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ENERGY DEMANDS RESIDENTIAL BUILDINGS CLIMATE CHANGE

RETROFITS
CITY SCALE MACHINE LEARNING
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heating

hot water 

appliances

lighting

cooking 

large share of homes constructed before 197s 
predate the introduction of thermal regulations, 
resulting in high thermal energy demands. 

[18]
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heating

hot water 

appliances

lighting

cooking 

large share of homes constructed before 197s 
predate the introduction of thermal regulations, 
resulting in high thermal energy demands. 

cooling
hot water 

appliances

lighting 

cooking 

heating

climate change?

[18]



poorly 
insulated

well 
insulated
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reducing energy demand

reduce energy losses via building envelope

[5] [6] [1]



Netherlands targets a 49% reduction 

in greenhouse gas emissions by 2030 
compared to 1990 levels.

7

poorly 
insulated

well 
insulated

[1]

[2]



To understand strategies to 
reduce energy demand:

building energy modelling
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[7]
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energy demand = energy gains - losses

energy demand = transmission + infiltration + ventilation + solar + internal

[7]
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energy demand = energy gains - losses

energy demand = transmission + infiltration + ventilation + solar + internal

one building multiple buildings

[7] [7][8]



BUILDING ENGERY META MODELS 11

BUILDING ENERGY 
MDOELLING

PREDICTION MODEL

[7][8]



How can machine learning be used to 
predict energy performance for 

residential buildings at city scale to 
reduce heating and cooling demands, 
considering future weather scenarios 

from climate change? 

MAIN QUESTION: 
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How can machine learning be used to predict energy 
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering 
future weather scenarios from climate change? 

How can ML be used to assess the 
impact of retrofit strategies across 

different building typologies?

RETROFITS:
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How can computational methods be 
leveraged for energy modelling at 

city-scale? 

CITY SCALE:

[6] [6]



How can machine learning be used to predict energy 
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering 
future weather scenarios from climate change? 

BUILDING ENGERY META MODELS 14

MACHINE LEARNING: How can ML models improve the efficiency of building 
energy modelling? 

What is an effective ML model (in terms of time 
efficiency, useability) for predicting building energy 
performance? 

What are the limitations of ML models compared to 
traditional energy modelling? 
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SIMULATION PREDICTION

PROJECT APPROACH

[7][8]
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BUILDING ENERGY MODELLING

GEOMETRY 

CONSTRUCTION

WEATHER

HEATING DEMAND 

COOLING DEMAND

[7][8]

SIMULATIONS
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BUILDING ENERGY MODELLING

BUILDING HEIGHT

BUILDING 
ORIENTATION

BUILDING VOLUME

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

ROOF AREA

WINDOW AREA

INSULATIONS FLOOR

INSULATIONS ROOF

INSULAITIONS WALLS

U-VALUE WINDOWS

SOLAR

OUTDOOR 
TEMPERATURE

SOLAR RADIATION

WIND

HUMIDITY

SIMULATIONS

[7][8]

HEATING DEMAND 

COOLING DEMAND
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PREDICTION MODEL

BUILDING HEIGHT

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

INSULATIONS

OUTDOOR 
TEMPERATURE

HEATING DEAMND 

COOLING DEMAND

MACHINE LEARNING



BUILDING ENGERY META MODELS 19

BUILDING ENERGY MODELLING

SIMULATIONS

MACHINE LEARNING

PREDICTION

[7][8]
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BUILDING HEIGHT

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

FLOOR / ROOF / 
FACADE INSULATING 
PROPERTIES

 WINDOW THERMAL 
TRANSMITTANCE

TEMPERATURES

SOLAR RADIATION

HUMIDITY

GEOMETRY CONSTRUCTION WEATHER

[6] [6] [7]
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CONSTRUCTION WEATHER

[6] [7]
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IDENTIFY BUILDINGS FOR STUDY

[2]



BUILDING ENGERY META MODELS 23

[2]



BUILDING ENGERY META MODELS 24

TERRACED INTERMEDIATETERRACED CORNERDETACHED

[9][2][10]
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MAP TO ARCHETYPE

ARCHETYPE = [BUILDING TYPE] + 
[BUILDING PERIOD] 

TERRACED INTERMEDIATETERRACED CORNERDETACHED

[9][2][10]
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MAP TO ARCHETYPE

T.I 

TI. < 1946

TI.1946-1964

TI.1965-1974

TI.1975-1991

TI.1992-2005

TI.2006-2014

TI.2015-2018

T.C 

TC. < 1946

TC.1946-1964

TC.1965-1974

TC.1975-1991

TC.1992-2005

TC.2006-2014

TC.2015-2018

D 

D. <1965

D.1965-1974

D.1975-1991

D.1992-2005

D.2006-2014

D.2015-2018

TERRACED INTERMEDIATETERRACED CORNERDETACHED

[9][2][10]



CONSTRUCTION / THERMAL PARAMETERS

EXAMPLE HOMES GUIDE
[SAME ARCHETYPES AS USED FOR THIS STUDY]

NIEMAN
[BROADER  TYPOLOGY CLASSIFICATION]

BUILDING ENGERY META MODELS 27

what parameters do we need? 

[2]

[11]



BUILDING ENGERY META MODELS 28

energy demand = energy gains - losses

energy demand = transmission + infiltration + ventilation + solar + internal

[7]



INSULATIONS / EXAMPLE HOMES GUIDE
[SAME ARCHETYPES AS USED FOR THIS STUDY]

INFILTRATIONS / NIEMAN
[BROADER  TYPOLOGY CLASSIFICATION]
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what parameters do we need? 

INSULATIONS, THERMAL TRANSMITTANCE, INFILTRATIONS 

[11]

[2]



IDF INPUTS constructions vary per archetype. 

lightweight concrete/roof screed   solid clay-brick masonry            single / double-glazed unit           softwood/timber floor 

DT

RT

𝜆𝜆𝑇𝑇 =
𝐷𝐷𝐷𝐷
𝑅𝑅𝑅𝑅

Each archetype was assigned a simplified definition of 
envelope layers, using the overall assembly thickness, 
Dt, and overall insulation Rc, used to calculated the 
conductivity:

BUILDING ENGERY META MODELS 30

[12]

[13]



constructions vary per archetype. 
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CURRENT CONDITION RETROFIT CONDITION 



2020
ROTTERDAM EPW 

WEATHER FILE 

32

2050, 2080
DE BILT FUTURE 
WEATHER FILE

[14]

[3]
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TERRACED INTERMEDIATETERRACED CORNERDETACHED

3D BAG

[9][2][10]

[15]



DEFINE LEVEL OF DETAIL FOR 
COLLECTION

AVAILABLE ON 3D BAGLEVEL OF DETAILS FOR 3D 
BUILDING GEOMETRIES
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[6] [6]
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COLLECT BUILDING GEOMETRIES FOR STUDY 

[15]
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TERRACED INTERMEDIATETERRACED CORNERDETACHED

3D BAG

20,000 BUILDINGS / PAND IDS TO COLLECT

[15]

[9][2][10]
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QUERY 3D BAG  API

DOWNLOAD BUILDING 

PROPERTEIES FOR 20,000 
BUILDINGS AT ONCE

Building 1
Building .
Building .
Building .

Building     20,000
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QUERY 3D BAG  API

DOWNLOAD BUILDING 

PROPERTEIES FOR 20,000 
BUILDINGS AT ONCE

Building 1
Building .
Building .
Building .

Building     20,000
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represented geometry from 3D BAG requires processing
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CHECKING SURFACE NORMALS, 
DEFINING SURFACE TYPES,

ADDING SURFACE DATA TO FEATURES

TYPE : G

TYPE : F

TYPE : R
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MAKING DISTINCTION 
BETWEEN BUILDING TYPES

TERRACED INTERMEDIATETERRACED CORNERDETACHED

0 shared walls 1 shared walls 2 shared walls

[9][2][10]
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FIND NEIGHBOUR BUILDINGS +
IDENTIFY SHARED SURFACES 

1. Extract the ground footprint 2. Apply a proximity buffer 3. Query API for bounding box

4. Retrieve candidate neighbours



BUILDING ENGERY META MODELS 43

LABELLED SHARED WALL
 SURFACES FOR  TERRACED HOUSES

i.e adiabatic surfaces 
where no heat transfer 
occurs. 
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ENERGYPLUS  

[8]
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INPUT DATA FILE (IDF)  

1. geometry
2. climate
3. construction
4. occupancy schedule
5. ventilation
6. infiltration
7. energy supply systems (gas boiler)

translate inputs to 
readable file to run 
energy plus simulations. 

[8]
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1. geometry
2. climate
3. construction
4. occupancy schedule
5. ventilation
6. infiltration
7. energy supply systems (gas boiler)

[8]

INPUT DATA FILE (IDF)  

translate inputs to 
readable file to run 
energy plus simulations. 



IDF INPUTS

constant for each building

47

GEOMETRY

BUILDING

ZONE

BUILDING SURFACE: DETAILED

SITE
SITE:GROUND TEMPERATURE

SYSTEMS
HVAC: IDEAL LOADS AIR SYSTEM

SCHEDULES

SCHEDULE : ALWAYS ON

THERMOSTATSETPOINT : 
DUALSETPOINT
ZONE CONTROL : THERMOSTAT

CONSTRUCTION

MATERIAL

CONSTRUCTION ASSEMBLY

WINDOW: SIMPLE GLAZING 
SYSTEM
ZONE INFILTRATION : DESIGN 
FLOWRATE
varies per archetype

varies per building

[8] [7]

TERRACED INTERMEDIATETERRACED CORNERDETACHED

[9][2][10]

BUILDING ENGERY META MODELS
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120,000 IDF 
files

20,000 
buildings

SIMULATION MATRIX



TYPICAL IDF 
EDITOR.

49

detailed manual 
inputs. 
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PYTHON SCRIPT TO AUTOMATE

WRITE IDF FILE PER 
BUILDING 

RUN ENERGY PLUS 
SIMULATIONS

COLLECT HEATING 
COOLING DEMANDS

WEATHER

CONSTRUCTIONS

GEOMETRY

BUILDING ENGERY META MODELS



BUILDING ENGERY META MODELS 51

what are the current 
energy demands for 
different archetypes? 
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total energy demand per archetype

TERRACED INTERMEDIATE [TI]

TERRACED CORNER [TC]

DETACHED [D]

detached home shows highest energy demands

detached home = more exposed building surfaces [9]

[2]

[10]
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energy labels per archetype *

F

E

D

C

B

A

A+
A++
A++++

* energy label (NTA 8800) mapping to primary fossil energy consumption (including 
source energy conversion factors), not for total delivered energy. 

check results against 
energy label mapping.
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heating demand steeply 
declines in 1992-2005 for all 

archetypes. 

TERRACED INTERMEDIATE. TITERRACED CORNER. TCDETACHED. D

[9][2][10]
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heating demand

TERRACED INTERMEDIATE. TITERRACED CORNER. TCDETACHED. D

steep decline in heating demands driven by reduced infiltration

[9][2][10]



BUILDING ENGERY META MODELS 56reduced heating demand influenced by increased envelope insulation (floor, facade, roof).  

TERRACED INTERMEDIATE. TITERRACED CORNER. TCDETACHED. D [9][2][10]
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TERRACED INTERMEDIATE. TITERRACED CORNER. TCDETACHED. D

more variation in cooling demand between the 
archetypes. 

retrofit measures significant increase the cooling demand  
for all building types. 

[9][2][10]

BUILDING ENGERY META MODELS
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SHGC constant between retrofit and current 

*Need to consider also effect of U 
factor, Insulations, Infiltrations. 

Higher SHGC = more solar radiation passes through 
window. increased cooling demand (summer)



BUILDING ENGERY META MODELS 59cooling demand

WWR constant between retrofit and current 

Higher WWR = more solar radiation passes through window. 
increased cooling demand (summer) *Retrofit differences result from 

combined retrofit effect from 
lower U factor, higher insulations, 

lower infiltration
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TERRACED INTERMEDIATETERRACED CORNERDETACHED

how do the energy 
demands for each 
archetype change in 
the future? 

[9][2][10]
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TERRACED INTERMEDIATE [TI]TERRACED CORNER [TC]DETACHED [D]

reduction in average heating demand when projecting to the 2050 and 2080 weather scenarios
(retrofit measures constant between 2020 future weather)

lowest heating demand for B3 (retrofit + 2080)

[9][2][10]
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TERRACED INTERMEDIATE [TI]TERRACED CORNER [TC]DETACHED [D]

increase in average cooling demand under projected 

2050 and 2080 weather scenarios. 

Unlike heating demand, where retrofits consistently reduce 
demand, 

retrofit strategies results in an increased cooling demand. 

[9][2][10]
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TERRACED INTERMEDIATE [TI]TERRACED CORNER [TC]DETACHED [D]

need to balance reductions in heating demand with 
mitigation of cooling loads

[9][2][10]



BUILDING ENGERY META MODELS 64

• can we use machine learning to predict these same 
energy demands? 
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BUILDING ENERGY MODELLING

SIMULATIONS

MACHINE LEARNING

PREDICTION

[8] [7]
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BUILDING ENERGY MODELLING

BUILDING HEIGHT

BUILDING 
ORIENTATION

BUILDING VOLUME

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

ROOF AREA

WINDOW AREA

INSULATIONS FLOOR

INSULATIONS ROOF

INSULAITIONS WALLS

U-VALUE WINDOWS

SOLAR

OUTDOOR 
TEMPERATURE

SOLAR RADIATION

WIND

HUMIDITY

HEATING DEAMND 

COOLING DEMAND

SIMULATIONS

[8] [7]
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PREDICTION MODEL

BUILDING HEIGHT

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

INSULATIONS

OUTDOOR 
TEMPERATURE

HEATING DEAMND 

COOLING DEMAND

MACHINE LEARNING

replace 
simulation engine 
(EnergyPlus) with 
prediction model
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ARTIFICIAL NEURAL NETWORK

generalists: 
collect information 

experts: analyze

decision makers:
produce final result

Neurons
team members

ML model learn patterns and relationships in data to make 
predictions. 

Weights

importance

policy

decision

[16] [17]

BUILDING ENGERY META MODELS
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MACHINE LEARNING

PREDICTION
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1. MERGE GEOMETRIC CONSTRUCTION 
WEATHER FEATURES.

2. MERGE CURRENT / RETROFIT
3. SPLIT DATA
4. SCALE DATA

 5. COMBINE WITH VERTEX DATA

DATA STRUCTURING WORKFLOW 
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geometric

Number of Floors -
Wall Area m2

Roof Area (Flat) m2

Roof Area (Sloped) m2

Floor Area m2

Shared Wall Area m2

Building Height (70%) m
Building Volume m3

Total Floor Area m2

Compactness Ratio m-1

Ground Floor Insulation m2K/W
Facade Insulation m2K/W
Roof Insulation m2K/W
Infiltration m3/sm2

Window to Wall Ratio (WWR) m2/m2

U Factor (Windows) W/m2K
SHGC -

Monthly average 
temperature 

°C

Monthly average solar 
radiation 

kWh/m2/day

Distance (d) from centroid -
Angle (ux) -
Angle (uy) -

* constants. reserved for future weather training. 

Pand ID Surface Index
Surface 

Type
d1 ux1 uy1

0599100000013430 0 G dG1 uxG1 uyG1

0599100000013430 1 F dF1 uxF1 uy F1

0599100000013430 2 F dF1 uxF1 uy F1

0599100000013430 3 F dF1 uxF1 uy F1

0599100000013430 4 F dF1 uxF1 uy F1

0599100000013430 5 R dR1 uxR1 uy R1

constructions temperature

vertex features
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MACHINE LEARNING

PREDICTION
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H
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 Training set size: 20,000 buildings 

 Learning rate: 1e-4

 Hidden neurons per layer: 32

 Epochs (max): 20,000

 Early stopping patience: 400 epochs

 Early stopping validation: 0.0 (strict improvement)final model

HEATING DEMAND

COOLING DEMAND

NUMBER OF 
FLOORS 

WALL AREA

SHARED WALL AREA

BUILDING HEIGHT 

INSULATIONS

INFILTRATION

WWR

UFACTOR

SHGC

[10]
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final model

HEATING PREDICTION ERRORS
RUN EPOCH RMSE MAE R2 MAPE

V4 9033 12.926 7.719 0.975 6.86%

R2 = 0.97

Strong performance for heating predictions. 
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TEST HEATING PREDICTION ERRORS
RUN EPOCH RMSE MAE R2 MAPE

V4 9033 12.926 7.719 0.975 6.86%

0

1

2

3

4

5

6

7

8

9
M

AP
E

Detached Terraced Corner Terraced Intermediate

<1946                              1946-1964                1965-1974                1975-1991                        1992-2005                  2006-2014                   2015-2018

TERRACED INTERMEDIATETERRACED CORNERDETACHED

AVERAGE HEATING MAPE PER ARCHETYPE 
Detached 
lowest MAPE 
between 
archetypes. 
median MAPE 

between 2-4%

Highest MAPE 
for Terraced 
Intermediate. 
Median MAPE 

between 5-6% 

 

[9][2][10]
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Detached, less 
represented, higher 
geometric complexity, but 
more accurate predictions? 

• handling vertex data
• no adiabatic surfaces, more 

straightforward
• thermal performance closely 

related to wall area input 
feature

• terraced houses have 
multiple adiabatic wall 
surfaces

• only represented through 
shared wall area input feature

• relationships more complex
TERRACED INTERMEDIATE

TERRACED CORNER

DETACHED

1000 buildings

11,000 buildings

8,000 buildings

[9]

[2]

[10]

BUILDING ENGERY META MODELS
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COOLING PREDICTION ERRORS
RUN EPOCH RMSE MAE R2 MAPE

V4 9033 6.785 4.007 0.579 51.09%

Moderate performance for cooling predictions. 

R2 = 0.57
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COOLING PREDICTION ERRORS
RUN EPOCH RMSE MAE R2 MAPE

V4 9033 6.785 4.007 0.579 51.09%

0

10

20
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40
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90

M
AP

E

Detached Terraced Corner Terraced Intermediate

<1946                1946-1964             1965-1974                   1975-1991              1992-2005                 2006-2014             2015-2018

TERRACED INTERMEDIATETERRACED CORNERDETACHED

Detached 
archetypes 
generally show 
the lowest 
median and 
spread in 
cooling MAPE

Terraced 
Intermediate 
showing 
highest MAPE 
and extremely 
high outliers. 

AVERAGE COOLING MAPE PER ARCHETYPE

[9][2][10]
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MACHINE LEARNING

PREDICTION

• why does the model 
struggle with cooling 
loads?



ML DEVELOPMENT 

SMALL DATA SETS
MINIMAL FEATURES
HYPERPARAMETERS

CURRENT VS. RETROFIT DISTINCTION
FEATURE STUDY

BUILDING ENGERY META MODELS 80

* before windows + 
adiabatic surfaces. 

FEATURE STUDY
FINAL STUDY

* after windows and 
adiabatic surfaces. 



ML DEVELOPMENT 

BUILDING ENGERY META MODELS 81

ADDED FEATURES* after windows and 
adiabatic surfaces. 

Shared wall area
Window to Wall Ratio (WWR)

U Factor (Windows)
SHGC
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Strong predictions for cooling before windows, adiabatic surfaces.

R2 = 0.97

MAPE = 10.2 %



ML DEVELOPMENT 
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* before windows + 
adiabatic surfaces. 

* after windows and 
adiabatic surfaces. 

Number of Floors -
Wall Area m2

Floor Area m2

Building Height m

Ground Floor Insulation m2K/W
Facade Insulation m2K/W
Roof Insulation m2K/W
Infiltration m3/sm2

Number of Floors -
Wall Area m2

Floor Area m2

Shared Wall Area m2

Building Height m

Ground Floor Insulation m2K/W
Facade Insulation m2K/W
Roof Insulation m2K/W
Infiltration m3/sm2

Window to Wall Ratio (WWR) m2/m2

U Factor (Windows) W/m2K
SHGC -

what are the differences in features?. 
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1. Adiabatic surfaces are inferred through 
the shared wall area. 

2. Terraced Intermediate houses have a 
higher WWR, introducing greater 
variability and complexity in cooling 
performance (added features U-value, 
solar heat gain). 

Reasons for poor cooling predictions.  
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• conclusions on methodology. 
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How can ML be used to assess the impact of retrofit 
strategies across different building typologies?

SUB QUESTION. / RETROFITS.

BUILDING ENGERY META MODELS 88

IS THE MODEL ABLE TO PREDICT DIFFERENT ARCHETPES 
WITH ACCURACY ? 

• Heating strong performance across all archetypes.

• Cooling predictions moderate. Poor prediction for 
terraced houses. Influenced by complexity of input 
features. 



How can ML be used to assess the impact of retrofit 
strategies across different building typologies?

SUB QUESTION. / RETROFITS.

BUILDING ENGERY META MODELS 89

IS THE MODEL ABLE TO PREDICT GIVEN RANGE OF INPUT 
FEATURES RELATED TO RETROFITS? 

• Strong prediction when considering retrofits 
related to envelope air tightness, inputs governing 
envelope transmission and infiltration losses 

• Rc and Infiltration

• Cooling prediction accuracy drops when 
considering retrofit measures related to windows.

• U factor, SHGC



How can computational methods be leveraged for 
energy modelling at city-scale? 

SUB QUESTION / AT CITY SCALE. 

90

Collection, simulation, structuring, prediction, evaluation.  
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120,000 
simulations 

20,000 
buildings

How can computational methods be leveraged for 
energy modelling at city-scale? 

SUB QUESTION / AT CITY SCALE. 

Necessary for large simulation space.
Collection, simulation, structuring, prediction, evaluation.  



How can ML models improve the efficiency of building 
energy modelling? 

SUB QUESTION / MACHINE LEARNING. 

BUILDING ENGERY META MODELS 92

BUILDING HEIGHT

BUILDING ORIENTATION

BUILDING VOLUME

NUMBER OF FLOORS

FLOOR AREA

WALL AREA

ROOF AREA

WINDOW AREA

INSULATIONS FLOOR

INSULATIONS ROOF

INSULAITIONS WALLS

U-VALUE WINDOWS

SOLAR

OUTDOOR TEMPERATURE

SOLAR RADIATION

WIND

HUMIDITY

HEATING DEMAND 

COOLING DEMAND

Many inputs for EnergyPlus simulation, time + 
computational intensity.



How can ML models improve the efficiency of building 
energy modelling? 

SUB QUESTION / MACHINE LEARNING. 

93

HEATING DEMAND 

COOLING DEMAND

Reduced inputs and instant prediction. 

H
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NUMBER OF FLOORS 

WALL AREA

SHARED WALL AREA

BUILDING HEIGHT 

INSULATIONS

INFILTRATION

WWR

UFACTOR

SHGC

* intensive data structuring process, training 
development. 



What is an effective ML model (in terms of time 
efficiency, useability) for predicting building energy 
performance? 

SUB QUESTION / MACHINE LEARNING. 

BUILDING ENGERY META MODELS 94

Artificial Neural Network. 

• Relatively simply structure to set up with minimal lines 
of code. 

• Performed strongly for heating predictions, moderate for 
cooling. 

• Consideration for separate heating and cooling 
networks. 



What are the limitations of ML models compared to 
traditional energy modelling? 

SUB QUESTION / MACHINE LEARNING. 

BUILDING ENGERY META MODELS 95

Data.

 

• Amount of data required for training. 

• Data structuring.

• Different models may need to be defined for heating and 
cooling, separate development process compared to 
EnergyPlus, where heating and cooling is all in one. 



How can machine learning be used to predict energy 
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering 
future weather scenarios from climate change? 

By automating the collection of building geometry, 
generation of EnergyPlus input data files, and training an 
artificial neural network with minimal layers.

BUILDING ENGERY META MODELS 96

MAIN QUESTION.

Reduces the time and computational resources needed from 
hours or days to run traditional EnergyPlus simulations to 
minutes when calling predictions from the surrogate model.



THANK YOU.
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[2][9]
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next.



How can machine learning be used to predict energy
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering 
future weather scenarios from climate change? 

next steps. 

Incorporating a broader range of Rc and infiltration values, 
enabling the ANN to generalize better to different retrofit 
scenarios.

BUILDING ENGERY META MODELS 99



How can machine learning be used to predict energy 
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering
future weather scenarios from climate change? 

next steps. 

• ML prediction for future energy demands. 

• To fully capture the impacts of climate change, the weather 
input features need to be further explored. 

• Change input features from average monthly temperatures 
and solar radiations to cooling degree days, heating degree 
days, and seasonal global horizontal irradiance. 
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How can machine learning be used to predict energy
performance for residential buildings at city scale to 
reduce heating and cooling demands, considering 
future weather scenarios from climate change? 

next steps. 

Representing input features including adiabatic surfaces and 
vertices to more accurately represent boundary conditions 
and geometries.  
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Cooling predictions: 

• small range of current cooling 
demands. 

• min-max compression: network sees 
little difference in scaled values (0-1)

• log-transforming the cooling values 
before training compresses the range 
of cooling values and dominance of 
large cooling values. Reduced skew 
ideally allows the model to better 
predict both high and low values. 

102

model improvements.

Architecture:

• heating dominates 
network (broader range).

• 32 neurons to 
approximate two very 
different functions. 

Range of Rc: 

• For more recent 
construction periods, data 
for wall/floor/roof insulation 
and infiltration is the same 
for current and retrofit 
scenarios. 



FEATURE SET A

Geometry Weather Constructions 
Number of Floors Average annual temperature [°C] Ground floor insulation [m2K/W]

Wall Area [m2]
Average annual radiation 
[kWh/m2/day]

Façade insulation [m2K/W]

Roof Area (Flat) [m2] Roof insulation [m2K/W]
Floor Area [m2] Infiltration [m3/sm2]
Roof Area (Sloped) [m2]
Shared Wall Area [m2]
Absolute Height (70%) [m]
Building Volume [m3]
Total floor area [m2]
Compactness ratio [m-1]
Vertices

Pand ID Surface Index
Surface 

Type
d1 ux1 uy1

0599100000013430 0 G dG1 uxG1 uyG1

0599100000013430 1 F dF1 uxF1 uy F1

0599100000013430 2 F dF1 uxF1 uy F1

0599100000013430 3 F dF1 uxF1 uy F1

0599100000013430 4 F dF1 uxF1 uy F1

0599100000013430 5 R dR1 uxR1 uy R1

** data structuring for merging 
surface data 
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KNMI future climate scenarios. 
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[3]

KNMI future climate scenarios. 



EPW R Package

1. Pick a baseline EPW

2. Choose a climate projection
an emissions pathway (SSP1-2.6, SSP2-4.5, SSP5-8.5, …) 
AND future time-slice such as the 2050s.

3. Shift the hourly weather
For each variable epwshiftr computes the monthly  delta 
(additive) between the future and historical climatology, 
applies it hour-by-hour to the baseline EPW.

4. Write the future EPW(s)

The SSP scenario with the highest emissions (SSP5-8.5) was taken for the high 
emission scenario (H). This scenario will result in 2.4 and 4.9°C of global warming 
by 2050 and 2100 respectively. The distribution in the coloured bands 
represents the uncertainty in climate sensitivity. 
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KNMI scenarios are based on the IPCC’s global 
framework of Shared Socioeconomic Pathways, 
(SSPs), which result in different global greenhouse gas 
trajectories and temperature increases. 

[3]
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