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SUMMARY

This paper aims to introduce a new approach to optimize the tunable controller parameters of linear parame-
terizable controllers. The presented approach is frequency-domain based and can therefore directly be used
to tune, among others, proportional integral derivative controllers, low/high-pass filters, and notch filters,
using a Frequency Response Function of the plant. The approach taken in this paper is to extract the tunable
controller parameters into a diagonal matrix gain and absorb the remainder of the controller in the plant.
Then, the generalized Nyquist stability criterion is exploited so as to impose stability and H o performance
specifications on the closed-loop system. It is shown that the approach results in a convex feasibility prob-
lem for certain controller cases and can be reformulated such that it can also be used for grey-box system
identification. Simulation and experimental examples demonstrate the efficacy of the approach. © 2016 The
Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons, Ltd.

Received 2 October 2015; Revised 9 August 2016; Accepted 4 October 2016

KEY WORDS: frequency-domain Hoo controller design; fixed-structure control; decentralized control;
grey-box system identification; Nyquist stability criterion

1. INTRODUCTION

Many systems can be modeled accurately by means of first-principle models, but will never exactly
match the real-world system because of, for instance, manufacturing errors and imperfections [1].
Consequently, a controller designed based upon the first-principles model is likely to not give max-
imum performance when implemented. Hence, a controller based on data, that is, obtained through
system identification, is likely to result in better control performance. In particular for lightly
damped high-order systems, obtaining accurate models from data can be cumbersome. Instead,
a highly accurate non-parametric Frequency Response Function (FRF) can directly be obtained
[2]. Direct control design based on the FRF may avoid the difficulties associated with parametric
modeling.

Besides the importance of designing the controller based on an accurate model, the use of
controllers with pre-specified structure is important. First, these are directly retunable when imple-
menting in the field, which is in sharp contrast to classical optimal and robust control design
techniques that lead to high-order controllers (e.g., as high as the order of the plant [3, 4]). Second,
industrial controllers often are implemented in dedicated hardware, directly imposing constraints on
the controller structure. Because both the controller structure and order are fixed a priori, only the
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tunable parameters need to be found such that the performance specifications are met. Unlike well-
known solutions to unstructured control synthesis problems (e.g., using Riccati equations [5] or
linear matrix inequality techniques [6, 7]), the main problem that arises when imposing constraints
on the controller structure is that the resulting optimization problem is no longer convex and is in
general considered to be NP-hard [8—10].

In this paper, we develop a control design approach that takes the following requirements into
account. First, the structure and order of the controller are specified a priori and, hence, the method
should be able to deal with this type of controllers. Second, the method should be able to handle both
SISO and MIMO controllers. Third, the method should be able to design the controllers based on
an FRF of the plant. Finally, approximations of the involved controller optimizations are regarded
as undesired.

In the past decades, fixed-structure control synthesis has received considerable attention. In the
context of iterative linear matrix inequality solutions, such approaches have been developed in
[11-14]. Typically, these methods enable the controller synthesis for very specific controller struc-
tures or introduce conservatism. Related results where the order of the controller is specified are
presented in [15] where sum-of-squares techniques for fixed-order o, controller synthesis are used,
in [16] where positive polynomials for the same objective are used, and in [17] where evolutionary
algorithms are used to design low-order controllers. Furthermore, a convex-concave optimization
procedure for proportional integral derivative (PID) controller design is outlined in [18], randomized
algorithms are used in [19, 20], a surrogate convex upper bound on the Hs, norm is used in [21],
and an alternative for the Youla parameterization in [22]. Non-smooth optimization techniques are
used in [23-26], which are implemented in the MATLAB Robust Control Toolbox. All the afore-
mentioned methods are limited by being only applicable to PID control, SISO systems, or cannot
be applied to FRFs.

A structured controller design method using frequency-domain data is found in [27], where
pre-defined fixed-structure controllers are optimized with respect to closed-loop performance spec-
ifications based on FRF data of the plant. A robust controller design method for a class of
uncertainties using frequency-domain data is presented in [28]. In [29], a subset of stabilizing
fixed-order controllers using a set of linear inequalities is calculated from the frequency response
of the plant. The fixed-order controllers achieve some H, norms on the (complementary) sensi-
tivity function. The latter work is an extension to the work of [30], in which a complete set of
stabilizing PID controllers is calculated directly from the plant FRF. The latter model-free-based
and frequency-domain-based design methods require either approximation, or can only handle
first-order or fixed-order controllers.

In [31, 32], it is shown that the H, robust performance condition can be represented in the
Nyquist diagram by constraints with respect to the tunable parameters of linearly parameterizable
controllers. The constraints are convexified by using a desired open-loop transfer function (which
is an approximation of the open-loop transfer function). The method [32] can be applied to SISO
systems and is extended in [31] to include MIMO systems. The MIMO case is shown to work well
when the open-loop transfer function can be made diagonally dominant by the controller, which
does not exploit the full potential of centralized multivariable control.

The aim of this paper is to develop a frequency-domain approach for H, fixed-structure con-
troller design and grey-box system identification. The methodology can directly use a measured FRF
obtained from the plant to compute the tunable parameters of linearly parameterizable SISO and
MIMO controllers. Performance specifications of the closed-loop system are imposed by weights on
the (complementary) sensitivity function(s) in the frequency-domain. The methodology presented
in this paper exploits the generalized Nyquist stability criterion and satisfies, by constraining the
Nyquist curve from certain parts of the Nyquist diagram, stability and performance requirements
of the closed-loop system. It is shown that for special control cases, the controller design results
in a convex feasibility problem, but will generally result in a feasibility problem that is multilinear
in the tunable controller parameters. It is shown that the methodology can also be directly used for
grey-box system identification.

The proposed approach can also be used for integrating the design of plant and controller. Simi-
larly to extracting the tunable parameters of the controller, structural parameters of plant need to be
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extracted into a diagonal form. Thus, the diagonal controller structure is extended with structural-
related parameters. The inclusion of tunable structural parameters does not change the methodology.
The property to simultaneously design plant and controller is appealing, because it can lead to more
efficient designs (e.g., [33-38]).

To summarize, the main contributions of this paper are

o Fixed-structure H o, controller design based on an FRF of the plant;
e Grey-box system identification method based on an FRF of the plant.

Preliminary results have been published in [39, 40]. This paper extends these results with theoret-
ical and experimental results, including a special controller case resulting in the controller tuning
becoming a convex feasibility problem.

The results in [31, 32] resemble the approach in our paper. Two important differences are the
following. First, the approach in this paper does not rely on any approximation, in contrast to the
method in [32], in which the open-loop transfer function is approximated by a user-defined desired
open-loop transfer function. The approach presented here requires the designer to introduce line
constraints in the Nyquist diagram. Second, the method in this paper naturally extends to multivari-
able controller design, whereas in [31], MIMO controller design is carried out such that the diagonal
elements achieve single-loop performance specifications and the off-diagonal elements principally
decouple the system.

The paper is organized as follows. In Section 2, the general problem formulation is outlined. The
method to tune the parameters of fixed-structure controllers along with some practical aspects is sub-
sequently presented in Section 3. The extension of the method to a grey-box system identification
method is given in Section 4. Section 5 presents the experimental setup. The methods are demon-
strated in Section 6 through a simulation study and the experimental setup. The paper is concluded
in Section 7.

2. PROBLEM FORMULATION

In this section, the Hoo control design problem is defined, the class of controllers including several
examples is described, and stability and performance of the closed-loop system are defined.
2.1. Problem statement

The following partitioning of the generalized plant, in which a part of the controller will be absorbed,

is considered
|:Zi|_|:P11(S) Plz(s)}[w] 1)
v | | Pa(s) Pa(s) u |’

P(s)

with z € R":, w € R™,y € R"™ and u € R™, The transfer functions Pi;(s), P12(s),
P51 (s), and P55 (s) have corresponding dimensions and are all assumed to be stable.* The controller
parameters are real scalars, that is, ¢ € R"”. With these definitions, the controller is defined as

b1 0

and the closed-loop system is obtained by

Twz(s) = Fi(P,K) = P11 + P2K(I — P2 K) ' Py,

#In this paper, only stable generalized plants are considered; however, the method can be extended to include unstable
generalized plants.
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where F; denotes the lower linear fractional transformation (LFT). The goal is to find the con-
troller parameters ¢ that achieve ||Tyz(5)|loo < 1 (the reason for this objective will become clear
in Section 2.3).

Note that for a freely parameterized controller K, this problem is convex [3], but typically leads to
a solution having the same order as the generalized plant, which is typically not desired in practical
applications. For a fixed-structure controller, the problem is no longer guaranteed to be convex.

2.2. Linear parameterizable controllers

The plant and controller structure as defined in (1) and (2) for a PID controller can be obtained as
follows. Let a PID controller be given by

Ke(s) = Kp + — + —4—, 3)

then a diagonal structure with the controller parameters ¢pp = [K, K4 K;] as in Figure 1
is obtained in a straightforward manner (negative feedback is assumed). If desired, the time
constant 7'y can also be pulled out of the structure.

More generally, the diagonal controller structure as described precedingly can be obtained from
more generic parameterizations. That is, any well-posed rational function R(b) can be written as an
LFT [41]

Rb)=F(M,b®I), “4)

with M a fixed matrix and b ® I a diagonal matrix containing the parameters that define the rational
function R(b) (see [25] and [42] for examples). Note that repeated copies of the parameters b may
arise, which change the type of optimization problem that is discussed in the next section.

A more general linear controller parameterization (including (3)) can be obtained with the use of
basis functions [43]. In [32, 44], Laguerre basis functions

V29D
Xl (S) - (S + E)l

are used. By multiplying each basis function with a scalar, for example, ¢g = [¢;. ..., Pm]” x, any
stable rational finite order transfer function can be approximated (for a sufficient number of basis
functions). The Laguerre basis functions can be incorporated by absorbing the basis functions into
the generalized plant and creating a diagonal structure similar to Figure 1 with the elements of ¢g
on the diagonal. The tuning parameter £ and the number of bases i need to be selected beforehand,
for which a practical guideline to select the basis functions is given in [32].

fori = 1,£>0, yo(s) =1 5)

u . Y1
> s
u2 | —Y u Yy s Y2
> G(s) > Trsi1

u3 3
Ky <
Ky <
Ki <

Figure 1. Linear parameterization of a proportional integral derivative controller. The generalized plant is
indicated by the grey box.
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2.3. Stability and performance

In order to compute the controller parameters ¢ that result in |7y, (s)||co < 1, consider the fol-
lowing approach, assuming a stable generalized plant P(s) and given the frequency response data
of P(s) denoted by P(jw). By making use of the generalized Nyquist stability criterion of [45],
two definitions are formulated.

Definition 1 (Stability [4])
The closed-loop system T,, in Figure 2 is asymptotically stable if for a given stable generalized
plant P(jw), the Nyquist plot of

b1 0
det| I — Py(jow) |, Vo, (6)

0 ém
does not encircle the origin.

This is the generalized Nyquist theorem for a positive feedback system with stable loop transfer
function K P, (jw).

Definition 2 (Performance [4])
The closed-loop system || Ty ||co in Figure 3 satisfies the performance requirement ||Ty;||co < 1,
if for a given stable generalized plant P (jw), the Nyquist plot of

—>» P11 Py [—mm>

u

Py Py

Y

1

A

Pm

Figure 2. Generalized plant with linear parameterized controller.

w z
> P11 P2
Y 5 Po1 P Y
1
bm
Ap le

Figure 3. Closed-loop system including performance A p (s)
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Ap(jo)) 0
¢ 0 . .
det| I — 0 . P(jw) |, Yo,YAp(jw), @)
0 bm
does not encircle the origin for any stable rational transfer function Ap € RHL™ and

AP ()]l < 1.

Note that the system in Figure 3 is obtained by including, in Figure 2, a full complex ‘per-
turbation” block Ap(jw) in feedback with the exogenous input w and exogenous output z. The
‘perturbation’ should be regarded as fictitious as it is only used as a means to examine the perfor-
mance specification and is thus not a physical perturbation. The proof of (7) follows along the lines
of [4, Theorem 8.7 and the proofs thereof]. In the remainder of this paper, we refer to stability and
performance as defined in (6) and (7).

Further note that intergrid errors are not within the scope of this paper and we therefore assume
a sufficiently dense frequency grid. The interested reader is referred to [46] for a discussion on the
density of the frequency grid.

3. NYQUIST-BASED CONTROLLER DESIGN

The procedure to compute the controller parameters such that the closed-loop system is stable
and | Tyzlleo < 1 is outlined in this section. The first step is to analyze the relation between the
determinant expression and the controller parameters. The constraints preventing the Nyquist curve
from encircling the origin are subsequently introduced. Then, relevant constraints are obtained by
realizing the performance perturbation block A p with maximum singular value. Finally, a feasibil-
ity problem is obtained from the imposed line constraints and the realization of A p, and it is shown
that in certain controller cases this feasibility problem is in fact convex in the controller parameters.

3.1. Determinant for stability and performance

In this paragraph, the determinant expressions are explored to show the dependence on the controller
parameters ¢. The determinant expression for two controller parameters (i.e., ¢ € R?) for closed-
loop stability (6) is given by

0@ jo) = 1= PRV = P70+ (PAV P - PEPPE ) prge. ®

for which the following partitioning of P, (jw) is considered

(22)

Pratio) = | P (@) P (o) |
P2V (jo) PE? (jo)

Similarly, the determinant expression for two controller parameters, a single exogenous input w,
and exogenous output z for closed-loop performance (7) is given by

0s@jor =1 Pusp + (PurlPar - PUOPY s - PSY o
s (s ),
+(PUOPEY - PR PG — P PSP
4 PUPEPPEY A, + PO I P A,

11 12) 5 (21 12) 5 (11) (21 12) 5 (11) (21
+ P1(2 )Pz(z )P2(1 )AP _P1(2 )PZ(I )Pz(z )AP + P1(2 )Pz(z )Pz(l )AP)¢1¢2’
9)
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Im(jw)

h(jw)

Re(jw)

I (jw) \
Qa(6,jw) \ﬂ

L

Q(¢7 .7w)

Figure 4. Nyquist diagram for Q(¢, jw) (stability) and QA (¢, jw) (performance). The colors indicate
which of the constraints /1 (jw) and I (jw) hold for which part of the Nyquist plots.

for which the following partitioning of the generalized plant P (jw) is considered

Pu(jow) PSP (jo) PA? (jo)

P(jw) = P%i)(jw) P%f(jw) P%i’(jw)
PV (jo) PEV(jo) PSP (jw)

From the determinant expressions in (8) (for stability) and (9) (for performance), it can be seen
that the expressions are bilinear in ¢ and multilinear® for more parameters. In the next sections, the
determinant expressions (8)—(9) are constrained in order to satisfy the Nyquist criterion.

3.2. Constraints in the Nyquist diagram

The main idea in the proposed Nyquist-based approach is to constrain the Nyquist curves from
encircling or crossing the origin. Consider the Nyquist curves of (6) and (7), respectively denoted
as Q(¢, jw) and Q a(¢, jw), for a certain generalized plant P(jw) and a parameter vector ¢, illus-
trated in Figure 4. It is well known that the thick solid line represents the Nyquist curve Q (¢, jw)
(obtained with (8)) and the discs forming a banded graph with centers at the solid line represent the
Nyquist curve Q a(¢, jw) (obtained with (7)).

The closed-loop system Ty, is stable if and only if the Nyquist curve Q (¢, jw) does not encircle
the origin. Moreover, performance is achieved if and only if the Nyquist curve Q a (¢, jw) does not
encircle the origin. The latter two definitions impose clear constraints on the Nyquist curve. Hence,
considering Figure 4 in this context, the lines /; (jw) and /> (jw) constrain the Nyquist curve from
encircling the origin. Note the different colors of the Nyquist curves Q (¢, jw) and Qa (¢, jw), and
the constraint lines /1 (jw) and /> (jw), illustrating the relation and frequency dependency of the
constraint lines and the Nyquist curves. Further note that constraining the Nyquist curve by lines
was earlier proposed in [47, 48].

The lines /;(jw) and [>(jw) can be introduced as following. To constrain the Nyquist
curve Q(¢, jw) above the line /1 (jw) in Figure 4, it should hold that

Im(Q(¢, jw)) > a1Re(Q(¢, jw)) + c1, (10)
where Re(-) and Im(-) denote the real and imaginary parts, and «; and c; are the slope and offset of

the constraint line /; (jw). Thus, in words, when taking the real part of the Nyquist curve Q (¢, jw)
and multiplying with the slope «; and adding the offset ¢, the imaginary part of Q (¢, jw) should be

$This only holds when the parameters are unique. In case of repeated parameters, the expression is no longer multilinear.

© 2016 The Authors. International Journal of Robust Int. J. Robust Nonlinear Control (2016)
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larger to fulfil the constraint. Hence, by rewriting (10), the constraint for the optimization problem
can be obtained as

—Im(Q(¢. jw)) + ¢1Re(Q(¢. jw)) + ¢1 <0, an

Similarly, the Nyquist curve Q (¢, jw) can be constrained below the line /5 (jw) in Figure 4 by
setting

Im(Q(¢. jw)) — a2Re(Q(9. jw)) —c2 <0, (12)

where o, and ¢, are the slope and offset of the constraint line /5 (jw).

In (11)—(12), Q(¢, jw) (for stability of the closed-loop system) can be replaced by Q a (¢, jw) to
obtain constraints for closed-loop performance requirements. Hence, when a stabilizing controller is
required, one would constrain Q (¢, jw) from encircling the origin. If performance requirements on
the closed-loop system are required, one would use Q A (¢, jw). The constraints imposed to satisfy
closed-loop performance (i.e., constraining Q A (¢, jw)) are denoted by Ia (¢, jw).

It should be stressed here that constraints can be assigned per frequency point. Hence, as is indi-
cated in Figure 4, the left part (lower frequencies) of the Nyquist curves (grey) are constrained from
above by I (jw). Similarly, the right part (higher frequencies) of the Nyquist curves (black) are
constrained from below by /; (jw). Thus, in this illustrative example, the Nyquist curves have one
‘active’ constraint per frequency (but is not necessarily limited to one constraint).

Before a feasibility problem can be constructed using /a (¢, jw), the realization of the perfor-
mance perturbation A p is discussed in the next subsection.

3.3. Realization of performance A p

In the subsequent paragraphs, some details regarding the realization of the performance perturba-
tion Ap are given (also refer to [49, 50]). The performance A p is described by ||Ap(s)]oo < 1
and Ap € RHAL ™. Thus, considering I (¢, jw) which consists of A p (jw), this would imply
evaluating an infinite number of constraints (i.e., per frequency all realizations of Ap(jw) that
satisfy max, 6 (Ap(jw)) < 1). To avoid this, the performance A p(jw) is realized by ng points
randomly drawn from max, 6 (Ap(jw)) < 1.

The realization of the performance Ap (jw) is denoted by Ap(jw) and the determinant expres-
sionincluding A p (jw) is denoted by Q ; (¢, jw). It should hold that at every frequency, the Nyquist
curve Ap(jw) should not violate the constraints. Thus, it is sufficient to check only the bound-
ary [51], and therefore, relevant constraints can be obtained by realizing A p (j) with maximum
singular value, that is, 6 (Ap(jw)) = 1. Hence, the set

Ap:={Ap |G (Ap(jo)) =1}

contains the relevant realizations for the constraints. Notice that the number of constraints is propor-
tional to the number n4 of realizations of A p. By choosing the number n4 of realizations sufficiently
large, the probability of ‘missing’ a critical uncertainty can be made small. Also notice that it is suf-
ficient to check the boundary, because of the fact that an LFT will map closed contours in closed
contours [52].

Thus, with the realizations A p (jw), a feasibility problem can now be constructed such that the
controller parameters can be computed.

3.4. Multilinear feasibility problem

Given the frequency response data of the generalized plant P(jw), the line constraint(s) /(¢, jw)
for stability or /A, (¢, jo) for performance, and the realizations Ap of the performance Ap, a
feasibility problem can be formulated to obtain stability and performance of the closed-loop system.
For this, it should hold that for every frequency the constraints should be satisfied. For stability, the
following problem is obtained

Find ¢ such that [(¢, jw) <0 Vw e R, (13)

© 2016 The Authors. International Journal of Robust Int. J. Robust Nonlinear Control (2016)
and Nonlinear Control published by John Wiley & Sons, Ltd. DOI: 10.1002/rnc



FREQUENCY-DOMAIN OPTIMIZATION OF FIXED-STRUCTURE CONTROLLERS

where € is the finite discrete set containing the frequency grid of the measured plant FRF. For
performance, the following problem is obtained

Find ¢ such that 3 ,(¢. jw) <0 Vo € R, VAp(jo) € Ap. (14)

By solving the aforementioned feasibility problems, controller parameters ¢ are obtained for which
the closed-loop system is stable in the case of (13) and for which the closed-loop system is stable
and satisfies the performance requirements in the case of (14).

Note that in (13) and (14), multiple constraints can be used, for example, such as in Figure 4,
which can be assigned per frequency. Further remark that the size of the feasibility problem (13)
depends on the number of frequency points, the number of constraints active per frequency, and
in the case of (14) also on the number n, of performance realizations A p. Hence, the feasibility
problem has N constraints in the former case (13) and N - ng constraints in the latter case (14),
with N the number of frequency points considered. Finally, it is important to note that the number of
constraints in the feasibility problems thus does not depend on the number of controller parameters.

3.5. Convex feasibility problem

In the previous sections, it is shown that by extracting the tunable controller parameters into the diag-
onal form, the resulting feasibility problem is multilinear in the controller parameters ¢. However,
by creating the generalized plant configuration slightly different, the feasibility problem becomes
a convex feasibility problem for some special controller cases. To see this, the diagonal controller
parameter matrix with the perturbation A p as was previously used in (7), that is,

Ap(jo) 0
1 0

0

is modified to

Ki(¢, jo) = [ 0 Gilg, jo)

where Ci(¢, jw) is now the full controller including the tunable controller parameters. To do so, the
generalized plant needs to be changed accordingly as well. Thus, instead of extracting the tunable
parameters in a diagonal matrix gain K (as was done in Figure 2 and (2)) and absorbing the rest of
the controller in the generalized plant, the full controller is included in Cy(¢, jw) (15). In the case
that Cy(¢, jw) in (15) is SISO and affine in the tunable controller parameters ¢, the approach results
in a convex feasibility problem. This can be demonstrated by writing down the determinant expres-
sion for the SISO controller case and a scalar perturbation block A p. The performance condition
then becomes

det (I — Ki(¢, jo)P(jw)). (16)
Substituting (15) in (16) gives the determinant expression
(1—APP11) (1—CI(¢)P22)_APP12C1(¢)P217 (17)

which is affine in the controller parameters ¢. Hence, SISO controllers including, for example, PID
controllers (assuming an affine parameterization) result in a convex feasibility problem. Note that
the realization of the performance A p can be multidimensional without affecting the procedure as
discussed previously for including the line constraints in the Nyquist diagram. Furthermore, also
note that in the case of a Multi-Input Single-Output controller with affine parameterization, the
problem remains convex, and that in the case of a Single-Input Multi-Output controller, the problem
is no longer convex. The derivation of the latter observation is left to the reader.
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P(jw)
w . . z
Href(jw) 4»0__> WP(7w)
M (jw)
u b1 Y
¢)m,
Ap

Figure 5. Grey-box system identification configuration.

4. GREY-BOX SYSTEM IDENTIFICATION

The controller design methodology presented in the previous sections fits a controller to the data.
In this section, the previously introduced approach is extended to a class of system identification
methods. Thus, instead of fitting a controller to the data, a model is fitted to the data. This is achieved
by a slight reformulation of the problem, in such a way that the parameters of a parameterized model
can be computed. The approach was previously presented in [53] and applied to identify a simplified
control-oriented model of the yaw dynamics of a two-bladed wind turbine.

The main approach is in fact a model matching problem posed as an Ho, problem [54]. The
parameters ¢ of the model H(jw), which should be matched to a measured FREF, are extracted into
a diagonal form by an LFT, that is, H(jw) = F;(M(jw), ¢). Then, consider the schematic block
diagram in Figure 5. In this diagram, the measured FRF of a plant is denoted by H.t(jw), and the
model M (jw) with tunable model parameters ¢ is obtained by the previously mentioned LFT. The
outputs of M(jw) are element-wise subtracted from the outputs of the reference model Ht(jw).
The output z of the generalized plant P(jw) is then given by the differenced outputs, weighted by
the performance weight W, (jw). Similarly as before, the full perturbation block A p closes the loop
from z to w.

In order to compute the model parameters ¢ such that H(jw) is close to Hyf(jw), the exact same
techniques as in the previous sections can be applied. Again, by constraining the Nyquist curves
from encircling or crossing the origin, feasibility problems equal to (13) and (14) are obtained. For
feasible solutions of (14) it thus holds that || Ty, ||co < 1.

In the next section, the experimental setup is described, which is used to demonstrate the
previously presented methodologies.

5. EXPERIMENTAL SETUP

The experimental setup considered in this paper is a double-mass-spring-damper system, which can
be modeled! by Figure 6. A force F acts on the first mass m, which is connected through a flexible
shaft to the second mass m5. The positions of the masses are denoted by x; and x;, and the stiffness
and damping of the system are denoted by k and d, respectively. A lightly damped system will show

INote that the experimental setup is rotational, whereas the considered simulation examples are translational. For that
reason, the model in Figure 6 is chosen to be translational. Replacing the force input F with a torque 7', the masses m1 |
and my with inertias J1 and J>, and the positions x1 and x5 with 81 and 6>, the equivalent rotational model is
obtained.
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a clearly visible resonance peak in a frequency plot. The system can be described by two transfer
functions. The transfer function from input F to position x; (collocated) is given by

Xy mys? +ds +k (18)
F mumas* + (my +ma)ds3 + (my + ma)ks?’

and the transfer function from input F' to position x, (non-collocated) is given by
X2 B ds +k (19)
F  mumas* + (my + ma)ds3 + (my + mp)ks?’

The resonance frequency w, is at w, = /k/m,, withm, = mym,/(m; + my).

A photograph of the experimental setup is shown in Figure 7. This setup will be used to demon-
strate the controller design methodology. The DC motor drives the first mass, which is connected to
the second mass through a flexible shaft. Both the first mass and second mass have position encoders.
The force actuation commands and position readbacks are connected to a pc using a real-time con-
nection, which is operated from MATLAB Simulink. An FRF of the system is obtained by repeated
closed-loop experiments in which the system was excited with white noise. From the closed-loop
data, the open-loop response is extracted and subsequently the plant dynamics can be obtained. By
averaging the results for each frequency over a number of experiments, an FRF is obtained. The FRF
results for both the collocated and the non-collocated system are shown in Figure 8. The resonance
frequency o, is at approximately 54.2 Hz.

X X9
k
—\AAA—
F > mq ma
In
|8
d

Figure 6. Double mass-spring-damper system.

Motor Flexible shaft Load encoder

Motor encoder

Figure 7. Experimental setup of two masses connected by a flexible shaft. The left mass (only partially
visible) is actuated by a DC motor.
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Figure 8. Measured frequency-response function of the experimental setup.

6. RESULTS

In this section, the design methodology presented in Sections 2—4 is applied to two simulation
examples and to three example cases using the experimental setup discussed in Section 5. The
example cases involve non-collocated control (i.e., the force input F is used to control the position
of the second mass m,) according to [55]. The following five example cases are considered:

1. Computing a PD controller that achieves certain performance requirements on a simulation
example;

2. Computing a PD controller and the stiffness parameter of the system (plant/controller
optimization) that achieves certain performance requirements on a simulation example;

3. Computing a PD controller without notch filter to obtain certain performance specifications on
the experimental setup;

4. Computing a PD controller with notch filter to obtain certain performance specifications on
the experimental setup;

5. Computing the parameters (m1, m, k, d) in (19) using the FRF of the experimental setup and
the grey-box system identification method outlined in Section 4.

In all example cases, the dimension of A p is 1 x1 (a single input w and a single output z). Therefore,
the perturbation A p is realized by drawing n; samples from the unit circle (i.e., [Ap| = 1). The
feasibility problem obtained in each example case is solved by using YALMIP [56] with MATLAB’s
fmincon solver with default settings (the gradients are thus estimated by finite differences).

6.1. Simulation results

For the simulation examples, the model in Figure 6 is used. The simulation examples were
previously presented in [39] and are adopted here with minor changes.

6.1.1. PD controller design. In the first simulation example, the input F is used to control the
position x, of the second mass. A PD controller with negative feedback is used to obtain certain
closed-loop specifications. It is assumed that the system has a time delay of 7; = 0.1s, which
is modeled by a first-order Padé approximation. Hence, the transfer function (19) is connected in
series with the time delay approximation and is denoted by G(s). The output of the time-delayed
system G(s), y = x4, is connected to the PD controller given by

K, + Kgs

. 20
0.01s + 1 (20

Cep(s) =
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w z
> Wp(s)
s Y2
U —>]0.01s+1
F T2,d
= G(s)
ul e
1 Y1
> 0.01s+1
Ky <
Ky <
Ap [«

Figure 9. Configuration of the plant and controller for the double-mass-spring damper system. The PD
controller is partly absorbed in the generalized plant.

In order to maintain a diagonal control structure with only the controller parameters on the diagonal,
the fractions in (20) are absorbed into the plant. Then, closed-loop system performance is imposed
by a bound on the sensitivity function by means of a second-order performance weight (refer to [4])

52 /M2 + 2B pwps + w}
52 +2B,Apwps + (Apwp)?’

Wp(s) =

where 8, = 0.3, M, =2, A, = 1-1073 and wp = 0.1. The complete generalized plant configu-
ration for this system is shown in Figure 9, where also the complex perturbation A p is included. In
this example, the parameter values are taken as my = m, = k = 1 and d = 0.05.

Because the complexity of this problem is relatively low (only two controller parameters need
to be found), a grid search of the controller parameters is carried out. For each combination of K,
and Ky, || Twz|lco is computed. Thus, the solution space can be visualized and is shown in Figure 10.
The lowest obtained Ho, norm by the grid search is || Tw;||cc = 0.884, which is obtained for K, =
0.068 and K; = 0.142. For comparison, the method in [32] by using the frequency-domain robust
control toolbox (FDRCT) [57] is also used. As mentioned in the introduction, this method requires
a desired open-loop transfer function L4 (s). Setting L4(s) = W, — 1 (as suggested in [57]) gives
a satisfactorily result for which || 7y, |lcc = 0.861, K, = 0.069, and K; = 0.145.

In order to compute controller parameters that yield performance, the feasibility problem in (14)
is constructed. Because the generalized plant is stable, the Nyquist curve should not encircle the
origin. A basic outline of the Nyquist curve was obtained (similar to Figure 4) from the general
system properties. With this knowledge and for N = 400 frequency points on a logarithmic scale
in the interval [0.1, 10] rad/s, two constraints in the Nyquist diagram are formulated, that is,

Im(QA(jw)) + 0.2Re(QA(jw)) —0.001 <0 for w <0.16,
—Im(QA(jw)) —5Re(Qa(jw)) +0.001 <0 for w = 0.20.

The performance A p(jw) is for each w realized by n4 points randomly sampled on the unit circle
using a uniform distribution. Finally, the feasibility problem is solved by using [56] and MATLAB’s
fmincon function. The optimization procedure is carried out for 100 Monte Carlo simulations,
where for each simulation a new realization of the perturbation Ap is computed and the initial
controller parameters are uniformly drawn from [0, 1] so as to be able to evaluate convergence.

The obtained results for varying number 74 are listed in Table I, which for reference also lists the
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Figure 10. Results of the grid search of K, and K for the controlled double-mass-spring-damper system.

The light grey area represents controller parameter combinations resulting in an unstable closed-loop sys-

tem, the grey area represents combinations that yield a stable closed-loop system, and the dark grey area
represents the solutions with Hso-norm lower than 1.

Table I. Optimization results of the first simulation example.

Description ’Hgg“ HEX  Success [%]
Grid search 0.884 — -
FDRCT 0.861 - —
Nyquist optim. (ng = 5) 0.900 2.884 46
Nyquist optim. (ng = 10) 0913 2.403 55
Nyquist optim. (ng; = 25) 0.892 1.072 86
Nyquist optim. (ng = 50) 0.930 1.058 98
Nyquist optim. (nz = 100) 0913  0.988 100

‘Success’ indicates the percentage of solutions that satisfy the
performance condition.

grid search result and the FDRCT result. It should be stressed that the proposed methodology does
not minimize the H-norm, but rather tries to find a feasible solution' for which it is then known
that || Tw;|lco < 1. From Table I, it can also be seen that for increasing n4, the number of solutions
that satisfy the performance condition. Moreover, for n; = 100 realizations of A p all trials satisfied
the performance condition. The reason for not obtaining the lowest norm (i.e., the FDRCT result)
is twofold. First, the optimization solver quits when a feasible solution is found rather than min-
imizing || Tw.|lco- Second, it is possible that the constraint lines were chosen too conservative and
therefore constrained from solutions that yield the lowest norm. The Nyquist curve of the plant with
controller, obtained for the case with ng = 100 with lowest Hoo norm (|| 7y, l|cc = 0.913, K, =
0.048, and K; = 0.1474), is shown in Figure 11. The graph is plotted for a densely (large ;) real-
ized complex perturbation A p, from which it can be observed that the origin (indicated by +) is not
encircled.

6.1.2. Simultaneous plant/control design. In the second simulation example, the simultaneous
design of controller and plant parameters is considered. The goal of this example is to find PD con-
troller parameters and the value of the stiffness parameter of the system such that a closed-loop
performance specification is satisfied. The stiffness parameter k in Figure 6 is extracted from the
model by adding an external force Fj, which acts on both masses (Figure 12). The dynamics for the

modified system G1(s) are given by
X1 . F
MRt

IThe Hoo norm can, however, be minimized by including, for example, a bisection algorithm.
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Figure 11. Resulting Nyquist plots of Q(¢, jw) (black) and Q A (¢, jw) (light grey and dark grey) for the
first simulation example. The colors of the constraint lines and the Nyquist curve are matched to indicate

where they hold.
T X9
p DELNEIN
1y my m2
n
58
d

Figure 12. Example case 2: double-mass-damper with additional external force input Fy.

with G (s) equal to

1 mos +d —mays
mymays3 + (my + my)ds? d mis |’

Note that by taking
Fie = k(x1 — x2), 2D

and setting k = k, the systems in Figures 6 and 12 are identical. If Fy is chosen as in (21), it can
be regarded as adding stiffness to the system. Thus, by absorbing x; — x» into the plant, ¥k becomes
a structural parameter that can be optimized. Finally, the positions x; and x, are assumed to have a
time delay of 0.05 s, modeled by a first-order Padé approximation, and are denoted by x; 4 and x5 4.

As with the previous case, a PD controller is used to obtain certain closed-loop specifications.
In order to avoid trivial solutions (e.g., ¥ going to infinity), the performance weight W, (s) of the
previous case is modified to

5%+ 285 Aywps + (ASw})?
s2/(M3)? + 2B3wps + (0f)?

Wpi(s) = Wy(s) x

where 7, = 0.7, M; = 1.9, A7, = 0.9 and wp = 1. The modification can be regarded as
putting a constraint on the resonance frequency of the system. With the modified performance
weight W, 1(s), the generalized plant is then depicted in Figure 13. Similar to the previous case, a
grid search of the three controller parameters is carried out in order to visualize the solution space.
The results are shown in Figure 14.

Now the proposed method is applied to find the controller parameters K, and K, and the struc-
tural parameter «, such that the performance condition (7) is satisfied. The performance Ap (jw)
is realized by ny = 100 points randomly sampled on the unit circle and the following constraints
are applied
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Figure 13. Configuration of the plant and controller for the simultaneous design of plant and controller.

K 0 0 0.05

Figure 14. Results of the grid search of K, K4, and « for the double-mass-damper system. The volume

within the light grey contour lines indicate the parameter combinations resulting in a stable closed-loop

system and the volume within the dark grey contour lines are combinations that yield a stable closed-loop
system with H o norm lower than 1.

—Im(Qa(jw)) + 0.7Re(Qa(jw)) + 0.001 <0 for w < 0.37,
Im(QA(jw)) +0.001 <0 for0.54 < w < 0.57.

Then, 100 Monte Carlo simulations for uniformly drawn initial parameter values in the
interval [0,1] were performed. The solution with the lowest Ho, has controller parame-
ters K, = 0.0534, K; = 0.1088, x = 0.1604, and ||Tw.|lcc = 0.862. This is close to optimal,
because with a grid search the lowest H, norm was found to be 0.8587.

6.2. Experimental results

In the experimental results, the experimental setup of Section 5 is used to demonstrate the controller
design and grey-box system identification methods. The FRF as shown in Figure 8 is used to design
the controllers, with 400 linearly spaced frequency points in the interval [1.95, 391.6] Hz.

6.2.1. PD controller. In the first case, the objective is to find the proportional and derivative gain
of a PD controller such that certain frequency-domain performance specifications are met. The
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controller structure is given by

K, + Kygs

Crp,1(s) = m

(22)

where f. = 120 Hz is the cut-off frequency of the low-pass filter and (K ,, Kz) are the controller
parameters that are sought. The performance requirement of the controlled system is a closed-loop
bandwidth of 3 Hz. To satisfy this, the following second-order performance weight [4] is used

52/ M} + 2B wps + 0F

|14 = ,
p2(5) s2 4+ 2BpA,0ps + (Apwp)?

(23)

with 8, = 0.8, a maximum sensitivity function gain of 6 dB by setting M, = 1.4, A, = 0.05, and
a desired bandwidth of wp = 272.8rad/s. The generalized plant configuration is therefore similar
to Figure 9.

It is found during the experiments that the proportional gain K, greatly influenced the refer-
ence tracking performance. A low value of K, results in poor reference tracking, whereas a larger
value of K, gives satisfactory reference tracking performance, because friction effects are (partly)
overcome. Hence, in order to have satisfactory tracking performance, the proportional gain K, was
maximized during the optimization process (in this case, the derivative gain is more dominant for the
bandwidth of the system). Therefore, the feasibility problem (14) was turned into an optimization
problem by maximizing the proportional gain K, subject to the constraints (14). For the optimiza-
tion problem, the perturbation block A p was realized by n; = 100 points on the unit circle and
two line constraints were used. The gains of the final implemented controller are K, = 0.1234
and K; = 0.0091, for which the Ho, norm is 0.950. The resulting sensitivity function and the
inverse of the performance weight are shown in Figure 15, from which it can be seen that the
sensitivity function remains below the inverse of the performance weight.

The results of the implemented controller on the setup are shown in Figures 16-17. The mea-
sured open-loop function of the setup is shown in Figure 16. It can be observed that the cross-over
frequency of the loop gain crosses 0 dB around 4 Hz. Moreover, the step response shows decent
tracking behavior. The small oscillation in the step response is caused by the resonance of the
system.

6.2.2. PD controller with notch filter. For the second controller case, the objective is to increase the
bandwidth of the system. To this end, the previous controller (22) is extended with a notch filter,

52 + 2B 0,5 + @?

C =C '
PD,2(5) PD,1(8) X 52 4+ 2B pwrs + 02

(24)

where w, is the resonance frequency of the experimental setup and, 8, and 8, determine the width
and deepness of the notch filter. The low-pass filter remains unchanged. Therefore, the generalized
plant configuration in Figure 13 is modified to include an LFT of the notch filter. The bandwidth

10 T T
el Loon

Magnitude [dB]

Frequency [Hz]
Figure 15. Sensitivity function obtained with the optimized controller for the first experiment (non-

collocated PD controller without notch filter). The inverse of the performance weight W), is also shown.
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Figure 16. Measured open-loop transfer function of the first experiment (non-collocated PD controller
without notch filter).
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Figure 17. Measured step response of the first experiment (non-collocated PD controller without notch
filter).
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Figure 18. Sensitivity function obtained with the optimized controller for the second experiment (non-
collocated PD controller with notch filter). The inverse of the performance weight W), is also shown.

of the performance weight W), »(s) in (23) is changed from wp = 272.8rad/s to wp = 2w 6rad/s.
Thus, in this experiment, the controller parameters (K, K4, Bz, Bp) are sought, such that the mod-
ified performance specification is satisfied. Similar to the previous case, four line constraints were
used, ngy = 50, and an optimization problem maximizing the value of K, subject to the constraints
was solved. The final obtained solution has gain K, = 0.6210, K; = 0.0216, 8, = 0.0406,
and 8, = 0.5190. For these gains, the H, norm of the weighted closed-loop system is 0.8989. For
this controller, the sensitivity function and inverse of the performance weight are shown in Figure 18.

The results of the PD controller augmented with notch filter are shown in Figures 19-20. From the
measured loop gain of the system it can be observed that the 0 dB line is now crossed at a frequency
of roughly 10 Hz. With respect to the previous case, the bandwidth has increased by 2.5 times. The
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Figure 19. Measured open-loop transfer function of the second experiment (non-collocated PD controller
with notch filter).
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Figure 20. Measured step response of the second experiment (non-collocated PD controller with notch
filter). The measured step response of the first experiment is also shown.

increased bandwidth can also be observed from the step response where both controller cases are
compared.

6.2.3. Grey-box system identification. In the final case study, the grey-box system identification
method introduced in Section 4 is applied to obtain model parameters. For many motion systems,
that is, mechanical structures, the damping is typically fairly low and can be considered linear.
In fact, it can often be considered as proportional, which is an even stronger assumption. This
has been experimentally investigated in, for example, [58] and [59], where dedicated frequency
response based tests are used to quantify the nonlinearities. These approaches are well supported
by theoretical considerations, see, for example, [2]. Based on the latter studies and observations
thereof, it is justified that (19) can be used to model the dynamics of the experimental setup.

For this purpose, the generalized plant structure as shown in Figure 5 is used. The model M (s)
is obtained by an LFT of the transfer function in (19), that is, the parameters (m1,m»,,k,d) are
extracted from the transfer function such that they can be put in the diagonal form used throughout
this paper. From the step responses obtained earlier, a small time delay (approximately 0.005 s) can
be observed, which was modeled by a first-order Padé approximation. Selecting the performance
weight for this example case is not trivial. However, it was found that multiplying with the inverse of
the plant FRF and an inverted notch filter at the resonance frequency of the system gave a satisfactory
result. The performance weight is thus given by

§ 10je
Href(jw) (]w)z + 2wr001]0) + a)r2 ’

Wyia(jow) =
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Figure 21. Grey-box system identified model.

It was also found that two constraint lines are required to constrain the Nyquist curve from crossing
zero. The feasibility problem was then solved by constraining m; = m, (the masses are assumed
to be of equal weight) and d to be smaller than 0.01, and n; = 25. Note that setting m; = m,
has the consequence that quadratic terms appear in the feasibility problem. The feasible solution
with the lowest Hoo norm, that is, || 7y,|lcc = 0.5151, is shown in Figure 21. For this solution, the
parameters are m, = 0.0048, m, = 0.0048, k = 11.4494, and d = 0.0014.

7. CONCLUSION

A novel frequency-domain design methodology exploiting the generalized Nyquist stability cri-
terion is presented. The methodology focuses mainly on fixed-structure controllers, of which the
tunable parameters can be extracted into a diagonal form. By introducing line constraints in the
Nyquist diagram, the Nyquist curve is prevented from encircling or crossing the origin, such that
stability and certain performance specifications of the closed-loop system can be achieved. The line
constraints typically result in a feasibility problem multilinear in the tunable controller parameters.
However, it was shown that in special controller cases, the feasibility problem becomes convex
in the tunable parameters. The methodology can directly be applied to design fixed-structure con-
trollers using a measured FRF of the plant, but can also be used to simultaneously optimize plant
and controller parameters, and for grey-box system identification. The method has been success-
fully demonstrated through simulation examples and on an experimental setup. Future research is
directed towards techniques that simplify the selection of the constraint lines, which will enhance
the proposed methodology.
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