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Abstract

The instability of a solitary flexible cylinder in three-dimensional axial flow with various boundary con-
ditions, lengths, and Reynolds numbers has been investigated by CFD (computational fluid dynamics)
simulation. A new CFD code is modified from an existing code for a two-dimensional FSI (fluid-structure
interaction) problem. The fluid field is solved by the BDIM (boundary data immersion boundary method).
The solid structure’s displacement is solved by the IGA (isogeometric analysis). The coupling effect is
solved by the partitioned and implicit method combined with the IQN (interface Quasi-Newton) method.
The simulated results of a clamped-free cylinder can match the experimental results quantitatively. The
investigation for cylinders with different parameters indicates that the instability transition as cylinder
length increases is similar to that of a clamped-free cylinder as flow velocity increases, small vibra-
tions around the non-zero neutral position are observed when cylinder is in divergence, the deflection
amplitude during the transition range reduces, an extra blunt downstream end can reduce the flutter
amplitude, and increasing the fluid viscosity in the viscous force exemption range has no stabilizing
effect.
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Figure 5.20 Absolute displacement ranges at the downstream end when tconv > 20 under var-
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when u = 5.0.
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Figure 6.1 Time-varying displacements of the clamped-free cylinder with a taper end and
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placements at the downstream end and midpoint.

Figure 6.2 Shapes of the clamped-free cylinder’s central axis in xoy and xoz planes. AR = 30.
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Figure 6.9 Time-varying displacements of the pinned-free cylinder with a taper end and Re =
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Figure 6.11 Time-varying displacements of the clamped-free cylinder with an extra blunt end.

The solid and dashed lines represent the displacement at the downstream end
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Figure 6.12 Time-varying displacements of the pinned-free cylinder with an extra blunt end.
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Figure 7.1 Modified array cable.
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1
Introduction

1.1. Research background
Due to the low visibility in deep water, using acoustic methods to investigate the deep ocean environ-
ment is becoming increasingly popular. Based on this requirement, the hydrophone was developed.
This equipment is able to filter out background noise, including noise from the sea surface and hull
vibration[55].

A single acoustic sensor can only obtain limited audio information, and its sensitivity is relatively low.
Considering the limitation, the hydrophone towed array (HTA) system has been designed to localize
the acoustic source and improve SNR (signal-to-noise ratio), as shown in Figure 1.1.

(a) Single hydrophone. (b) Hydrophone array.

Figure 1.1: Hydrophone Towed Array system[55].

HTA contains a large number of hydrophones, which are installed in a flexible tube. Each hydrophone
is arranged along the center line of the tube, which makes the flexible tube significantly longer. A
long hydrophone array can also bring about better sensitivity and angle resolution. This cable-like
hydrophone array is towed behind a vessel by a cable. The hydrophone array is positioned far from
the boat to minimize the impact of the noise from the ship. Multiple hydrophone arrays can be set in
parallel to improve acoustic resolution further. The working condition of the HTA system is shown in
Figure 1.2.

1
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(a) Side-view of HTAs[50].
(b) Parallel setting of multiple hydrophone

arrays[55].

Figure 1.2: The working condition of the HTA system.

The hydrophone towed array is designed to have neutral buoyancy and is towed at a constant veloc-
ity. In ideal conditions, the hydrophone array cable should be perfectly straight, as shown in Figure
1.3a, which is an assumption of beamforming algorithms. If the array cable distorts from its straight
shape, lateral displacement and an inclined angle can cause significant performance degradation. The
localization of acoustic sources will be influenced, as shown in Figure 1.3b.

(a) The ideal condition. (b) The deformed condition.

Figure 1.3: Conditions of the hydrophone array cable[55].

The typical structure of the HTA system is given by the company Optics11. Figure 1.4 shows the geom-
etry of the whole HTA system with the vessel. Figure 1.5 shows that the so-called array cable contains
the array and connectors. The cable connectors are installed on the upstream and downstream ends
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of the array cable, which are smooth and only a few millimeters larger in diameter than the array. The
array cable is towed by a tow cable on the upstream side, and a drag rope is attached to the down-
stream side. The tow cable is allowed to bend. The array cable has neutral buoyancy and is supposed
to be perfectly straight and horizontal.

In more detail, the array cable should be parallel to the steady water plane and ship velocity vector (i.e.,
tow direction). The drag rope is much thinner than the array cable, and its end is free. The purpose of
the drag rope is to provide additional drag, making the array cable straight. The selection of drag rope
is semi-random[55].

Figure 1.4: Schematic of HTA system (side view)[55].

The dimension of the system is given in Table 1.1. The aspect ratio of a typical array cable (Larr/Darr)
is enormous. The standard working depth is 100 m, and the towing speed is 1 to 10 knots. The array
cable can be regarded as a flexible (allows bending) but inextensible cylinder with various upstream
and downstream ends. The deep water assumption is applicable, so there is no effect from the water
surface.

Figure 1.5: Schematic of the array cable with different parts[55].

Table 1.1: Dimension of hydrophone towed array system[55].

Tow cable length ltow 500 m Tow cable diameter dtow 0.02 m
Array cable length Larr 100 m Array cable diameter Darr 0.03 m

The hydrodynamics of the array cable are critical for the operational performance. The overall objec-
tive is to optimize the hydrodynamics of the array cable to maximize its performance. The acoustic
performance is mainly affected by (1) distortions in the shape of the array cable and (2) flow noise[55].
This project will focus on the shape distortion effect of a solitary array cable in flow.

1.2. Research question and report structure
To reduce the shape deformation of the array cable - a flexible cylinder, the fundamental cause of the
phenomenon should be found. Apparently, the flexible cylinder will deform if the flow field is not axis-
symmetric along its axis. Intuitively, making the flow field around the cylinder axially symmetric could
suppress the deformation of the cylinder. However, self-sustaining buckling and unstable oscillation
of a flexible cylinder have been observed even when the cylinder is in axial flow[43], which is defined
as the instability of the flexible cylinder. The regular axial flow with constant flow speed is the ideal
working condition of the HTA system. If the array cable deforms even in this perfect condition, the
situation will be worse in the disturbed flow field. In other words, to reduce the shape deformation of
a flexible cylinder in a complex flow field, it must first be stable in an ideal condition, which means no
buckling or oscillation in axial flow. This introduces the research question of this project:
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Instabilities of a solitary flexible cylinder in axial flow.

The axial flow is the far-field flow (initial condition). The flow direction is aligned with the cylinder’s
initial central axis. There is a coupling effect between the flexible cylinder and the flow, which means
the cylinder disturbs the flow field, and the fluid simultaneously deforms the cylinder. The research
question is a fluid-structure interaction (FSI) problem.

Previous research indicates that multiple reasons cause different types of instabilities. A literature
review is required to define the research matrix and select an appropriate research method. These will
be provided in Chapter 2. A solid structure solver, a code for the parametric body, and a coupling solver
are required to solve an FSI problem. Chapters 3, 4, and 5 provide their methodologies and validations.
Once the research method has been validated, the investigation of the research question will follow in
Chapter 6. The details of the experimental setting and the results analysis will be shown in this chapter.
The overall conclusion and the future plan will be provided in Chapter 7. All coordinate systems in this
project obey the right-hand rule. Gravity is neglected because the array cable is neutrally buoyant.



2
Literature review and research matrix

Previous research has employed multiple approaches to investigate the instability of a cylinder in axial
flow, including analytical research, numerical simulations, and experiments. Different factors affect
cylinder instability. This chapter will briefly introduce existing results from various research methods
and then select appropriate parameters for this project to explore. After providing reasons, a clear
research matrix will be obtained. The research approach of this thesis will also be determined. The
main contribution of this thesis project is shown at the end of the chapter.

2.1. Model simplification
The boundary conditions of the array cable are complex. This section introduces the simplification of
boundary conditions.

Based on the observation of the actual array cable, the complete boundary conditions at the upstream
end and downstream end can be obtained. The upstream end of the array cable is connected to the
towed cable. The upstream connector is smooth and only a few millimeters larger in diameter than
the array, as shown in Figure 1.4, so this connector can be regarded as a half-sphere with the cylinder
diameter. The upstream end is neither wholly free nor fixed. Inspired by Figure 2.11[22], as shown in
Figure 2.1, it should have elastic constraints in the x, y, and z directions and elastic rotational constraints
in all rotation directions.

Figure 2.1: Boundary conditions of the array cable with all constraints. The downstream end shape is omitted.

5
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The parameters K1, K2, K3 are translational stiffness, and K4 is rotational stiffness[22]. The stiffness
could be nonlinear. The downstream end is considered to be completely free. Such a physical model
is complex due to the multiple degrees of freedom. A further simplification is possible.

The upstream end is also the end of the towed cable. The working condition of the towed cable end
is similar to that of the end of the fuel pipe installed on an aerial refueling tanker. The fuel pipe is also
flexible and has bending stiffness. Based on the observation of reality, the fuel pipe end is relatively
stable. It has tiny displacements in all directions, as shown in Figure 2.2.

Figure 2.2: Aerial refueling tanker[21].

The motion of the fuel pipe end indicates that, in our case, the displacements at the towed cable end
(the upstream end of the array cable) should be small. The translational stiffness K1, K2, and K3 can
be assumed to be infinite, so there are no displacements at the upstream end. An experiment pointed
out that the oscillations of a clamped-free cylinder in axial flow are orbital[43], so the upstream end of
the array cable should have freedom of rotation.

Figure 2.3: Simplified boundary conditions of array cable. The downstream end shape is omitted.

Considering the above reasons, the rotational stiffness K4 at the upstream end is assumed to be zero,
so there is no rotational constraint. In summary, the simplified boundary conditions of the array cable
will be pinned at the upstream end and completely free at the downstream end, as shown in Figure 2.3.

The drag rope after the downstream end is much thinner than the array cable. The tangential viscous
drag is negligible; the reason is provided in section 3.2. The drag rope can be removed from the
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simplified model. The downstream end now has no constraints, so it is free to move. According to the
later literature review, the shape of the downstream end should be considered.

2.2. Literature review
An unstable cylinder cannot maintain its straight shape and original direction in axial flow. In other
words, an arbitrary point on the unstable cylinder will have non-vanishing lateral displacements, as
shown in Figure 2.4. The solid bending curve represents the central axis of the flexible cylinder. The
rotation angles are derivatives of displacements.

Figure 2.4: Lateral displacements in different directions.

There are two basic types of instability of a flexible cylinder[44][46]:

• Divergence (buckling/yawing): Static buckling or yawing of the cylinder. The points on the
cylinder deviate from the original axis to the same side and develop a new neutral position, as
shown in Figure 2.6a. For a clamped-free (the upstream end is fixed, and the downstream end
is free) cylinder, the shape is similar to a beam deflected in its first mode[43][51].

• Flutter: Oscillation of the cylinder. The points on the cylinder oscillate at different sides from the
original axis, as shown in Figure 2.6b. For a clamped-free cylinder, the flutter can be the second
mode or higher[44][51]. The dashed curve indicates the flutter cylinder at a different time step.

(a) Divergence instability (buckling). (b) Flutter instability.

Figure 2.5: Instabilities of a clamped-free cylinder in axial flow.

The different types of instability of a pinned-free (the upstream end is articulated, and the downstream
end is free) cylinder are shown in Figure 2.6.

(a) Divergence instability (yawing). (b) Flutter instability.

Figure 2.6: Instabilities of a pinned-free cylinder in axial flow.

Various factors affecting instability have been tested in previous research using different approaches.
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2.2.1. Analytical research

Figure 2.7: A cantilevered cylinder in axial flow[45].

The analytical method determines the instability by solving essential physical equations with boundary
conditions. The physical and mathematical models are usually simplified to make them solvable. For
example, Païdoussis[44] used a two-dimensional linear model to predict the instability of a ”not too long”
flexible cylinder in axial flow. He used force balance in the global coordinate system to build motion
equations 2.1 and 2.2 in x- and y-directions:

∂

∂x
(T + pA) +

(
mg − ∂p

∂x
A

)
+ FL + (FN + FA)

∂y

∂x
= 0 , (2.1)

∂Q

∂x
− FN − FA + FL

∂y

∂x
+

∂

∂x

[
(T + pA)

∂y

∂x

]
−m

∂2y

∂t2
= 0 , (2.2)

whereQ is the lateral shear force, T the axial tension, andm the mass of the cylinder per unit length[44].
Q is determined by the elementary Euler-Bernoulli beam model, as shown in equation 2.3, where E∗

is the viscoelastic constant[44]. If E∗ is negligible, the equation 2.3 is the same as the Euler-Bernoulli
beam equation with small bending deflection simplification[38].

Q = − ∂

∂x

(
EI

∂2y

∂x2

)
− E∗ ∂

∂x

(
I

∂3y

∂x2∂t

)
(2.3)

FA is the inviscid force determined by the slender body theory, as shown in equation 2.4[31][44].

FA =

(
∂

∂t
+ U

∂

∂x

)[
M

(
∂y

∂t
+ U

∂y

∂x

)]
(2.4)

FN and FL are viscous forces in the normal and tangential directions. Païdoussis applied Taylor’s
formulas[56], which have coefficients based on solid or fluid characteristics, to determine the viscous
force in different directions, as shown in Equations 2.5 and 2.6[44]:

FN =
1

2
ρDU2(Cfsin i+ CDpsin

2 i) , (2.5)

FL =
1

2
ρDU2Cfsin i , (2.6)

where D is the cylinder diameter, CDp and Cf are the coefficients associated with form and friction
drag.

Païdoussis’ analytical model indicates that the shape of the cylinder’s downstream end is one of the criti-
cal effects on the instability. The downstream (free) end shape is a boundary condition. The elementary
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Euler-Bernoulli beam model and the slender body theory are also applied. The primary modification is
the inviscid force term FA, which is corrected by a parameter f , as shown in equation 2.7[44]:

∫ L

L−l

∂Q

∂x
dx− f

∫ L

L−l

(
∂

∂t
+ U

∂

∂x

)
[M(x)v]dx−

∫ L

L−l

m(x)
∂2y

∂t2
dx = 0 , (2.7)

where l is the free end length, and v is the resultant relative velocity[31]. The range of f is from 0 to 1.
If f is closer to 0, the end is more blunt; if f is closer to 1, the end is close to streamlined[44].

The correction is required because the theoretical lateral force at the free end may not be fully realized
as a result of (I) the lateral flow not being truly two-dimensional since the fluid has the opportunity to
pass around rather than over the tapered end[35], and (II) boundary-layer effects[15].

The analytical model predicts no instability if f = 0. Decreasing f should have a stabilizing effect. The
results are validated qualitatively by experiments[42][44][46].

For a long cantilevered cylinder with clamped-free boundary conditions and neutral buoyancy, a mod-
ification of Païdoussis et al.’s linear analytical model was developed by Langre et al.[25]. A short
description of this model is given below.

The cylinder is modeled as a beam, which means its flexural rigidity is non-vanishing. The equation
governing the lateral motion Y (X,T ) reads[25]:

EI
∂4Y

∂X4
− ∂

∂x
(Θ

∂Y

∂X
) +m

∂2Y

∂T 2
= FF , (2.8)

where Y is the lateral position, x is the axial position, EI is the flexural rigidity, Θ(X) is the local axial
tension,m is the mass per unit length, and FF is the transverse fluid force per unit length acting on the
beam. A uniform axial flow is assumed. The fluid loading resulting from the motion may be modeled
as the sum of the following: the inviscid force, the drag force, the base drag force, and the lift force
exerted at the downstream end[25].

Figure 2.8: Stability diagram for long cylinders, l ≥ 1, from computations at l = 10, depending on the parameter f relative to
the shape of the downstream end. —, Divergence limit; - - -, flutter limit; . . . , exact divergence limit adapted from the solution
of Triantafyllou & Chryssostomidis[60][25].

The major modification of this model is using the neutral point. The position of the neutral point is
defined by the critical length LC :
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LC =
D(π − 2Cb)

2CT
, (2.9)

where D is the diameter of the cylinder, Cb is the base drag coefficient, and CT is the tangential coeffi-
cient. The coordinate system’s origin is at the cylinder’s downstream end. Downstream of the neutral
point, −LC < X ≤ 0, the beam is in compression, and upstream of this point, X < −LC , is in tension.
With all points downstream of the neutral point being in compression, no stiffness exists in this cylinder
segment other than that due to flexural rigidity. It should be noted that the position of this neutral point
does not depend on the flow velocity. The critical length LC is used in the scaling in place of the cylinder
L, as in Doare & Langre[12] and Lemaitre et al.’s[30] papers to analyze the effect of length on stability
more appropriately. The dimensionless length is l = L/LC , where L is the cylinder length[25].

Substitute the fluid loading in equation 2.8 and apply the boundary conditions; the partial differential
equation can be solved numerically to obtain the lateral motion of the long cylinder in axial flow. The
results of critical flow velocities are shown in figures 2.8 and 2.9.

Figure 2.9: (a) Stability diagram for a cylinder in axial flow modeled as a string, in terms of the dimensionless length l and flow
velocity v; S denotes stability, and F denotes flutter. (b) The critical flow velocities for divergence and flutter for f = 0.8 and
variable l; the full line shows results obtained by the full theory, while the dashed lines represent ’short cylinder’ and long
cylinder’ approximations[25].

Langre et al.’s analytical model successfully predicts the existence of instability, especially the flutter,
of a long cylinder with a sufficiently streamlined downstream end in axial flow[25]. Figure 2.10 shows
the model shape of the unstable modes.

Figure 2.10: Model shape of the unstable modes as a function of the cylinder length with a tapered end and the clamped-free
boundary condition. Flutter motion over a cycle of oscillations for cylinders with different lengths (modified)[25].

Compared to Ni & Hansen’s experiment[36] (l = 5), the critical velocities are of the same order of
magnitude as shown in figure 2.9, but the predicted f has higher values. Considerable work remains
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to achieve the same accuracy in experimental comparisons for long cylinders as is available for short
ones[25].

In our case, the upstream end of the array cable is connected to a movable towed cable. A fixed
boundary condition may be unsuitable at this position. Removing a constraint could reduce the model
error, for example, by considering the boundary condition as ”pinned-free.”

For a pinned-free cylinder in axial flow, Kheiri and Païdoussis[22] developed a two-dimensional analyt-
ical model to predict the instability of the pinned-free cylinder in axial flow. The extended Hamilton’s
principle is used to obtain the linear equation of motion and boundary conditions for the cylinder. The
schematic of the pinned-free is shown in Figure 2.11, and the predicted critical velocity is shown in Fig-
ure 2.12. The results show that the shape of the downstream end affects the instability of the flexible
cylinder in axial flow. A more blunt downstream end provides a larger stable region in Figure 2.12. εCf

is the dimensionless length scale of the pinned-free cylinder. Figure 2.12 also indicates that increasing
length causes the cylinder to become more unstable before the length reaches a critical value. The
results are validated qualitatively by experiments conducted in 1965 by Païdoussis[22].

Figure 2.11: A flexible cylinder subjected to axial flow and supported only at the upstream end by a translational and a
rotational spring, the stiffnesses of which are represented by k0 and c0. In this paper, k0 is assumed to be infinite, and c0 = 0,
i.e., the pinned-free cylinder[22].

Figure 2.12: Variation of critical flow velocity for static and dynamic instabilities of a flexible, neutrally buoyant pinned-free
cylinder as a function of εCf . The numerical results obtained via Galerkin’s method are ∆ for f = 0.7 and ◦ for f = 1.0.The
solid line shows the results obtained analytically via the Adomian Decomposition Method; the dashed line shows the linear
interpolation of the numerical results. εCf is the dimensionless length of the cylinder. f represents the shape of the cylinder’s
downstream end. A larger f indicates a more streamlined end[22].

Although analytical models can qualitatively predict a cylinder’s instability in axial flow, they have a fatal
weakness: the model error is vast. In an FSI problem, cross-flow and coupling effects play a critical role.
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However, in analytical models, the cross-flow effect and hydraulic forces are determined by coefficients
based on the characteristics of solids or fluids.

Both Reynolds and Cauchy numbers are critical for a problem with a flexible cylinder in axial flow, while
analytical models focus on Cauchy numbers. Flow similarity is not guaranteed if there is no flow field,
so the fluid-structure coupling cannot be simulated. Furthermore, when predicting the instability of a
cylinder with different lengths, the model requires modification, which causes some inconvenience.

Still, high efficiency makes the analytical model a powerful research approach. The model can predict
the instability of a cylinder with a significant length. The analytical model also indicates that the Euler-
Bernoulli beam theory is applicable.

2.2.2. Experiment
To validate his analytical model, Païdoussis did multiple experiments to investigate the motion of a soli-
tary cantilever cylinder in axial flow. The effect of the downstream end shape on the instability has been
tested. The experiment apparatus of a horizontal cylinder is shown in Figure 2.13. The diameter of the
cylinder Dcyl was 0.653 inch, and the diameter of the cylindrical flow field was 2.000 inch. The cylinder
was aligned along the central axis of the flow field so that the possible maximum lateral displacement
wmax of a point on the cylinder was less than twice the cylinder diameter Dcyl. Considering the cylin-
der length Lcyl, which was 15.400 inch[43], a relation can be easily obtained: wmax/Lcyl < 0.1, which
indicates that the small deflection assumption is suitable for the solid mechanism of this project[58].

Figure 2.13: Schematic diagram of experimental apparatus[43].

A metal strip was embedded in the cylinder to prevent sagging since the cylinder was not neutrally
buoyant. Various shapes of the downstream end, which were represented by the parameter f , had
been tested. The critical velocities were obtained by continuously increasing the flow velocity. The
cylinder oscillations are generally three-dimensional (orbital)[43]. Different types of instabilities of a
clamped-free cylinder in axial flow are shown in Figure 2.14.

(a) Photographs of a flexible clamped-free cylinder in axial flow in divergence (buckling).

(b) Photographs of a flexible clamped-free cylinder in axial flow undergoing second-mode flutter.

Figure 2.14: Instabilities of a clamped-free cylinder in axial flow by Païdoussis[43].
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The results of critical velocities for the horizontal clamped-free cylinder are shown in Figure 2.15a. The
same test for a vertical, clamped-free cylinder was also completed (with different cylinder parameters)
[46], and the results are given in Figure 2.15b. At small flow velocities, small random vibrations were
always damped. When f was not too small nor the slenderness ϵ too large, buckling developed slowly
with increasing flow velocity. The transition from buckling to second-mode instability involved a gradual
return of the cylinder to its position of rest along the x-axis before the further increase in the flow velocity
resulted in unstable oscillation. Increasing the velocity after this point caused the cylinder to flutter in
the second mode, then in higher mode[43]. Notice that increasing flow velocity not only changed the
Reynolds number but also changed the Cauchy number.

The experiments qualitatively confirm the prediction from the analytical method. For a ”not too long”
cylinder, the streamlined downstream end (smoothly tapered, f → 1) makes the cylinder more unstable,
while the blunt end (f → 0) has a stabilizing effect. If the flow velocity is sufficiently small, small random
vibrations are always damped[43], no matter the downstream end shape.

(a) The critical velocities for divergence, ucd, and second-mode flutter,
ucf , as functions of the free-end shape for the horizontal system: I,
experimental data; -, theoretical results from varying f .[43]

(b) The critical velocities for divergence, ucd, and second-and
third-mode flutter, ucf2 and ucf3, respectively, as functions of the
free-end shape for the more recent experiments with vertical
cylinders (without metal strip): I, experimental data; -, theoretical
results from varying f .[45]

Figure 2.15: Comparison of critical velocities between analytical predictions and experiments. The symbol ”I” represents the
interval of critical velocities.

Païdoussis also experimented to test the effect of cylinder length, in other words, the slenderness
(aspect ratio) ϵ = Lexp/Dexp. The length was successively reduced by cutting off pieces from the free
end. The same tapered end-piece was used in all tests. The results are shown in Figure 2.16.
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Figure 2.16: The effect of the slenderness ratio ϵ on the instability of clamped-free cylinders. ucb is the critical velocity of
buckling, and uco is the critical velocity of second-mode oscillation[43].

When ϵ > 24, no static buckling developed. At ϵ = 39.6, the amplitude and frequency of oscillation were
erratic, the latter vanishing occasionally while the cylinder retained an S-shape. When ϵ > 40, there
was no second mode instability, at least with the maximum attainable flow velocity[43]. The experiment
shows that expanding the length in a specific range could stabilize the clamped-free cylinder. The
critical velocity of divergence and flutter may increase. The transition of instability as the cylinder
slenderness changes remains to be investigated.

It is possible to experiment with a model-scale cylinder that has a relatively large aspect ratio. As shown
in Figure 2.17, Ni and Hansen experimented as in[36]. They set up an experiment to monitor the flow-
induced motion of a cylinder in axial flow. The boundary condition of the cylinder was clamped-free.
The tested cylinder was 7.92 meters long and had a diameter of 0.0159 meters. The aspect ratio was
498.11, which was relatively large but still could not reach the level of a thousand, the typical aspect
ratio of an array cable.
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Figure 2.17: Schematic diagram of the blowdown facility and photographic equipment[36].

The time-averaged positions of the cylinder are shown in Figure 2.18. The minimal displacement of the
mean cable position from the centerline of the test section is entirely due to the slight deviations from
neutral buoyancy. The flags on each data point in the figure indicate the maximum lateral excursion,
which means the mean displacement is not a static divergence effect. The cylinder vibrates at different
frequencies. The experimental result deviates from the analytical prediction. Ni and Hansen suggested
using the length at which static divergence actually occurred rather than the total length of the cylinder
in Païdoussis’ analytical model[43] to obtain a better agreement between the analytical model and the
experiment[36].

Figure 2.18: Time-averaged cylinder position in the test section at three velocities. Note the greatly expanded vertical scale
compared to the horizontal scale[36].

Païdoussis also experimentally tested the instability of a pinned-free cylinder in axial flow[44], as shown
in Figure 2.19. Only one set of parameters has been tested. The motion occurred in two ways: rotation
about the pin or bending the steel strip. The flow field was thin, and the cylinder deflection was slight.
The result validates the analytical model mentioned above for a pinned-free cylinder[22].
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Figure 2.19: Photographs illustrating (a) static divergence (yawing/buckling), (b) second-mode flutter, and (c) third-mode flutter
of a horizontal pinned-free cylinder in axial flow[44].

In conclusion, the experiments mentioned above qualitatively validate analytical models, which means
that some assumptions in analytical models can be applied to this project.

The cylinder’s displacement in axial flow is small, only about once or twice the cylinder’s diameter or
less, regardless of length. Thus, researchers can investigate the cylinder’s instability using a thin fluid
field. The results of the experiments also prove the feasibility of the small deflection assumption in the
beam model.

The experimental research method usually has the least model error. On the other hand, it has disad-
vantages such as high cost and time-consuming.

2.2.3. Numerical simulation
Numerical methods can be used to investigate the instability of a flexible cylinder in axial flow. Liu et
al. simulated the fluid-structure interaction for an elastic clamped-clamped (upstream and downstream
ends are fixed) cylinder subjected to tubular fluid flow. They applied the ALE Navier-Stokes equations
with large eddy simulation to model the turbulent flow, and the Euler-Bernoulli beam dynamic equation
was solved for the elastic cylinder vibration. The numerical method they used for the solid mechanism
was the finite element method (FEM)[32]. De Ridder et al. simulated the fluid forces and fluid-elastic
instabilities of a clamped-clamped cylinder in turbulent axial flow[10]. LaBarbera ran a two-dimensional
numerical simulation to test the instability of a short cylinder with a streamlined end[24].

The numerical simulation has several advantages, including low cost and a relatively low model error.
Changing and testing various parameters in a numerical model is convenient, while an analytical model
usually needs modification when parameters change.
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Based on a review of the dynamics of cylindrical structures in axial flow by Païdoussis in 2021[41], the
three-dimensional numerical research about a pinned-free or clamped-free cylinder was rare. These
two sets of boundary conditions share some similarities with the array cable. Thus, creating a general
numerical model for the cylinder mentioned above is meaningful, which makes it easier to predict the
instability of an array cable and for researchers to test various conditions.

2.3. Numerical tools
Some numerical methods could be helpful. Introductions are provided in this section.

2.3.1. B-spline Curve
The B-spline curve is defined by a knot vector Ξ and basis functions. The knot vector is a set of non-
decreasing real numbers representing coordinates in the parametric space of the curve:

Ξ = {ζ1, ..., ζn+p+1}, (2.10)

where P is the order of the B-spline, and n is the number of basis functions (and control points) nec-
essary to describe it. ζ is the parametric coordinate along the whole curve. Knot spans subdivide the
domain into ”elements”[8].

Based on a knot vector, B-spline basis functions are defined recursively starting with P = 0 (piecewise
constants)[8]:

Ni,0(ζ) =

{
1 ζi ≤ ζ ≤ ζi+1

0 otherwise.
(2.11)

For p > 1:

Ni,p(ζ) =
ζ − ζi

ζi+p − ζi
Ni,p−1(ζ) +

ζi+p+1 − ζ

ζi+p+1 − ζi+ 1
Ni+1,p−1(ζ). (2.12)

Given a set of n control points, the piecewise polynomial B-spline curve C(ζ) of order P is obtained by
taking a linear combination of basis functions and control points:

C(ζ) =

n∑
i=1

Ni,P (ζ)Bi, (2.13)

Figure 2.20: Piecewise cubic B-Spline curve (solid line) and its control net (dotted)[8].
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An example curve is shown in Figure 2.20. It is a cubic B-spline curve. The basis function is a cubic
polynomial, which requires four control points to define. The curve generation process is as follows:
pick the first four control points B1 to B4 with basis functions N1,3(ζ) to N4,3(ζ) to generate the first
piece of the curve; use control points B2 to B5 with N2,3(ζ) to N5,3(ζ) to generate the second piece
of the curve; the rest of curve piece follow the same rule until the last piece reach the final control
point. Hence, nine control points will generate five segments of the curve. Connect all the segments,
and then we can have the whole curve. There is an overlap region between adjacent curve segments,
which is why the continuity is high: the second curve segment considers the shape information from
the previous segment by sharing several control points.

The control points are usually not on the curve, as shown in Figure 2.20. An essential property of the
B-spline curve is affine covariance, which states that an affine transformation of the curve is obtained
by applying the transformation to its control points[8].

In our case, the flexible cylinder’s displacement is small, with several orders of unstable modes. The
cylinder shape is continuous and smooth. Thus, the B-spline curve is sufficient for defining the shape.

2.3.2. Finite element analysis
The finite element analysis determines the cylinder’s displacement under the hydro-pressure load. In
FEA, the finite element method (FEM) is first applied to discretize the space in contiguous elements.
Differential equations based on the material’s mechanism are used for each element individually. After
the space discretization, the results from FEM are interpolated, and a system with linear algebraic
equations can be constructed and solved[1][18][53]:

Kijuj = fi , (2.14)

where u and f are the displacements and loads, which are externally applied at the nodal points. The
equations can be written in a matrix form, as shown in Figure 2.21.

Figure 2.21: Global load-displacement matrix equation. ui and fj indicate the deflection at the ith node and the force at the
jth node[53].

For example, consider an element with two nodes on the nonlinear Euler-Bernoulli beam in the two-
dimensional plane xoy. The rotation angle is the derivative of the displacement, and the torque in the
axial direction is neglected, so the governing equations only have force and displacement terms without
rotation angle and moment. Each node has two degrees of freedom.

Assume the number of nodes on the beam is N , and the x axis is the beam’s original central axis. The
node values are determined by integrating the governing equation along elements. The dimension of
the global stiffness matrix is 2N × 2N . The stiffness matrix is sparse.

FEA can solve problems with complicated stress[53]. However, ”in classical FEA, the basis chosen
to approximate the unknown solution fields is then used to approximate known geometry”[7]. The
interpolation function between nodes is linear, so a beam element is always straight. A large number of
elements are required to represent an original bent curve. The known geometry information is a waste.

2.3.3. Isogeometric analysis
The isogeometric analysis turns the idea of FEA around, selects a basis capable of exactly representing
the known geometry, and uses it for the fields we wish to approximate[7].

”A fundamental tenet of isogeometric analysis is to represent geometry as accurately as possible”[8].
For the qualitative illustration, consider a wavelike cantilever beam under a single force applied to the
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tip in two-dimensional space. Assume it is a pure-bending linear Euler-Bernoulli beam. The shape
function of the beam is known.

(a) Displacement determined by classical FEA. The straight lines with
dots are elements in the classical FEA.

(b) Displacement determined by IGA. The dots are control points in
the B-spline curve. The tiny dashed line represents the control net.

Figure 2.22: Schematic of a wavelike cantilever beam displacement by different methods. Black represents the original
position. Red represents the displacement. fy is the load. The Blue dashed line is the actual shape of the beam.

As shown in Figure 2.22a, the elements in the classical FEA are straight. The reason is that the dis-
placement between two nodes in an element is determined by applying a piecewise linear interpolation
function with the values on nodes in the local coordinate system[18]. Thus, more elements are required
to describe a known wavelike beam. There are six elements and seven nodes in the figure; considering
only one degree of freedom, the dimension of the stiffness matrix of the whole system is 7×7. A system
of seven linear algebraic equations must be solved to determine the displacement, which requires a
higher computational cost. The error is also more significant due to the straight element, as shown in
the figure. Although more elements are used for refinement, the shape is inaccurate.

IGA can use the known geometry information, as shown in Figure 2.22b. It is possible to generate
wavelike elements using the known shape function before applying the force. The significant improve-
ment of IGA is that it applies a nonlinear interpolation function based on the known geometry within an
element, allowing the element to have a complex shape that fits the actual shape better. Hence, fewer
elements can accurately describe the beam. The figure contains five control points corresponding to
two third-degree elements in IGA. The stiffness matrix’s dimension is 5 × 5, less than the dimension
of classical FEA. The error is also minor. In a linear system, the determination process is similar to
generating and bending wavelike elements. In other words, the method determines the displacement
of a straight cantilever beam (reference space), distributes it to the scaled wavelike beam (parametric
space), and finally transfers the result to the actual physical space.

The mathematics of IGA is briefly introduced[27].

To apply IGA, knot spans subdivide the domain into ”elements”[8]. We define the element as a ”curve
segment” mentioned in the subsection 2.3.2 in the B-spline curve. If the degree is three, four control
points define a curve segment.

We need to start from the FEA principle to illustrate IGA. Consider a cantilever beam under hydro-
pressure force in the y direction in the physical space, which is denoted by qy. The physical longitudinal
coordinate x ranges from zero to one, representing the beginning and end of an element I. Assume the
beam is a pure bending, isotropic, linear Euler-Bernoulli beam. Integrate the static governing equation
along the element[7], and we have:

∫ 1

0

EIy
∂4wy(x)

∂x4
dx =

∫ 1

0

qy(x)dx , (2.15)

where wy(x) is the displacement and qy(x) is the distribution load. The boundary conditions are:

wy(0) = 0 and
∂wy(0)

∂x
= 0 . (2.16)

Define a test function: m(x), which fulfill the boundary conditions[62]:
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m(0) = 0 and
∂m(0)

∂x
= 0 . (2.17)

Hence, ∂2m(0)/∂x2 = 0. The test function also has to fulfill the following:

∫ 1

0

m(x) ·R(w̃y)dx = 0 , (2.18)

where R(w̃y) is the residual between approximated solution w̃y and exact solution wy[18]:

R(w̃y) = EIy
∂4w̃y

∂x4
− qy , (2.19)

Multiply the test function on each side of equation 2.15:

EIy

∫ 1

0

m(x)
∂4wy(x)

∂x4
dζ =

∫ 1

0

m(x)qy(x)dx . (2.20)

The left side of equation 2.20 can be expressed as:

EIy

∫ 1

0

m(x)
∂4wy(x)

∂x4
dx = EIy

[
∂2

∂x2

(
m(x)

∂2wy(x)

∂x2

)]1
0

− EIy

∫ 1

0

∂2m(x)

∂x2

∂2wy(x)

x2
dx (2.21)

The first term on the right-hand side of equation 2.21 is zero because[49]:

m(0) = 0 and
∂2wy(1)

∂x2
= 0 (2.22)

Substitute simplified equation 2.21 in equation 2.20 to obtain the weak form of PDE[62]:

−EIy

∫ 1

0

∂2m(x)

∂x2

∂2wy(x)

x2
dx =

∫ 1

0

m(x)qy(x)dx . (2.23)

Now, we can apply the Galerkin method to the equation[18]. Express original variables by known basis
functions and unknown control variables:

wy(x) =

nI∑
i=1

Ni(x)Wi , m(x) =

nI∑
i=1

Ni(x)Mi . (2.24)

Use Ni as the abbreviation of basis functions. The equation 2.23 becomes:

−EIy

∫ 1

0

∂2

∂x2

(
nI∑
i=1

NiMi

)
∂2

∂x2

(
nI∑
i=1

NiWi

)
dx =

∫ 1

0

(
nI∑
i=1

NiMi

)
qy(x)dx . (2.25)

Here, we can apply IGA. nI is the number of control variables in an element, Ni is the basis function
from the B-spline curve,Mi is the control variable of the test function, andWi is the displacement of the
control point that defines the curve shape. DivideMi on both sides of equation 2.25 since the equation
holds for any Mi. Extract the control variable out of the integration:

−EIy

nI∑
i=1

Wi

∫ 1

0

∂2Ni

∂x2

∂2Ni

∂x2
dx =

nI∑
i=1

∫ 1

0

Niqy(x)dx . (2.26)



2.3. Numerical tools 21

The second derivative of the basis function Ni exists and is known because the degree of basis func-
tions is at least cubic in IGA, as shown in Figure 2.23b. Thus, we can integrate the second derivative
instead of the fourth. The PDE is simplified, making the integral equation more straightforward to solve.

The interpolation function in the classical FEA is different. Ni is linear, as shown in Figure 2.23a. wy

becomes[18]:

wy(x) =

2∑
i=1

Ni(x)wy,i , N1(ξ) = 1− ξ , N2(ξ) = ξ , ξ =
x− xi−1

∆xi
. (2.27)

Simplifying PDE as equation 2.26 before integrating is impossible since the basis functions are linear:
the derivatives become zero from the second one. We can only start integrating PDE from the fourth
derivative, which is more complex. The geometry information is wholly wasted.

(a) Linear one-dimensional element and shape functions. (1)(2)
denote the element. i denotes the node[18]. The vertical axis is the
value of the basis function.

(b) Cubic basis functions formed from the open knot vector
Ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1. ζ is the
parametric coordinate in an element[8].

Figure 2.23: Basis functions as components of the interpolation function. Superpose basis functions to obtain the shape
function or the displacement function.

In conclusion, IGA is applicable for the solid structure solver in our case because (1) the analytical
signed-distance function of the cylinder can be obtained from WaterLily, the geometry information is
apparent; (2) the cylinder, in our case, is a linear Euler-Bernoulli beam, the deflection is slight and
smooth; (3) the external force is continuous and smooth; (4) IGA has higher efficiency due to fewer
elements; (5) IGA define the curve better since the basis functions are nonlinear; (6) IGA is robust for
oscillatory behavior of the solutions[62].

The element load-displacement matrix equation can be constructed by integrating terms on both sides
of equation 2.26 and its similar form in the z direction along an element. The integration is numerically
approximated by Gaussian quadrature. We can assemble the global stiffness matrix with the local
stiffness matrix[7].

2.3.4. Gauss quadrature
Integrating the differential governing equation as 2.26 along the beam by the analytical method with
two integral limits could be complex. The analytical function of the distribution load is also unknown.
Measuring the unit length force on Gauss points is the only way to approximate the integration of
external forces. Hence, the code uses the numerical method of approximating the integral as a weighted
sum[61]. The typical integration domain in the Gauss quadrature is [−1, 1]. We can apply a map to
transfer the domain to the physical one. For example, consider the integration of the force term in the
y direction in equation 2.26:

∫ 1

0

Niqy(x)dx =

ng∑
j=1

GjNi,jqy,j . (2.28)
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Here, i denotes the control variable, and j denotes the Gauss integration point. ng is the number of the
Gauss point, qy,j is the unit length force on the beam’s Gauss point, and Gj is the pre-defined Gauss
weight. Ni,j is the value of the basis function i on the Gauss point j.

Apply Gauss integration to the left side of equation 2.26, and we have:

∫ 1

0

∂2Ni

∂ζ2
∂2Ni

∂ζ2
dζ =

ng∑
j=1

Gj
∂2Ni,j

∂ζ2
∂2Ni,j

∂ζ2
. (2.29)

2.3.5. Finite volume method
Computational fluid dynamics has developed dramatically in this century. Numerical simulation has
become a popular method for solving fluid problems. It is highly efficient because it does not require
actual customized equipment and uses computers to solve complex equations. Running numerical
simulations could result in a low model error as their principle is to simulate experiments in digital
environments.

The Finite volume method is one of the known numerical methods for solving fluid dynamics problems.
It has an advantage due to its direct connection to physical flow properties. The basis of the method
relies on the direct discretization of the integral form of the conservation law. The FVM requires setting
up the following steps[18].

• Subdivide the mesh, obtained from the space discretization, into finite (small) volumes, one con-
trol volume being associated with each mesh point;

• Apply the integral conservation law to each of these finite volumes.

It is possible to use FVM to solve the FSI problem. Slone et al.[54] and Chijioke et al.[6] provide
examples of the usage of FVM. OpenFOAM and Waterlily are two known open-source CFD codes
based on the finite volume method (FVM). Compared to OpenFOAM, Waterlily has advantages: it is
more efficient and can be combined with machine learning[63].

It is theoretically possible to solve a fluid dynamic problem with a large geometry scale by using the
finite volume method. However, computational cost is a firm limit for FVM. For the problem with large
geometry, the flow solver must solve a considerable number of meshes. In our case, the cylinder (cable)
length is 100meters; a full-scale simulationmay require several months unless a supercomputer is used,
which is not accessible in this project.

Due to the limit of computational cost, researchers usually run their simulations at a model scale while
maintaining flow similarity. A typical way to achieve flow similarity for a structure immersed in the fluid
is to keep the Reynolds number of the models the same as that of the real structures. In our case, the
typical diameter of the structure is Darr = 0.03 meters. The flow speed is Ureal = 5 knots (i.e., 2.572
m/s). The density and dynamic viscosity of seawater are ρsea = 1026 kg/m3 and µsea = 1.22 × 10−3

Pa · s. The Reynolds number of the structure can be determined by equation 2.30.

Re =
ρseaUrealDarr

µsea
(2.30)

The Reynolds number is 6.49×104, and the Reynolds number of the related model should be the same.
If we use the structure length Larr, the value will reach 2.16× 108. The required fluid field should also
be enormous to contain a full-size model due to the aspect ratio. Many grids are necessary for the
numerical simulation with the actual aspect ratio.

2.3.6. Boundary Data Immersion Method
The open-source code WaterLily was developed purely by Julia. It is a powerful tool because it is
convenient to create and import expansion packages to the mainframe. The FVM code Waterlily uses
the boundary data immersion method (BDIM) to deal with the body boundary immersed in the fluid.
BDIM is a type of immersion boundary method. The basic principles of the immersion boundary method
and reasons why that is unsuitable for high Reynolds flow are given below.
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For an FSI problem, use Ωf to denote the incompressible viscous fluid domain and Ωb to denote the
solid or deforming body domain with prescribed velocity V⃗ (x⃗, t)[33]. The governing equation in the
solid body is

u⃗ = V⃗ . (2.31)

The incompressible Navier-Stokes equation governs the fluid:

∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗+

1

ρ
∇⃗p− ν∇2u⃗ = 0 . (2.32)

The coefficients ρ and µ are the constant fluid density and viscosity, respectively. Integrate the equation
2.32 over a time step ∆t, the fluid and body equations can be written as:{

u⃗ = b⃗ , for x⃗ ∈ Ωb

u⃗ = f⃗(u⃗) , for x⃗ ∈ Ωf

(2.33)

with
b⃗ = V⃗ , (2.34)

f⃗(u⃗, t0 +∆t) = u⃗(t0) +

∫ t0+∆t

t0

[
−
(
u⃗ · ∇⃗

)
u⃗+ ν∇2u⃗

]
dt−

∫ t0+∆t

t0

1

ρ
∇⃗p dt . (2.35)

The second integration in the right-hand side of the equation 2.35 is the non-pressure terms, and the
last integration is the pressure impulse over ∆t[33].

In an immersion boundary method, equation 2.32 will be discretized on a non-boundary conforming
Cartesian grid, and the boundary condition will be imposed indirectly through modifications of equation
2.33. Grid generation is much easier using the immersion boundary method because a body does not
necessarily have to fit and conform to a Cartesian grid[16].

There are two categories of immersion boundary methods. The first category is the continuous forcing
approach. A significant drawback of this approach is that the smoothing of the forcing function leads to
an inability to provide a sharp representation of the immersed boundary. The methods in this category
are not helpful for high Reynolds number flows. Besides, continuous approaches require solving the
governing equations within the immersed body. With increasing Reynolds numbers, the proportion of
grid points inside the immersed boundary also increases[16], which requires more computational cost.

The second category is the direct forcing approach. This approach is better suited for higher Reynolds
numbers because it imposes the velocity boundary conditions at the immersed boundary[16]. However,
the challenge of high Reynolds number flows remains. The higher the Reynolds number, the larger the
jump in the velocity derivative, which exacerbates this problem and requires special techniques for
accurate simulation[33].

Figure 2.24: Smoothing across the immersed boundary. The equations valid in each domain are convolved with a radius ϵ
kernel and added together. The kernel at a point (marked by a dot) that belongs to the boundary region is represented[33].
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The BDIM is a new, robust, and accurate Cartesian-grid treatment for the immersion of solid bodies
within a fluid with general boundary conditions. It is ”derived based on a general integration kernel for-
mulation which allows the field equations of each domain and the interfacial conditions to be combined
analytically”[64]. The kernel is shown in Figure 2.24. The kernel smoothly distributes the value on the
physical boundary to a region with a thickness of 2ϵ.

A paper published in 2014 developed the second-order BDIM. The authors modified the original method,
which makes it more suitable for high Reynolds number flows. The paper points out that the computa-
tional cost limits the application of second-order BDIM to Re ≤ 105[33]. Even considering the hardware
advancements nowadays, using BDIM to solve the flow with a Reynolds number of 108 is impossible.

Figure 2.25: Energy spectrum of turbulence in the function of wave number k, indicating the range of application of the DNS,
LES, and RANS models. The length scales lT and lI are associated with the LES and RANS approximations[18][14].

Besides the drawback of immersion boundary methods, large eddy simulation (LES) for determining tur-
bulent flows in Waterlily also limits the applicable Reynolds number. LES is an intermediate technique
between directly simulating turbulent flows and solving Reynolds-averaged equations[47]. In LES, the
contribution of the large, energy-carrying structures to momentum and energy transfer is computed
exactly, and only the effect of the smallest scales of turbulence is modeled, as shown in Figure 2.25.
The need for grid resolution close to solid walls is the main limitation to applying LES to high-Reynolds
flows[20]. The use of LES brings additional requirements in terms of computational cost.

In summary, we cannot simulate the full-scale array cable of our case even by Waterlily directly.

2.3.7. FSI method
The instability of a flexible cylinder in axial flow is an FSI problem. The flow field applies loads to
the cylinder, including hydrodynamic and hydrostatic forces. The cylinder deforms and changes the
flow field simultaneously. The coupling effect must be determined. This subsection discusses different
approaches to connecting the flow solver and the solid model.

There are two approaches to solving the interaction between the fluid and structure: the monolithic
and partitioned approaches. In a monolithic method, fluid-structure interaction at the mutual interface
is treated synchronously. Monolithic schemes appear unconditionally stable and considerably more
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accurate than the partitioned method. However, monolithic schemes remain computationally more
expensive per time step[34].

In a partitioned method, the fluid and the structure equations are alternately integrated in time, and
the interface conditions are enforced asynchronously. Typically, partitioned methods are based on the
following sequential process[34]:

• transfer the motion of the structural boundary to the fluid;
• update the position of the moving fluid mesh;
• advance the fluid system in time and compute the new pressure;
• convert the new fluid pressure into a structural load;
• advance the structural system in time under the fluid-induced load.

Partitioned methods require less computational cost because they require only one fluid and structure
solution per time step, which can be considered a single fluid-structure interaction. The major drawback
of partitioned methods is the loss of conservation properties of the continuum fluid-structure system due
to the time lag between the time integration of fluid and structure. The error of partitioned methods is
more significant than that of a monolithic method[34].

Considering the limited computational cost and time required for this project, the partitioned method is
selected for the investigation. In a partitioned scheme, twomethods exist for solving the time integration,
explicit and implicit.

An explicit time integration has no approximation of the interface Jacobian. The resulting system can
be simplified to the sequential evaluation of a fluid operator F , which, given a structural deformation
dΓ, updates the fluid variables and computes the fluid traction vector λf and a similar operator S. The
solution to the coupled problem is then reduced to the evaluation of[26]

λn+1
f = F (dn+1

Γ ), (2.36)

dn+1
Γ = S(λn+1

f ).

The subscript f represents the flow field, and Γ represents the fluid-structure interface. Because the
fluid is computed at tn+1 = tn+∆t with the structural position at tn, the kinematic boundary condition is
never adequately enforced at the end of each time step[26]. Energy conservation is not guaranteed[48].
The energy balance at the interface is more substantial with small mass ratios[5], which is the condition
in our case, making the explicit method unsuitable for our FSI system.

The implicit methods eliminate the energy error due to the lack of enforcement of the boundary con-
dition by imposing the Dirichlet condition (no-slip and penetration) and the Neumann condition (stress
continuity) at the fluid-structure interface at the end of every time step. This results in a fixed-point
operator for the interface displacement of the fluid-structure coupled system[26]

H(dk
Γ) = S ◦ F (dk

Γ) =
˜dk
Γ, (2.37)

where the notation S◦F indicates that the result of the function F is given as an argument to the function
S. Finding the converged solution to the Dirichlet-Neumann coupling procedure is thus equivalent to
finding the fixed point of the FSI problem[26]

d∗
Γ = H(d∗

Γ). (2.38)

Compared to explicit methods, implicit methods are more suitable for our case.

Interface Quasi-Newton (IQN) methods are methods to solve the aforementioned FSI problem. They
have theoretical fast convergence rates and the reduced cost associated with the interface Jacobian.
The methods avoid difficulties due to the solution to the approximate tangent problem of Newton-
Raphson methods[26]. The difference between the classical and the IQN methods is briefly introduced.
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Take the displacement vector dk as an example. k denotes the iteration step. In the classical Newton
method, we have:

dk+1 = dk +∆dk = dk − Jk\R(dk) . (2.39)

Jk = ∂R
∂d |k is the m × m Jacobian of the residual operator at step k, m is the number of degrees of

freedom of the displacement on the interface. The IQN method uses a sequence of n ≪ m examples
of previous displacement updates and residuals:

Wk = [∆dk,∆dk−1, ...,∆dk−n+1] , Vk = [R(dk), R(dk−1), ..., R(dk−n+1)] . (2.40)

Then, we approximate the Jacobian as:

∆dk = −Jk\R(dk) ≈ Wk(V
T
k Vk)\VT

k R(dk) . (2.41)

The new equation is solved with an n × n matrix, which is much easier than using the Jacobian ma-
trix[28].

2.4. Research matrix
Previous research indicates that a cylinder’s instability in axial flow is related to the boundary conditions
of the upstream and downstream ends, the cylinder’s length (aspect ratio), and the properties of the
flow field. However, although experiments tested those parameters, the effect of a single parameter
was unclear because multiple parameters were changed in different experiments.

According to the reasons mentioned above, this thesis project will test the neutral buoyant flexible
cylinder with various parameters in axial flow:

• Shape of the downstream end: Previous research indicates that the downstream end shape
plays a vital role in the instability. Whether some shapes that have never been tested before can
stabilize or destabilize the cylinder remains to be explored. Various cylinder shapes will be tested.

• Boundary condition of the upstream end: The test cases with pinned-free and clamped-free
cylinders will be compared to investigate the effect of the upstream boundary condition.

• Length of the cylinder: This project will test various cylinder lengths (aspect ratios) to investigate
how the instability changes. The aspect ratio of an actual array cable is more than 3000. It
is impossible to run a real or numerical experiment. However, improving the existing analytical
model and then predicting the instability of the typical array cable using the new model is possible.
We can also observe the instability transition as the cylinder length changes.

• Reynolds number: Although the viscous load on the cylinder is negligible due to the high
Reynolds number, reducing the Reynolds number in the viscosity exemption range could alter
the instability by changing the flow field. A pinned-free cylinder with various Reynolds numbers
will be tested in flow fields.

Chapters 3, 4, and 5 will provide the research details. This project aims to predict the cylinder’s insta-
bilities under various conditions. The precise amplitude of the buckling or flutter will not be considered
because the unstable mode of an array cable is relatively useless in reality. The tendency of the altered
amplitude as parameters change is considered.

2.5. Research approach determination
Considering the cost and model error, this project will use the numerical simulation to investigate
the instability of a solitary cylinder in axial flow. Using CFD code to test cases with many variables is
convenient and cost-saving. The Julia code to solve a two-dimensional FSI problem is available. The
solid structure solver, FSI solver, and parametric body codes should be modified and validated first to
suit the three-dimensional research problem.
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TheCFD code, WaterLily with BDIM and LES, is selected to solve the flow field. Weymouth et al.[64][63]
has validated this flow solver.

The IGA with the linear Euler-Bernoulli beam model is selected to solve the deformation of the cylinder.
The feasibility of IGA is proved by Verhelst and Cottrell et al.[62][8].

A partitioned approach, an implicit method, and the IQN method are selected to determine the FSI
effect. Lauber shows that the method applies to an FSI problem with a flexible structure[26].

2.6. Contribution
An open-source code to numerically predict the instability of a solitary cylinder with various parameters
in three-dimensional axial flow has been developed and validated. The new code is modified from
an existing code for a two-dimensional FSI problem. Based on the numerical result, the instability of
a typical array cable is predicted. The effects of cylinder length, boundary conditions, and the fluid
field Reynolds number on the instability have been investigated. A thesis report has been completed
to introduce the whole research. Instability predictions and suggestions are provided to the company
Optics11. The code will be uploaded for general testing and use. The results of this project are sufficient
to launch a conference paper. Appendix A provides the outline of the paper. The author plans to finish
the paper soon.



3
Solid structure solver

The hydraulic force is applied to the flexible cylinder. The solid structure solver determines the cylinder
deformation based on the load. This chapter introduces the simplified solid structure model, the solver’s
methodology, and its validation.

3.1. Boundary conditions
A clamped-free cylinder validates the solid structure solver and FSI solver. The boundary conditions
are fixed upstream and free downstream. Hence, we apply the Neumann and Dirichlet conditions on
the cylinder’s upstream end. The displacement and rotational angle are constant zero[2]. There is no
Neumann condition at the pinned-free cylinder.

3.2. Beam model
The flexible cylinder is neutrally buoyant, so the force of gravity is negligible. Its material is considered
even and isotropic, with no self-damping.

A cylinder in axial flow is subject to hydro-pressure and viscous forces. The Reynolds number of the
actual array cable is determined by equation 2.30. Substitute the typical working conditions[55][59]:
ρsea = 1026 kg ·m3, Ureal = 5 knots, µsea = 0.00122 Pa · s, and Darr = 0.03 m; so Re = 6.49× 104.

Re =
ρseaUrealDarr

µsea

We use the diameter to determine the Reynolds number since lateral displacement is mainly of concern,
and the lateral force is expected to make a significant contribution. Hence, the diameter should be the
characteristic length. The range of Reynolds numbers in previous experiments was 104 < Reexp <
105[43], also determined by the diameter. According to the typical Reynolds number, the viscous force
is negligible.

Figure 3.1: Lateral pressure force at a point on the cylinder in the global system, where qsim is the distribution load. The
cylinder is simplified to a curve for better illustration. The curve can be regarded as the central axis of the cylinder.

Hydro-pressure can create lateral and axial forces. The lateral force at a point on the cylinder is per-

28
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pendicular to the cylinder’s central axis (longitudinal axis). The axial force’s direction is the same as the
local axis’s tangential direction. Notice that if the cylinder is bent, the cylinder axis may not be aligned
with the global coordinate axis, as shown in Figure 3.1. According to the characteristics of an actual
array cable, the cylinder is inextensible and homogeneous, so the axial force caused by pressure is
neglected. In summary, no axial external force is considered.

The literature review allows the small deflection assumption to be applied. The coupling effect between
lateral displacements in different directions is neglected. The analytical model[44] does not consider
the axial torque on the cylinder, but it can still predict the instability, so the author infers that it can be
ignored. No torque on the cylinder is considered in the solid structure solver.

After the simplification above, the flexible cylinder is only subject to the lateral force caused by pressure.
Considering the slenderness and continuous hydro-pressure load, shear deformation is neglected.
Thus, when the cylinder is bent, its cross-section is further assumed to be rigid and perpendicular
to the central axis. The cylinder is only subject to bending moments. In conclusion, the pure bending
assumption is applied, followed by the Euler-Bernoulli beam theory[38][3].

Figure 3.2: Side view of a bending cylinder in the xoz plane. The cylinder is simplified to a curve, and the displacement is
amplified for better illustration. Blue represents the original position, while black represents deformation. The long-dashed
curve is the central axis of the cylinder. B point is on the axis and has no displacement in the x direction after bending. The
cross-section past the point can rotate. The slight axial extension is neglected based on the small deflection assumption.

Notice that the slight deflection and inextensible assumptions indicate that an arbitrary point on the
cylinder’s central axis only has displacements in the y or z direction (the small extension is neglected),
as shown in Figure 3.2. The solid structure solver only determines the displacement of the axis. Then,
the cylinder is created based on the axis and its diameter.

The model can be simplified further. Set the x axis of the global system as the origin position (no
deformation) of the cylinder’s central axis, and place the cylinder’s upstream end at the origin of the
coordinate system. This setting will be used in later chapters. The lateral force caused by pressure
can be decomposed into forces in the directions of x, y, and z. For example, pick the force in the xoz
plane, as shown in Figure 3.3. The force in the x direction can only contribute to the displacement in
the z direction by creating a bending moment along the y axis to rotate the beam. Thus, we focus on
comparing moments.

Figure 3.3: Lateral pressure force decomposition in the xoz plane. The cylinder is simplified to a curve, and the displacement
is amplified for better illustration.

qxdLsimx is the x-component of the lateral force on point A; qzdLsimz is the z-component. dA and lA
are levers that correspond to force components. dA is also the lateral displacement at point A. lA is
also the longitudinal position of point A. θsim is the rotation angle. Because the deflection is small, there
is a relation: tan(θsim) ≈ dA/lA ∼ 1/10. Then, apply the scaling method:
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Mx = qxdLsimxdA, Mz = qzdLsimzlA,

Mx

Mz
=

qxdLsimx

qzdLsimz

dA
lA

=
dA
lA

tan(θsim) = (
dA
lA

)2 ∼ 1

102
. (3.1)

Mx is the bending moment due to the force x component; Mz is the moment due to the z component.
The relation 3.1 indicates that the Mx is two orders of magnitude smaller than Mz. A similar relation
between Mx and My can be obtained in the xoy plane. On the downstream end, the x component
of the lateral force could be more prominent due to the streamlined shape. The tan(θsim) relation
may disappear, but we still have Mx/Mz ∼ 1/10 because of the lever relation. Considering the tiny
proportion of the downstream end in the whole cylinder, the force in the x direction is also neglected
on the downstream end.

Based on the relations above, the x component of the lateral pressure force can be neglected for a
pure bending cylinder with a slight deflection. The solid structure solver will only consider the pressure
forces in the direction of z and y.

In summary, the linear differential solid mechanism governing equations of the pure bending cylinder
are[38]:


EsimIsim

d4wy

dx4
=qy(x),

EsimIsim
d4wz

dx4
=qz(x).

(3.2)

The cylinder is regarded as a linear Euler-Bernoulli beam[62]. Esim is Young’s modulus used in the
numerical simulation, and Isim is the moment of inertia. qy and qz are the distribution load in y and z
directions. wy and wz are local displacements in y and z directions. x is the longitudinal location on
the cylinder.

A pressure integrator obtains the external load on the cylinder’s central axis from the pressure field.
Chapter 5 provides details about the integrator. According to the external load, the displacements are
determined separately by the solid structure solver and then substituted into the FSI solver to get the
resultant displacement in three-dimensional space.

3.3. Methodology
3.3.1. B-spline curve
The solid structure solver generates the geometry using the B-spline curve. The generated curve,
which has no thickness, represents the central axis of the tested cylinder. The Julia code for a B-spline
curve in three-dimensional space is available and does not require modification.

We regard C(ζ) in equation 2.13 as the curve shape function in the parametric space, in other words,
the displacement of a beam’s central axis under load. The segment curve mentioned in the subsection
2.3.1 is the element in IGA, which will be discussed in the subsection 3.3.2.

3.3.2. Isogeometric analysis
The solid structure solver uses isogeometric analysis (IGA) with the B-spline curve to improve code
efficiency. IGA constructs the load-displacement matrix equation on the control points of the B-spline
curve.

An IGA solver is available. However, the original solver is developed to determine a non-linear Euler-
Bernoulli beam’s two-dimensional displacements in x and y directions. Assume we have n control
points. Each control point has two degrees of freedom, so the global stiffness matrix’s dimension is
2n× 2n.

Although the cylinder, in our case, is three-dimensional, the displacements and external forces are
limited in y and z directions due to simplifications. Hence, the dimension of the global stiffness matrix
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is still 2n × 2n. The original stiffness matrix in the IGA solver has sufficient dimensions to solve the
problem with displacements and loads in two directions.

(a) Element in the original IGA solver. (b) Element in the modified IGA solver.

Figure 3.4: Schematic of an element in different IGA solvers. Simple flow charts of solvers are also provided. The dashed line
is the control net. The solid line represents the beam. Black dots represent control points. Blue and red represent
displacements and forces.

The existing IGA solver can be applied to our case as a solid structure solver to solve for displace-
ments in the y and z directions by modifying the local stiffness matrix. Then, the global matrix can
be constructed. The principle is to replace the governing equations in the x direction with the linear
Euler-Bernoulli equations in the z direction and set the off-diagonal blocks to zero.

The difference between the original and modified solvers is shown in Figure 3.4. We can build the
integral formulation of our case’s IGA element I, refer to equations 2.26, 2.28, and 2.29:


−EIy

nI∑
i=1

Wy,i

ng∑
j=1

Gj
∂2Ni,j

∂x2

∂2Ni,j

∂x2
=

nI∑
i=1

ng∑
j=1

GjNi,jqy,j ,

−EIz

nI∑
i=1

Wz,i

ng∑
j=1

Gj
∂2Ni,j

∂x2

∂2Ni,j

∂x2
=

nI∑
i=1

ng∑
j=1

GjNi,jqz,j .

(3.3)

Equation system 3.3 can be decomposed by linear algebra:



 −EIy

ng∑
j=1

Gj
∂2N1,j

∂x2

∂2N1,j

∂x2

Wy,1 =

ng∑
j=1

GjN1,jqy,j ,

...−EIy

ng∑
j=1

Gj
∂2NnI ,j

∂x2

∂2NnI ,j

∂x2

Wy,nI
=

ng∑
j=1

GjNnI ,jqy,j , −EIz

ng∑
j=1

Gj
∂2N1,j

∂x2

∂2N1,j

∂x2

Wz,1 =

ng∑
j=1

GjN1,jqz,j ,

...−EIz

ng∑
j=1

Gj
∂2NnI ,j

∂x2

∂2NnI ,j

∂x2

Wz,nI
=

ng∑
j=1

GjNnI ,jqz,j .

(3.4)
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The dimension of the element stiffness matrix is 2nI × 2nI . With element matrices, a global stiffness
matrix can be constructed. Consider a cantilever beam generated by two second-degree elements.
Figure 3.5 shows the global stiffness matrix. The matrix is fuller than a global stiffness in the classical
FEA because a control point influences other elements more in IGA. However, FEA cannot accurately
describe a cantilever beam with only two elements like IGA. For example, a distributed load can be
applied to the IGA elements perpendicularly. The displacement error in IGA is tiny (O(10−20)). Thus,
we believe IGA still has higher efficiency.

Figure 3.5: Global stiffness matrix of a cantilever beam. EI = 10000, L = 10. Two ghost columns and rows for boundary
conditions are omitted.

In the solid structure solver, the new positions of the control points are first determined to generate the
curve under load, which is the flexible cylinder’s central axis. Then, displacements of arbitrary points
on the axis are measured. Once the central axis’ displacement is obtained, the position of a point on
the cylinder surface can be determined based on the cylinder’s diameter.

The original IGA solver can apply Dirichlet (function value is constant) and Neumann (function’s deriva-
tive is constant) boundary conditions[2] to the curve beginning and end. It can also solve the dynamic
system using the GeneralizedAlpha method, which requires the mass ratio between the fluid and the
solid structure. Once the modification of the global stiffness matrix has been applied, with correct forces
in y and z directions, displacements can be solved.

3.3.3. Gauss integration
The Gauss integration method, also known as Gauss quadrature, has been applied to the code to
determine the stiffness matrix and the external force vector as in equation 3.4. Nothing is required to
be modified.

The unit length load on the Gauss point, instead of the control point, is measured from the flow field.
The detail is provided in Chapter 5.

3.4. Validation
Themodified FEA solver, used as the solid structure solver in this project, has been validated by compar-
ing its numerical results with the existing analytical results of a cantilever beam. The existing validation
code for the original FEA solver is available for validating the modified solver after providing forces in
the y and z directions and specifying the boundary conditions. The code is provided in Appendix B.

The beam is subject to a constant distributed load in the y direction along the rear half of the beam and
a constant distributed load in the z direction along the whole beam, as shown in Figure 3.6.

(a) Load in the y direction. (b) Load in the z direction.

Figure 3.6: Loads on the cantilever beam.
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The numerical experiment setting is the following. All the values in the code are dimensionless. The
number of elements in IGA is numE = 12, and the degree of the B-spline curve is P = 3. The bending
stiffness is EI = 1000. The beam length is L = 10. The distribution loads in y and z directions are
qy = −2 and qz = 1. There are 48 Gauss points in IGA. Apply the load directly on Gauss points: all
points are subject to the load in the z direction, while the last 24 points are subject to the load in the y
direction. The quantity of the Gauss point in the code is defined as

ng = numE × (P + 1) . (3.5)

The comparisons between numerical and analytical results in two directions are provided in Figure
3.7a and 3.7b. wy,num and wz,num are numerical displacements. The numerical displacements fit the
analytical results very well.

(a) Displacement result comparison in the y direction. (b) Displacement result comparison in the z direction.

Figure 3.7: Solid structure solver validation. Numerical results are shown on 13 sampling points.

The analytical results of the beam displacement in the physical space are given in 3.6 and 3.7[49]:

wy,ana =



[
3qy

16EI/L3

( x
L

)2
− qy

12EI/L3

( x
L

)3]
L , 0 ≤ x ≤ L/2;[

qy
24EI/L3

(
6
( x
L

)2
− 4

( x
L

)3
+
( x
L

)4)
− qy

128EI/L3
− qy

48EI/L3

(( x
L

)
− 0.5

)]
L ,

L/2 < x ≤ L.
(3.6)

wz,ana =

[
qz

24EI/L3

(
6
( x
L

)2
− 4

( x
L

)3
+
( x
L

)4)]
L , 0 ≤ x ≤ L. (3.7)

The polynomials in square brackets in equations are parametric displacement functions. x/L is the
parametric coordinate ζ in IGA. L4 is multiplied to transfer the value from parametric to physical space.

There are 13 displacement sampling points. The norm of the error vector determines the accumulated
error:

Erry =

√√√√ 13∑
i=1

(wy,i,num − wy,i,ana)2 , Errz =

√√√√ 13∑
i=1

(wz,i,num − wz,i,ana)2. (3.8)

Erry = 2.79 × 10−13 and Errz = 4.39 × 10−13 indicate the tiny error in the solver. We can conclude
that the solid structure solver is validated for our qualitative research.
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3.5. Discussion
The solid structure solver only considers the forces and displacements in the y and z directions. Al-
though this is reasonable, improvements can be made in future work. The principle is to reduce the
model error by considering the x component of load and displacement.

Figure 3.8: Flow chart of the improved solid structure solver.

The limitation of the original IGA solver is a potential reason for the simplification. The solver only
has two channels for the load-displacement balances, so the simplest way to achieve our goal is to
select the two most essential directions. The original plan was to use the existing IGA solver twice
to determine displacements in three directions, as shown in Figure 3.8. Complex IGA and FSI solver
modifications are required to achieve this plan. Modifying the original solver to be three-dimensional
has similar problems. Hence, the most straightforward modification is applied.



4
Parametric geometry

The B-spline curve defines the central axis of our flexible cylinder in the solid structure solver. The flow
solver should be able to construct and accurately measure the parametric body. WaterLily uses the
signed distance function (SDF) to define the geometry in the flow field. A code is developed to generate
the body using the B-spline curve combined with SDF. This chapter provides validation and Verification
of the so-called parametric body code.

4.1. Actual experiment
An experiment measuring the drag of a scaled airship aligned with the far-field flow direction[17] is
selected as the validation reference. The experiment equipment is shown in Figure 4.1. The airship
had no motion.

Figure 4.1: Schematic of the experiment setting[17].

The longitudinal axis of the airship was aligned with the central axis of the flow field. The slender airship
shares some similarities with our case. The cylinder with a half-sphere leading edge and various shapes
downstream end can be considered a slim body. Hence, the code is validated if the numerical results
for the airship under the same conditions match the experimental results. The hydrodynamic drag is
only considered since the experiment and our case neglect the gravity effect.

The experiment tested the airship’s total drag coefficient for various Reynolds numbers Reexp. The
Reynolds number of the flow field was changed by altering the atmospheric pressure. The total drag
coefficient was determined by[17]:

35
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CD,exp =
Drag

0.5ρexp(vol.)2/3
, (4.1)

where Drag is the measured drag, ρexp is the air density, and vol. is the airship volume. The Reynolds
number was determined by:

Reexp =
ρexpvexp
µexp

(vol.)1/3 . (4.2)

Here, vexp and µexp are far-field air velocity and dynamic viscosity. The velocity is constant vexp =
50 miles/h. We select a pair of data for the validation. When Reexp = 108500, CD,exp = 0.0341. The
dimensions of the tested airship are given in Table 4.1. Sta. and Diam. are the station number and
local diameter.

Table 4.1: Dimensions of N.P.L. airship models in inches[17].

Sta. Diam. Sta. Diam.

0.000 0.000 12.000 4.184
0.500 1.294 13.000 4.158
1.000 1.849 14.000 4.101
1.500 2.266 15.000 4.010
2.000 2.580 16.000 3.889
2.500 2.847 17.000 3.724
3.000 3.073 18.000 3.532
3.500 3.268 19.000 3.326
4.000 3.439 20.000 3.098
4.500 3.585 21.000 2.845
5.000 3.711 22.000 2.554
6.000 3.916 23.000 2.236
7.000 4.059 24.000 1.883
8.000 4.150 25.000 1.502
9.000 4.188 26.000 1.068
10.000 4.196 27.000 0.592
11.000 4.195 27.953 0.000

The viscous force in our case is negligible due to the extremely high Reynolds number. The pressure
force can be validated independently. A statistical formula for an airship can extract the experimental
dynamic pressure drag coefficient[19]:

CD,wet

Cf
= 1 + 1.5

(
d

l

)3/2

+ 7

(
d

l

)3

. (4.3)

CD,wet and Cf are the total drag and skin friction drag coefficients based on the wetted area. l and
d are the length and maximum diameter of the rotationally symmetric body. This formula applies to
a rotationally symmetric body with a small d/l ratio and Reynolds number between 105 and 106[19],
which is the case of the tested airship.

Substituting l = 27.953 inch and d = 4.196 inch to equation 4.3, we can obtain the ratio between the
dynamic pressure drag CD,p,exp and total drag coefficients CD,exp:

CD,p,exp

CD,exp
= 1− Cf,exp

CD,exp
= 0.09984 (4.4)

Substitute the experimental total drag coefficient, and CD,p,exp = 0.00340. It is used for validation.
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4.2. Numerical setting
Appendix C shows the parametric body validation code. Based on its offset table, the two-dimensional
half contour of the airship can be built. A fitted curve is generated manually by tuning the control points
of the B-spline curve in the parametric code. The degree is four. The control points’ positions in two-
dimensional (2D) space are parameterized, so various sizes of conformal shapes can be rebuilt with
characteristic lengths.

Figure 4.2: 2D half contour of the airship based on the table 4.1.

The code also obtains the SDF corresponding to the B-spine curve. The 2D B-spline curve is spun
along the central axis of the airship by applying a map function to generate the 3D surface, as shown
in Figure 4.3a. We set the central axis to be aligned with the x-axis in the local coordinate system. The
map function is used to determine arbitrary points in the 3D space.

Assume the SDF of the 2D curve is S2D(x, r), x is the longitudinal direction. r is determined by r =√
y2 + z2, as shown in Figure 4.3b. The SDF in 3D space is S3D(x, r(y, z)). r(y, z) is the so-called map

function. The SDF in the global coordinate system then becomes S(x + x0, r(y + y0, z + z0)), where
(x0, y0, z0) are coordinates of the local system’s origin in the global system.

(a) 3D numerical airship model. The dashed line represents the hidden x axis.
(b) Schematic of the map function. The dashed line
represents the spatial curve.

Figure 4.3: Generation of the 3D body from 2D B-spline curve by mapping.

The fluid domain should be defined after the body generation. The names of the fluid domain bound-
aries are shown in Appendix D. Figure 4.4 shows the dimensions of the fluid domain and the airship’s
position. Lsim is the characteristic length in the numerical simulation, representing the number of grid
points along the airship length. Increasing Lsim means using more grids to describe a geometry, in-
creasing the mesh resolution. Dsim is the max airship diameter in the code, which maintains the actual
aspect ratio: Lsim/Dsim = l/d = 27.953/4.196. As shown in Figure 4.4a, Lnose is the longitudinal
distance between the airship nose and the flow inlet boundary, and Ltip is the distance between the
airship tip and the outlet boundary defined by the characteristic length with a magnification nL. We
have: Ltip = nLLsim. Figure 4.4b shows that Dwidth is the half width of the flow domain, which is
defined by the airship diameter with a magnification nD. We have: Dwidth = nDDsim.
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(a) View of the fluid domain towards the negative z direction. (b) View of the fluid domain towards the positive x direction.

Figure 4.4: Schematic of the fluid domain and the airship. The green arrow is the far-field flow direction: x direction.

The boundary conditions on the airship surface are no-penetration and no-slip conditions. The fluid
domain simulates the infinite field, considering the deep water assumption. On the fluid domain’s front,
back, upper, and lower boundaries, so-called side boundaries, the fluid velocity field should fulfill: (1)
the velocity component perpendicular to the boundary is constant zero (Dirichlet B.C.); (2) the spatial
derivatives of all velocity components are zero (Neumann B.C.). The parallel velocity component should
be zero on the inlet and outlet boundaries, and the Neumann boundary condition is the same as before.
The pressure field is solved by the fractional step method[18] based on the velocity field.

Figure 4.5: 2D schematic of the domain verification. The blue arrows represent the streamline. The red line indicates an
inappropriate domain. The black line is the appropriate domain that remains to be found.

If the fluid boundaries are too close to the airship, the flow around the body will violate the boundary
conditions, as shown in Figure 4.5. The condition that the streamline flows out and back to the domain
after the development should be prevented. Hence, an appropriate fluid domain is verified by adjusting
nD and nL and monitoring the convergence of the total drag coefficient.

The fluid domain’s dimensions in WaterLily should be even numbers. The characteristic length is con-
stant Lsim = 64, but the domain width can only be found as a close even number due to the aspect
ratio. We still denote the case by nD. Lnose = 0.5Lsim is pre-defined without testing since the flow on
the inlet boundary has no development. It maintains the initial flow settings, which are the boundary
conditions.

The fluid domain width with the magnification 2nD is first verified, as shown in Figure 4.6a. The integer
nD ranges from 2 to 8. The simulation’s dimensionless far-field flow velocity is U∞ = 1. The simulation
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duration is 16 convective time units. The convective time is tconvv = tU∞/Lsim, where t is the dimen-
sionless time scale in the simulation. The drag coefficient is stable after a short period, as shown in
Figure 4.10b. The average of the instantaneous drag coefficients in the last two convective time units
is the data point in Figure 4.6a.

(a) nD variation of the total drag coefficient. CD,sim is the total drag
coefficient from the numerical simulation.

(b) Time variations of drag coefficients with different Ltip. tconv is the
convective time in simulations. 2Dwidth = 12Dsim.

Figure 4.6: Verification of the fluid domain.

The drag coefficient converges after the width reaches 12D. Thus, we conclude that the domain width
should be larger than 12D for the drag coefficient to converge. Then we use 2Dwidth = 12D to verify the
Ltip, as shown in Figure 4.10b. The result between Ltip = Lsim and Ltip = 2Lsim has a tiny difference,
so we select Ltip = Lsim to reduce the computational cost.

4.3. Validation and verification of the parametric code
After finding an appropriate fluid domain for testing, we can now validate the parametric code. Due to
the problem caused by the irregular airship aspect ratio, redefine the domain width 2Dwidth directly to
the characteristic length Lsim:

2Dwidth = 12× 3

16
Lsim , (4.5)

2Dwidth = 2.25× 27.953

4.196
Dsim ≈ 15Dsim > 12Dsim .

Lsim is set to be a multiple of 16, so the domain width is always an even number. We keep Lnose =
0.5Lsim and Ltip = Lsim. The Reynolds number is the same as in the experiment. The far-field flow
speed is U∞ = 1. The fluid density in the code is ρsim = 1. Hence, the dynamic viscosity used in the
simulation is determined by:

µsim =
ρsimU∞

Reexp
(vol.sim)1/3 . (4.6)

Here, vol.sim is the numerical airship volume, which can be determined by the scaling method with
known geometry relation:

(vol.sim)1/3 =

(
vol.

l3

)1/3

Lsim . (4.7)

The parametric code is validated and verified by increasing the characteristic length and comparing the
resultant pressure drag coefficient CD,p,sim with the experiment data CD,p,exp, as shown in Figure 4.7.
The simulation duration is 8 convective time units. We still take the average of instantaneous pressure
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drag coefficients in the last two time units as the data point in Figure 4.7. The schematics of the velocity
and pressure fields at tconv = 8 are shown in Appendix E. The numerical result of the pressure drag
coefficient is converged when Lsim = 256. The value is CD,p,sim = 0.00328, and the error rate is 3.5%
compared to CD,p,exp = 0.00340. The error is sufficiently small for our research.

Hence, we conclude that the parametric body code is validated and verified for a problem dominated
by the pressure force. The code can accurately describe a slender body in axial flow.

Figure 4.7: Validation and verification of the parametric code. L variation of the pressure drag coefficient.

4.4. Discussion

Figure 4.8: Viscous drag coefficient CD,f under various characteristic lengths.

Using a statistical formula to extract the pressure drag coefficient from the experimental total drag
coefficient is not a typical approach. The regular process uses the total coefficient for the validation.
The viscous drag of our case cannot be converged even with the largest Lsim, as shown in Figure 4.8.
The post-process is the same as the method used for the pressure drag.

The first possible reason is the insufficient mesh resolution. Assume the velocity u is a function of
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y. The local spatial gradient ∂u(y)/∂y on the body surface should be determined accurately to obtain
the friction by Newton’s law of viscosity. For FVM with the staggered grid, this indicates that the grid
adjacent to the body surface should be thinner than the viscous sublayer thickness. Use the turbulent
channel flow’s velocity profile to approximate the sublayer thickness of the actual airship[37], as shown
in equation 4.8:

δv = 5
ν

u∗ , (4.8)

where δv corresponds to y+ = yu∗/ν = 5. Substitute the kinematic viscosity at 15◦C under a standard
atmosphere pressure ν = 1.47× 10−5 m2/s[13]. The corresponding u∗ is solved by the wall bounded
friction law equation[37] with CD,f,exp = CD,exp − CD,p,exp:

CD,f,exp = 2

(
u∗

vexp

)2

(4.9)

The ratio between sublayer thickness δv and the actual airship’s max diameter d is compared with the
ratio between a single grid and the total number of grids describing the numerical diameter:

δv
d

= 2.5× 10−4 ,
1

Lsim × (d/l)
= 2.6× 10−2 (4.10)

Although we apply the max tested characteristic length Lsim = 256, the numerical ratio is much larger
than the actual ratio. The grid is too thick to approximate the velocity gradient on the body surface
accurately, as shown in the schematic figure 4.9.

Figure 4.9: Velocity profile near the solid boundary. The black curve is the velocity profile. y1 represents the grid thickness.
The shadowed rectangle represents the airship’s surface. The numerical approximation is tan θ1 = (u(y1)− u(0))/y1. The
actual velocity gradient is tan θv = ∂u(0)/∂y. It is apparent that tan θ1 < tan θv . The numerical gradient is smaller than the
actual one.

Increasing Lsim leads to reducing y1 and increasing θ1, and then the numerical gradient grows. The
numerical viscous drag increases, which confirms the tendency shown in Figure 4.8.

Furthermore, the airship’s shape is perfectly streamlined and rotationally symmetric, reducing axial
pressure drag and increasing the ratio of viscous to total drag. In our case, we consider the lateral unit
length force on the cylinder. The body is slender but not streamlined. Rotational symmetry does not
contribute to the lateral force. The pressure and viscous force share the same characteristic length
(diameter). Thus, we can regard the Reynolds number as the ratio between two forces.
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We believe increasing the characteristic length further could help the viscous drag coefficient converge.
However, the Reynolds number of our case is enormous, indicating the low viscous effect. In conclusion,
increasing the characteristic length at the cost of more computational consumption is not worth it, since
we have validated that the code can obtain a converged and correct pressure drag coefficient.

The second possible reason is that the numerical simulation lacks roughness and support structures, as
in the actual experiment. A rough surface and extra structures could make the flow field more turbulent
despite researchers trying to maintain a laminar flow. However, the simulation’s fluid field is perfectly
laminar, as shown in Figure 4.10 and Appendix E. The velocity profile is stable out of the boundary
layer region. Hence, we can apply the statistical formula 4.3.

(a) Positions of sampling line. The lines parallel the y axis
and pass the airship’s rotational axis.

(b) Velocity in x direction on grid points on the sampling line. ysim,0 is the
global coordinate, including the ghost cell for boundary conditions.

Figure 4.10: Flow velocity profile around the airship. The black line represents the profile of the front sampling line, and the red
line represents the profile of the back one. The profile near the physical boundary is smooth since we apply a kernel in BDIM.

Although using the same parametric body code, the way the code generates an airship differs from the
method of generating a cylinder. To create a cylinder, the central axis is first defined by the B-spline
curve and then given a thickness (diameter) to determine its surface, which utilizes the SDF feature.
Measure the distance from an arbitrary point in the space to the central axis. If this distance exceeds
the half-thickness, the spatial point is outside the cylinder. On the contrary, it is the opposite. The
spatial point is on the surface if the distance equals half the thickness. So, the 3D cylinder always has
a half-sphere cap at both ends, as shown in Figure 4.11.

The airship experiment is the best case we found for validating the code. Considering all the above
reasons, we still conclude that the parametric body code is validated.

Figure 4.11: Side schematic of a cylinder in the code. The red line represents the surface of the cylinder. The blue line is the
central axis generated by the B-spline curve. The dashed line is the signed distance from the point to the axis.



5
FSI solver

The FSI solver determines the coupling effect between the structure and fluid. A pressure force inte-
grator is developed to measure the load on the flexible cylinder from the fluid field. The original FSI
solver applies to a 2D problem, so it is modified and validated to be suitable for our 3D case.

5.1. Reference and scaling
Before developing the pressure force integrator, we must determine the relationship between various
reference spaces.

We have a tested cylinder with a tapered downstream end from an actual experiment[43]. The reference
system is called the physical space, as shown in Figure 5.1a. The dimensionless geometry is defined
in this space: the aspect ratio of the cylinder (Lcyl/Dcyl) and the ratio of the tapered end (Lend/Dcyl).
Two similarity criteria, the Reynolds number and the Cauchy number, are determined in this space:

Re =
ρwatUexpDcyl

µwat
, Cacyl =

Ecyl

ρwatU2
exp

. (5.1)

Lcyl and Lcyl are the lengths of the cylinder segment and the tapered end. Dcyl is the cylinder diameter.
Uexp is the far-field flow velocity in the experiment, and Ecyl is Young’s modulus of the tested cylinder.
The water property is selected as 15◦C pure water. The density is ρwat = 1000 kg/m3, and the dynamic
viscosity is µwat = 1.1375× 10−3 Pa · s[40].

(a) Actual cylinder[43] in the physical space.
Lcyl is the cylinder length. Lend is the
tapered end length.

(b) Cylinder in the simulation space. Lsim is
the length of the central axis, which is also the
characteristic length of the simulation.

(c) Cylinder in the parametric space used in
the solid structure solver. ξ = xsim/Lsim,
where xsim is the simulation coordinate.

Figure 5.1: Side view of dimensions of tested cylinder with a tapered end in different reference spaces. The solid black line
represents the shape in real space. The dashed black line divides various segments of the whole body. Blue and red dashed
lines are the central axis generated by the B-spline curve. ξsim = 1 represents the whole length.

We use WaterLily as the flow solver to simulate the cylinder in axial flow. As shown in Figure 5.1b, the
properties used in the solver are defined in the so-called global simulation space, which includes Lsim

andDsim. Lsim is the characteristic length of the simulation, which is a longitudinal length, and it is also
the total length of the central axis of the inextensible cylinder with various ends (differs from ”cylinder”
in the physical space) since the deflection is slight. The simulation space should maintain the same

43
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similarity criteria Re and Cacyl. Thus, Young’s modulus and the dynamic viscosity of the simulation are
determined by:

µsim =
ρsimU∞Dsim

Re
, Esim = CacylρsimU2

∞ . (5.2)

All properties in the code are dimensionless. The fluid density and far-field flow velocity are ρsim = 1
and U∞ = 1. We also have the geometry relation:

Lcyl

Dcyl
=

Lsim

Dsim
. (5.3)

The solid structure solver generates the body and solves the displacement in the local parametric
space. The characteristic length in this space is ξsim = 1, as shown in Figure 5.1c. The geometry
relation between simulation and parametric space is ξsim/Lsim = 1/Lsim. The relation between phys-
ical and parametric space is Lcyl/(Lcyl + Lend) = ξcyl/ξsim, where ξcyl is the parametric length of the
cylinder segment of the whole body.

The FSI code delivers the distribution loadmeasured in the simulation space to the solid structure solver.
The unit length load requires no change because it has no length unit. The bending stiffness EsimIsim
requires scaling to the parametric space since it contains a third-order length unit. The relation between
parametric and simulation spaces is:

EparaIpara = EsimIsim ·
(

1

Lsim

)3

(5.4)

In Chapter 3, we have a simplification that all the points on the cylinder’s central axis have no displace-
ment in the axial direction - the global x direction. The x coordinates of these points never change,
so we use the local parametric coordinates in the axial direction ξ = xsim/Lsim to denote the longi-
tudinal position of arbitrary points on the central axis. Once we have the central axis, the rotationally
symmetric body can be generated based on the diameter (”thickness” in the code). The original code
can only accept a constant diameter, so a modification is developed: the diameter in the simulation
space becomes a function D(ξ) of parametric coordinate (in the code, we define the diameter function
in the parametric space, the flow solver will multiply a Lsim automatically to obtain the Dsim). With
the diameter function, we can generate the cylinder with a tapered downstream end or even a more
complex body, as shown in Figure 5.2. The details are provided in the section 5.2. The caps at the
cylinder’s beginning and end are negligible since they only take a small part of the body. We cannot
remove the caps due to the SDF feature. However, we can obtain a cone if the local diameter is zero,
as shown in Figure 5.1. We call the cone and blunt end the ”tapered end”.

(a) A cylinder with a parachute at the downstream end in the
simulation space.

(b) The cylinder with a parachute in the parametric space used in
the solid structure solver.

Figure 5.2: Side view of cylinder dimensions with a parachute at the free end in the simulation and parametric space. The
dashed black line divides the body into various segments: a cylinder, a cone, a rope, and a parachute. Blue and red dashed
lines are the central axis generated by the B-spline curve. ξsim = 1 represents the whole length.

The solid structure solver returns the central axis’ displacement in the parametric space, so the FSI
code always multiplies an Lsim for transformation. This process cannot be changed since it relates to
the basic coupling solver.
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A further description of the coordinate system is given. The flow solver uses the global coordinate
system. In this system, the initial central axis of the cylinder is set to be parallel to the global x direc-
tion, which is also the direction of the far-field flow. The solid structure solver uses a local parametric
coordinate system; the origin is located at the beginning of the cylinder’s central axis, generated by the
B-spline curve. The initial central axis lies on the system’s xξ axis. The parametric coordinate indicates
the position on the central axis. Global coordination can be obtained from this position, as shown in
Figure 5.3.

Figure 5.3: Schematic of two coordinate systems. Black arrows form the global system. Blue arrows form the local system.
The dashed blue line is the displacement of the A point in the local system. The red line represents the axis of the bending
cylinder. The axes of the two systems are parallel to each other.

5.2. Pressure force integrator
We developed the FSI code using an old version of WaterLily. After this project, an upgrade is re-
quired to make the code generally available. The pressure force integrator is developed in the frame
of the parametric body code. The code can measure the unit length force on the Gauss point from the
pressure field given by the flow solver. The validation code is provided in Appendix G.

5.2.1. Body generation
Before we develop the integrator, we should be able to generate a cylinder with different downstream
ends. Since the body is rotationally symmetric, we first generate the central axis using the B-spline
(NURBS) curve. The coordinate system used to create the geometry is local.

The control points are in the parametric space; the actual position is obtained by multiplying the char-
acteristic length Lsim and applying translation. We use three control points to generate a straight axis
in the xoy plane for validation. The coordinates are: (0, 0, 0), (0.5, hξ/2, 0), and (1, hξ, 0). The inclined
angle of the axis can be shifted by adjusting hξ, as shown in Figure 5.4. If hξ is large, the central axis
length no longer equals Lsim. In our case, we have more control points and tiny deflections. Multi-
ply Lsim by the parametric coordinates and apply the translation, then we can have the global control
points (in the black coordinate system in Figure 5.4).

Figure 5.4: Schematic of an inclined cylinder with an extra blunt (taper) end (Dend > Dsim) in the simulation. The central axis
is in the xoy plane. hξ = 0.3 in this figure. The dashed red line is the central axis. The blue coordinate system is local
(obtained by multiplying Lsim by the parametric system).
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Then, we apply the diameter function. For a cylinder with a tapered end, we have:

D(ξ) =


Dsim , 0 ≤ ξ ≤ ξcyl ;(

Dend/2−Dsim/2

1− ξcyl
ξ +

Dend

2
− Dend/2−Dsim/2

1− ξcyl

)
× 2 , ξcyl < ξ ≤ 1 .

(5.5)

Dend is the body diameter at the end of the central axis, as shown in Figure 5.4. ξcyl is the parametric
separation point of two segments: the cylindrical part and the tapered end. The tapered end becomes
a cone if Dend = 0. The equation 5.5 provides the diameter in the global system. It only uses the
parametric coordinate ξ to define the longitudinal position on the central axis.

We define the central axis of the cylinder with a parachute end in the xoz plane for validation. The
control points are (0, 0, 0), (0.5, 0, hξ/2, ), and (1, 0, hξ). The diameter function is:

D(ξ) =



Dsim1 , 0 ≤ ξ ≤ ξcyl ;(
Dsim2/2−Dsim1/2

1− ξcyl
ξ +

Dsim2

2
− Dsim2/2−Dsim1/2

1− ξcyl

)
× 2 , ξcyl < ξ ≤ ξcone ;

Dsim2 , ξcone < ξ ≤ ξrope ;

Dsim3 , ξrope < ξ ≤ 1 .

(5.6)

Dsim1, Dsim2, and Dsim3 are diameters of different segments, as shown in Figure 5.2a. ξcyl, ξcone, and
ξrope is parametric lengths of various segments. Diameters have abruptions at ξ = ξcone and ξ = ξrope,
as shown in Figure 5.2b. The generated body is provided in Figure 5.5. The geometry is imperfect due
to the mesh resolution, and the ”parachute” is solid due to code limitations. We believe it is sufficient
for qualitative research.

Figure 5.5: Schematic of an inclined cylinder with a parachute at the end. The central axis of the body is in the xoz plane. The
central axis is straight. hξ = 0.3 in this figure. The green dashed line separates different segments.

Although we apply the variable diameters, the bending stiffness in the solid structure solver is constant.
Applying variable bending stiffness requires additional code modifications. Since the tapered end or
parachute only takes a small part of the body, we still use the bending stiffness of the cylindrical part
on the tapered end. In our validation cases, the tapered end may look giant. However, it will be tiny
compared to the whole body when we simulate the investigation cases in Chapter 6, which is similar
to the previous experiment[43].

We can also generate the central axis as a semicircle. For later validation, define the axis in the
xoy plane by the NURBS curve. The NURBS curve is the non-uniform rational B-spline curve[52]. A
semicircle’s parametric control points, weights, and knot vector are available in an existing example
case:
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Ξ =[0, 0, 0, 1/2, 1/2, 1, 1, 1] ,

wieghts =[1,
√
2/2, 1,

√
2/2, 1] ,

cps =(−1, 0, 0), (−1, 1, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)

(5.7)

The diameter of the semicircle is 2Lsim, as shown in Figure 5.6. The diameter of the cylinder is set to
be a constant Dsim, and no specific shape is applied to the end.

Figure 5.6: Schematic of a semicircle cylinder with a constant diameter. Dsim = 6 in this figure. The dashed red central axis
of the cylinder lies in the xoy plane. The blue coordinate system is local but not a parametric system.

5.2.2. Methodology
The solid structure solver requires the unit-length force on the Gauss point, which is on the body’s
central axis (rotational axis). We integrate the pressure force on the edge of the cross-section that
passes the Gauss point and is perpendicular to the local axis’s tangential direction to represent the
local load distribution on the Gauss point, as shown in Figure 5.7. The unit is force per length.

Figure 5.7: Schematic of a 3D cylinder. The red line represents a cross-section. The red dot is the Gauss point in the
cross-section. The long-dashed line is the central axis.

Focus on the cross-section. Figure 5.8a shows the pressure force integration along the section edge.
X is the global coordinate of a point on the cross-section edge, and p(X) is the pressure on the point.
Determining the analytical expression of the pressure function is complex, so we use the feature of
FVM to approximate the force integration:

∮
Ωc

p(X) · ndl =
ncr∑
i=1

p(Xci) · ni∆lc . (5.8)
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Ωc denotes the cross-section. n is the local normal direction. We evenly divide the circle into ncr

segments, so each segment has the length ∆lc = πD(ξg)/ncr, where ξg is the parametric longitudinal
coordinate of the Gauss point. p(Xci) is the pressure on the sampling point on the circle, as shown in
Figure 5.8b. The sampling point is at the midpoint of each arc segment. Given ncr sampling points, the
solar coordinate of the point in the cross-section plane is ((i− 1)∆θc , D(ξg)/2), where ∆θc = 2π/ncr

and integer i ∈ [1, ncr].

(a) Original force integration along the edge. (b) Approximation of the force integration.

Figure 5.8: Schematic of the force integration in the cross-section. The red dot is the Gauss point.

With the approximation equation 5.8, we only need to determine the global coordinates of sampling
points Xci and the corresponding force normal directions ni. Deliver the coordinates to the flow solver,
and then we can automatically obtain the local pressure from the numerical pressure field. Determining
the coordinates and normal direction requires using Rodrigues’ rotation formula[9][23][65].

We first define a basic cross-section in the yoz plane of the global system, with the center at the system
origin, as shown in Figure 5.9a. All processes are done in the global system.

(a) Basic cross-section in the global yoz plane. (b) Intermediate cross-section with a rotation angle.

Figure 5.9: Procedure of applying Rodrigues’ rotation formula. G denotes the Gauss point.

For the cylindrical part, on the edge of the cross-section Ω0, the sampling point’s coordinate is defined
as

(x0, y0, z0) =


x0 = 0 ;

y0 =
D(ξg)

2
cos[(i− 1)∆θc] , i ∈ [1, ncr] ∩ N ;

z0 =
D(ξg)

2
sin[(i− 1)∆θc] , i ∈ [1, ncr] ∩ N .

(5.9)

The plane’s normal direction of cross-section Ω0 is n0 = [1, 0, 0]. Given an arbitrary sampling point B
on the edge of the basic cross-section. Denote the origin of the coordinate system as O. Normalize
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vector O⃗B first for better explanation, then we can have the point’s normal direction on the edge in the
yoz plane (only for the cylindrical part; in the code we actually rotate the vector first, then normalize
the point’s normal direction nB1 in the equation 5.15, nB0 = O⃗B; in the code we do not need to multiply
the radius in the equation 5.14 since we do not normalize nB1 in this equation):

nB0 =
O⃗B

|O⃗B|
. (5.10)

We have nB0 ⊥n0. With known ξg, we can obtain the normalized tangential direction ng of the cylinder’s
central axis on the Gauss point from the parametric body code. ng is the plane’s normal direction of
actual cross-section Ωg. The rotation angle between n0 and ng is determined by:

γ = arcos

(
n0 · ng

|n0||ng|

)
. (5.11)

We define the rotation axis by the cross product between the two planes’ normal directions and normal-
ize it:

k =
n0 × ng

|n0 × ng|
. (5.12)

If n0×ng = 0, we directly return k= [0, 0, 0] in the code to avoid dividing zero. The spatial relation
between an arbitrary point’s normal direction nB0 and the plane’s normal direction n0 is fixed, so they
share the same rotation axis k and angle γ. Apply the Rodrigues’ rotation formula to rotate the cross-
section Ω0 to Ω1, and make n0 parallel to ng, as shown in Figure 5.9b. The point’s normal direction
after the rotation is[23][9][65]:

nB1 = cos(γ)nB0 + [1− cos(γ)](k · nB0)k+ sin(γ)(k× nB0) . (5.13)

The sampling point’s coordinate on the section Ωg is equal to the corresponding value of the vector:

Xci = (xi, yi, zi) =
D(ξg)

2
nB1 + O⃗G . (5.14)

On the body surface, the point’s normal direction nB1 is towards the outside, while the force’s normal
direction is towards the inside. We have the force’s normal direction:

ni = −nB1 . (5.15)

On the downstream end (tapered end or parachute), Dξ is a linear function of ξ on the taper segment:
ξ ∈ (ξcyl, 1] or ξ ∈ (ξcyl, ξrope]. We first need to determine the slope angle α, as shown in Figure 5.10.

(a) Taper angle of a tapered end. (b) Taper angle of a parachute end.

Figure 5.10: Schematic of the slope angle α of different end shapes.

The slope angle α is determined by:
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For a tapered end : α = arctan

(
Dend −Dsim

Lsim − ξcylLsim

)
,

For a parachute end : α = arctan

(
Dsim2 −Dsim1

Lsim − ξcylLsim

)
.

(5.16)

The point’s normal direction differs in the basic cross-section Ω0. Given a new symbol nB01, it becomes:

nB01 =

 sin(α)

cos[(i− 1)∆θc]cos(α)

sin[(i− 1)∆θc]cos(α)

 , i ∈ [1, ncr] ∩ N . (5.17)

The force in the x direction has been neglected, so we apply a modification to the force’s normal
direction (operator ⊙ is the element-wise product):

ni = −nB1 ⊙

0cos(α)
cos(α)

 . (5.18)

Since we never use it, we can multiply anything by the x component, for example, zero. We can still
use nB1 to determine the point’s coordinate on the actual cross-section’s edge in the simulation. The
range of α is [−π/2, 0) ∪ (0, π/2], so no sign issue.

In summary, we can obtain an arbitrary sampling point and the corresponding force’s normal direction
with known ncr, ξg, and D(ξ). The local pressure p(Xci) is obtained by averaging the pressures in
adjacent grids since the sampling points may not be precisely on a grid point in the simulation.

5.2.3. Validation
To validate the pressure force integrator, we manually define a hydrostatic pressure field in the y or
z direction with ρsim = 1 and gsim = 1. We first define the right-hand side of the pressure Poisson
equation[18]:

1

ρsim
∆psim = −∇⃗ · (u⃗ · ∇⃗)u⃗ . (5.19)

Then, we let the flow solver solve a hydrostatic pressure field instead of defining it by assigning a value
directly, which makes the field closer to an actual simulated field. The cylinder with a tapered end and
the semicircle cylinder have a pressure field: p(X) = y. The cylinder with a parachute end has the
following pressure field: p(X) = z. The pressure force integrator should be able to measure the correct
unit-length force in the y and z directions at the Gauss point.

Before we run the validation code, the analytical result must be determined. Consider the cylinder with
a tapered end, for example. The central axis of the cylinder with a tapered end is straight. The axis is
in the xoy plane. The analytical pressure field is p(X) = y. Figure 5.11 shows a cross-section in the
coordinate system at the Gauss point G.

Inspired by the parametric sphere function[57], the point’s coordinate on the cross-section’s edge is
determined by the expression 5.20. β is the cross-section’s inclined angle along z axis in the xoy plane.
η is the solar coordinate in the cross-section’s plane.

(x, y, z) =



x =
D(ξg)

2
sin(η)cos(β)

y =
D(ξg)

2
sin(η)sin(β)

z =
D(ξg)

2
cos(η)

. (5.20)
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In the cylindrical part, the y component of the point’s normal direction on the cross-section edge is
ny = y.

Figure 5.11: A cross-section contains the Gauss point in the local coordinate system.

Because the pressure gradient is only in the y direction and the cylinder is symmetric with respect to
the xoy plane, the force integration’s z component should be zero. On the contrary, it is the opposite.
The unit length force fgy in the global system is determined by:

fgy(ξg) = −
∫ 2π

0

D(ξg)

2
[sin(η)sin(β)]

2 D(ξg)

2
dη = −πD2(ξg)

4
sin2(β), ξg ∈ [0, ξcyl] or (ξrope, 1]. (5.21)

The pressure force is towards the negative direction, which makes sense. For the taper segment, we
only need to multiply a cos(α) in the equation:

fgy(ξg) = −πD2(ξg)

4
sin2(β)cos(α) , ξg ∈ (ξcyl, 1] or (ξcyl, ξrope] . (5.22)

The same method can determine the unit length force under the pressure field p(X) = z. In that case,
the central axis is in the global xoz plane, and β is the inclined angle in the same plane. β is easy
to obtain since the geometry is known. With β, we can get the analytical unit length force, including
the semicircle cylinder. Now, we can run the validation code. The number of sampling points on the
cross-section edge is ncr = 64.

Figure 5.12: Schematic of the solar system of the semicircle cylinder. The black dot represents the sampling points.

For the semicircle cylinder, we define 15 sampling points on the central axis to analog Gauss points,
evenly dividing the entire body into 16 segments. The beginning and end of the central axis are not
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considered, since the Gauss integration never uses the values of the integration limits. The central
axis is in the xoy plane. We use the angle in the solar coordinate system to denote the sampling points,
so θarc = nπ/16 is the nth sampling point’s coordinate, as shown in Figure 5.12. The pressure field is
p(X) = y, and Lsim = 64. Appendix H provides the points’ coordinates and numerical and analytical
results. The comparison diagram is shown in Figure 5.13.

Figure 5.13: Comparison between analytical and numerical results of the semicircle cylinder. β = π − θarc. The red line is the
analytical results with Dsim = 6; the black boxes are its numerical approximation. The green line is the analytical results with
Dsim = 9; the blue triangles are its approximation. The numerical force’s z component is at O(10−14).

Figure 5.14: Comparison between analytical and numerical results of the cylinder with a tapered end. Lsim = 64. ξcyl = 0.8.
Dsim = 6. The red line is the analytical results with Dend = 12 and hξ = 0.2; the black boxes are its numerical approximation.
The green line is the analytical results with Dend = 0 and hξ = 0.3; the blue boxes are its approximation. xξL is the
longitudinal coordinate of the sampling point. The numerical force’s z component is at O(10−14).
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Figure 5.15: Comparison between analytical and numerical results of the cylinder with a parachute end. Lsim = 64.
ξcyl = 0.7, ξcone = 0.8, and ξrope = 0.9. Dsim1 = 8, Dsim2 = 2, and Dsim3 = 12. The red line is the analytical results with
hξ = 0.2; the black boxes are its numerical approximation. The green line is the analytical results with hξ = 0.3; the blue
triangles are its approximation. The numerical force’s y component is at O(10−14).

We define 31 sampling points on the central axis for the cylinder with a tapered end. The straight
central axis is in the xoy plane. The pressure field is p(X) = y. The characteristic length Lsim = 64.
β = π − arctan(1/h). Two cylinders with various parameters and hξ are tested. The sampling points’
coordinates in the local system in Figure 5.4 (blue one) and force results are provided in Appendix H.
The comparison diagram is shown in Figure 5.14.

For the cylinder with a parachute end, we define 31 sampling points. The straight central axis is in
the xoz plane. The pressure field is p(X) = z. The characteristic length remains the same. β =
π − arctan(1/h). Two cylinders are tested with different hξ. Appendix H provides the details of the
results. The comparison diagram is shown in Figure 5.15.

The maximum error rate of all cases is 0.037%, corresponding to a point on the cylinder with the tapered
end and Dend = 0, determined by (fgy,sim − fgy)/fgy. We then combined the code into the frame of
the FSI code, which can be found in Appendix G. A simple test is also conducted to ensure the code
can use actual Gauss points. In conclusion, the pressure force integrator is validated.

5.3. FSI solver validation
5.3.1. Methodology
The FSI solver bridges the flow solver and the solid structure solver. A solver is available for a 2D
case. The coupling solver based on the Interface Quasi-Newton method is combined in the code. The
flow solver receives and delivers data with three dimensions, while the solid structure requires two-
dimensional data in the y and z directions. Hence, modification is necessary.

Some vectors and matrices’ dimensions in the original FSI solver are first extended to three dimensions,
allowing it to connect with the 3D flow solver. Our pressure integrator measures the forces in the y and
z directions on Gauss points from the fluid field that the flow solver determines. The external forces are
in the global coordinate system and delivered directly to the solid structure solver. The solid structure
solver determines the displacement of the parametric control point in the corresponding directions.
The solver returns the global displacement after multiplying Lsim by the parametric one. The new
displacements in the y and z directions are combined with a zero x component to form a 3D vector.
With D(ξ), the parametric body code can generate a spatial curve using the B-spline curve.
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The FSI coupling is solved by the implicit method. Define an operator S(fk) representing our solid struc-
ture solver, which receives the external pressure force fk and returns the control point displacement
dk. Define an operator F (dk) representing the flow solver combined with the pressure force integrator,
which receives the structure displacement dk, generates a new fluid field, and returns the hydrodynamic
force Fk. dk and fk are vectors. In the coupling process, the equation system 5.23 should be fulfilled
simultaneously.

{
S(fk) = dk

F (dk) = fk
. (5.23)

k is the number of iterations at each time step. The system can be treated as a fixed point problem[26]:
S(F (dk)) = dk. We can use the Newton method to find the root of the equation by iterations. Define
a residual function in an iteration step: R(dk) = S(F (dk)) − dk. The goal is to find the root to make
R(dk) = 0.

Figure 5.16: Flow chart of the coupling solver in the FSI code at time step n+ 1 .
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Figure 5.16 provides the flow chart of the solving process at the iteration step k. Assume we are
solving dn+1 and fn+1. dn and fn are known. n denotes the time step. Use dk = dn and fk = fn as the
initial values. Next, substitute dk into the flow solver to obtain the external force f̃k+1 = F (dk). Then,
substitute f̃k+1 into the solid structure solver to obtain the displacement d̃k+1 = S(F (dk)). The force
and displacement residuals are

R(fk) = f̃k+1 − fk , (5.24)
R(dk) = d̃k+1 − dk . (5.25)

The overall residual of iteration k is determined by the norm of vector residual with R(dk) and R(fk):

R(k) = || [R(dk) R(fk)]
T ||2 . (5.26)

All displacement and force residuals are in the square brackets; the dimension is the sum of the quan-
tities of the two residuals. Define a tolerance tol. If R(k) < tol, the solutions converge. d̃k+1 and f̃k+1

are the precise values on the time step n+ 1. If R(k + 1) > tol, the solutions are incorrect. Thus, use
the IQN method to determine a new dk+1 and fk+1 for the next iteration step. Then, substitute dk+1

and fk+1 into the flow solver again to start the iteration step k+1. The fluid velocity and pressure fields
revert to un and pn. The difference between the classical and the Interface Quasi-Newton methods is
provided in the subsection 2.3.7. .

5.3.2. Validation
We select the experiment of a clamped-free cylinder with a tapered end, conducted by Païdoussis[43],
as the reference to validate the FSI solver. The FSI solver imports the flow solver and the solid structure
solver. It is a complete code for determining the instability of a flexible cylinder in axial flow, taking into
account flow-structure coupling. We expect to obtain various unstable modes of the cylinder, and the
results should agree with the experiment.

We first introduce the experiment setting. The shapeA in Figure 2.15a is selected as the tested tapered
end. We regard it as a cone, which the parametric body code can generate. The length of the tapered
end is Lend = 31Dcyl/17, as measured from the figure. The experiment’s ratio determines the mass
ratio of the simulation βsim:

ρwat

ρwat + ρcyl
= 0.46 ⇒ βsim =

ρs
ρsim

=
ρcyl
ρwat

= 1.157 . (5.27)

ρs and ρsim are the cylinder and water density in the simulation. ρsim = 1. ρcyl and ρwat are those
densities of the experiment. ρwat = 1000 kg/m3. The mass ratio βsim is used in the dynamic solver of
the solid structure solver. We still neglect gravity and consider only hydrodynamic force.

The experiment’s cylinder length is Lcyl = 0.391 m, and the diameter is Dcyl = 0.166 m. The bending
stiffness is EI = 6.39× 10−3 N m2. The unit length cylinder mass is m = 0.25 kg/m[44]. In the code,
experiment parameters are converted from imperial units.

The critical velocity in the instability diagram 2.15a is expressed by the dimensionless velocity u:

u =

(
ρwatπDcyl

4/4

EI

)1/2

UexpLcyl . (5.28)

Each tested case’s experiment far-field velocity Uexp can be obtained to determine the corresponding
Reynolds number Re:

Re =
ρwatUexpDcyl

µwat
.

We can also obtain the Cauchy number by EI directly:

Ca =
EI

ρwatU2
exp

/
πDcyl

4

64
. (5.29)
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The similarity criteria the simulation should obey are Ca and Re. We substitute them into the code and
determine µsim and EsimIsim:

µsim =
ρsimU2

∞Dsim

Re
, EsimIsim = (Ca · ρsimU2

∞)
πDsim

4

64
. (5.30)

In the code we have: ρsim = 1 and U∞ = 1. The far-field axial flow velocity U∞ is in the x direction
in the simulation. The bending stiffness for the solid structure solver is EparaIpara = EsimIsim/L3

sim,
where Lsim = 192 is the characteristic length of the simulation and central axis length of the cylinder
with a tapered end. For a cylinder with a parachute end, replace Dsim with Dsim1. We have Dsim =
Dsim1 = 7.56. We determine ξcyl before obtaining Dsim:

ξcyl =
Lcyl/Dcyl

Lcyl/Dcyl + Lend/Dcyl
. (5.31)

Dend = 0 in the validation case. The diameter of the cylindrical part is:

Dsim = ξcylLsim × Dcyl

Lcyl
. (5.32)

With Dsim and ξcyl, we can define the diameter function D(ξ) to generate the cylinder with a tapered
end. Figure 5.17 shows the numerical fluid field.

Figure 5.17: Side view of the fluid field for the validation. The red dashed line represents the central axis generated by the
B-spline curve. The ghost grids for the boundary condition are not shown in the figure.

The fluid field is a cuboid. The length, width, and height are Ll = 280 and Lw = Lh = 48. The
central axis of the cylinder with a tapered end is straight and parallel to the x direction. The coordinate
of the axis’ nose is (x, y, z) = (24.5, 24.5, 24.5) to prevent the singularity. Thus, Lnose = 24.5, and
Ltip = Ll − Lnose − Lsim. The far-field flow direction is the x direction. Then, we use a third-degree
B-spline curve with numE = 12 elements and ng = 48 Gauss points to generate the parametric mesh
on the solid structure.

(a) Fluid field with a cylinder in divergence in the xoy plane. u = 4. tconv = 30.0.

(b) Fluid field with a flutter cylinder in the xoy plane. u = 5. tconv = 28.8.

Figure 5.18: Velocity fields of cylinder in different instabilities.
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Six dimensionless velocities u ∈ [2.0, 2.5, 3.0, 4.0, 4.5, 5.0] have been tested. A half sphere end (ξcyl =
1), the H shape shown in Figure 2.15a, has been tested additionally when u = 5. The simulation
duration is 30 convective time units, ensuring the fluid and structural displacements fully develop. We
gave a poke qp = 0.01 in the z direction when tconv ≤ 0.2 to trigger the initial instability and prevent
the critical stability. The initial condition should not affect the system’s stability. The velocity fields
of divergence (buckling) and flutter cylinders are shown in Figure 5.18a and 5.18b. The flow solver
automatically determines the boundary layer. The boundary layer grows slowly and smoothly in the
upper part of the cylinder, while it develops significantly close to the downstream end.

Define sy and sz as the relative displacements (displacement/Dsim) in two directions of a point on
the body’s central axis. We monitor the time-varying displacements at the midpoint (ξ = 0.5) and
the downstream end (ξ = 1.0). With two monitoring points and the upper boundary, we can infer
the instantaneous cylinder shape to distinguish different types of instabilities. We mainly observe the
displacement when tconv > 20, ensuring the instability fully develops. We expect to obtain an approxi-
mately periodic state of divergence or flutter. The group of figures 5.19 provides the resultant diagrams.
The validation code can be found in Appendix F. Appendix I provides more figures about the cylinder
shape. The parameters of each test case are shown in Table 5.1. We can finally infer the range of the
critical velocities of divergence and flutter to generate a figure similar to the figure 2.15a.

Table 5.1: Parameters of validation cases.

Lsim = 192, Dsim = 7.557, ξcyl = 0.928

u Re Ca EsimIsim EparaIpara

2.0 12816 2225 356148 0.05032
2.5 16020 1424 227935 0.03220
3.0 19224 989 158288 0.02236
4.0 25632 556 89037 0.01258
4.5 28837 439 70350 0.00994
5.0 32041 356 56984 0.00805
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Figure 5.19: Displacements diagram over tconv . The dashed and solid lines are the midpoint and endpoint displacements.

When u = 2.0, there is no clear indication of static divergence or flutter instability, as defined in Figure
2.5. In the y direction, the displacement gradually reduces to zero. In the z direction, the displacement’s
neutral position shifts from zero over a small distance. The phases of displacement at the midpoint and
downstream are similar. The overall deflection is tiny. We conclude that the critical velocity of the
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divergence instability is ucd,sim ≥ 2 (the cylinder always diverges first, then flutters[43]).

When u = 2.5, a clear divergence (buckling) instability is observed in the simulation animation. In the
time variation diagram, deflections in two directions develop a non-zero neutral position and fluctuate
slightly around it. In the z direction, the deflection of the neutral position is around a Dsim, which
matches the experimental observation[43]. In each plane xoz and xoy, the displacements on the mid
and end points deflect in the same direction (positive ny and negative nz), indicating the cylinder shape
is similar to a first-mode bending, which is confirmed by Figure I.1. The critical velocity of the divergence
should be ucd,sim < 2.5.

When u = 3.0, the cylinder buckles in two directions and maintains non-zero neutral positions, which
indicates the divergence instability.

When u = 4.0, we can still observe a clear static divergence, especially in the xoy plane. The amplitude
(deflection of the neutral position on the end) of the buckling reduces in the z direction, which matches
the experiment[43]: the transition from divergence to flutter ”involved a gradual return of the cylinder
to its position of rest along the x-axis, before further increase in the flow velocity resulted in unstable
oscillation”[43].

When u = 4.5, the cylinder starts to slightly flutter in the y direction but maintains divergence in the z
direction. We infer that the instability of the cylinder transforms at this point. Hence, the critical velocity
of the flutter instability is ucf,sim ≥ 4.5.

When u = 5.0, the cylinder is fluttering. The neutral position of deflection shifts back to zero. Figure
5.19 shows that the phases of displacements on the mid and end points are different. At the same tconv,
we can find a positive displacement on the mid-point but a negative one on the end, which indicates
that the flutter mode should be at least the second. Thus, the critical velocity of flutter is ucf,sim < 5.0.

The absolute displacement ranges of the downstream end in the y and z directions when tconv > 20
under various u are provided in Figure 5.20. The dots representing the magnitudes of displacements
form the blue and red bands. Each band contains all resultant displacements in the time duration
mentioned before. It is similar to compressing curves in Figure 5.19 from 2D to 1D. The denser part of
the band indicates that the downstream end reaches such displacements frequently. We can regard
the midpoint of the band as the approximated neutral position’s magnitude when the cylinder is in
divergence instability. Figure 5.20 indicates that the downstream end has small vibrations around the
non-zero neutral position when the cylinder is diverged. The downstream end oscillates around the
zero neutral position when the cylinder flutters. The maximum displacement indicates that the cylinder
fulfills the small deflection assumption mentioned in Section 3.2.

(a) Displacement range in the y direction. (b) Displacement range in the z direction.

Figure 5.20: Absolute displacement ranges at the downstream end when tconv > 20 under various u. The cylinder has
unclear instability when u = 2.0 and has flutter instability when u = 5.0.

With corresponding relations between instabilities and u, we can draw a stability diagram 5.21 corre-
sponding to u, similar to Figure 2.15a. The critical velocity ranges determined by the simulation can
match the experimental results.
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Figure 5.21: Ranges of divergence and flutter critical velocities. Green and orange horizontal I are divergence ranges from the
experiment and the simulation. The flutter ranges from the experiment and the simulation are blue and red horizontal I.

In summary, the FSI solver is quantitatively validated. The code is sufficient for our research.

5.4. Discussion
5.4.1. Pressure force integrator
In the pressure force integrator, we use adjacent grid points around the sampling point on the edge
of the cross-section to approximate the pressure. It is possible to pick up a point in the body where
the pressure field is not solved. Thus, we develop a code to make the sampling point move a small
distance δ outside the body surface. Equation 5.14 becomes:

Xci,1 =

(
D(ξg)

2
+ δ

)
nB1 + O⃗G . (5.33)

Some δ has been tested. We provide a cylinder with a parachute and δ = 0.01 in Appendix H. The
error is generally more significant than the case with δ = 0, so we set δ = 0 in the version code used.
A possible reason is that the BDIM has a boundary region that prevents selecting a grid point in the
body. Besides, δ/D(ξg) becomes significant when Dξg is small. We conclude that δ is not necessary.

5.4.2. FSI solver
We observe a tiny flutter when the downstream end is blunt, as shown in the last row of the figures
group 5.19. The blue and red represent the cylinder results with a tapered end. The brown and green
represent the results of the cylinder with a half-sphere (blunt) end. The experimental result shows no
flutter at this flow velocity. It could be because of the insufficient grid resolution. We only use no more
than eight grids to represent the cylinder diameter. However, the flutter amplitude is significantly smaller
than the amplitude of the cylinder with a tapered end. We still conclude that the code can distinguish
the effects of different end shapes on the instability.

The original 2D FSI solver was developed based on an old version of WaterLily. The original code
cannot use a GPU to accelerate the computation. Our code is modified from the original, so we can
only run it on a CPU. Althoughwe use a 16-core AMD7945HXCPU, a single validation case takes about
a day to execute. We set Lw, Dsim, and Dsim1 as large as we can, considering the time consumption.
We have Lw/Dsim > 6, indicating that our field is wider than the experiment’s tube shown in Figure
2.13. Hence, further development to apply GPU support to our code in the future is meaningful. We
can also upgrade a more complex D(ξ) to fit the streamlined end.

When we validate the parametric body code, the airship requires the fluid domain width to be 12 times
the diameter. You may find that the fluid field width is about 6 times the cylinder’s diameter for FSI
validation. One reason is the computational cost limitation. Another reason is that the cylinder is more
slender with less cross flow. The code has been validated with a thinner flow field in the end.
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Investigation

The FSI solver has been validated. The investigation can proceed following the research matrix. We
test the effect of various parameters on the instability of the flexible cylinder in axial flow.

6.1. Length of the cylinder
6.1.1. Numerical simulation
The parameters from Optics 11 are used to determine the simulation parameters. Constant Re and Ca
can be determined by equations 2.30 and 5.29 with Ureal = 5 knots = 2.572 m/s, ρsea = 1026 kg/m3,
µsea = 1.22 × 10−3 Pa · s, Earr = 1.2 × 107 Pa, and Darr = 0.03 m[55][59]. µsim and EsimIsim
can be determined by equations 5.30. The shape of the array cable is a cylinder with a tapered end,
so Dend = 0. The cylinder diameter is constant Dsim = 7.557. The length of the taper end is still
Lend = 31Dcyl/17. The buoyancy is neutral, so βsim = 1. The upper boundary condition is clamped or
pinned. The only changed parameter during simulations is the aspect ratio AR, which is defined as

AR =
Lsim

Dsim
. (6.1)

Then, ξcyl is determined with AR:

ξcyl =
AR

AR+ 31/17
. (6.2)

The characteristic length of the simulation and the body’s central axis length are:

Lsim = AR ·Dsim/ξcyl . (6.3)

The degree of the B-spline curve is three. The number of elements is determined by (define an operator
Int to find the closest integer):

numE = Int

(
12AR

Lcyl/Dcyl

)
. (6.4)

Lcyl andDcyl are the cylinder length and diameter used in FSI validation. Equation 6.4 means a longer
cylinder has more elements. The actual aspect ratio Larr/Darr is too enormous to simulate. Hence,
we extend AR as long as possible to find the change pattern of the cylinder’s instability with changing
length. The parameters of each test case are shown in Table 6.1. Figure 5.17 shows the fluid field
setting. We set Ltip = 64, and then determine the Ll = Lnose + Lsim + Ltip. Ll is the closest even
number or multiple of 16. (AR = 23.58 represents the ratio from the validation case; decimals are

61
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omitted. The corresponding Lsim = 192.) The other field dimensions remain the same. We still give
an initial poke in the z direction when tconv ≤ 0.2.

Table 6.1: Parameters of length effect investigation cases.

Re=64890, Ca=1768

AR numE ξcyl Lsim EparaIpara

16.00 8 0.89769 134.69197 0.11583
20.00 10 0.91644 164.91987 0.06310
23.58 12 0.92822 192.00000 0.04001
30.00 15 0.94270 240.48963 0.02035
40.00 20 0.95640 316.05938 0.00896
50.00 25 0.96481 391.62913 0.00471

The time-varying displacements sy and sz on the midpoint and downstream end, as used in the sub-
section 5.3.2, are shown in Figures 6.1 and 6.3. The code can be found in Appendix J. The figures of
the clamped-free cylinder are first plotted.
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Figure 6.1: Time-varying displacements of the clamped-free cylinder with a taper end and various aspect ratios in axial flow.
The solid and dashed lines represent the displacements at the downstream end and midpoint.

As shown in Figure 6.1, the deflection before AR reaches 50 is slight and 3D, making it challenging
to observe the motion directly from the animation. Therefore, we use the time variation diagram for
analysis. The clamped-free cylinder has some random and slight vibration when AR = 16, 20. This
should be the stage before the static divergence (buckling). If we increase the cylinder length further,
the cylinder will be in divergence instability whenAR = 23.58: the midpoint and downstream end deflect
to the same side simultaneously. Hence, the critical aspect ratio of divergence should be ARcd < 23.58.
When the aspect ratio reaches 30, the static buckling amplitude reduces to around zero. WhenAR = 40,
the cylinder starts to flutter, so the critical aspect ratio of flutter should be 23.58 < ARcf < 40. When
AR = 50, a clear pattern of flutter instability is observed, which is confirmed by the simulation animation.

The instability transition as we increase the cylinder length is similar to the transition as increasing the
flow velocity around a clamped-free cylinder with a constant length[43][44]: the cylinder first diverges
to a non-zero neutral position, then gradually moves back to the original zero neutral position (y = 0
and z = 0) as cylinder length increases, as shown in AR = 23.58 and AR = 30 in Figures 6.1; the flutter
happens after that if we keep increasing the length. AR = 30 could be the transition point. Figure 6.2
shows the axis shape at different tconv. The cylinder has a tiny vibration at this point in its first mode.
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Figure 6.2: Shapes of the clamped-free cylinder’s central axis in xoy and xoz planes. AR = 30. Symbols are sampling points.

The time-varying displacement figures of the pinned-free cylinder are plotted next. A pinned-free cylin-
der with AR = 50 is not tested since the cylinder has already fluttered when AR = 40.
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Figure 6.3: Time-varying displacements of the pinned-free cylinder with a taper end and various aspect ratios in axial flow. The
solid and dashed lines represent the displacements on the downstream end and the midpoint.

(a) Displacement range in the y direction. (b) Displacement range in the z direction.

Figure 6.4: Absolute displacement ranges at the downstream end in the last 10 convective time units. The downstream end
oscillates around the zero position when AR = 40.

To find the steady state, the case with AR = 23.58 is simulated for 45 convective time units, while the
other case uses 30 time units. We mainly observe the displacement in the last 10 convective time units,
ensuring the instability fully develops.

The maximum amplitudes of the clamped and pinned-free cylinder displacements are smaller than
0.8Dsim and 1.6Dsim, respectively. An arbitrary point A on the central axis of the cylinder still has the
relation dA/lA < 1/10, which fulfills the small deflection assumption mentioned in Section 3.2.

Similar to the figure 5.20, Figure 6.4 provides absolute displacement ranges of the downstream end
in the y and z directions when tconv > 20 with various aspect ratios. We can regard the midpoint of
the color band as the approximated neutral position’s magnitude when AR < 40. The denser part of
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the color band indicates that the downstream end has small vibrations around the non-zero neutral
position, if the cylinder is diverged. According to the figure 6.3, the cylinder flutters when AR = 40, so
the neutral position here is zero.

The figures 6.3, 6.4, and K.1 show that despite the amplitude being tiny in the y direction, the pinned-
free cylinder is in clear divergence (yawing) when AR = 16. The instability in the z direction develops
immediately with a large amplitude, possibly because of the initial poke in this direction. We still can
infer that ARcd < 16. An apparent divergence instability develops in the y direction when AR = 23.58.
AR = 30 could be the transition point between divergence and flutter. The deflection amplitude reduces
to around zero. The cylinder completely flutters in its second mode when AR = 40, so we have
23.58 < ARcf < 40. The axis shapes at various tconv are shown in Figure 6.5. The central axis shapes
of other cylinders with different AR are provided in Appendix K. The instability transition is similar to
the behavior of the clamped-free cylinder, and it is more apparent:

• The magnitude of the neutral position of the divergence instability first increases, then reduces
as the length increases, as shown in AR = 16, 20, 23.58, 30 in Figure 6.4a. It gradually returns to
the original zero neutral position before the flutter instability, as shown in Figure 6.4b. There is
no increasing phase in the z direction, possibly because the initial poke makes the pinned-free
cylinder skip the instability development in this direction.

• If the cylinder length increases further, the flutter develops along the zero neutral position (cylin-
der’s original central axis). The flutter amplitude grows from the tiny vibration around the zero
position.

Figure 6.5: Shapes of the pinned-free cylinder’s central axis in xoy and xoz planes. AR = 40. Symbols are sampling points.

(a) Position of the velocity sampling point (red dot).
(b) The purple line represents the time variation velocity
ux on the sampling point. The red line represents sz .

Figure 6.6: Velocity sampling point and the comparison diagram between the flutter and the vortex-shedding frequencies.

We can also qualitatively compare the flutter frequency and the vortex-shedding frequency. Behind
the cylinder’s downstream end, we select a spatial point in the fluid field and monitor the time-varying
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flow velocity in the x direction at this point. When a vortex passes the spatial point, the velocity fluc-
tuates from the far-field velocity U∞ = 1. We regard the fluctuating frequency as the vortex-shedding
frequency. The velocity sampling interval is 0.2 convective time units. The Nyquist frequency is 5.0Hz,
so the maximum shedding frequency we can capture by FFT is lower than 2.5 Hz[29].

We select sz on the pinned-free cylinder’s downstream end (ξ = 1) when AR = 40.00 for comparison.
The sampling rate of sz is much higher, depending on the CFL condition. Thus, the band limit is not a
problem. Figure 6.6b is the comparison diagram.

The Fourier transformation is the appropriate method for obtaining the power density diagram over
frequencies[66][4] to find the dominant frequency of a periodic signal. The author attempted to generate
the diagram using OriginLab[39]. The resultant diagram is meaningless. A possible reason is that the
sampling rate of the velocity is too low. An improvement is required in the future: predefining the
coordinate of the sampling point instead of randomly selecting a point from Paraview. And record the
velocity data with the cylinder’s displacement to share the same sampling rate.

We can still conclude that the flutter frequency is higher than the vortex-shedding frequency from Figure
6.6b.

6.1.2. Discussion
Increasing the cylinder length will cause the cylinder to diverge and then flutter. However, the deflections
of pinned-free and clamped-free cylinders significantly reduce during the transition range between two
instabilities, for example, 23.58 < AR < 40.00. The cylinder is still unstable, but the oscillation amplitude
is relatively small when AR = 30.00, which makes the structure’s overall shape close to straight. Some
industrial applications may benefit from the features mentioned above.

The cylinder becomes more unstable as the length increases, which is apparent. Combining the simu-
lation and the experiment[36] observation, we conclude that increasing length (aspect ratio) will desta-
bilize the structure after the transition point. Once the cylinder exhibits apparent fluttering, increasing
the length cannot reduce the oscillation mode or stabilize the cylinder. Hence, the long array cable
should be unstable under its working conditions.

In the literature review, we found that a cylinder with an intermediate length could be stable under
various flow velocities. We should determine the critical velocities of cylinders with multiple aspect
ratios to confirm this hypothesis. It is not easy to achieve this goal since the code can only run on the
CPU at the moment. The case with AR = 50 took a week to execute. Many test cases should be taken
to predict the critical velocity line, as shown in Figure 6.7. The time consumption is unacceptable.

Figure 6.7: Method of predicting the critical velocity line. ux is the far-field flow velocity.

The tested cylinders are much shorter than the actual array cable. However, we still infer that the
array cable will flutter under its working condition since there is no indication of the stabilizing effect of
increasing the cylinder length (aspect ratio) during our numerical investigation.

Increasing the length could lead to a higher mode flutter instability, since a longer cylinder is more
similar to a string instead of a beam, and the constraint from the upper boundary becomes weaker at
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the downstream end. The flutter amplitude could have a limited increase. The reason is that a larger
amplitude indicates a larger angle between the far-field flow and the cylinder’s tangential directions.
This brings a larger restoring force caused by hydro-pressure and structural elasticity to prevent the
amplitude from further increasing. The flutter cylinder shares some similarity with a forced spring-mass
system.

In reality, the array cable should be in tension along its whole structure when it is in axial flow, because
the vortex shedding behind the downstream end could create a lower pressure zone than that in the
front, and the viscous force mainly contributes to the direction parallel to the axial flow. The situation
differs from the counterintuitive assumption in the analytical model for a long and fluttered cylinder
developed by Langre et al.[25]. Hence, the company can use experimental or numerical methods for
intuitive investigation.

6.2. Upper boundary condition
In Chapter 6.1, we tested the cylinder with clamped and pinned upper boundary conditions. The
clamped boundary has Neumann and Dirichlet conditions, and the pinned boundary only has the Dirich-
let condition. Comparing the figures 6.1 and 6.3, it is apparent that the pinned-free cylinder is more
unstable, which has a larger deflection amplitude and lower critical velocities. The rotational constraint
on the upper boundary plays a vital role in the instability. Hence, the recommendation for the company
is to strengthen the upper boundary, which is the cable connector between the tow and array cables.

The code can now only use the two boundary conditions mentioned before. It is possible to apply a
spring boundary shown in Figure 2.1 in the future to make the simulation more general.

6.3. Reynolds number

Figure 6.8: Time-varying displacements of the pinned-free cylinder with a taper end and Re = 6489. The solid and dashed
lines represent the displacement at the downstream end and midpoint.

Figure 6.9: Time-varying displacements of the pinned-free cylinder with a taper end and Re = 648.9. The solid and dashed
lines represent the displacement at the downstream end and the midpoint.
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We use a pinned-free cylinder with AR = 23.58 to test the effect of the Reynolds number on the cylin-
der’s instability. All the other settings are the same as the case shown in Chapter 6.1 and Table 6.1.
The original Reynolds number is 64890, so two additional numbers, Re = 6489 and 648.9, are tested,
and the viscous force on the cylinder remains negligible. We only change the Reynolds number, and
the Cauchy number remains unchanged. It is similar to increasing the fluid viscosity, so the fluid field
becomes more laminar. The time variation diagrams of sy and sz are shown in Figures 6.8 and 6.9.

Compared to Figure 6.3, the cylinder in the fluid field with lower Reynolds numbers is still in divergence.
The amplitudes of the shifted neutral positions are of the same magnitude. The deflection direction is
changed whenRe = 6489. The slight vibration around the neutral position disappears when Re = 648.9
because the fluid field is very laminar, as shown in Figure 6.10.

Figure 6.10: Fluid field schematic in the xoy plane. Re = 648.9. tconv = 4.

Thus, we conclude that reducing the Reynolds number by increasing the fluid viscosity cannot stabilize
the overall structure. However, it can reduce the vibration around the non-zero neutral position when
the cylinder is in divergence instability. We believe this vibration reduction effect can also happen on a
long cylinder that diverges.

We infer that increasing the Reynolds number of a very long cylinder that flutters by decreasing the
viscosity will not change the flutter amplitude or instability mode, since Figure 6.6b indicates that the
cylinder’s unstable motion correlated weakly with the vortex shedding that relates to the Reynolds
number. Increasing the cylinder length to alter the Reynolds number is different because the Cauchy
number changes simultaneously in this way.

6.4. Downstream end shape
6.4.1. Extra blunt end
Our code simulates two downstream end shapes that have never been tested before. We first apply
an extra blunt end to the validation case with u = 5. The extra blunt end has Dend > Dsim, as shown
in Figure 5.4. We setDend = 11, and other parameters remain unchanged, as shown in Table 5.1. The
time variation diagrams of sy and sz are provided in Figure 6.11. Compared to the last row in the group
of figures 5.19, the flutter amplitude reduces significantly. The shape of the cylinder is close to straight.

Figure 6.11: Time-varying displacements of the clamped-free cylinder with an extra blunt end. The solid and dashed lines
represent the displacement at the downstream end and the midpoint.
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Then, we apply the extra blunt end to a pinned-free cylinder with AR = 40.00. We also set Dend = 11,
and other parameters remain unchanged, as shown in Table 6.1. The pinned-free cylinder is more
similar to the array cable, making the simulation more meaningful. The time variation diagrams of sy
and sz are provided in Figure 6.12. Compared to the last row in the group of figures 6.3, the flutter
amplitude reduces significantly. The instability still exists since the displacement is never damped.

Figure 6.12: Time-varying displacements of the pinned-free cylinder with an extra blunt end. The solid and dashed lines
represent the displacements at the downstream end and the midpoint.

The simulation results indicate that the extra blunt end can effectively reduce flutter amplitude. A pos-
sible reason is that the extra blunt end reduces the lift force on the downstream end, which is a driving
force of the instability. Considering the analytical theory for the flutter of a long cylinder[25] also predicts
that a sufficiently blunt end can stabilize the cylinder, we conclude that the extra blunt end stabilizes a
relatively long cylinder.

6.4.2. Parachute
Applying a parachute to the cable end is a widely used method that helps stabilize the structure, as
shown in Figure 2.2. Therefore, we try to apply a parachute to the downstream end of a pinned-free
cylinder. We still use the cylinder with AR = 40. The structure is shown in Figure 5.2. Given new
parameters: Dsim1 = 7.557, Dsim2 = 2, Dsim3 = 11, ξcyl = 0.91275, ξcone = 0.95436, ξrope = 0.98174,
Lsim = 331.17333, and EparaIpara = 0.00779. Other settings remain unchanged. The time variation dia-
grams of sy and sz are provided in Figure 6.13. The solid and dashed lines represent the displacement
at the downstream end and the midpoint.

Figure 6.13: Time-varying displacements of the pinned-free cylinder with a parachute end. AR = 40.00.

The result seems incorrect. A pinned-free cylinder can’t maintain static in axial flow with such significant
second-mode bending. The distance between the solid body and flow boundary becomes too short to
ensure the fluid boundary conditions, as shown in Figure 6.14.
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Figure 6.14: Bending cylinder with a parachute end in the xoy plane. tconv = 30.

The pressure force in the x direction is an essential restoring force on a parachute. Our simplifica-
tion neglects this force, making the numerical model unsuitable. The parachute’s geometry is also
imperfect.

To apply the parachute, we should consider the force in the x direction in our solid structure solver. We
must also use a variable bending stiffness since the rope is a string. The parametric body code also
requires a modification to generate a real parachute instead of a solid block. In the end, we should
extend the fluid field.

6.4.3. Discussion
This subsection provides a hypothesis of the mechanism of the destabilizing and stabilizing effects
of the downstream end. The downstream end with various shapes creates a lift force, according to
the research from Langre et al.[25]. The lift force at the downstream end is time-varying with some
periodicity due to the vortex shedding behind. The local lift force triggers the initial instability at the
adjacent part of the cylinder. The downstream end deflects a distance, and the nearby cylindrical part is
pulled a distance deviating from the original position. The overall structure is now slightly bent, creating
a lift force along the entire body like flaps. The overall lift force is sufficiently large to reach an equilibrium
with the structural elastic restoring force before the cylinder flutters, which makes the cylinder statically
diverge (buckle) or yaw with a non-zero neutral position. The local lift force at the downstream end
cannot affect the cylinder’s overall instability but can create vibration around the neutral position.

The lift force caused by the bending cylinder is fragile, since the cylinder is not an actual hydrofoil. If we
keep increasing the flow velocity or the cylinder length, the lift force becomes smaller. The part of the
hydro-pressure force that contributes to pushing the cylinder back to the zero neutral position grows.
The smaller lift force cannot counter the elastic restoring force if the cylinder maintains the previous de-
flection (curvature). The cylinder then falls back to a neutral position closer to the zero-neutral position,
like stalling, keeping a smaller static buckling or yawing. The lift force can still encounter the restoring
force at this stage. The slight vibration around the neutral position always happens.

Increasing flow velocity or cylinder length further, the cylinder will keep deflecting to another side due
to inertia and elasticity after it reaches the zero neutral position. The hydro-pressure force lifts the
cylinder when the deflection is slight, and pushes the cylinder back when the deflection is large. The
structural internal force and external hydro-pressure force form a system similar to the forced spring-
mass system, and the hydro-pressure force inputs energy into the system continuously. The overall
FSI effect leads to the flutter instability.

The blunt downstream end has a smaller (shorter) projected area in the lateral direction. It cannot
create a sufficiently large local deflection to generate the lift force along the entire body and trigger the
overall instability. If the overall instability has never been triggered, we can only observe the vibration
caused by the vortex shedding behind the downstream end, as shown in the figures 6.11 and 6.12.
That could be how an extra blunt end stabilizes the fluttered cylinder.

The mechanism requires more investigation to determine. The author records the pressure forces per
unit length on Gauss points, but the integrated forces are not recorded explicitly. On some points, the
unit length loads have the trend mentioned before. However, the data is still insufficient. In future
research, we should monitor more physical variables, such as the integrated force along the cylinder
and the thickness of the boundary layer.



7
Conclusion

After modifications, the solid structure solver, the parametric body code, and the FSI solver have been
validated. The original 2D FSI code can now solve an FSI problem with a 3D fluid field. The code can
qualitatively predict the instability of a solitary flexible cylinder with a taper or blunt end in axial flow.
The effects of various parameters on the instability have been tested by the new numerical tool. From
the observation, we have the following conclusions.

• The behavior of the instability transition of clamped-free and pinned-free cylinders as their lengths
increase is similar to the transition of a clamped-free cylinder as increasing flow velocity: the cylin-
der in static divergence gradually moves back to the original zero neutral position, then develops
the flutter instability. The behavior of the pinned-free cylinder is more apparent.

• The cylinder slightly vibrates around the non-zero neutral position when it is in the divergence
instability.

• In the transition range of the length (aspect ratio), the cylinder is unstable, but the deflection
amplitude is small. The transition range is the range between divergence and flutter instabilities.

• Increasing the length beyond the transition range will lead to the apparent flutter instability.
• An extra blunt downstream end can significantly reduce the flutter amplitude.
• The pinned-free cylinder is more unstable than a clamped-free cylinder.
• Increasing the fluid viscosity in the viscous force exemption range has no stabilizing effect.

Based on the conclusions, we predict that the array cable will flutter even under ideal working conditions
(axial flow and no disturbance). We have suggestions for the company to stabilize the array cable: (1)
Strengthening the upper boundary of the array cable to reduce displacement and rotation at the upper
end, for example, by applying a PID system or structural reinforcement at the connectors. (2) Applying
an extra blunt end to the downstream end, as shown in Figure 7.1. The investigated cylinders in this
project are much shorter (with lower aspect ratios) than the actual array cable. We recommend that
the company run actual experiments to test the stabilizing effects of the structures mentioned above.

Figure 7.1: Modified array cable.

The author plans to summarize the results of this project as a conference paper soon. Appendix A
provides the outline of the paper.
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The FSI code in this project is open-source. The author will try to upgrade the code soon to make GPU
acceleration available and then upload it for open use. The code can be updated further to monitor more
physical parameters. Analyzing more data can reveal the mechanism behind the cylinder’s stability. It
is possible to launch a journal paper after further investigation into the mechanism in the future.

The code is recommended for quick, qualitative predictions before formal calculations, simulations, or
experiments. It requires more validation before it can be used generally and industrially.
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A
Conference paper outline

Numerical investigations of solitary clamped-free and
pinned-free flexible cylinders in axial flow

Abstract
The instability of a solitary flexible cylinder in three-dimensional axial flow with various boundary con-
ditions, lengths, and Reynolds numbers has been investigated by CFD (computational fluid dynamics)
simulation. A new CFD code is modified from an existing code for a two-dimensional FSI (fluid-structure
interaction) problem. The fluid field is solved by the BDIM (boundary data immersion boundary method).
The solid structure’s displacement is solved by the IGA (isogeometric analysis). The coupling effect is
solved by the partitioned and implicit method combined with the IQN (interface Quasi-Newton) method.
The simulated results of a clamped-free cylinder can match the experimental results quantitatively. The
investigation for cylinders with different parameters indicates that the instability transition as cylinder
length increases is similar to that of a clamped-free cylinder as flow velocity increases, small vibra-
tions around the non-zero neutral position are observed when cylinder is in divergence, the deflection
amplitude during the transition range reduces, an extra blunt downstream end can reduce the flutter
amplitude, and increasing the fluid viscosity in the viscous force exemption range has no stabilizing
effect.

Introduction
Briefly introduce the array cable. Describe the research question. Illustrate the definitions of the bound-
ary conditions and types of instabilities. Provide a short literature review of the previous research.

• There are validated analytical models that do not consider the FSI effect.
• There are numerical studies for a pinned-pinned or clamped-clamped cylinder in the 3D fluid field,
while the numerical study for a clamped-free or pinned-free cylinder is rare.

• Introduce the experimental studies.

Then, provide the research matrix and the outline of the paper.

Flow solver
Introduce the used solver: WaterLily. Provide the principle of BDIM and governing equations. Since
other researchers have validated the flow solver, this paper omits the validation.

Solid structure solver
Introduce the principle of IGA and the difference from FEA. Illustrate the Gauss interaction method.
Provide the governing equations. Compare the numerical and analytical results of a cantilever beam
under distributed loads in two directions.
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Parametric body code
Illustrate how to use the parametric code to generate the cylinder. Mention the principle of the B-spline
curve and SDF. Introduce the airship case used for validation. Validate the code by comparing the drag
coefficient with that measured in the airship experiment.

FSI solver
Geometry
Introduce the geometry of the cylinder with a tapered end. Describe the coordinate systems that are
used in the code.

Pressure integrator
Illustrate how to measure the hydro-pressure force per unit length on Gauss points. Validate the pres-
sure integrator by comparing the numerical approximation with the analytical results.

FSI solver validation
Introduce the IQN method. Provide the experiment’s parameters used for validation. Provide the set-
tings for the numerical simulation. Validate the code by comparing numerical and experimental results.

Investigation
Introduce the test cases’ parameters and geometries. Test a clamped-free cylinder with multiple lengths
(aspect ratios). Simulate a pinned-free cylinder with various lengths, downstream ends, and Reynolds
numbers of the fluid field. Provides the time-varying displacements and the displacement range. Ana-
lyze and discuss the results. Remove the investigation of the cylinder with a parachute.

Conclusion
Make conclusions. Discuss the limits of this research and the future plans.

Reference
...
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Solid structure solver validation code
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C
Parametric body validation code
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D
Name of the fluid domain boundaries

Figure D.1: Three-dimensional view of the fluid domain with the airship. EFGH is the upper boundary. E′F ′G′H′ is the lower
boundary. FGG′F ′ is the (flow) inlet boundary. EHH′E′ is the (flow) outlet boundary. HGG′H′ is the front boundary.
EFF ′E′ is the back boundary. The flow is in the x direction.

84



E
Velocity and pressure fields

Figure E.1: Velocity field in the local xoy plane. L = 192.
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Figure E.2: Pressure field in the local xoy plane. L = 192.
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FSI validation code
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G
Pressure integrator validation

90



91



92

Figure G.1: Pressure integrator for the cylinder with a taper end.
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Figure G.2: Pressure integrator for the cylinder with a parachute.
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Figure G.3: Pressure integrator for the semi-circle cylinder.
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Figure G.4: Force integrator in FSI solver.



H
Integrator validation result

fsim and fsim,1 are the numerical results with δ = 0 and δ = 0.01. fana is the analytical result.

Table H.1: y component of the force on the cylinder with a taper end, Lsim = 64, npnt = 31.

Dsim = 6, Dend = 12, hξ = 0.2 Dsim = 6, Dend = 0, hξ = 0.3

(x, y) fsim fana (x, y) fsim fana

(2.0,0.4) -27.18616 -27.18686 (2.0,0.6) -25.93182 -25.93976
(4.0,0.8) -27.18608 -27.18686 (4.0,1.2) -25.93117 -25.93976
(6.0,1.2) -27.18604 -27.18686 (6.0,1.8) -25.93093 -25.93976
(8.0,1.6) -27.18601 -27.18686 (8.0,2.4) -25.93091 -25.93976
(10.0,2.0) -27.18600 -27.18686 (10.0,3.0) -25.93101 -25.93976
(12.0,2.4) -27.18599 -27.18686 (12.0,3.6) -25.93108 -25.93976
(14.0,2.8) -27.18597 -27.18686 (14.0,4.2) -25.93110 -25.93976
(16.0,3.2) -27.18596 -27.18686 (16.0,4.8) -25.93096 -25.93976
(18.0,3.6) -27.18596 -27.18686 (18.0,5.4) -25.93077 -25.93976
(20.0,4.0) -27.18595 -27.18686 (20.0,6.0) -25.93053 -25.93976
(22.0,4.4) -27.18593 -27.18686 (22.0,6.6) -25.93039 -25.93976
(24.0,4.8) -27.18590 -27.18686 (24.0,7.2) -25.93028 -25.93976
(26.0,5.2) -27.18587 -27.18686 (26.0,7.8) -25.93030 -25.93976
(28.0,5.6) -27.18585 -27.18686 (28.0,8.4) -25.93036 -25.93976
(30.0,6.0) -27.18583 -27.18686 (30.0,9.0) -25.93054 -25.93976
(32.0,6.4) -27.18580 -27.18686 (32.0,9.6) -25.93072 -25.93976
(34.0,6.8) -27.18577 -27.18686 (34.0,10.2) -25.93099 -25.93976
(36.0,7.2) -27.18576 -27.18686 (36.0,10.8) -25.93135 -25.93976
(38.0,7.6) -27.18576 -27.18686 (38.0,11.4) -25.93166 -25.93976
(40.0,8.0) -27.18576 -27.18686 (40.0,12.0) -25.93178 -25.93976
(42.0,8.4) -27.18575 -27.18686 (42.0,12.6) -25.93184 -25.93976
(44.0,8.8) -27.18575 -27.18686 (44.0,13.2) -25.93177 -25.93976
(46.0,9.2) -27.18576 -27.18686 (46.0,13.8) -25.93172 -25.93976
(48.0,9.6) -27.18576 -27.18686 (48.0,14.4) -25.93187 -25.93976
(50.0,10.0) -27.18576 -27.18686 (50.0,15.0) -25.93229 -25.93976
(52.0,10.4) -29.88012 -29.88166 (52.0,15.6) -22.19099 -22.19710
(54.0,10.8) -39.31510 -39.31662 (54.0,16.2) -15.41036 -15.41465
(56.0,11.2) -50.04224 -50.04403 (56.0,16.8) -9.86256 -9.86538
(58.0,11.6) -62.06168 -62.06390 (58.0,17.4) -5.54809 -5.54928
(60.0,12.0) -75.37379 -75.37623 (60.0,18.0) -2.46591 -2.46634
(62.0,12.4) -89.97815 -89.98103 (62.0,18.6) -0.61652 -0.61659
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Table H.2: z component of the force on the cylinder with a parachute, Lsim = 64, npnt = 31.

hξ = 0.2 hξ = 0.3

(x, z) fsim fana (x, z) fsim fsim,1 fana

(2.0,0.4) -48.33125 -48.33219 (2.0,0.6) -46.11435 -45.99952 -46.11512
(4.0,0.8) -48.33102 -48.33219 (4.0,1.2) -46.11429 -45.99901 -46.11512
(6.0,1.2) -48.33090 -48.33219 (6.0,1.8) -46.11429 -45.99900 -46.11512
(8.0,1.6) -48.33099 -48.33219 (8.0,2.4) -46.11430 -45.99982 -46.11512
(10.0,2.0) -48.33086 -48.33219 (10.0,3.0) -46.11423 -45.99894 -46.11512
(12.0,2.4) -48.33092 -48.33219 (12.0,3.6) -46.11423 -45.99975 -46.11512
(14.0,2.8) -48.33078 -48.33219 (14.0,4.2) -46.11417 -45.99888 -46.11512
(16.0,3.2) -48.33081 -48.33219 (16.0,4.8) -46.11414 -45.99885 -46.11512
(18.0,3.6) -48.33093 -48.33219 (18.0,5.4) -46.11415 -45.99934 -46.11512
(20.0,4.0) -48.33073 -48.33219 (20.0,6.0) -46.11411 -45.99882 -46.11512
(22.0,4.4) -48.33087 -48.33219 (22.0,6.6) -46.11409 -45.99928 -46.11512
(24.0,4.8) -48.33068 -48.33219 (24.0,7.2) -46.11403 -45.99874 -46.11512
(26.0,5.2) -48.33057 -48.33219 (26.0,7.8) -46.11403 -45.99874 -46.11512
(28.0,5.6) -48.33064 -48.33219 (28.0,8.4) -46.11405 -45.99957 -46.11512
(30.0,6.0) -48.33050 -48.33219 (30.0,9.0) -46.11402 -45.99874 -46.11512
(32.0,6.4) -48.33056 -48.33219 (32.0,9.6) -46.11406 -45.99958 -46.11512
(34.0,6.8) -48.33042 -48.33219 (34.0,10.2) -46.11402 -45.99873 -46.11512
(36.0,7.2) -48.33047 -48.33219 (36.0,10.8) -46.11399 -45.99870 -46.11512
(38.0,7.6) -48.33061 -48.33219 (38.0,11.4) -46.11399 -45.99917 -46.11512
(40.0,8.0) -48.33044 -48.33219 (40.0,12.0) -46.11396 -45.99867 -46.11512
(42.0,8.4) -48.33063 -48.33219 (42.0,12.6) -46.11396 -45.99914 -46.11512
(44.0,8.8) -48.33051 -48.33219 (44.0,13.2) -46.11396 -45.99867 -46.11512
(46.0,9.2) -43.37935 -43.38089 (46.0,13.8) -41.38989 -41.28262 -41.39094
(48.0,9.6) -36.55943 -36.56073 (48.0,14.4) -34.88285 -34.78438 -34.88363
(50.0,10.0) -30.32241 -30.32349 (50.0,15.0) -28.93186 -28.84218 -28.93250
(52.0,10.4) -3.02065 -3.02076 (52.0,15.6) -2.88211 -2.85329 -2.88220
(54.0,10.8) -3.02064 -3.02076 (54.0,16.2) -2.88211 -2.85329 -2.88220
(56.0,11.2) -3.02065 -3.02076 (56.0,16.8) -2.88209 -2.85327 -2.88220
(58.0,11.6) -108.74438 -108.74744 (58.0,17.4) -103.75697 -103.58404 -103.75903
(60.0,12.0) -108.74399 -108.74744 (60.0,18.0) -103.75682 -103.58389 -103.75903
(62.0,12.4) -108.74394 -108.74744 (62.0,18.6) -103.75682 -103.58389 -103.75903
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Table H.3: y component of the force on the semi-circle cylinder, Lsim = 64, npnt = 15.

Dsim = 6 Dsim = 9

θξ fsim fana θξ fsim fana

1/16 -0.93598 -0.93618 1/16 -2.10564 -2.10640
2/16 -3.83054 -3.83099 2/16 -8.61808 -8.61974
3/16 -8.46569 -8.46642 3/16 -19.04698 -19.04946
4/16 -14.13625 -14.13717 4/16 -31.80602 -31.80863
5/16 -19.80697 -19.80791 5/16 -44.56477 -44.56780
6/16 -24.44249 -24.44334 6/16 -54.99474 -54.99751
7/16 -27.33736 -27.33816 7/16 -61.50820 -61.51085
8/16 -28.27359 -28.27433 8/16 -63.61457 -63.61725
9/16 -27.33736 -27.33816 9/16 -61.50820 -61.51085
10/16 -24.44249 -24.44334 10/16 -54.99474 -54.99751
11/16 -19.80697 -19.80791 11/16 -44.56477 -44.56780
12/16 -14.13625 -14.13717 12/16 -31.80602 -31.80863
13/16 -8.46569 -8.46642 13/16 -19.04698 -19.04946
14/16 -3.83054 -3.83099 14/16 -8.61808 -8.61974
15/16 -0.93598 -0.93618 15/16 -2.10564 -2.10640
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Cylinder shapes in FSI validation
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Figure I.1: Clamped-free cylinder’s central axis shapes at various tconv .

(a) xoy view. tconv = 30.0.

(b) xoz view. tconv = 30.0.

Figure I.2: u = 2.0.
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(a) xoy view. tconv = 30.0.

(b) xoz view. tconv = 30.0.

Figure I.3: u = 2.5.

(a) xoy view. tconv = 30.0.

(b) xoz view. tconv = 30.0.

Figure I.4: u = 3.0.

(a) xoy view. tconv = 30.0.

(b) xoz view. tconv = 28.6.

Figure I.5: u = 4.0.
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(a) xoy view. tconv = 30.0.

(b) xoz view. tconv = 30.0.

Figure I.6: u = 4.5.

(a) xoy view. tconv = 23.2.

(b) xoz view. tconv = 30.0.

Figure I.7: u = 5.0.
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Code for investigation
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Figure J.1: Code for the cylinder with a taper end.
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Figure J.2: Code for the cylinder with a parachute end.
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Pinned-free cylinder shapes
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Figure K.1: Pinned-free cylinder’s central axis shapes at various tconv .
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Change log

Last modified date: 11/05/2025

Added the outline of the conference paper. Appendix A.

How does the boundary layer change? Page 57, first paragraph.

Added two additional validation cases. Page 57-60. The FSI is now quantitatively validated.

Added the ranges of the displacements at the downstream end to help analyze. Figure 5.20, and
Figure 6.4.

Extended the simulation time of the case with a pinned-free cylinder and AR = 23.58 to ensure
the instability fully develops. Page 64-65.

The displacements of longer cylinders still fulfill the small deflection assumption: page 59, the
second last paragraph; page 65, the second paragraph.

Added the instability prediction for a very long cylinder. Page 68, first paragraph.

The array cable is in tension or compression? Page 68, paragraph 2. The assumption in the
analytical model is counterintuitive, so we no longer recommend using the model for real cases.

What will happen on a fluttered pinned-free cylinder if we increase the fluid field’s Reynolds
number further? Page 69, paragraph 4.

Added the hypothesis of the mechanism of a cylinder’s instabilities in axial flow. Page 71, sub-
section 6.4.3.

Added a conclusion: The cylinder slightly vibrates around the non-zero neutral position when
it is in the divergence instability. Page 72, first paragraph.

How to strengthen the array cable’s upper boundary? Page 72, paragraph 2.

Added the pinned-free cylinder’s central axis shape with various lengths. Appendix K.

The author also improved the thesis’s typography and fixed grammar mistakes. More descriptions were
added in the nomenclature and figure list.
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