INFLATABLE GLAZING

Prototyping of a dynamic thin glass unit with a switchable thermal insulation

Building Technology Graduation Project Patrick Ullmer

Supervised by:

James O'Callaghan Marcel Bilow

Research Framework Background Design Prototyping Simulations Conclusion

Problem statement

Two contrasting problems

MIXED CLIMATE ZONES

Increasing difficulty to select appropriate glazing

Building energy regulations advocating for **better insulated facades**

Improved insulation substantially reduces heating energy demand

Over past decades significant **rise in surface temperatures**

Well-insulated buildings are soon at the **risk of overheating** resulting in an increased **cooling demand**

ON THE OTHER HAND...

...California as an example

Mostly comfortable temperatures. Buildings are equipped with **single glazing**

Very **effective for heat dissipation**, cheap and aesthetic. Works well for most of the year.

However, in winter, single glazing is a poor choice resulting in **high heating demand**

PROBLEM STATEMENT
Selecting an appropriate U-value for glazing in mixed and mild climate zones poses a challenge due to the difficulty to balance conflicting thermal insulation requirement
criancing and to the annearty to barance commenting themal modification requirement

INTRODUCTION

IGUs, THERMAL INSULATION AND SOLAR CONTROL

Fundamental knowledge

COMPOSITION OF AN INSULATED GLASS UNIT

...and its components

WHAT IS THERMAL INSULATION

...in glazing

INT.

EXT.

THERMAL INSULATION & SOLAR CONTROL

...what is the difference?

WHEN IS THERMAL INSULATION USEFUL

...and is it counterproductive?

DYNAMIC INSULATION

Working principle

THE CONCEPT OF DYNAMIC INSULATION

Opening and closing a cavity

What if the glazing could **adapt to different climatic scenarios**?

insulating

slow heat transmission

conducting

fast heat transmission

PENGUINS HAVE AN EXCELLENT DYNAMIC INSULATION

...opening and closing an air cavity

RELATION BETWEEN CONCEPT & STUDIO

Transparent Structures and Glass Design

INTRODUCTION

USEFUL SCENARIOS OF DYNAMIC INSULATION

Switching from insulating to conducting state

Controlled by internal & external sensors + weather forecast + adjusted HVAC

Rapid temperature changes

Seasonal changes

Occupants, Pcs, servers

THE MATERIAL: THIN GLASS

Transparent Structures and Glass Design

Alumino-silicate glass

Composition		
Silica sand	SiO2	62%
Soda	Na2O	1%
Lime	CaO	8%
Magnesia	MgO	7%
Alumina	Al2O3	17%
Boron-oxide	B2O3	5%

Down-draw

Overflow-fusion

(Schlösser, 2018) (Albus & Robanus, 2014)

THE MATERIAL: THIN GLASS

Transparent Structures and Glass Design

Tempering Glass edge Edge side Edge front >700MPa 45MPa 50-80MPa 150MPa Seamed and dressed to size edge (with blank spots) Seamed edge (with blank spots) Ground edge (without blank spots) Chemically Strengthened Heat Strengthened Polished edge

(Rammig, 2022) (Feldmann et al, 2014)

MAIN RESEARCH QUESTION

Transparent Structures and Glass Design

How can *thin glass* be utilized as a *dynamic component* to enable a *switchable U-value* in a glass unit?

SUB-QUESTIONS

Transparent Structures and Glass Design

- 1. What are the *resulting U-values* when the unit's cavity is either open or collapsed?
- 2. What is the effect on energy efficiency of a building with Inflatable Glazing equipped and where is it the most effective?
- **3.** What are the main *challenges in manufacturing* a dynamic thin glass unit and how could the process be improved?
- **4.** What are the **desired cavity widths to achieve the best thermal results** and which pressures and stresses can be expected?
- 5. What is the *resulting inflation geometry* and curvature of the inflated thin glass unit?

RESEARCH AND DESIGN

The process towards the end product

DESIGN DEVELOPMENT

From sketch design to final prototyping design

DESIGN CRITERIA

Hard and soft criteria

- Full transparency in all insulation states
- Adjusting the U-value from single to triple glazing properties
- Manufacturing and assembly similar to current practices and materials
- Maintaining uniform deformation/curvature of inflated glass
- Ensuring compatibility with standard façade frames and aiming for a slim design to use in renovation projects

Initial sketches

Initial sketches

Initial sketches

Option 2: C-shaped intercept spacer acts like a hinge

Spacer selection

Thermoplastic spacer optimal for resisting shear forces

Deformation of IGUs due to **thermal pressure**

Initial sketches

Final build-up

DESIGN DEVELOPMENT

PROTOTYPE CORNER FRAGMENT

Relaxed vs inflated state

MANUFACTURING

Ideal manufacturing process in an automated facility

THERMOPLASTIC HIGH-TECH LINE

Fully automatic IGU assembly line

Edge groove milling

Beveling corners

Drilling T-channel

CNC OPERATED SPACER APPLICATION

Step 2

4SG thermoplastic spacer application

COUPLING PRESS

Step 3

Coupling press, bonding glass with PMMA

Coupling press, bonding unit to second glass pane

SECONDARY SEAL APPLICATION

Step 5

Silicone (secondary) seal application

PROTOTYPING & EXPERIMENTS

Various prototypes and surface evaluation

PETG/MDF PROTOTYPE

First inflation test

PROTOTYPING

PETG/MDF PROTOTYPE

First inflation test

1.0mm Vivak

8mm deformation

0.5mm Vivak

12mm deformation

Composition

Manufacturing

Sawing groove

Edge groove

Drilling & chamfering

Cone drilling

PROTOTYPING

Assembly

Silicone for foam bead

Foam bead application

Sealed valve

Edge sealant & clamping

PROTOTYPING

Inflation

Setup: Unit on 4 wooden blocks with bicycle pump attached

Inflation: Minimal pressure was needed to achieve a 10-15mm cavity

Breakage

 $\textbf{Breakage Frames:} \ \text{cracks emerged from corner bottom right}$

Breakage

Main issue: Silicone did not cure

3D SCANNING PROTOTYPES

2 different glass manufacturers with different edge details

2-COMPONENT SILICONE GUN

With Kömmerlings Ködiglaze S

PROTOTYPING

CORNING GORILLA GLASS PROTOTYPE

Edge detail

AGC FALCON GLASS PROTOTYPE

Edge detail

CHEMICALLY STRENGTHENED PROTOTYPES

Assembly

Silicone gun

Self-mixing extruder

Silicone application

Finished edge seal

CHEMICALLY STRENGTHENED PROTOTYPES

Assembly

Valve insertion from below

PVC foil application

Spray painting

3D SCANNING AT CDAM

Faculty of Industrial Design

SOLD Beautings for agreem source

SOLD B

Drawing random lines

Real time results

Rotating table

Corning unit with flaw

CORNING THIN GLASS UNIT WITH EDGE DEFORMATION

4 steps of inflation

3D SCAN DEFORMATION EVALUATION

AGC Falcon Glass

15mm cavity before edge bond failed

Corning Gorilla Glass

PROTOTYPING

3D SCAN CURVATURE EVALUATION

Highest curvatures similar to FEA principal stress pattern

3D SCAN CURVATURE EVALUATION

Edge and corner deformation

3D SCAN CURVATURE EVALUATION

Edge and corner deformation, scaled x3

Elevation – edge seal deformation

REFLECTIONS OF INFLATED UNIT

Scaled by x3 for a 1500x3000mm panel

THERMAL PERFORMANCE

U-value calculation and ideal cavity widths

SIMULATION WORKFLOW

According to EN-673:2011

SIMULATION WORKFLOW

According to EN-673:2011

SIMULATION WORKFLOW

According to EN-673:2011

CAVITY WIDTH AND NUSSELT NUMBER

According to EN-673:2011

THERMAL PERFORMANCE RESULTS

Different specifications resulting in different cavity widths

U_{av}= 1.82-3.90

Change: 214%

Ideal cavity: 16mm

ENERGY EFFICIENCY

Energy model evaluating location, passive and active performance

ENERGY MODEL

Building, model and analyses

Building + context

fully glazed
12x6m
office function
overhang shading
context

Energy model

Simulations

1) (Optimal location

2) (Zone air temperature

3) (Energy demand

WORKFLOW

H+C days schedule for inflation states

ENERGY MODEL

Building, model and analyses

LOCATION PERFORMANCE COMPARISON
SG AND TGU vs. Inflatable Glazing

Glazing	Ug-value	g-value	Coating
Single Glazing	5.8	0.87	No
	1.1		
Triple Glazing	0.6	0.3	Yes
	0.33		
Inflatable Glazing (Xenon)	0.6 - 5.46	0.3	Yes

LOCATION: PERFORMANCE COMPARISON

Energy Demand Reduction in %

ENERGY MODEL

Building, model and analyses

Seattle (4) – mixed climate high fluctuations

San Jose (3) – warm climate with mild winter

ZONE AIR TEMPERATURE

Triple glazing vs Inflatable Glazing (Krypton) in Seattle

Triple Glazing

Maximum Temperature: **52.6°C**

Inflatable Glazing (Krypton)

Maximum Temperature: **37.6°C**

ENERGY DEMAND

Energy demand reduction – glazing comparison

Seattle	IG (Xenon)	IG (Krypton)	IG (Air)
HR++++	22%	17%	-11%
HR+++	18%	12%	-16%
HR++	33%	29%	5%
SG	73%	71%	61%

San Jose	IG (Xenon)	IG (Krypton)	IG (Air)
HR++++	18%	16%	5%
HR+++	20%	18%	7%
HR++	24%	22%	11%
SG	62%	61%	56%

18-33% improvement to current building practices

24% improvement to current building practices

ENERGY DEMAND

Single glazing vs Inflatable Glazing (Air) in San Jose

Single Glazing

Annual energy demand: **16500 kWh**

Inflatable Glazing (Air + Low-E)

Annual energy demand: **6970 kWh**

Energy reduction: -57%

ENERGY EFFICIENCY

STRUCTURAL ANALYSIS

Thicknesses, stresses and weight

Finite Element Analysis

SJ MEPLA

Spring supports

Elastic edge support

Uniformly distr. load + Self-weight

Non-linear geometric calculation

Finite Element Analysis

Office window dimensions 1500x3000mm

STRUCTURAL ANALYSIS

Finite Element Analysis

Office window dimensions 1500x3000mm

STRUCTURAL ANALYSIS

FINAL PRODUCT

Glass Edge Design, Mullion Design and Impressions

Custom thermal break with gas hoses

Mullion with cutout and rear cap for fitting hoses

Final assembly

MULLION DESIGN

Section

CORE PANE: PMMA VS GLASS

Downsides of a PMMA core pane

GLASS COMPOSITION 2

Edge detail

GLASS COMPOSITION 2

Assembly

MANUFACTURING

Waterjet Cutter

2x Channel insert

Laminated thin glass coupling

Secondary seal application

FINAL PRODUCT

Separate cavity inflation possible

Separate cavity inflation possible

15mm unit – Apple for comparison

THICKNESS

Comparison across IGUs

COMPARISON

WEIGHT

Comparison across IGUs

COMPARISON

EMBODIED ENERGY

Comparison across IGUs

COMPARISON

CONCLUSION

Relevance and reflection

RELEVANCE

Societal relevance

Decreasing **energy demand**

Enhancing occupant comfort

Unobstructed **view**

Renovation possibilities

Reduced weight

RELEVANCE

Scientific relevance

Manufacturing of novel glass unit

Thermal performance of dynamic insulation

Energy efficiency and optimal locations Precise analysis of curvature and deformations

Behavior of **thin glass** and **edge sealants**

INFLATABLE GLAZING

Thank you!

Eckersley O'Callaghan

FRONTWISE FACADES

RÖHM

