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Abstract. It is well known that the representation of cer-
tain atmospheric conditions in climate and weather models
can still suffer from the limited grid resolution that is facil-
itated by modern-day computer systems. Herein we study a
simple one-dimensional analogy to those models by using
a single-column model description of the atmosphere. The
model employs an adaptive Cartesian mesh that applies a
high-resolution mesh only when and where it is required.
The so-called adaptive-grid model is described, and we re-
port our findings obtained for tests to evaluate the representa-
tion of the atmospheric boundary layer, based on the first two
GEWEX ABL Study (GABLS) inter-comparison cases. The
analysis shows that the adaptive-grid algorithm is indeed able
to dynamically coarsen and refine the numerical grid whilst
maintaining an accurate solution. This is an interesting result
as in reality, transitional dynamics (e.g. due to the diurnal cy-
cle or due to changing synoptic conditions) are the rule rather
than the exception.

1 Introduction

Single-column models (SCMs) are often used as the building
blocks for global (or general) circulation models (GCMs).
As such, many of the lessons learned from SCM devel-
opment can be inherited by GCMs and hence the evalua-
tions of SCMs receive considerable attention by the geo-
scientific model development community (see, e.g., Neggers
et al., 2012; Bosveld et al., 2014; Baas et al., 2017). In this
work, we present an SCM that employs an adaptive Carte-
sian mesh that can drastically reduce the computational costs

of such models, especially when pushing the model’s reso-
lution. The philosophy is inspired by recently obtained re-
sults on the evolution of atmospheric turbulence in a daytime
boundary layer using three-dimensional (3-D) adaptive grids.
As promising results were obtained for turbulence-resolving
techniques such as direct numerical simulations and large-
eddy simulation (LESs), herein we explore whether similar
advancements can be made with more practically oriented
techniques for the numerical modelling of the atmosphere.
As such, the present model uses Reynolds-averaged Navier–
Stokes (RANS) techniques to parameterize the vertical mix-
ing processes due to turbulence (Reynolds, 1895), as is typi-
cal in weather and climate models.

The discussion of limited grid resolution is present in
many studies of SCMs and GCMs. A prominent example
is the nocturnal cumulus-cloud case (Wyant et al., 2007):
whereas a high-resolution mesh is required to capture the
processes at the cloud interface, a coarser resolution may
be used for the time when the sun has risen and the cloud
has been dissolved. More generally speaking, virtually all
of the atmospheric dynamics that require a relatively high-
resolution grid for their representation in numerical models
are localized in both space and in time. The issue is made
more difficult to tackle by the fact that their spatio-temporal
localization is typically not known a priori (e.g. the height
and strength of a future inversion layer). Therefore, the pre-
tuned and static-type grids that most operational GCMs use
(virtually all) are not flexible enough to capture all dynam-
ical regimes accurately or efficiently. This also puts a large
strain on the closures used for the sub-grid-scale processes.
In order to mitigate this challenge, GCMs that employ a
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so-called adaptive grid have been explored in the literature.
Here, the grid resolution adaptively varies in both space and
time, focussing the computational resources on where and
when they are most necessary. Most notably, the innovative
work of Jablonowski (2004), Jablonowski et al. (2009), and
St-Cyr et al. (2008) report on the use of both Cartesian and
non-conforming three-dimensional adaptive grids and clearly
demonstrate the potential of grid adaptivity for GCMs. In-
spired by their work, we follow a 1-D SCM approach and aim
to add to their findings, using different grid-adaptative for-
mulations and solver strategies. Since SCMs do not resolve
large-scale atmospheric circulations, the analysis herein fo-
cusses on the representation of the atmospheric boundary
layer (ABL).

Over the years, the computational resources that are avail-
able to run computer models have increased considerably
(Schaller, 1997). This has facilitated GCMs to increase their
models’ spatial resolution, enabling us to resolve the most
demanding processes with increased grid resolutions. How-
ever, it is important to realize that the (spatial and temporal)
fraction of the domain that benefits most from an increas-
ing maximum resolution necessarily decreases as a separa-
tion of the modelled spatial scales increases (Popinet, 2011).
This is because the physical processes that warrant a higher-
resolution mesh are virtually never space filling. For exam-
ple, the formation phase of tropical cyclones is localized in
both space and time and is characterized by internal dynam-
ics that evolve during the formation process. By definition,
with an increasing scale separation, only an adaptive-grid ap-
proach is able to reflect the effective (or so-called fractal) di-
mension of the physical system in the scaling of the computa-
tional costs (Popinet, 2011; Van Hooft et al., 2018). This is an
aspect where the present adaptive-grid approach differs from,
for example, a dynamic-grid approach (Dunbar et al., 2008),
which employs a fixed number of grid cells that needs to be
predefined by the user. This work employs a similar method
for grid adaptation as presented in the work of Van Hooft
et al. (2018) on 3-D turbulence-resolving simulations of the
ABL. As such, this work is also based on the adaptive-grid
toolbox and built-in solvers provided by the “Basilisk” code
(http://basilisk.fr, last access: 25 November 2018).

We test our model with the well-established cases defined
for the first two Global Energy and Water cycle EXchanges
(GEWEX) ABL Study (GABLS) inter-comparison projects
for SCMs. As part of the GEWEX modelling and prediction
panel, GABLS was initiated in 2001 to improve our under-
standing of the atmospheric boundary layer processes and
their representation in models. Based on observations during
field campaigns, a variety of model cases has been designed
and studied using both LES and SCMs with a large set of
models using traditional static-grid structures. An overview
of the results and their interpretation for the first three inter-
comparison cases are presented in the work of Holtslag et al.
(2013). Here, we will test the present adaptive-grid SCM
based on the first two inter-comparison cases, referred to as

GABLS1 and GABLS2. These cases were designed to study
the model representation of the stable boundary layer and
the diurnal cycle, respectively. Their scenarios prescribe ide-
alized atmospheric conditions and lack the complete set of
physical processes and interactions encountered in reality. At
this stage within our research, the authors consider this aspect
to be an advantage, as the present SCM model does not have
a complete set of parameterizations for all processes that are
typically found in the operational models (see, e.g., Slingo,
1987; Grell et al., 2005).

This paper is organized as follows. The present SCM is
discussed in more detail in Sect. 2. Based on the results from
a simplified flow problem, Sect. 3 starts with an analysis of
the numerical methods used and the grid-adaptation strategy.
Model results for ABL-focussed cases that are based on the
first two GABLS inter-comparison scenarios are also pre-
sented in Sect. 3. Finally, a discussion and conclusions are
presented in Sect. 4.

2 Model overview

As we focus on the merits of grid adaptivity in this study on
SCMs and not on the state-of-the-art closures for the verti-
cal transport phenomena, we have opted to employ simple
and well-known descriptions for the turbulent transport pro-
cesses. More specifically, the present model uses a stability-
dependent, first-order, local K-diffusivity closure as pre-
sented in the work of Louis et al. (1982) and Holtslag and
Boville (1993). For the surface-flux parameterizations we
again follow the formulations in the work of Holtslag and
Boville (1993). However, to improve the representation of
mixing under stable conditions, an alteration is made to the
formulation of the so-called stability correction function un-
der stably stratified conditions. Based on the work of Eng-
land and McNider (1995), we use a so-called short-tail mix-
ing function. The closures used for the turbulent transport are
summarized next. The upward surface fluxes (F ) of the hor-
izontal velocity components (u, v), the potential temperature
(θ ), and specific humidity q are evaluated as

Fu =−CMU1u1, (1a)
Fv =−CMU1v1, (1b)
Fθ =−CHU1 (θ1− θ0) , (1c)
Fq =−CHU1 (q1− q0) , (1d)

where U is the wind-speed magnitude and indices 0 and 1
refer to the values at the surface and the first model level,
respectively. The surface transport coefficients are

CM = CNfs,M(Rib), (2a)
CH = CNfs,H (Rib), (2b)
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with Rib the surface bulk Richardson number, which is de-
fined as

Rib =
g

θv, ref

z1
(
θv,1− θv, 0

)
U2

1
, (3)

where g is the acceleration due to gravity, θv is the vir-
tual potential temperature, and θv,ref is a reference tem-
perature whose value is taken as a scenario-specific con-
stant. Equation (3) assumes that θv is related to the buoy-
ancy (b) (Boussinesq, 1897) via g and θv, ref according to
b = g/θv, ref(θv−θv, ref) . The virtual potential temperature is
related to the potential temperature (θ ) and specific humidity
(q) according to

θv = θ

(
1−

(
1−

Rv

Rd

)
q

)
, (4)

with Rv /Rd = 1.61 the ratio of the gas constants for water
vapour and dry air (Emauel, 1994; Heus et al., 2010). The so-
called neutral exchange coefficient (CN) is calculated using

CN =
k2

ln
(
(z1+ z0,M)/z0,M

)2 , (5)

with k = 0.4 the von Kármán constant, z1 the height of the
lowest model level, and z0,M the roughness length for mo-
mentum. For the cases studied in this work, the roughness
length for heat is assumed to be identical to z0,M . The stabil-
ity correction functions for the surface transport of momen-
tum and heat (fs,M , fs,H ) are

fs,M(Rib)

=


0, Rib ≥ 0.2,(

1− Rib
0.2

)2
, 0≤ Rib < 0.2,

1− 10Rib
1+75CN

√
((z1+z0,M )/z0,M)‖Rib‖

, Rib < 0,

(6a)
fs,H (Rib)

=

fs,M(Rib), Rib ≥ 0,

1− 15Rib
1+75CN

√
((z1+z0,M )/z0,M)‖Rib‖

, Rib < 0, (6b)

which conclude the description of the surface fluxes. The
vertical flux (w′a′) of a dummy variable a due to turbu-
lence within the boundary layer is based on a local diffusion
scheme and is expressed as

w′a′ =−K
∂a

∂z
, (7)

where K is the so-called eddy diffusivity

K = l2Sf (Ri). (8)

l represents an effective mixing length,

l =min(kz, lbl) , (9)

with lbl being the Blackadar length scale; we use, lbl = 70 m
(Holtslag and Boville, 1993). S is the local wind-shear mag-
nitude,

S =

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

, (10)

and f (Ri) is the stability correction function for the vertical
flux,

f (Ri)=


0, Ri≥ 0.2,(
1− Ri

0.2

)2
, 0≤ Ri< 0.2,

√
1− 18Ri, Ri< 0,

(11)

i.e. based on the gradient Richardson number,

Ri=
g

θv, ref

∂θv/∂z

S2 . (12)

The authors of this work realize that there have been con-
siderable advancements in the representation of mixing un-
der unstable conditions in the past decades, e.g non-local
mixing (Holtslag and Boville, 1993) and closures based on
turbulent kinetic energy (see, e.g., Mellor and Yamada, 1982;
Lenderink and Holtslag, 2004). Therefore, we would like to
note that such schemes are compatible with the adaptive-grid
approach, and they could be readily employed to improve
the physical descriptions in the present model. From an im-
plementations’ perspective, those schemes would not require
any grid-adaptation-specific considerations when using the
Basilisk code.

For time integration, we recognize a reaction–diffusion-
type equation describing the evolution of the horizontal wind
components and scalar fields such as the virtual potential
temperature and specific humidity (q). For a variable field
s(z, t), we write,

∂s

∂t
=
∂

∂z

(
K
∂

∂z
s
)
+ r, (13)

where r is a source term and K is the diffusion coeffi-
cient; c.f. Eq. (8). Using a mixed implicit–explicit first-order-
accurate time discretization for the diffusive term and an ex-
plicit time integration for the source term (r), with time step
1t separating the solution sn and sn+1, this can be written

sn+1
− sn

1t
=
∂

∂z

(
Kn ∂

∂z
sn+1)

+ rn. (14)

Rearranging the terms we write

∂

∂z

(
Kn ∂

∂z
sn+1)

−
sn+1

1t
=−

sn

1t
− rn (15)

to obtain a Poisson–Helmholtz equation for sn+1, using
the eddy diffusivity calculated from the solution sn (Kn).
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Eq. (15) is solved using a multigrid strategy, employing a
finite-volume-type second-order-accurate spatial discretiza-
tion (Popinet, 2017a, b). The source term r in Eq. (13) is de-
fined using different formulations for the various scalar fields
in our model. For θ and q, the source term r concerns the ten-
dency in the lowest grid level due to the surface fluxes (F , see
Eqs. 1, rFs ) and the effect of large-scale synoptic divergence
(rw) according to the vertical velocity w (i.e. prescribed for
the GABLS2 case). We write, for a dummy variable s,

rw,s =−w
∂s

∂z
. (16)

For the horizontal velocity components (u, v) the corre-
sponding source terms (i.e. rFs and rw) are also taken into
account and supplemented with the additional source term
r∇hP,f , which concerns the horizontal pressure-gradient-
forcing vector (i.e.− 1

ρ
∇hP , for air with a density ρ) and the

Coriolis-force term according to the local Coriolis parameter
f . For the horizontal velocity vector u= {u,v,0} we write

r∇hP,f =
−∇hP

ρ
− f

(
k̂×u

)
, (17)

where “×” represents the cross product operator and k̂ =

{0,0,1} the unit vector in the vertical direction. In this work
we adopt the commonly used strategy to introduce a velocity
vector that is known as the geostrophic wind (Ugeo), accord-
ing to

Ugeo =
k̂

ρf
×∇hP. (18)

The most prominent feature of the SCM presented in this
work is that it adaptively coarsens and refines the grid reso-
lution based on the evolution of the solution itself. As men-
tioned in the introduction, the associated grid-adaptation al-
gorithm is the same as described in Van Hooft et al. (2018).
Here, we only briefly discuss the general concept.

Apart from the imperfect representation of the physical as-
pects of a system in numerical models, additional errors nat-
urally arise due to the spatial and temporal discretization. In
general, a finer resolution corresponds to a more accurate so-
lution and a simulation result is considered to be “converged”
when the numerically obtained solution and the statistics of
interest do not crucially depend on the chosen resolution.
The aim of the grid-adaptation algorithm is to dynamically
coarsen and refine the mesh so that the errors due to the spa-
tial discretization remain within limited bounds and are uni-
formly distributed in both space and time. For our adaptive
approach this requires (1) an algorithm that evaluates a lo-
cal estimate of the discretization error in the representation
of selected solution fields (χa for a field “a”) and (2) a cor-
responding error threshold (ζa) which determines if a grid
cell’s resolution is either too coarse (i.e. χa > ζa), too fine
(i.e. χa < 2ζa/3), or just fine. Grid adaptation can then be

carried out accordingly and the solution values of new grid
cells can be found using interpolation techniques. A cell is re-
fined when the estimated error for at least one selected solu-
tion field exceeds its refinement criterion and a cell is coars-
ened when it is considered to be “too fine” for all selected so-
lution fields. The “error estimator” (χ ) is based on a so-called
multi-resolution analysis that is formally linked to wavelet
thresholding. The algorithm aims to estimate the magni-
tude of higher-order contributions in the spatial variability of
the solution that are not captured by the solver’s numerical
schemes. Consistent with the second-order spatial accuracy
of the solver’s numerical schemes (Popinet, 2017b), the algo-
rithm employs a second-order accurate wavelet-based error
estimate. In practice, grid refinement will typically occur at
the locations where the solution is highly “curved”, whereas
those areas where the solution fields vary more “linearly” in
space are prone to coarsening. The error threshold, or so-
called refinement criterion ζ , is defined by the user. Noting
that similar to the pre-tuning of the fixed-in-time grids as is
common in most SCMs, the balance between accuracy and
the required computational effort remains at the discretion of
the model’s user.

For the cases in this work that focus on the ABL (i.e.
in Sects. 3.2 and 3.3), the dynamics are governed by the
wind (U = (u,v)) and the virtual potential temperature (θv);
hence we base the refinement and coarsening of the grid on
a second-order-accurate estimated error associated with the
representation of these discretized fields. Based on trial and
error, we set the corresponding refinement thresholds

ζu,v = 0.25ms−1, (19)
ζθv = 0.5K (20)

for both of the horizontal wind components and virtual po-
tential temperature, respectively. These values are the result
of a choice by the authors that aims to strike an arbitrary
balance between the accuracy of the solution and the compu-
tational effort required to run the model. Note that a similar
(arbitrary) balance needs also to be found when static grids
are employed. For a simple flow set-up, Sect. 3.1 presents
an example convergence study to show the effects of using
different refinement criteria on the accuracy of the obtained
solutions.

Grid adaptation is carried out each time step. The tree-
based anisotropic-grid structure in Basilisk facilitates a con-
venient basis for the multi-resolution analysis and the subse-
quent refinement and coarsening of cells at integer levels of
refinement. This entails that the spatial resolution can vary
by factors of 2 (Popinet, 2011). For the adaptive-grid runs
presented in this paper, the time spent in the actual grid as-
sessment and adaptation routines is less than 5 % of the total
wall-clock time (see Table 1).

Apart from the Ekman-spiral case in Sect. 3.1, the phys-
ical time step in the ABL-focussed cases is adaptively var-
ied between 2 and 15 s based on the convergence properties
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Table 1. The exact formulation of the methods are described at the online locations of the definition files for the different cases presented in
this paper.

Section Case Grid URL: http://www.basilisk.fr... Number of time steps Wall-clock time

3.1 Ekman spiral Adaptive /sandbox/Antoonvh/ekman.c 1000 (×20 runs) ≈ 19 s
3.1 Ekman spiral Fixed & equidistant /sandbox/Antoonvh/ekmanfg.c 1000 (×10 runs) ≈ 18 s
3.2 GABLS1 Adaptive /sandbox/Antoonvh/GABLS1.c 16 204 ≈ 1.4 s
3.2 GABLS1 Fixed & equidistant /sandbox/Antoonvh/GABLS1fg.c 16 324 ≈ 0.9 s
3.3 GABLS2 Adaptive /sandbox/Antoonvh/GABLS2.c 24 262 ≈ 9 s
3.3 GABLS2 Fixed & equidistant /sandbox/Antoonvh/GABLS2fg.c 33 993 ≈ 22 s

The wall-clock times are evaluated using a single core (processor model: Intel i7-6700 HQ).

of the aforementioned iterative solver. Note that these val-
ues are rather small compared to existing GCMs that often
employ higher-order-accurate time-integration schemes. Ad-
ditionally, the correlation of spatial and temporal scales war-
rants a smaller time step, since the present model employs
a higher maximum vertical resolution compared to that of
an operational GCM. The solver’s second-order spatial accu-
racy is validated and the performance is accessed for a simple
flow set-up in Sect. 3.1. For the exact details of the model set-
ups for the cases presented in this paper, the reader is referred
to the case-definition files (in legible formatting). Links are
provided to their online locations in Table 1.

3 Results

3.1 The laminar Ekman spiral and grid adaptation

Before we focus our attention on cases that concern the ABL,
this section discusses the philosophy of the grid-adaptation
strategy used based on the analysis of a one-dimensional (1-
D) laminar Ekman-flow set-up. This simple and clean set-
up enables us to quantify numerical errors explicitly and test
the solver’s numerical schemes. The aim of this section is
to show that the grid-adaptation strategy and the accompa-
nying refinement criteria provide a consistent and powerful
framework for adaptive mesh-element-size selection. Results
are presented for both an equidistant-grid and the adaptive-
grid approach. The case describes a neutrally stratified fluid
with a constant diffusivity for momentum (K) given by the
kinematic viscosity ν and density ρ in a rotating frame of
reference with respect to the Coriolis parameter f . A flow
is forced by a horizontal pressure gradient (−∇hP ) accord-
ing to Eq. (18) using Ugeo =

{
Ugeo,0

}
, over a no-slip bottom

boundary (located at zbottom = 0). Assuming that the velocity
components converge towards the geostrophic wind vector
for z→∞ and vanish at the bottom boundary, there exists an
analytical, 1-D, steady solution for the horizontal wind com-
ponent profiles (uE(z), vE(z)), which is known as the Ekman
spiral;

uE = Ugeo
(
1− e−γ z cos(γ z)

)
, (21)

vE = Ugeoe
−γ z sin(γ z), (22)

with γ the so-called inverse Ekman depth; γ =
√
f/(2ν).

We choose numerical values for Ugeo,γ , and f of unity in
our set-up and present the results in a dimensionless frame-
work. The solution is initialized according to the exact so-
lution, and we set boundary conditions based on Eqs. (21)
and (22). Equation (13) is solved numerically for both u and
v components, on a domain with height ztop = 100γ−1. The
simulation is run until tend = 10f−1, using a fixed time step
1t = 0.01f−1. The time step is chosen sufficiently small
such that the numerical errors are dominated by the spa-
tial discretization rather than by the time-integration scheme.
During the simulation run, discretization errors alter the nu-
merical solution from its exact, and analytically steady, ini-
tialization. For all runs, the diagnosed statistics regarding the
numerical solutions that are presented in this section have
become steady at t = tend.

The spatial-convergence properties for the equidistant-grid
solver are studied by iteratively decreasing the (equidistant)
mesh-element sizes used (1) by factors of 2, and we monitor
the increasing fidelity of the solution at t = tend between the
runs. Therefore, based on the analytical solution, a local error
(εu,v) of the numerically obtained solution (un, vn) within
each grid cell is diagnosed and is defined here as

εa =
∣∣an−〈aE〉

∣∣ , (23)

where a is a dummy variable for u and v, 〈aE〉 is the grid-
cell-averaged value of the analytical solution (aE), and an is
the value of the numerical solution within the cell. Note that
an also represents the grid-cell-averaged value in our finite-
volume approach. Figure 1a shows the results for all runs
and compares the grid resolution used (1) with the error
εu,v . It appears that the observed range of ε values is large
and typically spans 10 orders of magnitude, with a lower
bound defined by the “machine precision” (i.e. ≈ 10−15 for
double-precision floating-point numbers). This wide range
can be explained by the fact that the Ekman spiral is charac-
terized by exponentially decreasing variation with height (see
Eqs. 21, 22), and hence the equidistant grid may be consid-
ered overly refined at large z. This illustrates that, for a given
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Figure 1. The locally evaluated error in the numerical solutions for u and v at t = tend, based on the analytical solution (εu,v , see Eq. 23)
for 10 runs using different equidistant mesh-element sizes. Panel (a) shows that the diagnosed errors for each run plotted against the mesh-
element size used (1) times the inverse Ekman depth (γ , see text). Panel (b) shows, with the same colour coding as in (a), the correlation
between the wavelet-based estimated error (χ ) and the corresponding diagnosed error in the numerically obtained solution (ε). The inset
(using the same axis scales) shows the results for a single run and reveals a spread of several orders of magnitude in both ε and χ values.

Figure 2. The locally evaluated error in the numerical solutions for u and v at t = tend, based on the analytical solution (εu,v , see Eq. 23) for
20 runs using the adaptive-grid approach with different refinement criteria (see colour bar). Panel (a) shows that the diagnosed errors for each
run plotted against the mesh-element size used (1). The inset (using the same axis scales) shows the results for a single run. Panel (b) shows
the correlation between the wavelet-based estimated error (χ ) and the corresponding diagnosed error in the numerically obtained solution
(ε). The inset (using the same axis scales) shows the results for a single run and reveals a relatively small spread in both ε and χ values
compared to the equidistant-grid results presented in Fig. 1b.

solver formulation, the error in the solution is not directly
dictated by the mesh-element size but also depends on the
local shape of the numerical solution itself. This poses a chal-
lenge for the pre-tuning of meshes applied to GCMs, where
a balance needs to be found between accuracy and computa-
tional speed performance. The solution of a future model run
is not known beforehand, and hence the tuning of the grid
typically relies heavily on experience, empiricism, and a pri-
ori knowledge. This motivates us to apply the method of error
estimation in the representation of a discretized solution field
as described in Popinet (2011) and Van Hooft et al. (2018).
For both velocity components, this estimated error (χu,v) is
evaluated at the end of each simulation run for each grid cell
and is plotted against the corresponding actual error (εu,v)
in Fig. 1b. It seems that for this virtually steady case, there
is a clear correlation between the diagnosed (instantaneous)
χ values and the ε values that have accumulated over the
simulation run time. Even though the correlation is not per-

fect, it provides a convenient and consistent framework for
a grid-adaptation algorithm. As such, a second convergence
test for this case is performed using a variable-resolution
grid within the domain. The mesh is based on the aforemen-
tioned adaptive-grid approach. For these runs, we iteratively
decrease the so-called refinement criterion (ζu,v) by factors
of 2 between the runs and monitor the increasing fidelity of
the numerically obtained solution for all runs. The refine-
ment criterion presets a threshold value (ζ ) for the estimated
error χ that defines when a cell should be refined (χ > ζ )
or alternatively, when it may be coarsened (χ < 2ζ/3). Fig-
ure 2a presents the results and compares the local grid reso-
lution used against εu,v for the various (colour-coded) runs.
It appears that for all separate runs, the algorithm employed
a variable resolution mesh and that this has resulted in a
smaller range of the local error in the solution (ε), as com-
pared to the equidistant-grid cases. The local error in the so-
lution is also compared to the wavelet-based estimated error
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Figure 3. The scaling characteristics for the laminar Ekman-spiral case. Panel (a) presents the error convergence for the equidistant-grid and
adaptive-grid approach. The errors (η) follow the slope of the blue dashed line that indicates the second-order accuracy of the methods. The
wall-clock time for the different runs is presented in (b), showing that for both of the aforementioned approaches, the required effort scales
linearly with the number of grid cells.

in the representation of the solution fields in Fig. 2b. Com-
pared to the results from the equidistant-grid approach as pre-
sented in Fig. 1b, the spread of the χ and ε values is relatively
small for the separate runs when the adaptive-grid approach
is used. The most prominent reason for the finite spread is
that the error (ε) was diagnosed after 1000 time steps. This
facilitated errors in the solution that arise in the solution at
a specific location (with a large χ value) to “diffuse” over
time towards regions where the solution remains to be char-
acterized by a small χ value (not shown). Also, since u and v
are coupled (due to the background rotation), local errors that
arise in the solution for u “pollute” the v-component solution
and vice versa. Furthermore, a spread is expected because the
tree-grid structure only allows the resolution to vary by fac-
tors of 2 (Popinet, 2011).

Finally, the global convergence characteristics and the
speed performance of the two approaches are studied. The
global error (η) in the numerically obtained solution is eval-
uated as

η =

ztop∫
zbottom

(εu+ εv)dz. (24)

In order to facilitate a comparison between the methods, we
diagnose the number of grid cells (N ) used for the adaptive-
grid run. Figure 3a shows that for both approaches the er-
ror scales inversely proportional to the number of grid cells
used to the second power (i.e. second-order spatial accuracy
in 1-D). The adaptive grid results are more accurate than
the results from the fixed-grid approach when employing the
same number of grid cells. Figure 3b shows that for both ap-
proaches the required effort (i.e. measured here in wall-clock
time) scales linearly with the number of grid cells, except for
the runs that require less than 1/10 of a second to perform.
The plots reveals that per grid cell there is computational
overhead for the adaptive-grid approach. These results show
that the numerical solver used is well behaved.

The following sections are devoted to testing the adaptive-
grid approach in a more applied SCM scenario, where the
turbulent transport closures are applied (see Sect. 2) and the
set-up is unsteady. Here, the quality of the adaptive-grid solu-
tion has to be assessed by comparing against reference results
from other SCMs, large-eddy simulations and the present
model running in equidistant-grid mode.

3.2 GABLS1

The first GABLS inter-comparison case focusses on the rep-
resentation of a stable boundary layer. Its scenario was in-
spired by the LES study of an ABL over the Arctic Sea by
Kosović and Curry (2000). The results from the participating
SCMs are summarized and discussed in Cuxart et al. (2006);
for the LES inter-comparison study, the reader is referred to
the work of Beare et al. (2006). The case prescribes the initial
profiles for wind and temperature, a constant forcing for mo-
mentum corresponding to a geostrophic wind vector, Ugeo =

{8,0}m s−1, and the Coriolis parameter f = 1.39×10−4 s−1.
Furthermore, a fixed surface-cooling rate of 0.25 K h−1 is ap-
plied, and θv, ref = 263.5 K. The model is run with a maxi-
mum resolution of 6.25 m and a domain height of 400 m. The
maximum resolution corresponds to six levels of tree-grid re-
finement, where each possible coarser level corresponds to a
factor of 2 increase in grid size.

Due to the idealizations in the case set-up with respect to
the reality of the field observations, the model results were
not compared to the experimental data (Cuxart et al., 2006).
However, for the SCMs, a reference was found in the high-
fidelity LES results that tended to agree well between the var-
ious models. The LES results therefore serve as a benchmark
for the results obtained with the present model. This facili-
tates a straightforward testing of the formulations and imple-
mentations of the physical closures used before we continue
our analysis towards the full diurnal cycle. Inspired by the
analysis of Cuxart et al. (2006) and their Fig. 3, we compare
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Figure 4. Time-averaged profiles over the ninth hour of the run according to the GABLS1 inter-comparison scenario. For (a) the horizontal
wind components and (b) the potential temperature. Results are obtained with the present adaptive-grid SCM (coloured lines), the LES
models ensemble (i.e mean±σ ) from Beare et al. (2006) (grey-shaded areas), and the present SCM, employing an equidistant and static grid
with a 6.25 m resolution (dashed lines). For z > 250 m, the profiles have remained as they were initialized.

Figure 5. Evolution of (a) the vertical spatial-resolution distribution and (b) the total number of grid cells for the GABLS1 inter-comparison
case.

our SCM results with the 6.25 m resolution LES ensemble
results. We focus on the profiles for the wind components
and potential temperature averaged over the ninth hour of the
simulation in Fig. 4. We observe that the present SCM is in
good agreement with the LES results and is able to capture
the vertical structure of the ABL, including the low-level jet.
The differences are only minor compared to the variations in
the results presented in the aforementioned GABLS1 SCM
reference paper.

Note that in general, results are of course sensitive to the
closure chosen to parameterize the turbulent transport, in our
case given by Eqs. (6) and (11). In order to separate between
the numerical effects of using grid adaptivity and the cho-
sen physical closures, we define an additional reference case
in which we run an equidistant-grid SCM. This model run
employs a fixed 6.25 m resolution (i.e with 64 cells), but oth-
erwise identical closures and numerical formulations. That

is, we have switched off the grid adaptivity and maintain the
maximum resolution throughout the domain. We can observe
that results between both SCMs are in good agreement but
that minor deviations are present. These discrepancies are on
the order of magnitude of the refinement criteria and can be
reduced by choosing more stringent values, which would re-
sult in using more grid cells. The evolution of the adaptive-
grid structure is shown in Fig. 5a. We see that a relatively
high resolution is employed near the surface, i.e. in the log-
arithmic layer. Remarkably, without any a priori knowledge,
the grid is refined at a height of 150 m< z < 200 m as the so-
called low-level jet develops, whereas the grid has remained
coarse above the boundary layer where the grid resolution
was reduced to be as coarse as 100 m. From Fig. 5b we learn
that the number of grid cells varied between 11 and 24 over
the course of the simulation run.
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Figure 6. Comparison of the results obtained with the adaptive-grid SCM and the participating models in the work of Svensson et al. (2011)
for the vertical profiles of (a) the virtual potential temperature and (b) the wind-speed magnitude, for 14:00 local time on 23 October. Panel (c)
the evolution of the 10 m wind speed (U10 m) on 23 October. For the model abbreviations used in the legend, see Svensson et al. (2011). The
different shades of grey in plot (c) indicate observations from different measurement devices; see Svensson et al. (2011) for the details.

Figure 7. Vertical profiles of the wind-speed magnitude U obtained
with the adaptive-grid (in colour) and the fixed equidistant-grid
(dashed) SCMs. The 12 plotted profiles are obtained for 24 October
with an hourly interval, starting from 01:00 local time. Note that
the profiles are shifted in order to distinguish between the different
times (with vanishing wind at the surface). The profiles of U are
constant with height for z > 1200 m.

3.3 GABLS2

The second GABLS model inter-comparison case was de-
signed to study the model representation of the ABL over
the course of two consecutive diurnal cycles. The case is
set up after the observations that were collected on 23 and
24 October 1999 during the CASES-99 field experiment in
Leon, Kansas, USA (Poulos et al., 2002). The case prescribes
idealized forcings for two consecutive days that were char-
acterized by a strong diurnal cycle pattern. During these
days, the ABL was relatively dry, there were few clouds,
and θv, ref = 283.15 K. The details of the case are described
in the work of Svensson et al. (2011), which was dedicated
to the evaluation of the SCM results for the GABLS2 inter-
comparison. Compared to the original case prescriptions, we
choose a slightly higher domain size of ztop = 4096 m (com-
pared to 4000 m), so that a maximum resolution of 8 m cor-
responds to nine levels of refinement.

In this section we place our model output in the context of
the results presented in the work of Svensson et al. (2011),
which, apart from the SCM results, also includes the results
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Figure 8. Evolution of (a) the vertical spatial resolution and (b) the total number of grid cells, for the GABLS2 inter-comparison case. Two
full diurnal cycles, corresponding to 23 and 24 October 1999 (ranging from the labels 1:00:00 to 3:00:00 on the x axis).

from the LES by Kumar et al. (2010). To obtain their data we
have used the so-called “data digitizer” of Rohatgi (2018).
Inspired by the analysis of Svensson et al. (2011) and their
Figs. 10 and 11, we compare our results for the wind-speed
magnitude (U = ‖u‖) and virtual potential temperature pro-
files at 14:00 local time on 23 October in Fig. 6a and b, re-
spectively. Here, we see that the results obtained with the
present SCM fall within the range of the results as were
found with the selected models that participated in the orig-
inal inter-comparison. These models also employed a first-
order-style turbulence closure and have a lowest model-level
height of less than 5 m. The present modelled virtual poten-
tial temperature (θv) shows a slight negative vertical gradient
in the well-mixed layer. This is a feature related to the use of
the local K-diffusion description for the turbulent transport
(see Sect. 2 and the work of Holtslag and Boville, 1993). Fig-
ure 6c presents a time series of the 10 m wind speed (U10 m)
during 23 October. Again the present model results com-
pare well with the others. Next, in order to validate the grid-
adaptivity independently from the closures used, we present
the hourly evolution of the wind speed on 24 October against
the results obtained with adaptivity switched off, using 512
equally spaced grid points in Fig. 7. A nearly identical evo-
lution of the wind-speed profiles is observed and even the
small-scale features in the inversion layer (i.e. z≈ 800 m) are
present in the adaptive grid-model calculations. The corre-
sponding evolution of the adaptive-grid structure is presented
in Fig. 8, where the colours in the resolution plot appear
to sketch a “Stullian” image, showing a prototypical diur-
nal evolution of the ABL (see Fig. 1.7 in Stull, 1988). Ap-
parently, the grid-adaptation algorithm has identified (!) the
“surface layer” within the convective boundary layer (CBL),
the stable boundary layer, the entrainment zone, and the in-
version layer as the dynamic regions that require a high-
resolution mesh. Conversely, the well-mixed layer within the

CBL, the residual layer, and the free-troposphere are evalu-
ated on a coarser mesh. The total number of grid cells varied
between 24 and 44.

4 Discussion and conclusions

In this work we have presented a one-dimensional (1-D)
single-column model (SCM) that employs a mesh whose res-
olution is varied adaptively based on the evolution of the nu-
merically obtained solution. This is an attractive feature be-
cause it is a prerequisite to enable the computational effort re-
quired for the evaluation of numerical solution to scale with
the complexity of the studied physical system. The adapta-
tion algorithm based on limiting discretization errors appears
to function very well for a wide variety of geophysical ap-
plications, e.g. 3-D atmospheric turbulence-resolving models
(Van Hooft et al., 2018), tsunami and ocean-wave modelling
(Popinet, 2011; Beetham et al., 2016; Marivela-Colmenarejo,
2017), hydrology (Kirstetter et al., 2016), two-phase micro-
physics (Howland et al., 2016), flow of granular media (Zhou
et al., 2017), and shock-wave formation (Eggers et al., 2017).
For these studies on highly dynamical systems, the adaptive-
grid approach is chosen because it offers a more computa-
tionally efficient approach as compared to the use of static
grids.

The present work does not include an in-depth assessment
and discussion on the performance of the presented methods
in relation to the computational speed. Even though this is
an important motivation for the application of the adaptive-
grid strategy to GCMs, the authors argue that an SCM is not
suitable for speed-performance testing: the speed of single-
column calculations is virtually never a critical issue. Only
in 3-D mode, when SCMs are “stitched together” to enable
the resolving of global circulations does the model’s compu-
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tational efficiency become an issue. Furthermore, the perfor-
mance of an SCM that employs a few tens of cells is not a
good indicator for the performance of a GCM that can em-
ploy billions of grid cells. For the latter, parallel computa-
tion overhead and the so-called memory bottleneck are im-
portant aspects. In contrast, for the SCM case, the complete
instruction set and solution data can typically be loaded onto
the cache memory of a single CPU’s core. Nevertheless, for
the readers’ reference, the required run times for the differ-
ent SCM set-ups presented herein are listed in Table 1, and
Fig. 3b also presents quantitative results on this topic and
shows that the adaptive-grid solver is well behaved.

Following the turbulence-resolving study of Van Hooft
et al. (2018), the results presented herein are a proof of con-
cept for future 3-D modelling, using RANS techniques. The
authors of this work realize that the present SCM is a far cry
from a complete global model and that more research and
development is required before the method can be compared
on a global-circulation scale. As shown by, e.g., Jablonowski
(2004), a 3-D adaptive grid also allows a variable grid res-
olution in the horizontal directions. This further enables the
computational resources to focus on the most challenging at-
mospheric processes where there is temporal and spatial vari-
ation in the horizontal-resolution requirement of the grid. Ex-
amples include the contrasting dynamics between relatively
calm centres of high-pressure circulations and those charac-
terizing stormy low-pressure cells. Also, in the case of a sea
breeze event (Arrillaga et al., 2016), it would be beneficial to
temporarily increase the horizontal resolution near the land–
sea interface. As such, we encourage the use of this technique
for those meteorologically challenging scenarios.

Code and data availability. Basilisk is a freely available (GPLv3),
multi-purpose tool to solve partial differential equations and has its
own website: http://www.basilisk.fr. The code contains solvers for
Saint-Venant problems, the Navier–Stokes equations, electro hydro-
dynamics, and more; see http://basilisk.fr/src/README. A selec-
tion of examples can be viewed online: http://www.basilisk.fr/src/
examples. The website also provides general information including
installation instructions and a tutorial. Furthermore, for the work
herein, interested readers can visit the model set-up pages, and links
to their online locations are presented in Table 1. The data can eas-
ily be generated by running the scripts. Finally, a snapshot of the
code used, as it was used in this the work, is made available via
ZENODO, with doi link: https://doi.org/10.5281/zenodo.1203631.
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