
D
e
l
f
t

U
n

i
v
e
r
s
i
t
y

o
f

T
e
c
h

n
o
l
o
g
y

A graph-based search approach

for planning and learning

An application to planar pushing and navigation tasks

SC52045: System & Control Thesis Report

G.S. Groote

ii

page intentionally left blank.

A graph-based search

approach for planning

and learning

An application to planar pushing and navigation tasks

by

G.S. Groote

Student Name Student Number

Gĳs S. Groote 4483987

Supervisors: C. Smith, M. Wisse

Daily Supervisor: C. Pezzato

Project Duration: Nov, 2021 - June, 2023

Faculty: Faculty of Cognitive Robotics, Delft

Cover: Simulation environment used during the thesis [39].

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Abstract

In the field of robotics, consider the following problem scenario: In a robot environment, a simple robot

must push objects to reference places while figuring out which objects can be pushed, what the best

manipulation strategy is, or which objects are static and cannot be pushed. The problem scenario can

be decomposed into three research topics which individually have received much attention from the

research community; learning object dynamics [8, 37], Navigation Among Movable Objects (NAMO) [7, 13,

21, 23] and nonprehensile pushing [2, 5, 25, 41, 42, 43]. A combination of these three topics could lead to

improvements in planning, execution time, and reasoning, but it has not been explored in the literature.

This thesis proposes a robot framework that combines these three research topics. This framework

comprises of three key components: the hypothesis algorithm, the hypothesis graph, and the

knowledge graph. The hypothesis algorithm computes a hypothesis on how to relocate an object to a

new pose by computing possible action sequences given certain robot skills. In doing so, the hypothesis

algorithm creates an hypothesis graph that encapsulates the structure of the action sequences and

ensures the robot eventually halts. Once a hypothesis is carried out on the robot, information about the

execution, such as the outcome, the prediction error, the type of controller used and other metrics, are

stored in the knowledge graph. The knowledge graph is populated over time, allowing the robot to learn,

for instance, object properties and then refine the hypothesis computed to increase task performance,

such as success rate and execution time.

A new planning algorithm is proposed that can detect a when a path is blocked by an object,

the hypothesis algorithm relies on the newly proposed planner to generate action sequences and to

free blocked paths. This planner extends the double tree optimised Rapidly-exploring Random Tree

algorithm [7]. The planner constructs a configuration space for an object and is provided with starting-

and target pose for that object. The planner then converts these poses to points in configuration space to

then search for a path connecting the starting configuration to the target configuration. For the new

planner, objects are initially classified as “unknown” and can later be categorized as either “movable”

or “unmovable”. The object type information is then used when constructing the configuration space

for the newly proposed planning algorithm. Configuration space consists of the conventional free- and

unmovable- (or obstacle) space and the newly proposed unknown- and movable space.

To carry out the investigation, a mobile robot in a robot environment with movable and unmovable

objects is created. The robot is given a task that involves relocating a subset of the objects in the robot

environment through driving and nonprehensile pushing. The task can be broken down into individual

subtasks that consist of an object and a target pose. Planning for a push or drive action occurs with

the newly proposed planning algorithm that, if successful, completes a given task and populates the

knowledge graph with learned object information. Information that can be used to determine which

objects to manipulate and what strategy performs best to manipulate a specific object.

In an effort to develop a robot framework that combines these three topics, a framework is created

that shows improved task execution as a result to experience gained in the robot environment. The

proposed framework performs equivalent or better compared to the state-of-the-art frameworks that

are specialized in only two out of three research topics [47]. It can be concluded that the framework

partly combines the three topics because learning system models with a system identification module is

moved to the future work section. Instead, the proposed method selects the best available control and

system model combination in the set of available control and system model combinations.

G.S. Groote
Delft, June 2023

i

Contents

Abstract i

List of Tables iii

List of Figures vi

List of Acronyms vi

List of Symbols vii

1 Introduction 1
1.1 Research Question . 6

1.2 Problem Description . 6

1.2.1 Task Specification . 7

1.2.2 Assumptions . 8

1.2.3 Robot and Objects Examples . 8

1.3 Report Structure . 9

2 Required Background 10
2.1 System Identification Setup . 10

2.2 Control Methods . 12

2.3 Planning . 15

2.3.1 Estimating Path Existence . 15

2.3.2 Path Planning . 19

3 Proposed Path Planner 25
3.1 Planning in Four Subspaces . 25

3.2 Kinodynamic Planning . 28

4 Proposed Robot Framework 29
4.1 Overview of the Proposed Framework . 29

4.2 Hypothesis Graph . 30

4.2.1 Definition . 30

4.2.2 Edge Statuses . 31

4.3 Hypothesis Algorithm . 33

4.3.1 The Search and the Execution Loop . 35

4.3.2 Fault Detection . 39

4.3.3 The Blocklist . 40

4.3.4 Encountering a Blocked Path . 41

4.4 Knowledge Graph . 48

4.4.1 Definition . 48

4.4.2 The Testing and Converging Phases . 49

5 Results 52
5.1 Driving and Pushing Experiments . 54

5.1.1 A Driving Task . 55

5.1.2 A Pushing Task . 59

5.2 Comparison with State-of-the-Art . 63

6 Conclusions 66

7 Future work 68

References 70

Appendix 74

ii

List of Tables

1.1 Overview of state-of-the-art literature with an indication of which topics they incorporate

from the three topics; learning object dynamics, the NAMO problem and specifying

object target poses. 5

2.1 The planning-related terminology is juxtaposed in the left column alongside its corre-

sponding description in the right column. 15

2.2 The variables and functions employed in the Algorithms 1 to 4. 24

4.1 The action edge status is presented in the left column, the corresponding action taken by

the MakeReady function to prepare an action edge for execution in the right column. An

action edge increments its status as indicated in Figure 4.3. 38

4.2 The functions employed by the hypothesis algorithm (h-algorithm) in Algorithm 6. . . . 44

4.3 Comprehensive description regarding the actions executed by the blocks in Figure 4.15. 47

5.1 Testing metrics employed to measure task performance by the proposed robot framework

in the left column. Motivation on relevance of the metric is provided in the corresponding

right column. 52

5.2 The left column displays the available models of drive- and push systems, accompanied

by a description in the corresponding right column. 53

5.3 The tuning parameters to initialize a random environment 55

5.4 The selected tuning parameters for the randomized drive environment. 56

5.5 The selection of the (Model Predictive Control (MPC), lti-drive-model) parameterization

versus selecting the (Model Predictive Path Integral (MPPI), lti-drive-model) parameteriza-

tion for drive actions during the randomized driving tasks. The leftmost column indicates

the metric to measure performance with and without the knowledge graph (k-graph)

action suggestions. The rightmost column presents task performance over the number of

tasks in experience. 59

5.6 The selected tuning parameters for the randomized push environment. 60

5.7 The selection of the (MPPI, lti-push-model) parameterization versus selecting the (MPPI,

nonlinear-push-model) parameterization for push actions during the randomized pushing

tasks. The leftmost column indicates the metric to measure performance with and without

the k-graph action suggestions. The rightmost column presents task performance over

the number of tasks in experience. 62

5.8 Overview of recent state-of-the-art papers that include a subset of the 3 topics (learning

system models, NAMO, and nonprehensile pushing). The testing metric indicates the

testing method used by the paper, where the underlined metric is used to compare against

the proposed framework. 64

5.9 Average execute-, search and total times for a task that involves learning object dynamics

and the NAMO problem. The results are average over three solved tasks for Wang et al.,

and ten solved tasks for the proposed framework. A visualization of the task if presented

in Figure 5.11. 65

iii

List of Figures

1.1 Two robots in the robot environment . 8

1.2 Two objects in the robot environment . 9

2.1 A top view of the point robot with five input sequences. The input sequences are executed

on the robot and the output responses are recorded, together the in- and output sequences

form a Input-Output (IO) data set. 11

2.1 The robot collecting an IO data sequence by first driving toward the initial pose at the

start of an arrow. Then the corresponding input is sent toward the robot, and the robot

and the object’s output response is collected to form a IO sequence. The IO data set then

consists of all six IO data sequences. 11

2.2 System 𝐺(𝑡) with input 𝑢(𝑡), output 𝑦(𝑡) and MPC controller with input 𝑦(𝑡) reference

signal 𝑦𝑟𝑒 𝑓 (𝑡), parameterization 𝑝 and constraint sets X, U, Y 13

2.3 MPPI controlled race car using a control horizon of 3 time steps, with 3 rollouts all having

their respected inputs as 𝑢𝑖 , 𝑗 where 𝑖 is the rollout index and 𝑗 indicates the time step [26]. 14

2.4 Robot environment with the point robot, unmovable yellow walls and movable brown

boxes. 17

2.5 The configuration space for the point robot with different cell sizes. The robot environment

corresponds to the environment presented in Figure 2.4. 18

2.6 Flowchart displaying both drawbacks when checking path existence. 19

2.7 Snapshot of a two dimensional configuration with free- and unmovable spaces. Where

unmovable space is indicated by the unmovable object, the rest of configuration space

(including the movable object) is free space. The start- and target nodes, denoted as “Start”

and “Target” respectively, serve as the source nodes for the start- and target connectivity

tree. 20

2.8 Create new node and connect to parent node. 21

2.9 Connect new node to parent node that results in the lower CosttoInit. 22

2.10 Check if the newly added node can lower cost for nearby nodes and connect the start- to

the target tree. 23

2.11 Path planner that found a path from start- to target node marked in red. 24

3.1 Driving task and two planned paths. 27

4.1 Flowchart representation of the proposed robot framework. 29

4.2 Finite State Machine displaying the status of an identification edge 31

4.3 Finite State Machine displaying the status of an action edge 32

4.4 Legend for the hypothesis graph. 33

4.5 First stages of the hypothesis graph (h-graph) when the h-algorithm searches for an

hypothesis to complete a driving task. 34

4.6 Multiple stages of the h-graph when the h-algorithm executes the hypothesis found in

figure 4.5. 35

4.7 The search (upper) and execution (lower) loop, that make up the main part of the

proposed h-algorithm. The figure’s goal is to present the two loops, the flowchart in the

background is presented full page in Figure 4.15. 35

4.8 First stages of the h-graph when the h-algorithm creates an hypothesis for a pushing task. 37

4.9 The hypothesis for a pushing task becomes valid and is executed. Then a path for the

pushing edge is planned which generates new nodes to drive toward the best push pose

against the box. 38

4.10 The h-graph after the pushing task was successfully completed. 39

iv

4.11 Multiple stages of the h-graph. The two hypotheses both failed during execution because a

fault was detected. The failed edges are added to the blocklist, preventing the regeneration

of edges with the same parameterization. The h-algorithm concludes the task to be

unfeasible. 41

4.12 Multiple stages of the h-graph for a driving task, where an blocked path is encountered. 42

4.13 Snapshot of the h-graph during drive task, where a blocked path is encountered. The

(red) current node indicates that next action is to drive toward the best push pose against

the blocking object. 43

4.14 h-graph final stages before successfully completing a driving task, during which a blocked

path is encountered. 43

4.15 Flowchart displaying the h-algorithm workflow. 46

4.16 Legend for the knowledge graph. 50

4.17 The k-graph that has collected action feedback on two objects. Two edge parameterizations

for driving the robot and one edge parameterization to push the box. 50

4.18 Flowchart displaying the knowledge graph’s workflow. 51

5.1 Schematic overview of point robot pushing a box object. 54

5.2 A random environment initialized by tuning parameters presented in Table 5.4 and

randomness. 55

5.3 Search-, execution- and total time to complete a drive task whilst using k-graph action

suggestions. The horizontal axis indicates the number of task experience in a run. The

vertical axis displays a boxplot of the search-, execution- and total time over ten runs

grouped by number of tasks in experience. 57

5.4 Search-, execution- and total time to complete a drive task without k-graph action

suggestions and by randomly selecting edge parameterizations. The horizontal axis

indicates the number of task experience in a run. The vertical axis displays a boxplot

of the search-, execution- and total time over ten runs grouped by number of tasks in

experience. 57

5.5 Comparing means of total time to complete a task out of ten runs for a driving task. . . 58

5.6 Two random environments with the object’s target displayed as a transparent ghost pose. 60

5.7 Search-, execution- and total time to complete a pushing task with k-graph action

suggestions. The horizontal axis indicates the number of task experience in a run. A run

contains ten tasks, starting the run with an empty k-graph that collects action feedback as

the robot gains experience. The vertical axis displays a boxplot of the search-, execution-

and total time over ten runs, where the sum of search- and execution time equals total time. 61

5.8 Search-, execution- and total time to complete a pushing task without k-graph action

suggestions. The horizontal axis indicates the number of task experience in a run. A run

contains ten tasks, starting the run with an empty k-graph that collects action feedback as

the robot gains experience. The vertical axis displays a boxplot of the search-, execution-

and total time over ten runs, where the sum of search- and execution time equals total time. 61

5.9 Comparing means of total time to complete a task out of ten runs for a pushing task. . . 62

5.10 Box plot of the Prediction Error for solving reshuffled tasks. The horizontal axis indicates

the number of task experience in a run. A run contains six tasks, starting the run with an

empty k-graph that collects action feedback as the robot gains experience. The vertical

axis displays a boxplot of Prediction Error over six runs. For the edge parameterizations

once with the use of k-graph action suggestions are leveraged indicated by “with k-graph”

and once with random selection indicated by “no k-graph”. 63

5.11 Two similar environments and tasks, the robots are tasked to drive toward a target pose

indicated with the green ghost poses. In both environment a direct path is blocked by

the red box. 65

1 The blockade environment where the robot is tasked to push the blue box toward the

target pose indicated with the target ghost pose. A direct path is blocked by the movable

light blue cylinder object and the unmovable yellow walls. 75

2 The swap environment where the robot is tasked with swapping the poses of the cylinder

and the box object. 76

v

List of Figures vi

3 The surrounded environment where the robot is tasked with escaping the surrounding

enclosure by driving to the target ghost pose displayed on the right side in the figure.

Every box objects is unmovable except the red box which is movable. 76

List of Acronyms

DOF Degrees Of Freedom . 4

FSM Finite State Machine . 31

h-algorithm hypothesis algorithm . iii

h-graph hypothesis graph . iv

IO Input-Output . iv

k-graph knowledge graph . iii

LTI Linear Time-Invariant . 53

MDP Markov Decision Process . 5

MPC Model Predictive Control . iii

MPPI Model Predictive Path Integral . iii

NAMO Navigation Among Movable Objects . i

NP non-deterministic polynomial-time . 74

NP-hard non-deterministic polynomial-time hard . 3

PE Prediction Error . 40

PRM Probabilistic Road Map . 3

PRM* optimised Probabilistic Road Map . 3

RRT Rapidly-exploring Random Tree . 3

RRT* optimised Rapidly-exploring Random Tree . 3

TE Tracking Error . 40

List of Symbols

R Set of Real numbers

Z≥0 Set of non-negative integers

n Number of Degrees Of Freedom

obj Object in the robot environment

Obj Set of objects

m Number of objects in the environment

Origin Origin of the environment with with 𝑥 (north to south), 𝑦 (west

to east) and 𝑧 (down to up) axis

Ground Plane The robot environment ground plane

Eq Set of motion equations in the robot environment

𝑘 time step index

𝜖pred
Prediction Error

𝜖track
Tracking Error

C-space Configuration Space, 𝐷𝑖𝑚(C-space) ∈ R2 ∨ R3

c Configuration, point in configuration space

ĉ Estimated configuration

𝑥 distance to Origin over the 𝑥-axis

𝑦 distance to Origin over the 𝑦-axis

𝜃 angular distance toward the the Origin’s positive 𝑥-axis around

the 𝑧 axis

𝑥grid length of grid in direction of 𝑥-axis

𝑦grid length of grid in direction of 𝑦-axis

𝑠cell length and width of a cell

v Node in motion or manipulation planner

𝑉MP Set of nodes for motion or manipulation planner

𝐸MP Set of edges for motion or manipulation planner

𝑃 Set of paths

𝑆 Task, Tuple of objects and corresponding target configurations.

𝑠 subtask, tuple of an object and an target configuration

ℎ hypothesis, Sequence of successive edges in the hypothesis

graph, an idea to put a object at it’s target configuration

𝐺hypothesis
hypothesis graph

𝐺knowledge
knowledge graph

vii

List of Symbols viii

𝑣 Node in hypothesis or knowledge graph

𝑉H Set of nodes for h-graph

𝑉K Set of nodes for k-graph

𝑒 Edge in hypothesis graph or knowledge graph

𝐸H Set of edges for h-graph

𝐸K Set of edges for k-graph

NODE_STATUS Status of a node

EDGE_STATUS Status of a edge

OBJ_CLASS classification of an object

ob observation from the robot environment

𝛼 Success factor for an edge in k-graph

∆k Time step [sec]

1
Introduction

This chapter narrows the broad field of robotics down to a largely unsolved problem, combining the three topics;
learning object dynamics, NAMO and nonprehensile pushing. For that problem, state-of-the-art methods are
presented, and their shortcomings are highlighted in the upcoming paragraphs. Then the gap in the literature
regarding the combination of the aforementioned topics is summarized in Section 1.1 in the form of the main
and sub-research questions. The combination of the three topics is then narrowed down to the scope of this thesis
in the problem description, Section 1.2. The chapter finishes by presenting all upcoming chapters in the report
structure, Section 1.3.

For robots, navigating and acting in new, unseen environments remains a complicated problem.

From the emerged challenges robots face in such environments, three topics are selected, namely:

learning object dynamics [15], Navigation Among Movable Objects (NAMO) [40], and nonprehensile
pushing [42]. The main goal of this thesis is to combine these three topics. A secondary goal is to

investigate how these topics can strengthen each other over time. When investigating the influence of

the topics on each other, questions arise, such as: How do learned objects’ system models improve

global task planning for a robot with nonprehensile push manipulation abilities over time? How to

combine learning and planning for push and drive applications? To what extend is the combination of

the three topics; learning object dynamics, the NAMO problem and nonprehensile pushing influenced

by environmental experience? The three topics are now shortly described.

Learning object dynamics enables the robot to manipulate unforeseen objects, NAMO allows the

robot to move around in an environment even if an object is blocking the robot’s target location, and

nonprehensile pushing allows the robot to change the environment. Combining these three topics

covers any task that involves relocating objects by pushing in unforeseen robot environments, such as

exploration missions or clearing debris on construction sites. An unfamiliar environment may emerge

by changing a familiar environment, such as a supermarket with the presence of people. Learning

abilities are crucial when the robot can encounter many different objects.

Navigation Among Movable Objects can be described as; the robot having to navigate to a goal pose in

an unknown environment that consists of static and movable objects. The robot may move objects if

the goal can not be reached otherwise or if moving the object may significantly shorten the path to the

goal [16].

Nonprehensile pushing is a form of manipulation widely available for robots, even if they are not

intentionally designed for pushing. Mobile robots can drive (and thus push) against objects, and a robot

arm with a gripper can push against objects even if the gripper is already full. Many robots can push, a

manipulation action many robots should leverage.

The NAMO problem and nonprehensile pushing are overlapping topics because both involve object

manipulation. However, a given task to relocate objects in an environment consisting of movable

and unmovable objects do not fit in either of the two topics individually. Relocating objects fits the

combination of the NAMO topic and the nonprehensile pushing topic. It is conceivable that a robotic

system possessing the capability to both navigate through an environment and manipulate objects holds

greater utility in contrast to a robot confined solely to navigation within the robot environment.

1

2

Research into approaches tackling the three topics just described can be split into two categories. The

bulk falls into the category of hierarchical approaches [14, 22, 36, 45, 47]. The remainder falls in category

locally optimal approaches [27, 33, 34]. Both approaches are elaborated upon later in this chapter. First,

the configuration space that builds up to the composite configuration space [45] is discussed. Then

secondly, two challenges are highlighted that are related to the composite configuration space growth of

dimension and the fact that the composite configuration space is piecewise-analytic.

Configuration Space Planning for a single action and its relation to the configuration space is now

discussed. Finding a path for a single action (such as robot driving or robot pushing) is known as

a motion- or manipulation planning problem and is planned in configuration space. Configuration space
for an object obj can be described as; an n-dimensional space, where n is the number of degrees of

freedom for that single object obj. A point in this n-dimensional configuration space fully describes

where that object is in the workspace. Then the workspace obstacles are mapped to configuration space

to indicate for which configurations the object obj is in collision with an obstacle in the workspace. The

subset of configurations in configuration space for which obj is in a collision is called obstacle space.
The remainder of obstacle space subtracted from configuration space is free space, in which the object

can move freely. For every object in the environment, a configuration space can be constructed. A

mathematical configuration space description can be found in Section 2.3.1. When a configuration space

is constructed, dedicated path planners query the configuration space to determine if a configuration

lies in free or obstacle space.

Composite Configuration Space Planning for an action sequence and its relation to the composite

configuration space is now investigated. For a robot environment that involves relocating objects among

the presence of other movable objects, planning for a single action is not enough because manipulating

an object directly to a target pose is often unfeasible. For example, manipulating an object obj𝐴 to a

target pose is feasible if the object obj𝐵 that blocks that path is first removed. Clearly, removing blocking

object obj𝐵 influences the feasibility of manipulating obj𝐴 to its target pose. For planning, there must be

a connection between the configuration space of obj𝐴 and obj𝐵, where the composite configuration space

emerges. A composite configuration space or composite space emerges when an object’s configuration

space is augmented with the configuration space of other objects [44, 45]. A composite configuration in

composite space fully describes where the robot and objects are in the workspace. In recent literature,

the composite configuration space is also named room configuration [34], joint configuration space [45]

or finding “bridges” between configuration spaces [17]. The term composite configuration space has

been adopted because it indicates multiple configuration spaces composed together. Path planners (in

contrast to the planning in configuration space) have great difficulty in connecting a starting composite

configuration to a target composite configuration [32] for reasons that are discussed in the upcoming

paragraph.

Challenges Three challenges are now listed, two related to planning in composite space and one

due to unknown environments. The first challenge is that the composite configuration space grows

exponentially with the number of movable objects in the environment. The dimension of a robot

environment’s composite configuration space can be written as:

menv
composite =

∑
obj∈Obj|

OBJ_CLASS=movable

mobj
configuration

Thus the dimension of the composite space grows linearly with the number of objects in the robot

environment, and the composite configuration space itself grows exponentially, also known as the curse
of dimensionality.

The second challenge is due to constraint sets. In configuration space, a single constraint set

applies, where constraints originate from kinematic-, dynamic- and/or geometrical properties of the

robot and the environments. For example, the boxer robot cannot drive sideways because of the

3

constraints that originate from the non-holonomic properties, visualize the boxer robot in Figure 1.1b.

The non-holonomic constraints must be respected during planning for the path planner to yield feasible

paths. Only a single constraint set exists in configuration space, also called mode of dynamics [17], because

configuration space relates to a single action. Dedicated path planners such as Probabilistic Road

Map (PRM) [18], optimised Probabilistic Road Map (PRM*), Rapidly-exploring Random Tree (RRT) or

optimised Rapidly-exploring Random Tree (RRT*) [19] can find paths in configuration space whilst

respecting the constraint set and guarantee asymptotic optimality [19]. In composite space, multiple

modes of dynamics exist; the composite configuration must respect the constraints set of the mode of

dynamics it resides in. These different modes of dynamics make the composite configuration space

piecewise-analytic. Path planners have great difficulty crossing the boundary from one mode of dynamics

to another mode of dynamics [45].

The appendix contains a section explaining complexity classes which may help understand this

paragraph better. Finding an optimal action sequence to a NAMO and nonprehensile pushing problem

requires a search in composite space. Due to the challenges described above, such a problem falls in the

category of non-deterministic polynomial-time hard (NP-hard) problems, for which we now provide

a reduction. If the search for an optimal solution in composite configuration space is simplified by

completely removing relocating objects to new poses from the task, a purely NAMO problem is what

remains. Suppose the problem is simplified even further by assuming that every object is an unmovable

obstacle. In that case, the problem falls in the category of NP-hard problems because a reduction exists

from the piano mover’s problem, which is known to be NP-hard [30]. That a simplified version is

NP-hard indicates the difficulty of finding an optimal path in composite configuration space.

The last challenge introduced is the uncertainty of actions in unknown environments. Planning

an action sequence with limited or no environmental knowledge inevitably leads to unfeasible action

sequences, such as pushing unmovable obstacles. Updating the environmental knowledge and

replanning the action sequence is the cure to the uncertainty introduced by a lack of environmental

knowledge. Trying to complete unfeasible action sequences is time and resources lost. Additionally, it

can lead to the task itself becoming unfeasible. For example, a pushing robot pushes an object into a

dead end due to an action sequence planned with limited environmental knowledge. Now that the

object is stuck, the task has become unfeasible.

The search for an optimal solution in composite space is unthinkable; no recent literature actually

plans directly into composite space. Significant simplifications are applied to a search in the composite

space, which will be discussed in the next paragraph. Finding paths for multiple actions without opting

for an optimal solution, also known as multi-model planning [17], can be achieved using one of the

two methods. The first method connects multiple configuration spaces, hierarchical approaches, and the

second method introduces simplifications to the composite configuration space that allow finding a

path, locally optimal approaches.

To summarize, the main challenge is to find an action sequence for a given task to relocate objects that consist
of push and drive actions in new and unforeseen environments. For two reasons, a search cannot be performed

in the composite configuration space because it would require solving an NP-hard problem. First, the

composite space grows exponentially with the number of movable objects. Secondly, the composite

configuration space piecewise-analytic path planners have great difficulty crossing boundaries from

one dynamical mode to another. A multi-modal planning algorithm is sought to robustly find paths

in composite configuration space whilst avoiding the emerging challenges with composite space and

handling the uncertainty introduced by the lack of environmental knowledge. Several researchers

tackled this problem. In the following, we provide a categorization and a summary of the most relevant

state-of-the-art methods, advantages and disadvantages.

Locally Optimal Approaches As indicated in the previous paragraph, finding a path in the composite

configuration space cannot computationally be found in a reasonable time (orders of magnitude slower

than real-time, with no guarantees if no path exists). Only by leveraging simplifications applied to the

composite configuration space can a search be performed, such as considering a heavily simplified

probabilistic environment [44], considering a single manipulation action [6], discretization [33] or

4

a heuristic function combined with a time horizon [33]. Such techniques prevent searching in

configurations relatively far from the current configuration. Local optimality guarantees can be given,

and real-time implementations have been shown.

The most relevant locally optimal approach is presented by Sabbagh Novin et al. She presents an

optimal motion planner [33] and applies it to a robot in a hospital environment [27] to later improve upon

her work [34]. The optimal motion planner avoids obstacles in the workspace and respects the kinematic

and dynamic constraints of a robot arm [33]. Examples of the motion planner are provided using a 3-

and 4- Degrees Of Freedom (DOF) planar robot arm. Sampling in the composite configuration space

is simplified using discretization (by disjunctive programming [11]) of the composite configuration

space and by using a receding horizon. The disjunctive programming concept is applied to convert the

continuous problem of path planning into a discrete form. In other words, a continuous path is made

equivalent to some points with equal time distances representing the entire path. After discretization,

the composite configuration space remains untraceable. Thus a search is performed close to the current

configuration by combining a heuristic function with a receding horizon concept. A specially developed

heuristic function points toward a target configuration. The planner then plans between the current

configuration and a point toward the target configuration for a predetermined time horizon. The concept

of a receding horizon is used to obtain the optimal path for every time step in the time horizon, but

apply only the first term and repeating this process until the end-effector meets the final pose.

The optimal motion planner [33] is then converted toward path planning for a non-holonomic mobile

robot with a gripper [27]. With the 3-fingered gripper, the robot can grasp legged objects such as chairs

or walkers. The targeted workspace is a hospital where the robot is tasked with handing walkers (or

other legged objects) to patients to lower the number of falling patients. The variety of legged objects

motivates an object model learning module that learns dynamic parameters from experimental data

with legged objects. The dynamic parameters are learned using a Bayesian regression model [36]. An

MPC controller then tracks the path and compensates for modelling errors. An essential contribution is

that the planner can decide to re-grasp one of the object’s legs to improve path tracking.

Real-world experiments show the effectiveness of Novin’s locally optimal approach [34]. She has

presented a manipulation planning framework focused on moving legged objects in which the robot

must choose which leg to push or pull. The framework can operate in real-time, and the local optimality

has been shown. From the three topics this thesis focuses on, Sabbagh Novin et al. includes learning

object dynamics and prehensile manipulation of objects to target poses, missing only the NAMO

problem because a path is assumed to be free during object manipulation. Because Novin uses a gripper

to manipulate objects, her research falls into the category of prehensile manipulation. Nonprehensile

manipulation bears an additional challenge over prehensile manipulation. With prehensile manipulation,

a gripper ensured multiple contact points, geometrically locking the object with respect to the gripper.

Until the gripper opens, the gripper and gripped object can be considered a unified object. Nonprehensile

manipulation, unlike prehensile manipulation, does not have the advantage of locking the object in

place, making it more challenging.

Hierarchical Approaches The second class of approaches to finding a path in composite configuration

space is classified as hierarchical approaches [14, 22, 36, 45, 47] that can be described as follows. A

hierarchical structure generally consists of a high-level and a low-level component. The high-level task

planner has an extended time horizon, including several atomic actions and their sequencing. Whilst a

low-level controller acts to complete a single action in a single mode of dynamics, e.g. drive toward the

object, push object. The high-level planner has a prediction horizon consisting of an action sequence,

a long prediction horizon compared to the low-level planner, whose prediction horizon is, at most, a

single action.

The most relevant hierarchical approach is presented by Scholz et al. [36]. He presents a planner for

the NAMO problem that can handle environments with under-specified object dynamics. The robot’s

workspace is split into various regions where the robot can move freely. Such regions can be connected

if an object separates two regions and can be manipulated by the robot to connect both regions. The

manipulation action is uncertain because objects have constraints that the robot has to learn, e.g. a

5

table has a leg that only rotates but cannot translate. A Markov Decision Process (MDP) is chosen

as a graph-based structure, where the nodes represent a free space region and objects separating the

regions are edges in the MDP. Finding a solution for the MDP leads to an action sequence consisting of

some drive and object manipulation actions to eventually drive the robot toward a target pose. The

under-specified object dynamics introduce uncertainty in object manipulation. During action execution,

object constraints are captured with a physics-based reinforcement learning framework that results in

improving manipulation planning when replanning is triggered.

Scholz et al. presented a NAMO planner that makes use of a hierarchical MDP combined with

a learning framework, resulting in online learning of the under-specified object dynamics. An

implementation on a real robot has shown the method’s effectiveness in learning and driving toward a

target location. From the three topics this thesis focuses on, Scholz et al. includes learning and the NAMO

problem, missing only push manipulation toward target locations. By not including manipulating

objects to target poses Scholz et al. can find a global path without running into high dimensional spaces.

In other words, by driving only the robot toward a target location, a global path will encounter objects

only once. By running into objects only once, manipulating an object does not affect the feasibility of the

global path, hence the simplification.

Individually a considerable amount of research is done on these three topics (learning object

dynamics [8, 37], NAMO [7, 13, 14, 21, 23, 47], nonprehensile pushing [2, 5, 25, 41, 42, 43]). Combining

two topics received little attention from the scientific community, and combining all three topics (to

the best of my search) not at all. The most relevant work for local optimal [34] and hierarchical [36]

approaches are discussed, both having advantages and disadvantages. Local optimal approaches

converge to a local optimal plan. To avoid the curse of dimensionality, simplifications must be used

to sample the composite configuration space to be computationally feasible. Such simplifications

determine the quality of solutions found. Hierarchical structures generally provide computationally

efficient solutions but are hierarchical, meaning the solutions found are the best feasible solutions in the

task hierarchy they search. The quality of the solution depends on the hierarchy, which is typically

hand-coded and domain-specific [45]. Table 1.1 presents state-of-the-art literature and which portion

of the three topics they include in their research. Note that both relevant works focus on prehensile

manipulation, whilst this thesis focuses on nonprehensile push manipulation. This thesis combines

the three topics partly indicated in the table below by ✗/✓ because learning object dynamics is only

theoretically included and is not tested properly.

Table 1.1: Overview of state-of-the-art literature with an indication of which topics they incorporate from the three topics;

learning object dynamics, the NAMO problem and specifying object target poses.

NAMO

Specify object

target poses

Author Citation Learns

object

dynamics

p
r
e
h
e
n
s
il
e

n
o
n
p
r
e
h
e
s
il
e

p
r
e
h
e
n
s
il
e

n
o
n
p
r
e
h
e
s
il
e

Ellis et al. [14] ✓ ✗ ✓ ✗ ✗

Sabbagh Novin

et al.

[34] ✓ ✓ ✗ ✓ ✗

Scholz et al. [36] ✓ ✓ ✗ ✗ ✗

Vega-Brown

and Roy

[45] ✗ ✓ ✗ ✓ ✗

Wang et al. [47] ✓ ✗ ✓ ✗ ✗

Groote Proposed

Framework

✗/✓ ✗ ✓ ✗ ✓

1.1. Research Question 6

1.1. Research Question
The following research questions have been selected to investigate the effect of learning on action

selection and action planning.

Main research question:

How do learned objects’ system models improve global task planning

for a robot with nonprehensile push manipulation abilities over time?

The main research question is split into two smaller, more detailed subquestions.

Research subquestion:

1. How to combine learning and planning for push and drive applications?

2. How does the proposed framework compare against the state-of-the-art?

This thesis’s main contribution is combining all three topics. These topics are learning object

dynamics, the NAMO problem and nonprehensile push manipulation. The proposed framework

combines these three topics with the hypothesis algorithm. The algorithm builds a graph-based structure

with nodes and edges, named the hypothesis graph. Planning directly in the composite configuration

space is avoided due to the inherent complexity associated with planning in composite space. Instead,

the hypothesis algorithm plans only in a single mode of dynamics and searches for a global path with

a technique known as a backward search [22]. Learned object dynamics are stored in a knowledge

base called the knowledge graph. The hypothesis algorithm, hypothesis graph and knowledge graph are

introduced in Chapter 4.

1.2. Problem Description
To help answer the research questions, tests are performed in a robot environment. A simple environment

is desired because that simplifies testing, yet the robot environment should represent many real-world

environments in which robots operate. Thus a 3-dimensional environment is selected. The environment

consists of a flat ground plane since many mobile robots operate in a workspace with a flat floor, such as

a supermarket, warehouse or distribution center. An environment with a flat floor and a flat robot can

be treated as a 2-dimensional problem because the robot and objects can only change position over 𝑥
and 𝑦 axis (𝑥𝑦 plane parallel to the ground plane) and rotate around the 𝑧 axis (perpendicular to the

ground plane). A flat robot is selected because it has a low center of gravity, which lowers the chance of

tipping over.

1.2. Problem Description 7

Let us start with defining the environment. Let the tuple

〈
Origin,Ground Plane,Obj, Eq

〉
fully

define a robot environment where:

Origin Static point in the environment with a 𝑥-, 𝑦- and 𝑧-axis. Any point in the

environment has a linear and an angular position and velocity with respect to

the origin

Ground Plane A flat plane parallel with the Origin’s 𝑥- and 𝑦- axis. Objects cannot pass

through the ground plane and meet sliding friction when sliding over the

ground plane.

Obj A set of objects, Obj = (𝑜𝑏1 , 𝑜𝑏2 , 𝑜𝑏3 , . . . , 𝑜𝑏𝑖)with 𝑖 ≥ 1, an object is a

3-dimensional body with shape, can be unmovable or movable. In the latter

case, the mass is uniformly distributed. The robot itself is considered an object,

and an environment thus contains one or more objects. Examples of objects are

given in Figure 1.2.

Eq A set of motion equations describing the behaviour of objects.

A configuration consists of the linear position of an object’s center of mass with respect to the

environment’s origin and the angular position of an object’s orientation with respect to the environment’s

origin.

Formally, a configuration, 𝑐𝑖𝑑(𝑘) is a tuple of

〈
𝑝𝑜𝑠𝑥(𝑘), 𝑝𝑜𝑠𝑦(𝑘), 𝑝𝑜𝑠𝜃(𝑘)

〉
where 𝑝𝑜𝑠𝑥 , 𝑝𝑜𝑠𝑦 ∈

R, 𝑝𝑜𝑠𝜃 ∈ [0, 2𝜋)
𝑘 indicates the time step and can be dropped to simplify the notation, id is short for identifier and

indicates the object to which this configuration belongs.

1.2.1. Task Specification
To answer the research questions, some tasks are designed, which are defined as a subset of all objects

with an associated target configuration.

task =
〈
Obj𝑡𝑎𝑠𝑘 , 𝐶𝑡𝑎𝑟𝑔𝑒𝑡𝑠

〉
Where Obj𝑡𝑎𝑠𝑘 ⊆ Obj, 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑐1 , 𝑐2 , 𝑐3 , . . . 𝑐𝑘) and 𝑘 > 0.

A task is completed when the robot manages to push every object to its target configuration within a

specified error margin.

1.2. Problem Description 8

1.2.2. Assumptions
Several assumptions are taken to simplify the pushing and learning problem, which are listed below.

Closed-World: Objects are manipulated, directly or indirectly, only by the robot. Influences from
outside the environment cannot manipulate objects.

Perfect Object Sensor: The robot has full access to the poses and geometry of all objects in the
environment at all times.

Tasks are Commutative: Tasks consist of multiple objects with specified target poses. The order in
which objects are pushed toward their target pose is commutative.

3-dimensional robot environment can be represented as 2-dimensional environment All
objects in the environment can be projected onto the ground plane.

The assumptions taken serve to simplify the problem of task completion. Note that insight is given

to remove all assumptions in Chapter 7. By removing assumptions completing tasks becomes a more

complicated problem but a more realistic problem closer to real-world applications.

Assumptions might have certain implications, which are listed below. The closed-world assumption
implies that objects that stand still and do not interact with the robot remain at the same pose. Completed

subtasks are therefore assumed to be completed for all times after completion time.

The perfect object sensor assumption simplifies a sensor setup, it prevents Lidar-, camera setups

and tracking setups with Aruco or other motion capture markers. The existence of a single perfect

measurement erases the need to combine measurements from multiple sources with sensor fusion

algorithms, such as Kalman filtering [46].

Certain tasks are only feasible if performed in a specific order (e.g. the Tower of Hanoi). The tasks
are commutative assumption allows focusing only on a single subtask since it does not affect the

completion or feasibility of other subtasks.

The 3-dimensional world can be represented as 2-dimensional ensures that the objects in the

environment can be projected onto the ground plane. Additionally, it ensures that objects do not tip over.

In practice, objects will not be higher than the minimum width of the object. This experimental strategy

seemed sufficient whilst running experiments but does not guarantee that objects cannot tip over.

1.2.3. Robot and Objects Examples
To get a sense of what the robots and the objects look like, see the two robots used during testing in

Figure 1.1 as well as two example objects displayed in Figure 1.2.

(a) The holonomic point robot with velocity input in

𝑥 and in 𝑦 direction

(b) The non-holonomic boxer robot, the

input is forward and rotational velocity

Figure 1.1: Two robots in the robot environment

1.3. Report Structure 9

(a) A box object (b) A cylinder object

Figure 1.2: Two objects in the robot environment

For complete environments with accompanying tasks, see Chapter 5.

1.3. Report Structure
The proposed framework heavily relies on a number of methods and functions. This required background

is conveniently grouped in Chapter 2. Then an extension is made on an existing planning algorithm in

Chapter 3 to be integrated into the proposed framework that is presented and discussed in Chapter 4.

Testing the proposed framework is presented in Chapter 5, and allows to draw conclusions in Chapter 6.

A list of symbols and a list of acronyms summarize all variables and acronyms used throughout the

thesis, by hovering with the mouse over any variable or acronym, a pop-up presented more information

of the acronym or variable. The pop-up also works for references toward figures, citations, chapters,

sections and subsections and should prevent much scrolling and jumps to pages. The last two chapters

dedicate themselves to the future work and the appendix.

2
Required Background

This chapter presents the components on which the proposed framework relies. These components are system
identification, control methods and planning. System identification converts IO data into a system model,
Section 2.1 presents a categorization of system models and describes the procedure on how to collect IO data. In
the scope of this thesis, a system model is required by control methods to create stable control and track a reference
signal, discussed in Section 2.2. Path planning is a core component of the proposed framework and is responsible
for finding a path in configuration space. Such a path acts as a reference signal for the controller. Path planning is
split into path estimation in Section 2.3.1 and path planning in Section 2.3.2. An existing path planner [47] is
extensively discussed, to then expand upon in Chapter 3.

2.1. System Identification Setup
In this thesis understanding how objects behave as a result of input sent to the robot is captured by

system models. System identification aims to create a system model that best relates an input sequence to

an output sequence. Three types of system models are categorized, data-driven-, hybrid- and analytic

system models. Data-driven models are generated by only using IO data, and hybrid system models

provide a predetermined structure between the input and output with several variables to be determined

by IO data, such as the object’s dimensions or weight. Analytic models are fully defined and thus do not

use any IO data. Note, this section elaborates on how to collect an IO data set, and does not elaborate on

system identification methods themselves. System identification methods are relocated to the future

work section.

An example of a system model is the drive model for the robot. The model estimates the robot’s

trajectory when input is sent to the robot. For a specified range of inputs that can be sent to the robot, a

system model can predict the possible future states that a robot can reach for a small number of time

steps. Using this method, a prediction can be made that estimates if states are reachable from the

current state and which states cannot be reached.

To generate a data-driven- or hybrid system model, IO data is required that is collected by sending

input to the robot and recording the output response. Now a method for data collection is presented to

collect data for drive and push applications.

The IO data set is defined as:

IO data set =
[
(𝑢1(𝑘), 𝑦1(𝑘)), . . . , (𝑢𝑔(𝑘), 𝑦𝑔(𝑘))

]
=
[
(𝑢1(1), · · · 𝑢1(𝑎), 𝑦1(1), · · · 𝑦1(𝑎)), . . . (𝑢𝑔(1), · · · 𝑢𝑔(𝑎), 𝑦𝑔(1), · · · , 𝑦𝑔(𝑏))

]
Where 𝑘 is the time step, (𝑢id , 𝑦id) is a IO sequence with identifier id, 𝑚 is the number of sequences in

the IO data set, 𝑎 is the number of inputs and outputs in sequence with identifier 1, 𝑏 is the number of

inputs and outputs in sequence with identifier 𝑔. With 𝑔, 𝑎, 𝑏 ∈ Z≥0

10

2.1. System Identification Setup 11

Figure 2.1: A top view of the point robot with five input sequences. The input sequences are executed

on the robot and the output responses are recorded, together the in- and output sequences form a IO data set.

The initial pose does not affect a driving model’s collection of an IO sequence. At the very least,

the robot should not collide with other objects during data collection. Opposite to collecting IO data

for a driving model, sending input to generate a IO sequence for the robot-pushing model requires a

predefined initial pose. That pose is relative to the object to push, as visualized in the following figure.

(a) A top view of a box object with six input sequences.

(b) The robot driving to toward the initial pose to then apply input sequence 𝑢1(𝑘) and collect output sequence 𝑦1(𝑘).

Figure 2.1: The robot collecting an IO data sequence by first driving toward the initial pose at the start of an arrow. Then the

corresponding input is sent toward the robot, and the robot and the object’s output response is collected to form a IO sequence.

The IO data set then consists of all six IO data sequences.

2.2. Control Methods 12

A top view of the point robot with five input sequences. The input sequences are executed

on the robot and the output responses are recorded, together the in- and output sequences form a IO

data set.

The quality of a system model resides in the dynamics it can capture from the system. In order to

create models that capture a large portion of the dynamics, system identification methods need an IO

data set that captures these dynamics. It must be recorded when the system is persistently exited to

create IO sequences that capture the dynamics. Creating input that persistently excites the system is out

of the scope of this thesis.

Only a method for data collection is preset, which is fully integrated with the proposed framework.

System identification is not implemented or tested; instead, analytic models are used for two time-related

reasons. Firstly creating the implementation module itself takes too much time. Secondly, collecting

enough IO data to generate a system model is time wise very costly. Thus, time is saved by using several

analytic system models instead of implementing a system identification module. The replacement

moves to focus from “which system identification method yields a system model that most accurately

describes a dynamic model?” to “which system model in the set of available models most accurately

describes a dynamic model?”. The analytic system models are not opting for modelling the drive or

push model as accurately as they possibly can, thus severe model mismatch should be expected.

Related to system identification is system classification, a symbolic model that indicates the accordance

of objects. In this thesis objects are initially classified as UNKNOWN, a test determines if objects are

movable or unmovable and classify them as MOVABLE or UNMOVABLE, indicating that they can or

cannot be pushed. That test is presented in Section 4.3.

2.2. Control Methods
This section elaborates on why control is required and which control methods are best suitable for

various control applications. Predictive control methods have been selected from many control methods

because they heavily rely on a dynamic model of the system they control. During this thesis, the effect

of the robot interacting with objects is captured by dynamic system models. In addition to predicting

output with system models, predictive control methods use the system models to determine action

input. A requirement for a controller is that it should yield a stable closed-loop control because that

guarantees converging toward a set point. In the proposed framework, controllers are later selected for

yielding desired metrics grouped in Section 4.3.2. The two control methods that are used during testing

are discussed below.

Model Predictive Control The basic concept of MPC is to use a dynamic model to forecast system

behaviour and optimize the forecast to produce the best decision for the control move at the current

time. Models are central to every form of MPC [29]. A dynamical model can be presented in various

forms, let’s consider a familiar differential equation.

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥(𝑡), 𝑢(𝑡))

𝑦 = ℎ(𝑥(𝑡), 𝑢(𝑡))
𝑥(𝑡0) = 𝑥0

In which 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the input, 𝑦 ∈ R𝑝
is the output, and 𝑡 ∈ R is time. The initial

condition specifies the value of the state 𝑥 at 𝑡 = 𝑡0, and a solution to the differential equation for time

greater than 𝑡0, 𝑡 ∈ R≥0 is sought. If little knowledge about the internal structure of a system is available,

it may be convenient to take another approach where the state is suppressed, no internal structure about

the system is known and the focus lies only on the manipulable inputs and measurable outputs. As

shown in figure 2.2, consider the system 𝐺(𝑡) to be the connection between 𝑢 and 𝑦. In this viewpoint,

various system identification techniques are used, in which 𝑢 is manipulated and 𝑦 is measured [29].

From the input-output relation, a system model is estimated or improved. The system model can be

2.2. Control Methods 13

seen inside the MPC controller block in figure 2.2.

𝐺(𝑡)

MPC controller

Optimization

System Model

PredictAction

𝑢(𝑡)

𝑦𝑟𝑒 𝑓 (𝑡), 𝑝, X, U, Y

𝑦(𝑡)

Figure 2.2: System 𝐺(𝑡)with input 𝑢(𝑡), output 𝑦(𝑡) and MPC controller with input 𝑦(𝑡)
reference signal 𝑦𝑟𝑒 𝑓 (𝑡), parameterization 𝑝 and constraint sets X, U, Y

Some states of the system might be inside an obstacle region, such a region is undesirable for the

robot to be in or go toward. The robot states are allowed in free space, which is all space minus the

obstacle region. The free space is specified as a state constrained setX. Allowable input can be restricted

by the input constraint set U, a scenario in which input constraints are required is for example the

maximum torque an engine produces at full throttle. Lastly, the set of allowed outputs is specified in

the output constraint set Y. State, input and output constraints must be respected during optimization,

the optimizer takes the state-, input- and output constraint sets X, U, Y and if feasible, finds an action

sequence driving the system toward the reference signal while constraints are respected. The MPC

system model predicts future states where the system is steered toward as a result of input actions.

The optimization minimizes an objective function 𝑉𝑁 (𝑥0 , 𝑦𝑟𝑒 𝑓 , u𝑁 (0)), where

u𝑁 (𝑘) = (𝑢𝑘 , 𝑢𝑘+1 , . . . , 𝑢𝑘+𝑁). The objective function takes the reference signal as an argument together

with the initial state and the control input for the control horizon. The objective function then creates a

weighted sum of some heuristic function. States and inputs resulting in outputs far from the reference

signal are penalized more by the heuristic function than outputs closer to the reference signal. Because

the objective function is a Lyapunov function, it has the property that, it has a global minimum for the

optimal input u∗
𝑁

. If the system output reaches the reference signal 𝑦𝑟𝑒 𝑓 , 𝑥𝑟𝑒 𝑓 then 𝑢𝑟𝑒 𝑓 will be mapped

to the output reference signal as such 𝑦𝑟𝑒 𝑓 = ℎ(𝑥𝑟𝑒 𝑓 , 𝑢𝑟𝑒 𝑓). As a result solving the minimization problem

displayed in equation (2.1) gives the optimal input which steers the system toward the output reference

signal while at the same time respecting the constraints.

minimize

𝑢𝑘 , 𝑢𝑘+1 , . . . , 𝑢𝑘+𝑁
𝑉𝑁 (𝑥0 , 𝑦𝑟𝑒 𝑓 , 𝑢𝑘 , 𝑢𝑘+1 , . . . , 𝑢𝑘+𝑁)

subject to 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)),
𝑥 ∈ X,
𝑢 ∈ U,
𝑦 ∈ Y,
𝑥(0) = 𝑥0

(2.1)

After solving the minimization problem, equation (2.1), the optimal input sequence is obtained u∗
𝑁

(given that the constraints are respected for such input), from which only the first input is executed for

time step 𝑘 to 𝑘 + 1. Then all indices are shifted such that the previous time step 𝑘 + 1 becomes 𝑘, the

output is measured and the reference signal, parameterization, and constraints sets are updated and a

new minimization problem is created, which completes the cycle.

Model Predictive Path Integral Control Introduced by [49] MPPI control arose, which was followed

by MPPI control combined with various system identification methods and system models [1, 8, 2]. The

core idea is from the current state of the system with the use of a system model and randomly sampled

2.2. Control Methods 14

inputs to simulate in the future a number of "rollouts" for a specific time horizon, [26]. These rollouts

indicate the future states of the system if the randomly sampled inputs would be applied to the system,

the future states can be evaluated by a cost function which penalized undesired states and rewards

desired future states. A weighted sum over all rollouts determines the input which will be applied to

the system. If a goal state is not reached, the control loop starts with the next iteration. An example is

provided, see figure 2.3.

Figure 2.3: MPPI controlled race car using a control horizon of 3 time steps, with 3 rollouts all having their respected inputs as

𝑢𝑖 , 𝑗 where 𝑖 is the rollout index and 𝑗 indicates the time step [26].

Here 3 rollouts are displayed, The objective function is designed to keep the car driving on the

center of the road by penalizing rollouts which are further away from the center of the road relatively

more. Resulting in a high cost for rollout1 and rollout3 compared to rollout2. As a result, the input send

to the system as a weighted sum of the rollouts is mostly determined by rollout2. The weighted sum

determining the input is displayed in equation (2.2), from [26].

𝑢(𝑘 + 1) = 𝑢(𝑘) +
∑

𝑖 𝑤𝑖𝛿𝑢𝑖∑
𝑖 𝑤𝑖

(2.2)

Where 𝛿𝑢𝑖 is the difference between 𝑢(𝑘) and the input for rollout 𝑖, the weight of rollout𝑖 is

determined as: 𝑤𝑖 = 𝑒−
1

𝜆 cost𝑖
, 𝜆 is a constant parameter.

The core idea is from the current state of the system using a system model and randomly sampled

inputs to simulate several “rollouts” for a specific time horizon, [26]. These rollouts indicate the system’s

future states if the randomly sampled inputs are applied. The future states can be evaluated by a cost

function penalizing undesired states and rewarding desired future states. A weighted sum over all

rollouts determines the input which will be applied to the system. The main advantage MPPI has over

MPC control is that it is better suited for nonlinear system models. Whilst linear models can accurately

estimate drive applications, push applications are harder to estimate with a linear model. Thus MPPI is

selected mainly for push applications.

The properties of MPC suggest that it is best suitable for drive actions because of easy tuning and

robustness. MPPI control is compatible with nonlinear system models, making it more suitable for push

actions. It is worth mentioning that the goal of this thesis is not to find the best optimal controller. The

goal is to gradually, over time, choose control methods in combination with system models that result

in better performance, and the performance is measured with various metrics, discussed in Chapter 4.

2.3. Planning 15

2.3. Planning
This section explains path planning, which consists of 2 steps. Firstly, path estimation, and secondly,

motion or manipulation planning. The path estimator can detect non-existent paths and concludes such

paths as unfeasible [50]. If a path exists, the double tree RRT* planning algorithm is responsible for

finding a path from starting point to a target point in configuration space whilst respecting applicable

constraints [7].

To clarify terminology used in this thesis, the following Table 2.1 is presented.

Table 2.1: The planning-related terminology is juxtaposed in the left column

alongside its corresponding description in the right column.

Global Planning: Planning for a task by focusing on one single subtask at a time.

Local Planning: Validating if two closeby configurations that are maximal step_size
apart can be connected whilst respecting constraints using a system

model.

Path Estimation: Estimating the existence of a path for a push or drive action.

Motion Planning: Planning a drive action

Manipulation Planning: Planning for an push action.

Action Planning: Planning for an drive or push action.

Path Planning: Path estimation and action planning for an drive or push action.

2.3.1. Estimating Path Existence
In this subsection, motivation and explanation for estimating path existence are presented. We can

describe the path estimation algorithm as The idea is to discretize the configuration space. The emerging cells
act as nodes in the graph, cells connect through edges to nearby cells. Graph-based planners start from the cell
containing the starting configuration and search for the cell containing the target configuration while avoiding
cells in obstacle space.

If the path estimator concludes the existence of a path planning problem, then it is validated that it

is geometrically possible for an object to go from start to target configuration in small successive steps

without colliding with an unmovable obstacle. The check prevents the planner from attempting a search

for a start and target configuration for a problem that is unfeasible due to not being detected by the

path estimator because it does not check for non-holonomic constraints. By neglecting non-holonomic

constraints, the path estimator is magnitudes faster than the planner; the planner is responsible for

checking the non-holonomic constraints.

Discritizing the Configuration Space For general geometric shapes, a configuration space can be

constructed and discretized. During this thesis, configuration space was implemented for cylinders and

rectangular prisms. First, the configuration space for a cylindrical-shaped object in a 3-dimensional

environment is presented. That configuration space for cylindrical objects is defined as a (𝑥, 𝑦)-plane,

and the 𝑧-axis is omitted. During the projection from a 3-dimensional environment to a 2-dimensional

plane, cylinders (flat side facing down) become circles, and rectangular prisms become rectangles. The

definition of configuration space is presented below for a circular object, such as the point robot, without

loss of generality. In this thesis, three dimensional objects can be projected to the xy-plane. As a result a

three dimensional spherical robot or object can has a configuration space that is two dimensional (𝑥 and

𝑦 dimension). Objects in the shape of rectangular prisms that are projected onto the xy-plane become

rectangles, and have a three dimensional configuration space (𝑥, 𝑦 and 𝜃 dimension).

A grid of cells represents configuration space. Let 𝑠cell be the width and height of a square cell. Let

2.3. Planning 16

𝑥grid be the vertical (north to south) length and let 𝑦grid be the horizontal length (west to east) of the

configuration space, point (0, 0) is at the center of the grid.

The two dimensional configuration space is defined as:

C-space
2D =

𝑐(0,0) 𝑐(0,1) . . . 𝑐(0, 𝑗max)

𝑐(1,0) 𝑐(1,1) . . . 𝑐(1, 𝑗max)
...

...
. . .

...

𝑐(𝑖max ,0) 𝑐(𝑖max ,1) . . . 𝑐(𝑖max , 𝑗max)

With 0 ≤ 𝑖 ≤ 𝑖max =

𝑥grid
𝑠cell

, 0 ≤ 𝑗 < 𝑗max =
𝑦grid
𝑠cell

.

Where 𝑐(𝑖 , 𝑗) in matrix C-space represents to which subspace the cell at indices (𝑖 , 𝑗) belongs. The

four subspaces considered in this thesis are free-, unmovable-, movable- and unknown space indicated

with the integers 0, 1, 2 and 3, respectively. Multiple subspaces can reside in a single cell; by default,

a cell represents free space. The subspaces are ordered from least to most important: free, movable,

unknown, and unmovable space. A cell displays the subspace with the highest order of importance that

resides in the cell. Thus a cell that contains part unknown and part unmovable space will evaluate as

unmovable space since unmovable space is more important than the unknown space.

A mapping function 𝑓chart_to_idx(𝑥, 𝑦)maps the

Cartesian (𝑥, 𝑦) coordinates to their associated (𝑖 , 𝑗) indices:

𝑓chart_to_idx(𝑥, 𝑦) : R2 ↦→ Z≥0

2

Defined for:

𝑥 = {𝑥grid ∈ R : −
𝑥grid

2

≤ 𝑥 ≤
𝑥grid

2

}, 𝑦 = {𝑦grid ∈ R : −
𝑦grid

2

≤ 𝑦 ≤
𝑦grid

2

}

A mapping function 𝑓idx_to_chart(𝑖 , 𝑗)maps the

indices (𝑖 , 𝑗) to their associated Cartesian (𝑥, 𝑦) coordinates:

𝑓idx_to_chart(𝑖 , 𝑗) : Z≥0

2 ↦→ R2

Defined for:

𝑖 = {
𝑥grid

𝑠cell
∈ Z≥0 : 0 ≤ 𝑖 ≤

𝑥grid

𝑠cell
, 𝑗 = {

𝑦grid

𝑠cell
∈ Z≥0 : 0 ≤ 𝑗 ≤

𝑦grid

𝑠cell
}

The three dimensional configuration space for object is defined as:

2.3. Planning 17

𝑐(0,0,𝑘max) 𝑐(0,1,𝑘max) . . . 𝑐(0, 𝑗max ,𝑘max))

𝑐(1,0,𝑘max)) 𝑐(1,1,𝑘max)) . . . 𝑐(1, 𝑗max ,𝑘max))
...

...
. . .

...

𝑐(𝑖max ,0,𝑘max)) 𝑐(𝑖max ,1,𝑘max)) . . . 𝑐(𝑖max , 𝑗max ,𝑘max))

𝑐(0,0,1) 𝑐(0,1,1) . . . 𝑐(0, 𝑗max ,1))

𝑐(1,0,1)) 𝑐(1,1,1)) . . . 𝑐(1, 𝑗max ,1))
...

...
. . .

...

𝑡𝑡𝑡𝑡𝑐(𝑖max ,0,1)) 𝑐(𝑖max ,1,1)) . . . 𝑐(𝑖max , 𝑗max ,1))

𝑐(0,0,0) 𝑐(0,1,0) . . . 𝑐(0, 𝑗max ,0))

𝑐(1,0,0)) 𝑐(1,1,0)) . . . 𝑐(1, 𝑗max ,0))
...

...
. . .

...

𝑐(𝑖max ,0,0)) 𝑐(𝑖max ,1,0)) . . . 𝑐(𝑖max , 𝑗max ,0))

C-space
3D =

With 0 ≤ 𝑖 ≤ 𝑖max =
𝑥grid
𝑠cell

, 0 ≤ 𝑗 ≤ 𝑗max =
𝑦grid
𝑠cell

, 𝑘 ∈ Z≥0.

Similar to 𝑓chart_to_idx(𝑥, 𝑦) and 𝑓idx_to_chart(𝑖 , 𝑗) the mapping functions chart_to_idx(𝑥, 𝑦, 𝜃) and 𝑓idx_to_pose(𝑖 , 𝑗 , 𝑘)
exist and map between the (𝑥, 𝑦, 𝜃) pose and the (𝑖 , 𝑗 , 𝑘) indices.

Figure 2.4: Robot environment with the point robot, unmovable yellow walls and movable brown boxes.

The point robot has a cylindrical shape; thus, a two dimensional configuration space can represent

the free and obstacle space which can be seen in Figure 2.5. An example configuration space for the

point robot is presented below.

2.3. Planning 18

(a) C-space
𝑐𝑖𝑟𝑐𝑙𝑒

with 𝑠cell = 0.1 (b) C-space
𝑐𝑖𝑟𝑐𝑙𝑒

with 𝑠cell = 0.05

Figure 2.5: The configuration space for the point robot with different cell sizes. The robot

environment corresponds to the environment presented in Figure 2.4.

The resolution of the configuration space at Figure 2.5b is higher compared to Figure 2.5a because of

a smaller grid size. A high resolution is better at detecting paths through small corridors and tight

corners, but it comes at the cost of a more extended creation and search time. The robot classifies all

objects as unknown since it is unaware of the objects’ classes.

Path Existence Algorithm In the context of this thesis, we can describe path existence as: For an object’s
discretized configuration space, there exists a list of neighbouring cells from starting to target configuration that
does not lie in unmovable space.

A path in configuration space is detected using the implemented

𝑓shortest_path(cstart , ctarget ,) function. This function takes a start- and target configuration, cstart and ctarget
and returns the shortest path between them that lies in free space. The shortest_path function searches

for the shortest path using the Dĳkstra algorithm [10] on the discreted configuration space. The shortest

path validates the existence of a path (note that only geometric constraints are respected), and can help

path planning discussed in Section 2.3. The shortest path helps path planning by providing an initial

number of path planner nodes before the path planner creates nodes by random sampling. Such a

conversion is also referred to as a “warm start”. If no path can be found, the 𝑓shortest_path function raises

an error that will prevent path planning from occurring.

Unfeasible solutions and an undecidable problem The path estimator does not take system con-

straints into account. Thus, the path estimator can find a list of neighbouring cells from the start

to the target configuration and conclude that a path exists. In reality, this path is unfeasible. An

example is driving the boxer robot displayed in Figure 1.1b through a narrow, sharp corner. Whilst

geometrically, the robot would fit through the corner, the non-holonomic constraints of the robot prevent

it from steering through such a tight corner. It is for the action planner to detect that the path is unfeasible.

The path estimator suffers from another drawback, finding proof that there exists a path that is

undecidable [50]. This is due to the chosen cell size during discretizing the configuration space. An

example is a corridor having the same width as the robot. The robot fits exactly through this corridor.

Detecting such a path requires many neighbouring cells that lie exactly in the center line of the corridor.

2.3. Planning 19

Only with a cell size going to zero and the number of cells going to infinity such a path is guaranteed

to be detected. Path non-existence, on the other hand, is easier to prove because the path estimator

provides an upper bound on existing paths and a lower bound on non-existing paths [50]. The following

flowchart neatly presents why the existence of paths is an estimation rather than an guarantee.

Can the path

estimator find a

path between

start- and target

configuration?

A path does exist,

however,it can still

be unfeasible due to

constraints other than

the geometric constraints

A path could not be

found, however, due to

the finite discretization

a path could exist and

could not be found

yes
no

Figure 2.6: Flowchart displaying both drawbacks when checking path existence.

The path existence algorithm can detect non-existence paths. Thus checking path existence before

motion or manipulation planning filters out several non-existent paths saving time and resources. Even

if, in exceptional cases, the path estimator can yield unfeasible paths and fails to detect existing paths.

Checking path existence before path planning filters some non-exist paths and is additionally motivated

by two reasons. First, path estimation is orders of magnitude faster compared to path planning. Secondly,

the path estimation algorithm can provide a number of initial nodes to the path planner that can act as a

“warm start”.

2.3.2. Path Planning
Controllers discussed in Section 2.2 can track a path from start to target, given that all necessary

ingredients are provided. One essential ingredient is a path to follow, and providing a path is the

planners’ responsibility; planners seek inside the configuration space for a path from the start to the

target configuration. A practical example of such a path is a list of successive points in configurations

space. How far the successive points can lie apart is a tuning parameter of the planner. Seeking a path

in configuration space whilst avoiding unmovable objects is referred to as path planning and can be

described as:

“The main idea is to avoid the explicit construction of the object space and instead conduct a search that probes
the configuration space with a sampling scheme. This probing is enabled by a collision detection module, which the
path planning algorithm considers a “black box.” [23]”

The path planner is defined with the following tuple:

PathPlanner = ⟨𝑉MP , 𝐸MP , 𝑃⟩
Where 𝑉MP is a set of nodes, 𝐸MP a set of edges and 𝑃 a set of paths, a path is defined as:

path = [cstart , c2 , c3 , · · · , c𝑛−1 , ctarget]
Where 𝑛 ∈ Z≥2 is the number of configurations in the path.

2.3. Planning 20

The goal of the path planner is to find a path between a given start- and target configuration that

results in the lowest TotalPathCost, defined as:

TotalPathCost =
𝑛−1∑
𝑖=1

Distance(c𝑖 , c𝑖+1) =
𝑛−1∑
𝑖=1

∥c𝑖 − c𝑖+1∥

Now pseudocode of the RRT* algorithm is presented that is split into three parts that are grouped

by color as can be seen in Algorithm 1. Notice that the color correspond to the later pseudocode and

example figures. Each part is then discussed, as well as a number of variables and functions used in

that respected part. When discussing each part an example is analyzed in which the path planner adds

a single node to the connectivity graph. Note that, the path planner in this section plans in free- and

obstacle (or unmovable) space, later in Chapter 3 that will be extended to free-, unknown-, movable-

and unmovable space.

A node v in the path planner consists of the following tuple:

v = ⟨c, cost_to_source, key, prev_node_key, in_tree⟩
Where c is a point in configuration space, cost_to_source the cost toward the source node, key a unique

key for the node, prev_node_key they parent key to which the node is directly connected with an edge,

in_tree an indicator that the node is connected to the start- or target connectivity tree. The path planner

starts by adding the first two initial nodes, the start- and target node. The path planner then enters a

loop that adds randomly sampled nodes, until the stopping criteria is reached with the NotReachStop
function.

Algorithm 1 Pseudocode for double tree RRT* algorithm. The pseudocode is split into three parts,

Algorithms 2 to 4 that correspond to the blue, yellow and green colored blocks.

1: 𝑉MP ← 𝑉MP 𝑖𝑛𝑖𝑡

2: while NotReachStop do
⊲ Create, project and validate a new random node

⊲ Find and connect new node to parent node

⊲ Check if the newly added node can lower cost for nearby

nodes and if a both connectivity trees can be connected

3: end while

The example that adds a single node starts in

Figure 2.7. In this example, one node is added to

the starting connectivity tree. Adding this node

involves the following steps: generating a new

random node, projecting the node to the nearest

node, rewiring nearby nodes and connecting the

start to the target tree. The start connectivity tree

consists of the nodes connected by edges contain-

ing the starting node, and vice versa for the target

connectivity tree containing the target node. The

algorithm grows the two connectivity trees by ran-

domly sampling configurations and adding them

as nodes to the start or target connectivity tree.

The algorithm explores configuration space by

growing these connectivity trees.

Figure 2.7: Snapshot of a two dimensional configuration with

free- and unmovable spaces. Where unmovable space is

indicated by the unmovable object, the rest of configuration

space (including the movable object) is free space. The start- and

target nodes, denoted as “Start” and “Target” respectively, serve

as the source nodes for the start- and target connectivity tree.

2.3. Planning 21

The algorithm has two tuning parameters that can be tweaked; first, the step size, the maximal

normalized distance between connected nodes in the connectivity trees, see Figure 2.8b for a visual

example. Choosing a high step size will increase search speed because the connectivity trees grow faster.

A higher step size comes at the cost of smoothness; the resulting path will be bumpier with sharper

corners. Additionally, the path has an increased chance of collision with unmovable objects because, for

two connected configurations in a path, the individual configurations can both lie in free space whilst a

direct line between the configurations crosses through unmovable space. The second tuning parameter

is the search size, which is a subspace around the newly sampled node (see, Figure 2.10).

Algorithm 2 Pseudocode to create, project and validate a new random node.

1: vrand ← Samplerandom
2: vnearest ← Nearest(vrand ,VMP)
3: vtemp ← Project(vrand , vnearest)
4: if CollisionCheck(vtemp) then
5: vnew = vtemp
6: 𝐶𝑜𝑠𝑡toInitMin ← +∞
7: else
8: Continue

9: end if

The Samplerandom function creates a random node in free- or unmovable space. This random node is

projected to the closes existing node using two functions. First, the Nearest(𝑥, 𝑉) returns the nearest

node from 𝑥 in 𝑉 . Second, if the nearest node is further than step size Euclidean distance from the

randomly sampled node, then the Project(𝑥, 𝑥′) function projects 𝑥 toward 𝑥′, such that the Euclidean

distance between 𝑥 and 𝑥′ is the step size. The projected random node can reside in free- or unmovable

space, ensuring that the node is in free space is validated with the CollisionCheck(𝑥) function that returns

true if 𝑥 is in free space. Newly sampled nodes are added structurally, guaranteeing an optimal path is

found with infinite sampling [7]. Where optimality is defined as the path with the lowest possible cost.

(a) A new random node is generated. (b) The new node is projected toward the

closest node, that becomes its parent node.

Figure 2.8: Create new node and connect to parent node.

The new node resides in free space and should now be added to either the start- or target connectivity

graph. Adding the new node to either connectivity graph is an operation that creates a new edge

between the new node and a to be determined parent node. The operation requires three functions, first

a NearestSet(𝑥, 𝑉) function that returns set of nearest nodes from 𝑥 in 𝑉 that lie in the search space. The

parent node is selected from the set of nearest nodes, from this set the node that results in the lowest

CosttoInit is sought, defined as:

2.3. Planning 22

CosttoInit = CostToInit(vnear) +Distance(v𝑛𝑒𝑎𝑟 , v𝑛𝑒𝑤)
The CosttoInit is proportional to the path length from a node toward the initial node in the connectivity

graph. It can be seen as half of the Costpath that will be later defined as the cost for the entire path from

starting- to target node. The second and third functions are the Distance(𝑥, 𝑥′) function that returns the

distance between node 𝑥 and 𝑥′, and a CostToInit(𝑥) function that finds the total cost from 𝑥 to the initial

node.

Algorithm 3 Pseudocode to find and connect new node to parent node.

1: 𝑋near ← NearestSet(vnew ,VMP)
2: for vnear ∈ 𝑋near do
3: Costtemp ← CostToInit(vnear) +Distance(vnear , vnew)
4: if Costtemp < CosttoInitMin then
5: CosttoInitMin ← Costtemp
6: vminCost ← vnear
7: end if
8: end for
9: if CosttoInitMin == ∞ then

10: Continue

11: else
12: 𝑉MP.𝑎𝑑𝑑(vnew)
13: 𝐸.add(vminCost , vnew)
14: end if

Figure 2.9: Connect new node to parent node that results in the lower CosttoInit.

The new node is connected to a parent node as can be seen in Figure 2.10. A final step remains to be

done, connecting the two trees or rewiring. For this step the InSameTree(𝑥, 𝑥′) indicates if both 𝑥 and

𝑥′ are or are not in the same tree. For every node in the set of nearest nodes that is in the same tree

as the new node, it is validated if rewiring would result in a lower CosttoInit for that node. The rewire

procedure changes the parent node by removing and adding an edge, rewiring can be visually seen in

Figure 2.10a. The node in the set of nearest nodes that are in the other three that results in the lowest

Costpath is connected to the new node. Thereby creating a path from start node to target node, the path

is added to the set of paths with corresponding Costpath, defined as:

Costpath = CostToInit(vnew) +Distance(v𝑛𝑒𝑤 , v𝑜𝑡ℎ𝑒𝑟_𝑡𝑟𝑒𝑒) + CostToInit(vother_tree)

2.3. Planning 23

Algorithm 4 Pseudocode to check if the newly added node can lower cost for nearby nodes with the

rewire procedure, and if both trees can be connected, yielding a path.

1: CostpathMin ← +∞
2: for vnear ∈ 𝑋𝑛𝑒𝑎𝑟 do
3: if InSameTree(vnear , vnew) then
4: if CostToInit(vnew) +Distance(vnew , vnear) < CostToInit(vnear) then
5: E.rewire(vnear , vnew)
6: end if
7: else ⊲ Add lowest cost path to the list of paths

8: Costtemp ← CostToInit(vnew) +Distance(vnew , vnear) + CostToInit(vnear)
9: if Costtemp < CostpathMin then

10: CostpathMin ← Costtemp
11: vpathMin ← vnear
12: end if
13: end if
14: if CostpathMin == ∞ then
15: Continue

16: else
17: P.addPath(vnew , vpathMin ,CostpathMin)
18: end if
19: end for

When the start connectivity tree is close enough (inside the search size of a newly added node) to

the target connectivity tree, a path from start to target is found. Increasing the search size improves the

choice of the parent node and improves cost due to rewiring, but it also increases computation time

because a larger search size results in comparing newly sampled nodes to more existing nodes in a

search for the best parent node.

(a) Rewire a node for which the cost can

be lowered by removing and adding an edge.

(b) Connect start- to target connectivity tree.

Figure 2.10: Check if the newly added node can lower cost for nearby nodes and connect the start- to the target tree.

2.3. Planning 24

Figure 2.11: Path planner that found a path from start- to target node marked in red.

The existing path planner has now been discussed, the following table summarized the variables

and functions. In the upcoming chapter, the path planner is extended to detect blocking paths.

Table 2.2: The variables and functions employed in the Algorithms 1 to 4.

v: A node consisting of the following tuple:

⟨c, cost_to_source, key, prev_node_key, in_tree⟩ where c a point in

configuration space, cost_to_source the cost toward the source node

v𝑖𝑛𝑖𝑡 , key a unique key for the node, prev_node_key they parent key to

which the node is directly connected, in_tree an indicator that the node

is connected to the start- or target connectivity tree.

v𝑖𝑛𝑖𝑡 : The two initial nodes, vstart and vtarget

NotReachStop: True if the stopping criteria are not reached

Samplerandom: Creates a random node in free-, movable- or unknown space

Nearest(v, 𝑉): Returns the nearest nodes from v in 𝑉

NearestSet(v, 𝑉): Returns set of nearest nodes from v in 𝑉

Project(v, v′): Project v toward v’

CollisionCheck(v): Returns true if v is in free space

Distance(v, v′): Returns the distance between node v and v’

CostToInit(v): Find the total cost from v to the initial node

InSameTree(v, v′): Returns true if both v and v’ are in the same tree, otherwise return

false

3
Proposed Path Planner

Finding a path between the start- and target configuration whilst avoiding collisions with an existing RRT* path
planner [7] was presented at the end of the previous chapter. This chapter extends that existing path planner’s
configuration space from free- and obstacle space to also incorporate movable- and unknown space. Movable space
originates from objects in the environment that are known to be movable, unknown space originates from objects
for which it is unknown whether they are movable or unmovable. The planner avoids obstacle space, is incentivized
to plan only in free space but can pass through unknown or movable space. A direct path lies in free space only, a
blocked path passes through unknown- or movable space. To free a blocked path and make it a direct path, the
object that causes the unknown- or movable space should be moved out of the way. Then a theoretic extension is
mentioned to generate paths which respect dynamic constraints.

3.1. Planning in Four Subspaces
The modified algorithm has four tuning parameters that can be tweaked; The step size and search size
were discussed in Section 2.3.2. The third and fourth tuning parameters are the UnknownSpaceCost and

MovableSpaceCost, which are fixed costs for crossing through unknown or movable space. Crossing

through is defined as one or more nodes in the path lying in that subspace. If a path does not contain a

node in unknown space, UnknownSpaceCost will be 0, equivalent to movable space and MovableSpaceCost.
These cost are added to the Costpath, which is redefined as:

Costpath = MovableSpaceCost +UnknownSpaceCost +
𝑛−1∑
𝑖=1

Distance(c𝑖 , c𝑖+1)

Where n ≥ 2 configuration points make up the path starting at cstart and ending at ctarget.

The RRT* algorithm searches for a path with the lowest cost, by adding a penalty for crossing

through unknown or movable space the path planner is incentivized to find the shortest path around

objects but prefers moving an object over making a large detour. Tuning the additional fixed cost for a

path crossing through movable or unknown space balances the robot’s decision between the length of

a detour the robot is willing to drive, compared to pushing an object to free the path. Removing an

unknown object bears more uncertainty than a movable object, motivating a higher cost to remove an

unknown object compared to an known object. The pseudocode from Algorithm 1 is presented again,

with changes due to the extension indicated with a red color.

25

3.1. Planning in Four Subspaces 26

Algorithm 5 Pseudocode for extended RRT* path planning algorithm. Lines that contain changes

compared to Algorithm 1 are indicated with the red color.

1: 𝑉MP ← 𝑉MP 𝑖𝑛𝑖𝑡

2: while NotReachStop do
3: vrand ← Samplerandom ⊲ Create, project and validate a new random sample

4: vnearest ← Nearest(vrand ,VMP)
5: vtemp ← Project(vrand , vnearest)
6: if CollisionCheck(vtemp) then
7: vnew = vtemp
8: CosttoInitMin ← +∞
9: else

10: Continue

11: end if
12: 𝑋near ← NearestSet(vnew ,VMP) ⊲ Find and connect new node to parent node

13: for vnear ∈ 𝑋near do
14: Costtemp ← CostToInit(vnear) +Distance(vnear , vnew) +ObjectCost(vnear , vnew)
15: if Costtemp < CosttoInitMin then
16: CosttoInitMin ← Costnew
17: vminCost ← vnear
18: end if
19: end for
20: if CosttoInitMin == ∞ then
21: Continue

22: else
23: 𝑉MP.𝑎𝑑𝑑(vnew)
24: 𝐸.add(vminCost , vnew)
25: end if
26: CostpathMin ← +∞
27: for vnear ∈ 𝑋𝑛𝑒𝑎𝑟 do ⊲ Check if the newly added node can lower cost for nearby

nodes and if a both connectivity trees can be connected

28: if InSameTree(vnear , vnew) then
29: if CostToInit(vnew) +Distance(vnew , vnear) +ObjectCost(vnew , vnear) < CostToInit(vnear) then
30: E.rewire(vnear , vnew)
31: end if
32: else ⊲ Add lowest cost path to the list of paths

33: Costtemp ← CostToInit(vnew) +Distance(vnew , vnear) + CostToInit(vnear)
34: if Costtemp < CostpathMin then
35: CostpathMin ← Costtemp
36: vpathMin ← vnear
37: end if
38: end if
39: if 𝐶𝑜𝑠𝑡𝑝𝑎𝑡ℎ𝑀𝑖𝑛 == ∞ then
40: Continue

41: else
42: P.addPath(vnew , vpathMin ,CostpathMin)
43: end if
44: end for
45: end while

The proposed algorithm prevents planning a path through blocking objects except when no other

option is available or a large detour can be prevented. No performance tests have been conducted on

the modified path planner, apart from visual inspection. Figure 3.1 clearly shows the effect of varying

UnknownSpaceCosts.

3.1. Planning in Four Subspaces 27

(a) Robot environment with the point robot, two yellow unmovable walls and an unknown brown box.

The robot tasked to drive toward the opposite side of the brown box.

(b) Visualization of the planned path around the brown box and yellow obstacles, with UnknownSpaceCost = 1.

(c) Visualization of the planned path going through the brown box, UnknownSpaceCost = 0.5.

Figure 3.1: Driving task and two planned paths.

3.2. Kinodynamic Planning 28

3.2. Kinodynamic Planning
Path planning whilst respecting dynamic constraints (e.g. non-holonomic constraints or constrains

on the derivatives of the planned path) is known as kinodynamic planning [12]. A non-holonomic

robot, such as the boxer robot in Figure 1.1b should respect the dynamic constraints, thus a path to

track for the robot should be provided by a kinodynamic planner. To take dynamic constraints into

account, a dynamic model should be incorporated. The popular method is to use motion primitives [35,

19]. Whilst other methods to respect dynamical constraints during path planning do exist (solving a

two-point-boundary problem [24], setting curvature constraints with a steering function such as Dubins

path or Reeds-Shepp curves [23]) a description is provided to incorporate a dynamic model using

motion primitives in the upcoming paragraph.

When sampling a new node in the path planner a dynamic model can be incorporated. Currently a

new node is created by generating random number within the boundaries of every dimension of the

configuration space. Then to project that configuration point to the closes node, followed by a check if

the newly sampled configuration does not lie in unmovable space, see lines 3-11 in Algorithm 5. To

involve a dynamic model newly samples nodes are created by selecting a existing node, propagate a

dynamic system model for a predefined number of time steps using randomly sampled input and the

existing node as initial state. If the simulated future state does not lie in unmovable space, it is converted

to a newly sampled node for the path planner. That new node, will respect the dynamic constraints

since it is is created as a future simulation using a system model that respects the dynamic constraints.

This thesis focuses on the improvement of task execution as a result of learning dynamical models

on how to manipulate objects in the robot environment. The proposed path planning algorithm can be

extended into a kinodynamic planning algorithm to generate paths that respect non-holonomic and

dynamic constraints. As will become clear later in this thesis, the selection of a dynamic model for a

certain manipulation action will improve over time when the robot becomes more experienced in the

robot environment. To incorporate a system model into path planning leads to the conclusion that:

When using dynamic models that improve modeling the system in term of capturing dynamics and lowering
model mismatch, the path planner that incorporates a dynamic model to generate new nodes will improve the
paths generated. Where path improvement implies firstly, that the system can be controlled to track a path found,
secondly paths that do not respect the dynamic constraints are not generated. Later in this thesis, during testing,

the holonomic point robot is used. Since the point robot has no dynamic or non-holonomic constraints

that must be respected, no extension of the proposed planning algorithm is made that makes the path

planner a kinodynamic path planner.

Now that the modified path planner is discussed, the proposed robotic framework can be discussed.

The proposed framework relies on the required background from previous chapter, and relies on the

modified path planner from this chapter.

4
Proposed Robot Framework

This chapter is dedicated to introducing and defining the proposed framework. The proposed framework consists of the
hypothesis algorithm (h-algorithm), the hypothesis graph (h-graph) and the knowledge graph (k-graph).
The h-algorithm acts on the h-graph and is responsible for searching and executing action sequences to complete a
specified task. Section 4.2 is dedicated to introducing and defining the h-graph. Then the h-algorithm is discussed
and defined in Section 4.3. The chapter finalizes with the k-graph in Section 4.4.

4.1. Overview of the Proposed Framework
Figure 4.1 presents a schematic overview of the interconnection of the k-graph, h-algorithm and the

robot environment. The proposed framework could be augmented with a high-level planner that would

transform a high-level task such as cleaning into the accepted format a list containing objects and

corresponding target pose.

Thesis focus

Robot Environment

Hypothesis

Algorithm

Knowledge

Graph

Ontology

High-level

planner

sensor

measurements
robot input

task

action

suggestions

action

feedback

environment

knowledge

queryoutput

High-level

task

Figure 4.1: Flowchart representation of the proposed robot framework.

29

4.2. Hypothesis Graph 30

The block containing the h-algorithm in Figure 4.1 orchestrates the generation and execution of

action sequences. In doing so, it creates a h-graph, first the h-graph is introduced and discussed, then

the h-algorithm is introduced and discussed.

4.2. Hypothesis Graph
The hypothesis graph (h-graph) consists of a set of nodes and edges. The node corresponds to an object

at a configuration in configuration space, and the edges correspond to actions. Overall, the h-graph

represents a search in the composite configuration space. A search in the composite configuration

space itself is avoided because an edge only operates in a single mode of dynamics. As a result path

estimation and path planning for the action that the edge represents occur in configuration space and

not in composite space. The h-graph is explicitly created for a task with a single start and a single target

node for every subtask in the task. The h-algorithm discussed in the upcoming section is responsible

with connecting starting node to the corresponding target node. When the h-algorithm halts, and the

task is completed, the h-graph is no longer required and is discarded.

The upcoming subsection defines and discusses the h-graph in Section 4.2.1. The status of an edge is

discussed in Section 4.2.2, the section then finalizes with a legend to read a h-graph.

4.2.1. Definition
Before defining the h-graph, some definitions are provided on which the h-graph depends. First, recall

the configuration definition.

Formally an configuration, c𝑖𝑑(𝑘) is a tuple of ⟨𝑥(𝑘), 𝑦(𝑘), 𝜃(𝑘)⟩
where 𝑥, 𝑦 ∈ R, 𝜃 ∈ [0, 2𝜋)

An object is represented as its shape and configuration

Formally, a object, obj𝑖𝑑 = ⟨OBJ_CLASS, shape⟩

Where id is an identifier for the object, OBJ_CLASS the objects classification that can be either

movable, unmovable or unknown. shape is linked to a 3D representation of the object.

An object node represents an object in a certain configuration.

Formally, a objectNode, 𝑉
obj
𝑖𝑑

= ⟨obj, c(𝑘), status⟩.

Where id is an identifier for the node, obj an object, c(𝑘) the configuration at time step 𝑘 and status

indicates if the configuration is reachable for the object that both reside in the node, the status can be

INITIALIZED or COMPLETED or UNFEASIBLE.

An edge describes how a node transitions to another node in the h-graph. Edges are split into three

categories since they accomplish different goals. System identification edges that have as a goal to collect

IO data and to generate a system model with that data, action edges steer a system toward a target

configuration and empty edges connect nodes that contain different objects that could otherwise not be

connected. The edges are formally defined as:

A identification edge,

𝑒 iden
id =

〈
idfrom , idto , Identification Method, IO data set, controller, system model, status

〉
Where id is an identifier for the edge, idfrom and idto indicating the node identifier where the

edge points from and to, respectively. identification method indicates the used method for system

identification, the IO data set contains the input sequences and the system’s recorded output response,

4.2. Hypothesis Graph 31

the controller contains the controller used for driving the robot during data collection and the status

indicates the node’s status that is elaborated in detail in Figure 4.2.

A action edge,

𝑒action
id =

〈
𝑖𝑑 𝑓 𝑟𝑜𝑚 , 𝑖𝑑𝑡𝑜 , verb, controller, system model, path, status

〉
Where id is a identifier for the edge, idfrom and idto indicating the node identifier where the edge

points from and to, respectively. verb is an English verb describing the action the edge represents (in

this thesis driving or pushing), the controller contains the control method used for driving the robot,

system model is the dynamic system model used by the control method, path is a list of configurations

and status indicates the node’s status that is elaborated in detail in Figure 4.3.

Connecting nodes with edges is elaborated upon in the upcoming section. Two nodes can only be

connected if they both contain the same object. The empty edge main goal is to connect nodes that

contain different object, to involve multiple objects in a single action sequence.

A empty edge,

𝑒
emtpy
id =

〈
𝑖𝑑 𝑓 𝑟𝑜𝑚 , 𝑖𝑑𝑡𝑜 , status

〉
Where id is and identifier for the edge, status for an empty edge can be INITIALIZED or FAILED.

Now that the nodes and edges have been defined, the h-graph can be defined.

Formally, a hypothesis graph, 𝐺hypothesis = ⟨𝑉H , 𝐸H⟩
Where 𝑉H is a set of nodes and 𝐸H a set of edges, defined as:

𝑉H = {𝑉H
obj
𝑖
}, 𝐸H ∈ {𝑒(𝑖 , 𝑗) |𝐸H 𝑖 , 𝐸H 𝑗 ∈ {𝑉H

obj}, 𝑖 ≠ 𝑗}.

The h-graph and most of it’s components have been defined. The status of an identification or action

edge remains undefined and requires further explanation which is provided in the next subsection.

4.2.2. Edge Statuses
The edges are split into three categories; identification-, action- and empty edges, these edges have just

been defined in previous subsection. The status of an identification- and action edge are now defined as

Finite State Machine (FSM) in Figures 4.2 and 4.3.

PrIS#t

PoIS#t

CO

FAIL

Select sys.

iden. method

Go to starting pose

Collect IO data

Create system model

Go to next

start configuration

Unable to reach next

start configuration

Figure 4.2: Finite State Machine displaying the status of an identification edge

4.2. Hypothesis Graph 32

PRE INPUT SEQUENCE

number t (PrIS#t):

Go to start pose ready to apply the input sequence.

POST INPUT SEQUENCE

number t (PoIS#t):

Collect the output response.

COMPLETED (CO): The edge has driven the system toward its target

configuration, and its performance has been calculated.

FAILED (FAIL): An error occurred, yielding the edge unusable.

An identification edge goal is to generate a system model, to then hand over to a corresponding

action edge that requires a system model. An action edge’s eventual goal is to track a path, to make an

action edge ready to track a path or ready for execution a certain number of steps must be completed.

First, the existence of a path is estimated, then a system model must be provided, and lastly action

planning must be performed. These steps all propagate the status of an action edge as can visualized in

Figure 4.3.

IN

PE

SM

PP

EX

CO

FAIL

Select controller

Path estimation

Load in system model

Path planning

Go to execution loop

Completed

Path non-existence proven

System

identification

error

Path

planning

error

Fault detected

Figure 4.3: Finite State Machine displaying the status of an action edge

4.3. Hypothesis Algorithm 33

INITIALIZED (IN): The edge is created between a source and target node.

PATH EXISTS (PE): A graph-based search is performed to validate whether the target

configuration is reachable, assuming the system is holonomic.

SYSTEM MODEL (SM): A system model is provided to the controller that resides in the edge.

PATH PLANNED (PP): The path planner plans a path from start- to target configuration.

EXECUTING (EX): The edge receives observations from the robot environment and

sends back robot input.

COMPLETED (CO): The edge has driven the system toward its target configuration.

FAILED (FAIL): An error occurred, yielding the edge unusable.

h-graph Legend The following figure presents an legend for the h-graphs.

(a) Regular node created by

the h-algorithm.

(b) Current node indicates

that its outgoing edge is or is

next to be executed.

(c) Starting node, one is

generated at for every

subtask.

(d) Target node, one is

generated for every subtask.

(e) Edge with status IN, PE, SM, PP or EX. (f) Edge with status FAILED (FAIL) (g) Edge with status COMPLETED (CO)

Figure 4.4: Legend for the hypothesis graph.

The h-graph has now fully been defined, in the upcoming section, the h-algorithm that creates and

updates a h-graph is defined and discussed.

4.3. Hypothesis Algorithm
The h-algorithm is the main component that orchestrates the actions and functions called to learn

object properties and to complete a given task. This section starts with a simple example that generates

and executes the hypothesis to drive toward a target pose. Then the search and execution loop are

presented, that constitute the principal components of the proposed h-algorithm. The terminology is

elaborated upon step wise, whilst an example of a pushing task is discussed. Then two more examples

are provided that allow to elaborate upon fault detection, the blocklist and the h-algorithm’s response to

a blocked path during task execution. Finally, the pseudocode can be resented, supported by a proposed

h-algorithm flowchart.

Two arguments initialize the h-algorithm, first, a set of object geometry that contains the dimensions of

4.3. Hypothesis Algorithm 34

the objects in the robot environment for internal representation, and second a task to solve. Additionally

several parameters must be specified, such as the grid size, maximum allowed input to the robot and

tuning parameters for the path estimator, the path planner and controllers. When all arguments and

parameters are provided, the h-algorithm can be is initialized. There is only a single access point toward

the h-algorithm, the Respond(observation) function. This function takes an environment observation that

updates the internal objects’ poses. The function Respond(·) returns control input for the robot. In this

thesis, the sensor measurements coincide with the poses objects in the environment. Recall that the

perfect-sensor assumption, assumption 1.2.2, makes access to every object’s exact configuration possible.

Now a relatively simple example is presented to indicate how the h-algorithm operates, later every

step will be extensively elaborated. The example task consists of driving the robot object to a target

pose. The leftmost subfigure in figure 4.5 visualizes the initialization of a start and target node, which

are connected with a drive action edge in the center figure. In the center subfigure, a system model

must be provided to the controller that resides in the drive action edge. Motivating the sys. iden edge

and the crobot_model node in the rightmost subfigure.

Figure 4.5: First stages of the h-graph when the h-algorithm searches for an hypothesis to complete a driving task.

Now that an hypothesis is created that consists of an identification- and an action edge, the

h-algorithm alternates from the search loop to the execution loop, both loops are addressed shortly.

The generated and executed example for a driving task just discussed is provided to show a simple

example. It leaves many details out, which are now elaborated. Start with initializing start- and target

nodes, then the search- and execution loop are discussed.

Initialization of the h-algorithm The h-algorithm is initialized with a task that consists of one or more

subtasks. Start- and target nodes are created for every subtask, and their status is set to INITIALIZED.

Then the goal of the h-algorithm is to connect every starting node to its corresponding target node

with a hypothesis. The target node’s status is set to COMPLETED when a hypothesis is completed

successfully. If the h-algorithm could not find a hypothesis that completes a subtask, the h-algorithm

concludes it cannot complete that subtask, and the target node’s status is set to FAILED.

4.3. Hypothesis Algorithm 35

Figure 4.6: Multiple stages of the h-graph when the h-algorithm executes the hypothesis found in figure 4.5.

4.3.1. The Search and the Execution Loop
The proposed algorithm comprises two main parts, a search loop and an execution loop. The h-algorithm

searches for a hypothesis in the search loop. In the execution loop, the h-algorithm tests hypotheses

by executing the edges that form the hypothesis. A flowchart of the h-algorithm is presented at the

very end of this chapter in figure 4.15, that flowchart will be familiar compared to the following figure,

where the two main loops can be identified.

Figure 4.7: The search (upper) and execution (lower) loop, that make up the main part of the proposed h-algorithm. The figure’s

goal is to present the two loops, the flowchart in the background is presented full page in Figure 4.15.

Hypotheses are formed while the h-algorithm resides in the search loop. Forming a hypothesis

generates nodes, edges, and progressing their status as described in figures 4.2 and 4.3. In the execution

loop an edge is being executed, a phrase to describe that the controller residing in an edge is sending

control input toward the robot. The h-algorithm operates synchronously. The result is that the robots

cannot operate whilst the h-algorithm resides in the search loop, and during execution, no hypothesis

can be formed or updated. The execution loop executes the edges that form the hypothesis one by one

4.3. Hypothesis Algorithm 36

until either a fault is detected or the hypothesis is completed. Upon fault or completion, the h-algorithm

alternates back to the search loop

When entering or re-entering the search loop, the first thing to determine is if there are unfinished

subtasks and, if unfinished subtasks exist, which nodes to connect in order to form a hypothesis

that completes that subtask. For such functionality three functions are created; SubtaskNotFinished,

GoBackward(𝑣), FindCorrespondingNode(𝑣). These functions are now discussed.

Finding unfinished subtasks Determining if there exists an unfinished subtask is validated with the

SubtaskNotFinished(𝑆) function. It checks the status for every target node in h-graph. The three statuses

are; INITIALIZED, COMPLETED and FAILED. A target node with an INITIALIZED status corresponds

to an uncompleted subtask and is returned by the SubtaskNotFinished(𝑆) function. If all existing target

nodes have either a completed or failed status, the h-algorithm concludes that the task is completed.

The h-algorithm relies on a backward search technique, which can be described as: start the search
at a goal state and work backwards until the initial state is encountered [23]. A motivation for a backward

search over a forward search is that it might be the case that the branching factor is significant when

starting from the initial state. In such cases, it might be more efficient to use a backward search. If

the SubtaskNotFinished returns an unfinished subtask, the h-algorithm starts searching for a hypothesis

connecting the start node to the corresponding target node. The first step is to find the right nodes in

the h-graph, which is now discussed.

Creating a hypothesis for a subtask The SubtaskNotFinished returns a target node corresponding to a

unfinished subtask. Then if a subtask is unfinished, the h-algorithm starts searching for a hypothesis

connecting the start node to the target node. In figure 4.8a, the nodes to connect are the 𝑣box node to the

𝑣box_target node. These two nodes are a start- and a target node, the nodes to connect are not necessarily

start- and target nodes themselves, as seen in figure 4.8b. Here the 𝑣robot node must be connected to the

𝑣box node. These nodes are both starting nodes. The first challenge is to find the two nodes to connect

from an unfinished target node.

The GoBackward(𝑣target) function takes a target node 𝑣target that corresponds to a unfinished subtask.

It then traverses backwards via non-failed edges. The function stops traversing back when it encounters

a node with a FAILED status or when no non-failed edge exists to traverse backwards over. The

GoBackward function thus finds a node, that node points toward the target node over a sequence of

edges with a status other than failed, and all these edges point toward nodes with a status other than

failed. In figure 4.8a the GoBackward(𝑣box_target) function returns the 𝑣box_target node, in figure 4.8b the

GoBackward(𝑣box_target) returns the 𝑣box node.

The GoBackward(𝑣target) finds a node to connect to, a corresponding node is sought to connect

from. The FindCorrespondingNode(𝑣) finds a corresponding node to connect from. FindCorrespondingN-
ode(GoBackward(𝑣)) takes a node as parameter and returns an existing node that contains the same object

as its arguments node; if such a node does not exist, a new node is created.

𝑣to = GoBackward(vtarget)

𝑣from = FindCorrespondingNode(GoBackward(vtarget))
When elaborating the h-algorithm, an example presents a visual example with every step in the

h-algorithm. In this example, the robot generates a hypothesis to complete a pushing task that contains

a single subtask, initialization and the first generated edges are presented in figure 4.8.

Creating edges The ConnectWithEdge(𝑣1 , 𝑣2) function connects two nodes with an edge, such as the

nodes 𝑣from , 𝑣to just introduced. It is required that both nodes contain the same object. The push action

edge generated and displayed in figure 4.8b is between two nodes containing the box object.

4.3. Hypothesis Algorithm 37

(a) Initialize start- and target nodes. (b) Creation of a push action edge. (c) Creation of a identification edge.

Figure 4.8: First stages of the h-graph when the h-algorithm creates an hypothesis for a pushing task.

Pushing edges must satisfy pre-conditions that cannot reside in the pushing edge itself. Thus

pushing edges also they spawn new nodes by default. The robot must first drive toward a push pose

against or close to the object to push. When a push action edge has planned a path, and updates its

status to PATH IS PLANNED, the h-algorithm then creates a 𝑣best_push_position node, which configuration

depends on the object’s planned path. Thus, a path is planned for the push action, and then the best

push pose is determined. The newly created node is connected before the push action edge, where an

empty edge points from 𝑣best_push_position to 𝑒drive’s source node. The first occurrence of an 𝑣best_push_position
can be visualized in Figure 4.9a.

Classifying objects When it is unknown if objects are movable or unmovable, a push action edge

performs a tests to determine the class of an object. If the push action is unable to move the object in the

first 50 time steps, the object is classified as UNMOVABLE, otherwise it is classified as MOVABLE.

Valid Hypotheses Before a hypothesis can be executed, the hypothesis must be valid. A hypothesis

is valid when two conditions are met. First, the hypothesis starts at the start node and points toward

the target node over a sequence of successive edges with a non-failing status. Second, the first edge in

the hypothesis must be ready for execution which the next paragraph will elaborate upon further. To

indicate a node or edge has a status other than the FAILED status, that node or edge is called a non-failed

node or -edge. To check if an hypothesis is valid the IsConnected(𝑣1 , 𝑣2) is created. This function checks

if there exists a path in the h-graph from 𝑣1 to 𝑣2 over a sequence of non-failing nodes and -edges. In

the pushing task example, the first occurrence of a valid hypothesis is presented in Figure 4.9a.

An EmtpyEdge is introduced to involve nodes that contain different objects. The emptyEdge serves

only to connect nodes that contain different objects and can have status INITIALIZED or FAILED. The

h-algorithm can traverse over emptyEdge if the status is INITIALIZED.

4.3. Hypothesis Algorithm 38

(a) Executing the hypothesis and generated new nodes. (b) Executing the pushing edge.

Figure 4.9: The hypothesis for a pushing task becomes valid and is executed. Then a path for the pushing edge

is planned which generates new nodes to drive toward the best push pose against the box.

Preparing edges for Execution In contrast to identification edges, action edges must first take several

actions in preparation before they are ready to send input toward the robot. The status of an edge

indicates at which step of preparing the action edge is and can be visualized in Figure 4.3. After

initialization, the action edge performs path estimation, loads in a system model, performs path planning

and then, it is ready for execution. Two functions are created to make edges ready for execution. The

ReadyForExecution(𝑒) validates if an edge is ready for execution. Identification edges are ready for

execution when they bear a non-failed status, action edges are ready for execution when they bear the

PATH PLANNED or EXECUTING status. The MakeReady(𝑒) function takes an edge and takes action

depending on its status presented in the following table.

Table 4.1: The action edge status is presented in the left column, the corresponding action taken by the MakeReady function to

prepare an action edge for execution in the right column. An action edge increments its status as indicated in Figure 4.3.

Action edge status action taken by MakeReady function

INITIALIZED Create a path estimator and estimate path existence. If no path can

be estimated, the status is updated to FAILED. If a path can be

estimated, a shortest path is found that acts as a “warm start” for

the path planner.

PATH EXISTS Load in a system model.

SYSTEM MODEL Create path planner and plan path. The edge status is updated to

FAILED if no path can be found. If a path is found, it acts as a

reference signal for the controller. In the case of an push action

edge, a 𝑣best_push_position is created. Additionally, the path the planner

finds can indicate that an object is blocking. In such cases, the

h-algorithm must first push that object to free the path. An

example of such a case is provided in Figure 4.12.

Hypothesis Execution When the h-algorithm creates a valid hypothesis, it switches from the search

loop to the execution loop. Executing a hypothesis is managed by three functions. The first edge in

the hypothesis is ready for execution and thus contains a controller and a path to track. That edge is

executed, and its controller sends input toward the robot to track the path. The SteerTowardTarget(𝑒)
calculates the input that steers the robot toward the path. The TargetNotReached(𝑒) validates if the

robot has reached the target, which is the last configuration in the path. A margin is set by which the

TargetNotReached(𝑒) concludes that the robot is close enough to the final target pose. For drive actions,

4.3. Hypothesis Algorithm 39

that margin is set to 0.1 meters measured in Euclidean instance between the robot and the robot’s target

position.

For push action, that margin is set to 2 meters, measured in Euclidean distance between the object

and the object’s target position. These values are tuned by trial and error and is one of the improvements

that can be made in future work. The large margin for pushing tasks is set to ensure that the target

pose is reached. With a lower margin, the object is often pushed further than the target position. A

fault is then detected because the deviated too much from the path, the robot then drives toward the

object’s opposite side to again, push it over the target position. Fault detection is discussed in upcoming

paragraph. After the successful completion of an edge, the next edge in the hypothesis is selected by

the IncrementEdge function. Two possible outcomes exist, the next edge is ready for execution, then the

h-algorithm remains in the execute loop. Or, the next edge is not yet ready, then the h-algorithm goes

from the execution loop toward the search loop to prepare the next edge for execution.

Figure 4.10: The h-graph after the pushing task was successfully completed.

Completing Hypotheses and Edges When the last edge in an hypothesis is completed, that subtask

is completed. The h-graph randomly selects a next subtask to complete until there are no unfinished

subtasks left, the h-algorithm then concludes that the task is completed. Opposed to successful

completion, subtasks can unsuccessfully complete, which is discussed in the upcoming paragraph.

4.3.2. Fault Detection
The proposed framework implements a fault metric named the monitored metrics which are presented

shortly, first motivation for the monitoring metrics is given. When the h-algorithm resides in the

execution loop, it cannot search for action sequences, which is performed in the search loop. During the

execution of an action, the hypothesis algorithm is unable to perform any other action. This blocking

behavior has some implications, mainly that the controller can steer the system to a configuration

from which it cannot independently reach the target configuration, as a result, it will never halt. For

example, a controller tries to drive the robot toward a target configuration but there is an unmovable

obstacle in the way. Another example is the controller is closed-loop unstable and never reaches its

target configuration. Both examples do not occur is well defined simulation environments, because of

the closed-world assumption. In the real world, an unexpected blocking obstacle or unstable controllers

are more likely to occur.

Detecting controller faults is a large robotic topic [20], properly implementing a fault detection and

diagnosis module is out of the scope of this thesis. Instead, two simple metrics will be monitored during

4.3. Hypothesis Algorithm 40

execution, by the FaultDetected(𝑒) function. Upon detection of a fault, the HandleFault(𝑒) function then

updates the executing edge’s status to FAILED, and the h-algorithm switches from the execution loop

to the search loop in search for a new hypothesis. The first monitoring metric is Prediction Error, and

can be described as:

With the current configuration of the system, calculated system input and a system model, a prediction

info the future is made every time step. Then the system input is applied to the system, the time step

incremented and the configuration is measured. The prediction error is than the difference between

predicted and measured configuration.

The Prediction Error (PE) is defined as:

𝜖pred(𝑘) ::= | |ĉ(𝑘 |𝑘 − 1) − c(𝑘)| |
Where ĉ(𝑘 |𝑘 − 1) is a prediction of the configuration and c(𝑘) is the measured configuration.

During execution a sudden high PE indicates unexpected behavior occurs, such as when the robot

has driven into an object which it was not expecting. A high PE, which persists indicates that the robot is

continuously blocked. A few high prediction errors are allowed, but when the PE exceeds a pre-defined

threshold and persists over a pre-defined time, the h-graph concludes that there was an fault detected

during execution and the edge’s status is updated to FAILED.

The second monitoring metric is the Tracking Error that can be described as:

A controller tracks a path that consists of a list of configurations by steering the system to the upcoming

configuration in the list. When that configuration is reached, the upcoming configuration is updated

to the next configuration in the path. The Tracking Error (TE) is the difference between the current

configuration of the system and the upcoming configuration.

The TE is defined as:

𝜖track(𝑘) ::= | |cupcoming − c(𝑘)| |
Where cupcoming is the target configuration in the path that the controller tries to steer toward, and

c(𝑘) is the measured configuration.

The system should not diverge too far from to path it is supposed to track, if the robot diverges more

than a pre-defined threshold the h-graph concludes that there was an error during execution and the

edge fails. cupcoming does not update every time step, whilst c(𝑘) does update every time step. As a result,

a “good” TE is expected to take the form of a saw tooth function inverted over the horizontal x-axis.

The predefined thresholds are split for drive and push actions because driving actions have much

lower average PE and TE compared to push actions. For drive action edges, when the average of the last

25 recorded PE’s is higher than 0.05 meter, or the TE is higher than 2 meters, a fault is concluded. For

push actions only a TE is used, which is split into two parts. One ensures the object follows the path,

and another ensures that the robot does not deviate too far from the object. If, for a pushing edge, the

object deviates more than 2 meters from the path or the robot deviates more than 2 meters from its push

position determined by the object pose, a fault is concluded.

4.3.3. The Blocklist
The blocklist prevents the regeneration of failed edges. The infinite loop of creating an edge that fails

only to be regenerated is prevented. The blocklist keeps a list of edge parameterization as well as the

node identifier if failed on. Newly generated edges are checked against this blocklist, if they are on the

blocklist, initialization of the edge is prevented. The possible parameterizations are filtered when two

nodes are connected with an action edge. Thus, any parameterization on the blocklist for a specific

node (to which the action edge would point to) cannot be created again for the lifetime of the h-graph.

In the following example, Figure 4.11 faults are detected, these edges are added to the blocklist, the

4.3. Hypothesis Algorithm 41

first hypothesis fails to complete, and the h-algorithm tries to generate a new hypothesis that also fails

to complete.

Figure 4.11: Multiple stages of the h-graph. The two hypotheses both failed during execution because a fault was detected. The

failed edges are added to the blocklist, preventing the regeneration of edges with the same parameterization. The h-algorithm

concludes the task to be unfeasible.

In Figure 4.11, only two parameterizations of drive controllers and system models were available.

Thus after two failed hypotheses, the h-algorithm concludes that the task is unfeasible. All functionality

is now discussed and is neatly summarized in the following table. Then, pseudocode for the proposed

h-algorithm is presented.

4.3.4. Encountering a Blocked Path
During the propagation of an action edge’s status, path planning occurs discussed in Section 2.3.2

and chapter 3. A blocking object is detected when the path found crosses through unknown of movable

space. An example is now discussed that elaborates upon the h-algorithm response when encountering

a blocked path. An example of such an environment can be visualized in Figure 3.1a where the

UnknownSpaceCost is set to 0.5 meter. The example h-graph that will now be discussed generalizes over

drive tasks that can be completed if an blocking object is pushed to free the path.

The h-algorithm creates the start- and target node for the robot in Figure 4.12a, and creates a first

hypothesis which can be visualized in Figure 4.12b. When propagating the drive action edge status,

path planning occurs, during which a blocking object is detected that blocks a direct path. To free

that path two nodes are generated, first, a target node for the blocking object blocking_object_target that

target node indicates the blocking object at a pose that is no longer blocking the path. The second node

represents the blocking object at its current pose, because there does not yet exist a node for the blocking

object at its current pose, the h-algorithm generates a new node for the blocking object at it’s current

4.3. Hypothesis Algorithm 42

pose named blocking_object that can be seen in Figure 4.12c.

(a) (b) (c)

Figure 4.12: Multiple stages of the h-graph for a driving task, where an blocked path is encountered.

The newly generated pushing edge between node blocking_object_model and blocking_object_target is

initialized with a randomly selected controller. To fully parameterize the pushing edge a controller

with a compatible system model is required. To generate a system model, the h-algorithm generates a

pushing identification edge and node blocking_object_model.

After identifying a system model that describes pushing against the blocking object, path planning

for the blocked object from its current pose toward it’s target pose occurs. The initial pose for the

robot against the blocked object can then be determined because that initial pose is dependent on the

planned path. Figure 4.13 displays the drive edge toward the best initial push pose indicated by the

best_push_pose_against_blocking_object node. Equivalent to the generation of a blocking object node at

its current pose in Figure 4.8c, a robot node is generated at the current robot’s pose, named robot_copy
in Figure 4.13, because a node at the current robot pose did not yet exist. A drive edge is generated

between the robot_copy and best_push_pose_against_blocking_object nodes. The identification edge is later

generated as can be seen in Figure 4.14a.

4.3. Hypothesis Algorithm 43

Figure 4.13: Snapshot of the h-graph during drive task, where a blocked path is encountered. The (red) current node indicates

that next action is to drive toward the best push pose against the blocking object.

Figures 4.14a and 4.14b visualize driving toward the best push pose against the blocking object,

pushing the blocked object to its target pose, and finally driving toward the robots target pose.

(a) (b)

Figure 4.14: h-graph final stages before successfully completing a driving task, during which a blocked path is encountered.

Now that the h-algorithm is defined and discussed, pseudocode is presented. The following table

summarizes the functions that will be used by the pseudocode in Algorithm 6.

4.3. Hypothesis Algorithm 44

Table 4.2: The functions employed by the h-algorithm in Algorithm 6.

SubTaskNotFinished(𝑠): Return False if the subtask 𝑠 is completed or it is concluded to be

unfeasible

IsConnected(𝑣1 , 𝑣2): Return True if there exist a path in the h-graph from node 𝑣1 to

node 𝑣2 through a number of non-failed edges

ReadyForExecution(𝑒): Return True if the edge 𝑒 is ready to execute

TargetNotReached(𝑒): Return True edge 𝑒 has not reached it target configuration

FaultDetected(𝑒): Return True if a fault has been detected during execution of edge 𝑒

HandleFault(𝑒): Update edge 𝑒 status to FAILED and remove edge from hypothesis

SteerTowardTarget(ob): Update controller with observation ob and compute response that

steers the system to target configuration

ReadyForExecution(𝑒): Check if edge 𝑒 has the PATH IS PLANNED status and contains all

components to track the path

IncrementEdge: Mark current edge as completed, set next edge in ℎ as current edge

if ready for execution, otherwise, enter search loop

MakeReady(𝑒): Perform actions (see Table 4.1 for detailed information) to make the

edge 𝑒 ready for execution

GoBackward(𝑣): Find the source node that point toward 𝑣 through a number of

non-failed edges

FindCorrespondingNode(𝑣): Find the node containing the same object as 𝑣

ConnectWithEdge(𝑒1 , 𝑒2): Randomly generate edge between nodes 𝑣1 and 𝑣2 or use k-graph

to suggest an edge

4.3. Hypothesis Algorithm 45

Algorithm 6 Pseudocode for the proposed hypothesis algorithm.

1: for 𝑠 ∈ 𝑆 do
2: while SubTaskNotFinished(𝑠) do ⊲ Search Loop

3: if 𝐺hypothesis.IsConnected(𝑠.start, 𝑠.target) then
4: if ℎ.CurrentEdge.ReadyForExecution then
5: while TargetNotReached(ℎ.CurrentEdge) do ⊲ Execution Loop

6: if FaultDetected(ℎ.CurrentEdge) then
7: HandleFault(ℎ.CurrentEdge)
8: break

9: end if
10: ℎ.CurrentEdge.SteerTowardTarget(ob)
11: if TargetReached(ℎ.CurrentEdge) then
12: if ReadyForExecution(ℎ.CurrentEdge) then
13: ℎ.IncrementEdge
14: else
15: break

16: end if
17: end if
18: end while
19: else
20: MakeReady(ℎ.CurrentEdge)
21: end if
22: else
23: vlocaltarget ← 𝐺hypothesis.GoBackward(v.target)
24: vlocalstart ← 𝐺hypothesis.FindCorrespondingNode(vlocaltarget)
25: G.ConnectWithEdge(𝑣localstart , 𝑣localtarget)
26: end if
27: end while
28: end for

A flowchart of the h-algorithm is presented in Figure 4.15. Compared to the pseudocode presented

above, the flowchart provides more detail, especially in the elaborate description accompanying the

flowchart in Table 4.3. The flowchart includes a connection point to the k-graph and robot environment.

The blocks in the flowchart indicate the resources used and changes indicated in the legend. Compared

to the flowchart, the pseudocode is an abstract version, leaving many details explicitly related to the

robot used in this thesis. Pseudocode encompasses a broader field of robots. So can the pseudocode

also be applied to a robot with manipulation abilities other than nonprehensile pushing.

4.3. Hypothesis Algorithm 46

Create

Start and

Target

Nodes

Update k-graph

Legend

Query k-graph

Update configuration space

Action in h-graph

Action in configuration-space
Estimate

Path

Existence

Update

Current

Subtask

Task

Finished

Knowledge

Available

Knowledge

Usable

Object

Movable

Unfeasible

Node

Generate

Random

Action

All

Possible

Actions

Failed

Action

Type

Model

Available

Model

Available

Add Drive

Sys. Iden.

Edge

Add Push

Sys. Iden.

Edge

Add

Node to

Free Path

Motion

Planning

Manipulation

Planning

Robot

Close to

Push Pose

Add Node

to Drive to

Push Pose

Robot

Close to

Object

Add Node

to Drive

to Object

Path to

Target

First

Action

Planned

Execute

Target

Node

Reached

Subtask

Success-

fully

Completed

task

no path found

no

path found

yes

yes

no

no

yes

action

suggestions

success

success

yes

no

failure failure

driving pushing

yes

no no

blockade blockade

fail

success

yes, generate

suggested

edge

no, object is obstacle

no

yes

yes yes
no

no

identification

yes

robot input, action feedback

sensor measurements

success

failure

no

yes

Figure 4.15: Flowchart displaying the h-algorithm workflow.

4.3. Hypothesis Algorithm 47

Table 4.3: Comprehensive description regarding the actions executed by the blocks in Figure 4.15.

Node name Description of actions taken

Task Finished log all metrics for the h-graph, then deconstruct h-graph.

Create Start and

Target Nodes

Generate a robot node and the start and target nodes for every subtask

in the task.

Update Current Subtask Select an unfinished subtask or update the current subtask. Use the

backward search technique. The current_start_node and

current_target_node are updated. When all subtasks have been addressed,

conclude task is finished.

Estimate Path

Existence

Check if a path exists between current_start_node and current_target_node
whilst assuming that the object is holonomic.

Add Node to

Drive to Object

Add a node before the current_target_node.

Unfeasible Node Update node’s status to unfeasible because it can not be completed, log

failed Edge.

Knowledge Available Query the k-graph for action suggestion to connect current_target_node to

current_target_node

Knowledge Usable Check if a suggested action is not on the blocklist.

Object Movable Check if the object is classified as movable

Robot Close to Object Check if the object is inside directly reachable free space of the robot

Generate Random

Action

Randomly sample a controller with a compatible system identification

method not on the blocklist.

All Possible Actions Failed Every possible action is on the blocklist for the current_target_node,
update current_target_node status to failed.

Add Drive System

Identification Edge

Adds an identification edge between a newly generated node and the

drive action edge’s source node.

Model Available Checks if the drive action edge contains a system model.

Action Type Checks the action type.

Model Available Check if the push action edge contains a system model.

Add Push System

Identification Edge

Adds identification edge compatible with push action edge.

Motion Planning Search a path for the current_edge, detect blocking objects.

Add Node to Free Path Search close by pose for an object to free the path. Create a node to push

the object toward that pose.

Manipulation Planning Search a path for the current_edge, detect blocking objects.

Add Node to Drive

to Push Pose

Create node to drive toward push pose, add before action edge.

Robot Close to

Push Pose

Check if the robot overlaps the best push pose.

Path to Target Is there a path from robot to target node in the h-graph, then set the first

edge to current_edge otherwise update subtask.

First Action Planned Check if motion/manipulation planning was performed.

Execute Execute the current_edge, update h-graph after completion, log failed

hypothesis if a fault is detected.

Subtask Successfully

Completed

Log hypothesis metrics.

Target Node Reached Check if the target node is reached.

4.4. Knowledge Graph 48

The h-algorithm is now discussed with a description, examples, pseudocode and a flowchart. In the

next section, the executed edges will be reviewed and stored in a knowledge base named the knowledge

graph (k-graph).

4.4. Knowledge Graph
The h-graph, discussed in the previous section, has a lifetime that spans over a single task. In the

h-graph only the object class is stored. When a task is completed, the h-graph is deconstructed and

learned objects classes are lost. The k-graph’s responsibility is to store objects classes for future tasks,

and to collect action feedback, to then later suggest edge parameterizations based on the action feedback

that is stored. An edge paremeterization comprises of a controller and system model. Estimating which

parameterization would be the best candidate is an entire field of research. In this thesis the ordering is

made by collecting action feedback on executed action edges and summarizing that feedback in a single

metric, the success factor. This metric combines the Prediction Error, the number of failed edges and the

number of successfully completed edges.

The name “knowledge graph” originates from the environmental knowledge it contains and its

graph structure. Both the h-graph and k-graph are newly proposed frameworks built from the ground

up, with only inspiration from an already existing technique, a backward search. The k-graph is in an

early stage of development and does therefore not (yet) adhere to any standard that apply to knowledge

bases, such as first order-logic [4, 31], relational databases [3] or more practical, a language such as

prologe [48].

4.4.1. Definition
The k-graph consists of center nodes, side nodes and edges. A center node’s responsibility is to represent

an object and its classification.

Formally, a center node, 𝑣center
id =

〈
id, idobj ,OBJ_CLASS

〉
Where id an identifier for the center node, idobj an identifier for the object

OBJ_CLASS the classification of that object which can be either MOVABLE or UNMOVABLE.

A side node is a placeholder for the edge to point toward.

Formally, a side node, 𝑣side
id = ⟨id⟩, Where id an identifier for the side node.

An edge points from center- to side node and has two responsibilities. First, it stores the parameterization

used to manipulate an object that resides in the center node. Second, it stores the performance of that

parameterization which is summarized in the success factor.

Formally an edge, 𝑒(𝑓 𝑟𝑜𝑚,𝑡𝑜) =
〈
id 𝑓 𝑟𝑜𝑚 , id𝑡𝑜 , 𝛼(𝑎), System Model,Controller

〉
Where idfrom and idto correspond to the identifiers of the center- and side node respectively, 𝛼(𝑎) is

the success factor that summarized the feedback of 𝑎 ≥ 0 reviewed action edges and (System Model,

Controller) together is referred to as edge parameterization.

The success factor rates an edge parameterization based on experience in the robot environment.

The success factor is created or updated when an action edge with that parameterization failed during

execution time or successfully completed.

4.4. Knowledge Graph 49

Formally the success factor = 𝛼:

𝛼(𝑎 + 1) =

0.1𝜖

pred
avg

if 𝑎 = 0

0.1 + 0.9𝛼(𝑎) if 𝑎 > 0 and the reviewed edge was successfully completed

0.9𝛼(𝑎) if 𝑎 > 0 and the reviewed edge failed during execution time

(4.1)

Where 𝜖pred
avg is the average PE of the action edge that is reviewed. 𝑎 is the number of times an

action edge with such a edge parameterization reached the EXECUTING status.

Now that the nodes and edges have been defined, the k-graph can be defined.

Formally, a knowledge graph, 𝐺knowledge = ⟨𝑉K , 𝐸K⟩
comprising 𝑉K = {𝑣center , 𝑣side}, 𝐸K ∈ {𝑒(𝑖 , 𝑗) |𝑖 ∈ 𝑉K

center
ids , 𝑗 ∈ 𝑉K

side
ids }.

Where 𝑉K
center
ids are the identifiers of the set of center nodes, and 𝑉K

side
ids are the identifiers of the set of

side nodes.

4.4.2. The Testing and Converging Phases
When the h-algorithm determines it must manipulate an object to fulfill the given task, it creates an action

edge with a random edge parameterization. After executing that action edge that parameterization is

stored in the k-graph. When encountering the need to manipulate the object again a different random

parameterization is selected. First, all possible edge parameterizations are tested and stored on a specific

object, this can be seen as the testing phase on how to manipulate an object. Then second, when all

possible parameterizations are tested, the k-graph suggests the edge parameterization with the highest

success factor, this phase can be seen as the converging phase. Where either, the edge parameterization

with the highest success factor receives an even higher success factor, or the success factor is lowered,

and the second best edge parameterization becomes the highest ranking edge parameterization in terms

of success factor.

The k-graph has three interface functions. The add_object(obj, OBJ_CLASS) function adds an object

and its class to the k-graph. Especially useful to indicate which objects are unmovable. The add_review(𝑒)
function takes an action edge from the h-graph and depending on the k-graph does the following. If a

corresponding center node (containing the object the edge manipulated) does not yet exist, create a new

center node. Then calculate the success factor and add a new edge or update the success factor of the

existing edge with equal edge parameterization in the k-graph.

Or update the edge that contains the edge parameterization. If the edge parameterization exist in

one of the outgoing edges from the center node, exist the of the corresponding object if it does not

exist. Creates or updates the corresponding edge the k-graph is updated with a new success factor as

described in the formula above. The action_suggestion returns the best parameterization it contains for

an object.

A legend for the k-graph is now presented.

4.4. Knowledge Graph 50

(a) (b) (c)

Figure 4.16: Legend for the knowledge graph.

An example k-graph can be visualized in Figure 4.17, where edge parameterizations are displayed

over the edges.

Figure 4.17: The k-graph that has collected action feedback on two objects. Two edge parameterizations

for driving the robot and one edge parameterization to push the box.

4.4. Knowledge Graph 51

Update

existing

edge

with new

feedback

Update k-graph

Legend

Query k-graph

Does this pa-

rameterization

exist in one of

the center

node’s outgoing

edges?

Generate

new edge

with

feedback

edge with

feedback

existing

node

Does this

object exist in

a center node

in the

k-graph?

Does this

object exist in

a center node

in the

k-graph?

Send

ordered

list with

controllers

and

models

Generate

new center

node,

side node

and an

edge with

feedback

send

empty list

action feedback

no

yes

yes

no

no

action suggestion?

yes

action suggestion

Figure 4.18: Flowchart displaying the knowledge graph’s workflow.

What by now hopefully became clear to the reader is that the h-algorithm autonomously searches

for hypotheses in the h-graph to solve a task, one subtask at a time. The h-algorithm switches between

the search and execution loop. Switching from the search loop toward the execution loop when a

hypothesis is found and switching back when a hypothesis is completed, or a fault is detected.

The limited number of possible edge parameterization (every combination of a system identification

method with a compatible control method) guarantees that the robot tries to complete a subtask.

However, it concludes that it cannot complete a subtask if all possible edges have failed.

This thesis proposes to combine the three topics (one, learning object dynamics, two, the NAMO

problem, and three, nonprehensile push manipulation to target pose). The h-algorithm can solve

NAMO problems because the robot can drive toward target poses even if reaching such a pose requires

objects to be moved first. The proposed algorithm learns to classify objects by updating the object’s

class from unknown to movable or unmovable. The h-algorithm can push objects to target poses by

identifying a system model and then pushing the object toward its target pose.

5
Results

This chapter presents various robot environments and tasks that challenge the proposed framework. The test results
provide evidence that supports the answers to the research questions. The chapter starts by presenting metrics that
measure task performance, the simulation environment is introduced, then a number of system models is presented
and tuning variables are specified. With the system models defined and tuning parameters set test are presented, a
randomized environment that is split in task that mainly involve driving and tasks that mainly involve pushing.
The chapter finishes with a comparison with the state-of-the-art in Section 5.2.

Metrics to Measure Task Performance The proposed frameworks task performance is measured

in metrics, these include the PE, search-, execute- and total time to complete a task. We can draw

conclusions from the evolution of the metrics over time. Furthermore, the test metrics will be used to

compare the proposed framework to state-of-the-art. Now, the test metrics are presented in Table 5.1.

Table 5.1: Testing metrics employed to measure task performance by the proposed robot framework in the left column.

Motivation on relevance of the metric is provided in the corresponding right column.

Prediction Error [meter] The PE is high in two scenario’s, first when unexpected behaviour

occurs, second when the system model used to calculate the PE

describes the system poorly. When the PE is low, that would

indicate the robot encounters expected behaviour and that the

model describes the system accurate. If the PE is lowering during

task execution over time, that would indicating the robot is

learning to select models that are more accurate and less

unexpected behavior occurs.

search time [sec] The time the proposed framework spends searching for hypotheses.

The search time is dominated by path planning because compared

to path estimation, updating the h-graph it is time consuming. The

number of subtasks in a task, the environment and the number of

unknown and classified objects influence the number of paths to be

planned and the duration of planning, and thus the search time.

execution time [sec] The time the proposed framework spends executing hypotheses.

The execution time is dominated by path length, driving or

pushing toward a target pose on the other side of the workspace

takes more time compare to a target pose closeby the initial pose.

total time [sec] search time + execution time.

52

53

The Simulation Environment Testing in a simulation environment has been done using the URDF

Gym Environment [39], a 100% python environment build upon the PyBullet library [9]. The code

created during the thesis can be found on GitLab and GitHub. Experiments are taken on laptop with

specifications: Laptop: HP ZBook Studio x360 G5, OS: Ubuntu 22.04.1 LTS x86_64, CPU: Intel i7-8750H

(12) @ 4.100GHz, GPU: NVIDIA Quadro P1000 Mobile. The simulation environment provides many

different robots, of which one robot is selected to perform tests, the point robot, which is are displayed

in Figure 1.1. The point robot takes an velocity input along the 𝑥- and in 𝑦-axis.

Robot input is defined as:

𝑢(𝑘) = [𝑢𝑥(𝑘), 𝑢𝑦(𝑘)]⊤

During testing three controllers have been used. A MPC and MPPI controller for driving the robot

named mpc-drive-controller and mppi-drive-controller, and a MPPI controller for robot pushing named

mppi-push-controller. The MPC and MPPI control methods were introduced in Section 2.2. Three system

models are developed without drawing upon any existing source material. The first model is an Linear

Time-Invariant (LTI) model describing robot driving, the second model is an LTI model describing robot

the robot pushing an object, the third model is a nonlinear model also describing robot pushing. First

a short textual description of the available system models is provided below. Second, the state-space

model is provided for the three implemented models.

Table 5.2: The left column displays the available models of drive- and push systems, accompanied by a description in the

corresponding right column.

lti-drive-model A second order LTI model that is compatible with both the MPC

and the MPPI drive controller. The state variables are the robot’s 𝑥
and 𝑦 position. The next state 𝑥(𝑘 + 1) is based on the current state

𝑥(𝑘), the time step ∆k and robot system input 𝑢(𝑘).
lti-push-model A LTI model that is compatible with only the MPPI push controller.

The state variables are the robot’s and the pushed object’s 𝑥 and 𝑦
position. The next state 𝑥(𝑘 + 1) is based on the current state 𝑥(𝑘),
the time step ∆k and robot system input 𝑢(𝑘).

nonlinear-push-model A nonlinear model that is compatible with only the MPPI push

controller. The state variables are the robot’s and the pushed

object’s 𝑥 and 𝑦 position and the objects orientation 𝜃obj. The next

state 𝑥(𝑘 + 1) is based on the current state 𝑥(𝑘), the time step ∆k,

robot system input 𝑢(𝑘) and geometrical variables 𝑣𝑝 and 𝑠𝑡 .

State-space representation of the lti-drive-model:

𝑥lti−drive−model(𝑘 + 1) =

𝑥robot(𝑘 + 1)
𝑦robot(𝑘 + 1)

 =

𝑥robot(𝑘) + ∆k𝑢𝑥(𝑘)
𝑦robot(𝑘) + ∆k𝑢𝑦(𝑘)

 (5.1)

State-space representation of the lti-push-model:

𝑥lti−push−model(𝑘 + 1) =

𝑥robot(𝑘 + 1)
𝑦robot(𝑘 + 1)
𝑥obj(𝑘 + 1)
𝑦obj(𝑘 + 1)

=

𝑥robot(𝑘 + 1) + ∆k𝑢𝑥(𝑘)
𝑦robot(𝑘 + 1) + ∆k𝑢𝑦(𝑘)
𝑥obj(𝑘 + 1) + 1

2
∆k𝑢𝑥(𝑘)

𝑦obj(𝑘 + 1) + 1

2
∆k𝑢𝑦(𝑘)

(5.2)

State-space representation of the nonlinear-push-model:

https://gitlab.tudelft.nl/airlab-delft/msc_projects/msc_gijs_groote
https://github.com/GijsGroote/semantic-thinking-robot

5.1. Driving and Pushing Experiments 54

𝑥nonlinear−push−model(𝑘 + 1) =

𝑥robot(𝑘 + 1)
𝑦robot(𝑘 + 1)
𝑥obj(𝑘 + 1)
𝑦obj(𝑘 + 1)
𝜃obj(𝑘 + 1)

=

𝑥robot(𝑘) + ∆k𝑢𝑥(𝑘)
𝑦robot(𝑘) + ∆k𝑢𝑦(𝑘)

𝑥obj(𝑘) + ∆k cos(𝜃obj(𝑘))(1 − | 2st
𝐻 |)vp

𝑦obj(𝑘) + ∆k sin(𝜃obj(𝑘))(1 − | 2st
𝐻 |)vp

𝜃obj(𝑘) +
2∗∆k∗vp∗st

𝐻

(5.3)

Where distance 𝑠𝑡 and velocity 𝑣𝑝 can be visually seen in Figure 5.1. A positive 𝑠𝑡 indicates the object

will rotate anticlockwise, a negative 𝑠𝑡 indicates a clockwise rotation. The width of an object is defined

as H and is set to 2 meters.

Figure 5.1: Schematic overview of point robot pushing a box object.

Where 𝑣𝑝 is the velocity of the robot perpendicular to the object defined as:

vp = 𝑢𝑥 cos(𝜃obj(𝑘)) + 𝑢𝑦 sin(𝜃obj(𝑘))

Two drive action edge parameterizations are available: (mpc-drive-controller, lti-drive-model) and

(mppi-drive-controller, lti-drive-model), and two push action edge parameterizations are available: (mppi-
push-controller, lti-push-model) and (mppit-push-controller, nonlinear-push-model).

The goal of this thesis is not to find optimal control, or to model the environment with great accuracy.

The goal is to select the best edge parameterization in the available set of edge parameterizations.

Elaborating the control design and system model design is therefore out of the scope of this thesis, the

control design parameters such as prediction horizon, cost function, number of rollouts can be found in

the implementation.

5.1. Driving and Pushing Experiments
To improve the relevance of the experimental results, driving and pushing tasks are performed with

randomized settings. A set of multiple tasks is given to the robot, named a run. When the robot is

tasked with the first task in the run the k-graph is empty, and when the last task in the run is completed

5.1. Driving and Pushing Experiments 55

the k-graph is filled with the experience gained. For each run, a set of random objects and properties are

generated. This remains the same for the whole run, however for each task in the run the environment

is reshuffled. A reshuffled does three things, first, it resets the robot pose, secondly, it gives the objects

in environment new initial pose. Thirdly, new target poses are generated for the subtask in the new

task. By solving multiple reshuffled tasks in a reshuffled environment, the robot gains experience that is

stored in the k-graph.

Table 5.3 presents a set of parameters that initializes the random environment. Two type of tasks

solved by the robot, a driving task, where the robot must drive toward multiple random target poses,

and a pushing task, where the robot must push a movable object toward a random target pose.

Table 5.3: The tuning parameters to initialize a random environment

The size of the grid length and width of the ground plane in 𝑥 and 𝑦 direction.

The minimal and maximal
size of objects

A box will have sides with a length that lie in the specified range

from minimal to maximal length. Cylinders will have a diameter

and height that is within the specified range, additionally, cylinders

are not higher than the radius of the cylinder to prevent cylinders

from tipping over.

The maximal weight which is uniformly distributed for the environment objects,

minimal weight is set by default to 1 kilogram.

The number of unmovable
objects

Specify the amount of unmovable objects.

The number of movable
objects

Specify the amount of movable objects.

The number of subtasks in a
task

Specify the amount of subtasks in a task.

The number of boxes and
cylinders

For every new object generated there is a 50% chance it becomes a

box and 50% chance it becomes a cylinder.

An randomly initialized environment that is then reshuffled can be visualized in Figure 5.2.

(a) Environment after initialization. (b) Environment after a reshuffle.

Figure 5.2: A random environment initialized by tuning parameters presented in Table 5.4 and randomness.

5.1.1. A Driving Task
For the driving task the random environment is created with the following tuning parameters.

5.1. Driving and Pushing Experiments 56

Table 5.4: The selected tuning parameters for the randomized drive environment.

grid size 𝑥=12 m, 𝑦=12 m

object size min_length = 0.2𝑚, max_length = 2𝑚

object weight max_weight = 1000𝑘𝑔

number of objects num_unmovable_obj = 3, num_movable_obj = 5

number of tested runs num_runs = 10

number of tasks in a run num_tasks = 10

number of subtasks in a task num_subtasks = 3

These parameters have been specifically selected, starting with the size of the ground floor. The

ground floor should be large enough such that objects can be pushed around, note that, for a driving

task, pushing is involved when a path must be freed. An enormous (100 by 100 meter) ground floor

would result in a longer computational time for path planning, which is undesired. A 12 by 12 meter

ground floor is selected because the floor is large enough for objects to be pushed around. The range

that determines the size of objects is set such that objects can be as large as the robot itself, and be

around 10 times as large as the robot. With these sizes the robot is unable to grasp objects, a gripper

would be too small to grasp objects. The comparatively large size fits the objective of nonprehensile

pushing, there simply is no other method to manipulate such large objects other than pushing. A

real-life example are can be found in harbors where tug boats push giant cargo ships around that are

many times over the size of the tug boat. The ratio of solid obstacles vs. movable objects determines if a

task is more navigation (only solid obstacles) or more NAMO (only movable objects). A task that tends

toward NAMO is favored because that is the target environment in this thesis. There should be some

unmovable obstacles that reward the robot learning such objects are unmovable (to then not interact

with them). Thus there are more movable objects than solid obstacles chosen, whilst still having 2 solid

obstacles around. Ten runs are taken, each run consisting of 10 tasks, the results are averaged to reach

statistic relevance in a randomized environments. The number of subtasks is set to 3, a low number of

drive subtasks that can be completed in under 2 minutes.

Lastly, a number of tuning parameters must be set for the h-algorithm. These are the maximal robot

speed, set to 1
meter

s , the cell size for the path estimator set to 0.1 meter, the path planner takes four tuning

parameters; the step size set to 0.2 meter, the search size set to 0.35 meter, the MovableSpaceCost set to 2

meter and the UnknownSpaceCost set to 3.5 meter.

The search- and execution time to complete a task is investigated, and especially its development

over multiple tasks. Then a comparison is made between completing reshuffled tasks once with the

k-graph that suggests edge parameterizations, and once without suggestions, by randomly selecting a

available edge parameterization. Given the above parameters, all parameters are now set. Ten runs

are solved by the robot where every run is composed of ten tasks. The first generated environment

in the run determines the type of objects and their properties that remain unchanged for the entire

run. The subsequent environments in the run are reshuffled versions of the first environment. After

ten runs the task performance is collected that is expressed in the metrics just described. The ten runs

metrics are vertically augmented such that they are grouped by the same number of tasks in experience.

First, a boxplot is presented displaying execution-, search- and total times over the ten runs whilst

using k-graph action suggestions in Figure 5.3. The number of solved subtasks can be calculated by

multiplying the number of runs times the number task in a run by the number of subtasks in a task,

which is 10 · 10 · 3 = 300 subtasks. The available drive edge parameterizations that can be selected are:

(mpc-drive-controller, lti-drive-model) and (mppi-drive-controller, lti-drive-model).

5.1. Driving and Pushing Experiments 57

Figure 5.3: Search-, execution- and total time to complete a drive task whilst using k-graph action suggestions. The horizontal

axis indicates the number of task experience in a run. The vertical axis displays a boxplot of the search-, execution- and total time

over ten runs grouped by number of tasks in experience.

In the above figure the h-algorithm initially selects a random edge parameterization, also known as

the learning phase. The duration of the learning phase is the first task, which can be concluded from

Table 5.5. From that table it becomes clear that after the first task, only the MPC parameterization is

selected for driving tasks, indicating the learning phase is over. Since the learning phase is already

over after the first task, it is hard to identify a trend in search-, execute- or total time during learning,

because there is only one data point in the learning phase. After the learning phase, in the converging

phase starts, the total execution time deviates between 15 and 20 seconds. Now a boxplot is presented in

Figure 5.4 that displays task execution without using the k-graph action suggestions, instead a random

parameterization is selected for every action edge. By fixing a seed the environments used for Figure 5.3

are equal to the environments used for Figure 5.4.

Figure 5.4: Search-, execution- and total time to complete a drive task without k-graph action suggestions and by randomly

selecting edge parameterizations. The horizontal axis indicates the number of task experience in a run. The vertical axis displays

a boxplot of the search-, execution- and total time over ten runs grouped by number of tasks in experience.

When comparing the average median total time to complete a task in both Figures 5.3 and 5.4 a

5.1. Driving and Pushing Experiments 58

difference becomes clear, which can be better visualized if only the medians of both task execution with

and without the k-graph action suggestions are plotted in the following figure.

Figure 5.5: Comparing means of total time to complete a task out of ten runs for a driving task.

In Figure 5.3 no clear trend could be indicated because the converging phase was over in the during

the first task.When comparing the average medians for task execution with and without k-graph action

suggestions it becomes clear that the action suggestions result in a positive effect on the total time to

complete a task. Without action suggestions the total time varies between 19 and 27 seconds, whilst task

performance with action suggestions results in a total time that varies between 14 and 19 seconds. Now

a table is presented that summarizes the edge parameterizations and displays success rate of tasks and

hypotheses of the driving task.

5.1. Driving and Pushing Experiments 59

Table 5.5: The selection of the (MPC, lti-drive-model) parameterization versus selecting the (MPPI, lti-drive-model)
parameterization for drive actions during the randomized driving tasks. The leftmost column indicates the metric to measure

performance with and without the k-graph action suggestions. The rightmost column presents task performance over the number

of tasks in experience.

Number of Tasks in experience 0 1 2 3 4 5 6 7 8 9

With

k-graph

suggestions

Number of MPC

parameterizations

20 30 31 31 30 30 31 30 30 33

Number of MPPI

parameterizations

10 0 0 0 0 0 0 0 0 0

task success rate [%] 100 100 100 100 100 100 100 100 100 90

successfully

hypothesis [-]

30 30 30 30 30 30 30 30 30 29

failed hypothesis [-] 0 0 1 1 0 0 1 0 0 4

Without

k-graph

suggestions

Number of MPC

parameterizations

12 14 13 10 15 16 13 17 16 9

Number of MPPI

parameterizations

18 17 18 20 17 15 17 13 15 22

task success rate [%] 100 100 100 100 100 100 100 100 100 100

successfully

hypothesis [-]

30 30 30 30 30 30 30 30 30 30

failed hypothesis [-] 0 1 1 0 1 1 0 0 1 1

Whilst using the k-graph suggestions the h-algorithm almost completes all 300 (3 subtasks per task,

10 tasks per run, 10 runs are completed) driving subtasks. The 90% success rate in the task using

k-graph suggestions and having 9 task in experience in Table 5.5 can be assigned to pure chance, as

it is a single occurrence. The h-algorithm successfully completes 300 driving subtasks with random

selection of edge parameterization. The number of MPC and MPPI parameterizations should be more

or equal to 30 for any number of tasks in experience. In many cases it is more than 30, which indicates

more than 30 drive edges were created to complete 30 drive subtasks. This effect is due to detected

faults, that result in hypothesis failure. In such cases because two or more edge parameterization are

initialized to complete a single subtask, that results in more than 30 driving edge parameterizations to

complete 30 subtasks.

For the driving task in the randomized environment the k-graph converges to the (mpc-drive-controller,
lti-drive-model) parameterization during the first task. Selecting this parameterization compared to

selecting a random parameterization has a positive effect on the total time to complete a task. The search

time for both using the k-graph suggestions or random selection is similar. Now a similar experiment is

conducted for a pushing task.

5.1.2. A Pushing Task
The push task in the randomized environment consists of a single subtask. To complete this push task

the robot must push the object toward its specified target pose. The tuning parameters that make up the

random environment for the push task can be visualized in Table 5.6.

5.1. Driving and Pushing Experiments 60

Table 5.6: The selected tuning parameters for the randomized push environment.

grid size 𝑥=12 m, 𝑦=12 m

object size min_length = 0.2𝑚, max_length = 2𝑚

object weight max_weight = 1000𝑔 = 1kg

number of objects num_unmovable_obj = 3, num_movable_obj = 5

number of tested runs num_runs = 10

number of tasks in a run num_tasks = 6

number of subtasks in a task num_subtasks = 1

The available push edge parameterizations that can be selected are: (mppi-push-controller, lti-push-
model) and (mppit-push-controller, nonlinear-push-model).

(a) Robot tasked to push the yellow box toward the object’s goal.

(b) Robot tasked to push the brown box to the ghost pose.

Figure 5.6: Two random environments with the object’s target displayed as a transparent ghost pose.

Given the parameters range in table Table 5.6 randomized experiments are carried out for ten runs of

pushing tasks. First the pushing tasks are completed using k-graph suggestions. The search-, execute-

and total time for task completion is presented in Figure 5.7. Then the same tasks are completed without

help of the k-graph suggestions in Figure 5.4.

5.1. Driving and Pushing Experiments 61

Figure 5.7: Search-, execution- and total time to complete a pushing task with k-graph action suggestions. The horizontal axis

indicates the number of task experience in a run. A run contains ten tasks, starting the run with an empty k-graph that collects

action feedback as the robot gains experience. The vertical axis displays a boxplot of the search-, execution- and total time over ten

runs, where the sum of search- and execution time equals total time.

Figure 5.7 above displays that the usage of the k-graph lowers the total execution time with two

tasks in experience. From Table 5.7 it can be concluded that the learning phase is over with two tasks

in experience, since then only the parameterization with the LTI model is selected when leveraging

the k-graph. A similar effect (total time to complete a task lowers after two tasks in experience) is then

recorded in the following figure, that displays the results of the same tasks executed without action

suggestions in Figure 5.7.

Figure 5.8: Search-, execution- and total time to complete a pushing task without k-graph action suggestions. The horizontal axis

indicates the number of task experience in a run. A run contains ten tasks, starting the run with an empty k-graph that collects

action feedback as the robot gains experience. The vertical axis displays a boxplot of the search-, execution- and total time over ten

runs, where the sum of search- and execution time equals total time.

Both Figure 5.7 and Figure 5.8 look very similar due to solving the same tasks. Whilst gaining more

experience the h-algorithm that uses the k-graph suggestions yields a better total task completion time.

5.1. Driving and Pushing Experiments 62

Which is easier to see if only the mean of the total tasks times are plotted in Figure 5.9.

Figure 5.9: Comparing means of total time to complete a task out of ten runs for a pushing task.

Both with and without action suggestion appear to lower total task execution time for pushing

task, which begs the question: Is the trend in time to complete a task due to the k-graph or due to

chance?. Even if in both scenario’s the total time lowers after two tasks in experience, there still is a

small margin of difference if the action suggestions are used over random selection, which becomes

clear when comparing average median task completion times in Figure 5.9.

Table 5.7: The selection of the (MPPI, lti-push-model) parameterization versus selecting the (MPPI, nonlinear-push-model)
parameterization for push actions during the randomized pushing tasks. The leftmost column indicates the metric to measure

performance with and without the k-graph action suggestions. The rightmost column presents task performance over the number

of tasks in experience.

Number of Tasks in experience 0 1 2 3 4 5

With

k-graph

suggestions

Number of lti-push-model
parameterizations

6 8 8 10 10 10

Number of nonlinear-push-model
parameterizations

7 9 2 0 0 0

task success rate [%] 90 90 100 100 100 100

successfully hypothesis [-] 9 9 10 10 10 10

failed hypothesis [-] 5 8 0 0 0 0

Without

k-graph

suggestions

Number of lti-push-model
parameterizations

6 8 8 6 4 6

Number of nonlinear-push-model
parameterizations

8 9 3 6 6 8

task success rate [%] 90 80 100 100 100 90

successfully hypothesis [-] 9 8 10 10 10 9

failed hypothesis [-] 5 9 1 2 0 5

The k-graph favors the MPPI controller with lti-push-model as can be seen in Table 5.7. The

5.2. Comparison with State-of-the-Art 63

lti-push-model parameterization does not only have a lower execution time compared to the nonlinear-

push-model parameterization, it also has a lower PE as can be seen in Figure 5.10. The difference in PE

between the lti-push-model and the nonlinear-push-model can be explained by involving a fixed geometrical

property in the nonlinear-push-model, which is the width of the object H set to 2 meters. Just as with

many solutions in general, a simple solution mostly works best.

Figure 5.10: Box plot of the Prediction Error for solving reshuffled tasks. The horizontal axis indicates the number of task

experience in a run. A run contains six tasks, starting the run with an empty k-graph that collects action feedback as the robot

gains experience. The vertical axis displays a boxplot of Prediction Error over six runs. For the edge parameterizations once with

the use of k-graph action suggestions are leveraged indicated by “with k-graph” and once with random selection indicated by “no

k-graph”.

Figures 5.5, 5.9 and 5.10 all confirm that the use of the action suggestion provided by the k-graph

results in improved task total time and PE compared to random selection of edge parameterizations.

The strategy also named control and system model combination or edge parameterization to which

the h-algorithm converges is determined by two aspects. First, the set of available edge parameterizations,

because the strategy can only converge toward the best available edge parameterization. Second, the

success factor defined in Equation (4.1), because it determines which metrics play a role in selection of

the best strategy. In this thesis the success factor favors an edge parameterization that bears a low PE

and thus, logically the k-graph converges toward the edge parameterization with a lower PE. Further

investigation of different types of success factors are moved toward the future work section. Now the

proposed framework is compared to the state-of-the-art in the upcoming section.

5.2. Comparison with State-of-the-Art
A summary of state-of-the-art methods is presented again (as it was already presented in the introduction,

Table 1.1). The goal is now to highlight the test metrics the state-of-the-art methods used during their

tests of their methods. Based on these, a fair test metric is used to compare with our approach.

5.2. Comparison with State-of-the-Art 64

Table 5.8: Overview of recent state-of-the-art papers that include a subset of the 3 topics (learning system models, NAMO, and

nonprehensile pushing). The testing metric indicates the testing method used by the paper, where the underlined metric is used

to compare against the proposed framework.

NAMO

Specify object

target poses

Author Citation Learns

object

dynamics

p
r
e
h
e
s
il
e

n
o
n
p
r
e
h
e
s
il
e

p
r
e
h
e
s
il
e

n
o
n
p
r
e
h
e
s
il
e

testing metric

Ellis et al. [14] ✓ ✗ ✓ ✗ ✗ success rate

Sabbagh

Novin

et al.

[34] ✓ ✓ ✗ ✓ ✗ success rate,

execution time

prediction error,

final pose error

Scholz

et al.

[36] ✓ ✓ ✗ ✗ ✗ runtime, planning

time, number of

replanning number

of calls to update

model

Vega-

Brown

and Roy

[45] ✗ ✓ ✗ ✓ ✗ computation time

Wang

et al.

[47] ✓ ✗ ✓ ✗ ✗ computation and

execution time

Groote Proposed

Frame-

work

✗/✓ ✗ ✓ ✗ ✓

A comparison with a single state-of-the-art paper is made, that is accomplished by recreating the

environment that the state-of-the-art has used during testing. With Wang et al. the computation- (or

search) and execution time is compared.

Comparing Computation and Execution time with Wang et al. Wang et al. combines the NAMO

problem with learning object dynamics. Wang et al. proposed framework takes an affordance approach

than can be best described as: Affordance offers robots to perceive the environment in a way similar to

humans do, by capturing the properties of objects without identifying them. The affordance approach

is combined with a contact-implicit motion planning algorithm, a manipulation planning algorithm for

push manipulation [47]. A test is performed in a real-world environment, where the robot drives toward

a target pose, whilst the path is blocked by a chair. The real-world robot environment is implicitly

represented as simulation environment. The environment is mimicked with three walls and a red box

on the spot where is chair stands. The implicit representation of the real-world environment and the

mimicked robot environments can be seen in Figure 5.11.

5.2. Comparison with State-of-the-Art 65

(a) Wang et al. simulation environment. (b) Recreated robot environment.

Figure 5.11: Two similar environments and tasks, the robots are tasked to drive toward a target pose indicated with the green

ghost poses. In both environment a direct path is blocked by the red box.

Wang et al. solves the task three times, the average search-, execute- and total time over these three

executions is displayed in Table 5.9. Note that, during testing Wang et al. splits the search time in two

categories; time to estimate accordance of an object and time to optimize the trajectory. For the purpose

of comparison, we replicate the use case of Wang et al. displayed in Figure 5.11b. The task is then

solved ten times, every time starting without environmental knowledge and thus an empty k-graph.

The average search, execute- and total time over these then executions is also displayed in Table 5.9.

Table 5.9: Average execute-, search and total times for a task that involves learning object dynamics and the NAMO problem. The

results are average over three solved tasks for Wang et al., and ten solved tasks for the proposed framework. A visualization of the

task if presented in Figure 5.11.

Author Wang et al. Groote

search time [sec] 109 26

execution time [sec] 67 4

total time [sec] 176 30

The proposed framework outperforms the contact-implicit motion planning framework proposed by

Wang et al. Mainly the search time improves by a margin. The execution time improves, but because

Wang et al. tests in an real-world environment where motion equations are more complex compared to

the simulated environment, an improvement in the execution time is expected.

The test in randomized environments shows that edge parameterization selection based on experience

in the environment improves task execution compared to random selection. Converging to a specific

control method is influenced by the available control methods, and how the action feedback is calculated

that forms the success factor. Comparison to a single state-of-the-art paper confirms that the h-algorithm

with the backward search is an effective tool to search and execute action sequences. Before claiming

hard conclusions more tests should be performed for both converging toward an optimal controller and

for the proposed method to complete tasks in unforeseen robot environments.

6
Conclusions

This thesis aims to create a robot framework that can; learn object dynamics, solve NAMO problems

and perform nonprehensile pushing. The overwhelming research in these individual topics stand is

contrast to the sparse number of recent papers that combine these three topics. This absence of research

can be motivated by the emerged challenges when combining the three topics, such as the uncertainty

in planning and the complexity class of the overall problem.

The main research question, that is: How do learned objects’ system models improve global task planning for
a robot with nonprehensile push manipulation abilities over time? is answered in Chapter 5 that presents the

results. The results show that global task planning improves in two aspects as a result of learned system

models. The first improvement is due to the classification of objects, which improves the success rate of

generated action sequences. Mainly because probabilistic action sequences that may involve pushing

unmovable objects cannot occur when object classification is present. The second improvement is due

to selecting the best strategy to manipulate objects based on experience with such objects. Selecting

the best strategy or edge parameterization can be summarized as follows. Initially, random edge

parameterizations are selected from the available set of edge parameterizations. After execution of

edges with such edge parameterization, the proposed framework gathers experience by storing action

feedback. After all possible edge parameterizations are tested in the learning phase, the converging

phase starts in which the proposed framework converges toward the best edge parameterization to

manipulate a specific object.

Drive and pushing tasks have been performed with randomized settings to obtain unbiased results.

In such a randomized environment, once tasks are solved whilst selecting action suggestions from the

k-graph if present, and once by only randomly selecting edge parameterizations from the set of available

edge parameterizations. The results indicate that significant improvements can be made by leveraging

environmental experience by selecting action suggestions. These improvements were measured with

the Prediction Error and the search-, execute- and total time to complete a task and investigating their

development over time. Two essential factors determine convergence toward an optimal controller

and system model combination selection. First, the success factor, because it determines which edge

parameterization is the best candidate based on the metrics that are gathered during execution time of

edges with such an edge parameterization. Second, the set of available controllers and system models,

because the proposed framework can only converge to the best available controller in the set of available

controllers.

Research subquestion 1, that is: How to combine learning and planning for push and drive applications? An

answer is given in Chapters 2 to 4. Here it is shown how the proposed framework, which consists of the

hypothesis algorithm (h-algorithm), the hypothesis graph (h-graph) and the knowledge graph (k-graph)

work together to combine learning and planning with the backward search technique. The curse of

dimensionality and an NP-hard problem are bypassed by searching only in a single mode of dynamics

instead of searching in composite space. Chapters 2 and 3 present methods and functions utilized by the

proposed robot framework. Chapter 4 defines the proposed robot framework, in this chapter the h-graph

66

67

is defined as a graph-based structure that represents a search in composite space. The h-algorithm

generates action sequences by starting a search from the desired outcome and searching backwards to

the current configuration with the backward search technique. Newly gained environmental knowledge

is stored in the k-graph, which firstly classifies objects as movable or unmovable, and, secondly, holds

information on how they can be best manipulated. The k-graph can be filled with newly learned

environmental knowledge and can be queried for action suggestions. It is shown how learned system

knowledge can be utilized by alternating between searching for an action sequence and executing an

action sequence.

Research subquestion 2, that is: How does the proposed framework compare against the state-of-the-art?
Only one state-of-the-art method was compared, whilst five had been selected for comparison. An

improvement was recorded for search- and execution times when comparing the proposed method

to Wang et al. method. However, more comparisons with the state-of-the-art should be made to

conclude improvements of the proposed method for other test metrics such as success rate or number of

replanning. Thus more testing (and an system identification module) is required to conclude that the

proposed method that can combine firstly: learning object dynamics, second: nonprehensile pushing,

in thirdly: NAMO problems is an improvement compared to the state-of-the-art.

The proposed robot framework tackles NAMO problems by incorporating a proposed path planner

that detects blocked paths. The proposed framework includes nonprehensile pushing by generating

action sequences that consist of drive and push actions. Thereby, NAMO problems and nonprehensile

pushing are combined in the proposed robot framework. Since the proposed framework classifies

objects and selects the best available strategy, it improves its generated action sequences over time

but does not learn object dynamics. During testing, analytic models were used that cannot model a

wide variety of systems accurately. Table 5.8 shows, therefore a ✗/✓, concluding that the proposed

framework can partly combine the three topics. The analytic models could be replaced by adding a

system identification module that is moved to the future work section, if implemented, the proposed

framework can claim that the three topics can fully be combined.

7
Future work

Removing Assumptions
Every assumption taken in Chapter 1 serves to simplify the problem and to narrow the scope of this

thesis. They can however all be removed. Starting with assumption closed-world assumption, without

this assumption the proposed framework must be much more robust. The proposed framework can with

the help of this assumption conclude many conclusions deterministically. Examples are the feedback on

edges and the classification of an object as unmovable or movable. In real-world applications unmovable

objects can become movable, to make the transition toward removing the closed-world assumption the

proposed framework must be converted to a probabilistic variant.

Moving from simulation toward the real world must remove the perfect object sensor assumption.

Sensors and sensor fusion is required to estimate the configuration of the robot itself and objects in the

environment. A start is to test the proposed framework with noise added to the perfect sensor.

The tasks are commutative assumption assumption makes it possible to randomly select a subtask

without influencing the feasibility of the task. Removing this assumption can require an additional

rearrangement algorithm [22] to be run to determine a feasible order of handling subtasks.

The objects do not tip over assumption prevents objects from tipping over, but at the same time

limits the number of objects. There are many possibilities to handle tipped objects. First, adding a

tipping detector can detect when an object has tipped over. Then the proposed framework can threaten

the objects as a new object and reclassify it. Another method would be a dedicated subroutine to place

it in an upright position.

System identification Module
The thesis provides an module that collects IO data for a robot driving system, and for a system that

describes the robot pushing an object. It has been fully integrated into the proposed robot framework,

but has been replace by analytic models during testing. The appendix provides a categorization

that categorized system models in three categories; data-driven model, hybrid models and analytic

models. A valuable extension on is to add system identification methods, and to investigate task execute

performance with data-driven- and hybrid system models.

Kinodynamic Path Planner
In this thesis, testing has only be performed with a holonomic robot. To test nonholonomic robots that

must respect dynamic constraints, the path planner should generate paths that respect such constraints.

By sampling forward using system models during path planning as described in Section 3.2, the path

planner can be extended to a kinodynamic path planner. The proposed method opts to select the best

68

69

edge parameterization, which includes a selection of the best system model, as the proposed method

converges toward such an edge parameterization, the system model is expected to improve over time. It

is expected that the feasibility of paths found by a kinodynamic planner improve as because it uses the

system model directly whilst searching for a path.

Convergence to different Manipulation Strategies
Whilst gaining more experience in an robot environment, the proposed framework converges toward a

specific edge parameterization for each object. Such an edge parameterization or manipulation strategy

exists of the controller and system model, for robot driving (MPC, lti-drive-model), for object pushing

(MPPI, nonlinear-push-model-1). During testing every manipulated object converged toward the same

edge parameterization. Three aspects could be improved; more variation if objects; more experimenting

with success factors to generate edge feedback; a larger set of parameterization. All three influence the

parameterization to which the h-algorithmconverges. It is expected but not shown, that objects that are

dissimilar in properties have different parameterization to which they converge.

Benchmark Tests
Three benchmark test have been created to test the proposed robot framework. As a result of poor

planning and unforeseen implementation failures, the aforementioned environments have failed to

yield any results. The environments that accompany these benchmark test have been moved toward the

appendix.

References

[1] Ian Abraham et al. “Model-Based Generalization Under Parameter Uncertainty Using Path Integral

Control”. In: IEEE Robotics and Automation Letters 5.2 (Apr. 2020), pp. 2864–2871. issn: 2377-3766,

2377-3774. doi: 10.1109/LRA.2020.2972836. url: https://ieeexplore.ieee.org/document/
8988215/ (visited on 01/31/2022).

[2] Ermano Arruda et al. “Uncertainty Averse Pushing with Model Predictive Path Integral Control”.

In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). 2017 IEEE-

RAS 17th International Conference on Humanoid Robotics (Humanoids). Birmingham: IEEE,

Nov. 2017, pp. 497–502. isbn: 978-1-5386-4678-6. doi: 10.1109/HUMANOIDS.2017.8246918. url:

http://ieeexplore.ieee.org/document/8246918/ (visited on 04/29/2022).

[3] Paolo Atzeni and Valeria De Antonellis. Relational Database Theory. Redwood City, Calif: Benjam-

in/Cummings Pub. Co, 1993. 389 pp. isbn: 978-0-8053-0249-3.

[4] Jon Barwise. “An Introduction to First-Order Logic”. In: Studies in Logic and the Foundations of
Mathematics. Vol. 90. Elsevier, 1977, pp. 5–46. isbn: 978-0-444-86388-1. doi: 10.1016/S0049-237
X(08)71097-8. url: https://linkinghub.elsevier.com/retrieve/pii/S0049237X08710978
(visited on 05/23/2023).

[5] Maria Bauza, Francois R. Hogan, and Alberto Rodriguez. “A Data-Efficient Approach to Precise

and Controlled Pushing”. Oct. 9, 2018. arXiv: 1807.09904 [cs]. url: http://arxiv.org/abs/
1807.09904 (visited on 03/01/2022).

[6] Dmitry Berenson et al. “Manipulation Planning on Constraint Manifolds”. In: 2009 IEEE Inter-
national Conference on Robotics and Automation. 2009 IEEE International Conference on Robotics

and Automation (ICRA). Kobe: IEEE, May 2009, pp. 625–632. isbn: 978-1-4244-2788-8. doi:

10.1109/ROBOT.2009.5152399. url: http://ieeexplore.ieee.org/document/5152399/
(visited on 12/05/2022).

[7] Long Chen et al. “A Fast and Efficient Double-Tree RRT$*̂$-Like Sampling-Based Planner Applying

on Mobile Robotic Systems”. In: IEEE/ASME Transactions on Mechatronics 23.6 (Dec. 2018), pp. 2568–

2578. issn: 1083-4435, 1941-014X. doi: 10.1109/TMECH.2018.2821767. url: https://ieeexplore.
ieee.org/document/8329210/ (visited on 04/14/2022).

[8] Lin Cong et al. “Self-Adapting Recurrent Models for Object Pushing from Learning in Simulation”.

July 27, 2020. arXiv: 2007.13421 [cs]. url: http://arxiv.org/abs/2007.13421 (visited on

04/06/2022).

[9] Erwin Coumans and Yunfei Bai. PyBullet, a Python Module for Physics Simulation for Games, Robotics
and Machine Learning. 2016–2021. url: http://pybullet.org.

[10] E. W. Dĳkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numerische Mathematik
1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X, 0945-3245. doi: 10.1007/BF01386390. url: http:
//link.springer.com/10.1007/BF01386390 (visited on 02/08/2023).

[11] Disjunctive Programming. New York, NY: Springer Berlin Heidelberg, 2018. isbn: 978-3-030-00147-6.

[12] Bruce Donald et al. “Kinodynamic Motion Planning”. In: Journal of the ACM 40.5 (Nov. 1993),

pp. 1048–1066. issn: 0004-5411, 1557-735X. doi: 10.1145/174147.174150. url: https://dl.acm.
org/doi/10.1145/174147.174150 (visited on 06/08/2023).

[13] Mohamed Elbanhawi and Milan Simic. “Sampling-Based Robot Motion Planning: A Review”.

In: IEEE Access 2 (2014), pp. 56–77. issn: 2169-3536. doi: 10.1109/ACCESS.2014.2302442. url:

https://ieeexplore.ieee.org/document/6722915/ (visited on 11/30/2022).

[14] Kirsty Ellis et al. “Navigation among Movable Obstacles with Object Localization Using Pho-

torealistic Simulation”. In: July 2022. url: https://www.researchgate.net/publication/
362092621_Navigation_Among_Movable_Obstacles_with_Object_Localization_using_
Photorealistic_Simulation.

70

https://doi.org/10.1109/LRA.2020.2972836
https://ieeexplore.ieee.org/document/8988215/
https://ieeexplore.ieee.org/document/8988215/
https://doi.org/10.1109/HUMANOIDS.2017.8246918
http://ieeexplore.ieee.org/document/8246918/
https://doi.org/10.1016/S0049-237X(08)71097-8
https://doi.org/10.1016/S0049-237X(08)71097-8
https://linkinghub.elsevier.com/retrieve/pii/S0049237X08710978
https://arxiv.org/abs/1807.09904
http://arxiv.org/abs/1807.09904
http://arxiv.org/abs/1807.09904
https://doi.org/10.1109/ROBOT.2009.5152399
http://ieeexplore.ieee.org/document/5152399/
https://doi.org/10.1109/TMECH.2018.2821767
https://ieeexplore.ieee.org/document/8329210/
https://ieeexplore.ieee.org/document/8329210/
https://arxiv.org/abs/2007.13421
http://arxiv.org/abs/2007.13421
http://pybullet.org
https://doi.org/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
https://doi.org/10.1145/174147.174150
https://dl.acm.org/doi/10.1145/174147.174150
https://dl.acm.org/doi/10.1145/174147.174150
https://doi.org/10.1109/ACCESS.2014.2302442
https://ieeexplore.ieee.org/document/6722915/
https://www.researchgate.net/publication/362092621_Navigation_Among_Movable_Obstacles_with_Object_Localization_using_Photorealistic_Simulation
https://www.researchgate.net/publication/362092621_Navigation_Among_Movable_Obstacles_with_Object_Localization_using_Photorealistic_Simulation
https://www.researchgate.net/publication/362092621_Navigation_Among_Movable_Obstacles_with_Object_Localization_using_Photorealistic_Simulation

References 71

[15] A. René Geist and Sebastian Trimpe. “Structured Learning of Rigid-body Dynamics: A Survey

and Unified View from a Robotics Perspective”. In: GAMM-Mitteilungen 44.2 (June 2021). issn:

0936-7195, 1522-2608. doi: 10.1002/gamm.202100009. url: https://onlinelibrary.wiley.com/
doi/10.1002/gamm.202100009 (visited on 05/24/2023).

[16] Hai-Ning Wu, M Levihn, and M Stilman. “Navigation Among Movable Obstacles in Unknown

Environments”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). Taipei: IEEE,

Oct. 2010, pp. 1433–1438. isbn: 978-1-4244-6674-0. doi: 10.1109/IROS.2010.5649744. url:

http://ieeexplore.ieee.org/document/5649744/ (visited on 05/06/2023).

[17] Kris Hauser and Jean-Claude Latombe. “Multi-Modal Motion Planning in Non-expansive Spaces”.

In: The International Journal of Robotics Research 29.7 (June 2010), pp. 897–915. issn: 0278-3649,

1741-3176. doi: 10.1177/0278364909352098. url: http://journals.sagepub.com/doi/10.
1177/0278364909352098 (visited on 12/05/2022).

[18] D. Hsu, J.-C. Latombe, and R. Motwani. “Path Planning in Expansive Configuration Spaces”.

In: Proceedings of International Conference on Robotics and Automation. International Conference

on Robotics and Automation. Vol. 3. Albuquerque, NM, USA: IEEE, 1997, pp. 2719–2726. isbn:

978-0-7803-3612-4. doi: 10.1109/ROBOT.1997.619371. url: http://ieeexplore.ieee.org/
document/619371/ (visited on 05/03/2023).

[19] Sertac Karaman and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal Motion Planning”.

In: The International Journal of Robotics Research 30.7 (June 2011), pp. 846–894. issn: 0278-3649,

1741-3176. doi: 10.1177/0278364911406761. url: http://journals.sagepub.com/doi/10.
1177/0278364911406761 (visited on 03/15/2022).

[20] Eliahu Khalastchi and Meir Kalech. “On Fault Detection and Diagnosis in Robotic Systems”. In:

ACM Computing Surveys 51.1 (Jan. 31, 2019), pp. 1–24. issn: 0360-0300, 1557-7341. doi: 10.1145/
3146389. url: https://dl.acm.org/doi/10.1145/3146389 (visited on 12/13/2022).

[21] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. “Sampling-Based Methods for Motion

Planning with Constraints”. In: Annual Review of Control, Robotics, and Autonomous Systems 1.1

(May 28, 2018), pp. 159–185. issn: 2573-5144, 2573-5144. doi: 10.1146/annurev-control-060117-
105226. url: https://www.annualreviews.org/doi/10.1146/annurev-control-060117-
105226 (visited on 05/06/2022).

[22] Athanasios Krontiris and Kostas Bekris. “Dealing with Difficult Instances of Object Rearrangement”.

In: July 2015. doi: 10.15607/RSS.2015.XI.045.

[23] Steven Michael LaValle. Planning Algorithms. Cambridge ; New York: Cambridge University Press,

2006. 826 pp. isbn: 978-0-521-86205-9.

[24] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. “Asymptotically Optimal Sampling-Based

Kinodynamic Planning”. In: The International Journal of Robotics Research 35.5 (Apr. 2016), pp. 528–

564. issn: 0278-3649, 1741-3176. doi:10.1177/0278364915614386. url:http://journals.sagepub.
com/doi/10.1177/0278364915614386 (visited on 06/08/2023).

[25] Tekin Meriçli, Manuela Veloso, and H. Levent Akın. “Push-Manipulation of Complex Passive

Mobile Objects Using Experimentally Acquired Motion Models”. In: Autonomous Robots 38.3

(Mar. 2015), pp. 317–329. issn: 0929-5593, 1573-7527. doi: 10.1007/s10514-014-9414-z. url:

http://link.springer.com/10.1007/s10514-014-9414-z (visited on 01/31/2022).

[26] neuromorphic tutorial. LTC21 Tutorial MPPI. June 7, 2021. url: https://www.youtube.com/
watch?v=19QLyMuQ_BE (visited on 05/31/2022).

[27] Roya Sabbagh Novin et al. “Dynamic Model Learning and Manipulation Planning for Objects

in Hospitals Using a Patient Assistant Mobile (PAM)Robot”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). Madrid: IEEE, Oct. 2018, pp. 1–7. isbn: 978-1-5386-8094-0.

doi: 10.1109/IROS.2018.8593989. url: https://ieeexplore.ieee.org/document/8593989/
(visited on 05/05/2022).

[28] Manoj Pokharel. “Computational Complexity Theory(P,NP,NP-Complete and NP-Hard Prob-

lems)”. In: (June 2020).

https://doi.org/10.1002/gamm.202100009
https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100009
https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100009
https://doi.org/10.1109/IROS.2010.5649744
http://ieeexplore.ieee.org/document/5649744/
https://doi.org/10.1177/0278364909352098
http://journals.sagepub.com/doi/10.1177/0278364909352098
http://journals.sagepub.com/doi/10.1177/0278364909352098
https://doi.org/10.1109/ROBOT.1997.619371
http://ieeexplore.ieee.org/document/619371/
http://ieeexplore.ieee.org/document/619371/
https://doi.org/10.1177/0278364911406761
http://journals.sagepub.com/doi/10.1177/0278364911406761
http://journals.sagepub.com/doi/10.1177/0278364911406761
https://doi.org/10.1145/3146389
https://doi.org/10.1145/3146389
https://dl.acm.org/doi/10.1145/3146389
https://doi.org/10.1146/annurev-control-060117-105226
https://doi.org/10.1146/annurev-control-060117-105226
https://www.annualreviews.org/doi/10.1146/annurev-control-060117-105226
https://www.annualreviews.org/doi/10.1146/annurev-control-060117-105226
https://doi.org/10.15607/RSS.2015.XI.045
https://doi.org/10.1177/0278364915614386
http://journals.sagepub.com/doi/10.1177/0278364915614386
http://journals.sagepub.com/doi/10.1177/0278364915614386
https://doi.org/10.1007/s10514-014-9414-z
http://link.springer.com/10.1007/s10514-014-9414-z
https://www.youtube.com/watch?v=19QLyMuQ_BE
https://www.youtube.com/watch?v=19QLyMuQ_BE
https://doi.org/10.1109/IROS.2018.8593989
https://ieeexplore.ieee.org/document/8593989/

References 72

[29] James Rawlings, David Mayne, and Moritz Diehl. Model Predictive Control: Theory, Computation and
Design. 2nd edition. Santa Barbara: Nob Hill Publishing, LLC, 2020. isbn: 978-0-9759377-5-4.

[30] John Reif and Micha Sharir. “Motion Planning in the Presence of Moving Obstacles”. In: 26th Annual
Symposium on Foundations of Computer Science (Sfcs 1985). 26th Annual Symposium on Foundations

of Computer Science (Sfcs 1985). Portland, OR, USA: IEEE, 1985, pp. 144–154. isbn: 978-0-8186-

0644-1. doi: 10.1109/SFCS.1985.36. url: http://ieeexplore.ieee.org/document/4568138/
(visited on 05/05/2022).

[31] Arend Rensink. “Representing First-Order Logic Using Graphs”. In: Graph Transformations. Ed. by

Hartmut Ehrig et al. Red. by David Hutchison et al. Vol. 3256. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2004, pp. 319–335. isbn: 978-3-540-23207-0 978-3-540-30203-2. doi: 10.1007/978-3-
540-30203-2_23. url: http://link.springer.com/10.1007/978-3-540-30203-2_23 (visited

on 05/23/2023).

[32] Nicholas Roy. “Hierarchy, Abstractions and Geometry”. May 6, 2021. url: https://www.youtube.
com/watch?v=mP-uK1PFqfI (visited on 05/03/2023).

[33] Roya Sabbagh Novin, Mehdi Tale Masouleh, and Mojtaba Yazdani. “Optimal Motion Planning

of Redundant Planar Serial Robots Using a Synergy-Based Approach of Convex Optimization,

Disjunctive Programming and Receding Horizon”. In: Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering 230.3 (Mar. 2016), pp. 211–221. issn:

0959-6518, 2041-3041. doi: 10.1177/0959651815617883. url: http://journals.sagepub.com/
doi/10.1177/0959651815617883 (visited on 05/05/2022).

[34] Roya Sabbagh Novin et al. “A Model Predictive Approach for Online Mobile Manipulation of

Non-Holonomic Objects Using Learned Dynamics”. In: The International Journal of Robotics Research
40.4-5 (Apr. 2021), pp. 815–831. issn: 0278-3649, 1741-3176. doi: 10.1177/0278364921992793. url:

http://journals.sagepub.com/doi/10.1177/0278364921992793 (visited on 05/05/2022).

[35] Basak Sakcak et al. “Sampling-Based Optimal Kinodynamic Planning with Motion Primitives”. In:

Autonomous Robots 43.7 (Oct. 2019), pp. 1715–1732. issn: 0929-5593, 1573-7527. doi: 10.1007/s10514-
019-09830-x. url: http://link.springer.com/10.1007/s10514-019-09830-x (visited on

06/08/2023).

[36] Jonathan Scholz et al. “Navigation Among Movable Obstacles with Learned Dynamic Constraints”.

In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). Daejeon, South Korea: IEEE,

Oct. 2016, pp. 3706–3713. isbn: 978-1-5090-3762-9. doi: 10.1109/IROS.2016.7759546. url:

http://ieeexplore.ieee.org/document/7759546/ (visited on 04/29/2022).

[37] Neal Seegmiller et al. “Vehicle Model Identification by Integrated Prediction Error Minimization”.

In: The International Journal of Robotics Research 32.8 (July 2013), pp. 912–931. issn: 0278-3649,

1741-3176. doi: 10.1177/0278364913488635. url: http://journals.sagepub.com/doi/10.
1177/0278364913488635 (visited on 02/16/2022).

[38] Jitkomut Songsiri. Input Signals: Persistent Excitation. Jan. 8, 2022. url: https://www.youtube.com/
watch?v=IDaCw3LjzC4 (visited on 06/06/2023).

[39] Max Spahn. Urdf-Environment. Version 1.2.0. Aug. 8, 2022. url: https://github.com/maxspahn/
gym_envs_urdf.

[40] Mike Stilman et al. “Planning and Executing Navigation among Movable Obstacles”. In: Advanced
Robotics 21.14 (Jan. 2007), pp. 1617–1634. issn: 0169-1864, 1568-5535. doi: 10.1163/1568553077822
27408. url: https://www.tandfonline.com/doi/full/10.1163/156855307782227408 (visited

on 05/24/2023).

[41] Jochen Stüber, Marek Kopicki, and Claudio Zito. “Feature-Based Transfer Learning for Robotic

Push Manipulation”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA)
(May 2018), pp. 5643–5650. doi: 10.1109/ICRA.2018.8460989. arXiv: 1905.03720. url: http:
//arxiv.org/abs/1905.03720 (visited on 03/15/2022).

[42] Jochen Stüber, Claudio Zito, and Rustam Stolkin. “Let’s Push Things Forward: A Survey on

Robot Pushing”. In: Frontiers in Robotics and AI 7 (Feb. 6, 2020), p. 8. issn: 2296-9144. doi:

10.3389/frobt.2020.00008. arXiv: 1905.05138. url: http://arxiv.org/abs/1905.05138
(visited on 02/24/2022).

https://doi.org/10.1109/SFCS.1985.36
http://ieeexplore.ieee.org/document/4568138/
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/978-3-540-30203-2_23
http://link.springer.com/10.1007/978-3-540-30203-2_23
https://www.youtube.com/watch?v=mP-uK1PFqfI
https://www.youtube.com/watch?v=mP-uK1PFqfI
https://doi.org/10.1177/0959651815617883
http://journals.sagepub.com/doi/10.1177/0959651815617883
http://journals.sagepub.com/doi/10.1177/0959651815617883
https://doi.org/10.1177/0278364921992793
http://journals.sagepub.com/doi/10.1177/0278364921992793
https://doi.org/10.1007/s10514-019-09830-x
https://doi.org/10.1007/s10514-019-09830-x
http://link.springer.com/10.1007/s10514-019-09830-x
https://doi.org/10.1109/IROS.2016.7759546
http://ieeexplore.ieee.org/document/7759546/
https://doi.org/10.1177/0278364913488635
http://journals.sagepub.com/doi/10.1177/0278364913488635
http://journals.sagepub.com/doi/10.1177/0278364913488635
https://www.youtube.com/watch?v=IDaCw3LjzC4
https://www.youtube.com/watch?v=IDaCw3LjzC4
https://github.com/maxspahn/gym_envs_urdf
https://github.com/maxspahn/gym_envs_urdf
https://doi.org/10.1163/156855307782227408
https://doi.org/10.1163/156855307782227408
https://www.tandfonline.com/doi/full/10.1163/156855307782227408
https://doi.org/10.1109/ICRA.2018.8460989
https://arxiv.org/abs/1905.03720
http://arxiv.org/abs/1905.03720
http://arxiv.org/abs/1905.03720
https://doi.org/10.3389/frobt.2020.00008
https://arxiv.org/abs/1905.05138
http://arxiv.org/abs/1905.05138

References 73

[43] Marc Toussaint et al. “Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of Sequen-

tial Manipulation”. Mar. 10, 2022. arXiv: 2203.05390 [cs]. url: http://arxiv.org/abs/2203.
05390 (visited on 04/29/2022).

[44] Jur van den Berg et al. “Path Planning among Movable Obstacles: A Probabilistically Complete

Approach”. In: Algorithmic Foundation of Robotics VIII. Ed. by Gregory S. Chirikjian et al. Red. by

Bruno Siciliano, Oussama Khatib, and Frans Groen. Vol. 57. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 599–614. isbn: 978-3-642-00311-0 978-3-642-00312-7. doi: 10.1007/978-3-
642-00312-7_37. url: http://link.springer.com/10.1007/978-3-642-00312-7_37 (visited

on 06/24/2022).

[45] William Vega-Brown and Nicholas Roy. “Asymptotically Optimal Planning under Piecewise-

Analytic Constraints”. In: Algorithmic Foundations of Robotics XII. Ed. by Ken Goldberg et al. Vol. 13.

Cham: Springer International Publishing, 2020, pp. 528–543. isbn: 978-3-030-43088-7 978-3-030-

43089-4. doi: 10.1007/978-3-030-43089-4_34. url: http://link.springer.com/10.1007/978-
3-030-43089-4_34 (visited on 06/23/2022).

[46] M. Verhaegen and Vincent Verdult. Filtering and System Identification: A Least Squares Approach.

Cambridge ; New York: Cambridge University Press, 2007. 405 pp. isbn: 978-0-521-87512-7.

[47] Maozhen Wang et al. “Affordance-Based Mobile Robot Navigation Among Movable Obstacles”.

In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE,

Oct. 24, 2020, pp. 2734–2740. isbn: 978-1-72816-212-6. doi: 10.1109/IROS45743.2020.9341337.
url: https://ieeexplore.ieee.org/document/9341337/ (visited on 06/28/2022).

[48] Jan Wielemaker et al. “SWI-Prolog”. In: Theory and Practice of Logic Programming 12.1-2 (Jan.

2012), pp. 67–96. issn: 1471-0684, 1475-3081. doi: 10.1017/S1471068411000494. url: https://
www.cambridge.org/core/product/identifier/S1471068411000494/type/journal_article
(visited on 05/23/2023).

[49] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. “Model Predictive Path Integral

Control Using Covariance Variable Importance Sampling”. Oct. 28, 2015. arXiv: 1509.01149 [cs].
url: http://arxiv.org/abs/1509.01149 (visited on 05/02/2022).

[50] Liangjun Zhang, Young J. Kim, and Dinesh Manocha. “A Simple Path Non-existence Algorithm

Using C-Obstacle Query”. In: Algorithmic Foundation of Robotics VII. Ed. by Srinivas Akella et al.

Vol. 47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 269–284. isbn: 978-3-540-68404-6

978-3-540-68405-3. doi: 10.1007/978-3-540-68405-3_17. url: http://link.springer.com/10.
1007/978-3-540-68405-3_17 (visited on 06/16/2022).

https://arxiv.org/abs/2203.05390
http://arxiv.org/abs/2203.05390
http://arxiv.org/abs/2203.05390
https://doi.org/10.1007/978-3-642-00312-7_37
https://doi.org/10.1007/978-3-642-00312-7_37
http://link.springer.com/10.1007/978-3-642-00312-7_37
https://doi.org/10.1007/978-3-030-43089-4_34
http://link.springer.com/10.1007/978-3-030-43089-4_34
http://link.springer.com/10.1007/978-3-030-43089-4_34
https://doi.org/10.1109/IROS45743.2020.9341337
https://ieeexplore.ieee.org/document/9341337/
https://doi.org/10.1017/S1471068411000494
https://www.cambridge.org/core/product/identifier/S1471068411000494/type/journal_article
https://www.cambridge.org/core/product/identifier/S1471068411000494/type/journal_article
https://arxiv.org/abs/1509.01149
http://arxiv.org/abs/1509.01149
https://doi.org/10.1007/978-3-540-68405-3_17
http://link.springer.com/10.1007/978-3-540-68405-3_17
http://link.springer.com/10.1007/978-3-540-68405-3_17

Appendix

The appendix contains additional information that may help better understand the thesis.

Complexity Classes

Problems in class P have a solution which can be found in polynomial time, problems in non-deterministic

polynomial-time (NP) are problems for which no polynomial algorithms have been found yet, and of

which it is believed that no polynomial time solution exist. For problems in NP, when provided with a

solution, verifying that the solution is indeed a valid solution can be done in polynomial time. NP-hard

problems are a class of problems which are at least as hard as the hardest problems in NP. Problems

that are NP-hard do not have to be elements of NP. They may not even be decidable [28]. This thesis or

other recent studies in the references do not attempt to find an optimal solution. Instead, they provide

a solution whilst guaranteeing properties such as near-optimality or probabilistic completeness. As

the piano’s mover problem can be reduced to the NAMO problem combined with relocating objects to

target poses, the conclusion can be drawn that this NAMO problem is NP-hard.

74

Benchmark Tests

Three benchmark test are presented, the blockade, swap and surround environment. The environments

are created but have not been used for testing the proposed h-algorithm. The three environments are

presented and a short description is provided that elaborates which parts of the proposed method are

tested. Now the blockade environment is presented.

In the blockade environment the robot is tasked with placing a box in a target pose that is blocked

by a cylinder object.

Figure 1: The blockade environment where the robot is tasked to push the blue box toward the target pose indicated with the

target ghost pose. A direct path is blocked by the movable light blue cylinder object and the unmovable yellow walls.

The blockade environment presented in the figure above would show the backward search technique

in action. The backward search technique first plans for the blue box toward the target ghost pose, then

an blocking object is detected. That blocking object can be either one of the walls or the cylinder object.

The blocking object is pushed to free the path, in the case of the unmovable walls the k-graph is updated

indicating that the walls are inmovable, in the case of the cylinder object, it is moved out of the way and

the path is freed.

In the swap environment the robot is tasked to swap the poses of the two objects in the environment.

75

Figure 2: The swap environment where the robot is tasked with swapping the poses of the cylinder and the box object.

Just as the previously presented blockade environment, the swap environment’s purpose is to show

the backward search technique that results in a generated action sequence. In that action sequence the

cylinder or box can be eitehr objA and the other object is objB. The action sequence moves objA to free

the path for objB that is then pushed to it’s target pose, the task is completed by pushing objA toward

it’s target pose. The proposed h-algorithm does not perform global path optimization, and it can be

shows using the swap environment. In the current figure above the initial robot-box, and robot-cylinder

distances are equal. If these were unequal, for example, place the robot initial pose next to the box object

and far from the cylinder object, there would be best object to manipulate first (the closer object). Since

there is no global path optimized the robot selects to first manipulate the box or the cylinder randomly,

resulting in half of the times driving further compared to a globally optimized path.

In the surrounded environment the robot has to learn which box is movable to escape the enclosure

of boxes.

Figure 3: The surrounded environment where the robot is tasked with escaping the surrounding enclosure by driving to the

target ghost pose displayed on the right side in the figure. Every box objects is unmovable except the red box which is movable.

The surrounded environment’s purpose is to present the effect of storing object classes. Initially the

robot needs to find which object is movable and which are unmovable. By storing which object class

information a generated action sequence immediately decides to push the movable red box.

76

References 77

System Models

Robot pushing is modeled using system models, here an overview is presented that classifies pushing

system models in three categories, analytical-, hybrid- and data-driven models.

Analytical models
Historically, analytical models are the first models to emerge, most prominently used are state-space
representations, transfer functions and differential equations. Building an analytical model requires

thorough knowledge of the system it models, because every system parameter, such as mass, damping

coefficient, the center of gravity, geometry, friction coefficient or inertia. Analytical approaches rely on

accurate identification of physical parameters which makes analytical models unfit for manipulation

while learning system models [2], [41].

Nevertheless, the work in [5] manages to create a stable controller for push manipulation using an

analytical model. Because thorough model identification of the pushable object was performed, the

trajectory error stayed within reasonable boundaries.

Data-driven models
Among recent studies, data-driven models shown an uptrend in popularity [25, 5, 41, 42]. Fully

data-driven methods don’t model any structure or use a generalised model of the system it describes.

A system is viewed as a black box, which is fed input and gives back output. This reduces the need

for prior information about the system significantly. IO data is analysed to estimate the structure

of the black box. The IO data analysed which solemnly serves the creation of a model is called the

model train set. The advantage of requiring a minimum of prior information comes at the cost of the

amount of IO data required. If there is not sufficiently much data an identified model will not be

accurate. If there is enough data, but the data does not encapsulate the systems behaviour enough, then

a identified model will also not be accurate. The encapsulating system behavior should reside in the

IO data collected. During data collection the system should be persistently excited which depends

upon the input sequence. The persistent excitation order of input signal determines the amount of system

behaviour ends up in the collected IO data. Persistent excitation order of input signal is the degree to

which an input contains enough information for exciting a system for system identification purpose [38].

The need for so much, rich IO data can be showed with an example. [5] compared a purely analytical

approach with a data-driven approach in push manipulation. The data-driven approach can take

up to 200 samples of IO data to sufficiently match the performance of an analytical controller. With

more IO data, data-driven approaches lower output errors and increase performance, outperforming

analytical approaches but also outperforming hybrid approaches, which are discussed in the next

subsection. Data-driven approaches outperform because data-driven approaches capture even tiny

dynamical details of the true dynamics. That is, assuming that the dynamical details reside in the IO data.

The nonlinear effects which dominate systems that describe object manipulation reside in IO data,

because data-driven approaches models are not assuming any structure which could limits capturing

nonlinear effects, the data-driven approaches are a worthy method for estimating true dynamics. It

must be mentioned that data-driven methods outperform other model classes with enough data, for

which the training time is in robotics not always available. If other modelling approaches are available

which estimating true dynamics accurate enough, the data-driven approach should be avoided because

of the long lasting training time.

Hybrid models
Hybrid models are an extension of analytical approaches with data-driven methods. Whilst the

interactions between objects are still represented analytically, some quantities of interest are estimated

References 78

based on observations (e.g. the coefficients of friction) [42]. Recent literature reveals the foremost

hybrid methods are parameterisable differential equations. Parameterisable state-space models and

parameterisable transfer models do exist, though the most widely used parameterisable model remains

a parameterisable differential model, which takes the form:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥, 𝑢, 𝑝) (1)

where 𝑥 is the state vector, 𝑢 is the input vector and 𝑝 is the parameterisation which needs to be

found such that 𝑓 (𝑥, 𝑢, 𝑝) accurately estimates the true dynamics. With a random or educated initial

guess of the parameterisation 𝑝, a system model is provided without full knowledge of all system

parameters. An initial guess as parameterisation may not be a very accurate model, but it does allow to

skip a tedious system identification period. Online adaptation allows to converge to a local minimum

during execution. Whether this local minimum also coincides with the global minimum is dependent on

the optimisation technique and the initial guess. Parameterisable differential models are very powerful

in situations where the general structure of dynamics is known, but certain parameters e.g. weight, the

friction coefficient is unknown or change over time [37].

In a environment with unknown objects, the ability to rapidly interact with objects is provided by

hybrid models. During interaction hybrid approaches can improve their model accuracy whilst also

adapting to changing systems. To fully capture the push mechanics, data-driven methods should be

used, because only data-driven methods are able to capture a large portion of the nonlinear dynamics.

	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	Introduction
	Research Question
	Problem Description
	Task Specification
	Assumptions
	Robot and Objects Examples

	Report Structure

	Required Background
	System Identification Setup
	Control Methods
	Planning
	Estimating Path Existence
	Path Planning

	Proposed Path Planner
	Planning in Four Subspaces
	Kinodynamic Planning

	Proposed Robot Framework
	Overview of the Proposed Framework
	Hypothesis Graph
	Definition
	Edge Statuses

	Hypothesis Algorithm
	The Search and the Execution Loop
	Fault Detection
	The Blocklist
	Encountering a Blocked Path

	Knowledge Graph
	Definition
	The Testing and Converging Phases

	Results
	Driving and Pushing Experiments
	A Driving Task
	A Pushing Task

	Comparison with State-of-the-Art

	Conclusions
	Future work
	References
	Appendix

