 𝐼-frame, denoted with CI,R. In
this transformation, only a rotation about the 𝑧-axis is necessary (Figure 3.1), where the angle is defined by
the rotational rate of the central body, 𝜔𝑐𝑏, and the time since the two frames have coincided. Per definition,
the 𝐼- and 𝑅-frame coincide at 𝑡0 = 0 (Mooij, 2019a). The transformation matrix becomes:

CI,R = CZ(−𝜔𝑐𝑏𝑡) = ⎡⎢
⎣

cos 𝜔𝑐𝑏𝑡 − sin 𝜔𝑐𝑏𝑡 0
sin 𝜔𝑐𝑏𝑡 cos 𝜔𝑐𝑏𝑡 0

0 0 1
⎤⎥
⎦

, (3.22)

where the angle is negative, due to the right hand rule, for the situation that the transformation is from the
𝑅- to the 𝐼-frame.

Applications
The six basic transformation matrices are used to define the forces and moments acting on the space plane in
the inertial reference frame. Typically, the aerodynamic forces are defined in the 𝐴-frame, the propulsive force
is defined in the 𝑃 -frame and the aerodynamic moments are defined in the 𝐵-frame. By adding any number of
the basic transformations, a total transformation matrix can be constructed. For instance, a transformation
from the 𝐵 to the 𝐼-frame can be done by multiplying:

CI,B = CI,RCR,VCV,TGCTG,AGCA,B. (3.23)

The transformation matrices are also used to transform the initial state, defined by spherical components to
a Cartesian coordinate system. The position vector, which consists of the distance between the CoG of the space
plane and the CoG of the central body is transformed with the use of the latitude and longitude. These angles
are used to define the transformation matrix between the 𝑉 - and 𝑅-frame. The velocity vector is transformed
with the flight path and heading angle, which are used to construct the transformation matrix between the
𝑇 𝐴- and 𝑉 -frame. With the position and velocity expressed in Cartesian coordinates, a transformation matrix
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can be constructed to transform them to the 𝐼-frame. For the position, a transformation matrix from the
rotating to the inertial reference frame, CI,R is necessary. For the velocity, two transformation matrices are
necessary to transform the velocity vector. Both the transformation matrix from the vertical to the rotating
frame, CR,V, and the transformation matrix from the rotating to the inertial frame, CI,R, is necessary.

Another use of the transformation matrices, is to express the angular velocity in another frame. For the
initial angular velocity of the body with respect to the inertial planetocentric reference frame, it is assumed
that the space plane does not have an angular velocity with respect to the rotating planetocentric reference
frame. This means that the angular velocity is only defined by the rotation of the Earth with respect to the
inertial planetocentric reference frame. The angular velocity of the 𝐵-frame with respect to the 𝐼-frame can
be written as:

𝜴𝐵,𝐼 = 𝜴𝐼
𝐸,𝐼 + 𝜴𝐸

𝑉 ,𝐸 + 𝜴𝑉
𝑇 ,𝑉 + 𝜴𝑇

𝐴,𝑇 + 𝜴𝐴
𝐵,𝐴 = 𝜴𝐼

𝐸,𝐼 , (3.24)
where the superscript indicates along which reference frame axes the angular velocity is defined. In order to
define the rotation vector of the 𝐵-frame with respect to the 𝐼-frame, expressed in components along the body
axes, the angular velocity 𝜴𝐸𝐼 needs to be defined in the 𝐵-frame. This is done with:

𝜴𝐵
𝐸,𝐼 = CB,I𝜴𝐼

𝐸,𝐼 , (3.25)

where the transformation matrix between the 𝐼- and the 𝐵-frame, CB,I, is defined with the basic transforma-
tions previously discussed.

In a similar fashion, the angular velocity along a single axis can be expressed along axes of another frame.
This is particularly useful for the G&C system, where the reference trajectory produces desired aerodynamic
angles. In order to compute the required change in deflection angles of the control surfaces, an expression needs
to be found between the derivative of the aerodynamic angles and the roll, pitch and yaw rate. A derivation
of the required transformation can be found in Section 6.2.2.

3.2. Equations of Motion
In this section the equations that govern the translational and rotational motion will be described. Generally
one can speak of the translational motion of a vehicle as the motion of the CoG. Translation motion deals with
the position and velocity state variables. It can be described in 3-dimensional space, also referred to as three
Degrees of Freedom (DoF). The rotational motion is described by the motion around the CoG and deals with
the attitude and the angular motion of the vehicle. The attitude and angular motion is described about three
axes, corresponding to another three DoF (Mooij, 2019a). A typical simplification of the ascent trajectory is
to reduce the amount of DoF to three, by only considering translational motion in a plane. This results in two
DoF, while the third degree of freedom is defined by rotational motion about a single axis. As discussed in
Chapter 5, the extension of a launch window requires longitudinal and lateral motion, which means that the
reduction of DoF is not possible.

3.2.1. Translational Equations of Motion
The equations that govern the translational motion are based on Newtonian mechanics. These mechanics are
based on the three laws of motion, derived by Newton, and Galileo’s principle of relativity (Mooij, 2019a). For
a launch vehicle, it should be assumed that the mass will vary over the duration of the ascent. Furthermore,
it is assumed that the body is rigid.

Translational Motion with respect to an Inertial Frame
In order to derive the equations of motion of a space plane, first the general expression of the translational
motion of it is described in an the inertial planetocentric reference frame. The space plane is subjected to
a total sum of external forces, 𝐹 𝐼

ext, the derivation of the forces acting on a space plane will be discussed in
Section 4.2. The position of the CoG of the space plane with respect to the origin of the inertial frame is
defined by position vector, r𝐼𝑐𝑚, and the velocity of the CoG with respect to the inertial frame is defined by
a velocity vector, 𝑉𝐼 . Additionally, the rotation of the space plane with respect to the 𝐼-frame, expressed in
components along the body axes, is given by an angular velocity vector, 𝜴𝐵

𝐵𝐼 . The translational motion of a
vehicle in inertial space is shown in Figure 3.9. A general formulation of the motion of a space plane, which is
subjected to an external force, is derived in the lecture notes of Mooij (2019a). The result is given by:

F𝐼
ext = 𝑚𝑑2r𝐼𝑐𝑚

𝑑𝑡2 + 2𝜴𝐵
𝐵𝐼 × ∫

𝑚
𝛿 ̃𝑟
𝛿𝑡 𝑑𝑚 + ∫

𝑚
𝛿2 ̃𝑟
𝛿𝑡2 𝑑𝑚, (3.26a)
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Figure 3.9: Motion of a vehicle with respect to the inertial space (Mooij, 2019a).

F𝐼
ext = 𝑚𝑑2r𝐼𝑐𝑚

𝑑𝑡2 − F𝐼
𝐶 − F𝐼

rel, (3.26b)

F̃𝐼
ext = F𝐼

ext + F𝐼
𝐶 + F𝐼

rel = 𝑚𝑑2r𝐼𝑐𝑚
𝑑𝑡2 , (3.26c)

where ̃𝑟 is distance between the CoG of the vehicle and the location of a mass element. The first term on
the right hand side of Equation 3.26a depicts the acceleration of the CoG of the vehicle with respect to the
inertial frame, and the apparent forces, 𝐹 𝐼

𝐶 and 𝐹 𝐼
rel, are called the Coriolis and relative force, respectively.

These forces exist due to a time variation in the mass distribution. For a non-elastic body these forces are
only related to the propulsion system. The Coriolis force, which relates the mass flow with the angular rate
of the space plane, can be neglected if the angular velocity is small. According to Mooij (1994), the Coriolis
force can be neglected when compared to the relative force and due to low angular velocity of the space plane.
The relative force, also known for a non-elastic body as the impulse thrust, is typically defined as the external
propulsive force, 𝐹𝑃,𝐼 (Mooij, 1994).

With these assumptions, the translational state derivative of the space plane can be defined in the inertial
reference frame. In TUDAT, spherical components are not used to propagate the state of the space plane.
Therefore, the Cartesian coordinates system is used to define the state derivative. The position and velocity,
defined in the inertial frame, are given by:

r𝐼𝑐𝑚 = [𝑥𝐼 𝑦𝐼 𝑧𝐼] and V𝐼 = [ ̇𝑥𝐼 ̇𝑦𝐼 ̇𝑧𝐼] . (3.27)

The state derivative i.e., the change in position and velocity can be desribed by:

̇r𝐼𝑐𝑚 = [ ̇𝑥𝐼 ̇𝑦𝐼 ̇𝑧𝐼] and V̇𝐼 = 1
𝑚 [F𝐴,𝐼 + F𝐺,𝐼 + F𝑃,𝐼] . (3.28)

The acceleration of the space plane is influenced by the aerodynamic forces, F𝐴,𝐼 , gravitational forces, F𝐺,𝐼 ,
and propulsive forces, F𝑃,𝐼 . These forces need to be defined in the 𝐼-frame, which is possible with the basic
transformation matrices that have been described previously.

3.2.2. Rotational Equations of Motion
The equations that govern the rotational motion are based on the same principles discussed in Section 3.2.1.

Rotational Motion with respect to an Inertial Frame
For a vehicle moving in an inertial reference frame, a general expression can be given for the rotational motion,
where 𝝎𝐵

𝐵𝐼 defines the angular velocity and r𝑐𝑚 gives the distance between the vehicle CoG and the origin of
the 𝐼-frame (Mooij, 1994). The general expression, which yields the total external moment, 𝑀𝐵𝑐𝑚, is given by:



28 Chapter 3. Flight Dynamics

M𝐵𝑐𝑚 = ∫
𝑚

̃r × (𝝎𝐵
𝐵𝐼
𝑑𝑡 × ̃r)𝑑𝑚 + ∫

𝑚
̃r × [𝝎𝐵

𝐵𝐼 × (𝝎𝐵
𝐵𝐼 × ̃r)]𝑑𝑚 + 2 ∫

𝑚
̃r × (𝝎𝐵

𝐵𝐼 × 𝛿 ̃r
𝛿𝑡 )𝑑𝑚 + ∫

𝑚
̃r × 𝛿2 ̃r

𝛿𝑡2 𝑑𝑚, (3.29a)

M𝐵𝑐𝑚 = ∫
𝑚

̃r × (𝝎𝐵
𝐵𝐼
𝑑𝑡 × ̃r)𝑑𝑚 + ∫

𝑚
̃r × [𝝎𝐵

𝐵𝐼 × (𝝎𝐵
𝐵𝐼 × ̃r)]𝑑𝑚 − M𝐵

𝐶 − M𝐵
rel, (3.29b)

M̃𝐵𝑐𝑚 = M𝐵𝑐𝑚 + M𝐵
𝐶 + M𝐵

rel = ∫
𝑚

̃r × (𝝎𝐵
𝐵𝐼
𝑑𝑡 × ̃r)𝑑𝑚 + ∫

𝑚
̃r × [𝝎𝐵

𝐵𝐼 × (𝝎𝐵
𝐵𝐼 × ̃r)]𝑑𝑚, (3.29c)

where the first and second term on the right hand side are the apparent moment due to the angular ac-
celeration and velocity, respectively, with respect to the 𝐼-frame (Mooij, 2019a). Additionally, the principle
of solidification (Cornelisse, Schöyer, and K. Wakker, 1979) is applied to reduce the rotational equations of
motion to Equation 3.29c. In a study done by Mooij (1998), it was concluded that the Coriolis moment was
small compared to other moments present. For this reason, the Coriolis moment is assumed to have negligible
effect and, therefore, not modelled. The relative moment is defined as the misalignment of the thrust vector,
due to the difference between the CoG and Center of Thrust (CoT). The relative moment is added as an
external moment, expressed in the body frame by:

M𝑃,𝐵 = F𝑃,𝐵(xCoG − xCoT) (3.30)

With these assumptions, the rotational state derivative can be defined in the inertial reference frame.
TUDAT uses quaternions to define and propagate the attitude of the space plane. The angular velocity is
defined with the roll, pitch and yaw rate, which relates the rotation of the 𝐵-frame with respect to the 𝐼-frame.
The attitude and angular velocity are defined by:

q𝐼,𝐵 = [𝑞1 𝑞2 𝑞3 𝑞4] and 𝝎𝐵
𝐵,𝐼 = [𝑝 𝑞 𝑟] . (3.31)

The time derivative of the attitude and angular velocity are, according to Mooij (1994), given by:

q̇𝐼,𝐵 = 1
2

⎡
⎢
⎢
⎣

−𝑞4 −𝑞3 𝑞2
𝑞3 −𝑞4 −𝑞1

−𝑞2 𝑞1 −𝑞4
𝑞1 𝑞2 𝑞3

⎤
⎥
⎥
⎦

⎡⎢
⎣

𝑝
𝑞
𝑟
⎤⎥
⎦

and �̇�𝐵
𝐵,𝐼 = I−1(M̃𝐵𝑐𝑚 − 𝝎𝐵

𝐵,𝐼 × I𝝎𝐵
𝐵,𝐼), (3.32)

where I is the inertia tensor of the space plane and M̃𝑐𝑚 is to total moment acting about the CoG of the space
plane.

Definition of the Derivative of the Roll, Pitch and Yaw Rate
The derivative of the roll, pitch and yaw rate can be expressed analytically by assuming that the 𝑋𝐵𝑧𝐵-plane
is symmetric. In this case, the products of inertia 𝐼𝑥𝑦 − 𝐼𝑦𝑧 = 0 Mooij (2019a). In this case the derivatives are
expressed by:

̇𝑝 = 𝐼𝑧𝑧
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑀𝑥 + 𝐼𝑥𝑧
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑀𝑧 +
(𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧)𝐼𝑥𝑧

𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧
𝑝𝑞 +

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝐼𝑧𝑧 − 𝐼2𝑥𝑧
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑞𝑟, (3.33a)

̇𝑞 =
𝑀𝑦
𝐼𝑦𝑦

+ 𝐼𝑥𝑧
𝐼𝑦𝑦

(𝑟2 − 𝑝2) + 𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

𝑝𝑟, (3.33b)

̇𝑟 = 𝐼𝑥𝑧
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑀𝑥 + 𝐼𝑥𝑥
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑀𝑧 +
(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝐼𝑥𝑥 + 𝐼2𝑥𝑧

𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧
𝑝𝑞 +

(−𝐼𝑥𝑥 + 𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝐼𝑥𝑧
𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑞𝑟. (3.33c)

The conceptual vehicle chosen to simulate the ascent trajectory has two planes of symmetry, see Section 4.2.
When two planes of symmetry exist, the expression can be simplified to:

̇𝑝 = 𝑀𝑥
𝐼𝑥𝑥

+
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝑞𝑟, (3.34a)

̇𝑞 =
𝑀𝑦
𝐼𝑦𝑦

+ 𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

𝑝𝑟, (3.34b)

̇𝑟 = 𝑀𝑧
𝐼𝑧𝑧

+
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝑝𝑞. (3.34c)

These equations are used in the G&C system to compute the derivative of the roll, pitch and yaw rate before a
change in the deflection angle is applied. The application of these equations is further explained in Chapter 6.



4
Environment & Vehicle Models

In the previous chapter the Equations of Motion (EoM) for a space plane have been defined. The forces and
moments, which have only been expressed in the most general form, are dependent on the choice of vehicle
and are influenced by the environment. The environment model consists of the Earth and optional additional
celestial bodies and the atmosphere of the Earth. The atmosphere influences the thrust, drag and lift forces,
while the central body and other celestial bodies determine the gravitational acceleration acting on the space
plane. The vehicle itself, as a model needs to represent the engine, the mass characteristics, and the shape of
the vehicle. In Section 4.1 the environmental models that are used will be discussed. Section 4.2 will discuss
the conceptual vehicle that has been chosen to optimize the ascent trajectory for.

4.1. Environmental Models
In this section, the environmental models that have been used for the simulation of the ascent trajectory are
discussed. This includes the shape of the Earth, the gravitational model and the atmospheric model. Since
the forces acting on the space plane due to atmospheric forces and the gravitational acceleration of the Earth
are large, it is assumed that the gravitational acceleration of the Sun or Moon can be neglected.

4.1.1. Earth Shape Model
For the ascent trajectory of a space plane, which will ascent from the Earth and will target an orbit around the
Earth, it is important to have an accurate model of the Earth. In most situations, the Earth is described by a
sphere, with an average radius applicable at any latitude. For this thesis, it is chosen to use a spherical Earth
model for two reasons. First of all, the optimal control problem is converted into a NonLinear Programming
(NLP) problem with optimization parameters that are defined in terms of altitude instead of time. Since the
target orbit is inclined, the altitude behaves predictably no matter at what latitude the space plane is located.
Second of all, the space plane uses a target altitude instead of a target semi-major axis as an optimization
objective, due to convergence issues that will be discussed in Chapter 5.

In practice the surface of the Earth is deformed due to numerous natural effects. A more suitable represen-
tation of the Earth is an ellipsoid, where the radius of the Earth at the poles is approximately 21 km shorter
compared to the equatorial radius (Mooij, 2019a). The ellipticity, 𝑒, of an ellipsoid can be described by:

𝑒 = 1 −
𝑅𝑝
𝑅𝑒

, (4.1)

where 𝑅𝑝 is the mean polar radius and 𝑅𝑒 is the mean equatorial radius. Figure 4.1 depicts an ellipsoidal body,
with a vehicle at an altitude ℎ above the surface of the body. In the figure, it can be seen that a distinction
is made between the geographic latitude, 𝛿∗, and the geocentric latitude, 𝛿. Due to the small ellipticity of for
instance the Earth, the geographic latitude can be approximated with the geocentric latitude (Mooij, 2019a).
With this assumption, an approximation can be made of the radius of the Earth at a specific latitude, with:

𝑅𝑠 ≈ 𝑅𝑒[1 − 𝑒
2(1 − cos 2𝛿)] = 𝑅𝑒(1 − 𝑒 sin2 𝛿), (4.2)

which allows for a more accurate representation of the space plane altitude. However, the altitude varies based
on the latitude if an ellipsoidal model is used, which will increase the complexity of the ascent trajectory with
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Figure 4.1: A vehicle above the ellipsoidal body (Mooij, 2019a).

annded launch window due to t extehe lateral motion of the space plane. A future study could study the
influence of the spherical Earth on the found ascent trajectory.

4.1.2. Gravity Field Model
According to Newton, Bernard, and Whitman (1999), a point mass attracts every other point mass by a force,
FG, acting along the line intersecting the two points. Mathematically, this force can be expressed by:

FG = 𝐺𝑀𝑚
𝑟2 ̂r, (4.3)

where 𝑟 is the distance between the two particles, 𝑀 is the mass of the central body, 𝑚 is the mass of a
secondary body, 𝐺 is the universal gravity constant and ̂r is the distance unit vector. When the secondary
body has a mass much smaller compared to the central body, the equation becomes:

FG = 𝜇
𝑟2 ̂r, (4.4)

where 𝜇 is the gravitational parameter specific to the central body. Even though the Earth is not a particle,
the aforementioned equations still holds. According to Newton, Bernard, and Whitman (1999), if the central
body has a spherically symmetric mass distribution, then the central body can be modelled as a point mass.
However, bodies such as Earth have a non-symmetric mass distribution, which can be corrected with the use
of spherical harmonics (Mooij, 2019a). The reason that the gravity has to be corrected is due to the ellipicity
of the Earth. Furthermore, other mass deformations such as mountains and seas influence the gravity model.
The correctional term, a function of the distance, 𝑟, the geocentric longitude, 𝜏 , and the geocentric latitude, 𝛿,
is included to express the gravitational potential, 𝑈 , by:

𝑈(𝑟, 𝜏, 𝜃) = 𝜇
𝑟 {1 +

𝑛max
∑
𝑛=2

[(𝑅𝑒
𝑟 )

𝑛 𝑛
∑

𝑚=0
(𝐶𝑚𝑛 cos 𝑚𝜏 + 𝑆𝑛𝑚 sin 𝑚𝜏)𝑃 𝑚𝑛 (sin 𝛿)]}. (4.5)

From the gravitational potential the gravitational acceleration vector g can be found, which can be applied to
the equations of motion. The vector is given in spherical coordinates by:

g = [𝑔𝑟 𝑔𝜏 𝑔𝛿]⊤ = [−𝜕𝑈
𝜕𝑟 − 1

𝑟 cos 𝛿
𝜕𝑈
𝜕𝜏 −1

𝑟
𝜕𝑈
𝜕𝛿 ]

⊤
(4.6)

The derivation of the partial derivatives is omitted from this report for the sake of brevity. However, these
are available in the lecture notes by Mooij (2019a). Including a model that represents the ellipicity of the
Earth and other mass deformations is computationally pricey. Using a lower fidelity model of the gravity field
will improve the computational speed of the simulation, while reducing the accuracy of the model. The most
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significant inclusion that could be made is the elliptical mass distribution of the Earth. This effect is included
in the gravity model, while higher order gravitational models are not included to limit the computation time
of a single simulation.

4.1.3. Atmosphere Model
The atmosphere of the Earth will influence the ascent trajectory of a space plane considerably. It induces forces
and moments, which act on the space plane. Additionally, a space plane is a high speed vehicle, where the
heat transfer between the super and hypersonic airflow to the space plane cannot be neglected. Furthermore,
the atmosphere will influence the air-breathing engine performance. There are numerous atmospheric models
that can be used for the optimization of an ascent trajectory. A number of models are presented, follow by a
brief discussion of the most appropriate model.

Exponential Model
The most simple atmospheric model available in the TU Delft Astrodynamics Toolbox (TUDAT) library is the
exponential atmospheric model, which is also used for analytical solution methods. This model assumes that
the atmosphere is an ideal gas, where the particles in the atmosphere do not interact with each other. Based
on this assumption, the ideal gas law can be used, given by:

𝑝 = 𝜌𝑅𝑇 = 𝜌 𝑅∗
𝑀 𝑇 , (4.7)

where 𝑝 is the pressure, 𝜌 is the density and 𝑇 is the temperature of the atmosphere. The gas constant 𝑅,
which is specified for air, can be computed with the universal gas constant, 𝑅∗, and the molecular mass of
the atmosphere, 𝑀 . The ideal gas law can be used in combination with the hydrostatic equation for the
atmosphere (Equation 4.10) to express the density in terms of altitude, ℎ. The resulting expression is given
by:

𝜌
𝜌0

= exp−𝛽ℎ = exp
− ℎ

𝐻𝑠 , (4.8)

where 𝐻𝑠 is defined as the scale height, which is related to the gas constant, 𝑅, temperature, 𝑇 , and the
standard gravity of Earth, 𝑔0, by:

𝐻𝑠 = 1
𝛽 = 𝑅𝑇

𝑔0
. (4.9)

It is important to realize that the exponential atmospheric model uses a constant temperature, while in reality
the temperature is variable with altitude. Due to this assumption also the speed of sound is defined as constant
(Mooij, 2019a).

𝑑𝑝 = −𝜌𝑔dℎ (4.10)

United States Standard Atmosphere 1976
The United States standard atmosphere 1976 (US76) atmospheric model still uses the ideal gas law and the
hydrostatic equation to find the density and pressure at a specific height. In addition, the temperature is
defined in terms of geopotential altitude, 𝑧, with:

𝑧 = ∫
ℎ

0
𝑔
𝑔0

dℎ ≈ 𝑅0ℎ
𝑅0 + ℎ, (4.11)

where 𝑅0 is the earth radius, where the gravitational acceleration is equal to the standard gravity. In Figure 4.2
the temperature variation of the US76 atmospheric model compared to the exponential model can be seen. A
scale temperature, 𝑇𝑀 , is used in combination with the molecular mass, 𝑀 , to compute the temperature with:

𝑇 = 𝑇𝑀
𝑀
𝑀0

. (4.12)

The molecular mass is assumed to be constant up to 80 km altitude, denoted with 𝑀0. Between 80 and 86
km altitude, the molecular mass is computed using a small correction. The scale temperature is computed
depending on an altitude interval, where for each interval the initial scale temperature is given and will either
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Figure 4.2: Temperature comparison of the exponential and US76 atmospheric model (Mooij, 2019a).

vary linearly as a function of altitude, 𝑧, or will remain constant. Up to an altitude of 86 km the pressure can
be computed with:

𝑝 =

⎧{{{
⎨{{{⎩

𝑝𝑖 exp [−𝑔0𝑀0(𝑧 − 𝑧𝑖)
𝑅∗𝑇𝑀𝑖

], for 𝐿𝑧𝑖 = 0

𝑝𝑖[
𝑇𝑀𝑖

𝑇𝑀𝑖 + 𝐿𝑧𝑖(𝑧 − 𝑧𝑖)]
𝑔0𝑀0
𝑅∗𝐿𝑧𝑖 , for 𝐿𝑧𝑖 ≠ 0

(4.13)

where the subscript 𝑖 denotes the altitude interval and 𝐿𝑧𝑖 denotes the rate of change of the scale temperature.
Above 86 km and up to 120 km, the temperature is computed with a several methods, which can be found in
the lecture notes by Mooij (2019a), and the pressure is computed with:

𝑝 = 𝑁𝑅∗𝑇
𝑁𝐴

, (4.14)

which is a different expression of the ideal gas law. Here 𝑁𝐴 is Avagadro’s constant and 𝑁 is the total
number density, based on data provided by the National Oceanic and Atmospheric Administration (NOAA),
computed with linear interpolation1. Finally, the density is computed with the original form of the ideal gas
law, Equation 4.7 (Mooij, 2019a).

NRLMSISE-00
The NRLMSISE-00 model is a more accurate model compared to the previously discussed atmospheric models.
It is especially suited for simulations where orbit decay information is important (Mooij, 2019a). In general,
the model produces atmospheric parameters which are a function of altitude, longitude, latitude and time
(Picone et al., 2002). In case of the space plane, this atmospheric model is not necessary for the optimization
of the ascent trajectory, due to the high thrust forces compared to the aerodynamic forces. However, due to
the relatively low target altitude of 120 km, this model will produce more accurate results when orbit decay is
considered.

Selected Model
The three models discuss increase in accuracy. The exponential model assumes a constant temperature, which
means that the Mach number is constant. The vehicle model, which will be discussed later, has many variables
that depend on the Mach number. The exponential atmosphere model lacks the detail to accurately compute

1NOAA, National Geodetic Survey, accessed on 5 Jun 2021, https://geodesy.noaa.gov/orbits/orbit_data.shtml.

https://geodesy.noaa.gov/orbits/orbit_data.shtml
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Figure 4.3: Top- side- and rear-view of the Winged-cone configuration (Mooij, 1998).

the Mach number. On the other hand, the NRLMSISE-00 model is high accuracy and computationally heavy.
The simulation itself does not deal with orbital decay and, therefore, it is assumed that using NRLMSISE-00
does not influence the final results compared to the US76 atmosphere model. For these reasons, the US76
atmospheric model is chosen to represent the atmosphere.

4.2. Vehicle Model
Due to the limited research in lateral motion of a space plane, aerodynamic coefficients are difficult to come
by. There have been a number of researchers that have been able to receive CAD data from Rocket Engine
Limited (REL) to determine the aerodynamic coefficients. However, the aerodynamic coefficients, required
for lateral motion, have never been published. On the other hand, another reference vehicle does include the
coefficients necessary to model the lateral motion.

The vehicle in questions is the National Aero-Space Plane (NASP), which has a theoretical air-breathing
engine. The NASP was a theoretical space plane designed to enable hypersonic and Single-Stage-To-Orbit
(SSTO) space plane research (Shaughnessy et al., 1990). It has been used in studies by Mooij (1998) and
Shaughnessy (1992). Furthermore, a modified version has been used in more recent studies by Zhou, Wang,
and Cui (2020), Murillo and Lu (2010) and the thesis work done by Spillenaar Bilgen (2017). Due to the
extensive research done with the NASP, it is chosen to use this reference vehicle for the thesis. The advantage
of using this vehicle is the appropriate studies that have used a similar vehicle configuration, which will enable
verification of the optimization results. In particular, the study done by Mooij (1998) can be used to determine
the longitudinal ascent trajectory, while the study by Zhou, Wang, and Cui (2020) can be used to verify the
inclusion of a change in the Right Ascensions of the Ascending Node (RAAN).

The winged-cone configuration can be seen in Figure 4.3 and the geometric characteristics can be seen in
Table 4.1. The winged-cone configuration has a take-off mass of 136, 079 kg and a dry mass of 59, 968 kg. For
the optimization of an ascent trajectory, it is assumed that any fuel not used during the ascent can be used
for payload instead. Thus, the initial mass conditions for the ascent trajectory are always the same. Due to
a change in mass during the ascent, the center of gravity and the moments of inertia will vary. The shift of
the center of gravity, which is assumed to vary along the 𝑥𝐵-axis only, and the change in moment of inertia is
recorded by Shaughnessy et al. (1990) and does not have to be computed during the simulation. Furthermore,
it is assumed that the products of inertia are negligible i.e., only 𝐼𝑥𝑥, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are taken into account.
The location of the center of gravity and the moment of inertia are used to determine the aerodynamic and
thrust-induced moments of the winged-cone configuration.
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Table 4.1: Geometric information about the winged-cone configuration (Mooij, 1994).

Body Value
Fuselage length 61.0 m
Moment reference centre from nose 37.8 m
Vertical Tail Value
Vertical tail area 60.0 m2
Span 9.9 m
Wing Value
Wing reference area 334.7 m2
Aspect ratio 1.0
Span 18.3 m
Mean Aerodynamic Chord (MAC) 24.4 m
Rudder Value
Rudder area 15.0 m2
Span 7.0 m
Chord (relative to tail) 25 %
Canard Value
Canard Area 14.3 m2
Aspect ratio 5.48
Span 10.2 m

4.2.1. Aerodynamic Forces and Moments
The trajectory of a space plane has a large difference in velocity. Usually, this is measured in terms of Mach
number, which is determined with:

𝑀 = 𝑉
𝑎 , (4.15)

where 𝑎 is the speed of sound, which is a function of the atmosphere around the vehicle. Typically, a space
plane will accelerate from Mach zero to over Mach twenty. The large difference in Mach numbers means that
the space plane will encounter sub-, trans-, supersonic and hypersonic flow.

General Expression
The aerodynamic forces acting on a space plane are typically expressed in terms of the 𝐴𝐴-frame, where the
general expression is given by:

F𝐴,𝐴𝐴 = ⎡⎢
⎣

−𝐷
−𝑆
−𝐿

⎤⎥
⎦

= ⎡
⎢
⎣

−𝐶𝐷 1
2 𝜌𝑉 2𝑆ref

−𝐶𝑆 1
2 𝜌𝑉 2𝑆ref

−𝐶𝐿 1
2 𝜌𝑉 2𝑆ref

⎤
⎥
⎦

, (4.16)

where 𝐶𝐷, 𝐶𝐿 and 𝐶𝑆 are the drag, lift and side force coefficients of the vehicle, and 𝑆ref is the aerodynamic
reference area. The forces are defined in the aerodynamic reference frame and need to be transformed into the
inertial reference frame, to be used in the EoM. The other variables, 𝜌, 𝑉 together form the dynamic pressure:

𝑞dyn = 1
2𝜌𝑉 2. (4.17)

Similar to the aerodynamic forces, also three moments can be defined. The moments are expressed about
axes in the body reference frame, see Figure 4.4. The moments expressed in the 𝐵-frame can be used as is in
the rotational equations to define the roll, pitch and yaw rate. The shape of the vehicle induces a moment,
which is expressed as:

M𝐴𝑀 ,𝐵 = ⎡⎢
⎣

ℒ
ℳ
𝒩

⎤⎥
⎦

= ⎡
⎢
⎣

𝐶𝑙 1
2 𝜌𝑉 2𝑆ref𝑏ref

𝐶𝑚 1
2 𝜌𝑉 2𝑆ref𝑐ref

𝐶𝑛 1
2 𝜌𝑉 2𝑆ref𝑏ref

⎤
⎥
⎦

, (4.18)

where 𝑏ref and 𝑐ref are typically the wingspan and aerodynamic chord, respectively (Mooij, 1994). Besides
the moments created by the vehicle, also a moment exists due to the misalignment of the Center of Gravity
(CoG) and the aerodynamic reference point. The Moment Reference Point (MRP) is the point where the
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Figure 4.4: Illustration of the aerodynamic moments acting on a vehicle, where the aerodynamic reference
point does not coincide with the center of mass (Mooij, 1994).

aerodynamic forces act. If there is misalignment, the moments induced due to the aerodynamic forces can be
expressed with:

M𝐴𝐹 ,𝐵 = r𝑐𝑚 × F𝐴,𝐵, (4.19)

where r𝑐𝑚 is the distance between the CoG and the MRP. The aerodynamic forces, F𝐴,𝐵, need to be trans-
formed from the 𝐴𝐴-frame to the 𝐵-frame. The resulting total aerodynamic moment is given by:

M𝐴,𝐵 = M𝐴𝑀 ,𝐵 + M𝐴𝐹 ,𝐵. (4.20)

For the NASP, only a misalignment exists on the 𝑥𝐵-axis, simplifying the aerodynamic forces induced moments.
Due to this misalignment, the aerodynamic force induced moment exist only about the 𝑦𝐵-axis.

Decomposition of the Aerodynamic Coefficients
The coefficient used to compute the forces and moments in the previous subsection is the total coefficient for
the entire body, which can be broken down into smaller parts. These parts are for instance the wing, body
and control surfaces. The total coefficient is then computed by summing the constituents. The NASP has,
as control surfaces, a canard, two elevons and a rudder. The elevons can be operated separately in order
to induce a bank angle, and the canard is only operational in subsonic conditions (Shaughnessy et al., 1990)
and subtracted when the Mach number exceeds 0.9. The aerodynamic coefficients of the different surfaces of
the NASP depend on the Mach number, surface deflection and angle of attack. The sum of the aerodynamic
coefficients can be computed with:

𝐶𝐷 = 𝐶𝐷𝑎 + 𝐶𝐷𝑑𝑒,𝑙 + 𝐶𝐷𝑑𝑒,𝑟 + 𝐶𝐷𝑑𝑟 + 𝐶𝐷𝑑𝑐 , (4.21a)

𝐶𝑆 = 𝐶𝑆𝛽𝛽 + 𝐶𝑆𝑑𝑒,𝑙 + 𝐶𝑆𝑑𝑒,𝑟 + 𝐶𝑆𝑑𝑟 , (4.21b)

𝐶𝐿 = 𝐶𝐿𝑎 + 𝐶𝐿𝑑𝑒,𝑙 + 𝐶𝐿𝑑𝑒,𝑟 + 𝐶𝐿𝑑𝑐 , (4.21c)

𝐶𝑙 = 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑑𝑒,𝑙 + 𝐶𝑙𝑑𝑒,𝑟 + 𝐶𝑙𝑑𝑟 + 𝐶𝑙𝑝(𝑝𝑏ref
2𝑉 ) + 𝐶𝑙𝑟(𝑟𝑏ref

2𝑉 ), (4.21d)

𝐶𝑚 = 𝐶𝑚𝑎 + 𝐶𝑚𝑑𝑒,𝑙 + 𝐶𝑚𝑑𝑒,𝑟 + 𝐶𝑚𝑑𝑟 + 𝐶𝑚𝑑𝑐 + 𝐶𝑚𝑞(𝑞𝑐ref
2𝑉 ), (4.21e)

𝐶𝑛 = 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝑑𝑒,𝑙 + 𝐶𝑛𝑑𝑒,𝑟 + 𝐶𝑛𝑑𝑟 + 𝐶𝑛𝑝(𝑝𝑏ref
2𝑉 ) + 𝐶𝑛𝑟(𝑟𝑏ref

2𝑉 ). (4.21f)
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Table 4.2: Differentiation of the flow regimes in terms of Mach number.

Flow Regime Mach Number (𝑀∞) [-]
Subsonic 𝑀∞ < 0.8
Transonic 0.8 < 𝑀∞ < 1.2
Supersonic 1.2 < 𝑀∞ < 4.5
Hypersonic 4.5 < 𝑀∞

The aerodynamic coefficients all depend on the angle of attack and Mach number. In the equations, each
subscript denotes whether it contributes to one of the forces and moments, which have been specified before.
The second part of the subscript determines where the contribution comes from. There is the normal vehicle
contribution, subscript 𝑎, the left elevon, 𝑑𝑒, 𝑙, the right elevon, 𝑑𝑒, 𝑟, the canard, 𝑑𝑐, and the rudder 𝑑𝑟. These
coefficients have been found by Aerodynamic Preliminary Analysis System (APAS) and indicate the increment
coefficients with respect to the angle of attack and Mach number. For the moment coefficients, the rolling
moment dynamic derivatives for roll, 𝐶𝑙𝑝 , and yaw rate, 𝐶𝑙𝑟 , the pitch rate dynamic derivative, 𝐶𝑚𝑞 , and
the yawing moment dynamic derivatives for roll, 𝐶𝑛𝑝 , and yaw rate, 𝐶𝑛𝑟 , are computed and normalized with
𝑝𝑏ref
2𝑉 , 𝑞𝑐ref

2𝑉 and 𝑟𝑏ref
2𝑉 , respectively. At last, there are the derivatives of the coefficients, 𝐶𝑆𝛽 , 𝐶𝑙𝛽 , 𝐶𝑛𝛽 , that

can be multiplied with the sideslip angle, 𝛽, to get the actual coefficient value.

Determination of the Aerodynamic Coefficients
Previously, the aerodynamic coefficients for a space plane have been presented. For the winged-cone con-
figuration, the coefficients are known and given in the technical report by Shaughnessy et al. (1990). The
determination is done with numerical methods, of which a large number of programs exist. In the case of the
NASP, APAS was used. Other programs that achieve a similar goal are the Panel Aerodynamics (PANAIR)2
(Mooij, 2019a), Digital Datcom (DATCOM)3 or CART3D4.

As mentioned earlier, the force and moment coefficients are dependent on Mach number, surface deflection
and angle of attack. The Mach number determines the flow regimes, which are the sub-, trans-, super- and
hypersonic flow. In Table 4.2, the Mach number corresponding to the flow regimes can be seen. Based on the
flow regimes, the method to determine the coefficients might differ. However, first, a number of definitions
have to be introduced. The four important terms are the compressibility, viscosity, rotationality and steadiness
of the flow. The first is the compressibility of the flow, where for flow velocities below Mach 0.3, the flow is
assumed to be incompressible. This means that it is assumed that the density of the flow does not vary when
traversing the vehicle surface. Above Mach 0.3 this assumption no longer holds and the density of the flow will
vary. Secondly, the viscosity of the flow is defined by (Anderson, 2010) as “A flow where the effects of viscosity,
thermal conduction and mass diffusion is important”. The viscosity effects deal with the no-slip condition,
where the flow velocity at the surface of a vehicle is zero, which creates friction. Furthermore, this friction
creates a situation where the flow is separated from the surface at some point, which results in pressure drag.
Due to the no-slip condition, the velocity of the flow is reduced, which means that the energy lost in terms of
kinetic energy is found in terms of heat i.e., internal energy (Anderson, 2010). This heat can be transferred
to the surface of the body, which is especially important for the super- and hypersonic flow regimes. Last to
mention, the mass diffusion is important for the hypersonic flow regime, where the flow can dissociate, due to
the high temperatures, and can chemically react (Mooij, 2019a). Thirdly, the flow can be rotational, which
can be a result in shear stresses between flow layers if the velocity differs. These shear stresses causes the
particles in the flow to rotate. Anderson (2010) states that the flow is irrotational for “subsonic flow over
airfoils, supersonic flow over slender bodies at small angle of attack, and subsonic-supersonic flow through
nozzles”. For these cases, a boundary layer exists with viscous and rotational flow, while the flow outside of
the boundary layer is irrotational. Last to mention, is the steadiness of the flow. Here it is assumed that the
flow does not vary with time, meaning that if a vehicle is placed in a flow, the flow would remain constant
over time (Anderson, 2010).

The method of solving the aerodynamic coefficients all depends on the assumptions that are made about the
flow. When not simplifying the flow i.e., not assuming inviscid incompressible irrotational flow, complicated

2Public Domain Aeronautical Software (PDAS), PANAIR, accessed on 9 Jun 2021, https://www.pdas.com/panair.html
3PDAS, Digital Datcom, accessed on 9 Jun 2021, https://www.pdas.com/datcom.html
4National Aeronautics and Space Administration (NASA), Cart3D Documentation, accessed on 9 Jun 2021, https://www.nas.

nasa.gov/publications/software/docs/cart3d/

https://www.pdas.com/panair.html
https://www.pdas.com/datcom.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/
https://www.nas.nasa.gov/publications/software/docs/cart3d/
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Computational Fluid Dynamics (CFD) models need to be used, which are computationally expensive (Mooij,
2019a). Compressibility cannot be neglected and is therefore still taken into account for APAS. It makes use of
a theory called the panel method, where the velocity over the surface of numerous panels is computed. With
the flow velocity over the surface, a pressure coefficient, which is normal to the surface can be computed. The
panels together will form the shape of the vehicle and the resultant pressure coefficient is used to determine the
aerodynamic coefficients. Typically, the panel method (Anderson, 2010) is used for subsonic and supersonic
flow, while for the hypersonic flow local inclination methods are used (Anderson, 2006). These methods have
also been applied for the NASP and are available to be used in the investigation of the optimization of a space
plane (Shaughnessy et al., 1990).

4.2.2. Thrust Forces and Moments
Typically, a conventional rocket engine will have a constant specific impulse, which can be used in combination
with the change in mass, �̇�, to get the thrust, as can be seen in Equation 2.4. However, as has been seen in
Chapter 2, the specific impulse, 𝐼𝑠𝑝, for an air-breathing engine changes depending on the Mach number. The
NASP uses a theoretical air-breathing engine, where a thrust coefficient has been computed, 𝐶𝑇 , which has
been tabulated and depends on the Mach number, fuel equivalence ratio and dynamic pressure (Shaughnessy
et al., 1990). The fuel equivalence ratio, which can be varied, is used as a way to throttle the thrust. The
specific impulse has been determined in a similar way and are tabulated to be used for the ascent trajectory.
When using a thrust coefficient, the thrust can be computed with:

𝑇 = 𝐶𝑇
1
2𝜌𝑉 2, (4.22)

with the thrust and specific impulse, the mass rate can be computed with Equation 2.4 in the following form:

�̇� = 𝑇
𝐼𝑠𝑝𝑔0

. (4.23)

It is possible for the thrust to also induce a moment. This is, for instance, the case when thrust vectoring
is used to trim the vehicle. The thrust-induced moment is also expressed in the 𝐵-frame, where the thrust
force, F𝑇 ,𝑃 is transformed with transformation matrix CB,P from the 𝑃 - to the 𝐵-frame. The moment can
be expressed as:

M𝑇 ,𝐵 = r𝑇 × F𝑇 ,𝐵, (4.24)

where r𝑇 is the distance between the CoG and location of the thrust force. If multiple engines are present,
the moment for each can be computed separately and summed together to get the resultant thrust-induced
moment (Mooij, 1994). In the study done by Mooij (1998), Thrust Vector Control (TVC) has been used
to reduce the required propellant during the ascent trajectory. In his study, a Center of Thrust (CoT) has
been defined, which is located along the 𝑥𝐵-axis at 19.1 m from the moment reference center. Furthermore, a
maximum thrust vector angle of ±25 deg has been assumed. The implementation of the TVC will be further
discussed in Chapter 6.

4.2.3. Aerodynamic Heating
Throughout parts of the ascent, the vehicle will be subjected to super- and hypersonic flow velocities. These
velocities will result in heat transfer between the flow behind shock waves and the surface of the vehicle.
Typically, a maximum dynamic pressure constraint is imposed to ensure that aerodynamic heating is not
an issue. In the study done by Mooij (1998), the maximum dynamic pressure of 95, 000 N/m2 was defined.
Furthermore, also a constraint for the maximum heat flux is imposed. Calculation of the heat flux can
be done with the Navier-Stokes equations (Anderson, 2006). Using the Navier-Stokes equations is however
computationally expensive, which was the reason to assume inviscid, irrotational flow. It is infeasible to
both optimize the ascent trajectory and implement these equations. Therefore, engineering methods should
be applied to assess the stagnation heat flux. The maximum heat flux can be computed with Chapman’s
equation, which compute the stagnation heat flux. In the lecture notes by Mooij (2019a), the maximum heat
flux equation for a laminar flow has been given by:

𝑞𝑐,lam =
𝑐∗
lam

√𝑅𝑁
√𝜌∞𝑉 3∞, (4.25)
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where a ‘cold wall’ and rounded nose, with radius 𝑅𝑁 = 0.1 m, are assumed. In the equation, 𝑉∞ is defined
as the free stream flow and 𝜌∞ the free stream density. The coefficient, 𝑐∗

lam, is according to Hankey (1988)
𝑐∗
lam ≈ 18.

For the theoretical reference vehicle NASP, no details are known about the edges of the nose and the
wings. In previous studies, a rounded edge of 0.1 m was assumed for the leading edge of the wing (Mooij, 1998;
Spillenaar Bilgen, 2017). It was also assumed that the rounding of the nose was higher. It is therefore not
necessary to also assess the aerodynamic heating at the nose since these heat flux values will always be higher
due to the higher nose radius.

4.2.4. Vehicle Model Overview & Limitations
The NASP is a theoretical space plane that has aerodynamic coefficients, thrust coefficients, specific impulse,
Center of Gravity (CoG) and moments of inertia given in graphs (Shaughnessy et al., 1990). These parameters
are all in some way dependent on the angle of attack, Mach number, equivalence ratio, dynamic pressure or
vehicle mass. The information given in these graphs is converted into look-up tables, where each parameter
is dependent on a number of variables. In Table 4.3 the parameters are listed with their dependencies. Fur-
thermore, the dependencies itself and their limitations are listed in Table 4.4. It can be seen that for the
angle of attack and Mach number extrapolation is applied whenever these parameters are out of the tabulated
range. For the angle of attack, only a small range is allowed outside of the tabulated range. The Guidance and
Control (G&C) module has been designed to only command the space plane to angles of attack that do not
require extrapolation. However, it can occur that when the space plane is commanded to the tabulated limit
an overshoot occurs. In these situations extrapolation is applied, where it is assumed that the aerodynamic
coefficients are still accurate. For the Mach number, no limit is applied by the G&C system. However, it is
assumed that extrapolation still yields valid results.

Table 4.3: Overview of the dependencies of the vehicle.

Vehicle Parameter Dependencies Symbols
Vehicle Body Aero. Coeff. Angle of Attack, Mach Number 𝛼, 𝑀
Elevons Aero. Coeff. Angle of Attack, Mach Number, Deflection Angle 𝛼, 𝑀, 𝑢𝑑𝑒,𝑙/𝑢𝑑𝑒,𝑟
Rudder Aero. Coeff. Angle of Attack, Mach Number, Deflection Angle 𝛼, 𝑀, 𝑢𝑑𝑟
Canard Aero. Coeff. Angle of Attack, Mach Number, Deflection Angle 𝛼, 𝑀, 𝑢𝑑𝑐
Thrust Coeff. Mach Number, Dynamic Pressure, Equivalence Ratio 𝑀, ̄𝑞, 𝜙
Specific Impulse Mach Number, Dynamic Pressure, Equivalence Ratio 𝑀, ̄𝑞, 𝜙
Moments of Inertia Vehicle Mass 𝑚
Center of Gravity Vehicle Mass 𝑚

Table 4.4: Overview of the limitations of the dependencies.

Dependency Range Additional Notes
Angle of Attack [deg] [−1, 12] Extrapolated between [−2, −1] and [12, 13]
Mach Number [-] [0, 24.2] Extrapolated above Mach 24.2
Elevon Deflection [deg] [−20, 20] G&C system limited to this range
Rudder Deflection [deg] [−20, 20] G&C system limited to this range
Canard Deflection [deg] [−10, 10] G&C system limited to this range
Dynamic Pressure [N/m2] [0, 239, 401] G&C system ensures that range is not exceeded
Equivalence Ratio [-] [0, 10] Range never exceeded
Vehicle Mass [kg] [59, 968, 136, 079] Range never exceeded
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Optimization

In Section 2.4, the use of a Single-Stage-To-Orbit (SSTO) launch vehicle, that could reach a Low Earth Orbit
(LEO), has been investigated. It has become apparent that SSTO access to space is possible with an air-
breathing engine, due to the increased engine performance. However, air-breathing engines have lower (𝑇 /𝑊)
ratios compared to conventional rocket engines, necessitating the use of a horizontally launched space plane
that can generate lift. A horizontally launched space plane has a different ascent trajectory compared to a
vertically launched rocket, due to the lifting capabilities. This also means that a space plane can more easily
change the heading angle, which can be used to increase the launch window.

The optimization of an ascent trajectory is an optimal control problem. For such a problem, the control
profile is determined in such a way that certain objectives are minimized. One of these objectives can be
the minimization of the fuel used during the ascent and consequently maximizing the payload that can be
transported. Another objective could be the minimization of the orbital elements of the final orbit, compared to
a target orbit. In Section 5.1 the general formulation of an optimal control problem is given and an explanation
is given how that is converted into a NonLinear Programming (NLP) problem. Furthermore, global and local
optimization methods will be described, which will be used to find the fuel-optimal ascent trajectory of a space
plane. In Section 5.2 the initial problem definition will be described. It will also discuss the results that this
problem definition yielded and what changes were made to the optimization due to convergence issues. Finally,
in Section 5.3 the improved problem definition will be described for the optimization of the ascent trajectory
that can also include lateral motion, to also optimize for an extended launch window. The improved problem
definition is used to obtain the results, presented in Chapter 8.

5.1. Optimization Theory
Optimization methods can be catergorized into indirect and direct optimization methods. The indirect method
tries to analytically solve the control problem by using the first-order optimality conditions from variational
calculus (Rao, 2014). The direct methods convert the optimal control problem into a NLP problem. The
indirect method presents a number of issues, such as the necessity to derive a number of equations, that
represent the control equations, the constraints of the problem and the fitness function. Furthermore, the
indirect method requires knowledge of the initial costate variables, which are unknown and lack physical
significance. The optimal control problem is sensitive to the estimation of these variables due to the nonlinearity
of the problem (Conway, 2010; Betts, 2010). Because of these reasons, it is chosen to use direct optimization
techniques to find the fuel-optimal trajectory for the space plane.

The direct optimization method converts an optimal control problem, with the continuous control function
u(𝑡), into an NLP problem with a sequence of points, along which the control variables and/or state variables
are defined. The problem is optimized by assessing the objective function directly (Betts, 2010). This means
that the necessary conditions, used for the indirect optimization methods, are not needed. This converts
the problem essentially into a parameter optimization problem with a distinct number of parameters. These
parameters can be formulated in a decision vector z. For the optimization of the ascent trajectory of a space
plane, it is chosen to optimize the control parameters only, which is called control parameterization method
(Rao, 2014). Based on the decision vector the cost function, which is to be minimized, becomes:

min f(z) = min[𝑓1(z), ⋯ , 𝑓𝑛(z)]. (5.1)

39
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The objective function is subject to equality constraints:

g(z) = 0, (5.2)

and inequality constraints
h(z) ≤ 0. (5.3)

The optimal control problem is converted into an NLP problem with a transcription method. It is chosen
to use a direct shooting method, which can be categorized as a control parametrization method. The control
function can be defined as:

u(𝑡) ≈
𝑚
∑
𝑖=1

z𝑖𝜓𝑖(𝑡), (5.4)

where the parameters to be determined are z𝑖, and 𝜓𝑖 are known functions (Rao, 2014). Typically, the control
function is dependent on the time. However, the launch time will be varied, and the capabilities of the space
plane to manipulate the Right Ascensions of the Ascending Node (RAAN) is analyzed. This means that it
is not desirable to have a control function dependent on time. Instead, a control function dependent on the
altitude is constructed:

u(ℎ) ≈
𝑚
∑
𝑖=1

z𝑖𝜓𝑖(ℎ). (5.5)

With the control function, the objective function, subject to both equality and inequality constraints, is
evaluated whenever the simulation is terminated.

With the transcription of the optimal control problem into an NLP problem, a numerical method can be
used to solve the NLP problem. The first method is the use of gradient methods, which can be classified as a
local optimization method. This method can accurately find the local minimum of an optimization problem
by following the gradient. However, these methods have the tendency of finding local optima. This means
that local optimization methods cannot guarantee that the global minimum is found. In contrast, global
optimization methods are good at finding the global optimum. However, global optimization cannot guarantee
that the actual global minimum is found, due to the iterative nature of these algorithms.

5.1.1. Global Optimization
There are various objectives that can be minimized with the use of optimization techniques for a space plane
ascent trajectory. For instance, the fuel used during the ascent, and the difference in orbital elements between
the space plane and the target orbit at the end of the ascent can be defined as objective functions. In reality,
the ascent trajectory should not be optimized for a single objective but for multiple objectives. One should
optimize the fuel used during the ascent, while also minimizing the difference between the orbital elements.
There are even situations where more than two objectives should be used. Besides the fuel used and the final
orbit, also the inequality constraints could be used as an objective. There are several global optimization
techniques that only deal with a single optimization objective, such as Differential Evolution (DE), Particle
Swarm Optimizer (PSO) and Simulated Annealing (SA)1. If multiple objectives need to be optimized, the
single objective global optimizers require to sum objectives with weights attached to each objective, in such a
way that the sum of the weight equals one. In most situations, these objectives will conflict with each other,
creating a situation where a trade-off needs to be made between the different objectives. Since the relation
between these objectives is not known, it is more beneficial to use global optimization techniques that can
yield a range of optimal solutions, taking into account the different objectives. One of the multi-objective
approaches is Pareto-based, where a Pareto front is formed from a set of solutions that are not dominated by
other solutions. This means that such solution can not be further improved in one objective without sacrificing
in another2. A visualization of this can be seen in Figure 5.1, where the optimal solutions form a Pareto front.

In general, the global optimization can be classified as a Genetic Algorithm (GA), with many different
variations. The algorithm starts with an initial population where each member of the population has a
randomly generated decision vector. For each member within the population the objective function is assessed.
Based on the outcome of the objective function the population undergoes three natural processes: selection,
combination, mutation. Through the selection process the worst members of the population are removed and it
is also possible for the best members to survive into the next generation, which is called elitism. The remaining

1Pagmo, Heuristic Global Optimization Capabilities, accessed on 18 Jun 2021, https://esa.github.io/pagmo2/overview.html.
2IGI Global, What is Pareto Front, accessed on 18 Jun 2021, https://www-igi-global-com.tudelft.idm.oclc.org/

dictionary/pareto-front/21878.

https://esa.github.io/pagmo2/overview.html
https://www-igi-global-com.tudelft.idm.oclc.org/dictionary/pareto-front/21878
https://www-igi-global-com.tudelft.idm.oclc.org/dictionary/pareto-front/21878
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Figure 5.1: Graph showing the Pareto front in red, where it can be seen that the Pareto-optimal solutions
are nondominated (Mooij and Dirkx, 2020).

members of the population are used as parents to create new members with a combined decision vector. From
the newly created members, it is also possible to mutate a small portion of their decision vector, which might
introduce unique elements to the vector. Using these three processes, a new generation is formed. For the
new generation again the objective function is assessed and the natural process is repeated. This is done until
either a fixed number of generations has been formed or if the best member of the generation has not changed
for a certain number of iterations. Due to the iterative nature, there is not a guarantee that the actual global
minimum of the problem will be found (Conway, 2010). Usually, a refinement is done to assess the accuracy
of the found minimum. This can be done with a local optimization method.

There exists a C++ library for both single- and multi-objective optimization called Parallel Global Multi-
objective framework for Optimization (PaGMO) (Biscani and Izzo, 2020). The multi-objective optimization
techniques present are the Non-dominated Sorting Genetic Algorithm (NSGA2), Multi-Objective Evolution-
ary Algorithm with Decomposition (MOEA/D), Multi-Objective Hypervolume-based Ant Colony Optimizer
(MHACO) and Non-dominated Sorting Particle Swarm Optimizer (NSPSO). These techniques are uncon-
strained optimizers, which means that the constraints present for an ascent trajectory need to be formulated
in an objective. An alternative is to use constraints as termination conditions, which will lead to solutions that
are infeasible. An example termination condition is the altitude. Whenever the altitude of the launch vehicle
is less than zero i.e., the launch vehicle has crashed, the termination should be stopped.

5.1.2. Local Optimization
For gradient methods, an initial guess is made of the unknown decision vector z, which is used in Equations
5.1, 5.2 and 5.3. For each 𝑘𝑡ℎ iteration, a search direction, p𝑘, is determined, which provides a direction along
which to change the decision vector z. Additionally, a step length, 𝛼𝑘, is defined, which yields the magnitude
of the change to the decision vector (Rao, 2014). The update for the decision vector is given by:

z𝑘+1 = z𝑘 + 𝛼𝑘pk. (5.6)

For the minimization of the objective function, a search direction is chosen, which decreases the objective
function according to:

𝑓(z𝑘+1) ≤ 𝑓(z𝑘) + 𝐾𝛼𝑘∇𝑓⊤(z𝑘)p𝑘, (5.7)
where 𝐾 is a parameter between 0 and 1.

5.2. Initial Problem Definition
The problem definition for the optimization of the ascent trajectory has been changed over time to address
convergence issues with the optimization algorithms. The reasons for the slow convergence is discussed in this
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Figure 5.2: Plot showing the altitude as a function of time for the ascent of the NASP (Lu, 1993).

section. First of all, the initial problem definition is explained to give the reader insight and to understand
the changes that have been made to improve the convergence.

5.2.1. Transcription
To find the fuel-optimal trajectory of a space plane, it is decided to optimize velocity , 𝑉 , and flight path angle,
𝛾, trajectory parameters. These can be characterized as the velocity and the direction in the longitudinal plane.
It is chosen not to optimize for the position of the space plane to simplify the optimization when a launch
window extension is included. Furthermore, to only optimize the longitudinal ascent, the heading angle of the
space plane is fixed to 90 degrees, such that the space plane is launched due east.

In order to convert the optimal control problem, a specific number of nodes are used at which the velocity
and flight path angle are defined. These nodes can be defined in time as is the case in the ascent trajectory
optimization paper by Pescetelli et al. (2012). Another solution is to define the nodes with altitude. In
this case, the velocity of the space plane and its direction will only dependent on the altitude of the space
plane. Since constraints such as the heat flux and dynamic pressure are dependent on altitude, it is chosen to
transcribe the optimal control problem in terms of nodes defined at specific altitudes.

By investigating previous articles about the ascent of the National Aero-Space Plane (NASP), it became
apparent that the NASP would go through three different stages during the ascent. The first phase would
be the initial ascent and acceleration phase, followed by the pull up phase, where the angle of attack would
be increased to increase the flight path angle. The ascent would be concluded by the coasting phase, where
the engines would be turned off (Mooij, 1998; Lu, 1993; Powell et al., 1991). From these articles it is not
entirely certain at which altitudes these phases transition. This means that the pull up altitude and engine
cut off altitude should be included in the optimization as optimization parameters. An indication of the pull
up altitude and engine cut off altitude can be obtained by observing the altitude plot of the ascent trajectory
in Figure 5.2 by Lu (1993). Based on these indications the nodes can be defined, taking into account that the
pull up and Main Engine Cut-Off (MECO) altitude are uncertain. The resulting nodes and the search space
for the velocity and flight path angle are shown in Table 5.1.

5.2.2. Objective Formulation
The objectives to be optimized are defined as the fuel used throughout the ascent to reach the target orbit and
the reached orbit compared to the target orbit. For the initial longitudinal ascent, only the semi-major axis
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Table 5.1: Overview of the number of nodes and at which altitude these are defined.

Node # Altitude [km] Velocity [m/s] Flight Path Angle [deg]
1 0 [170, 8000] [0, 90]
2 10 [170, 8000] [0, 90]
3 20 [170, 8000] [0, 90]
4 30 [170, 8000] [0, 90]
5 40 [170, 8000] [0, 90]
6 [40, 60] [170, 8000] [0, 90]
7 60 [170, 8000] [0, 90]
8 [60, 80] [170, 8000] [0, 90]
9 80 [170, 8000] [0, 90]
10 100 [170, 8000] [0, 90]
11 120 [170, 8000] [0, 90]

and the eccentricity of the final orbit are used as a target. The inclination and RAAN cannot be influenced
with longitudinal maneuvers and are therefore not considered.

The fuel objective is defined by the amount of fuel used at the moment that the propagation of the ascent
trajectory is terminated. This is found by comparing the initial mass of the space plane with the termination
mass. Subsequently, the fuel objective is normalized to ensure that the range of the fuel objective is between
zero and one. The equation that obtains the fuel objective is formulated as:

𝑓1 = 𝑓normalized fuel used = 𝑚MTOW − 𝑚termination
𝑚MTOW − 𝑚OEW

, (5.8)

where 𝑚MTOW is the Maximum TakeOff Weight (MTOW) and 𝑚OEW is the Operating Empty Weight (OEW),
and 𝑚final is the termination mass.

During initial investigations of the behavior of the target orbit objective, the semi-major axis and the eccen-
tricity were compared between the final and target orbit. It became apparent that a situation occurred where
the semi-major axis was reached below the target altitude, with only minimal difference in the eccentricity of
the orbit. In this scenario, the optimization would tend to converge to this solution, discarding any individuals
that would reach a higher altitude, due to a higher fuel demand. This meant that the optimization would get
’stuck’ at this altitude and would not find a suitable solution where the final orbit would have an altitude of
120 km. In order to eliminate this issue, it was decided that the semi-major axis would be replaced by the
altitude, and the velocity would be included to reward solutions that reached both a high altitude as well as
velocities close to the target circular orbital velocity. It was theorized that this would enable the optimization
to converge faster to solution that would reach the target altitude, while also accelerating towards the correct
target velocity.

The target orbit objective was defined as the Root Mean Square (RMS) of the altitude, velocity and
eccentricity:

𝑓2 = 𝑓target orbit = √𝑓2
normalized altitude + 𝑓2

normalized velocity + 𝑓2
eccentricity

3 , (5.9)

where the eccentricity was taken as is, since it ranges between zero and one. The altitude and velocity were
normalized with:

𝑓normalized altitude =
ℎtarget − ℎtermination

ℎtarget − ℎinitial
, (5.10)

𝑓normalized velocity =
𝑉target − 𝑉termination

𝑉target − 𝑉initial
. (5.11)

5.2.3. Constraint Formulation
In previous studies of the ascent of a space plane, a number of inequality constraints have been formulated
that the space plane should comply to. In the research done by Lu (1993), the dynamic pressure and heat flux
have been formulated as constraints. In the study done by Mooij (1998), the axial acceleration of the space
plane is limited in addition to the two aforementioned inequality constraints. For this study, the constraints
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Table 5.2: Inequality constraints defined for the space plane.

Inequality constraint Symbol Value Unit
Maximum Dynamic Pressure ̄𝑞𝑐 95,000 [N/m2]
Maximum Heat Flux �̇�𝑐 8,000 [kW/m2]
Maximum Axial Acceleration 𝑛𝑎𝑐 1 [g0]

Table 5.3: Equality constraints defined for the space plane.

Equality constraint Symbol Termination Condition Unit
Altitude hmin < 0 [km]

hmax > 120 [km]
Space Plane Mass m < 𝑚OEW (58.968𝑒3) [kg]
Time T > 𝑡0 + 4000 [s]
Angle of Attack 𝛼min < −2 [deg]

𝛼max > 13 [deg]
Dynamic Pressure ̄𝑞2𝑐 > 190, 000 [N/m2]
Heat Flux �̇�2𝑐 > 16, 000 [kW/m2]
Axial Acceleration 𝑛2𝑐 > 2 [g0]

formulated by Mooij (1998) will be followed, such that the results found in this study can be verified by the
results obtained by Mooij (1998). The inequality constraints are summarized in Table 5.2.

The space plane has to adhere to a number of equality constraints in addition to the inequality constraints.
Whenever equality constraints are exceeded, the propagation of the space plane is terminated and the objective
functions are evaluated. The first equality constraint is the altitude, where the altitude should not be lower
than 0 km and higher than 120 km. The second equality constraint is based on angle of attack of the space
plane. The NASP has information about the aerodynamic coefficients between −1 and 12 degrees. The
guidance module will command the space plane to an angle of attack that is within this bound. The control
module will orient the space plane to adhere to the given commands by the guidance module. However, it
might occur that a small overshoot occurs. For this reason, it is allowed for the space plane to achieve an angle
of attack below 13 degrees or above −2 degrees. During the simulation a small overshoot is allowed, where
it is assumed that extrapolation of the aerodynamic coefficients still yield accurate aerodynamic coefficients.
However, whenever the angle of attack goes above 13 degrees and below −2 degrees the simulation is terminated.
Besides the angle of attack and altitude, also the simulation time is used as an equality constraint. During
the initial investigation of the behavior of the objective functions, it became apparent that the fuel and target
orbit objective functions were achieved at the cost of the inequality constraints. Sometimes these values were
exceed by a factor of 10 or more. This was obviously not intended behavior, and exceeding these constraints by
that much was not desirable. It was therefore chosen to also include the dynamic pressure, heat flux and axial
acceleration constraint as equality constraints. Whenever one of these was exceeded by twice the amount, the
simulation would also be terminated. The equality constraints are summarized in Table 5.3, where the dynamic
pressure, heat flux and axial acceleration equality constraints are denoted by ̄𝑞2𝑐, �̇�2𝑐 and 𝑛2𝑐, respectively.

For global optimization methods included in PaGMO, only unconstrained optimization is possible. This
means that the inequality constraints are bundled and defined as the RMS of the maximum dynamic pressure,
heat flux and axial acceleration during the ascent:

𝑓3 = 𝑓ineq. constr. = √𝑓2
norm. max dyn. press. + 𝑓2

norm. max. heat flux + 𝑓2
norm. max. axial acc.

3 , (5.12)

where the normalized inequality constraints are expressed by:

𝑓norm. max dyn. press. = {
0 if ̄𝑞max < ̄𝑞𝑐,

̄𝑞max− ̄𝑞𝑐̄𝑞2𝑐− ̄𝑞𝑐 else, (5.13a)

𝑓norm. max. heat flux =
⎧{
⎨{⎩

0 if �̇�max < �̇�𝑐,
�̇�max−�̇�𝑐
�̇�2𝑐−�̇�𝑐

else, (5.13b)
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Table 5.4: Overview of the initial translational state of the space plane, defined in spherical elements.

Spherical Element Value Unit
Distance 𝑅𝐸 [km]
Longitude 23.433 [deg]
Latitude 0.0 [deg]
Velocity 170.0 [deg]
Flight Path Angle 5.0 [m/s]
Heading Angle 90.0 [deg]

Table 5.5: Overview of the elements required to define the initial rotational state of the space plane.

Element Value Unit
Angle of Attack 5.0 [deg]
Angle of Sideslip 0.0 [deg]
Bank Angle 0.0 [deg]
𝜔𝑥𝐼 0.0 [deg/s]
𝜔𝑦𝐼 0.0 [deg/s]
𝜔𝑧𝐼 4.18𝑒 − 3 [deg/s]

𝑓norm. max. axial acc. =
⎧{
⎨{⎩

0 if 𝑛𝑎max < 𝑛𝑎𝑐 ,
𝑛𝑎max−𝑛𝑎𝑐𝑛𝑎2𝑐−𝑛𝑎𝑐

else. (5.13c)

The last set of constraints is related to the initial state. The initial state defines both the rotational and
translational state of the space plane. The translational state is defined in spherical elements, which allows for
better interpretation of the initial state. The initial position of the space plane is chosen to be on the equator,
with a random longitude and an altitude of 0 km above the Earth surface. The initial velocity of the space
plane is roughly based on the study done by Mooij (1998). However, the emphasis of the velocity is to ensure
that the space plane generates a lift force that enables the space plane to maintain a positive flight path angle.
The heading angle of the space plane, which defines the direction of the velocity on the local horizontal plane,
is chosen to be 90 degrees. This corresponds with a launch due east. Table 5.4 gives an overview of the initial
translational state. The position of the space plane is defined in the rotational frame, where the distance is
considered the mean Earth radius, 𝑅𝐸. The velocity is defined in the vertical reference frame. The position
and velocity are converted to Cartesian coordinates, and transformed to the inertial reference frame, with the
basic transformation discussed in Section 3.1.

The rotational state, is defined partly by the spherical elements, and completed by defining the aerodynamic
angles of the space plane. With the aerodynamic angles, the angles used for the translational state, the angular
velocity of the Earth about the 𝑧𝐼-axis and the time since the 𝑅- and 𝐼-frame have coincided, a transformation
matrix can be constructed that defines the attitude of the space plane with respect to the 𝐼-frame. The
transformation matrix is used by TU Delft Astrodynamics Toolbox (TUDAT) to convert the orientation of the
space plane to quaternions. The angular velocity of the space plane is assumed to be zero when considering
the angular velocity of the space plane with respect to the rotating planetocentric reference frame. When
considering the angular velocity with respect to the inertial reference frame, only the rotation of the Earth
has to be considered. Equation 3.25, shows how the rotation of the Earth is converted to describe the angular
velocity of the space plane with respect to the 𝐼-frame, expressed in components along the body axes. Table 5.5
shows the initial aerodynamic angles and angular velocity of the Earth.

5.2.4. Results
The search space shown in Table 5.1, reveals that the search space for the velocity and flight path angle is
large. Prior to starting to optimize the ascent trajectory, it was attempted to reduce the search space. Using
Sobol sequences, a large number of decision variable vectors were generated, which were used to identify any
correlations between particular decision variables and the capability of the space plane to reach an altitude of
120 km. In Figure 5.3 it can be seen that a correlation was found between the velocity of the first node and
the capability of reaching target altitude. By reducing the search space for the velocity at the first node and
rerunning the sobol analysis, a correlation could also be found at the second node, see Figure 5.4. In a similar
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Table 5.6: Overview of the number of nodes and at which altitude these are defined.

Node # Altitude [km] Velocity [m/s] Flight Path Angle [deg]
1 0 [170, 360] [0, 90]
2 10 [170, 1000] [0, 90]
3 20 [800, 2500] [0, 90]
4 30 [170, 8000] [0, 90]
5 40 [170, 8000] [0, 90]
6 [40, 60] [170, 8000] [0, 90]
7 60 [170, 8000] [0, 90]
8 [60, 80] [170, 8000] [0, 90]
9 80 [170, 8000] [0, 90]
10 100 [170, 8000] [0, 90]
11 120 [170, 8000] [0, 90]

fashion, a correlation was found at the third node, see Figure 5.5. Besides velocity at the first three nodes, no
further correlation was found between the decision variables and the capabilities to reach the target altitude.
This can be explained by the lack of individuals reaching the final altitude. It could be that many individuals
already terminated before the space plane reached the 30 km mark. Due to the analysis, the search space was
reduced, which are summarized in Table 5.6.

Based on the reduced search space, an initial optimization was done to assess the capabilities to converge
to a solution. It was found that the optimization had difficulties to converge and penalties were imposed on
the objective functions. The penalty to the objectives functions were imposed if the inequality constraints
reached twice their value, whenever the altitude became lower than the Earth surface, and if the angle of
attack reached a value outside of the allowed range. In these cases, the objective functions were set to one:

𝑓1 = 𝑓2 = 𝑓3 = 1.0. (5.14)

The optimization of the NLP problem has been done with both NSGA2 and MOEA/D, two optimization
algorithms included in PaGMO. Both of these algorithms are multi-objective unconstrained optimization
algorithms. The optimization toolpackage PaGMO allows for changes to the algorithm such as the mutation
rate or crossover. However, it was chosen to use the default values for the algorithms. Additionally, it was
chosen to use 300 individuals per generation, to evolve these generations 250 times, and to use three different
seeds (100, 200, 300). The results of the optimization can be seen in Figure 5.6 and Figure 5.7.

The figures reveal that both algorithms had difficulty converging to solutions that would reach a target
orbit objective close to zero, with a propellant objective lower than one. It was therefore chosen to investigate
if a reduced search space would support a faster convergence. It was chosen to reduce the search space for the
flight path angle to a maximum of 45 degrees, which is still far above the largest value the flight path angle
obtained in results by Mooij (1998). With the reduced search space, convergence was possible for the MOEA/D
algorithm, as can be seen in Figure 5.8. However, the NSGA2 algorithm was still not able to converge, see
Figure 5.9.

The results obtained by the MOEA/D algorithm, shows that the orbital element objective can be reduced
to zero. Furthermore, it can be seen that the propellant objective and the constraint objective are conflicting,
which means that a trade-off should be made between using more fuel, or allowing the space plane to exceed
a number of constraints. However, Figure 5.8 also shows that currently no individual exists that has a
propellant objective lower than one, without also exceeding at least one inequality constraint. Figure 5.10
shows the dynamic pressure and heat flux history for a single simulation that has a propellant objective close
to one. Here it can be seen that both the heat flux and the dynamic pressure constraint have been exceeded
for an extended period of time.

The ascent trajectory can be further inspected to find another interesting phenomena. The optimization
finds a solution for the space plane with an initial pull up followed by a shallow ascent, where the velocity of
the space plane is increased to a magnitude close to that of the orbital velocity, see Figure 5.11. After about
1200 seconds, when the velocity of the space plane is increased, the space plane initiates the final pull up to
reach the target orbit. At this point, it can be seen that the commanded velocity and flight path angle are not
followed by the space plane anymore. Inspecting the aerodynamic angle time history, in Figure 5.12, yields
insight into the behavior of the space plane to increase the flight path angle. It shows that the angle of attack
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Figure 5.3: Results Sobol analysis decision variables at node 1.

Figure 5.4: Results Sobol analysis decision variables at node 2.
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Figure 5.5: Results Sobol analysis decision variables at node 3.
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Figure 5.6: Optimization results for the ascent trajectory using MOEA/D.



5.2. Initial Problem Definition 49

0
1.00002

0.2

0.4

1.000015 1

C
on

st
ra

in
t O

bj
ec

tiv
e

0.6

0.8

 Propellant Objective

0.8

1.00001

Orbital Element Objective

1

0.6
1.000005 0.4

1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

st
ra

in
t O

bj
ec

tiv
e

Figure 5.7: Optimization results for the ascent trajectory using NSGA2.
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Figure 5.8: Optimization results for the ascent trajectory using MOEA/D with a smaller search space.
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Figure 5.9: Optimization results for the ascent trajectory using NSGA2 with a smaller search space.

is increased to the maximum value, before dropping to the lowest allowed value in order to reduce the flight
path angle again. This behavior is undesirable, since the space plane at this velocity is unstable for a large
angle of attack (Powell et al., 1991). It is, therefore, necessary to have finer control over the angle of attack
when the final pull up occurs.

The results of the optimization algorithm gives insight in the behavior of the space plane and allows for
changes to the transcription in order to ensure that faster convergence of the optimization algorithm is achieved.
First of all, the guidance module, that controls the flight path angle and velocity, has dificulties controlling these
parameters to the commanded value when the pull up altitude is reached. Furthermore, the control module,
tied to the guidance module reacts heavily on changes in the commanded flight path angle, which could make
the space plane unstable. Besides the performance of the Guidance and Control (G&C) module, it can also
be included that the transcription of the velocity is not refined enough to ensure that the dynamic pressure
and heat flux constraint are not exceeded. Lastly, the optimization algorithms converge slowly to the optimal
solution, which can contributed to the large search space and large number of optimization parameters. Even
though both algorithms converge slowly, it can be seen in Figures 5.8 and 5.9 that the MOEA/D algorithm
has faster convergence compared to the NSGA2 algorithm.

First of all, the guidance module, that controls the flight path angle, is stopped whenever the pull up
altitude is reached. From that point on, not the flight path angle of the space plane, but the angle of
attack is controlled. Allowing finer control of the orientation of the space plane, such that the space plane
does not become unstable. Furthermore, the constraint values are easily exceeded and inhibit the ability
of the optimization algorithm to converge. This is solved by removing the velocity of the space plane as an
optimization parameter. Instead, the space plane is allowed to accelerate with maximum throttle, only reduced
whenever the maximum dynamic pressure, heat flux or axial acceleration would be crossed. This reduces the
search space significantly by removing the velocity itself as an optimization parameter. It is replaced only by
the maximum equivalence ratio that the space plane is allowed to use.
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Figure 5.10: Time history of the dynamic pressure and heat flux constraint that the space plane has
experienced during the ascent.

Figure 5.11: Time history of the trajectory parameters. The blue dashed lines indicate the reference, while
the black continuous lines indicate the actual value obtained during the ascent.
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Figure 5.12: Time history of the aerodynamic angles. The blue dashed lines indicate the reference, while
the black continuous lines indicate the actual value obtained during the ascent.

5.3. Final Problem Definition
The results from the initial problem definition have yielded results, which prompted changes to the method
that the optimal control problem was transcribed. First of all, the velocity parameter is removed from the
optimization to reduce the search space. Instead, active constraint control is added to the G&C system to
ensure that the space plane does not exceed inequality constraints. Second of all, the space plane shall be
commanded by the flight path angle until the pull up altitude is reached. Afterwards, the flight path angle
of the space plane is no longer controlled directly, and instead the orientation of the space plane is controlled.
The angle of attack is used as an optimization parameter to determine the most efficient way to initiate the
pull up to reach the target orbit.

5.3.1. Transcription for the Ascent Excluding Lateral Motion
The optimal control problem is converted in an NLP problem by once again defining a number of points in
terms of altitude at which either the flight path angle or the angle of attack of the space plane is defined. In
Figure 5.13 it can be seen along which parts of the trajectory the angle of attack or the flight path angle is
controlled. The angle of attack is only optimized until the moment that the coasting phase starts. During
coast, the angle of attack is commanded to zero to reduce the amount of drag. The change in angle of attack
is accomplished by Reaction Control System (RCS) thrusters, which are not actually modeled. To ensure that
the space plane does not becomes unstable just before the RCS thrusters take over, the maximum angle of
attack during the pull up phase is limited to 4 degrees. Further explanation into this phenomenon can be
found in Section 6.3. Additionally, the minimum angle of attack during the pull up phase is set to 1 degree
to ensure that flight path angle increases at the pull up altitude. It was found that the angle of attack just
before the pull up altitude was lower than 1 degree. Thus, setting the minimum angle of attack to 1 degree
will ensure the increase in flight path angle.

The velocity of the space plane is controlled by the maximum equivalence ratio that is allowed in combina-
tion with the guidance module that ensures that the constraints for the dynamic pressure, heat flux and axial
acceleration are not exceeded. The maximum equivalence ratio is an optimization parameter, but the velocity
itself is removed from the optimization. The altitude at which the pull up phase and coasting phase starts
are still included in the optimization process. The parameters that need to be optimized are summarized in
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Figure 5.13: Showcase of the transcription that is performed to convert the optimal control problem into
an NLP problem.

Table 5.7: Overview of the optimization parameters and their search space for the longitudinal ascent.

Optimization Parameter # of Parameters Search Space Unit
Flight Path Angle 6 [0, 90] [deg]
Angle of Attack 3 [1, 4] [deg]
Pull Up Altitude 1 [40, 60] [km]
Engine Cut-Off Altitude 1 [60, 80] [km]
Maximum Equivalence Ratio 1 [0, 10] [-]

Table 5.7. Lastly, it should be noted that the heading angle is not included in the longitudinal optimization
and the bank angle is commanded to remain zero throughout the flight. Instead, an initial launch heading
angle is computed based on the target orbital inclination. The initial heading angle in combination with the
commanded bank angle and angle of sideslip, which are commanded to be zero, will results in a final orbit
that will be close to the target orbital inclination. The initial heading angle is computed, if the rotation of the
Earth is not considered, with:

𝜒inertial = sin−1 (
sin 𝑖target
cos 𝛿launch

), (5.15)

where 𝑖target is the target orbit inclination, 𝛿launch is the launch latitude and 𝜒inertial is the launch heading
angle if the rotation of the Earth is zero. Since the Earth is rotating, the heading angle with respect to the
ground can be computed if the velocity of the surface of the Earth is known with respect to the inertial frame.
With this velocity the heading angle can be expressed in the rotational frame, if the target orbit is circular,
with:

𝜒rotational = tan−1 (𝑉𝑥
𝑉𝑦

) = tan−1 (𝑉circ sin 𝜒inertial − 𝑉𝐸 cos 𝛿launch
𝑉circ cos 𝜒inertial

), (5.16)

where 𝑉circ is the target orbital circular velocity and 𝑉𝐸 is the velocity of the Earth surface at the equator due
to the rotation of the Earth. With this method, the launch heading angle can be computed, with which the
space plane can launch into the target orbit.

5.3.2. Objective Formulation for the Ascent Excluding Lateral Motion
The switch to active constraints control means that the number of objectives is reduced to two. The two
remaining objectives are the propellant used during the ascent and the RMS of the difference in altitude,
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Table 5.8: Overview of the target altitude, velocity and eccentricity that define the target orbit.

Target Orbit Altitude [km] Velocity [m/s] Eccentricity [-]
Value 120.0 7836.3 0.0

velocity and eccentricity that the space plane achieved compared to the target orbit. These objectives have
not changed, but are repeated for the readers sake.

𝑓1 = 𝑓normalized fuel used = 𝑚MTOW − 𝑚termination
𝑚MTOW − 𝑚OEW

, (5.17)

𝑓2 = 𝑓target orbit = √𝑓2
normalized altitude + 𝑓2

normalized velocity + 𝑓2
eccentricity

3 , (5.18)

with:

𝑓normalized altitude =
ℎtarget − ℎtermination

ℎtarget − ℎinitial
, (5.19)

𝑓normalized velocity =
𝑉target − 𝑉termination

𝑉target − 𝑉initial
. (5.20)

The target orbit is chosen to be a circular orbit at an altitude of 120 km above the Earth surface, assuming a
spherical Earth. The target altitude, velocity and eccentricity are shown in Table 5.8. The target velocity is
computed with:

𝑉target = 𝑉circular = √
𝜇𝐸

(𝑅𝐸 + ℎtarget) , (5.21)

where 𝜇𝐸 is the gravitational parameter of the Earth and 𝑅𝐸 is the mean Earth radius.
In the study done by Mooij (1998), a similar target orbit was used. In that study a circularization maneuver

was implemented when the target altitude was reached, with a velocity lower than the velocity for a circular
orbit. In this research, a similar maneuver is implemented for when the target altitude is reached. The Δ𝑉
required to obtain the circular velocity is computed by comparing the velocity of the space plane in the inertial
frame, with the circular velocity required to have a circular orbit at 120 km altitude. Assuming a typical rocket
engine with a specific impulse of 465 s, the required propellant for the maneuver is computed with:

𝑚final = 1
exp ( Δ𝑉req

𝐼𝑠𝑝𝑔0 )
𝑚termination, (5.22)

where 𝑚final is the mass after the circularization maneuver, 𝑚termination is the mass just before the circular-
ization maneuver, Δ𝑉req is the required Δ𝑉 to circularize, 𝐼𝑠𝑝 is the specific impulse, and 𝑔0 is the standard
gravity. If the circularization maneuver requires more propellant than is available, the maximum possible Δ𝑉
is computed and added to target orbit objective with:

Δ𝑉 = 𝐼sp𝑔0 ln (𝑚termination
𝑚EOW

). (5.23)

The circularization maneuver requires to update the final mass of the space plane, as well as the final velocity
and Kepler elements. These are then used in the objective functions to evaluate the simulation.

5.3.3. Transcription for the Ascent Including Lateral Motion
The optimization that includes lateral motion is done to investigate the possibility to manipulate the RAAN
to allow for a larger launch window. In order to manipulate either the RAAN or inclination, a change in
heading angle is required. During the ascent optimization that excludes lateral motion, either the space plane
has flown due east, as was done for the initial problem definition, or the launch heading angle was determined
based on the target orbit. Fortunately, Equation 5.16 can be used for more then to compute to launch heading
angle. The heading angle of any object in an orbit around the Earth can be computed using the aforementioned
equations, if the object resides in the northern hemisphere and the change in latitude is positive. The equations
becomes:

𝜒inertial = sin−1 (
sin 𝑖target

cos 𝛿 ), (5.24)
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Figure 5.14: A general example of an advanced and delayed orbit insertion (Zhou, Wang, and Cui, 2020).

𝜒rotational = tan−1 (𝑉𝑥
𝑉𝑦

) = tan−1 (𝑉circ sin 𝜒inertial − 𝑉𝐸 cos 𝛿
𝑉circ cos 𝜒inertial

). (5.25)

Since the space plane is launching from the equator and launches with a heading angle between the 0 and
90 degrees, these equations can be used to compute a commanded heading angle until the latitude derivative
becomes zero or negative. During an initial investigation, it became apparent that for the entire duration
that the flight path angle of the space plane is commanded, the maximum latitude is not yet reached, and
Equation 5.16 can be used to command the space plane to the correct heading angle and subsequent correct
inclination. When the pull up is initiated, the flight path angle and heading angle are no longer commanded.
Instead, the bank angle and angle of sideslip are commanded to zero, which does not adversely effects the
ability of the space plane to reach the correct orbit inclination. Furthermore, the angle of attack is directly
commanded as part of the optimization problem.

In a previous study by Zhou, Wang, and Cui (2020), the RAAN was manipulated by commanding the
space plane to a deviated inclination angle for part of the ascent. An example of how the ascent trajectory
would look like can be seen in Figure 5.14. Here it can be seen that, with a delayed launch, the inclination is
initially higher than the target orbit inclination and slowly converges to the target incliniation. In that study,
the deviation in orbit inclination was a linear function of range. For this study, it was chosen to not use range,
but use altitude instead as to be coherent with the optimization of the flight path angle. Furthermore, the
function that computes the deviation in orbit inclination is a sigmoid function:

Δ𝑖 = (1 − 1

(1 + (𝑥𝑟)
(1+𝑥𝑟) )

−𝑏 )Δ𝑖0, (5.26)

where Δ𝑖0 is the initial deviation in inclination, 𝑥 is the ratio between the current altitude ℎcurrent of the space
plane and the pull up altitude, ℎpull up:

𝑥 = ℎcurrent
ℎpull up

. (5.27)

The steepness of the sigmoid function is determined by 𝑏, and 𝑟 is a variable that is used to define the altitude
at which the deviation in inclination is exactly half:

𝑟 = − log 2
log 𝑥1/2

, (5.28)

where 𝑥1/2 is the altitude ratio at which the deviation should be exactly half. Equation 5.26 gives control
over the moment when the deviation in inclination should be half, the steepness of the half way point and the
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Table 5.9: Overview of the lateral optimization parameters and the search space.

Optimization Parameter # of Parameters Search Space Unit
Δ𝑖0 1 [-45, 45] [deg]
Steepness, 𝑏 1 [2, 5] [-]
𝑥1/2 1 [0.1, 0.9] [-]

magnitude of the deviation. The deviation in inclination can be included in Equation 5.24 to compute the
inertial heading angle:

𝜒inertial = sin−1 (
sin(𝑖target + Δ𝑖)

cos 𝛿 ), (5.29)

which in turn can be used in Equation 5.25 to compute the heading angle with respect to the ground.
With these expressions, the lateral motion of the space plane is transcribed, such that the heading angle

can be computed until the pull up altitude is reached. Afterwards, the flight path angle and heading angle are
no longer commanded, and the angle of sideslip and bank angle are commanded to zero. The NLP problem in
this scenario includes a control function for the flight path angle and heading angle until the pull up altitude,
and a control function for the angle of attack from the pull up altitude to the main engine cut-off altitude. In
Table 5.9 the search space is shown for the three optimization parameters that govern the lateral motion.

5.3.4. Objective Formulation for the Ascent Including Lateral Motion
For the optimization that includes a change in launch window, it is necessary to once again minimize the
required propellent, while still reaching a correct orbit. This means that the propellant objective is still
present. The space plane is capable of manipulating the inclination and RAAN of the target orbit due to the
inclusion of the lateral motion. This means that the target orbit objective needs to include a target inclination
and RAAN. Thus the target orbit objective is expressed by:

𝑓2 = 𝑓target orbit = √𝑓2
ℎ + 𝑓2

𝑉 + 𝑓2𝑒 + 𝑓2
𝑖 + 𝑓2

Ω
5 , (5.30)

with:

𝑓ℎ = 𝑓normalized altitude =
ℎtarget − ℎtermination

ℎtarget − ℎinitial
, (5.31)

𝑓𝑉 = 𝑓normalized velocity =
𝑉target − 𝑉termination

𝑉target − 𝑉initial
, (5.32)

𝑓𝑒 = 𝑓eccentricity, (5.33)

𝑓𝑖 = 𝑓normalized velocity =
𝑖target − 𝑖termination

𝑖target
. (5.34)

For the RAAN an if statement is used to normalize it in one of two ways, depending on the value of the RAAN
that has been achieved in the final orbit. During the longitudinal ascent optimization it became apparent that
the achieved RAAN was approximately 306 degrees, which is taken as the target value for the RAAN. Using
the fact that a RAAN of 0 degrees is closer to the target value than 100 degrees, the following distinction is
made:

𝑓Ω = 𝑓normalized RAAN =
⎧{
⎨{⎩

Ωtarget−Ωtermination
𝜋 if Ωtermination ≥ Ωtarget − 𝜋

Ωtarget−(Ωtermination+2𝜋)
𝜋 if Ωtermination < Ωtarget − 𝜋

, (5.35)

where the RAAN, Ω, is expressed in radians. With the normalized values, the second objective is normalized
in such a way that the objective ranges between zero and one.

Since the optimization that excludes lateral motion showed that the space plane achieves a RAAN of 306
degrees, this value is used for the target RAAN. For the inclination, it is chosen to target an inclined orbit of
45 degrees. This value is slightly arbitrary, but should allow the space plane to investigate both delayed and
advanced launches. Furthermore, the altitude, velocity and eccentricity are the same as for the optimization
that does not include lateral motion. Table 5.10 gives an overview of the target orbit.

Similarly to the longitudinal optimization, a circularization maneuver is performed when the target altitude
is reached. The final mass, velocity, and Kepler elements are updated and used in the objective functions to
evaluate the fitness of the objectives.
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Table 5.10: Overview of the target altitude, velocity, eccentricity, inclination and RAAN that define the
target orbit.

Target Orbit Altitude [km] Velocity [m/s] Eccentricity [-] Inclination [deg] RAAN [deg]
Value 120.0 7836.3 0.0 45.0 306.0

5.3.5. Constraint Formulation
The constraint formulation is similar for both the ascent that excludes lateral motion or includes lateral
motion. The inequality constraints are all based on the velocity or its derivative, which means that the
inequality constraints are eliminated by including these in the G&C system. What remains is the equality
constraints, which were also defined for the initial problem definition. The equality constraints related to
the dynamic pressure, heat flux and axial acceleration are removed. What remains are the minimum and
maximum altitude, space plane mass, time and angle of attack. An overview of the equality constraints are
shown in Table 5.11.

The initial state is also defined as a constraint, see Table 5.12. The initial translational state is similar
to that of the initial problem definition. However, the state differs for the heading angle, since the space
plane is not launched due east to ensure that the final orbit reaches an orbital inclination of 45 degrees. The
heading angle is computed with Equations 5.15 or 5.29, which depends if lateral motion is included in the
optimization problem, and Equation 5.16. Due to these equations, the initial heading angle can vary between
0 and 90 degrees. The initial rotational state of the space plane has not been changed for the final problem
definition. For convenience, an overview of the initial rotational state has been given in Table 5.13. The
method of conversion from spherical to Cartesian elements, and the conversion of the attitude to quaternions
can be found in Section 5.2.3

Table 5.11: Overview of the equality constraints defined for the space plane.

Equality constraint Symbol Termination Condition Unit
Altitude hmin < 0 [km]

hmax > 120 [km]
Space Plane Mass m < 𝑚OEW (58.968𝑒3) [kg]
Time T > 𝑡0 + 4000 [s]
Angle of Attack 𝛼min < −2 [deg]

𝛼max > 13 [deg]

Table 5.12: Overview of the initial translational state of the space plane, defined in spherical elements.

Spherical Element Value Unit
Distance 𝑅𝐸 [km]
Longitude 23.433 [deg]
Latitude 0.0 [deg]
Velocity 170.0 [m/s]
Flight Path Angle 5.0 [deg]
Heading Angle [0.0, 90.0] [deg]

Table 5.13: Overview of the elements required to define the initial rotational state of the space plane.

Element Value Unit
Angle of Attack 5.0 [deg]
Angle of Sideslip 0.0 [deg]
Bank Angle 0.0 [deg]
𝜔𝑥𝐼 0.0 [deg/s]
𝜔𝑦𝐼 0.0 [deg/s]
𝜔𝑧𝐼 4.18𝑒 − 3 [deg/s]





6
Guidance and Control

For the ascent trajectory optimization of the space plane, a Guidance and Control (G&C) system is designed
that commands the space plane to follow the reference trajectory. The reference trajectory is a control function,
u(ℎ), which follows from the NonLinear Programming (NLP) problem as described in Chapter 5. Typically,
a navigation module is used in conjunction with the G&C system to determine the position and orientation
of the space plane. For the optimization of the ascent trajectory, a navigation module is not included. Thus,
it is assumed that the translational and rotational state of the space plane is known exactly, which reduces
the complexity of the G&C system. This means that estimation errors in the position and orientation of the
space plane do not influence the performance of the space plane to follow the reference trajectory, which is
important for finding the optimal ascent trajectory.

6.1. Control Algorithms
In order to effectively control the space plane, a control algorithm needs to be designed. Conventionally,
algorithms to control aircraft and spacecraft linearize the nonlinear Equations of Motion (EoM) and apply
gain scheduling to effectively control the vehicle throughout its flight envelope (Zhang and Jiang, 2008). Al-
ternatively, a nonlinear control algorithm can be used, which removes the necessity to linearize the EoM and
the gain scheduling (Lu, 2016).

The nonlinear control algorithms used by the G&C system are based on a combination of Non-linear
Dynamic Inversion (NDI) and Incremental Non-linear Dynamic Inversion (INDI) controllers to determine the
required change in thrust throttle, thrust elevation angle, and control surface deflection of the elevons and
rudder. The NDI controller follows an onboard dynamics model to achieve the commanded dynamics. However,
the onboard model does not take into account model uncertainties, which will compromise the controller’s
ability to correctly control the vehicle (Mooij, 2019a). Whenever uncertainties exist in the dynamics an INDI
controller is used, which reduces the dependency of the onboard dynamics model (Sieberling, Chu, and J. A.
Mulder, 2010).

6.1.1. Non-linear Dynamic Inversion Theory
Non-linear Dynamic Inversion (NDI) is a technique that uses the EoM of the system to formulate a control
law. Consider the following general expression for the EoM:

ẋ = f(x) + G(x)u, (6.1)

where f(x) is part of the EoM that are not influenced by the actuators. In contrast, G(x), is the part of the
EoM that is influenced by the actuators. The actuators itself are expressed by the vector u. The expression
can be inverted to obtain an expression for the actuators that are a function of the state derivative, ẋ:

u = G−1(x)(ẋ − f(x)). (6.2)

Additionally, the state derivative can be replaced by a virtual control vector, which represents the difference
between the actual and reference value multiplied by a proportional gain:

ẋ = 𝝂 = K𝑝e = K𝑝(xref − x). (6.3)

59
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The NDI method can be applied when the dynamics of the systems are known and when matrix G(x) is
invertible. Furtermore, the method can be extended to incorporate the measured state, y, instead of the actual
state, x. However, it suffices to use the actual state for the optimization of the ascent trajectory.

6.1.2. Incremental Non-linear Dynamic Inversion Theory
Equation 6.2 clearly shows the reliance of the NDI algorithm on the dynamics of the system. When the
dynamics are uncertain, the Incremental Non-linear Dynamic Inversion (INDI) method can be applied. The
method uses a Taylor series expansion to obtain an incremental form of the EoM:

ẋ = ẋ0 + 𝜕
𝜕x [f(x)]Δx + 𝜕

𝜕u [G(x)]Δu, (6.4)

where ẋ0 represents the state derivative, x0 the state and u0 the control vector, an incremental instance in
time before ẋ, x and u. Additionally, the second term on the right hand side of Equation 6.4 can be neglected
by assuming that for incremental time steps it is smaller than the third term on the right hand side. This is
explained by the fact that the change in the state, Δx, is considered to be smaller and only changing due to the
state derivative itself, while the change in the control vector, Δu, is assumed to be instantaneous (Sieberling,
Chu, and J. A. Mulder, 2010). The initial state derivative is expressed by:

ẋ0 = f(x0) + G(x)u0, (6.5)

and Equation 6.4 becomes:
ẋ = ẋ0 + 𝜕

𝜕u [G(x)]Δu. (6.6)

The required change in the actuators can be found by inverting the equation and by replacing the state
derivative, ẋ, by a virtual control vector, 𝝂:

Δu = 𝜕
𝜕u [G−1(x)](ẋ − ẋ0) = 𝜕

𝜕u [G−1(x)](𝝂 − ẋ0). (6.7)

With the required change of the actuators, the actuators can simply be updated with:

u = u0 + Δu. (6.8)

As can be seen, the INDI method is based on the same principle as the NDI method. This means that
the matrix, 𝜕

𝜕u G(x), needs to be invertible. Furthermore, the INDI method uses a derivative of the original
matrix, G(x), which means that the derivative needs to be non-zero. In other words, the matrix, G(x), needs
to be dependent on the variables that exist in the vector, u.

6.2. Guidance and Control System
The G&C system of the space plane can be divided in two parts. The first part is the guidance module,
which relates to the control of the position and/or velocity of the space plane. The optimization of the ascent
trajectory relates to the optimization of the velocity of the space plane in combination with the flight path
and heading angle, which are a function of altitude. These parameters determine the direction and magnitude
of the velocity of the space plane. Thus, the guidance module is used to only command the velocity of the
space plane. The guidance module will compute the required equivalence ration, which is used as a thrust
throttle, and aerodynamic angles, the latter are sent to the control module. The control module controls the
orientation of the space plane by computing the change in deflection angles of the control surfaces of the space
plane. The G&C system presented and discussed in this section is based on the G&C system designed by Lu
(2016).

6.2.1. Guidance module
The guidance module takes as an input the reference trajectory parameters i.e., the flight path angle, 𝛾ref,
and heading angle, 𝜒ref, which are defined by the control function u(ℎ). Furthermore, the maximum allowable
velocity is computed based on the dynamic pressure and heat flux constraint for the current altitude. The guid-
ance module compares the reference trajectory and maximum velocity with the current trajectory parameters
and computes a virtual control vector, 𝝂traj. The virtual control vector is computed with:

𝝂traj = [𝜈𝑉 𝜈𝛾 𝜈𝜒]⊺ = Ktrajetraj = ⎡
⎢
⎣

𝐾 ̇𝑉
𝐾�̇�
𝐾�̇�

⎤
⎥
⎦

⎡
⎢
⎣

𝑉 max − 𝑉
𝛾ref − 𝛾
𝜒ref − 𝜒

⎤
⎥
⎦

, (6.9)
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where Ktraj is a proportional gain and etraj is the error in the trajectory parameters. The maximum allowable
velocity is found by assessing the dynamic pressure and heat flux constraint. Depending on the altitude, the
maximum velocity changes. The maximum velocity that corresponds to the dynamic pressure is found by:

𝑉 max = √ 2 ̄𝑞𝑐
𝜌∞

, (6.10)

where ̄𝑞𝑐 is the dynamic pressure constraint and 𝜌∞ is the current free stream dynamic pressure. For the
maximum velocity due to the heat flux constraint, Chapman’s equation is used:

𝑉 max = ( �̇�𝑐
𝑐∗
lam

√𝑅𝑁
𝜌∞

)
1
3

, (6.11)

where �̇�𝑐 is the heat flux constraint, 𝑐∗
lam is a constant used for laminar flow and 𝑅𝑁 is the nose radius.

From both equations, the lowest maximum velocity is taken to compute the virtual control for the velocity.
Additionally, the virtual control value is limited to a maximum of 9.2 m/s2 to comply to the axial acceleration
constraint. The value is not set to the limit of 9.81 m/s2 since large changes in the control surface deflection
angle can increase the axial acceleration above the constraint value. The virtual control vector is used in
conjunction with an onboard dynamics model to compute the desired thrust throttle, angle of attack and bank
angle. Thus, an expression needs to be found that relates the derivative of the trajectory parameters with the
thrust throttle, angle of attack and bank angle i.e., the control variables of the guidance module.

The basis for these equations comes from the EoM in terms of spherical components. According to Mooij
(1994), the derivative of the velocity, flight path angle and heading angle can be expressed by:

̇𝑉 = 𝐹𝑉
𝑚 + 𝜔𝑐𝑏𝑟 cos 𝛿(sin 𝛾 cos 𝛿 − cos 𝛾 sin 𝛿 cos 𝜒), (6.12a)

̇𝛾 =
𝐹𝛾
𝑚𝑉 + 2𝜔𝑐𝑏 cos 𝛿 sin 𝜒 + 𝑉

𝑟 cos 𝛾 + 𝜔2
𝑐𝑏

𝑟
𝑉 cos 𝛿(cos 𝛿 cos 𝛾 + sin 𝛾 sin 𝛿 cos 𝜒), (6.12b)

�̇� =
𝐹𝜒

𝑚𝑉 cos 𝛾 + 2𝜔𝑐𝑏(sin 𝛿 − cos 𝛿 tan 𝛾 cos 𝜒) + 𝑉
𝑟 cos 𝛾 tan 𝛿 sin 𝜒 + 𝜔2

𝑐𝑏
𝑟

𝑉 cos 𝛾 cos 𝛿 sin 𝛿 sin 𝜒, (6.12c)

where 𝑉 is the velocity of the space plane, 𝑟 is the distance of the space plane with respect to the center of
the Earth, 𝛿 is the latitude and 𝑚 is the mass of the space plane. Furthermore, the forces 𝐹𝑉 , 𝐹𝛾 and 𝐹𝜒
are the aerodynamic, thrust and gravitational forces combined expressed in the trajectory frame. However, it
should be noted that due to the definition of the flight path angle, the forces in the direction of the 𝑧-axis are
positive pointing upwards.

Due to the inclusion of the thrust and aerodynamic forces, uncertainties exist in the dynamics model. The
thrust and aerodynamic forces can be expressed as a function of thrust throttle and angle of attack. However,
it is not possible to find an expression in terms of the bank angle. Thus, the desired bank angle is computed
with an NDI control algorithm, while the desired thrust throttle and angle of attack are found with an INDI
control algorithm. An overview of the guidance module can be seen in Figure 6.1.

Desired Bank Angle
The computation of the desired bank angle follows from the derivatives of the flight path angle and the heading
angle. First, the trajectory forces, 𝐹𝛾 and 𝐹𝜒, are decomposed in terms of components along the body axes.
For these expressions it is assumed that the angle of sideslip is small along the ascent trajectory and that the
non-radial gravitational components can be neglected. With these assumptions, the trajectory forces can be
expressed by:

𝐹𝛾 = −𝐹𝐴𝑦 sin 𝜎 − [(𝐹𝐴𝑥 + 𝑇 cos 𝜖𝑇 ) cos 𝛼 − (𝐹𝐴𝑧 + 𝑇 sin 𝜖𝑇 ) sin 𝛼] cos 𝜎 − 𝑚𝑔𝑟 cos 𝛾, (6.13a)

𝐹𝜒 = −𝐹𝐴𝑦 cos 𝜎 + [(𝐹𝐴𝑥 + 𝑇 cos 𝜖𝑇 ) cos 𝛼 − (𝐹𝐴𝑧 + 𝑇 sin 𝜖𝑇 ) sin 𝛼] sin 𝜎, (6.13b)

where 𝐹𝐴𝑥 , 𝐹𝐴𝑦 and 𝐹𝐴𝑧 are the aerodynamic forces expressed in the body reference frame. 𝑇 is the thrust
force and 𝜖𝑇 is the thrust elevation angle, which combined yield the thrust direction in the body reference
frame for small angles of sideslip. 𝛼 and 𝜎 are the angle of attack and bank angle respectively, and 𝑔𝑟 is the
radial component of the gravitational acceleration.
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Figure 6.1: Diagram of the guidance module.

According to Lu (2016) the desired bank angle can be computed by dividing the flight path angle and
heading angle derivatives. This is done by combining the flight path angle and heading angle derivative of
Equation 6.12 with the decomposed trajectory forces of Equation 6.13. For the computation of the desired
bank angle it is assumed that the rotation of the Earth, 𝜔𝑐𝑏, is small compared to the aerodynamic, thrust
and gravitational forces. With these assumptions the desired bank angle can be found with:

[(𝐹𝐴𝑥 + 𝑇 cos 𝜖𝑇 ) cos 𝛼 − (𝐹𝐴𝑧 + 𝑇 sin 𝜖𝑇 ) sin 𝛼] sin 𝜎
[(𝐹𝐴𝑥 + 𝑇 cos 𝜖𝑇 ) cos 𝛼 − (𝐹𝐴𝑧 + 𝑇 sin 𝜖𝑇 ) sin 𝛼] cos 𝜎 =

𝐹𝐴𝑦 cos 𝜎 + 𝑚𝑉 cos 𝛾�̇� − 𝑚 𝑉 2
𝑟 cos2 𝛾 tan 𝛿 sin 𝜒

−(𝐹𝐴𝑦 sin 𝜎 + 𝑚𝑔𝑟 cos 𝛾 + 𝑚𝑉 ̇𝛾 − 𝑚 𝑉 2
𝑟 cos 𝛾)

, (6.14)

which can be simplified to:

𝜎 = arctan [
𝐹𝐴𝑦 cos 𝜎 + 𝑚𝑉 cos 𝛾�̇� − 𝑚 𝑉 2

𝑟 cos2 𝛾 tan 𝛿 sin 𝜒

−(𝐹𝐴𝑦 sin 𝜎 + 𝑚𝑔𝑟 cos 𝛾 + 𝑚𝑉 ̇𝛾 − 𝑚 𝑉 2
𝑟 cos 𝛾)

]. (6.15)

The flight path angle and heading angle derivative can be replaced with the virtual control vector components,
𝜈𝛾 and 𝜈𝜒, which represent the error between the actual and reference value of these parameters. By replacing
the actual derivatives, an expression is found that computes the desired bank angle:

𝜎des = arctan [
𝐹𝐴𝑦 cos 𝜎 + 𝑚𝑉 cos 𝛾𝜈𝜒 − 𝑚 𝑉 2

𝑟 cos2 𝛾 tan 𝛿 sin 𝜒

−(𝐹𝐴𝑦 sin 𝜎 + 𝑚𝑔𝑟 cos 𝛾 + 𝑚𝑉 𝜈𝛾 − 𝑚 𝑉 2
𝑟 cos 𝛾)

]. (6.16)

It should be noted that the bank angle is also present in the right hand side of the equation. However, on the
right hand side the bank angle represents the current value, not the desired value.

Desired Angle of Attack and Thrust Throttle
The desired angle of attack and thrust throttle can be computed with an INDI control algorithm, since it is
possible to express the aerodynamic and thrust forces in terms of a derivative with respect to the angle of
attack and thrust throttle, respectively (Lu, 2016). Similarly to the definition of Equation 6.13, it is assumed
that the angle of sideslip, 𝛽, is small and that the non-radial components of the gravitational accelerations can
be neglected. The forces can be expressed in the trajectory reference frame by:

𝐹𝑉 = ̄𝑞(𝐶𝑇𝜙𝜙 cos 𝜖𝑡 cos 𝛼 − 𝐶𝑇𝜙𝜙 sin 𝜖𝑇 sin 𝛼 − ( ̄𝐶𝐷0 + ̄𝐶𝐷𝛼𝛼)𝑆ref) − 𝑚𝑔𝑟 sin 𝛾, (6.17a)

𝐹𝛾 = ̄𝑞(−𝐶𝑌 𝑆 + 𝐶𝑇𝜙𝜙 cos 𝜖𝑡 sin 𝛼 cos 𝜎 + 𝐶𝑇𝜙𝜙 sin 𝜖𝑡 cos 𝛼 cos 𝜎 + ( ̄𝐶𝐿0 + ̄𝐶𝐿𝛼𝛼)𝑆ref cos 𝜎) − 𝑚𝑔𝑟 cos 𝛾, (6.17b)

where

̄𝐶𝐷0 = 𝐶𝐷𝑎0
, (6.18a)
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̄𝐶𝐷𝛼 = 𝐶𝐷𝛼𝑎 + 𝐶𝐷𝛼𝑑𝑒,𝑙
+ 𝐶𝐷𝛼𝑑𝑒,𝑟

+ 𝐶𝐷𝛼𝑑𝑟
+ 𝐶𝐷𝛼𝑑𝑐

, (6.18b)

̄𝐶𝐿0 = 𝐶𝐿𝑎0
, (6.18c)

̄𝐶𝐿𝛼 = 𝐶𝐿𝛼𝑎 + 𝐶𝐿𝛼𝑑𝑒,𝑙
+ 𝐶𝐿𝛼𝑑𝑒,𝑟

+ 𝐶𝐿𝛼𝑑𝑐
. (6.18d)

The derivative of the drag and lift coefficients, ̄𝐶𝐷𝛼 and ̄𝐶𝐿𝛼 , come from the left and right elevon, 𝑑𝑒, 𝑙
and 𝑑𝑒, 𝑟, the rudder, 𝑑𝑟, the canard 𝑑𝑐, and the body coefficient, 𝑎. Furthermore, 𝐶𝑇𝜙 is the thrust throttle
derivative of the thrust coefficient, 𝜙 is the thrust throttle itself, 𝐶𝑌 is the side force coefficient, 𝑆ref is the
reference area of the space plane and ̄𝑞 is the dynamic pressure.

The expressions obtained in Equation 6.18 can be applied to the derivatives of the velocity and flight path
angle of Equation 6.12. The resulting equations can be used in combination with the INDI algorithm to obtain
an expression for the required change in angle of attack and thrust throttle:

̇𝑉 = ̇𝑉0 + 𝑑
𝑑𝜙 [𝐺𝑉 (x)]Δ𝜙, (6.19a)

̇𝛾 = ̇𝛾0 + 𝑑
𝑑𝛼 [𝐺𝛾(x)]Δ𝛼, (6.19b)

where

𝑑
𝑑𝜙 [𝐺𝑉 (x)] = ̄𝑞

𝑚(𝐶𝑇𝜙 cos 𝜖𝑇 cos 𝛼 − 𝐶𝑇𝜙 sin 𝜖𝑇 sin 𝛼) (6.20a)

𝑑
𝑑𝛼 [𝐺𝛾(x)] = ̄𝑞𝑆ref

𝑚𝑉
̄𝐶𝐿𝛼 cos 𝜎 (6.20b)

By inverting Equation 6.19a and 6.19b, and applying the virtual control vector, an expression is obtained that
computes the required change in thrust throttle and angle of attack:

Δ𝜙 = 𝑑
𝑑𝜙 [G𝑉 (x)]−1(𝜈𝑉 − ̇𝑉0), (6.21a)

Δ𝛼 = 𝑑
𝑑𝛼 [G𝛾(x)]−1(𝜈𝛾 − ̇𝛾0). (6.21b)

With the required change in thrust throttle and angle of attack, the required thrust throttle and desired angle
of attack are computed with:

𝜙 = 𝜙0 + Δ𝜙, (6.22a)
𝛼des = 𝛼 + Δ𝛼, (6.22b)

where 𝜙0 is the initial thrust throttle, and 𝛼 is the current angle of attack.

6.2.2. Control module
The guidance module produces desired angle of attack and bank angle. These desired angles are fed into the
control module, with which the desired control surface deflection can be computed. The control module is
separated into two parts. The first of which, computes a desired angular velocity that the space plane should
achieve. This angular velocity is based on the desired angle of attack and bank angle that has been computed
in the guidance module in combination with a reference angle of sideslip. Due to the assumptions made in the
guidance module, this angle is always set to zero. These angles are used to form a virtual control vector, which
is used in combination with an NDI control algorithm. The result of the loop is a desired angular velocity
expressed in terms of the roll, pitch and yaw rate of the space plane. A diagram of the computation of the
desired angular velocity can be seen in Figure 6.2.

The second part of the control module takes the desired angular velocity and creates a virtual control vector,
which represents the desired angular acceleration. The virtual control vector is used with an INDI control
algorithm to obtain the required control surface deflection in order to achieve the desired angular acceleration.
A diagram of this part of the control module can be seen in Figure 6.3.



64 Chapter 6. Guidance and Control

NDI

Control System Part 1

Figure 6.2: Diagram of the NDI control algorithm of the control module.
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Figure 6.3: Diagram of the INDI control algorithm of the control module.

Angular Velocity Control
The NDI control algorithm, that is applied for the angular velocity, relates the roll, pitch and yaw rate of the
space plane to the difference in desired and current aerodynamic angles. The virtual control vector for the
angular velocity is defined by:

𝝂ang.vel. = [𝜈𝜎 𝜈𝛼 𝜈𝛽]⊺ = Kang.vel.eaero = ⎡
⎢
⎣

𝐾�̇�
𝐾�̇�
𝐾 ̇𝛽

⎤
⎥
⎦

⎡
⎢
⎣

𝜎des − 𝜎
𝛼des − 𝛼
𝛽ref − 𝛽

⎤
⎥
⎦

. (6.23)

The roll, pitch and yaw rate define the rotation of the space plane with respect to the inertial frame. This
angular velocity can be decomposed into the rotation of different reference frames with respect to each other,
as has been discussed in Section 3.1.3. The rotation of the space plane with respect to the inertial frame,
expressed in components along the body axes, can be defined by:

𝜴𝐵
𝐵,𝐼 = CB,I𝜴𝐼

𝐸,𝐼 + CB,E𝜴𝐸
𝑉 ,𝐸 + CB,T𝜴𝑇

𝑇 ,𝑉 + CB,A𝜴𝐴
𝐴,𝑇 + CB,A𝜴𝐴

𝐵,𝐴. (6.24)

This expression can be simplified by, first of all, assuming that the rotation of the Earth, and the change in
longitude and latitude is small compared to the change in flight path angle, heading angle and change in the
aerodynamic angles. Second of all, by investigating the axes of rotation as seen in Figure 3.8, it can be seen
that the rotation due to the change in bank angle is about the 𝑥𝑇 -axis, which is equal to the 𝑥𝐴-axis. This
means that this rotation can also be expressed along the body axes with transformation matrix CB,A. The
resulting expression becomes:

𝜴𝐵
𝐵,𝐼 = CB,T𝜴𝑇

𝑇 ,𝑉 + CB,A𝜴𝐴
𝐴,𝑇 + CB,A𝜴𝐴

𝐵,𝐴, (6.25a)

= CB,A𝜴𝐴
𝐵,𝑇 + CB,T𝜴𝑇

𝑇 ,𝑉 . (6.25b)

In Figure 3.8 the definition of the angle of sideslip and bank angle are considered positive, while the angle of
attack is considered negative. In a similar way, the definition of the flight path angle and heading angle are
investigated. It can be seen in Figure 6.4 that the heading angle derivative is a rotation about the 𝑧𝑉 -axis,
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Figure 6.4: Relation between the 𝑉 -frame and the 𝑇 𝐴- and 𝑇 𝐺-frame (Mooij, 1994).

while the flight path angle derivative is a rotation about the 𝑦𝑇 -axis. Due to the definitions of the angles and
the axes, the roll, pitch and yaw rate are expressed by:

⎡⎢
⎣

−𝑝
𝑞

−𝑟
⎤⎥
⎦

= CB,A
⎡⎢
⎣

�̇�
̇𝛼
̇𝛽
⎤⎥
⎦

+ CB,T
⎡⎢
⎣

−�̇� sin 𝛾
̇𝛾

−�̇� cos 𝛾
⎤⎥
⎦

, (6.26)

where the flight path and heading angle derivatives are computed using Equation 6.12.
The derivatives of the aerodynamic angles are replaced by the virtual control vector of Equation 6.23 to

obtain an expression for the desired roll, pitch and yaw rate:

⎡
⎢
⎣

−𝑝des

𝑞des

−𝑟des

⎤
⎥
⎦

= CB,A
⎡
⎢
⎣

𝜈𝜎
𝜈𝛼
𝜈𝛽

⎤
⎥
⎦

+ CB,T
⎡⎢
⎣

�̇� sin 𝛾
̇𝛾

−�̇� cos 𝛾
⎤⎥
⎦

. (6.27)

Angular Acceleration Control
The objective of the angular acceleration control is to compute the required control surface deflections of the
elevons and the rudder of the space plane to achieve the desired angular accelerations. The angular acceleration
is defined by a virtual control vector, which found by comparing the actual and desired angular velocity of the
space plane:

𝜈ang.acc. = ⎡
⎢
⎣

𝜈𝑝
𝜈𝑞
𝜈𝑟

⎤
⎥
⎦

= Kang.acceang.acc. = ⎡
⎢
⎣

𝐾�̇�
𝐾 ̇𝑞
𝐾 ̇𝑟

⎤
⎥
⎦

⎡
⎢
⎣

𝑝des − 𝑝
𝑞des − 𝑞
𝑟des − 𝑟

⎤
⎥
⎦

, (6.28)

where it is assumed that the current angular velocity of the space plane is known.
The control surfaces deflection changes are computed with an INDI control algorithm. According to

Sieberling, Chu, and J. A. Mulder (2010), the derivative of the roll, pitch and yaw can be expressed in the
following form:

�̇� = �̇�0 + 𝜕
𝜕u [I−1M𝑐]Δu = �̇�0 + I−1 𝜕

𝜕u [M𝑐]Δu, (6.29)

where the initial derivative of the angular velocity, �̇�0, is computed using Equation 3.33 and I is the moments
of inertia matrix. The derivative matrix of the moments due to the control surfaces, containing the left and
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right elevons, and the rudder can be expressed by:

(M𝑐)u = ̄𝑞𝑆ref
⎡
⎢⎢
⎣

𝑏ref𝐶𝑙𝛿𝑒,𝑙 𝑏ref𝐶𝑙𝛿𝑒,𝑟 𝑏ref𝐶𝑙𝛿𝑟
𝑐ref𝐶𝑚𝛿𝑒,𝑙 𝑐ref𝐶𝑚𝛿𝑒,𝑟 𝑐ref𝐶𝑚𝛿𝑟
𝑏ref𝐶𝑛𝛿𝑒,𝑙 𝑏ref𝐶𝑛𝛿𝑒,𝑟 𝑏ref𝐶𝑛𝛿𝑟

⎤
⎥⎥
⎦

, (6.30)

where the subscripts 𝛿𝑒, 𝑙, 𝛿𝑒, 𝑟 and 𝛿𝑟 denotes the derivative of the control surface deflection for the roll
coefficient, 𝐶𝑙, pitch coefficient, 𝐶𝑚, and yaw coefficient 𝐶𝑛. The derivatives of the coefficients are not easily
estimated, since not all coefficients have a linear derivative. Thus, it is assumed that the derivative of the
yaw rate is only influenced by the rudder and that the pitching moment is not influenced by the rudder.
Furthermore, the effect of a change in force coefficient due to a change in control surfaces is included. The
resulting derivative matrix becomes:

(M𝑐)u = ̄𝑞𝑆ref
⎡
⎢⎢
⎣

𝑏ref𝐶𝑙𝛿𝑒,𝑙 𝑏ref𝐶𝑙𝛿𝑒,𝑟 𝑏ref𝐶𝑙𝛿𝑟
𝑐ref𝐶𝑚𝛿𝑒,𝑙 − 𝐶𝑍𝛿𝑒,𝑙𝑥𝑐𝑔 𝑐ref𝐶𝑚𝛿𝑒,𝑟 − 𝐶𝑍𝛿𝑒,𝑟𝑥𝑐𝑔 0

0 0 𝑏ref𝐶𝑛𝛿𝑟 + 𝐶𝑌𝛿𝑟𝑥𝑐𝑔

⎤
⎥⎥
⎦

, (6.31)

where 𝐶𝑌 is the side force coefficient and 𝐶𝑍 is the force coefficient in the 𝑧𝐵-axis direction. Additionally, 𝐶𝐷
is the drag force coefficient and 𝐶𝐿 is the lift force coefficient. The force coefficient in the 𝑧𝐵-axis, 𝐶𝑍 , can be
expressed, when assuming a small angle of sideslip, by:

𝐶𝑍𝛿𝑒,𝑙 = −𝐶𝐷𝛿𝑒,𝑙 sin 𝛼 − 𝐶𝐿𝛿𝑒,𝑙 cos 𝛼, (6.32a)

𝐶𝑍𝛿𝑒,𝑟 = −𝐶𝐷𝛿𝑒,𝑟 sin 𝛼 − 𝐶𝐿𝛿𝑒,𝑟 cos 𝛼. (6.32b)

(6.32c)

After inversion and by applying the virtual control vector, 𝜈ang.acc. an expression is found for the change in
control surface deflections:

⎡
⎢
⎣

Δ𝑢de,l
Δ𝑢de,r
Δ𝑢dr

⎤
⎥
⎦

= I 𝜕
𝜕u [M𝑐]−1(𝜈ang.acc. − �̇�0), (6.33)

where Δ𝑢de,l, Δ𝑢de,r and Δ𝑢dr represent the required change in the left and right elevon, and rudder, respec-
tively.

With the required change computed, the actual control surface deflection is simply found with:

u = u0 + Δu. (6.34)

6.2.3. Trim Control module
In studies done by Mooij (1998) and Shaughnessy (1992), it was found that Thrust Vector Control (TVC) and
a canard should be used to trim the space plane in order to reduce drag losses. A trimmed space plane, means
that the natural pitching moment is zero i.e., the pitching moment due to the body of the space plane itself
does not impose a change in pitch angle. It is therefore needed to include trim module, consisting of control of
the canard or TVC. The canard is used to trim the space plane during the subsonic parts of the ascent, since
aerodynamic data for the canard is only available up to Mach 0.9. Afterwards, the TVC takes over to trim
the space plane, with a maximum thrust elevation angle of ±25 degrees Mooij (1998). A diagram of the trim
control module can be seen in Figure 6.5.

Trim Control during Subsonic Flight
For the control with the canard an INDI control algorithm is applied. For subsonic parts of the flight, the
required change in canard deflection is computed with:

Δ𝑢dc = 𝐼𝑦𝑦
𝜕

𝜕𝑢dc
[𝑀𝑦𝑑𝑐 ]−1(− ̇𝑞0) = 𝐼𝑦𝑦[ ̄𝑞𝑆ref𝐶𝑚𝛿𝑐 ]−1(− ̇𝑞0), (6.35)

where the initial derivative of the pitch rate, ̇𝑞0, is computed with Equation 3.33b, 𝐼𝑦𝑦 is the moment of inertia
about the 𝑦𝐵-axis and 𝐶𝑚𝛿𝑐 is the pitching moment coefficient derivative of the canard. It should be noted
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Figure 6.5: Diagram of the trim control module.

that the computation of the pitch rate derivative requires the moment about the corresponding axis. In this
case, about the 𝑦𝐵-axis. The moment that is used to compute the pitch rate derivative is only the contribution
of the space plane body, 𝑀𝑦𝑎 , and canard, 𝑀𝑦𝑐 :

𝑀trim = 𝑀𝑦𝑎 + 𝑀𝑦𝑑𝑐 , (6.36)

where

𝑀𝑦𝑎 = ̄𝑞𝐶𝑚a𝑆ref ̄𝑐ref, (6.37a)

𝑀𝑦𝑑𝑐 = ̄𝑞𝑆ref ̄𝑐ref(𝐶𝑚dc − 𝐶𝑍dc
𝑥cg
̄𝑐ref

). (6.37b)

This ensures that the trim control module only counteracts the natural pitching moment
In the aforementioned equations 𝐶𝑚a and 𝐶𝑚dc signify the pitching moment coefficient of the body and

canard, respectively. 𝐶𝑍dc denotes the force coefficient of the canard along the positive 𝑧𝐵-axis. Furthermore,
𝑥𝑐𝑔 is the location of the Center of Gravity (CoG) with respect to the aerodynamic reference point and ̄𝑐ref is
the chord length of the wing.

Once again, after the required change in canard deflection is computed, the canard deflection itself is
computed with:

𝑢dc = 𝑢dc0 + Δ𝑢dc. (6.38)

Trim Control during Higher than Subsonic Flight
When transonic and higher Mach numbers are reached, the canard is retracted and the TVC is used to trim
the space plane (Shaughnessy, 1992). An INDI control algorithm can be used by linearizing the thrust induced
moment about the 𝑦𝐵-axis. It is assumed that the thrust elevation angle is small, which allows the use of
the small angle approximation. This means that there is a linear relation between the TVC induced control
moment and the thrust off-set angle, which is required for the INDI. The linearized thrust induced moment is
given by:

𝑀𝑦tvc = − ̄𝑞𝐶𝑇 𝜖𝑇 𝑥ct. (6.39)
With the linearized thrust moment an equation can be set up to compute the required change in thrust
elevation angle:

Δ𝜖𝑇 = 𝐼𝑦𝑦
𝜕

𝜕𝜖𝑇
[𝑀𝑦tvc ]−1(− ̇𝑞) = 𝐼𝑦𝑦[− ̄𝑞𝐶𝑇 𝑥ct]−1(− ̇𝑞0), (6.40)

where the computation of the pitch rate, ̇𝑞0 is done with the trim moment:

𝑀trim = 𝑀𝑦𝑎 + 𝑀𝑦tvc , (6.41a)
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𝑀𝑦𝑎 = ̄𝑞𝐶𝑚a𝑆ref ̄𝑐ref, (6.41b)
𝑀𝑦tvc = − ̄𝑞𝐶𝑇 sin 𝜖𝑇 𝑥ct. (6.41c)

In the above equations 𝑀𝑦tvc is the pitching moment due to the thrust in 𝑧𝐵-direction, 𝜖𝑇 is the thrust
elevation angle and 𝑥𝑐𝑡 is the Center of Thrust (CoT) with respect to the CoG.

The required change in thrust elevation angle is used to update the thrust elevation angle with:

𝜖𝑇 = 𝜖𝑇0 + Δ𝜖𝑇 . (6.42)

6.3. Guidance and Control Architecture & Performance
The G&C systems performance has been investigated before and during the initial optimization. Based on
the investigation a number of changes have been implemented to ensure that the system is able to effectively
guide and control the space plane. Additionally, the transcription method discussed in Chapter 5, requires a
G&C system that is capable of switching off partly depending on the ascent phase.

6.3.1. Performance
During the initial optimization, which is discussed in Section 5.2, the performance of the G&C system has been
investigated. The main issue that came up with the system was the difficulty to control the velocity and flight
path angle of the space plane during the pull up phase. For this reason, it was chosen to remove the velocity
as an optimization parameter and to control the angle of attack of the space plane directly from the moment
that the pull up phase starts. Another issue that came up during that investigation, was that the control
surface deflection oscillates heavily from the moment that the dynamic pressure drops due to the increasing
altitude, which is around the same time as the start of the pull up phase. Figure 6.6 shows these oscillations. It
was hypothesized that during the pull up phase the dynamic pressure drops considerably, which caused these
oscillations. Another hypothesis was that these oscillations occurred due to the interactions between the trim
module and the control module. The main reason for these oscillations was not found, which necessitated the
minimization of these oscillations.

Oscillations
In order to minimize the oscillations, a maximum change in control surface deflection angle was introduced.
The maximum change in control surface deflection angle was set to ±40 degrees per second, ±4 deg per time
step of the integrator. Whenever the pull up phase would start, the maximum change in deflection angle would
be limited with the following expression:

�̇�max = 4.0 ̄𝑞
̄𝑞𝑐
, (6.43)

where �̇�max is the maximum change in deflection angle, ̄𝑞 is the current dynamic pressure, and ̄𝑞𝑐 is the dynamic
pressure constraint. In this way, the oscillations that occurred, would be minimized. Additionally, the gains
of the first part of the control module, which controls the angular velocity of the space plane, change when
the pull up altitude starts. Finally, the oscillations during the last phase where removed by assuming that
the space plane would control its orientation by using Reaction Control System (RCS) thrusters. The use
of these thrusters were first introduced in the study by Mooij (1998), since the dynamic pressure during the
last phase of the ascent is close to zero. The implementation of the thrusters itself is not considered, instead
a simple INDI algorithm is used to define moment coefficients that simulate the use of RCS thrusters. The
computation of these coefficients is based on Equation 6.33, where the deflection angle is replaced by these
moment coefficients:

⎡
⎢
⎣

Δ𝐶RCS,x
Δ𝐶RCS,y
Δ𝐶RCS,z

⎤
⎥
⎦

= I 𝜕
𝜕u [MRCS]−1(𝜈ang.acc. − �̇�0), (6.44)

where the thruster coefficients, 𝐶RCS are expressed about the body axes of the space plan. The derivative
matrix of the moment, 𝜕

𝜕u [MRCS] is defined by:

𝜕
𝜕u [MRCS] = ⎡⎢

⎣

̄𝑞𝑆ref𝑏ref 0 0
0 ̄𝑞𝑆ref𝑐ref 0
0 0 ̄𝑞𝑆ref𝑏ref

⎤⎥
⎦

. (6.45)
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Figure 6.6: Time history of the control surface deflection angles, equivalence ratio, and thrust elevation
angle.

The RCS thruster coefficients are updated by:

⎡
⎢
⎣

𝐶RCS,x
𝐶RCS,y
𝐶RCS,z

⎤
⎥
⎦

=
⎡
⎢⎢
⎣

𝐶RCS,x0
𝐶RCS,y0
𝐶RCS,z0

⎤
⎥⎥
⎦

+ ⎡
⎢
⎣

Δ𝐶RCS,x
Δ𝐶RCS,y
Δ𝐶RCS,z

⎤
⎥
⎦

, (6.46)

where the subscript 0 denotes the current coefficient values. The updated coefficients are used to find the
moments induced by the thrusters with:

⎡
⎢
⎣

𝑀RCS,x
𝑀RCS,y
𝑀RCS,z

⎤
⎥
⎦

= ̄𝑞𝑆ref
⎡
⎢
⎣

𝑏ref𝐶RCS,x
𝑐ref𝐶RCS,y
𝑏ref𝐶RCS,z

⎤
⎥
⎦

. (6.47)

The thrusters that are simulated are not based on any actual thrusters, and the performance limit of these
is not implemented. During the coasting phase, the angle of attack is commanded to zero, which reduces the
aerodynamic force induced moments. A potential issue could occur during the pull up phase when the space
plane is commanded to a large angle of attack. The optimization algorithm could find a solution with a coast
phase altitude, such that the RCS thrusters are enabled when the space plane is right on the cusp of becoming
unstable. In order to mitigate this risk, a maximum angle of attack during the pull up phase is enforced. In
the study done by Mooij (1998) the pull up phase had a constant angle of attack of 6 degrees. For this study,
the maximum angle of attack is set to 4 degrees, and a refinement will be performed when the optimization
algorithm finds a fuel-optimal solution with an angle of attack close to the maximum.

Bank Angle
The desired bank angle is computed with an NDI algorithm. It was not possible to use the INDI algorithm,
since the aerodynamic coefficients cannot be expressed as a function of the bank angle. Typically, NDI is
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applied when the dynamics of the system are known exactly. For the bank angle, which is influenced by the
aerodynamic forces, this is not the case. Since the desired bank angle is not changed incrementally, large
changes in the desired bank angle can occur. It was found that large changes in the bank angle occurred when
the flight path angle is close to zero. When the flight path angle is close to zero, the forces that act on the space
plane are in equilibrium. It was found that the flight path angle would slightly oscillate in these occurrences
around the commanded flight path angle. Since the flight path angle oscillates around the commanded value,
the virtual control for the flight path angle, 𝜈𝛾, changes sign with the oscillations. This virtual control is
included in the determination of the desired bank angle, as can be seen in Equation 6.16. Since the forces are
in equilibrium, the virtual control has a large influence on the computation of the desired bank angle. In order
to mitigate the oscillations in bank angle, the value of the virtual control of the flight path angle is limited by
expressing the desired bank angle with:

𝜎des = arctan [
𝐹𝐴𝑦 cos 𝜎 + 𝑚𝑉 cos 𝛾𝜈𝜒 − 𝑚 𝑉 2

𝑟 cos2 𝛾 tan 𝛿 sin 𝜒

−(𝐹𝐴𝑦 sin 𝜎 + 𝑚𝑔𝑟 cos 𝛾 + 0.01𝑚𝑉 𝜈𝛾 − 𝑚 𝑉 2
𝑟 cos 𝛾)

]. (6.48)

Determination of the Gains
Since the NDI and INDI algorithms are used to guide and control the space plane, linearization of the EoM
was not necessary. This in turn means that gain scheduling is not necessary. The gains for the different virtual
control vectors are determined by trial and error. For the guidance module the gains are:

Ktraj = [𝐾 ̇𝑉 𝐾�̇� 𝐾�̇�]⊺ = [4.0 0.8 0.4]⊺ . (6.49)

The heading angle gain is low due to the fact that the desired bank angle, which results from the commanded
heading angle, is computed with an NDI algorithm. As mentioned previously, the NDI algorithm does not
change the desired value incrementally. Thus, the commanded change in heading angle should not be too large
to ensure that the bank angle does not start to oscillate.

For the commanded angular velocity of the space plane, which is computed with the first part of the control
system, two gains are defined. The two gains are used for initial phase of the ascent and pull up phase, where
the pull up phase requires finer control over the angular velocity. This necessitates a small gain for the second
phase. The gain vectors are:

Kang.vel.phase.1 = [𝐾�̇� 𝐾�̇� 𝐾 ̇𝛽]
⊺

= [2.0 2.0 2.0]⊺ , (6.50a)

Kang.vel.phase.2 = [𝐾�̇� 𝐾�̇� 𝐾 ̇𝛽]
⊺

= [0.5 0.5 0.5]⊺ . (6.50b)

The reduced values for the gain vector during the pull up phase ensures that the overshoot is reduced, which
means that the space plane will not becoming unstable as quickly.

For the second part of the control module a single gain vector is defined by:

Kang.acc. = [𝐾�̇� 𝐾 ̇𝑞 𝐾 ̇𝑟]⊺ = [3.0 3.0 3.0]⊺ . (6.51)

Effects of the Changes
With the changes to mitigate the oscillations in the flight path angle and the bank angle. A stable enough
system is developed, which can be used to optimize the ascent trajectory of a space plane. In Figures 6.7
and 6.8 the effect of these changes can be seen for a launch time of 𝑡0 = 0 s and 𝑡0 = 3600 s. These results
come from the optimization that will be discussed in Chapter 8. It can be seen that the elevon deflections
still oscillate just before the pull up maneuver. The reason why these oscillations occurred became apparent
during the sensitivity analysis. A more detailed discussion in this phenomenon can be read in Section 9.2.
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Figure 6.7: Showcase of the time history of the deflection angles of the space plane for a launch time of
𝑡0 = 0 s.
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Figure 6.8: Showcase of the time history of the deflection angles of the space plane for a launch time of
𝑡0 = 3600 s.

6.3.2. Guidance and Control Architecture
The ascent phases and the differing ways of controlling the space plane during these phases requires a G&C
system that is modular and capable of switching of parts of the system. In Figure 6.9 an overview is given of the
architecture of the system. During the first phase, the full G&C system is utilized, as described in Section 6.2.
During this phase, the velocity, flight path angle and heading angle is directly commanded. Afterwards, the
part of the guidance module that controls the flight path angle and heading angle is turned off. The thrust
throttle is still updated and the TVC is active. However, the bank angle and sideslip angle are commanded to
zero and the reference angle of attack comes from the optimization parameters. During the last phase of the
ascent, the coasting phase, the engine is turned off, which also means that the TVC module is turned off. In
this phase the RCS thrusters are used to ensure that the angle of attack is, in addition to the angle of sideslip



72 Chapter 6. Guidance and Control

Guidance Module Trim Module Guidance Module  
 Control Module

Guidance Module Trim Module Control Module

 

 

 

Control Module

 

 

Phase 1

Phase 2

Phase 3

RCS

Figure 6.9: Overview of the G&C system architecture.

and bank angle, returned to zero.



7
Software

In this chapter the use of the software packages and several numerical methods will be discussed, which are
necessary for the optimization of an ascent trajectory. In Section 7.1 the numerical methods that are used in
the simulation are discussed. This includes the use of an integrator to propagate the state of the space plane,
interpolation to evaluate the aerodynamic coefficients and the construction of a reference trajectory based
on the optimization parameters. In Section 7.2 the entire architecture behind the simulation of the ascent
trajectory and the optimization of that trajectory is explained. Furthermore, it is explained, which parts of
the simulation are built from scratch and which parts are used from existing software packages.

7.1. Numerical Methods
In this section an overview is given of the numerical methods that have been used for the simulation of the
ascent trajectory, with reasoning why these methods have been used.

7.1.1. Integration
The Equations of Motion (EoM) derived in Section 3.2 need to be solved numerically. A number of integrators
are available in TU Delft Astrodynamics Toolbox (TUDAT) to solve the EoM. The most well-known integrator
is the Runge-Kutta multi-stage integrator. The Runge-Kutta 4 (RK4) integrator uses four function evaluations
for a single time step (Dirkx and Cowan, 2019). Other more intricate integrators are also available, that either
use more function evaluation to increase the accuracy of the integrator, or use a variable step size. The variable
step size integrators use two different orders, for instance, a fourth and fifth order Runge-Kutta integrator, and
compare the difference to assess the Local Truncation Error (LTE) (Dirkx and Cowan, 2019). Based on the
LTE, the step size is varied and used by the lowest order integrator. The use of a variable step size integrator
has seen benefits for elliptical orbits, where the dynamics of the orbit might be fast or slow depending on the
place in the orbit. However, the inclusion of Incremental Non-linear Dynamic Inversion (INDI) algorithms to
guide and control the space plane creates a risk when using the variable step size integrators. An important
assumption that enables the use of the algorithm is that the step size is small, which enables the reduction
of the EoM. The variable step size integrators might result in a large time step, which could result in a poor
performing Guidance and Control (G&C) system. For this reason, variable step size integrators will not be
used to solve the EoM.

For the fixed step size integrators, a trade-off was done to determine, which integrator should be used. As
was mentioned previously, the fixed step size integrators can have a number of function evaluations. More
function evaluation will result in a more accurate solution of the EoM, at the cost of a longer simulation time.
A trade-off can be made between the accuracy of the solution and the simulation time. However, it was found
by investigating the performance of the G&C system that it would greatly be reduced when considering a
time step larger than 0.1 seconds. For this reason, the step size of 0.1 seconds was considered non-negotiable.
Instead, a trade-off was made between the different fixed step-size integrators, where RK4 was the integrator
considered with the lowest amount of function evaluations. It became apparent that even by using RK4 the
simulation that would reach the target altitude would result in a simulation time of 7 seconds. Considering
the fact that the optimization algorithm might need to simulate an ascent possibly more than 200 times per
generation, with an unknown number of generations, it is imperative to reduce the simulation time of a single
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Figure 7.1: Illustration of the Runge-Kutta 4 intermediate steps (Noomen, 2019).

ascent as much as possible. For instance, with 200 individuals in a single generation, 500 generations in total
and an average simulation time of 3.5 seconds, the total simulation time would become 350, 000 seconds, which
is four entire days that the optimization algorithm requires to find the solution for a fuel-optimal ascent
trajectory. For this reason, RK4 was selected as the integrator to be used to solve the EoM numerically.

With the choice to use 𝑅𝐾4 as integrator, a small overview is given of the equations that are used to find
the state of the next time step. The integrator defines the state at the next step with:

k1 = Δ𝑡f(x, 𝑡), (7.1a)

k2 = Δ𝑡f(x + 1
2k1, 𝑡 + 1

2Δ𝑡), (7.1b)

k3 = Δ𝑡f(x + 1
2k2, 𝑡 + 1

2Δ𝑡), (7.1c)

k4 = Δ𝑡f(x + k3, 𝑡 + Δ𝑡), (7.1d)

x(𝑡 + Δ𝑡) = x + 1
6(k1 + 2k2 + 2k3 + k4), (7.1e)

where k1, k2, k3 and k4 represent the function evaluations of the integrator, which are used together to
compute the state derivative. In Figure 7.1 an overview is given of the function evaluations.

7.1.2. Interpolation
Interpolation is needed to find the aerodynamic and thrust coefficients, as well as the mass and moments
of inertia of the National Aero-Space Plane (NASP). Shaughnessy et al. (1990) has graphs that define the
aerodynamic coefficients for various Mach numbers, angles of attack and deflection angles of the control
surfaces. The thrust coefficients and specific impulse are determined for various dynamic pressure values,
Mach numbers and fuel equivalence ratios, 𝜙. Lastly, the moment of inertia and the Center of Gravity (CoG)
are defined for a number of weights. The graphs have been tabulated, which are used to interpolate the
coefficients, CoG and moments of inertia. It is assumed that linear interpolation can be used to determine
these values. For this study, the graphs have been converted into look-up tables that can be used within the
TUDAT environment. With the following interpolation methods these look-up tables are called upon to find
the correct value.

Standard Linear Interpolation
For the CoG and moments of inertia, standard linear interpolation is used to determine the values. The value
for either can be found with:

𝑦 = 𝑦0 + (𝑥 − 𝑥0) 𝑦1 − 𝑦0
𝑥1 − 𝑥0

, (7.2)

where 𝑥 is the weight of the space plane and 𝑦 is the CoG or 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧. The subscripts 0 and 1 define the
known neighboring elements i.e., the values that have been tabulated.
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Bilinear Interpolation
For the aerodynamic and thrust coefficients, the interpolation is less straight forward. In the case that the
coefficient is dependent on two variables, bilinear interpolation is needed. For instance, the yawing moment
dynamic derivative for the roll rate, 𝐶𝑛𝑝 , is dependent on the current Mach number and angle of attack. In
this case, first the yawing moment dynamic derivative for the current angle of attack is found for the two
neighboring Mach numbers via linear interpolation. After that, the yawing moment dynamic derivative is
found for the current Mach number. Mathematically, the interpolation can be described with:

𝐶𝑛𝑝0
= 𝐶𝑛𝑝00

+ (𝛼 − 𝛼0)
𝐶𝑛𝑝01

− 𝐶𝑛𝑝00
𝛼1 − 𝛼0

, (7.3a)

𝐶𝑛𝑝1
= 𝐶𝑛𝑝10

+ (𝛼 − 𝛼0)
𝐶𝑛𝑝11

− 𝐶𝑛𝑝10
𝛼1 − 𝛼0

, (7.3b)

𝐶𝑛𝑝 = 𝐶𝑛𝑝0
+ (𝑀 − 𝑀0)

𝐶𝑛𝑝1
− 𝐶𝑛𝑝0

𝑀1 − 𝑀0
, (7.3c)

where 𝑀 is the Mach number and 𝛼 is the angle of attack. Subscript 00 and 01 denotes the yawing moment
dynamic derivatives for the the lower neighboring Mach number for the lower and upper neighboring angle
of attack. Similarly, subscript 10 and 11 are the yawing moment dynamic derivatives for the the higher
neighboring Mach number for the lower and upper neighboring angle of attack. Thus, subscript 0 and 1
denotes the yawing moment dynamic derivatives for the current angle of attack, and the lower and upper
neighboring Mach number.

Trilinear Interpolation
Several coefficients exist that are dependent on three different variables. One of these is the yawing moment
coefficient due the the rudder, 𝐶𝑛,𝑑𝑟, which is dependent on the angle of attack, the deflection angle of the
rudder and the Mach number. In this case, first 𝐶𝑛,𝑑𝑟 is found for the current deflection angle, for the
two neighboring angle of attacks and for the two neighboring Mach numbers. After that 𝐶𝑛,𝑑𝑟 is found for
the current angle of attack and for the two neighboring Mach numbers. Finally, the current 𝐶𝑛,𝑑𝑟 is found.
Mathematically, this can be written by:

𝐶𝑛,𝑑𝑟00 = 𝐶𝑛,𝑑𝑟000 + (𝛿dr − 𝛿dr0)
𝐶𝑛,𝑑𝑟001 − 𝐶𝑛,𝑑𝑟000

𝛿dr1 − 𝛿dr0
, (7.4a)

𝐶𝑛,𝑑𝑟01 = 𝐶𝑛,𝑑𝑟010 + (𝛿dr − 𝛿dr0)
𝐶𝑛,𝑑𝑟011 − 𝐶𝑛,𝑑𝑟010

𝛿dr1 − 𝛿dr0
, (7.4b)

𝐶𝑛,𝑑𝑟10 = 𝐶𝑛,𝑑𝑟100 + (𝛿dr − 𝛿dr0)
𝐶𝑛,𝑑𝑟101 − 𝐶𝑛,𝑑𝑟100

𝛿dr1 − 𝛿dr0
, (7.4c)

𝐶𝑛,𝑑𝑟11 = 𝐶𝑛,𝑑𝑟110 + (𝛿dr − 𝛿dr0)
𝐶𝑛,𝑑𝑟111 − 𝐶𝑛,𝑑𝑟110

𝛿dr1 − 𝛿dr0
, (7.4d)

𝐶𝑛,𝑑𝑟0 = 𝐶𝑛,𝑑𝑟00 + (𝛼 − 𝛼0)
𝐶𝑛,𝑑𝑟01 − 𝐶𝑛,𝑑𝑟00

𝛼1 − 𝛼0
, (7.4e)

𝐶𝑛,𝑑𝑟1 = 𝐶𝑛,𝑑𝑟10 + (𝛼 − 𝛼0)
𝐶𝑛,𝑑𝑟11 − 𝐶𝑛,𝑑𝑟10

𝛼1 − 𝛼0
, (7.4f)

𝐶𝑛,𝑑𝑟 = 𝐶𝑛,𝑑𝑟0 + (𝑀 − 𝑀0)
𝐶𝑛,𝑑𝑟1 − 𝐶𝑛,𝑑𝑟0

𝑀1 − 𝑀0
, (7.4g)

where 𝑀 is once again the Mach number and 𝛼 is the angle of attack. Additionally, the deflection of the rudder
is denoted by 𝛿dr.

7.1.3. Derivative Coefficient Approximation
In Section 6.2 the determination of the desired angle of attack, required equivalence ratio that is used as a
means to throttle the engine, and required deflection angles of the control surfaces has been discussed. The
determination of these control parameters was possible when the derivative of certain aerodynamic coefficients
and the thrust coefficient were defined with respect to the angle of attack, control surface deflection or equiva-
lence ratio, respectively. The derivative of the coefficients is not given in the technical report by Shaughnessy
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Figure 7.2: Example of a graph that gives information about the thrust coefficient of the NASP
(Shaughnessy et al., 1990).

et al. (1990). Instead, the derivative of the coefficients is approximated using numerical differentiation methods.
In Figure 7.2, an example is given of the graphs provided for the NASP. In this figure, it can be seen that the
thrust coefficient is dependent on the equivalence ratio, dynamic pressure, and Mach number. The derivative
of the thrust coefficient with respect to the equivalence ratio can be approximated by using forward, backward
or central difference methods (Klees and Dwight, 2014). Additionally, not all coefficient vary linearly between
the minimum and maximum angle of attack, deflection angle of the control surface or equivalence ratio. For
this reason, it is chosen to approximate the derivative of the coefficients at each node and to use trilinear
interpolation to find the derivative of the coefficient for the current angle of attack, deflection angle of the
control surface or equivalence ratio.

As an example, the method to obtain the thrust coefficient derivative with respect to the equivalence ratio is
explained. For the first node, which corresponds to an equivalence ratio of zero, the derivative is approximated
by using forward difference:

𝐶𝑇𝜙0
=

𝐶𝑇1 − 𝐶𝑇0
𝜙1 − 𝜙0

, (7.5)

where 𝐶𝑇𝜙0
is the derivative of the thrust with respect to the equivalence ration at the first node, and 𝐶𝑇0

and 𝐶𝑇1 are the thrust coefficient at the first and second node. Similarly, 𝜙0 and 𝜙1 denote the equivalence
ratio at the first and second node. For the derivative at the last node backward difference is used:

𝐶𝑇𝜙4
=

𝐶𝑇4 − 𝐶𝑇3
𝜙4 − 𝜙3

. (7.6)

For the nodes in the middle central difference is used. For example for the third node:

𝐶𝑇𝜙3
=

𝐶𝑇4 − 𝐶𝑇2
𝜙4 − 𝜙2

. (7.7)

With these methods the derivative of the thrust coefficient with respect to the equivalence ratio is defined for
each node. As was mentioned earlier, the derivatives are defined for each node, and are still dependent on
the Mach number, dynamic pressure and equivalence ratio. Thus, in order to retrieve the derivative, trilinear
interpolation is used to determine the derivative of the coefficient during flight for a specific Mach number
and dynamic pressure, and equivalence ratio. The derivative of the aerodynamic coefficients with respect to
the angle of attack and control surface deflections, which are discussed in Section 6.2.1, are found in a similar
fashion.
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Figure 7.3: Demonstration of the performance of a Hermite spline compared to a cubic spline (Mooij and
Dirkx, 2020).

7.1.4. Reference Trajectory
In Chapter 5 it was explained that the optimal control problem is converted into a NonLinear Programming
(NLP) problem. Nodes would be defined at which the control parameters would be defined. To define a
reference trajectory based on the control parameter at these nodes, an interpolation method is needed. The
interpolation will result in a continuous function i.e., the control parameters are defined along the entire ascent
trajectory.

For the reference trajectory, a continuous function needs to be defined. Using linear interpolation introduces
discontinuities in the gradient, at the control nodes (Mooij and Dirkx, 2020). Thus, a spline could be used
to remove the discontinuity. However, using a cubic spline might introduce large oscillations in the reference
trajectory, see Figure 7.3. Instead, a Hermite spline is used, which does not have oscillations. The cubic
Hermite polynomial for a given interval is given by:

𝑝𝑖(𝑥) = 𝑦𝑖(1 + 2 𝑥𝑖 − 𝑥
𝑥𝑖 − 𝑥𝑖+1

)( 𝑥 − 𝑥𝑖+1
𝑥𝑖 − 𝑥𝑖+1

)
2

+ 𝑦𝑖+1(1 + 2 𝑥𝑖+1 − 𝑥
𝑥𝑖+1 − 𝑥𝑖

)( 𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

)
2

+𝑑𝑖(𝑥 − 𝑥𝑖)( 𝑥 − 𝑥𝑖+1
𝑥𝑖 − 𝑥𝑖+1

)
2

+ 𝑑𝑖+1(𝑥 − 𝑥𝑖+1)( 𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

)
2

,
(7.8)

where 𝑑𝑖 and 𝑑𝑖+1 are the derivatives of the two nodes, and 𝑥 and 𝑦 denote the input and output values.
The derivative can be influenced by introducing a derivative that is weighted (Mooij and Dirkx, 2020). The
weighting of the derivative ensures a smooth transition of the derivative from node to node. The computation
of the weighted derivative is in this case divided into three separate situations. In the first situation both the
left and right slope 𝛿𝑘 and 𝛿𝑘+1 are positive. The weighted derivative is in this situation expressed by:

𝑑𝑘 =
⎧{{
⎨{{⎩

𝛿𝑘+ 𝛿𝑘+𝛿𝑘+1
22 if 𝛿𝑘 < 𝛿𝑘+1

𝛿𝑘+1+( 𝛿𝑘+𝛿𝑘+1
2 )

2 if 𝛿𝑘+1 ≥ 𝛿𝑘

. (7.9)
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In the situation where both slopes are negative the derivative is computed with:

𝑑𝑘 =
⎧{{
⎨{{⎩

𝛿𝑘+ 𝛿𝑘+𝛿𝑘+1
22 if 𝛿𝑘 > 𝛿𝑘+1

𝛿𝑘+1+( 𝛿𝑘+𝛿𝑘+1
2 )

2 if 𝛿𝑘+1 ≤ 𝛿𝑘

. (7.10)

Finally, when the left and right slope of the node are opposite in sign, the derivative is set to zero:

𝑑𝑘 = 0.0, (7.11)

which ensures that no overshoot occurs at the node (Mooij and Dirkx, 2020).
With the Hermite interpolation method two different continuous function are constructed. The first defines

the flight path angle as a function of altitude between 0 km altitude, which is the launch altitude, until the
altitude where the pull up phase starts. The second defines the angle of attack as a function of altitude between
the altitude where the pull up is initiated and the altitude where the engine is turned off.

During the investigation of the performance of the reference trajectory, simulations were observed where
the reference flight path angle would become negative. The negative flight path angle caused a decrease in
altitude, which would mean that the flight path angle would become positive again. This resulted in the space
plane oscillating around the altitude where the reference flight path angle would go negative. It was noted
that this scenario could occur due to the weighted derivative that has been described previously. In order to
mitigate the chance of this occurrence, it is chosen to not weight the derivative of the flight path angle when
the reference flight path angle becomes smaller than 5 degrees. In these cases, the derivative of the reference
flight path angle is computed with:

𝑑𝑘 =
⎧{
⎨{⎩

𝛿𝑘 if 𝛿𝑘 > 0 ∧ 𝛿𝑘+1 > 0
𝛿𝑘+1 if 𝛿𝑘 ≤ 0 ∧ 𝛿𝑘+1 ≤ 0
0.0 else

. (7.12)

7.2. Simulation Architecture
The software used for the simulation of the ascent trajectory is a combination of a software package called
TUDAT and newly implemented modules. According to the TUDAT website: The TU Delft Astrodynamics
Toolbox (TUDAT) is a powerful set of C++ libraries that support astrodynamics and space research. One of
the key strengths within TUDAT is its ability to combine such libraries in a powerful simulator framework.
Such framework can be used for a wide variety of purposes, ranging from the study of reentry dynamics to
interplanetary missions.1

The TUDAT software package has already implemented a number of models and methods that have been
explained thus far. First of all, the environmental models that have described in Section 4.1 are present in
TUDAT. Second of all, the numerical methods that are used to integrate the state, interpolate the vehicle data,
and interpolate the reference trajectory that have been described in the previous section are also present. Last
of all, the reference frames and transformation matrices between the reference frame, that have been discussed
in Section 3.1, the transformations between Cartesian, spherical and Kepler elements, and a method to compute
all necessary angles for the transformation matrices is present. What is missing in TUDAT is the entire vehicle
model, which includes the aerodynamics, thrust and mass models, and the G&C system. Additionally, the
optimization toolbox Parallel Global Multiobjective framework for Optimization (PaGMO) is integrated in
TUDAT. This means that after integration of the vehicle model, the simulation and optimization of the ascent
can be done by TUDAT and PaGMO, respectively.

7.2.1. Vehicle Model Integration
The vehicle model that has been integrated in the TUDAT package is a conceptual vehicle, called the National
Aero-Space Plane (NASP) (Shaughnessy et al., 1990). The vehicle model, as explained in Section 4.2, has
details about the aerodynamics, thrust and mass of the vehicle. The vehicle model provides information about
the aerodynamic and thrust forces and moments, and the G&C and moments of inertia. The objective of the
vehicle model is to provide information about the vehicle that is necessary to compute the state derivative,
which is used to propagate the translational, rotational and mass state. An overview of the vehicle model is

1Tudat, Tudat Space: Documentation, accessed on 23 Jun 2021 https://tudat-space.readthedocs.io/en/latest/

https://tudat-space.readthedocs.io/en/latest/
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Figure 7.4: Overview of the inputs and outputs of the space plane model.

seen in Figure 7.4. The vehicle model takes information about the state of the vehicle, such as the orientation,
angular velocity, translational velocity and mass of the space plane. Additionally, atmospheric information
such as the dynamic pressure, which is a function of the altitude, and the Mach number, which is a function
of the velocity and altitude of the space plane, are provided. Furthermore, vehicle system information is
needed to compute the outputs of the vehicle model. Some of these are constants, such as the chord length,
𝑐ref, reference span, 𝑏ref, and reference area, 𝑆ref. Other variables are the control surface deflection, 𝛿 and
equivalence ratio, 𝜙, which are computed and updated by the G&C system.

The resulting model uses all that information to compute the aerodynamic forces and moments, expressed
in the body reference frame. The aerodynamic forces need to be expressed in the inertial frame to be used
in the EoM. However, TUDAT transforms these forces by itself and requires the forces to be expressed in the
same frame as the aerodynamic moments. The thrust forces are not inherently transformed by TUDAT to the
inertial reference frame. Thus, the thrust force vector is first expressed in the propulsion frame, where it is
assumed that the thrust is acting along the 𝑥𝑃 -axis. Then the vector is transformed to the body frame with
the thrust elevation angle if the Thrust Vector Control (TVC) is active. Finally, the thrust force is transformed
to the inertial reference frame with a transformation matrix that is already available in TUDAT. The retrieval
of the thrust coefficient and specific impulse require the same variables. Namely, the dynamic pressure, Mach
number and equivalence ratio. For this reason, the retrieval of these two parameters are handled together in
the engine module of vehicle model. The specific impulse is retrieved and used to compute the mass rate of
the fuel used by the engine to propagate the mass of the vehicle. The thrust moment is computed with the
thrust coefficient vector expressed in the body reference frame. TUDAT does not have a simple method to
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include a moment induced by the engine. Thus, the thrust moment coefficient is computed in the aerodynamic
coefficient interface. The interface usually retrieves the aerodynamic forces and moments, expressed in the
body frame. In the vehicle model presented, the thrust moment coefficients are added to the interface, which
is normalized to ensure that the typical aerodynamic moment equations still apply. Within the coefficient
interface, also the moments of inertia are updated based on the mass of the vehicle. The moments of inertia
together with the aerodynamic and thrust moments are used to compute the derivative of the angular velocity
of the space plane.

7.2.2. Guidance and Control (G&C) System Integration
In the previous subsection it became apparent that the vehicle model requires information about the vehicle,
such as the deflection angles of the control surfaces. Furthermore, the equivalence ratio of the engine is needed,
which is used to throttle the engine. In Chapter 6 the architecture of the G&C system has been explained in
detail, including the algorithms that are used. In this section, the goal is to give the reader insight into the
integration of the G&C system together with the vehicle model and how that is further integrated in TUDAT.

The G&C system requires information about the forces and moments that are acting on the space plane.
This means that the G&C system requires information about the vehicle, while the vehicle requires information
from the G&C system to properly guide and control the vehicle. It is therefore important to understand that
both the model and system cannot simply be sequentially integrated. Any changes to the vehicle model will
influence the outputs of the G&C system and vice versa. For this reason, the G&C system is integrated directly
in the coefficient interface, that has been mentioned previously. An overview of the integration of the vehicle
model with the G&C system can be seen in Figure 7.5.

At the start of a time step, the aerodynamic forces and moments and thrust moments are retrieved together
with the moments of inertia. The G&C system uses this information, together with an approximation of the
gravitational forces acting on the space plane, to initially compute the required equivalence ratio. The change
in equivalence ratio means that the thrust coefficient has changed, which influences the EoM. For this reason,
the thrust force and moment are updated in the vehicle model and retrieved by the G&C system whenever
these are needed. After the equivalence ratio is computed and the thrust moment is retrieved, the thrust
elevation angle or canard deflection angle is computed in the trim module. The trim module introduces the
second change to the vehicle. Either the deflection angle of the canard is changed or the thrust elevation angle
is changed. The dynamics of the changes in control surface deflection or thrust elevation is not taken into
account, which means that the changes made will have an immediate impact on the thrust and aerodynamic
forces and moments. Thus, after the changes are made by the trim module, the aerodynamic and moments, and
the thrust forces and moments are retrieved from the vehicle model. It is assumed that a change in deflection
angle of the canard does not necessitate an update of the aerodynamic forces. With the updated thrust forces,
the total forces acting on the space plane, where the gravitational forces are approximated, are expressed in the
trajectory frame. These are used in the second part of the guidance module where the current and reference
flight path and heading angle are assessed. The output are the reference sideslip angle, and desired angle of
attack and bank angle, which does not necessitate an update to the forces and moments. From there the first
part of the control module computes the desired angular velocities of the space plane. Since the output of the
module are not physical changes to the system, no updates are necessary. The last part of the G&C system
takes the desired angular velocities and computes the required angular acceleration. The module is the most
intricate part of the system, with the most inputs required. The module takes the updated aerodynamic and
thrust moments to compute the angular acceleration before the elevons or rudder have changed their deflection
angle. With that information the required change in deflection angle of the control surfaces are computed to
properly orient the space plane. The output of that module is the updated control surface deflections.

The overview of the integration, Figure 7.5, also gives insight in how the G&C system is used to control
the velocity, flight path angle, or angle of attack, depending on the ascent phase. During the first phase the
entire G&C system is used, where the maximum allowable velocity together with the reference flight path and
heading angle are used to guide the space plane along the trajectory parameters. During the pull up phase,
the reference flight path and heading angle are no longer used. Instead, the aerodynamic angles are used as
reference, where only the angle of attack is optimized for. The other two reference angles are set to zero. For
the final phase, only the orientation of the space plane is controlled, where all reference aerodynamic angles
are set to zero.

In summary, the G&C system computes required changes of up to six physical parameters of the space
plane that influence the EoM. These parameters are capable of both guiding and controlling the space plane.
Furthermore, they are stored in a vehicle system object, which can be retrieved from anywhere within TUDAT.
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Figure 7.5: Overview of the integration of the Guidance and Control (G&C) system with the vehicle model.

Since the six parameters have been updated, the thrust and aerodynamic forces and moments have been
changed. This necessitates the retrieval of them before the state derivative is constructed. This means that
after the G&C system has updated the vehicle system, the vehicle model is called upon again to compute all
aerodynamic and thrust forces and moments before the state derivative is constructed by TUDAT.

7.2.3. Simulation Overview
With the integration of the vehicle model and the G&C system explained, the final step is to explain the
integration into TUDAT. In essence, TUDAT takes the forces and moments that are influenced by the vehicle,
computes gravitational forces by itself, constructs environmental models, and integrates and propagates the
state until a termination condition is met. The simulation of the ascent trajectory is done mostly by TUDAT.
However, a single implementation issue has not been discussed. The integration of the G&C system with
the vehicle model would normally mean that the chosen integrator, which is implemented in TUDAT, would
compute required changes to the vehicle parameters every intermediate time step. As was discussed previously,
the RK4 integrator computes the state derivative four times and combines that to compute the actual state
derivative. The G&C system is a computationally heavy part of the entire software, which would result in more
than a doubled simulation time. Furthermore, the changes that have been implemented for each intermediate
time step would not be recorded by TUDAT, which makes it impossible to assess what was occurring. For these
reasons, it was necessary to ensure that the G&C system only computes required changes before the state is
integrated. Fortunately, at the start of a new time step a large number of variables are updated. This includes
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Figure 7.6: Simulation overview with the integration of the vehicle model and G&C system within TUDAT.

all variables that are required for the simulation, which would have changed due to the new state. When these
variables are updated, also the coefficient interface is accessed to update the aerodynamic force and moment
coefficients. Thus, when this update occurs the G&C system is accessed to compute the required changes to
the vehicle. The additional times, that the coefficient interface is accessed to compute the intermediate time
steps, the G&C system is not active i.e., the vehicle parameters are not recomputed.

With the aforementioned implementation issue resolved, the total simulation architecture can be explained.
A simplified overview can be given of the simulation architecture, with details about the integration of the
vehicle model within TUDAT, see Figure 7.6. The goal of the simulation is to propagate the state to a
termination condition. The entire initial state is constructed from the initial translational, rotational and
mass state. Furthermore, the initial time is used as an input, since a change in initial time will change
the angle between the rotational frame with respect to the inertial frame. A change of initial time can be
used to simulate a delayed or advanced launch, in Chapter 8 this phenomena will be discussed in a more
detailed manner. The initial state will be altered since the initial heading angle will change due to the initial
target inclination, which can vary due to the transcription method described in Section 5.3. With the new
initial heading angle, also the initial orientation of the space plane will have to be reconstructed. The new
orientation can be found by constructing the transformation matrix between the inertial and body frame.
The entire transformation matrix can be decomposed to give flexibility over intermediate angles, such as the
aerodynamic angles (𝛼, 𝛽, 𝜎) and trajectory angles (𝛾, 𝜒). With the recomputed translational and rotational
state, the dynamics simulator can be started. The dynamics simulator takes the aforementioned vehicle model,
with integrated G&C system, and the environmental model to construct the state derivative of the state.
The state derivative is used to propagate the state until a termination condition is reached. Afterwards, the
objectives and termination conditions are computed and stored, together with various dependent variables
that can be used to investigate the ascent trajectory.
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7.2.4. Optimization Overview
The global and local optimization of the ascent trajectory, which can also include a delayed or advanced launch,
is done by the optimization library PaGMO. The library has many optimization algorithms included for global
and local optimization. The optimization investigates a population of decision vectors, that is composed of a
number op optimization parameters. The simulation, discussed previously, simulates the ascent of the space
plane and computes the objective values. This means that each individual in a population is ‘scored’. With the
objectives values, the population is evolved using selection processes discussed in Section 5.1. The population
is evolved for a predetermined amount of time, where for each generation the objective values and population
decision vectors are stored.

An overview of the integration of the optimization and simulation software can be seen in Figure 7.7. Here
it can be seen that an initial population is generated based on the search space for the different optimization
parameters. Afterwards, the population information is used by the simulation software to compute the objective
values, which in turn are used to assess the current generation of the population. After the maximum generation
is reached, the objective and population information is stored, which can be used to assess the individuals in
the population. Furthermore, all generations are stored, which can be used to assess the history of the ‘best’
individual. This information can be valuable to assess if the best individual has recently been improved upon
or not.
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8
Results

In this chapter the results that have been obtained will be discussed. First of all, a brief summary is given of
the optimization strategy and settings that have been used, and the initial state that has been used to start the
simulation of the ascent. Second of all, the optimization of the longitudinal ascent is presented. The results
from this optimization will serve as a baseline for the lateral optimization. Third of all, the results from the
lateral motion optimization is presented, where both global optimization and local refinement are discussed.
Finally, the results are analyzed, by computing the Δ𝑉 obtained by the space plane, and compared to a simple
Right Ascensions of the Ascending Node (RAAN) change by a satellite.

8.1. Optimization Strategy
The optimization of the ascent trajectory of the space plane is divided into two parts. The first part will only
analyze the space plane, defined in six Degrees of Freedom (DoF), where the optimization parameters exclude
the lateral motion parameters. In essence, this means that the space plane is only optimized for longitudinal
motion, where bank angle and sideslip angle are commanded to be zero throughout the entire ascent. Initially,
an investigation was made in the capabilities of the Guidance and Control (G&C) system to follow the reference
flight path angle. The results from this investigation showed that the search space for the flight path angle
could be reduced, which improves convergence of the optimization algorithm.

In the second part, the bank angle is no longer commanded to zero. Instead, the lateral motion is defined
using a transcription method, which uses the formulas described in Section 5.3. The transcription method
produces a reference heading angle, which results in a commanded bank angle to steer the space plane to that
heading angle. With the space plane free to maneuver, the launch time can be manipulated to change the
rotation of the Earth with respect to the inertial frame. By changing the initial launch time, without changing
the launch longitude and latitude, the space plane can be considered to have a delayed or advanced launch.

8.1.1. Optimization Settings
For both the longitudinal ascent, as well as the ascent that includes lateral motion, similar optimization settings
will be used. This means that the optimization algorithm, its settings and the population size and maximum
number of generations is not changed. The optimization algorithm settings are summarized in Table 8.1.

The methods of obtaining the translational and rotational initial state have been described in Section 5.3.
The initial state of the space plane will be changed as little as possible. The only changes made to the initial
state is to the initial time and the initial heading angle. The latter change means that the orientation of
the space plane with respect to the inertial planetocentric reference frame is changed as well. The change
in heading angle ensures that the space plane does not have to initiate a bank maneuver at the start of
the simulation. Thus, it is assumed that the space plane is free to have a launch heading angle anywhere

Table 8.1: Optimization algorithm settings.

Optimization Algorithm Population Size Maximum Generations Seeds
MOEA/D 300 500 (100, 200, 300)
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Table 8.2: Overview of the initial translational state of the space plane, defined in spherical elements.

Spherical Element Value Unit
Distance 𝑅𝐸 [km]
Longitude 23.433 [deg]
Latitude 0.0 [deg]
Velocity 170.0 [m/s]
Flight Path Angle 5.0 [deg]
Heading Angle [0.0, 90.0] [deg]

Table 8.3: Overview of the elements required to define the initial rotational state of the space plane.

Element Value Unit
Angle of Attack 5.0 [deg]
Angle of Sideslip 0.0 [deg]
Bank Angle 0.0 [deg]
𝜔𝑥𝐼 0.0 [deg/s]
𝜔𝑦𝐼 0.0 [deg/s]
𝜔𝑧𝐼 4.18 ⋅ 10−3 [deg/s]

Table 8.4: Overview of the initial time range, space plane take-off weight and vehicle control parameters

Element Value Unit
Time [−7200.0, 7200.0] [s]
Take-Off Weight 133, 800 [kg]
Canard Deflection Angle 0.0 [deg]
Left Elevon Deflection Angle 0.0 [deg]
Right Elevon Deflection Angle 0.0 [deg]
Rudder Deflection Angle 0.0 [deg]
Equivalence Ratio 0.0 [-]
Thrust Elevation Angle 0.0 [deg]

between 0 and 90 degrees, depending on the initial inclination off-set. The elements that are necessary to
define the transliation and rotation initial state is repeated in Tables 8.2 and 8.3. Part of defining the initial
state in the inertial frame is defining the initial time, which relates the inertial planetocentric frame with
the rotational planetocentric frame. The initial time, as stated previously, is varied to investigate the launch
window extension. This investigation is limited to launches that are advanced or delayed by two hours. The
range of the initial time, in combination with the space plane take-off weight and vehicle control parameters,
are shown in Table 8.4.

The equality constraints that are defined as the termination settings in the simulation model do not vary
depending on the inclusion of the lateral motion. However, the target orbit objective is varied to include a
target inclination and RAAN. For this reason, the equality constraints are shown here, in Table 8.5, while the
objective values will be shown in the respective sections of this chapter. The inequality constraints are not
part of the optimization objectives. Instead, the G&C system ensures that the inequality constraints are no
longer exceeded. The inequality constraints, which will not vary depending on the optimization, are repeated
in Table 8.6.

8.2. Optimization of the Longitudinal Ascent
As mentioned previously, this section will first discuss the capabilities of the G&C system to follow the reference
flight path angle. Based on the outcome, the search space for the reference flight path angle will be reduced.
After the search space refinement, the results of the ascent trajectory optimization without lateral motion will
be presented and discussed.
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Table 8.5: Equality constraints defined for the simulation of the space plane ascent trajectory.

Equality constraint Symbol Termination Condition Unit
Altitude hmin < 0 [km]

hmax > 120 [km]
Space Plane Mass m < 𝑚OEW (58.968 ⋅ 10−3) [kg]
Time T > 𝑡0 + 4000 [s]
Angle of Attack 𝛼min < −2 [deg]

𝛼max > 13 [deg]

Table 8.6: Inequality constraints defined for simulation of the the space plane ascent trajectory.

Inequality constraint Symbol Value Unit
Maximum Dynamic Pressure ̄𝑞𝑐 95,000 [N/m2]
Maximum Heat Flux �̇�𝑐 8,000 [kW/m2]
Maximum Axial Acceleration 𝑛𝑎𝑐 1 [g0]

Table 8.7: Overview of the reduced search space for the longitudinal ascent.

Optimization Parameter # of Parameters Search Space Unit
Flight Path Angle 6 [0, 60] [deg]
Angle of Attack 3 [1, 4] [deg]
Pull Up Altitude 1 [40, 60] [km]
Engine Cut-Off Altitude 1 [60, 80] [km]
Maximum Equivalence Ratio 1 [0, 10] [-]

8.2.1. Search Space Refinement
In order to assess the capability of the G&C system to follow the reference flight path angle, a Sobol sequence
is used to assess all different combinations of flight path angles. The capability of the G&C system is measured
with an objective function:

𝑓GC performance =
∫

𝑡𝑓
0 (𝛾ref − 𝛾actual)𝑑𝑡

∫
𝑡𝑓

0
𝜋
2 𝑑𝑡

, (8.1)

where 𝑡𝑓 represents the termination time, 𝛾ref the reference flight path angle and 𝛾actual the actual flight path
angle of the space plane. This function measures the average difference between the reference and actual flight
path angle and relates it to the theoretical maximum flight path angle of 90 degrees. The resulting G&C system
effectiveness for the Sobol sequence is shown in Figure 8.1. In the figure, it can be seen that all individuals are
colored black. For the observant reader, any individuals of the Sobol sequence that reach the target altitude
are colored magenta. Thus, it can be concluded that the Sobol sequence does not produce an individual where
the target altitude can be reached. This can be explained by the changes made how the inequality constraints
are handled. Previously, these constraints were measured instead of enforced. For the current optimization,
these constraints are actively enforced by the G&C system. The figure also shows a correlation between the
reference flight path angle at the first control node, 𝛾0, at 0 km. The figure shows a performance indicator
that increases as the reference flight path angle is increased. It is safe to assume from the figure that the
G&C system is unable to properly follow a reference flight path angle above 60 degrees. With this conclusion,
the search space for the flight path angle can be reduced for the first control node. Furthermore, from the
initial optimization done, which is presented in Section 5.2, it can be concluded that after an initial pull up,
the flight path angle is reduced significantly to enable the space plane to accelerate at the altitude where the
engine is most efficient. Thus, the search space of the subsequent control nodes is also limited to 60 degrees.
In Table 8.7 the search space for the optimization of the longitudinal ascent is shown.

8.2.2. Global Optimization Results of the Longitudinal Ascent
With the reduced search space, the optimization of the longitudinal ascent can be performed. For the longi-
tudinal ascent, as was mentioned previously, the guidance module only commands the flight path angle and
velocity of the space plane. A reference heading angle is not considered and the bank angle is commanded to be
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Figure 8.1: Indication of the G&C system performance to achieve the reference flight.

Table 8.8: Overview of the target altitude, velocity and eccentricity that define the target orbit.

Target Orbit Altitude [km] Velocity [m/s] Eccentricity [-]
Value 120.0 7836.3 0.0

zero throughout the entire ascent. The objective of the longitudinal optimization is to find an objective value
for the target RAAN, when an advanced or delayed launch is considered. Furthermore, the optimization when
lateral motion is included will increase the search space by including the three lateral optimization parameters.
Thus, the population of the longitudinal optimization is assessed to refine the search space of the longitudinal
optimization parameters.

The optimization will target a circular orbit that is 120 km above the surface of the Earth. As was mentioned
in Section 5.2, using the semi-major axis to assess the difference between the reached orbit and the target orbit
could result in the optimization stalling around 50 km. Thus, the altitude and velocity are used instead of the
semi-major axis, in combination with the eccentricity. The target values are listed in Table 8.8.

With the aforementioned initial state, constraints, target orbit and optimization settings, the optimiza-
tion of the ascent trajectory that does not include lateral motion is done. Figure 8.2 shows the Pareto front,
which is produced by the 500th generation of the Multi-Objective Evolutionary Algorithm with Decomposi-
tion (MOEA/D) optimization algorithm. In this figure it can be seen that the propellant objective and the
target orbit objective are competing. Reducing one inherently means an increase in the other objective value.
Furthermore, a gap can be seen in the Pareto front. When the target altitude is reached an impulsive burn
is initiated to attempt to circularize the orbit. The circularization maneuver is modeled as an impulsive shot,
which instantly changes the velocity of the space plane and the orbital elements. Thus, it can be concluded
that the gap in the Pareto front is caused by this circularization maneuver. The goal of the ascent trajectory
is to reach an altitude of 120 km, which means that any individuals that do not reach that altitude should
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Figure 8.2: Pareto front of the optimization for the longitudinal ascent trajectory. The 500th generation is
considered, with all three seeds included in the Pareto front.

not be considered. On the right of the figure, a detailed view is shown with only individuals of the generation
that reach the target orbit. Here it can be seen that the target orbit is improved significantly by increasing
the used propellant up to a certain point. The figure shows two individuals that have a target orbit objective
close to zero, while the propellant used increases significantly.

Figure 8.3 shows the altitude versus velocity plot of the ascent trajectory of three individuals. The first
individual is the most efficient ascent trajectory i.e., the ascent trajectory that reaches the target altitude with
the least amount of fuel. The other two individuals have a target orbit objective very close to zero, but differ
significantly in the amount of fuel used. The selected individuals are marked with a blue circle, which can be
seen in Figure 8.2. The space plane is launched with the maximum take-off weight and any propellant not
used is assumed to be available for payload. The available payload is computed with:

𝑚payload = (1 − 𝑓1)(𝑚MTOW − 𝑚OEW), (8.2)

where 𝑚payload signifies the available payload mass, 𝑚MTOW the maximum take-off weight, and 𝑚OEW the
empty operating weight. In the figure depicting the velocity versus altitude plot, it can clearly be seen that
the most efficient individual has a pull up altitude higher than the other two, which results in the space plane
to be able to have a higher velocity, when the pull up is initiated, since the heat flux constraint allows a higher
velocity. Due to the higher pull up velocity, the final circularization maneuver requires less fuel, which makes
this individual more efficient compared to the other two individuals. This is explained by the difference in
engine efficiency. The air-breathing engine is more efficient i.e., has a higher specific impulse, than the pure
rocket engine used for the circularization. The more efficient engine will use less propellant to achieve the same
amount of change in velocity, which makes it beneficial to pull up at an altitude that allows a higher velocity
due to the imposed constraints. The downside of the higher pull up velocity can be seen in Figure 8.4. Here
it can be seen that the final flight path angle of the most efficient individual reaches the target orbit with a
nonzero flight path angle. The circularization maneuver is done in the same direction as the velocity vector,
since the angle of attack is zero, which means that a nonzero flight path angle will reduce the effectiveness
of the maneuver. The other two individuals do have a flight path angle close to zero, which means that the
maneuver ensures that especially the eccentricity goes to zero. This conclusion can also be seen in Figure 8.5,
where the most efficient individual does not have a significant change in the eccentricity.

Figure 8.5 also shows the inclination and RAAN that the simulations achieve, when the target altitude is
reached. To begin with, it is noted that these elements are not effected by the circularization maneuver. This
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Figure 8.3: Altitude versus velocity plot of three simulations that reach the target orbit.
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Figure 8.5: Overview of the Kepler elements as a function of altitude for three simulations that reach the
target orbit.

is expected since the circularization maneuver is in the direction of the velocity vector. Additionally, the figure
shows that the final inclination that the individuals reach is not exactly 45 degrees, which was intended by
determining the launch heading angle. The guidance module does not compute a required bank angle, based on
the difference between the actual and reference heading angle. Instead, the bank angle is commanded to zero
throughout the entire ascent, which could mean that the ascent slightly deviates from the intended inclination
angle. Thus, the results from this optimization cannot be used to determine the target RAAN, since both
the inclination and RAAN are effected by lateral motion. Instead, it was chosen to use the reference heading
angle without a deviation in inclination to determine the achieved RAAN, which can be used to determine the
target RAAN when a delayed or advanced launch is considered. The methodology to find the target RAAN is
discussed in Section 8.3.1.

In addition to the velocity, flight path angle and orbital elements, the angle of attack of the individuals
was investigated. The altitude versus angle of attack plot is shown in Figure 8.6. In this plot two phenomena
are depicted that are not intended. The first phenomena is the osciallations that occur just before the pull up
maneuver is initiated, which is around 50 km altitude. This phenomena occurs due to improper gains for the
flight path angle. Initially, the gain for the flight path angle, 𝐾�̇� was set to 1.2. After the optimization results
were investigated, the gain is tuned back to 0.8, which is also described in Section 6.3. Tuning the gain ensured
that the oscillations were minimized. The second phenomena that can be seen is that the reference angle of
attack peaks at the end of the pull up phase. However, after the pull up maneuver the orientation of the space
plane is controlled theoretically by Reaction Control System (RCS) thrusters, which are not based on actual
thrusters. Thus, it is unknown if practically these thrusters would be able to counteract the unstable pitching
moment that could occur at higher angles of attack. For this reason, it was chosen to reformulate the reference
angle of attack. In a similar fashion as the flight path angle at small angles, the derivative at the nodes is
computed without weighting the derivatives itself, see Section 7.1. This ensured that the reference angle of
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Figure 8.6: Overview of the angle of attack as a function of altitude for three simulations that reach the
target orbit.

attack would increase more constantly and slower before the pull up phase would end, which would ensure
that an unstable angle of attack would have to be counteracted by the elevons. If these would be unable to
counteract the natural pitching moment, the simulation would be terminated before the RCS thrusters take
over control of the orientation.

Population Overview
For the population that reach the target altitude, an overview of the population optimization parameters
is given. Figure 8.7 shows the search space for the optimization parameters that reach the target altitude,
where the optimization parameters are depicted with respect to the target orbit objective and the propellant
objective. By depicting the optimization parameters in terms of both objectives, a relation can be discovered
between the pull up altitude and the objectives. It can be seen that with a higher pull up altitude, the target
orbit objective increases, while the propellant objective decreases. This conclusion was also described when
investigating the altitude versus velocity plot in Figure 8.3. The figure gives good insight into the search
space. In general, it can be seen that most optimization parameters have a small range, where all optimization
parameters are clustered in a small part of the original search space. Based on these optimization parameters
a new search space can be defined, which can be used for the optimization where lateral motion is included.
However, it should be noted that the changes made to the reference angle of attack necessitate to reevaluate
the original search space for these parameters. Additionally, the pull up and engine cut-off altitude have a
large search space to ensure that the pull up phase can properly be optimized for. The entire search space,
based on the outcome of the longitudinal optimization, can be seen in Table 8.9.

With the new search space, the original angle of attack search space is used. The angle of attack optimiza-
tion parameters, depicted in Figure 8.7, shows that the angle of attack is very close to 1 degree, which is the
border of the search space. This indicates that the search space of the angle of attack should be expanded.
However, it is chosen not to expand the search space for the global optimization. Instead, a local refinement
will be performed to investigate if expanding the search space for these optimization parameters will yield a
better result. The reason to not include the expanded search space for the global optimization is to ensure
that the correct pull up altitude is found. As was discussed, the start of the pull up phase is an important
optimization parameter that can significantly impact the outcome of the two objective values. By keeping
the lower bound of the search space to 1 degree, it is enforced that the pull up starts at the pull up altitude
optimization parameter.



8.2. Optimization of the Longitudinal Ascent 93

49 49.1 49.2 49.3 49.4 49.5 49.6 49.7
Pull Up Altitude [km]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

60.38 60.4 60.42 60.44 60.46 60.48 60.5 60.52
Engine Cut Off Altitude [km]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07
Equivalence Ratio [-]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
Flight Path Angle 1 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

23 23.5 24 24.5 25 25.5 26
Flight Path Angle 2 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

3.45 3.5 3.55 3.6 3.65 3.7 3.75
Flight Path Angle 3 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

0.297 0.298 0.299 0.3 0.301 0.302 0.303
Flight Path Angle 4 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

0.149 0.15 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158
Flight Path Angle 5 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

0.062 0.063 0.064 0.065 0.066 0.067 0.068 0.069 0.07
Flight Path Angle 6 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035
Angle of Attack 1 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Angle of Attack 2 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

2 2.5 3 3.5 4 4.5
Angle of Attack 3 [deg]

0.925
0.927
0.929
0.931

0
0.005
0.01
0.015

Figure 8.7: Overview of the optimization parameters search space for the individuals that reach the target
altitude.
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Table 8.9: Overview of the reduced search space for the optimization of the ascent that includes lateral
motion.

Optimization Parameter # of Parameters Search Space Unit
Flight Path Angle 𝛾1 1 [16.0, 24.0] [deg]
Flight Path Angle 𝛾2 1 [22.0, 29.0] [deg]
Flight Path Angle 𝛾3 1 [2.0, 5.5] [deg]
Flight Path Angle 𝛾4 1 [0.0, 0.5] [deg]
Flight Path Angle 𝛾5 1 [0.0, 0.5] [deg]
Flight Path Angle 𝛾6 1 [0.0, 0.5] [deg]
Angle of Attack 3 [1.0, 4.0] [deg]
Pull Up Altitude 1 [45.0, 55.0] [km]
Engine Cut-Off Altitude 1 [60.0, 80.0] [km]
Maximum Equivalence Ratio 1 [0.9, 1.5] [-]

8.3. Optimization of the Ascent with Lateral Motion
The results presented in this section will answer the question what a fuel-optimal trajectory is when a launch
window extension is considered. First, the target orbit is determined based on a mock optimization, where the
guidance module also steers the heading angle. Afterwards, the methodology to investigate the launch window
is discussed. This is followed by the results from the global optimization that has been performed. Lastly, a
comparison is made between a change in RAAN by the space plane, with a change in RAAN by the payload
itself.

8.3.1. Determination of Target Orbit
As was discussed in the previous section, the final orbit found by the optimization has an inclination close to
45 degrees. However, with the inclusion of lateral motion, the final inclination and RAAN can be manipulated,
which means that the guidance module is used to command the heading angle to ensure that the final orbital
inclination achieved by an individual is closer to the target value. It is chosen to target an orbital inclination
of 45 degrees to assess the capabilities of both an advanced and delayed launch. For this reason, a mock
optimization is performed, where the guidance module also commands the heading angle to ensure that the
target orbital inclination is achieved. The reference heading angle is computed with Equations 5.24 and 5.25,
where the target orbital inclination and the latitudinal position of the space plane is used. It should be noted
that the heading angle is not an optimization parameter. It is purely used to ensure that the final orbital
inclination is closer to the target value of 45 degrees. Based on the results of the optimization, the RAAN that
has been achieved will be used as an objective value, when the heading angle is part of the optimization.

The results of the mock optimization parameter are presented in Figure 8.8. Here the orbital elements
of two individuals are shown that reach the target altitude. It can be seen that the inclination that has
been achieved is much closer to the target value, compared to the results shown in Figure 8.5. From this it
can be concluded that the guidance module is capable of guiding the space plane to the correct inclination.
Furthermore, it can be seen that the RAAN that has been achieved has changed due to the inclusion of the
reference heading angle. Based on these results, the target objective for the RAAN is selected to be 306 degrees.

8.3.2. Methodology
The extension of the launch window is investigated by advancing or delaying the launch of the simulation.
This is done by changing the initial time, which is part of the initial state. By changing the initial time, the
orientation of the rotational planetocentric reference frame with respect to the inertial planetocentric reference
frame is changed, based on the rotation of the Earth. In essence, the orientation of the frame changes by
approximately 15 degrees per hour. Since the launch location of the Earth does not change, the RAAN should
also change by approximately 15 degrees. The goal for the optimization of the ascent trajectory that includes
lateral motion is to find a trajectory, where the final orbit has the same semi-major axis, eccentricity, inclination
and Right Ascensions of the Ascending Node (RAAN), irregardless of the time launched. In order to assess
the capabilities of the National Aero-Space Plane (NASP), the initial time is changed ranging between plus
and minus two hours, see Table 8.10. Based on the results, the difference in propellant used is compared to
assess the added cost in terms of propellant to delay or advance a launch.

The transcription of the reference heading angle uses a deviation in inclination to compute the heading
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Figure 8.8: Overview of the Kepler elements a a function of altitude for the mock optimization to assess
the target orbital inclination and RAAN.

Table 8.10: Overview of the launch times that the ascent trajectory has been optimized for.

Initial Time Δ𝑇 0 [s] Δ𝑇 1 [s] Δ𝑇 2 [s] Δ𝑇 3 [s] Δ𝑇 4 [s] Δ𝑇 5 [s]
Value 0 ±600 ±1200 ±1800 ±3600 ±7200

Table 8.11: Overview of the target altitude, velocity, eccentricity, inclination and RAAN that define the
target orbit.

Target Orbit Altitude [km] Velocity [m/s] Eccentricity [-] Inclination [deg] RAAN [deg]
Value 120.0 7836.3 0.0 45.0 306.0

angle with respect to the current altitude of the space plane. As was discussed in Section 5.3, a sigmoid
function is used to define the deviation in inclination. The sigmoid function varies the deviation in inclination,
and ensures the the deviation is zero before the guidance module is turned off. This should ensure that the
final inclination that ascent trajectories achieve is always 45 degrees. However, this cannot be guaranteed,
since it is unknown what the capabilities are for the space plane to steer the plane to a certain heading angle.
For instance, it could occur that the guidance module does not have enough time to steer the space plane to
the correct heading angle when the deviation in inclination goes to zero. Thus, it is necessary to include both
the inclination and RAAN in the target orbit objective. Based on the results from the mock optimization, the
target objective values are presented in Table 8.11. The target orbit objective is computed with Equation 5.30,
which includes the two new orbital elements.

The sigmoid function, Equation 5.26, has three variables that determine the shape and magnitude of the
function. These variables are used as optimization parameters. The actual reference heading angle uses the
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Table 8.12: Overview of the lateral optimization parameters and the search space.

Optimization Parameter # of Parameters Search Space Unit
Δ𝑖0 1 [-45, 45] [deg]
Steepness, 𝑏 1 [2, 5] [-]
𝑥1/2 1 [0.1, 0.9] [-]

deviation in inclination to compute the inertial heading angle first with Equation 5.29, and transforms that
to the rotational frame with Equation 5.25. The search space for the variables of the sigmoid function are
shown in Table 8.12. The search space for the lateral motion together with the refined search space shown in
Table 8.9 form the complete search space for the optimization of an ascent trajectory that includes a launch
window.

8.3.3. Results of the Global Optimization
The results, where lateral motion is included, is split up into two parts. First, the results are discussed for an
initial time of 𝑡0 = 0 s. This is done to obtain the target orbital elements. The results are also used to obtain
a general insight in the behavior of the ascent trajectory when lateral motion is included. Second, the initial
time is varied and the results obtained from these optimizations is compared to the control trajectory where
the initial time is 𝑡0 = 0 s.

Results without Delayed or Advanced Ascent
The Pareto front for the ascent trajectory of a space plane is shown in Figure 8.9. The initial launch time is
set to zero seconds, which is the same launch time as the optimization done for the longitudinal ascent. Once
again, it can be seen that the two objectives are competing. Furthermore, it can be seen in the detailed view
that the target orbit objective can be significantly improved by increasing the propellant used up to a certain
point. Any further improvements can only be done by significantly increasing the amount of propellant used.
It should be noted that the global optimization technique cannot guarantee that the global minimum of the
problem is found (Conway, 2010). Due to the iterative nature of global optimization, it is important to check
the convergence of the objective values and to improve upon the solutions with a deterministic optimization
algorithm, which will be discussed later. The convergence can be confirmed by assessing the objective values
per generation and to find how these have evolved. Figure 8.10 shows the evolution of the objective values.
The figure shows that the global optimization technique has converged to a sub-optimal solution for both
objectives. Here it can be seen that the minimum propellant objective is found close to the 100th generation,
while the minimum target orbit objective is found after approximately the 250th generation. Similarly, the
average of the objective values does have large variations after around the same amount of generations. Thus,
it can be concluded that the global optimization has converged to the (sub-)optimal solution.

With these results the ascent trajectory can be analyzed. The analysis is done for three individuals, which
are marked by a blue circle in the detailed view of Figure 8.9. The individuals selected are the most efficient
and most accurate individual to reach the target altitude. Additionally, an individual is selected that reaches
the target orbit with an acceptable accuracy, while using an efficient amount of propellant.

The altitude velocity plot, Figure 8.11, confirms that the altitude of the pull up maneuver is correlated with
the amount of fuel used to obtain the the target orbit. Due to the constraint formulation, a higher altitude
means a higher maximum allowable velocity, which reduces the amount of propellant necessary to circularize.
However, the increased velocity results in a higher flight path angle when the target altitude is reached, which
reduces the effectiveness of the circularization maneuver, see Figure 8.12.

The effect of the changes made to the flight path angle gain and the reference angle of attack can be seen
in Figure 8.13. Here it can be seen that the oscillations that occurred just before the pull up phase are mostly
eliminated. Furthermore, the reference angle of attack peaks less when the pull up phase is almost at an end,
which was unwanted behavior observed in Figure 8.6. Instead, the angle of attack is constant during that
phase for two individuals, while one individual has a steadily increasing angle of attack at the end of the phase.
This eliminates the possibility that the space plane becomes unstable at the end of the pull up phase, as was
mentioned in the previous section. Furthermore, the figure shows the angle of attack is close to the edge of
the search space, which is set to 1 deg. This was also found to be the case for the longitudinal ascent in the
previous section. This means that the fuel-optimal ascent trajectory is possibly not yet found. For this reason,
a local refinement will be performed, where the search space for the angle of attack is extended.
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Figure 8.9: Pareto front of the optimization for the ascent trajectory with an initial time zero seconds. The
500th generation is considered, with all three seeds included in the Pareto front.
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Figure 8.10: Evolution of the objective values for an initial time of 𝑡0 = 0 s, where both the minimum and
average of both objectives is shown per generation.
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Figure 8.11: Altitude versus velocity plot of three simulations that reach the target orbit with initial time
𝑡0 = 0 s.
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Figure 8.12: Altitude versus flight path angle plot of three simulations that reach the target orbit with
initial time 𝑡0 = 0 s.
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Figure 8.13: Overview of the angle of attack as a function of altitude for three simulations that reach the
target orbit with initial time 𝑡0 = 0 s.
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Figure 8.14: Overview of the Kepler elements as a function of altitude for three simulations that reach the
target orbit with initial time 𝑡0 = 0 s.
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The target orbital elements can be seen in Figure 8.14, where the velocity and altitude target values are
replaced with the semi-major axis. In this figure it can be seen that the simulations achieve the target semi-
major axis and inclination accurately. The inclination, as was mentioned previously, is ensured by the G&C
system that steers the space plane to the target inclination. The eccentricity is correlated with the flight path
angle. It can be seen that the simulations that have a flight path angle close to zero at the target altitude can
effectively reduce the eccentricity to zero. The RAAN that the three simulations achieve is relatively accurate
to the target value of 306 degrees. It can be seen that the three individuals vary slightly, which is expected
behavior. The reference heading angle steers the space plane to a target inclination, which can include a
deviation in inclination. This means that the heading angle, which also influences the inclination and RAAN,
does not steer the space plane to the target RAAN. This is also the reason why the ascent trajectory with
lateral motion is an optimization problem. There is not a direct equation that relates the heading angle to
the RAAN. However, it can be seen that for the control situation, where the initial time is set to 𝑡0 = 0 s, the
RAAN achieved is close to the target value.

Results with Delayed or Advanced Ascent
The optimization of an extended launch window was investigated for a variety of different initial times. By
investigating a single initial time the characteristics can be observed about the Pareto front. For example,
investigating an initial time that is delayed by one hour, 𝑡0 = 3600 s, see Figure 8.15, it can be seen that
the target objective ranges from 0 to 0.04, which is a larger range compared to the Pareto front for a launch
which is not delayed or advanced, see Figure 8.9. Reviewing the orbital parameter plot, Figure 8.16, for the
delayed launch reveals that the larger range is the result of the required change in RAAN. The most efficient
individual in terms of propellant will not change the RAAN to the target value, which results in a higher target
orbit objective value. Thus, it can be concluded that manipulating the RAAN results in more propellant used
during the ascent. Additionally, the most accurate individual will have a pull up altitude lower than the other
individuals, which results in a large amount of propellant needed during the circularization maneuver, see
Figure 8.17. The most accurate individual and the most efficient individual both have their downsides for
either the target orbit objective or the propellant objective, respectively. This means that there is a trade-off
between the accuracy of the final orbit and the amount of propellant used. Similarly to the previous Pareto
fronts shown, there exists a point where the target orbit objective value does not significantly improve anymore,
while the propellant objective does significantly increase. This point, is considered to be of good accuracy while
still being efficient with the amount of propellant used. As can be seen in Figure 8.16, all orbital elements are
close to the target value, while that individual does significantly improve upon the amount of payload available
compared to the most accurate individual.

For the sake of brevity, the Pareto fronts of the different launch times and the convergence of the opti-
mizations are not discussed or shown in this section. Instead, one individual is selected for each launch time
and discussed here. The selected individuals are at the point where the propellant used no longer significantly
increases the target orbit objective. The Pareto fronts and the selection of the individuals, and the convergence
of the optimizations can be found in Appendices A and B.

With the selection made, the results of the ascent trajectory with different initial launch times can be seen
in Figure 8.18. The runs that have been selected all have a similar final semi-major axis and eccentricity, which
can be considered the longitudinal maneuver parameters. It can be seen that throughout the ascent, these
parameters progress in a similar fashion as the longitudinal ascent trajectory shown in Figure 8.5. On the other
hand, the inclination and RAAN, which can be considered the lateral maneuver parameters, do vary compared
to the longitudinal ascent trajectory. This is the effect of using a deviation in inclination angle to command the
heading angle of the space plane. It can be seen that the RAAN of the different simulations have a different
initial value, depending on the launch time. A launch which is not delayed or advanced has an initial RAAN
of approximately 303 degrees, which differs slightly from the final RAAN found in the previous section due to
the rotation of the Earth. When the launch is delayed or advanced by two hours, the initial RAAN is plus
or minus 30 degrees, which corresponds with the angular rotation of the Earth of approximately 15 degrees
per hour. The manipulation of the RAAN is done by launching at a different launch heading angle, which
depends on the deviation in inclination. The effects of the deviation in inclination can be seen in Figure 8.18.
It can be seen that a delayed launch will require a positive deviation in inclination, which is corrected for just
before the pull up phase starts. Adversely, an advanced launch will require a negative deviation in inclination,
followed by a similar correction. The initial heading angle and how the correction influences the heading angle
can be seen in Figure 8.19. Here it can be seen that the delayed launch, which requires a positive deviation
in inclination, launches almost due North, while an advanced launch requires a launch almost due East. The
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Figure 8.15: Pareto front of the optimization for the ascent trajectory with an initial time of 3600 seconds.
The 500th generation is considered, with all three seeds included in the Pareto front.
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Figure 8.16: Overview of the Kepler elements as a function of altitude for three simulations that reach the
target orbit with initial time 𝑡0 = 3600 s.
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Figure 8.17: Altitude versus velocity plot of three simulations that reach the target orbit with initial time
𝑡0 = 0 s.

heading angle correction occurs just before the pull up phase starts, which is around 50 km. Depending on
the current latitude of the space plane when the pull up phase starts, the heading angle will vary. It can be
seen that for the advanced launch, the required heading angle is smaller. This can be explained by visualizing
the history of the longitude and latitude. This is done in Figure 8.20, where the history of the longitude and
latitude are plotted on an inertial sphere. Depending on the launch time, the starting longitude will vary.
It can be seen that all selected individuals, launched from the equator, have their own starting position in
terms of inertial longitude. As the space plane ascents, the heading angle is varied to allign before the pull up
phase to the correct heading angle. Afterwards, the semi-major axis, eccentricity, inclination and RAAN are
nearly identical for all individuals, as can be confirmed by Figure 8.18. Furthermore, it can be seen that for
an advanced launch, the latitude of the space plane progresses slowly, due to the large initial heading angle.
When the pull up phase starts, the required heading angle is not close to 90 degrees yet. On the other hand,
for the delayed launch, which launches with a small heading angle, it can be seen that at the start of the pull
up phase the heading angle is almost 90 degrees. This means that the latitude of the space plane at the start
of the pull up phase is almost 45 degrees, since the target inclination is 45 degrees. Due to the formulation
of the reference heading angle, a limit exists at which latitudes the space plane can be commanded. When
the space plane latitude is greater than the target inclination, the reference heading angle will produce an
error. Thus, it can be concluded that a two hours delayed launch reaches the limit of what is possible with
the current formulation of the reference heading angle.
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Figure 8.18: Overview of the Kepler elements as a function of altitude for the best simulation from each
initial time that reaches the target orbit.
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Figure 8.19: Overview of the heading angle as a function of altitude for the best simulation from each
initial time that reaches the target orbit.
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Figure 8.20: History of the longitude and latitude of the simulations with respect to an inertial sphere.
The obtained altitude is enhanced to visually distinguish between the inertial sphere and the trajectory of

the simulations.

The maneuver to correct the heading angle can also be seen in Figure 8.21, where the heading angle
correction maneuver starts around 30 km. The heading angle correction requires a large banking maneuver,
which enables the space plane to change the direction of the velocity to align with the desired inclination.
An interesting phenomenon can be observed by comparing the delayed and advanced launches. In general
it can be seen that a delayed launch, which uses a negative banking maneuver, starts slightly earlier and
becomes less steep compared to the advanced launches. The advanced launches, which use a positive banking
maneuver, reach a higher bank angle, which enables these simulations to start the bank angle maneuver later.
It is theorized that this behavior can be contributed to the formulation of the reference heading angle. The
reference heading angle can only be computed for a latitude smaller than the target inclination. All delayed
launches will launch in some extent in northern direction, which means that for these individuals, the latitude
progresses quicker compared to the advanced launch individuals. In order to ensure that the latitude does
not exceed the target inclination value, the space plane needs initiate the banking maneuver earlier, while not
needing to change the heading angle as sharply. This can also be confirmed by looking at the angle of attack
versus altitude plot, see Figure 8.22. Due to the banking maneuver the angle of attack needs to be increased to
ensure that the flight path angle does not drop due to the reduction in lift force. For the delayed launch, the
angle of attack increases earlier compared to the advanced launch. This could also give an indication why the
ascent trajectory for a delayed or advanced launch uses more propellant. An increased angle of attack induces
more drag, which means that the drag losses for these simulations will be higher. After the local refinement, a
detailed investigation is done to assess whether the drag losses are the reason for the reduced available payload.
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Figure 8.21: Overview of the bank angle as a function of altitude for the best simulation from each initial
time that reaches the target orbit.
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Figure 8.22: Overview of the angle of attack as a function of altitude for the best simulation, from
𝑡0 = 0, 7200, −7200 s, that reaches the target orbit.



106 Chapter 8. Results

0 10 20 30 40
Deviation in Inclination,  i [deg]

0.94

0.96

0.98

1

0

0.02

0.04

0.06

0.08
Delayed Launch T

0
 = 7200 s

-4.5 -4 -3.5 -3 -2.5 -2
Sigmoid Steepness, b [-]

0.94

0.96

0.98

1

0

0.05

0.4 0.5 0.6 0.7 0.8
Halfway Point, x

1/2
 [-]

0.94

0.96

0.98

1

0

0.02

0.04

0.06

0.08

-50 -40 -30 -20 -10 0
Deviation in Inclination,  i [deg]

0.94

0.96

0.98

0

0.02

0.04

0.06

0.08
Advanced Launch T

0
 = -7200 s

-3 -2.8 -2.6 -2.4 -2.2 -2
Sigmoid Steepness, b [-]

0.94

0.96

0.98

0

0.05

0.6 0.7 0.8 0.9
Halfway Point, x

1/2
 [-]

0.94

0.96

0.98

0

0.02

0.04

0.06

0.08

P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Figure 8.23: Overview of the lateral optimization parameters for an advanced and delayed launch that
reach the target altitude.

Investigation of the Lateral Optimization Parameters
Previously, it was discussed that depending on a delayed or advanced launch the deviation in inclination was
either positive or negative, respectively. In order to gain insight in the behavior of the lateral optimization
parameters, a scatter plot is shown where the objectives are plotted versus these parameters, see Figure 8.23.
In the figure only the optimization parameters are shown for a delayed or advanced launch by two hours. As
was discussed previously, only the individuals that reach the target altitude are considered. As can be seen,
there is a strong correlation between the deviation in inclination and the target orbit objective. Furthermore, it
can be seen that the point that the sigmoid function reaches the half way point of the deviation in inclination
increases as the target orbit objective becomes lower. An interesting difference between the advanced and
delayed launch is that the half way point for an advanced launch is of higher value, which corresponds with a
higher altitude. The reason why the advanced launch has a higher value is due to the definition of the reference
heading angle. The delayed launch is limited due to the more northwards moving direction, which means that
the latitude of these simulations increases more rapidly and approaches the limit of 45 degrees earlier. Thus,
the banking maneuver to correct the heading angle needs to occur earlier. Decision variable insight for the
other launch times can be seen in Appendix D.

8.3.4. Results of the Local Refinement
Previously, the global optimization results are shown for the different launch times. In the discussion of the
results, a number of issues were identified, which required a refinement of the Pareto front. The first issue was
the definition of the search space for the angle of attack, which should be extended. The second issue is that
the global optimization is not guaranteed to find the optimal result. A local optimization can be used to either
refine the Pareto front or confirm that the current Pareto front is indeed the optimum. This refinement is not
done for all initial times. It was determined that the delayed or advanced launch by either 10 or 20 minutes
did not add any significant details compared to the longer delayed or advanced launches.

The refinement of the Pareto front is done with a Sobol sequence, where a large number of combinations
of the optimization parameter range is generated. The Sobol analysis, similar to how it previously was used,
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Table 8.13: Refined search space of the longitudinal optimization parameters, used for the Sobol analysis.

Parameter Search Space Unit
𝛾1 [15.2,24.6] [deg]
𝛾2 [21.2,28.8] [deg]
𝛾3 [2.2,3.5] [deg]
𝛾4 [0.0,0.5] [deg]
𝛾5 [0.0,0.5] [deg]
𝛾6 [0.0,0.5] [deg]
𝛼1 [-1.0,4.0] [deg]
𝛼2 [-1.0,4.0] [deg]
𝛼3 [-1.0,4.0] [deg]
ℎpull up [47.5, 49.8] [km]
ℎMECO [60.0, 80.0] [km]
𝜙max [1.0, 1.4] [-]

Table 8.14: Refined search space of the lateral optimization parameters, used for the Sobol analysis.

Launch Time Δ𝑖0 [deg] 𝑏 [-] 𝑥1/2 [-]
𝑡0 = 0 s [-4.0, 4.0] [-5.0, -2.0] [0.2, 0.8]
𝑡0 = 1800 s [5.0, 25.0] [-5.0, -2.0] [0.6, 0.9]
𝑡0 = −1800 s [-20.0, -10.0] [-3.0, -2.0] [0.6, 0.8]
𝑡0 = 3600 s [10.0, 44.9] [-4.0, -2.0] [0.6, 0.9]
𝑡0 = −3600 s [-44.9, -10.0] [-4.0, -2.0] [0.6, 0.9]
𝑡0 = 7200 s [30.0, 44.9] [-4.0, -2.0] [0.6, 0.8]
𝑡0 = −7200 s [-44.9, -25.0] [-3.0, -2.0] [0.7, 0.9]

will create pseudo-random sequences that enables the investigation of the entire search space.

Determination of the Search Space
With the results of the global optimization, the optimization parameters can be used to find a refined search
space. The optimization parameter range from the individuals of the global optimization that reached the
target altitude are used. For each parameter the minimum and maximum value are obtained and 10 % of its
range is either subtracted or added to the minimum or maximum value, respectively. This defines the refined
search space, which is used for both the local optimization and the Sobol analysis. Exception to this rule is
the angle of attack. As was discussed during the results of the longitudinal ascent, the edge of the angle of
attack search space should be extended significantly. For the angle of attack, the minimum value is extended
to −1 degree. This is the minimum value for which the aerodynamic coefficients are tabulated. The refined
search space can be seen in Table 8.13.

Additionally, for each launch time, the lateral optimization parameters are assessed and used to define a
search space from which a Sobol sequence is generated. The lateral optimization parameters are determined for
the different launch times. By investigating the lateral optimization parameters, as can be seen in Figure 8.23,
a refined search space can be found to investigate the local refinement. This is done by only considering
optimization parameters that have a target orbit objective below 0.02. Any value above this, will include
solutions that do not properly manipulate the RAAN. By doing this for the different launch times, a refined
search space is found that can be used to construct the Sobol sequence. The refined search space for the
different launch times can be found in Table 8.14.

Results
The results of the Sobol analysis for an initial time of 𝑡0 = 0 s can be seen in Figure 8.24. As can be seen,
the Sobol analysis does not give any solutions that improve the Pareto front that was found by the global
optimization algorithm. Similarly, the Sobol analyses for the other launch times did not find an improved
Pareto front, see Appendix C. The reason for this could be that the global optimization solutions are already
very close to the optimal solution. Alternatively, the inclusion of a wider search space for the angle of attack
could necessitate a larger number of individuals in the Sobol sequence to find improvements upon the Pareto
front. Besides the Sobol analysis, a local optimization could be done, which uses gradient based methods
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Figure 8.24: Pareto front with the Sobol analysis for an initial time of 𝑡0 = 0 s.

Table 8.15: Overview of the selected individuals that reach the target orbit.

Launch Time T0 T1800 T-1800 T3600 T-3600 T7200 T-7200
Available Payload [kg] 5106 4392 4089 3426 3554 772 1514

to find the optimal solution. Since the global optimization already indicates where the global minimum is
located, a local optimization could be used to further improve upon the near-optimal solution found by the
global optimization. Though this extended analysis would fall outside the scope of the MSc thesis. Instead, it
is recommended as a future study.

8.4. Analysis of the Results
In the previous section the results of the optimization was presented. It has become clear that the space plane
is capable of changing the Right Ascensions of the Ascending Node (RAAN) at the cost of propellant. In
Figure 8.22, it was already seen that the banking maneuver requires an increased angle of attack to maintain
the correct flight path angle, which increases the drag forces. The propellant used can be converted to
available payload, by assuming that any propellant not used by the space plane can be used as payload up
to the Operating Empty Weight (OEW). The resulting available payload, which was used to color code the
different simulations, can be seen in Table 8.15. However, using the payload as a measure does not give enough
information how the extra propellant is actually used. Therefore, a Δ𝑉 budget is computed for each simulation.

For the computation of the budget, three losses should be included. These losses occur due to the drag,
gravity and misalignment of the thrust vector with respect to the velocity vector. The drag losses are computed
with:

Δ𝑉drag = ∫
𝑡𝑓

𝑡0
𝐷dt, (8.3)

where 𝐷 is the drag force, which is integrated between the initial time, 𝑡0 and the final time, 𝑡𝑓 . The gravity
loss is computed with:

Δ𝑉grav. = ∫
𝑡𝑓

𝑡0
𝑔0 sin 𝛾dt, (8.4)
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Table 8.16: Overview of the selected individuals that reach the target orbit.

Launch Time T0 T1800 T-1800 T3600 T-3600 T7200 T-7200
Δ𝑉ideal [m/s] 11289 11331 11172 11395 11560 11848 11781
Δ𝑉circ [m/s] 108 151 183 135 138 164 196
Δ𝑉drag [m/s] 3241 3284 3170 3295 3419 3564 3628
Δ𝑉grav. [m/s] 540 554 563 549 553 614 549
Δ𝑉thrust [m/s] 273 301 279 342 382 490 458
Δ𝑉initial [m/s] 170 170 170 170 170 170 170
Δ𝑉total [m/s] 7512 7514 7514 7514 7513 7514 7512

where 𝑔0 is the gravity acceleration at sea level and 𝛾 is the flight path angle. Finally, thrust losses occur due
to the misalignment of the thrust vector with respect to the velocity vector. Typically, the misalignment only
occurs due to the angle of attack, assuming that the thrust vector points along the 𝑥𝐵-axis. For this study,
a Thrust Vector Control (TVC) module is implemented, which introduces the thrust elevation angle, 𝜖𝑇 . If
TVC would not be implemented, the thrust losses could be negelected. In a previous study by Powell et al.
(1991), the thrust losses without TVC were determined to be approximately 16 m/s. The thrust losses are
computed with:

Δ𝑉thrust = ∫
𝑡𝑓

𝑡0
𝑇 sin(𝜖𝑇 + 𝛼)dt, (8.5)

where 𝛼 is the angle of attack and 𝑇 is thrust magnitude.
Besides these losses, the space plane undergoes a circularization maneuver and has an initial velocity that

should also be included in the Δ𝑉 budget. The circularization velocity change, Δ𝑉circ, was computed with
Equation 5.23, where the specific impulse is assumed to be 465 s (Mooij, 1998). The initial velocity is 170 m/s
and denoted with the symbol Δ𝑉initial. Additionally, to compare all the simulations the ideal velocity change
is computed with:

Δ𝑉ideal = ∫
𝑡𝑓

𝑡0
𝐼𝑠𝑝𝑔0 ln 𝑀0

𝑀0 − �̇�𝑑𝑡, (8.6)

where
�̇� = 𝑇

𝐼𝑠𝑝𝑔0
. (8.7)

With the positive and negative change to the Δ𝑉 computed, the total Δ𝑉 budget for the ascent of a space
plane can be computed with:

Δ𝑉total = Δ𝑉ideal + Δ𝑉circ + Δ𝑉initial − Δ𝑉drag − Δ𝑉grav. − Δ𝑉thrust. (8.8)

The complete budget for the different launch times can be seen in Table 8.16. It can be seen that the budget
closes and that all velocity changes corresponds approximately with the achieved velocity, as can be seen in
Figure 8.25. The overall trend that can be observed is that the drag and thrust losses increase as the launch
is further delayed or advanced. It is believed that these increases occur due to the increased angle of attack.
An increase in angle of attack induces a higher drag force, which increases the drag losses. Furthermore, the
increase in angle of attack means that the natural pitching moment of the space plane is increased, which
necessitates the TVC to trim the space plane more. The increase in thrust elevation angle means that the
thrust vector misalignment with the velocity vector increases, which means that the thrust losses increase.

Now that the cost of changing the RAAN with a space plane is quantified, a similar analysis can be done
for a satellite that would make this change in-orbit. Assuming that the space plane would not change the
RAAN, a satellite could be launch with a mass of approximately 5100 kg. According to K. F. Wakker (2015)
the required Δ𝑉 to make an in-orbit change of the RAAN, can be computed for a circular orbit with:

Δ𝑉 = 2𝑉1 sin 𝑖 sin(0.5ΔΩ), (8.9)

where 𝑉1 is the original orbital velocity, 𝑖 is the inclination of the orbit and ΔΩ is the change in the RAAN.
Applying this equation to the target orbit yields a number of velocity changes, Δ𝑉 , which depend on the
change in RAAN. The required propellant to make this change is computed with the rocket equation, modified
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Figure 8.25: Altitude versus velocity of the simulation that reach the target orbit with varying initial times.

to determine the required propellant:

𝑀𝑝 = 𝑀0 − 𝑀𝑓 = 𝑀0
1

exp ( Δ𝑉
𝐼𝑠𝑝𝑔0 )

, (8.10)

where 𝑀0 is the initial satellite mass, 𝑀𝑓 is the final satellite mass, 𝑀𝑝 is the required propellant mass to
achieve the desired change in velocity, Δ𝑉 . In Figure 8.26 the required propellant for a satellite of 5100 kg to
change the RAAN is shown. In this figure, it can be seen that, depending on the specific impulse of the engine,
the required propellant changes. It can be seen that a theoretical impulsive shot to change the RAAN is more
efficient when considering a delayed or advanced launch of two hours. However, when considering a delayed
or advanced launch by an hour or less, the space plane is capable of efficiently changing the RAAN, which
is on par with the impulsive shot for a rocket engine with a specific impulse of 450 s. This means that for
satellite missions, where a change in RAAN is not taken into account, the space plane could effectively make
this change instead. The possibility of such a change ensures that the launch window can be extended even
if the final target orbit that needs to be achieved has high accuracy requirements. Furthermore, the launch
window could be further extend if a more efficient air-breathing engine is developed. In a similar fashion, a
space plane with a lower OEW could also increase the launch window by carrying more propellant.
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9
Verification & Sensitivity Analysis

In this chapter the verification process of the simulation model and the retrieved ascent trajectories are
discussed. Afterwards, an analysis done into the robustness of the Guidance and Control (G&C) system
and the obtained results by varying initial state, G&C system parameters and an optimization parameter.

9.1. Verification
The verification of the simulation is done in two parts. First of all, the implementation and integration of the
vehicle model and the G&C system are verified. The verification process involves unit testing of the coefficients
obtained by Shaughnessy et al. (1990). Furthermore, the implementation of the G&C system is verified by
analyzing the reference values with the obtained values of the space plane.

After the optimization is done, the simulation that is obtained will be verified with results from previous
studies. The longitudinal ascent will be verified with a study done by Mooij (1998). The lateral motion that
is involved to manipulate the Right Ascensions of the Ascending Node (RAAN) is verified by comparing the
results from Zhou, Wang, and Cui (2020) with the obtained results from the different delayed or advanced
launches.

9.1.1. Verification of the Vehicle Model
The vehicle model is obtained from a study done by Shaughnessy et al. (1990). The vehicle model is comprised
of mass, thrust and aerodynamic data. All of the data is given in graphs, which is obtained manually and
ordered in tables. The tables correspond with the required look-up table format that TU Delft Astrodynamics
Toolbox (TUDAT) uses to retrieve and interpolate the coefficient data. The acquirement of the tables is
verified in two ways. First of all, when the tables are created, a number of data points are manually checked.
This means that, for each variable that the data is dependent on, three values are assessed and compared
to the graphs. For the implementation of these look-up tables in TUDAT another check is performed. The
coefficient data is compared, for three values per dependent variable, with the graphs.

With these two checks, it is determined that both the data has been correctly converted from a graph to a
table, and the tables are correctly implemented in TUDAT. The vehicle data is loaded in the existing custom
aerodynamic coefficient interface and the thrust model. From here, TUDAT uses these models to compute
and propagate the rotational, translational and mass state of the vehicle.

9.1.2. Verification of the Guidance and Control (G&C) System
The G&C system is a very complex system, with a variety of parts that work together to steer the space plane
to the correct orbit. However, the purpose of the G&C system is very simple. In essence, the G&C system
can be seen as a vehicle system computer. It computes six required vehicle parameters that should guide and
control the vehicle to the correct trajectory parameters. These six parameters involve deflection angles of the
elevons, rudder and canard, the equivalence ratio (thrust throttle), and thrust elevation angle. Based on the
required vehicle system parameters the vehicle data is obtained by TUDAT. Thus, it can be concluded that
the G&C systems does not directly influence the Equations of Motion (EoM). If the vehicle model is correctly
implemented and the G&C system is effective in guiding and controlling the space plane to the correct orbit,
the G&C system works.

113
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Figure 9.1: Verification of the G&C system to steer the space plane to the correct flight path angle.
Simulation is shown for an initial launch time of 𝑡0 = 0 s.
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Figure 9.2: Verification of the G&C system to steer the space plane to the correct heading angle.
Simulation is shown for an initial launch time of 𝑡0 = 3600 s.

The G&C system is verified manually by inspecting the outcome of test simulations. In these tests, a
guesstimate was done of the ascent trajectory. Based on the outcome of the simulation, the reference tra-
jectory parameters, and desired aerodynamic angles were checked with the actual trajectory parameters and
aerodynamic angles. In a similar fashion, the integration of the G&C system can be verified, with the obtained
results, discussed in Chapter 8. In Figure 9.1, the reference flight path angle is shown up until the point that
the guidance module steers the space plane to these reference parameters. Here it can be seen that, from the
initial flight path angle of 5 degrees, the flight path angle rapidly is increased to the commanded flight path
angle. After about 80 seconds, the flight path angle decreases again, where the guidance module has some
trouble following the reference. Later when considering the aerodynamic angles, it will become apparent why
this is the case. At the end of the first ascent phase, the flight path angle starts to oscillate slightly. As was
mentioned earlier in Chapter 8, the flight path angle gain, 𝐾�̇�, was tuned to reduce these oscillations. As
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can be seen, the oscillations are still present, albeit in reduced form due to the lower flight path angle gain.
Figure 9.2 shows the reference and actual heading angle, where the reference angle is stopped at the end of
the first ascent phase. Here it can be seen that the guidance module can effectively steer the space plane to
the correct heading angle. Around 100 seconds, a small deviation is seen, which is caused due to the rapidly
reducing flight path angle. This phenomenon will be discussed when considering the aerodynamic angles. The
heading angle correction to insert in the target orbit, starts around 800 seconds. It can be seen that there is a
difference between the reference heading angle and the actual angle. This can be contributed to a low heading
angle gain, 𝐾�̇�, which was chosen on purpose to limit the bank angle. At the end of the correction maneuver
the actual heading angle has effectively been changed to match the reference.

In order to change the heading and flight path angle, desired aerodynamic angles are computed. Thus,
to further verify the correct integration of the G&C system, the aerodynamic angles and their desired values
should be analyzed. The angle of attack, Figure 9.3, is analyzed for an initial time of 𝑡0 = 0 s, since the desired
angle of attack is a direct result from the reference flight path angle. Here it can be seen that initially, the
angle of attack is increased to increase the flight path angle. When the reference flight path angle decreases,
the aerodynamic angle decreases as well. In order to follow the reference flight path angle the desired angle of
attack becomes negative for a brief moment, where the lift force is negative. Afterwards, the flight path angle
is followed, where the desired angle of attack slowly decreases due to the increasing velocity, which facilitates a
lower aerodynamic angle to generate enough lift. When the pull up altitude is reached, where the oscillations
were observed in Figure 9.1, also oscillations are seen for the desired angle of attack. Due to the reduced flight
path angle gain, the angle of attack oscillations also remain somewhat limited. In the previous iteration of the
gains, there was the tendency for the aerodynamic angle to increase to above 6 degrees, where the space plane
was not able to trim itself anymore. For the pull up phase, it can be seen that the space plane is perfectly
capable of following the aerodynamic angle until the engine cut-off altitude is reached.

For the desired bank angle, Figure 9.4, an initial time of 𝑡0 = 3600 seconds is analyzed, which corresponds
to the reference heading angle figure shown earlier. Here it can be seen that the desired bank angle is perfectly
followed throughout the entire ascent. It can be seen that when the flight path angle has to be decreased,
which necessitates a negative angle of attack, also a small banking maneuver is seen. This maneuver is due
to the formulation of the desired bank angle, see Equation 6.48, where the desired change in flight path angle
is included. When large changes in flight path angle are required, also a banking maneuver is initiated. This
is in theory a correct maneuver, if the lift remains positive. However, due to the symmetric nature of the
space plane, an aerodynamic angle below 0 degrees, means that the lift force is pointing downwards. Thus, the
banking maneuver does indeed counteract the negative angle of attack, reducing the capability of the space
plane to effectively change the flight path angle. This behavior is unintended and can be corrected by removing

0 500 1000 1500 2000 2500
Time [s]

-2

0

2

4

6

8

10

12

14

A
ng

le
 o

f A
tta

ck
 [d

eg
]

Angle of Attack Plot

Reference
Actual

0 50 100

0

5

10

15
Detailed View

1650 1700 1750 1800 1850
Time [s]

-0.5

0

0.5

1

1.5

Figure 9.3: Verification of the G&C system to orient the space plane to the correct angle of attack.
Simulation is shown for an initial launch time of 𝑡0 = 0 s.
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Figure 9.4: Verification of the G&C system to orient the space plane to the correct bank angle. Simulation
is shown for an initial launch time of 𝑡0 = 3600 s.

the flight path angle derivative virtual control value out of the aforementioned equation. However, this was
not foreseen and changed when integrating the G&C system.

The last aerodynamic angle to be checked is the reference angle of sideslip. For the optimization of ascent
trajectory, it was assumed that changing the heading angle should be done by the bank angle, setting the
reference angle of sideslip to 0 degrees throughout the entire ascent. Figure 9.5 shows the reference and actual
angle of sideslip for a launch time of 𝑡0 = 3600 seconds. Here it can be seen that the angle of sideslip remains
very close to zero, only varying slightly due to the changes in bank angle, as can be seen in the detailed view.
As can be seen , changes in bank angle also have a small impact on the angle of sideslip.
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Figure 9.5: Verification of the G&C system to orient the space plane to the correct angle of sideslip.
Simulation is shown for an initial launch time of 𝑡0 = 3600 s.
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With the analysis of the aerodynamic angles, it can be concluded that the G&C system is properly inte-
grated. The space plane is capable of effectively following the reference trajectory angles and orienting itself
to the desired aerodynamic angles. The oscillations that occur in the flight path angle and angle of attack are
due to an unforeseen circumstance. Fortunately, the optimization algorithm was capable of finding solutions
that would limit the impact of these oscillations. The cause of these oscillations will be explained during the
sensitivity analysis.

9.1.3. Verification of the Longitudinal Motion
In the previous sections, the verification strategies were discussed to ensure that the vehicle model and G&C
system were properly implemented in TUDAT. The obtained results from the optimization using TUDAT and
Parallel Global Multiobjective framework for Optimization (PaGMO) can be verified with previous studies as
was mentioned in the introduction of the section.

The first study that is used to verify the results will compare the obtained trajectory parameters, the
constraints that were implemented, the angle of attack, drag and lift force, and equivalence ratio set by the
G&C system to accelerate the space plane. The study is done by Mooij (1998), where the longitudinal ascent
of the space plane was investigated. For this reason, the results obtained from an initial launch time of 𝑡0 = 0
s is used as verification.

First of all, the flight path angle and angle of attack is compared, which can be seen in Figures 9.6 and 9.7.
In the first figure, it can clearly be seen that the flight path angle is similar. The major difference is in the
initial pull up, which occurs in the first 100 seconds. The results by Mooij (1998) show a more instantaneous
increase of the flight path angle of 25 degrees, followed by an almost linear decrease afterwards. For the
results obtained by this study show a somewhat later increase in the flight path angle, followed by a steeper
decrease afterwards. This difference can be explained by the differences in the transcription of the optimal
control problem. Due to the iterative nature of the global optimization, it is important to reduce the number
of optimization parameters. Conversely, the verification results are manually found, which allows for a more
discrete points at which the flight path angle can be defined. The difference in flight path angle is also reflected
in the comparison for the angle of attack, where the verification results do not decrease below approximately 2
degrees. Since the results from this study require a faster change in flight path angle, a larger decrease in angle
of attack is observed. The angle of attack comparison also shows the difference in how the pull up maneuver is
done. This is once again a difference due to design choices, where for the verification results it was determined
to perform the maneuver with a constant 6 degrees angle of attack. Due to the larger angle of attack, the
flight path angle increase is slightly higher and drops more quickly due to the higher loss in velocity due to
the increased drag, which will be shown later.
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Figure 9.6: Comparison of the flight path angle from this study and a previous study (Mooij, 1998).
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Figure 9.7: Comparison of the angle of attack from this study and a previous study (Mooij, 1998).
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Figure 9.8: Comparison of the equivalence ratio (thrust throttle) from this study and a previous study
(Mooij, 1998).

The second part of the verification, is to show the equivalence ratio, used as thrust throttle, the dynamic
pressure, and heat flux. The comparisons can be seen in Figures 9.8, 9.9 and 9.10. The study done by Mooij
(1998) has used the same constraints, where the heat flux constraint is being computed with Equation 4.25.
The equivalence ratio differs slightly due to the inclusion of a maximum equivalence ratio for the optimization
of the NonLinear Programming (NLP) problem. Due to this difference, the dynamic pressure and heat flux
reach the constraint at different times. However, the dynamic pressure and heat flux do drop significantly
after the pull up phase starts, due to the rapidly increasing altitude. Additionally, it can be seen that the
equivalence ratio is reduced whenever a constraint value is reached, which occurs for both the actual and the
verification results.

The third part to verify is the drag and lift forces, which are generated by the space plane throughout the
ascent. Figures 9.11 and 9.12 show the drag and lift for the results obtained in this study compared with the
results obtained by Mooij (1998). By comparing these figures, it can be seen that the drag and lift force follow
a similar pattern. However, it can be seen that both the drag and lift force obtained by this result has a higher
peak at the start of the simulation. This can be explained by the different simulation settings. In this study,
the angular velocity and angular acceleration are modeled, where the elevons are used to induce an angular
acceleration in order to orient that space plane. In the verification study, the elevons are used only to trim the
space plane for each time step. At the start of the simulation the angle of attack is increased to increase the
flight path angle. The elevons are used to increase the angle of attack, which induce an increased drag and
lift force. A detailed view of the drag and lift force for this study can be seen in Figure 9.13.
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Figure 9.9: Comparison of the dynamic pressure from this study and a previous study (Mooij, 1998).
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Figure 9.10: Comparison of the heat flux from this study and a previous study (Mooij, 1998).
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Figure 9.11: Comparison of the drag force from this study and a previous study (Mooij, 1998).
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Figure 9.12: Comparison of the lift force from this study and a previous study (Mooij, 1998).
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Figure 9.13: Detailed view of the drag and lift force at the start of the simulation.

With the details of the ascent trajectory discussed, a general overview can be given of the ascent of a space
plane. In the study by Mooij (1998), this is done by showing the altitude of the space plane as a function
of velocity, where the dynamic pressure and heat flux constraints are also depicted. Figure 9.14, shows this
plot, as well as the plot generated by the results from this study. Here it can be seen that the both results
show a similar line, following along either the dynamic pressure constraint or the heat flux constraint up until
the pull up phase. For the observant reader, it can be seen that the final velocity obtained by this study is
higher. This can be explained by the fact that the space plane is inserted into an inclined orbit, whereas the
verification study inserts into an equatorial orbit. Due to the inclination, the space plane benefits less from
the rotation of the Earth that increases the inertial velocity. Thus, the velocity that the space plane needs
to achieve, expressed in the rotational frame, is higher. Furthermore, it can be seen that the circularization
maneuver changes the velocity by less, which is a result of the optimization of the pull up maneuver.
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Figure 9.14: Overview of the altitude versus velocity plot for the results of this study and the verification
study (Mooij, 1998).
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Figure 9.15: Comparison of the dynamic pressure from this study and a previous study (Zhou, Wang, and
Cui, 2020).
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Figure 9.16: Comparison of the dynamic pressure from this study and a previous study (Zhou, Wang, and
Cui, 2020).

9.1.4. Verification of the Lateral Motion
The lateral motion is verified with the results obtained by Zhou, Wang, and Cui (2020). It should be noted
that this study, only analyzed an ascent between 20 and approximately 55 km altitude, where the velocity
at the termination altitude was 5000 m/s. Additionally, the study did have a higher flight path angle, which
reduces the time of flight to approximately 250 seconds. Due to the small time of flight and low velocity,
the bank angle maneuver is not as effective as was demonstrated in this study. Furthermore, the verification
study did not present a heading angle time history. Thus, the verification can only be done based on the bank
angle history and the change in RAAN that was accomplished by this banking maneuver. The study by Zhou,
Wang, and Cui (2020) has investigated five different cases for which a change in RAAN is achieved. Cases
one through four are for an orbital inclination of 20 degrees with a change in launch time of −300, −600, 1800,
2400 seconds, respectively. The fifth case is done for an orbital inclination of 80 degrees with a launch time of
−1800 seconds.

In Figure 9.15, it can be seen what banking maneuver is performed, while Figure 9.16 shows how this
maneuver changed the RAAN. Due to large differences in the verification study and this study, a proper
verification of the results is not possible. However, it can be seen that both results show a similar banking
maneuver, with a corresponding change in RAAN. In this study, the full ascent was studied, where the change
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in RAAN would only start after a predetermined altitude is reached. The sigmoid function, that was used to
determine the reference heading angle, gives great flexibility to when the banking maneuver should start and
how aggressive this change should be. This explains the difference in how the RAAN is manipulated. Whereas
the verification study shows a predictable change in RAAN irregardless of the launch time, this study shows
a less predictable change.

9.1.5. Concluding Remarks with Regards to the Verification
The verification of the integration of the vehicle model and G&C system has been discussed and verified by
comparing the results obtained by Mooij (1998) with the results presented in the study. It has been seen
that the results presented in this study have large similarities for the longitudinal ascent. Additionally, by
comparing the lateral maneuvers presented by Zhou, Wang, and Cui (2020) to the results obtained in this
study, it can be seen that similar banking maneuvers were found to manipulate the RAAN. However, it should
be noted that due to variations in the vehicle model, ascent trajectory choices and definition of the banking
maneuver, a larger change in RAAN was found in this study compared to the study by Zhou, Wang, and Cui
(2020).

9.2. Sensitivity Analysis
A partial sensitivity is performed and discussed in this section. First, impact on the results due to deviations
in the initial state are analyzed. This is followed by a performance analysis of the G&C system. Lastly, a
discovered issue is analyzed and discussed by varying an optimization parameter.

9.2.1. Sensitivity to the Initial State
In order to asses the sensitivity of the results to the initial state, a number of parameters that determine the
initial state have been varied. The first parameters that are varied relate to the velocity vector. The velocity
is varied by a percentage initial velocity of 170 m/s. The variation of the velocity can be seen in Figure 9.17.
The flight path angle and heading angle are varied by a specific value, since the initial flight path angle is
already quite small, and the heading angle varies depending on the deviation in inclination. The variation
in these angles can be seen in Figures 9.18 and 9.19. In these figures, it can be seen that irregardless of the
changes made to the initial state, the altitude time history would only change slightly. What can be observed
that most individuals reach the target altitude or just miss it, before descending again. For the velocity, an
exception is found for the negative change of 10%. The velocity is decreased by 17 m/s, which results in the
space plane not generating enough lift to increase the altitude. Another exception is found in the variation in
flight path angle, for the negative variations in flight path angle for an initial launch time of 𝑡0 = 0 seconds.
For this variation, the simulation stops just before the pull up altitude. By further inspection, this is caused
by the oscillations that were found and discussed in Chapter 8. This indicates that the oscillations are still
present and are capable of causing a termination of the simulation. For the variation in heading angle, it was
found that either a positive or negative variation of 1 degree induces a banking maneuver, which causes the
space plane to lose altitude. Since the initial altitude is 0 meters, the simulation is immediately terminated.

Besides the velocity vector parameters, the initial mass and altitude have been varied. The results of the
variation in mass can be seen in Figure 9.20. Here it can be seen that for an initial time of 𝑡0 = 0 seconds, once
again a simulation is terminated around the pull up altitude due to the oscillations in the flight path angle.
The other simulati do not terminate due to oonsscillations, but most solutions do not reach the target altitude.
Interestingly, the negative variations for an initial time of 𝑡0 = −3600 seconds still reach the target altitude.
For a variation in the altitude, Figure 9.21, almost no difference is seen except for a variation in altitude by
1 km. It can be seen that the space plane is not capable of ascending to the target altitude, due to reference
flight path angle, see Figure 9.22. It can be seen that the initial flight path angle can be followed, However,
the reference flight path angle of 25 cannot be reached, and starts oscillating. It is theorized that the increased
starting altitude means that the velocity required to obtain such a high flight path angle cannot be reached
due to the axial acceleration constraint.

Lastly, the sensitivity of the results to initial aerodynamic angles have been analyzed. The variation of
the angle of attack, angle of sideslip and bank angle did not yield any new information. The only issue that
was found in the variation of these angles was that the target altitude was not reached, resulting in the space
plane descending again. For this reason, the figures of these variations are not included.

It can be concluded that the sensitivity of the found solution to the final solution is limited. Any variation
in the flight path and heading angle can be handled well by the guidance module, except for a few situations
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due to oscillations in the flight path angle. Furthermore, the result is not sensitive to changes in altitude.
Unless the altitude is too high for the space plane to generate enough lfit, it can be ensured that the space
plane achieves the target altitude. However, the final result is more sensitive to variations that impact the
velocity. The difference in velocity and mass causes the space plane to either miss the target altitude or reach
the target orbit with a higher flight path angle. By including a minimum velocity before the pull up maneuver
is initiated, it can be ensured that the target altitude is at least reached irregardless of the variation in initial
velocity or mass.
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Figure 9.17: Time history of the altitude of the space plane for a variation in the initial velocity.
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Figure 9.18: Time history of the altitude of the space plane for a variation in the initial flight path angle.
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Figure 9.19: Time history of the altitude of the space plane for a variation in the initial heading angle.
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Figure 9.20: Time history of the altitude of the space plane for a variation in the initial mass.
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Figure 9.21: Time history of the altitude of the space plane for a variation in the initial altitude.
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Figure 9.22: Time history of the flight path angle of the space plane for a variation in the initial altitude.

9.2.2. Sensitivity to Errors in the G&C System
The sensitivity of the obtained results to the G&C system is assessed by investigating the impact of an offset
to the deflection angles. This is done for each control surface separately, where the time history of the altitude
that the space plane achieves is used as comparison. The first offset is to the left elevon, with the results
shown in Figure 9.23. Here it can be seen that the altitude history up to the pull up altitude is similar for
all simulations. However, at the pull up altitude, a number of simulations are terminated due to the angle
of attack boundary being exceeded. Furthermore, the simulation with an offset of 0.1 degree does not reach
the target altitude. The time history for a deflection in the right elevon is seen in Figure 9.24, where the
same issues occur as was seen for the offset in the left elevon deflection. Lastly, the rudder deflection angle is
investigated, as can be seen in Figure 9.25. Here it can be seen that once again, the simulation either stops
around the pull up altitude, the simulation misses the target altitude or the simulation is successful in reaching
the target altitude. The last investigation is done with an offset to all three deflections at the same time, where
the same offset is used for all control surfaces. The results can be seen in Figure 9.26, where once again the
simulation is terminated due to one of the aforementioned issues.

Besides the offset in control surface angles, also an offset in thrust elevation angle and equivalence ratio
is investigated. For the thrust elevation angle, the same offsets are used as for the control surfaces. The
results of the thrust elevation angle can be seen in Figure 9.27, where the most interesting phenomenon can
be seen around the 45 km altitude mark. Here it can be seen that the simulation is terminated for an offset
in negative thrust elevation angle. This is caused for both launch times, where oscillations in the flight path
angle occur. It is interesting to see that this only occurs for negative offsets in thrust elevation angle. Seeing
this unexpected phenomenon only happens for a negative offset, might indicate that the interaction between
the trim module and the control module causes oscillations in the flight path angle at high velocities. The
variation in equivalence ratio can be seen in Figure 9.28. Here it can be seen that the negative variation of
0.1 results in simulations that are unable to maintain the altitude profile that the other simulations do have,
which can be explained by the lack of acceleration due to the reduced equivalence ratio. Other than that, most
runs once again either terminate due to oscillations in the flight path angle, reach the target altitude or just
miss it.

It can be concluded that the reason why simulation are unsuccessful is either due to the oscillations that
occur around the pull up altitude, or the space plane does not have enough velocity at the pull up altitude
to reach the target orbit. This means that the results are sensitive to the control method to command the
space plane for certain flight path angles at high velocities. It can be argued that the pull up altitude that was
optimized for, is not a product of the optimal altitude, but the best altitude to transition to direct angle of
attack control to ensure that the oscillations would stop before it became catastrophic. Furthermore, in order
to ensure that the target altitude is reached, a minimum pull up velocity could be defined. The minimum
velocity could be included in the optimization process to determine what this minimum velocity is. This could
potentially eliminate the pull up altitude as an optimization parameter altogether. It is recommended to
include such a condition to ensure that the target orbit is reached.
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Figure 9.23: Time history of the altitude of the space plane for an offset in the left elevon deflection angle.
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Figure 9.24: Time history of the altitude of the space plane for an offset in the right elevon deflection angle.
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Figure 9.25: Time history of the altitude of the space plane for an offset in the rudder deflection angle.
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Figure 9.26: Time history of the altitude of the space plane for an offset in the elevons and rudder
deflection angle.
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Figure 9.27: Time history of the altitude of the space plane for an offset in the thrust elevation angle.
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Figure 9.28: Time history of the altitude of the space plane for an offset in the equivalence ratio.
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9.2.3. Sensitivity to the Optimization Parameters
It has been established that the G&C system has an issue to correctly steer the space plane to the flight path
angle close to the pull up altitude, where the velocity of the space plane reaches velocities above 7000 m/s. Due
to this issue, the optimization found results based on this issue i.e., the solution accommodates for the flight
path angle oscillations, trying to limit these to ensure that the space plane achieves the target altitude. Due
to this issue, any changes to the flight path angle will most likely result in solutions that terminate around
the pull up altitude. In order to confirm this suspicion, a sensitivity analysis is done for the pull up altitude
optimization parameter. Furthermore, during the discussion of the results it became apparent that the point
of the pull up altitude was an important optimization parameter that would enable the space plane to pull
up at a velocity that, when the target orbit was reached, the space plane would have a flight path angle close
to zero. The result of the variation in pull up altitude can be seen in Figure 9.29, where immediately it can
be seen that a negative variation in the pull up altitude will result in the space plane not reaching the target
altitude. This indicates that the found pull up altitude is indeed optimized for. The goal of the optimization
was to find a solution that would reach the target orbit accurately with as little fuel as possible. A decrease
in the pull up altitude will result in the space plane not achieving the proper velocity to achieve the target
altitude. Conversely, an increase in pull up altitude will increase the pull up velocity, which results in a non zero
positive flight path angle at the target altitude. The positive flight path angle will result in a circularization
maneuver that is not perpendicular to the local horizontal plane, which means that the maneuver will be less
effective. However, the space plane will use less fuel since it achieves a higher velocity with the more efficient
air-breathing engine, and uses less to do the circularization maneuver. Thus, it can be concluded that the pull
up altitude found for both launch times is the optimal altitude. The positive change in the pull up altitude
will yield some results that reach the target orbit. For the initial launch time of 𝑡0 = 0 seconds, a positive
change of 10 meters will still result in a solution that reaches the target orbit. However, the positive change
of 100 meters or more, will result in flight path oscillations that result in the termination of the simulation
prematurely. Interestingly, the launch time of 𝑡0 = −3600 seconds, does also give a good result for an increase
in the pull up altitude of 100 meters. Throughout the previous analyses that have been performed for the
sensitivity of the G&C system and initial state, this could also have been observed. Apparently, the solution
found for the advanced launch time is less prone to these flight path oscillations.

The flight path oscillations dominate the results that are obtained with the sensitivity analysis. Further
investigating the optimization parameters will result in most cases of the flight path angle starting to oscillate
and terminate the simulation, which will yield no valid results to perform a sensitivity analysis on. For this
reason, it is chosen to not further investigate the sensitivity of the results. Resolving the oscillations will enable
sensitivity analysis of changes to the optimization parameters and how those changes impact the propellant
and target orbit objective.
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Figure 9.29: Time history of the altitude of the space plane for a variation in the pull up altitude.
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9.2.4. Intermezzo to the Sensitivity Analysis
During the analysis of the flight path oscillations with respect to the optimization parameters, it became
apparent that the oscillations start when the angle of attack of the space plane is close to zero. The angle
of attack becomes zero at different time depending if a banking maneuver is performed. The reason that the
oscillations occur is due to three factors occurring simultaneously. First of all, the flight path angle is close
to zero and should only change slowly. Second of all, the angle of attack is close to zero, which means that
the symmetric body does generate only small amounts of lift. Third and last of all, the velocity of the space
plane is increasing, which increases the natural pitching moment of the space plane. At the pull up altitude,
the natural pitching moment has increased to such magnitudes that the Thrust Vector Control (TVC) system
is unable to compensate for the moment by itself. This means that the elevons are activated to reduce the
remaining pitching moment to zero. The increase in the elevons deflection angle induces a lifting force in either
positive or negative direction, which influences the flight path angle. The change in flight path angle, which the
space plane tries to compensate for by changing the angle of attack. However, the space plane still has a small
angle of attack, which means that a change in angle of attack is not effective enough compared to a change
in deflection angle. This induces a back and forth, where desired computed angle of attack starts oscillating
due to the deflection angles that continuously change. This hypothesis would also imply, that if the maximum
thrust elevation angle was limited, these oscillations would occur earlier. As can be seen in Figure 9.27, the
negative bias on the thrust elevation angle advances the moment that the flight path oscillations occur. Since
the time that the natural pitching moment can no longer be overcome by the TVC is earlier.

9.2.5. Concluding Remarks with Regards to the Sensitivity Analysis
In the sensitivity analysis it has been seen that variations in initial state and variations to the parameters
determined by the G&C system can be handled well. This can be explained by the use of the Incremental Non-
linear Dynamic Inversion (INDI) algorithm, which does not require the use of linearized equations. Typically,
using linearized equations results in eigenmotions, which can cause unstable motions that cannot be damped
by the linearized control algorithm. By using a nonlinearized algorithm these unstable motions are not present
in the G&C system and are no issue when considering changes to the initial state and offsets imposed on the
G&C system. Unfortunately, it became apparent that the results obtained are sensitivity due to an oversight
in the G&C system, where the flight path angle would start to oscillate under specific circumstances. Luckily,
the optimization process was able to find a solution that would reach the target orbit with a reasonable amount
of propellant. However, the robustness of the solution cannot be fully established due to this oscillation issue.
What can be established is that the found results are sensitive to the pull up altitude and the velocity at which
this pull up maneuver is initiated. It is recommended to determine the required velocity before the pull up
is initiated to ensure that the target orbit is achieved. In Section 10.2, a few hints will be given on how to
determine this minimum velocity.



10
Conclusion and Future Recommendations

In this study, an investigation is done into the capabilities of a Horizontal Take-off and Horizontal Landing
(HTHL) space plane to change the Right Ascensions of the Ascending Node (RAAN) of the target orbit.
Something typically not capable by conventional rockets. By being able to change this parameter, an extended
launch window can be established for which the space plane is capable of launching and still achieving the
same orbit. The flexibility that this increased launch window gives can increase the reliability of a launch
occurring. Launches can be canceled for a number of reasons, such as bad weather or technical malfunctions.
Furthermore, the increased launch window can be used to replace satellites if there is a malfunction and an
emergency replacement is necessary.

The change in the RAAN is possible by using lateral motion, which can also change the inclination of an
orbit. The manipulation of these ‘lateral’ parameters has been investigated before in a limited capacity (Zhou,
Wang, and Cui, 2020). In the previous study, only an ascent trajectory between 20 and approximately 55 km
was considered. Furthermore, the cost of changing the RAAN in terms of propellant was not quantified. To
add to this study, similar maneuvers are investigated and applied to the National Aero-Space Plane (NASP), a
conceptual space plane, that has been used in previous studies to find an optimal longitudinal ascent trajectory
(Shaughnessy et al., 1990; Powell et al., 1991; Mooij, 1998). By using this space plane, the results in this study
can be verified and the possibility to change the RAAN can be quantified in terms of necessary propellant.
Furthermore, the optimization parameters that have been used by Zhou, Wang, and Cui (2020) have been
expanded upon. In that study, a deviation in inclination was introduced to manipulate the RAAN that would
change linearly to zero. This approach has been expanded upon by introducing a sigmoid function that defines
the deviation in target inclination. The sigmoid function, a function of altitude, enables to change both the
point at which the deviation in orbital inclination changes, as well as the speed at which the change is done.
Additionally, in this thesis a robust Guidance and Control (G&C) system was implemented. The inclusion of
this system allowed for the elimination of eigenmotions, which made the space plane less sensitive to changes
in initial conditions, changes in optimization parameters, and errors the deflection angles of the actuators.

The chapter is divided into two parts, where first the conclusions are presented for this study. This is
followed by recommendations for future research.

10.1. Conclusion
In this section the conclusions that can be drawn with the obtained results are discussed in the context of the
research question and the accompanying sub-questions. This study aimed to answer the research question:

Research Question: What is the fuel-optimal ascent trajectory for a Horizontal Take-off and Horizontal
Landing (HTHL) space plane, which includes a change in the Right Ascensions of the Ascending Node (RAAN)
to extend the launch window?

To support the answer to the research questions a number of Sub-Questions (SQ) have been defined. The
sub-questions formulated will be used to support the answer to the main research question and show the
significance of the findings.
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SQ1 What is the fuel-optimal ascent trajectory for a Horizontal Take-off and Horizontal Landing (HTHL)
launch vehicle without considering a launch window?

SQ2 How does the required propellant during the ascent trajectory vary due to the inclusion of an extended
launch window?

SQ3 How does the required propellant for a change in the Right Ascensions of the Ascending Node (RAAN) by
a space plane compare to the same change in the right ascension of the ascending node by a traditional
secondary stage?

In addition to these research questions, a number of objectives were identified for the study. These objectives
were identified to be:

AG1 Include the full six Degrees of Freedom (DoF) translational and rotational Equations of Motion (EoM).
AG2 Include a G&C system that can deal with the nonlinear translational and rotational Equations of Motion

(EoM).
AG3 Include a vehicle model that has been used before to optimize the longitudinal ascent, which includes

constraints.

Optimization of the Ascent without Launch Window
For the ascent trajectory without an extended launch window, it was found that a space plane can ascent
with a payload of about 5100 kg into an inclined orbit of 45 degrees. It was identified that the ascent of the
space plane consists of three phases. The first phase is called the acceleration phase. In this phase, the space
plane lifts off, ascends to an altitude where the air-breathing engine is most efficient and from there starts to
accelerate. During this phase, the constraints that are imposed on the space plane are most of the time active.
It has been seen that these constraints dictate the velocity of the space plane. Both the dynamic pressure and
heat flux are dependent on the density, which decreases as the altitude increases. This means that there is a
balancing act between accelerating as fast as possible, to reduce drag, gravity and thrust losses, while ensuring
that the space plane adheres to the imposed constraints. Additionally, the space plane air-breathing engine
is more efficient at high Mach numbers for higher dynamic pressure (Shaughnessy et al., 1990). This means
that the space plane wants to accelerate at an altitude that benefits the efficiency boost. For this reason, the
ascent trajectory found for the space plane would closely follow the two aforementioned constraints until the
correct velocity was achieved to reach the target altitude.

The second phase of the ascent is the pull up phase. Due to oscillation issues with the flight path angle, it
was determined to switch over to direct angle of attack control in this phase, where it was ensured that the
angle of attack would at least be 1 degree to initiate the pull up. It was identified that the start of the pull
up phase was an important optimization parameter. An earlier pull up phase in terms of altitude would mean
that the velocity at the start of the phase was lower due to the imposed constraints. The lower velocity would
require a larger circularization burn to ensure that the target orbital velocity was reached, which would require
more propellant due to the less efficient engine mode. Conversely, a later burn would mean that the flight path
angle at the target altitude would be non zero, which made the circularization maneuver less efficient. The non
zero flight path angle would mean that, while the target velocity was reached, the eccentricity that the space
plane would achieve was not close to zero. It is clear from this discovery, that there is a trade-off between the
amount of propellant used and the accuracy of the achieved orbit. Initiating the pull up will ensure a more
efficient trajectory in terms of propellant used, while the final orbit will not be able to fully circularize.

After the pull up phase a coasting phase starts, where the engine of the space plane is turned off. For this
study, the angle of attack was set to zero degrees during this phase, similarly to what was done in the study by
Mooij (1998). However, further investigation in this phase could prove useful to ensure that the target orbit
is reached, while the velocity at the start of the pull up phase can be increased. This will be further discussed
in the recommendations section.

Cost Assessment of the Ascent with Launch Window
In order to optimize the ascent, where a launch window extension is considered, a novel transcription method
is used to guide the space plane to the correct heading angle. In this study, it was discovered that a reference
heading angle could be defined for the northern hemisphere only if the latitude of the space plane would
increase. Using this reference heading angle made it possible to launch the space plane into the correct orbital
inclination. Furthermore, the definition of the reference heading angle could be manipulated to allow for a
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deviation in the inclination, which would serve as the basis of the manipulation of the RAAN. It was found
that by having a positive deviation in the target inclination, a negative change in RAAN was possible. For a
negative deviation, the reverse was found. The novel transcription method allowed for the launch window to
be optimized for, while only including three extra optimization parameters compared to the optimization of
the longitudinal ascent.

It was found that a launch window could be created of at least four hours, where there is a clear trade-off
between the deviation in launch time and the amount of propellant used to ensure that the target orbit is
reached. An analysis was done on the variation of the propellant used for the different launch times. It was
found that for the delayed or advanced launch of one hour, an additional 1500 kg of propellant was necessary,
which would mean that the available payload that could be delivered into orbit would be approximately 3600
kg. In addition to analysis of the difference in payload, also a Δ𝑉 analysis was done. In this analysis it was
found that the extra propellant cost came from the increase in drag and thrust losses, which were caused by
the banking maneuver. In order to correct for the deviation in inclination at the end of the pull up phase, a
banking maneuver would be used to steer the space plane back to the heading angle that would correspond
with an inclination of 45 degrees. This banking maneuver would decrease the lift component pointing upwards,
which would mean that the flight path angle would decrease. In order to ensure this decrease would not
occur, the angle of attack of the space plane was increased. This increase in angle of attack increases the
drag losses due to an increased drag force. Furthermore, the higher angle of attack would also induce a higher
pitching moment, which would be trimmed with the Thrust Vector Control (TVC) system. The increased
thrust elevation angle to trim the space plane would increase the thrust losses, as was seen in Equation 8.5.

It can be concluded that a space plane is capable of changing the RAAN of the space plane by launching
in a heading angle direction that corresponds with a deviated inclination. The cost of changing the heading
angle back to the correct inclination comes from either drag losses alone, or drag and thrust losses depending
on the usage of a TVC system to trim the space plane. It should be noted that the outcome of the delayed
or advanced launch by two hours is highly different. It became apparent that for the delayed launches, the
reference heading angle was poorly constructed. A delayed launch requires a positive deviation in inclination
i.e., the space plane wants to launch in the northern direction. Due to the more northern motion, the latitude
of the space plane develops faster compared to the baseline launch or the advanced launches. The reference
heading angle can only be computed if the latitude of the space plane is smaller than the target inclination.
If the inclination of the space plane would not have a deviation, no issues could occur, where the maximum
latitude that the space plane would achieve is 45 degrees. However, due to the deviation in inclination, a higher
latitude is achieved, which limits the possible solutions that the delayed launch can find.

Optimization of the Ascent with Launch Window
The propellant requirements for the space plane to advance or delay the launch has been compared to a simple
in-orbit RAAN changing maneuver. It was assumed that the satellite would have a mass of 5100 kg, the same
value as was found for the ascent trajectory where no change in RAAN was considered. Depending on the
engine efficiency of the satellite, the satellite would perform worse or comparable for a delayed launch up to
one hour. For the delayed or advanced launch by two hours, the satellite was able to change the RAAN with
less propellant used. The space plane would have to generate approximately an extra 500 m/s of Δ𝑉 to achieve
the required change in RAAN. Even though the space plane is using a highly efficient engine compared to the
satellite, the mass of the space plane is at least ten times higher, which means that large extra amounts of Δ𝑉
require more propellant, compared to a ‘small’ satellite.

Conclusion of the Objectives
The objectives of this study were identified to guide and find a robust answer to the research question. First
of all, it was necessary to include the six Degrees of Freedom (DoF) Equations of Motion (EoM) to be able
to define the lateral motion required to manipulate the RAAN. In previous studies, it was found that a G&C
system that utilizes linearized EoM would experience eigenmotions that could make the space plane unstable
(Mooij, 1998; Spillenaar Bilgen, 2017). By introducing a nonlinear G&C system it has been shown that these
eigenmotions are not present anymore and that the solution found is robust to changes in the initial state and
uncertainties in the G&C system itself. Unfortunately, this system has proven difficult to test, which was seen
in the sensitivity analysis, see Section 9.2. The discovered issue with the system shows that the space plane is
susceptible to flight path oscillations close to orbital velocities if the space plane angle of attack becomes close
to zero.

In addition, it was chosen to use a space plane vehicle model that has been used before in studies to
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optimize the longitudinal ascent. This objective has ensured that the results obtained in this study can be
verified with the study done by Mooij (1998). It has been seen in Chapter 9, that this study was able to
reproduce the results of that previous study, while a different G&C system was used.

Final Conclusion
With the sub-questions answered previously, the main research question can be answered. The fuel-optimal
ascent trajectory with a launch window extension can be split up into two parts. The first part relates to
the longitudinal ascent if a launch window is considered. It has been seen that the altitude velocity plots for
the launch with a launch window extension do not vary compared to the ascent without an extended launch
window. Due to the banking maneuver, a change in RAAN is possible, where the drag and thrust losses increase
due to an increase in angle of attack. However, the longitudinal trajectory parameters i.e., the velocity and
flight path angle do not vary. The same constraints still apply for the ascent with launch window, and these
are still leading, when considering the longitudinal ascent. Thus, the fuel-optimal ascent trajectory with a
launch window only deviates from the ascent without launch window consideration due to the lateral motion.
The lateral motion has been optimized with a transcription method that is capable of guiding the space plane
towards a commanded inclination, where the inclination itself has been deviated. This means that there is
no equation that relates the space plane to the correct RAAN directly. This is why optimization algorithms
were used to identify how the inclination of the space plane should vary to accomplish a change in RAAN. It
has been seen that with a larger delayed or advanced launch, the deviation in inclination is increased, which
induces a larger banking maneuver when the deviation inclination returns to zero.

The found sub-optimal ascent trajectory has two known issues. The first is the flight path oscillations
that inhibit the ability to properly use a local optimization method to find the optimal solution. The global
optimization algorithm used is capable of finding the global optimum. However, due to the iterative nature
of the process, it is not guaranteed to find the real optimal solution. Furthermore, the oscillations make the
space plane unstable, prematurely terminating the simulation if these oscillations are not stopped in time. It
is theorized that the sub-optimal solution found here is limited due to these oscillations. The second issue is
the definition of the reference heading angle that does not take into account a situation where the latitude
is higher than the commanded inclination. With a proper definition of the reference heading angle, that can
take into account this issue, perhaps a better solution could be found for the delayed launches.

10.2. Recommendations
In the previous section it was concluded that the found ascent trajectory was sub-optimal and could be
improved upon. In this section these issues are briefly discussed and a number of interesting new research
topics are named.

Resolving of the Issues in this Study
It is recommended for future research, to apply the Incremental Non-linear Dynamic Inversion (INDI) algorithm
to steer a space plane to the correct target orbit. It has been demonstrated that the algorithm is capable of
dealing with large variations in both initial conditions and G&C uncertainties. By including a minimum
velocity before the space plane initiates in the pull up maneuver, it can also be ensured that the target orbit
is reached. The minimum velocity can be determined in a number of ways. First of all, the minimum velocity
can be included in the optimization process. However, one can also try to find a minimum velocity by realizing
that from the moment that the pull up maneuver is initiated, the space plane follows a somewhat parabolic
path. It could be possible to determine in this way a minimum velocity if the drag losses during the last two
phases of the ascent are negligible. Furthermore, by resolving the issues with the flight path oscillation and
the reference heading angle, a better quantification can be made of the cost of the longitudinal ascent with or
without lateral motion. If these issues are resolved, research can be dedicated to properly question the influence
of the optimization parameters on the achieved orbit and the propellant used for the ascent trajectory.

The issue of the oscillations can be resolved in a number of ways. First of all, the gain that is used for
the flight path angle can be made dependent on a variable. For instance, since it is known that the space
plane is symmetric, the gain could become smaller in magnitude if the angle of attack is smaller. In this
way, only smaller changes are commanded when the angle of attack is close to zero, which could resolve the
oscillations. Second of all, the guidance module that commands the flight path angle can be defined which
also precomputes the required changes of the deflection angles. This means that the difference in forces due
to a change in deflection angle is already taken into account when computing the desired angle of attack. In
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practice, this would probably translate into an iterative process, where the desired angle of attack would be
tuned in such a way that the deflection angles of the elevons would be commanded to a value that would
ensure that the space plane is steered to the correct flight path angle. Last of all, the issue could be solved
by reducing the time step of the integrator. Although, this is a computationally expensive way of solving any
issue.

For the reference heading angle, it should be possible to define the heading angle for four different scenarios.
The first and second scenario is where the space plane is in the northern hemisphere, with either a positive or
negative latitude derivative. The third and fourth scenario is for a situation where the space plane resides in
the southern hemisphere with either a positive or negative latitude derivative. Clever trigonometry allows for
a definition of the heading angle, where these four scenarios are taken into account. Additionally, a solution
needs to be found whenever the latitude of the space plane exceeds the target orbital inclination. In this
scenario, the equations used to define the reference heading angle ‘break’ and do not provide any valid value.
Of course, an if statement could be set up to check for this scenario and a corrective heading angle could be
defined. However, there might be a more elegant method by designing a formula that does not break whenever
the latitude exceeds the target orbital inclination.

Inclusion of an Ellipsoidal Earth Shape Model
In Chapter 4, it was discussed that an ellipsoidal Earth would better represent the shape of the Earth compared
to the spherical Earth model used in this study. A possible method of implementing this model, while using
an altitude dependent NonLinear Programming (NLP) problem, is to use a normalized altitude variable. The
normalized altitude would indicate the altitude for a specific latitude if a spherical model was used. In this
way, the space plane would still be guided to the proper final altitude, while an ellipsoidal Earth shape model
is used. The downside of the system is that the atmosphere would change depending on the actual altitude,
which could negatively impact the performance of the air-breathing engine. Instead, the normalized altitude
could be used only to compute the minimum velocity needed before the pull up to ensure that the correct
semi-major axis is reached.

Assessment of the Integration Accuracy and G&C System on Step Size Changes
Due to the oscillations that occurred in the flight path angle. A proper assessment of the accuracy of the
integrator was not possible. When the oscillation phenomenon is resolved, it is recommended to assess the
accuracy of the integrator. Furthermore, it could be studied how a change in the update interval for the G&C
system would influence the ability of the space plane to steer to the correct trajectory parameters. For the
current system, it was found that an update every 0.1 seconds was the largest step for which the system was
still capable of steering the space plane even at high velocities. However, when the flight path angle oscillations
are resolved, it could be possible to reduce this, which could reduce the computational load. This could ensure
that future optimizations will require less time to converge.

Lateral Motion for other Applications
It has been seen that lateral motion is capable of effectively changing the RAAN and inclination. Another
application of this lateral motion is to steer a space plane at a later point to another inclination due to launch
heading angle restrictions. An example of this is the restriction imposed for launches from Florida, where
rockets are only allowed to fly to specific heading angles due to safety reasons. A space plane could be capable
of adhering to these restrictions, while later starting a banking maneuver to change the inclination. This can
be useful for polar orbits, where in-orbit changes might be more costly than using a space plane to make these
changes.

Furthermore, the lateral motion could be used to launch from a higher latitude than the target inclination.
Conventional rockets are only capable of inserting a satellite in an inclined orbit that is lower than the launch
latitude. A space plane could be used to fly south, from the launch site, if a launch from the northern
hemisphere is considered. When a certain latitude is reached, a banking maneuver is initiated to start a
change in inclination. In this way, a space plane could be used to effectively change the inclination of the orbit,
while still launching from a high latitude launch site.

Another possible application is the inclusion of multiple orbit insertions with a single launch. Currently,
many companies are interested in constellations of satellites for a variety of reasons. With a space plane, it
could be possible to insert one or multiple satellites into multiple different orbits in terms of inclination and
RAAN. In this study, the circularization of the target orbit was done by the space plane. However, if the
inserted satellite would be capable of doing this maneuver, the space plane would descend again to an altitude
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where the space plane would be capable of changing the inclination or RAAN again. Afterward, the space
plane could initiate another pull up maneuver and insert one or more satellites again. Since the space plane
already has a velocity close to the orbital velocity, this could be an efficient method to insert a constellation
of satellites. Of course, this does assume that the space plane is capable of resisting the heat involved in re-
entering the atmosphere multiple times in a row. If a future study would focus on this topic, it is recommended
to include the total heat load in combination with the maximum heat flux.
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A
Pareto Front Results

In this appendix the Pareto fronts are shown for the global optimization for a variety of launch times. From
each front an individual is selected that represents a balanced individual in terms of accuracy of the achieved
orbit, and efficiency in terms of propellant.
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B
Convergence of the Global Optimization

In this appendix the convergence of the global optimization is shown for the different launch times. In these
figures, both the minimum and average value is shown for the two objectives. Furthermore, only individuals
that reach the target orbit are considered to find and compute the minimum and average objective value,
respectively.

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

0.03

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 0 s, where both the minimum and average of both
objectives are shown per generation.

145



146 Appendix B. Convergence of the Global Optimization

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

0.03

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 600 s, where both the minimum and average of
both objectives are shown per generation.

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = −600 s, where both the minimum and average of
both objectives are shown per generation.



147

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 1200 s, where both the minimum and average of
both objectives are shown per generation.

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = −1200 s, where both the minimum and average of
both objectives are shown per generation.



148 Appendix B. Convergence of the Global Optimization

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

0.03

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 1800 s, where both the minimum and average of
both objectives are shown per generation.

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.005

0.01

0.015

0.02

0.025

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = −1800 s, where both the minimum and average of
both objectives are shown per generation.



149

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.01

0.02

0.03

0.04

0.05

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 3600 s, where both the minimum and average of
both objectives are shown per generation.

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.01

0.02

0.03

0.04

0.05

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = −3600 s, where both the minimum and average of
both objectives are shown per generation.



150 Appendix B. Convergence of the Global Optimization

0 100 200 300 400 500
Generation [-]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

M
in

im
um

 P
ro

pe
lla

nt
 O

bj
ec

tiv
e 

[-
]

Propellant Convergence

Average
Minimum

0 100 200 300 400 500
Generation [-]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
in

im
um

 T
ar

ge
t O

rb
it 

O
bj

ec
tiv

e 
[-

]

Target Orbit Convergence

Average
Minimum

Evolution of the objective values for an initial time of 𝑡0 = 7200 s, where both the minimum and average of
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C
Pareto Front Local Refinement

In this appendix the Sobol analysis is shown, which was used to refine the Pareto front. The figures depicted
show first the Sobol individuals in green, followed by a Pareto assessment, which includes any individuals that
will improve upon the front.
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Overview of the Pareto front from the global optimization for an initial time of 𝑡0 = 0 s, with the individuals
of the Sobol sequence that reach the target altitude.
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Overview of the Pareto front from the global optimization for an initial time of 𝑡0 = 1800 s, with the
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Overview of the Pareto front from the global optimization for an initial time of 𝑡0 = 3600 s, with the
individuals of the Sobol sequence that reach the target altitude.
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Overview of the Pareto front from the global optimization for an initial time of 𝑡0 = 7200 s, with the
individuals of the Sobol sequence that reach the target altitude.
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Overview of the Pareto front from the global optimization for an initial time of 𝑡0 = −7200 s, with the
individuals of the Sobol sequence that reach the target altitude.



D
Insight in the Lateral Optimization Parameters

In this appendix an insight is given in the behavior of the lateral optimization parameters. For each launch
time, the deviation in inclination, steepness of the sigmoid function, and halfway point of the sigmoid function
is shown.
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Overview of the lateral optimization parameters for an initial time of 𝑡0 = 0 s.
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Overview of the lateral optimization parameters for an initial times of 𝑡0 = 1800 s and 𝑡0 = −1800 s.
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Overview of the lateral optimization parameters for an initial times of 𝑡0 = 3600 s and 𝑡0 = −3600 s.
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Overview of the lateral optimization parameters for an initial times of 𝑡0 = 7200 s and 𝑡0 = −7200 s.
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